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ABSTRACT

The practice of using statistical models in predicting authorship (so-called author-attribution
models) is long established. Several recent authorship attribution studies have indicated that
topic-specific cues impact author-attribution machine learning models. The arrival of new topics
should be anticipated rather than ignored in an author attribution evaluation methodology; a
model that relies heavily on topic cues will be problematic in deployment settings where novel
topics are common. In order to effectively deal with novel topics, we create author and topic
vectors and attempt to project out the topic influences from each document. Although our
experiments did not validate our assumptions, they do point out a possible problem with a
common assumption in authorship attribution research.
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CHAPTER 1:
Introduction

Modern authorship attribution began in ernest with the seminal study of Mosteller and Wal-
lace [1] in 1964 where they investigated the “Federalist Papers.” In the last several decades,
the complexity of authorship attribution methods has increased significantly, moving from sim-
ple statistics on sentence length to treebanks showing long-distance dependencies. Authorship
attribution researchers build machine learning classification models or rule-based systems iden-
tifying the author of an anonymous text given undisputed knowledge of various communications
written by that particular author. The earliest (as well as continuing) efforts in the field looked at
the authorship of historically interesting documents. Today, interest in the field is additionally
motivated by fairness and public welfare concerns: plagiarism detection and identifying authors
in a criminal investigation or intelligence setting.

The explosion of technology and availability of digital texts has greatly simplified research in
one aspect and revealed some weaknesses as well. When authorship attribution methods were
performed by hand, it was very time consuming to apply a method across several corpora. With
the plethora of digital documents available today this is not an issue, and researchers are able
to relatively easily apply a model that proved successful in one area to another area. While the
techniques have become more and more sophisticated, the area of research has mostly remained
limited to areas where all candidate authors are writing on the same topic. Having a single topic
in a corpus then, may be an oversimplification that can produce misleading results. We propose
that an author model should be able to accurately model the unique style of the author. If
a model can capture an author’s unique style, then the same author model should be able to
be applied across multiple topics and accurately classify the author. We posit that much of
the success that past researchers have had in performing authorship attribution is due to their
holding the topic constant and not to the ability of their model to accurately capture the subtle
uniqueness of a particular author.

1.1 Research Applications
It is increasingly important to determine who actually wrote texts written by unknown authors.
Authorship attribution is particularly useful for law enforcement and the military as they attempt
to determine whether a person suspected of a crime is actually the author of some incriminating
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document. It is easy to imagine a situation where a person, call him John, is suspected of being
a terrorist. Suppose we have access to a sufficient number of samples of John’s writing such as
some of his work emails, blog posts from a hobbyist site, and maybe some of his home emails.
Let us also suppose that we suspect John of being the author of some anonymous posts on a
known jihadist website. What we want to know is if we can tie John to the anonymous posts
using information from his other writing.

Our goal is to modify existing techniques in order to allow models built of an author to be
applied across topic domains. We want a method to be able to say, with some degree of certainty,
that John either is or is not the author of the anonymous blog posts.

1.2 Research Question
Our question was, “Can we construct feature-count vectors of documents and topics in such a
way that we can project out the topic influence on the document and create an author vector that
is topic independent?”

We attempted to answer this question by applying known methods from linear algebra in a new
way, projecting document vectors onto topic vectors. A subset of the New York Times (NYT)
Annotated Corpus was used for our hypothesis testing since each article had a single author and
was written on a single topic. We converted the documents into vectors, created topic vectors,
and attempted to project out the topic influence on each of the documents. What we hoped to
have constructed were vectors that represented the author and were not influenced by the topic.

Some assumptions made were: each author has a unique way of writing that does not vary across
topics, the author’s style and the topic are completely independent, author and topic vectors are
appropriately represented as feature-count vectors.

1.3 Results
We were unable to construct feature-count vectors of documents and topics in such a way that
we could project out the topic influence on the document and create an author vector that is
topic independent. The method of projecting unigram document vectors onto topic vectors re-
duced the weighted accuracy from 80% to 54% when compared against a standard bag-of-words
model. While our methods did not produce author models that can be successfully applied
across topic domains, we did show that some of the underlying assumptions often made in the
field of natural language processing (NLP) may not be valid assumptions.

2



1.4 Organization of Thesis
In order to investigate the research question, this thesis is organized as follows:

• Chapter 1 discusses the motivation and provides an overview of the methods used in this
research.

• Chapter 2 discusses prior and related work in the fields of linear algebra and authorship
attribution.

• Chapter 3 contains a description of the methods used to prepare the data and conduct
experiments.

• Chapter 4 contains the results of the experiments and analysis.

• Chapter 5 contains the summary and possible areas for future work.

3
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CHAPTER 2:
Prior and Related Work

2.1 Prior Work
The field of authorship attribution is concerned with trying to discover who, from a group
of candidates, is the author of some text. One of the most famous examples of authorship
attribution was conducted by Mosteller and Wallace [1] where they applied their statistical
analysis to the Federalist papers. Methods of authorship attribution have evolved from relatively
simple techniques such as statistical analysis on length of sentences [2] to applying complicated
machine learning algorithms to stylometric features of a text [3]. More recently, Gehrke [4],
used Bayesian methods to perform authorship attribution in blogs. Gehrke concluded that topic
cues overwhelm classifiers and make cross topic authorship attribution difficult. For a more
thorough review of authorship attribution techniques see Stamatatos et al. [5].

2.2 Related Work
Performing authorship attribution under novel topic scenarios has largely been ignored by the
NLP community due to its difficulty. There have been a few studies conducted where novel
topics were considered, however, we believe the number of topics they considered was too
small.

2.2.1 Topic Influence Studies
Mikros and Argiri [6] attempted to test whether or not stylometric features used in authorship
attribution are topic neutral. They used the following stylometric features:

• Lexical richness variables

• Function words (10 most frequent modern Greek words)

• Sentence level measures

• Word level measures

• Character level measures

5



Their corpus consisted of 200 modern Greek newswire articles that were completely balanced
across two authors and two topics. They concluded that there is a significant correlation between
the stylometric features, and the topic text using stylometric features to perform authorship
attribution should be done with caution.

A second study conducted by Koppel, Schler, and Bonchek-Dokow [7] looked at the depth of
difference between two example sets across topics. They used a corpus of 21 books written by
ten authors. They noticed that, using traditional authorship attribution methods, it was difficult
to accurately determine the author of a text when the topic of the training documents differed
from the topic of the testing documents. To solve this problem, they invented a technique they
call unmasking. The intuition behind unmasking is to iteratively remove the features that are
most useful for distinguishing between X and Y and to gauge the speed with which cross-
validation accuracy degrades as more features are removed. Their hypothesis was authors use
a consistent style across topics and when the most distinguishing features are removed from
document X, it is more difficult to distinguish it from document Y, thus, indicating that they
were both written by the same author. They concluded that it is more difficult to distinguish
writings by the same author on different topics than writings by different authors on the same
topic.

A third study conducted by Corney [8] concluded that topic has no effect on authorship attri-
bution and stylometric features are sufficient for classifying email messages. He used a corpus
of 156 e-mail messages from three authors writing about three topics. He picked one of the
topics to create a model of each author and tested the model on the remaining two topics using
support vector machines. He identified an author 85% of the time across topics. He noted that
much of his success came from the length and structure of e-mail messages. Since the most
topic specific cues in an email are in the subject line, by looking only at the body of the e-mail
the impact of topic-specific words may be negligible.

In contrast to results obtained by Corney, the fourth study, by Madigan et al. [9], tested the
effect of topic on authorship attribution with 59 Usenet postings by two distinct authors on
three distinct topics. Just as with Corney, they constructed a model of each author on one of the
three topics and tested for authorship on postings written about the remaining two topics. They
obtained poor performance using a unigram model, but their bi-gram parts-of-speech (pairs of
consecutive parts of speech) model proved to be one of the best among the tested possibilities.
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Finally, the fifth study conducted by Baayen et al. [10], used principal component analysis
(PCA) and linear discriminant analysis (LDA) to evaluate the effectiveness of grouping text
by author, using stylometric features. Their data set consisted of 576 documents written by
eight students. Each student wrote a total of 24 documents in three different genres about three
different topics. They found that compensating for the topic imbalance coverage led to increased
performance in a cross-validation.

2.3 Separating Author from Topic
What we see from the prior work leads us to conclude that traditional authorship attribution
techniques are picking up on topic cues in the text and those cues are overwhelming the author-
ship signal when we move across topic domains [11]. Our hypothesis is that each author has a
style that defines him which does not vary across the topics he is writing about. We model this
as a vector-space problem. To begin with, we break all documents up into classes based on their
topic. If we think of each document i in class j as a vector ~Di,j and assume we can construct a
topic vector ~Tj for each class j, then what we are looking for is some residual vector ~Rj which
is “as close to” ~Di,j as possible but also has “nothing in common” with (orthogonal to) ~Tj . For-
mally stated, we hypothesize that the solution to Equation (2.1), subject to ~Ri · ~Ti,j = 0, will be
a vector that represents the author’s unique style. We removed the subscripts in the equation for
clarity.

arg min
~R
|| ~D − ~R||2 (2.1)

We now prove that the solution to this problem is found using standard vector projection [12].
Consider a document vector ~D and a topic vector ~T . We desire a residual vector ~R that is “as
close to” ~D as possible but also orthogonal to ~T . “As close to” will be formalized as the squared
error objective function || · ||2.

That is, we desire to minimize Equation (2.1) subject to

~R · ~T = 0.

We hypothesize the existence of a vector ~P that subtracted from ~D gives us the solution vector
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~R. Since ~R = ~D − ~P , the problem may be reformulated:

arg min
~P
||~P ||2

subject to
( ~D − ~P ) · ~T = 0.

To solve this problem, we will use the method of Lagrange multipliers [13], defining the func-
tion f(~P , λ) as follows.

f(~P , λ) = ||~P ||2 − λ(( ~D − ~P ) · ~T )

Taking the derivative of f with respect to ~P and λ gives the following set of equations which
we set equal to zero.

0 = 2~P + λ~T (2.2)

0 = − ~D · ~T + ~P · ~T (2.3)

Solving Equation (2.2) for ~P we get:
~P =

−λ
2
~T

We substitute this value for ~P into Equation (2.3) and solve for λ.

0 = − ~D · ~T +
−λ
2
~T · ~T

λ =
−2 ~D · ~T
~T · ~T

With λ solved, we can back substitute into Equation (2.2) revealing a closed form for ~P :

0 = 2~P +
−2 ~D · ~T
~T · ~T

~T

8



~P =
~D · ~T
~T · ~T

~T (2.4)

Equation (2.4) is equivalent to Equation (2.7) and thus our hypothesized ~P is simply vector
projection found in linear algebra textbooks.

2.3.1 Novel Topic Cross-Validation
We wish to develop an author model that is independent of the topic. In order to test our model,
we need a situation where we have a new document written by a known author on a never before
seen topic. Novel topic cross-validation simulates a scenario where we try to perform author
attribution when novel topics appear. This simulation is accomplished by performing a leave-
one-topic-out n-fold cross validation where n represents the total number of topics in the data
set. In each of the n folds, we test on all documents pertaining to one topic and train on all other
documents pertaining to the remaining n− 1 topics.

2.4 Features
In the field of natural language processing (NLP), the method of transforming a piece of natural
language text into a vector appropriate for machine learning algorithms is determined by what
types of features you would like to use. There are various features available to choose from that
are well defined and understood in the NLP community. Here we outline the feature sets used
in our experiments.

2.4.1 Unigrams and Bigrams
The unigram model for representing text is commonly referred to as a “bag of words” model.
Word order information is lost when using this model. A document is represented as a collec-
tion of (word, count) tuples where each ‘word’ is a word from the document and ‘count’ is the
number of times that word appears in the document. There are as many tuples in the represen-
tation as there are unique words in the text. Bigrams are created in a similar manner except
that adjacent word pairs replace words in the tuples [14]. These unigrams and bigrams can also
similarly be created using characters rather than words.

2.4.2 Gappy Word Bigrams
In addition to traditional adjacent word bigrams, we can define various other types of word
bigrams, for example gappy bigrams or orthogonal sparse bigrams. Gappy bigrams are defined
by creating a bigram from all words that have a distance between them that is less than or equal
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to some pre-defined maximum distance [15]. The distance between two words, a and b, is equal
to the number of other words in between word a and word b. Traditional bigrams are a subset of
gappy bigrams where the maximum distance between words is zero. As an example, the gappy
bigrams produced by the phrase “the big purple dog” with a gap of two is shown in Figure
2.1. Gappy bigrams often include tags to mark the beginning and end of a phrase or sentence.

{the_big, the_purple, the_dog, 
big_purple, big_dog, purple_dog} 

Figure 2.1: Gappy bigrams formed from the phrase “the big purple dog”.

These typical tags were excluded in our constructions of gappy bigrams since one of our pre-
processing steps is to remove capitalization and punctuation from the documents in our corpus.
Gappy bigrams are a variant of string kernels except that string kernels [16] apply to characters
rather than to words. They are also very similar to orthogonal sparse bigrams.

2.4.3 Orthogonal Sparse Bigrams
Orthogonal sparse bigrams (OSB) were initially defined by Siefkes et al. [17] in a similar man-
ner to gappy bigrams. The distinction between gappy bigrams and OSBs is, with the initial
definition of OSBs, the maximum distance is fixed at five. Defined in this manner, OSBs are a
proper subset of sparse binary polynomial hashing (SBPH). The definition was later refined by
Cormack et al. [18] to explicitly include the distance between two words and allow the maxi-
mum distance to be a fixed number, usually less than six. The distance between words is defined
the same way as in gappy bigrams. OSBs produced by the phrase “the big purple dog” with a
maximum distance between words of two is shown in Figure 2.2.

{the(0)big, the(1)purple, the(2)dog,     
big(0)purple, big(1)dog, purple(0)dog}  

Figure 2.2: OSBs formed from the phrase “the big purple dog”.

2.5 Entropy
We refer to entropy in the information theoretic sense Shannon [19] introduced, as a measure of
uncertainty present in a given distribution. The higher the entropy the greater the uncertainty and
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vice versa. The entropy, H , of some distribution P over events p1, p2, . . . , pn has the following
properties:

• H is continuous in the pi which allows small changes in probability to have small changes
in entropy.

• If all the pi are equal (pi = 1
n

), then H monotonically increases with n, that is, the more
equally likely events there are, the more uncertainty exists.

• If a choice can be broken down into two successive choices, the original H should be
the weighted sum of the individual values of H . This requirement covers a special case
which is not needed for our work.

The entropy of a distribution is given by Equation (2.5) which satisfies these properties [19].
From this equation we can determine that given two probability distributions with equal num-
bers of observations, the distribution which is flattest will have higher entropy.

H(P ) = −
n∑
i=1

pilog2pi (2.5)

2.5.1 Principle of Maximum Entropy
The principle of maximum entropy (MaxEnt) was first introduced into modern literature by E. T.
Jaynes but is essentially a formalization of Laplace’s “Principle of Insufficient Reason”. It states
that the probability distribution where entropy is maximized subject to any known constraints
provides the most unbiased representation of our knowledge of the system [20] [21]. Or, as
Jaynes describes [22],

...the fact that a certain probability distribution maximizes entropy subject to
certain constraints representing our incomplete information, is the fundamental
property which justifies use of that distribution for inference; it agrees with ev-
erything that is known, but carefully avoids assuming anything that is not known.
It is a transcription into mathematics of an ancient principle of wisdom...

We know from Equation (2.5), that maximizing the entropy in a system means finding the flattest
probability distribution, which occurs when all probabilities have the same value. We provide a
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combinatorial proof that Equation (2.5) is maximized with a uniform distribution in Appendix
A. While the maximum entropy possible in a system occurs when the probability distribution
is flat, a flat distribution is not what we desire for a prediction system. We desire the flattest
possible probability distribution subject to the constraints of the data.

2.5.2 Maximum Entropy Classifiers
The intuition behind MaxEnt classifiers is that models are initialized with a uniform distribu-
tion and are updated as more information becomes available through training data. If certain
events are seen to be more likely in the training data, then they are weighted and the remaining
probability mass is equally distributed across the rest of the distribution. For example, suppose
we have a distribution with four possible outcomes. If we know nothing about the events then
a MaxEnt classifier would assign a probability of 1

4
to each event. If we know one of the events

occurs 1
2

of the time but we know nothing about the other three, a MaxEnt classifier would
assign a probability of 1

2
to the first event and 1

6
to each of the other three. MaxEnt classifiers

belong to a family of classifiers known as log-linear classifiers, which means they extract some
set of features from the input and combine them linearly [14]. An argument for the reasonable-
ness of using a MaxEnt classifier in the NLP domain is presented by Nigam et al. [23] where
they showed that MaxEnt classifiers perform better than naive Bayes for some corpora. MaxEnt
classifiers can be described in general using Equation (2.6)

p(c|d) =
1

Z
exp

(∑
i

wifi(c, d)

)
(2.6)

where c is a class (a particular author in our case) and d is a given document. Z is a normalizing
factor of the form

Z =
∑
C

p(c|d) =
∑
c′∈C

exp

(
N∑
i=0

wc′ifi

)
which forces the weights to sum to 1, fi(c, d) is an indicator function learned from the training
data and wi is a weighting. The probability distribution with maximum entropy represented by
Equation (2.6) has been shown to be a unique distribution [24].

2.5.3 MEGAM
Once the corpus of documents has been converted into a set of feature vectors, the next step
is to choose an implementation of MaxEnt to use for classification. For our work we chose a
classifier developed by Duamé [25] called MEGA Model Optimization Package (MEGAM).
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2.6 Dimensionality Manipulation
Our corpus consists of 18,862 documents written by 15 authors and containing 167,783 types
(or unique words). Working with such a large data set proved to be difficult given the machine’s
memory limitations used for the computations. We used some well known concepts from linear
algebra in order to reduce the dimensionality of the data set, and because we are treating each
document as a vector and a collection of documents as a matrix, we were able to do PCA to
reduce the dimensionality of our problem space. We used singular value decomposition (SVD)
to perform PCA . While PCA and SVD are well known, implementing them on a computer was
somewhat complex due to the large dimensions of our matrices.

2.6.1 Vector Projection
Vector projection is well known in linear algebra [26] but it is not commonly used in NLP. In
general, given two vectors ~A and ~B projecting ~A onto ~B results in some vector ~P which is in
the same direction as ~B but has length || ~A|| cos θ where θ is the angle between ~A and ~B, and

|| ~A|| is the 2-norm of ~A. The 2-norm of a vector ~A is defined as
√
〈 ~A, ~A〉.

A 

B 

P 

θ 

||A|| cos (θ) = α 

Figure 2.3: Vector Projection

Algebraically, the scalar projection of ~A onto ~B is given by

α =
〈 ~A, ~B〉
|| ~B||

where 〈 ~A, ~B〉 denotes the inner product of ~A and ~B. The vector projection of ~A onto ~B is given
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by

~P = α

(
1

|| ~B||
· ~B

)
=
〈 ~A, ~B〉
〈 ~B, ~B〉

~B. (2.7)

Notice that since

〈~P , ~P 〉 =

〈
α

|| ~B||
· ~B, α

|| ~B||
· ~B

〉
=

(
α

|| ~B||

)2

〈 ~B, ~B〉 =
α2〈 ~B, ~B〉√
〈 ~B, ~B〉

2 = α2

and

〈 ~A, ~P 〉 =
(〈 ~A, ~B〉)2

〈 ~B, ~B〉
= α2

it follows that
〈 ~A− ~P , ~P 〉 = 〈 ~A, ~P 〉 − 〈~P , ~P 〉 = α2 − α2 = 0

which shows that ~A− ~P is orthogonal to ~P and consequently to ~B. If we suppose the document
is represented by ~A and the topic of the document is represented by ~B, then ~A− ~P is completely
independent from the topic. As shown above, ~P is the solution to Equation (2.1). It is our
hypothesis that ~A− ~P represents an author’s style.

2.6.2 Singular Value Decomposition
Singular value decomposition [26] states that, given a d×v matrixM , there exists a factorization
of the form

M = Ud×rΣr×r(Vv×r)
T

where U consists of the eigenvectors of MMT , V consists of the eigenvectors of MTM , and
r is the rank of M . The columns of U are called left singular vectors and the columns of V
are called right singular vectors. The matrix Σ is a diagonal matrix whose entries are singular
values, or the square roots of the eigenvalues corresponding to the eigenvectors of U and V such
that the diagonal entry σm,m, 1 ≤ m ≤ r, is the singular value for the mth columns of U and V .

In our setting, M is a document × term matrix and the matrices U and V are representations
of M using orthonormal factors. Deerwester et al. [27] refer to these factors as “concepts”
when describing latent semantic indexing (LSI). These orthonormal factors can be thought of
as concepts in the following way. Assume all documents pertaining to a concept are linear
combinations of each other, that is, they are linearly dependent, and then the number of concepts
contained in a collection of documents is the maximal number of linearly independent rows (or
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columns) in the document matrix, which is known as the rank of the matrix. The rank of U
represents the number of concepts present in the set of input documents, and each entry of U
and will correspond to a document and a concept. The value in the entry can be thought of as
a relative strength of the concept in the document. This thought process works similarly with
concepts and vocabulary words using V . Here, U and V are often referred to as the document-
to-concept similarity matrix and the term-to-concept similarity matrix respectively. We will
develop a slightly deeper understanding of why these factors are referred to as concepts as we
describe PCA.

2.6.3 Principal Component Analysis
Principal Component Analysis is an orthogonal linear transformation of a set of input vectors
from the original d-dimensional space to a new k-dimensional space (ideally k << d) which
results in a minimal loss of information [28]. The intuition behind this transformation and com-
pression is that in a high dimensional vector space, there are dimensions in which the input data
varies little. These dimensions therefore provide little to no information. If we could perform
a change of basis on the vector space and remove the little-varying dimensions from the space,
we would retain almost all of the information present in the original space but require lower
dimensionality to represent it. Under PCA, basis vectors of the new space are ordered accord-
ing to their relative importance based on how much information (variance along the dimension)
that dimension provides. The first vector, called the first principal component, of the new space
is the dimension along which the largest amount of variance from the input data lies. The first
principal component is the dimension which, when the vectors in our space are projected onto
it, has the greatest variance among the values. Figure 2.4 shows an example data set and the
direction of its principal components.

The second principal component is the dimension that contains the second largest amount of
variance. The remaining principal components are found similarly. We can think of each of
these principal components as a vector representing the concepts in the input documents. Where
a concept is a linear combination of the vocabulary words, the coefficients of which are given
by some ~t, as depicted in Figure 2.5. Since each of these concepts is a linear combination of
words, the principal components are in the column space of A.

Figure 2.5 is a toy example of PCA. Given the vocabulary in our example, we can imagine that
one of the PCA concepts could represent the idea of “vehicle”. The vehicle concept would be
made up of some linear combination of the vocabulary words. In this example, by construction,
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Dimension of first principal component

Dimension of second principal component

Figure 2.4: Dimensions of first and second principal components

  

Car Book Bus Ghost Truck

Doc 1 5 7 3 19 0

Doc 2 4 2 14 8 6

Doc 3 15 18 23 7 1

Doc 4 6 9 0 1 6

Vehicle 
Concept

.3

0

.4

0

.9

• ═

Strength of 
vehicle concept 

in each 
document

2.7

12.2

14.6

7.2

A

t
i

Figure 2.5: Weights corresponding to the hypothetical concept of vehicles

we gave all of the weight to “vehicle” words. In an actual instance of PCA, words unrelated to
the human concept “vehicle” may in fact get some weight. This might occur, for example, if
the word “book” happened to co-occur often enough with “truck.” After multiplying the input
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matrix by our vehicle concept vector, the result is a vector that tells us the relative strength of
the vehicle concept present in each document. When actually performing PCA, the concepts
are not given names but is done here for illustration purposes.

Consider the following example adapted from Leon [26] to see how PCA can be used to trans-
form a space. Suppose we have d documents in a corpus with a total vocabulary of size v. Let
A be a d × v matrix where each row corresponds to a document, each column corresponds to
a word in our vocabulary, and the value in position ai,j represents the number of times word j
occurs in document i. As a preparatory step, we calculate the mean value for each column of A.
Let us call the mean value µ(vj) which is, the average number of times word vj occurs across
all documents. Now, replace each element ai,j with ai,j − µ(vj). This preparatory step centers
data in each column around the origin rather than the mean, which simplifies the variance cal-
culation and the creation of the covariance matrix in the next step. It is often referred to as mean
centering.

We wish to find mutually orthogonal vectors ~y1, ~y2, . . . , ~yr which correspond to the principal
components ofA to find a basis of our new space. Since principal components are in the column
space of A, we can represent these vectors as a product where ~yi = A~ti for some ~ti ∈ Rn. The
first principal component, ~y1 = A~t1, is created by taking ~t1 as the solution to Equation (2.8).
The second principal component will be created by solving Equation (2.8) subject to ~ti 6= ~t1,

arg max
~ti

~ti
T
S~ti (2.8)

where S is the covariance matrix of A, given by Equation (2.12) and the ~ti are unit vectors.
Recall the standard equations for the variance and covariance of random variables X , Y given
by Equations (2.9) and (2.10). The denominator in these equations represents the degrees of
freedom for the given sample. Often, these equations are given with n − 1 in the denomina-
tor rather than n. Variance calculated with n − 1 in the denominator is commonly called the
unbiased variance.

var(X) =

n∑
i=1

(xi − µ)2

n
(2.9)

Cov(X, Y ) =
n∑
i=1

(xi − µx)(yi − µy)
n

(2.10)
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The degrees of freedom is simply the number of independent variables in a sample minus the
number of estimated variables. Because we calculate the mean from the sample data (rather
than knowing it a-priori), our degrees of freedom will be the number of samples minus one.

Since we subtracted the mean as a pre-processing step, µ = 0 and the variance of ~y1 is given by
Equation (2.11). The covariance matrix of A is given by Equation (2.12). In both equations, we
divide by v − 1 rather than v where v is our vocabulary size. We divide by v − 1 because the
mean is estimated from the data and so we have v − 1 degrees of freedom.

var(~y1) =
〈~y1, ~y1〉
v − 1

=
(A~t1)

TA~t1
v − 1

= ~t1
T
S~t1 (2.11)

S =
ATA

v − 1
. (2.12)

The solution to Equation (2.8) can be found by choosing ~t1 as the eigenvector of ATA cor-
responding to its maximum eigenvalue λ1, which we now prove. What we want to show is
that

arg max
~x

~xTATA~x

~xT~x
(2.13)

is solved when ~x is the eigenvector which corresponds to the largest eigenvalue of ATA. Equa-
tion (2.13) is known as the Rayleigh quotient. We begin with a simplifying step. By assuring
that we scale all of the ~x vectors so that they are unit vectors prior to evaluating them, we force
the denominator to be 1 and do not change the problem. Since v − 1 is just a scalar, we replace
ATA with S. Now, our problem is to solve

arg max
~x
~xTS~x

subject to
~xT~x = 1.

We use the method of Lagrange multipliers to solve this problem defining the function

f(~x, λ) = ~xTS~x− λ(~xT~x− 1).
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Taking the derivative of f with respect to ~x and λ we get the following equations.

df

d~x
= ~xTS + ~xTST − 2λ~xT = ~xT (S + ST )− 2λ~xT

and since S is symmetric
df

d~x
= 2~xTS − 2λ~xT

and
df

dλ
= −~xT~x+ 1.

Setting df
dλ

= 0 we get our initial condition. Setting df
d~x

= 0 and solving we get

2~xTS = 2λ~xT

~xTS = λ~xT

(~xTS)T = (λ~xT )T

ST~x = λ~x

and since S is symmetric we get

S~x = λ~x. (2.14)

Hence, the maximum of Equation (2.13) is found when ~x is an eigenvector corresponding to the
eigenvalue λ. Now multiplying both sides of Equation (2.14) by ~xT on the left we get

~xTS~x = ~xTλ~x

and dividing both sides by the nonzero scalar ~xT~x we have

~xTS~x

~xT~x
= λ.

The left hand side of the equation above is maximized when ~x is the eigenvector corresponding
to the largest eigenvalue of ATA. Thus, ~t1 is the right singular vector of A corresponding to the
largest singular value σ1 =

√
λ1. If ~u1 is the corresponding left singular vector (eigenvectors of

AAT ), then
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~y1 = A~t1 = σ1 ~u1

and similarly
~y2 = A~t2 = σ2 ~u2.

There are several methods for performing PCA [28] [29], and we choose to use SVD.

We accomplish dimensionality reduction by taking only the number of principal components
required to account for 95% of the variance of our original matrix A. Since we are treating the
eigenvalues as measures of variance, we can think of the sum of the eigenvalues as the total
amount of variance in matrix A. We want to find the smallest j such that

j∑
i=1

σi ≥ .95
v∑
i=1

σi.

If we take only the first j principal components of A and treat them as row vectors in a new
d× j matrix A′, then we have reduced the dimensionality while maintaining most of the “infor-
mation” present in the original matrix A.

2.7 Evaluation Criteria
These are the metrics used to measure the results of our experiments.

2.7.1 Precision Recall and Accuracy
Two standard measures of success in the domain of NLP are precision and recall, where pre-

cision is a measure of true positive classifications in relation to the total number of positive
classifications and recall is a measure of true positives in relation to the total number of actual
positives. These metrics are primarily used when evaluating a binary classifier [14]. A third
common measure is accuracy, which is mostly used in a multiclass problem and is a measure
of the proportion of the number of correct classifications to the total sample size. We use the
following equations

precision =
tp

tp+ fp

recall =
tp

tp+ fn

accuracy =
tp+ tn

tp+ tn+ fp+ fn
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Predicted Value
T F

Actual T tp fp
Value F fn tn

Table 2.1: Confusion Matrix

where tp, tn, fp, fn are values from a confusion matrix, as depicted in Table 2.1.

For example, suppose our classification task was to determine whether or not prisoners are
terrorists. Precision tells us the percentage of people we detained that are actually terrorists,
and recall tells us the percentage of terrorists correctly identified.

2.7.2 F-Score
The last metric we use is the F-score, which is the harmonic mean of the precision and re-
call [14].

F-score =
2

1

recall
+

1

precision

The reason for using F-score as a metric as opposed to accuracy is that it will not reward an
increase in one dimension at the expense of the other. It is easy to manipulate your recall by
sacrificing your precision. In our terrorist example, if we called everyone a terrorist, our recall
would be 100% but our precision would drop. Measuring the F-score prevents these kinds of
manipulations.

2.7.3 Weighted Metrics
When using novel topic cross-validation on an unbalanced data set, each division of data has
different sizes since there are different numbers of documents in each topic category. As a result,
we need to use a weighted average and standard deviation. The weights are computed as the
fraction of the total document count represented within the cross-validation fold. A derivation
for the unbiased variance estimate of a weighted average is provided by Schein et al. [11].

µ̂ =
n∑
i=1

wixi
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V2 =
n∑
i=1

w2
i

σ̂2 =
1

1− V2

n∑
i=1

wi(xi − µ̂)2

In the equations above, the xi refer to an evaluation statistic such as an accuracy, precision,
recall, or F-score. Also V2 is simply a variable used in the calculation of the weighted variance.

2.8 Tools
2.8.1 Naval Postgraduate School Machine Learning Tools
The Naval Postgraduate School machine learning (NPSML) group has developed a suite of
tools to facilitate machine learning in its NLP lab. This suite of tools is publicly available via
the Internet [30]. It defines an NPSML format for data and serves as a pipeline to convert from
the NPSML format to various third-party machine learning tools.

2.8.2 Maximum Entropy (GA) Model Optimization Package
The NPSML library provides a tool for converting files from the NPSML format to the MEGAM
format which makes this MaxEnt classifier a natural choice. MEGAM is publicly available for
download [25] and has no restrictions for academic use. The software takes a set of input
vectors as an input for the model building phase and another set of input vectors for the evalu-
ation/prediction phase. A maximum entropy distribution is created from the input vectors, and
the distribution is applied to the test vectors to predict their class.
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CHAPTER 3:
Experimental Setup

3.1 Source of Data
The data used in these experiments are a subset of the NYT Annotated Corpus, which is a
collection of over 1.8 million XML documents representing nearly all NYT articles published
between January 1987 and June of 2007. While the documents were hand tagged, not all meta-
data information fields were present in all documents. For example, only 48% of the documents
contained tags for the author [31]. A subset of the corpus, which contained author and topic
tags was selected for the experiment.

3.2 Data Selection and Preparation
We chose articles with a single author and written about a single topic in order to perform novel
topic cross-validation. The subset consisted of 18,862 documents written by 15 authors on 23
topics. The subset was unbalanced across both authors and topics, meaning that authors did
not write on all topics and authors did not write in equal amounts. Each author wrote on more
than one topic and each author has at least 25 documents in each training set. We believe this
data set is a reasonable representation of what may be encountered in the wild. All punctuation
and capitalization was removed from the documents before testing. The work of selecting the
subset and extracting the text from the XML was performed by Caver [32]. We are grateful for
the work.

It is worth noting that the XML extraction method used by Caver [32] allowed the lead para-
graph of some documents to be repeated. This was due to an inconsistency in the XML tagging
in the corpus. No effort was made to correct or account for this inconsistency.

3.2.1 Methodology Overview
Using the same classifier for all of our methods gave common structure to each set of exper-
iments regardless of the features used to represent the documents. We began by choosing a
feature selection method and converting each document into a dense vector of feature count
pairs. Once all documents were converted, we created the training and test splits. We used
novel topic cross-validation for all of our experiments. As our data set had 23 topics, we cre-
ated 23 train/test splits by choosing one topic at a time and all documents written about that topic
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became the test set. All documents on the remaining 22 topics became the training set. Once
split, the training set was fed into MEGAM. We noticed during our experimentation that the
MEGAM algorithm would occasionally converge too soon. To help avoid getting stuck in these
local maxima, we forced MEGAM to repeat its iteration 100 times for each training set. We
then ran the test set through MEGAM and recorded the results. We used the weighted average,
standard deviation, and variance metrics described in Chapter 2 to evaluate each method. Two
more-complicated approaches, PCA and projection, required more data manipulation before
being fed into MEGAM but the same general approach was followed.

3.3 Feature Selection
We used several methods for representing the documents as vectors for classification. Uni-
grams, gappy bigrams, and orthogonal sparse bigrams with gaps ranging from zero to five were
used for a total of 8 methods. We stored each document as a set of 〈feature, count〉 where
the feature was the unigram, bigram, etc and the count was the number of times that feature
occurred in the document. As the documents were read in, we assigned a unique integer to
each new feature, starting with zero and incrementing. The document labeling allowed us to
think of the documents as vectors with features as dimensions and the counts as the values for
their corresponding dimension. We were able to save space by storing the documents as sparse
vectors. A sparse vector is a vector that has had all of the zero count dimensions removed.
If a feature does not occur in a document, we do not store the 〈feature, count〉 for that fea-
ture. Thus, all dimensions not explicitly enumerated in the vector are assumed to have values
of zero. Since most documents contain only a fraction of the total vocabulary of the corpus,
storing the documents as sparse vectors significantly lowers the storage requirements. When
the dimensions with zero counts are explicitly enumerated, the vectors are called dense rather
than sparse. Using sparse vectors as opposed to dense vectors can have a significant impact on
the time required for MEGAM to converge.

Two more-complicated approaches of document representation were also used. We perform
ed PCA on our unigram vectors, transforming them from vocabulary space to PCA concept
space. We also performed vector projection operations on the unigram vectors as well as the
PCA-transformed concept vectors. These methods are described in detail below.

3.3.1 PCA of Unigram Vectors
In order to perform PCA on the input documents, we began by transforming each document in
the training set into a dense vector and created a matrix where each row is a dense document
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vector. Now we have a d×v matrix where d is the number of documents in the training set and v
is the total vocabulary size for the training set. We call this matrix A. We then performed mean
centering on A. Mean centering is required for PCA. It also removes most of the zeros from
our matrix, and as a result, we can no longer take advantage of sparse matrix representations
for storage. Our next step was to perform SVD on A and use the resulting matrices to perform
dimensionality reduction and convert our documents from vocabulary space to PCA concept
space. This conversion is done by creating a new matrix T consisting of the right singular
vectors and the dimensions that correspond to 95% of the variance from A. The new matrix
T can be thought of as a transformation matrix which converts document vectors from the
vocabulary space into the PCA concept space. Figure 3.1 is a graphical representation of this
process. To avoid training on test data, we performed PCA for each of the 23 train/test splits.

A U Σ VT 

1xv 

vxc 

* = 
1xc 

PCA via SVD 

Document Transformation 

dxv dxv vxv vxv 

= * * 

. . . 

vxc 

95% σ1 
σ2 

. . . 

σv 

σc 

T 

Figure 3.1: Red bars represent left and right singular vectors. Dashed region represents unused dimensions.

After creating the transformation matrix T , we multiplied each vector in the training and test
sets by T to transform them into the PCA concept space. Of note, any words in the test set
that were not present in the training set were ignored. The words were ignored because the
dimensions of the dense vectors from the test and training sets needed to match for the matrix

25



multiplication. The dimensions also needed to correspond to the same words for the transfor-
mation from vocabulary space to PCA concept space to have meaning. The exclusion of unseen
words is justified because a MaxEnt classifier would not have any weight for an unseen word,
and thus, an unseen word provides no predictive value for the document. It is these transformed
test and training sets that we passed into MEGAM for training and classification.

PCA was successful as a dimensionality reduction tool. We could not store the PCA-transformed
concept vectors as sparse vectors since the multiplication by the transform matrix put values in
almost all of the dimensions; but, only keeping the dimensions of A that accounted for 95%
of the variance resulted in significantly smaller vectors. This allowed for a reduction in input
size from 18 GB to 1 GB and a significant decrease in the time required for classification as
compared to the dense inputs from the projection of unigram vectors.

While SVD is a well known computation, we did have some difficulty implementing it due to
the size of the matrices. For each of the training sets, the matrix A was approximately 18, 000×
167, 000. Since we needed the right singular vectors for the dimensions of the transformation
matrix to work, we had to compute ATA which meant doing calculations with a 167, 000 ×
167, 000 matrix or 27, 889, 000, 000 entries in the matrix. Since a 32-bit computer can only
address 232 = 4, 294, 967, 296 items, we had to do all the calculations using a 64-bit machine.
The size of each A matrix was approximately 37 GB, which was too large of an input for the
implementation we used. In order to reduce the A matrices sizes, for each of the n − 1 topics
in the training set we took 20% of the documents at random and used this subset to construct
reduced size A matrices. These smaller A matrices were used to create the T matrices. We
multiplied all of the documents in the test set by T to create our transformed test set , not just
the randomly selected 20% used to create T . We used the package SVDLIBC [33], to perform
the calculations on our A matrices.

3.3.2 Projection of unigram and PCA-Transformed Concept Vectors
We were looking for a way to separate an author’s style from the topic he is writing about. We
want a vector to represent our document that is as close to the original document vector as pos-
sible, but has nothing in common with the topic vector. A solution to this problem is achieved
by vector projection. The mechanics of projection are well known, and we used standard linear
algebra formulas [26] for the computations.

We started by using unigram vectors of our documents, and we created a representative topic
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vector for each topic. The representative topic vector was created by taking the sum of all docu-
ment vectors in that topic. We saved the topic vectors as dense vectors. We then expanded each
sparse document into its dense representation, projected it onto its topic vector, and subtracted
the result from the original document vector to get what we call the author vector. The process
of projecting out the topic influence is represented in Figure 3.2. One difficulty we had with

Topic

Document

Author

Figure 3.2: Projecting away the topic

projecting the unigram vectors was storing and classifying the sets of author vectors after the
projection operations. While the input document vector is a sparse vector, after the projection
operation all of the dimensions have values, so we can no longer take advantage of sparse rep-
resentations. This turned a 500 MB set of document vectors into an 18 GB set of author vectors.
The increase in size also resulted in a significant increase in the time for MEGAM to process
the training set. Each of the 23 iterations took about eight days to build a prediction model. We
are fortunate to have access to a large machine with 48 processor cores and 256 GB of memory.
Using this machine we were able to run several of these models in parallel.

As a means of overcoming the memory and computation difficulties that arose from the dense
projected unigram vectors, we also applied vector projection to our PCA-transformed concept
vectors. The process was very similar to projecting with unigram vectors except that all the
projections had to be performed for each train/test split. We had to perform PCA for each
train/test split because each transform matrix manipulated the input vectors in a different way,
each training set had its own concept space. The topic vectors were created in the same manner,
by taking the sum of all documents written on that topic. The dimensionality reduction of the
PCA significantly reduced the size of our document vectors, from 18 GB in the case of unigram
projections down to 1 GB in the case of PCA projections. The reduction in size also reduced
the classification time from over eight days to less than 10 hours.
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In total, we performed novel topic cross-validation on all of the document representation types
listed below.

• Unigrams - traditional bag-of-word

• Bigrams - adjacent word pairs

• Gappy Bigrams-1 - word pairs where the distance between words was at most one

• Gappy Bigrams-2 - word pairs where the distance between words was at most two

• Gappy Bigrams-3 - word pairs where the distance between words was at most three

• Gappy Bigrams-4 - word pairs where the distance between words was at most four

• Gappy Bigrams-5 - word pairs where the distance between words was at most five

• OSB -word pairs where the distance between words was at most five and the distance is
added as a feature

• PCA Unigram - created by performing PCA on the unigram vectors

• PCA Projection - created by projecting the PCA unigram vectors

• Unigram Projection - created by projecting the unigram vectors
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CHAPTER 4:
Results and Analysis

4.1 Overview
We used several methods for representing the documents and ran all of them through MEGAM.
Novel topic cross-validation was used to test all of the representation methods. We computed
the accuracy for each fold to come up with the statistics for each method, and then used the
weighted average and weighted variation equations to compare the methods. Table 4.1 shows
the weighted average accuracy and weighted standard deviation of all document representation
methods. Table 4.2 shows the accuracy for each of the 23 topics for unigrams, PCA, projected
unigrams, and projected PCA.

Table 4.1 gives the results for our experiments. One notable finding is the downward trend in
accuracies for the first eight experiments. As the document representation method became more
and more complex (moving from unigrams to OSBs), the author signal became more and more
faint as compared to the topic signal and accuracy dropped. We believe the reduced accuracy
is because the structure of the data set makes it inherently noisy and as the technique changed,
the small amount of author signal originally present in each document was lost in the noise. We
attempted two techniques to reduce the noise of the data set, PCA and projection.

4.1.1 Standard Methods
The standard methods for document representation we used were unigrams, bigrams, gappy
bigrams, and orthogonal sparse bigrams with gaps ranging from one to five were used for a
total of 8 methods. In order to show an improvement with our projection method, we needed to
establish a baseline to compare against. Of the standard methods we tried, unigrams performed
the best and we used them as our baseline method. The results of the other seven methods were
poor, and we did not analyze them.

4.1.2 PCA of Unigram Vectors
We used PCA to transform the input documents from unigram vocabulary space to PCA concept
space. The transformation kept the PCA concepts that accounted for 95% of the variance in
the original documents. Our goal was to create a data set with less noise than the input data
set while maintaining all of the important information. What we saw when we used the PCA
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Accuracy Standard Deviation
Unigrams 0.7272 0.1631
Bigrams 0.5591 0.2798
Gappy Bigrams-1 0.4491 0.2806
Gappy Bigrams-2 0.2872 0.2146
Gappy Bigrams-3 0.4372 0.3125
Gappy Bigrams-4 0.3258 0.2853
Gappy Bigrams-5 0.3255 0.2834
OSB 0.3259 0.2841
PCA Unigram 0.7236 0.1719
PCA Projection 0.2951 0.3943
Unigram Projection UNK UNK

Table 4.1: Methods Applied and Results

concept documents to classify was almost exactly the same results as when using unigrams. This
similarity in results is exactly what we should expect from a good PCA transformation. Our
PCA dimensionality reduction process kept all of the important dimensions while discarding
the dimensions that were simply noise. It is also worth noting that the accuracy was maintained
even though we took a random 20% subset of each topic to compute our PCA transform matrix.
This suggests that, for our data set, all documents on a given topic are sufficiently similar; all
the PCA concepts present in the topic documents can be accurately determined by analyzing a
small subset of the documents.

4.1.3 Projection of Unigram and PCA-Transformed Concept Vectors
We used vector projection in an attempt to tease apart the author signal and the topic signal
in each document. We expected the accuracy of the classifications after performing the vector
projection operations to have a significant impact. We did not expect the projections to make
the results worse, but this is exactly what happened for both unigrams and PCA concept vectors.

Due to system issues, some of our unigram projection experiments did not finish. The topics
that did not finish are listed in Table 4.2 as DNF. The weighted accuracy and standard deviation
of the runs that did finish were 0.2206 and 0.1759 respectively. As a comparison, the weighted
accuracy and standard deviation for unigrams were 0.6871 and 0.1142 respectively, when only
considering the topics that the projected unigrams completed. These partial results indicate that
the projection operations perform as poor on unigrams as they do on PCA-transformed concept
vectors.
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Unigrams PCA Proj. Uni. Proj. PCA
T50014 0.7282 0.7821 0.5468 0.0103
T50031 0.6717 0.7037 0.1850 0.1282
T50013 0.5559 0.5051 0.0168 0.0192
T50128 0.4587 0.4724 DNF 0.3911
T50012 0.7270 0.6494 0.1997 0.0057
T50048 0.7272 0.7289 0.3636 0.0028
T50015 0.9544 0.9596 0.0370 0.9961
T50097 0.8489 0.8800 DNF 0.6933
T50050 0.7064 0.7647 0.2926 0.0039
T50006 0.9429 0.8857 0.4517 0.3429
T50115 0.8668 0.8363 DNF 0.4027
T50136 0.8756 0.9365 DNF 0.9670
T50187 1.0000 1.0000 DNF 1.0000
T51556 0.8182 0.7636 0.0729 0.6000
T50172 0.9771 0.9798 DNF 1.0000
T50383 0.6747 0.5241 DNF 0.9398
T50368 0.8025 0.7840 DNF 0.0185
T50273 0.5699 0.5965 0.5384 0.0584
T50222 0.9917 1.0000 DNF 1.0000
T50338 0.8654 0.8526 0.1767 0.9872
T50049 1.0000 1.0000 0.0584 0.9844
T50214 0.9939 0.9939 DNF 0.9018
T50077 1.0000 1.0000 DNF 1.0000

Table 4.2: Accuracy by Topic (DNF indicates did not finish)

4.2 Analysis
One hypothesis as to why our projection method did so poorly, is inherent noise in the data
set. We hypothesized we had noisy document vectors being projected onto noisy topic vectors
and the resulting author vectors were therefore noise. A second hypothesis was that our topic
vectors did not accurately represent the topic. If we project documents onto vectors that do not
represent the topic, then we have no reason to believe we will end up with an author vector after
the operation. To test these hypotheses, we ran the projection operations on our PCA concept
vectors. If these projections had been successful then we could have concluded that noise was
the cause of the poor performance. As shown in Tables 4.1 and 4.2, using projection on PCA
concept vectors does worse than PCA and unigrams. We believe this rules out noise as the cause
of the decreased performance.

One could also hypothesize that the author signal in a document is so strong that it overwhelms
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the topic signal and that by taking the union of all words used by all authors as the topic vector
(the sum of all unigram document vectors on a topic) that you would end up with nothing but
noise for a topic vector. If each document was mostly author signal then this is exactly what
you would expect; however, we do not believe this is the case. Prior work suggests that topic
signals can easily overwhelm author signals. For example, using the same data set Schein et

al. [11] noted a statistically significant drop in accuracy when moving from a standard n-fold
cross-validation to novel topic cross-validation. Their conclusion was that topic signals over-
whelm author signals when performing authorship attribution. We believe our results support
this conclusion. It still may be the case though, that taking the sum of all documents on a topic
is not a suitable method for constructing a topic vector.

Since vector projection is well known, provably correct, and relatively easy to perform, we
do not believe the problem lies with our implementation. Squared error is a standard distance
metric. We proved that the solution to our problem of finding an author vector which is as close
to the document vector as possible and still orthogonal to the topic vector is achieved through
projection. Since the vectors are clearly not author vectors, at least one of our assumptions must
be incorrect. We believe our results show that at least two of our assumptions were incorrect.
Underlying assumptions we might question are:

1. Each author has a unique style which does not vary across topics

2. This style is completely distinct (orthogonal) from the topics he is writing about

3. Topic and author vectors are appropriately represented as feature-count vectors

It is commonly understood that different topics require different writing styles. People use
different grammatical style, sentence structure, and vocabulary when writing a love note as
opposed to writing a technical article. What we hoped to identify through the projections was
the author’s unique style, or fingerprint, what is often referred to as an author’s voice [34]. If we
can sufficiently capture an author’s voice, then we should be able to create an author model that
is somewhat invariant across topics. It is possible that an author’s unique style is not constant
across topics, as we had assumed in 1. Instead, it might be that the topic has some influence on
the author’s unique style. It also might be that the author consciously or unconsciously pushes
his author vector towards the topic vector, that is, the author vector and topic vectors are not
actually orthogonal, as we had assumed in 2. If an author pushes their author vector towards
the topic vector, then their author vector is also not going to be unique across topics.
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Another thing our results demonstrate is that n-grams do a good job of capturing topic signal,
but do not do as well at capturing author signal. It makes sense that different topics require
different vocabularies. One does not talk about extra points when writing about the ballet, but
most likely would if writing about football. It should not be a surprise then that word counts do
a much better job of capturing topic information than they do of capturing author information.
What distinguishes an article I wrote from someone else’s written on the same topic, then, is
most likely not vocabulary. It might be that I use a more or less complex sentence structure,
for example, and to capture the author signal one would need to capture long distance syntactic
dependencies, as opposed to our third assumption.

4.2.1 Projection Anomalies
While overall, the projection operation performed worse than unigrams and PCA, there were
several topics where the results were interesting. There were eight topics where the projections
did worse than the maximum likelihood estimation (MLE) and ten topics where the projections
did nearly as well as or better than both PCA and unigrams. The MLE was approximately 15%
for all train/test splits.

Projection did better than PCA and unigrams in the following topics:

• Art (T50015)

• Restaurants (T50136)

• Advertising and Marketing (T50172)

• Golf (T50383)

• Soccer (T50338)

Projection accuracy was above 90% in the following topics:

• Appointments and Execuetive Changes (T50187)

• Photography (T50222)

• Suspensions, Dismissals and Resignations (T50049)

• Cooking and Cookbooks (T50214)
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• Food (T50077)

Upon inspection of Table B.2, found in Appendix B, we noticed some similarities between the
topics where projection did well which we believe explain the success. In all ten cases, all or
the overwhelming majority of documents in the test set were written by one of four authors,
A111915, A100046, A111487, and A111661. Interestingly, whenever these authors wrote on
a topic, they were almost always the overwhelming majority author. Given our method for
constructing a topic vector, when there is only one author writing on a topic then each document,
as long as the author is consistent vis-á-vis that topic, is going to be very close to the topic vector.
When an author vector is extracted from a document that is ‘close to’ its topic vector we end
up with an author vector that is very close to the origin, as shown in Figure 4.1. What we have
then, is four author models made up of vectors that are all very close to the origin. For all other
authors, there were many other authors in their topics so their documents were not close to the
topic vector and so their author vectors would be ‘far’ from the origin. Having vectors that were
‘close’ and ‘far’ from the origin created an artificial separation between these four authors and
the other eleven. If an author vector was close to the origin it was one of the four, otherwise it
was one of the eleven. It must be the case then, that these four authors were sufficiently different
and their small author vectors were able to be differentiated between. We believe, our success
in these cases is merely an artifact of the dataset.

Document 

Topic 

Author 

Figure 4.1: Example author vector when there is only one author writing on a topic

Projection did worse than MLE in the following topics:

• Books and Literature (T50014)

• Music (T50031)

• Baseball (T50013)

• Football (T50012)

• Motion Pictures (T50048)
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• Dancing (T50050)

• Boxing (T50368)

• Horse Racing (T50273)
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Truth A100006 5 0 0 0 0 0 0
A100023 741 0 11 0 0 0 0
A100078 1599 0 3 0 0 0 0
A100024 6 0 0 0 0 0 0
A100068 524 0 15 0 0 0 0
A111487 2 0 0 0 0 0 0
A111915 0 0 1 0 0 0 0

Table 4.3: Confusion Matrix T50048
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Truth A100042 0 19 0 0 0
A100046 0 780 0 0 0
A102480 0 357 0 0 0
A111554 0 775 0 0 0
A111915 0 0 0 0 0

Table 4.4: Confusion Matrix T50115

What we see in Table 4.3 is an example of how easily the classifier is confused. A100006
was the author that MEGAM assigned to almost all of the candidate authors when evaluating
the motion pictures topic (T50048), but he only wrote five articles on that topic. Interestingly,
A100006 was the most prevalent author in the theater topic which could be considered close to
motion pictures.

We see something similar in Table 4.4, except that the author who confused the classifier is one
of the authors who is easily classified in other topics. Here, we are testing against Ice Hockey.
All of the topics that A10046 wrote on were sports. It appears that MEGAM found similarities
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between topics and classified all candidate authors in the test set by the author with the strongest
signal who also wrote on similar topics. Further analysis is necessary to see whether there are
consistent reasons for this phenomenon.

4.3 Summary
We found that as our word-based document representation methods got more complex, the
classification accuracy for our dataset degraded. We hypothesized that we could project out the
topic influence on the document. We chose unigrams for our first attempt at projection since they
had the highest accuracy among the different methods. The results of our projected unigrams
were much worse than with unprojected unigrams. To test the hypothesis that the decrease in
performance was due to noise in the dataset, we performed PCA on the input vectors to reduce
the noise. We then tried to project out the topic from the PCA concept vectors. Overall, the
PCA projections did poorly as well. While there were a few topics where PCA projections did
better, we believe this was just an artifact of our dataset and not a validation of the method.
We concluded that at least one of our assumptions must have been faulty. We hypothesize that
an author’s style vector is not orthogonal to the topic vector but is actually influenced by the
topic vector. We believe authors, consciously or unconsciously, push their author vector towards
the topic vector they are currently writing about. If it is the case that authors push their style
vector towards the topic vector, then we cannot expect vector projection to work. By doing the
projection what we are doing is creating noisy vectors and calling them an author vector. We
should not be surprised at the poor performance.
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CHAPTER 5:
Future Work and Conclusions

5.1 Summary
Our goal was to construct 〈feature, count〉 vectors of documents and topics in order to project
out the influence of topic on each document and construct an author model that is relatively
topic independent. We used a subset of the NYT Annotated Corpus where each document
had a single author and was written on a single topic as our corpus. Our corpus had 18,862
documents written by 15 authors on 23 topics. We performed novel topic cross-validation
on these documents, simulating the situation where we develop an author model and need to
apply the model on a document written on a previously unseen topic. We used the following
types of features to represent our documents: unigrams, bigrams, gappy-bigrams, OSBs, and
PCA-transformed concept vectors. After converting documents into vectors we trained and
classified the vectors using the MEGAM maximum entropy classifier. We compared our results
to a standard 10 fold cross-validation and saw a statistically significant drop in accuracy from
98.35% to 72.72% [32][11]. The drop in accuracy shows how significant the impact a shift
in topic domains has on the accuracy of current classification methods and provided us with a
starting point. We also found, as the method of document representation became more complex,
the weighted accuracy of the classifications degraded even further. Our results cast doubt on
the validity of a widely held assumption in the field of NLP and further research and analysis is
required to validate our conclusions.

5.2 Future Work
This research suggests a number of areas for future research which include the following:

• Perform a similar set of experiments using a different dataset.

There is a possibility that the style the NYT editors demand affects the results. While it is
difficult, if not impossible, to construct a dataset which does not have the influence of an
editor, one could construct a dataset from multiple sources and thus minimize the impact
of the editor’s voice. An ideal dataset would be one where: each document was written by
a single author on a single topic, there are multiple sources of the documents, each topic is
represented in more than one document source, and each author is sufficiently represented
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in each training set. Constructing a dataset with these properties would not eliminate the
impact of the editors, but it may minimize its impact on the results. This kind of dataset
could also serve as an improved testbed for conducting authorship attribution research.

• Perform topic detection instead of author attribution

We have hypothesized that feature-count vectors do a poor job of capturing authorship
signal, but do a good job at capturing topic signal. This hypothesis could easily be tested
by running a similar set of experiments and substituting author for topic. The experi-
ments would then be novel author cross-validation. The dataset would need to be split up
into train/test splits based on the author rather than the topic, and the documents would
need to be labeled with their topic rather than their author prior to being classified. We
would expect that the weighted accuracy for topic detection would be significantly higher
than the weighted accuracy for author attribution. Good results when performing topic
detection would validate our hypothesis that feature-count vectors do a much better job
at capturing topic signal than they do at capturing author signal.

• Model authors using long-distance syntactic dependencies

A significant area that we did not explore was conducting novel topic cross-validation
where the author models are created using long-distance syntactic dependencies. One
way to capture these dependencies would be regenerate our corpus from the source XML
files, and not remove the capitalization or punctuation. With the full sentences, one could
then feed the full sentences into a parser and use the parsed documents as data. Modeling
the author using parsed documents may work better at capturing the author’s unique style.

• Thoroughly analyze confusion matrices

In several cases, MEGAM classified almost all authors in the test set as one author. In the
two cases we reviewed, the author that MEGAM confused everyone with was the most
prolific author in a topic similar to the tested topic, such as motion pictures and theater or
ice hockey and other sports. More analysis would be necessary to determine if this was a
consistent phenomenon or an aberration.

5.3 Conclusions
Our hypothesis was that we could project out the influence of topic on the documents, and
thereby achieve similar accuracy using novel topic cross-validation as was seen when doing 10
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fold cross-validation. If we would have been able to produce similar accuracy, we would have
shown that we had a way of representing authors that could be applied across topic domains,
and we would have been able to answer our question in the affirmative. What we saw instead,
though, was our accuracy decreased significantly after attempting to project out the topic for
both the unigrams and the PCA-transformed concept vectors. We concluded then, that we had
made some faulty assumptions namely, that an author’s style will not vary across topics, that an
author’s unique style vector will be orthogonal to the topic being written about, and that topic
and author vectors can be appropriately represented as 〈feature, count〉 vectors.

The implications of these results are, while topics may be well represented by 〈feature, count〉
vectors, authors are not. Our results show that the topic drives the vocabulary being used, and
it appears that the authorship signal we were searching for is not lexical. It may be that the
authorship signal includes long-distance syntactic dependencies which we did not test. If the
author signal is found in long-distance syntactic dependencies, then lexical models are better at
modeling a topic than they are at modeling authors. By using lexical models, what we really
are really doing then, is topic detection instead of authorship detection.
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APPENDIX A:
Maximum Entropy Proof

We wish to show that given some set S = {x1, x2, . . . xn}with probability distribution P , where
the probability of xi is pi, the entropy H(P ) is maximized when the probability distribution is
uniform, that is, when all pi ∈ P are equal. To do this, we must first show that equations (A.1)
and (A.2) hold for all x > 0 [35]. We use ln to denote the natural logarithm.

lnx ≤ x− 1 (A.1)

log2x ≤
x− 1

ln 2
. (A.2)

Proof of (A.1):
Let f(x) = ln x−x+ 1, then f ′

(x) =
1

x
− 1. Since f ′

(x) is equal to zero only when x = 1 and

f(1) exists, then f(x) has exactly one critical point which occurs at x = 1. Since f ′
(x) > 0 for

all x < 1 and f ′
(x) < 0 for all x > 1, the critical point is a maximum. This shows that for all

x,
f(x) ≤ f(1)

lnx− x+ 1 ≤ 0

lnx ≤ x− 1

and equality holds exactly when x = 1 which is what we desired to show.

Proof of (A.2):

This follows directly from (A.1) and the fact that log2x =
lnx

ln 2
.

Now we are ready to proceed. We wish to show that given some set S = {x1, x2, . . . xn}
with probability distribution P , where the probability of xi is pi

arg max
P

H(P ) = P ∗, (A.3)

where P ∗ is the uniform probability distribution. That is, that the entropy H(P ), is maximized
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when pi = pj for all 1 ≤ i, j ≤ n, where entropy is defined by Equation (2.5) as

H(P ) = −
n∑
i=1

pilog2pi =
n∑
i=1

pilog2

1

pi
.

Proof of (A.3):
Let P = {p1, p2, . . . , pn} be the probability distribution for S and let R = {r1, r2, . . . , rn} be
the uniform distribution. Note that the entropy of a system with a uniform distribution is

n∑
i=1

rilog2

1

ri
=

n∑
i=1

1

n
log2

1
1
n

= log2n.

Equation (A.2) tells us that

n∑
i=1

pilog2

ri
pi
≤ 1

ln 2

n∑
i=1

pi

(
ri
pi
− 1

)

and
1

ln 2

n∑
i=1

pi

(
ri
pi
− 1

)
=

1

ln 2

n∑
i=1

(ri − pi) =
1

ln 2

(
n∑
i=1

ri −
n∑
i=1

pi

)
= 0

which means

n∑
i=1

pilog2

ri
pi
≤ 0. (A.4)

Writing log2(ri/pi) as log2(1/pi) − lg(1/ri), substituting into Equation (A.4) and rearranging
we get

n∑
i=1

pi lg
1

pi
≤

n∑
i=1

pi lg
1

ri
=

n∑
i=1

pi lg n = lg n.

Since the entropy of a system with a uniform probability distribution is lg n, this tells us that
of all probability distributions, none give higher entropy than the uniform distribution which is
our desired result.

46



APPENDIX B:
Author and Topic Table

Table B.1 shows the natural language descriptions of the topics used on our experiments. Table
B.2 shows the number of documents each author wrote on each topic.

T50014 Books and Literature T50187 Appointments and Executive Changes
T50031 Music T51556 Deaths (Obituaries)
T50013 Baseball T50172 Advertising and Marketing
T50128 Theatre T50383 Golf
T50012 Football T50368 Boxing
T50048 Motion Pictures T50273 Horse Racing
T50015 Art T50222 Photography
T50097 Basketball T50338 Soccer
T50050 Dancing T50049 Suspensions, Dismissals and Resignations
T50006 Television T50214 Cooking and Cookbooks
T50115 Hockey, Ice T50077 Food
T50136 Restaurants

Table B.1: Topic Categories
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AUTHORS
A100024 A100078 A111554 A111915 A100046 A100042 A113159 A102480 . . .

TOPICS T50014 3 4 0 4 0 1 0 0
T50031 1 1149 0 0 0 0 0 0
T50013 0 0 491 0 12 55 1022 729
T50128 26 509 0 0 0 0 0 0
T50012 0 0 6 0 21 867 135 13
T50048 6 1602 0 1 0 0 0 0
T50015 0 1 0 0 0 0 0 0
T50097 0 0 179 0 25 10 3 6
T50050 1536 6 0 0 0 0 0 0
T50006 9 6 0 12 0 0 0 0
T50115 0 0 781 0 780 19 0 357
T50136 0 0 0 0 0 0 0 0
T50187 0 0 0 290 0 0 0 0
T51556 0 16 0 1 0 0 0 0
T50172 0 0 0 1487 0 0 0 0
T50383 0 0 4 0 157 5 0 0
T50368 0 0 6 0 0 155 0 1
T50273 0 0 25 0 33 17 0 0
T50222 0 0 0 0 0 0 0 0
T50338 0 0 1 0 154 0 0 1
T50049 1 0 0 63 0 0 0 0
T50214 0 0 0 0 0 0 0 0
T50077 0 0 0 0 0 0 0 0

TOTALS 1582 3293 1493 1858 1182 1129 1160 1107

Table B.2: Topic/Author Data Tabulation
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AUTHORS
TOPICS A100512 A111487 A100023 A101068 A100006 A111661 A111723 TOTALS

T50014 0 3 1 354 18 1 1 390
T50031 0 0 0 0 1 0 783 1934
T50013 560 0 0 0 0 0 0 2869
T50128 0 0 145 1 842 0 1 1524
T50012 2 0 0 0 0 0 0 1044
T50048 0 2 752 539 5 0 0 2907
T50015 0 764 1 0 0 1 0 767
T50097 2 0 0 0 0 0 0 225
T50050 0 0 0 0 1 0 0 1543
T50006 0 0 3 0 2 1 2 35
T50115 0 0 0 0 0 0 0 1937
T50136 0 0 0 0 0 394 0 394
T50187 0 0 0 0 0 0 0 290
T51556 0 5 0 0 0 0 33 55
T50172 0 0 0 0 0 0 0 1487
T50383 0 0 0 0 0 0 0 166
T50368 0 0 0 0 0 0 0 162
T50273 490 0 0 0 0 0 0 565
T50222 0 121 0 0 0 0 0 121
T50338 0 0 0 0 0 0 0 156
T50049 0 0 0 0 0 0 0 64
T50214 0 0 0 0 0 163 0 163
T50077 0 0 0 0 0 64 0 64

TOTALS 1054 895 902 894 869 624 820 18862
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APPENDIX C:
Confusion Matrices For PCA Unigrams

Prediction
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Truth A100006 2 0 0 0 0 0 0 0
A100023 0 2 1 0 0 0 0 0
A100078 0 0 5 0 1 0 0 0
A100024 0 0 0 9 0 0 0 0
A111487 0 0 0 0 0 0 0 0
A111915 0 0 0 0 0 12 0 0
A111661 0 0 0 0 0 1 0 0
A111723 0 0 1 0 0 0 0 1
Table C.1: Confusion Matrix T50006
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Truth A100006 16 2 0 0 0 0 0 0 0 0
A111723 0 1 0 0 0 0 0 0 0 0
A100023 0 0 0 1 0 0 0 0 0 0
A111487 0 0 0 3 0 0 0 0 0 0
A100024 0 0 0 0 3 0 0 0 0 0
A100042 0 0 0 0 0 1 0 0 0 0
A100078 0 0 0 0 0 0 4 0 0 0
A101068 26 3 8 7 10 3 23 274 0 0
A111915 0 0 0 0 0 0 1 1 2 0
A111661 0 0 0 0 0 0 0 0 0 1

Table C.2: Confusion Matrix T50014
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Truth A100006 0 1 0 0 0 0 0 0 0 0 0 0 0 0
A100078 4 1108 23 2 1 3 1 2 1 4 0 0 0 0
A100024 0 0 1 0 0 0 0 0 0 0 0 0 0 0
A111723 7 372 119 252 5 4 1 2 6 8 3 1 1 2
A100042 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A101068 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A102480 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A100023 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A111487 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A111661 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A100512 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A113159 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A111554 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A111915 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table C.3: Confusion Matrix T50031

Prediction

A1
00

00
6

A1
00

02
3

A1
00

07
8

A1
00

02
4

A1
11

48
7

A1
01

06
8

A1
00

04
2

A1
11

66
1

A1
02

48
0

A1
11

91
5

Truth A100006 5 0 0 0 0 0 0 0 0 0
A100023 18 563 147 16 4 3 1 0 0 0
A100078 36 62 1473 4 13 14 0 0 0 0
A100024 0 0 1 4 0 0 1 0 0 0
A111487 0 0 0 0 2 0 0 0 0 0
A101068 46 228 164 19 5 71 2 3 1 0
A100042 0 0 0 0 0 0 0 0 0 0
A111661 0 0 0 0 0 0 0 0 0 0
A102480 0 0 0 0 0 0 0 0 0 0
A111915 0 0 0 0 0 0 0 0 0 1

Table C.4: Confusion Matrix T50048
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Truth A100006 1 0 0 0 0 0 0 0 0 0 0 0 0
A100024 38 1173 173 2 14 14 3 1 5 7 100 3 3
A100078 0 0 6 0 0 0 0 0 0 0 0 0 0
A100046 0 0 0 0 0 0 0 0 0 0 0 0 0
A111487 0 0 0 0 0 0 0 0 0 0 0 0 0
A101068 0 0 0 0 0 0 0 0 0 0 0 0 0
A100042 0 0 0 0 0 0 0 0 0 0 0 0 0
A100512 0 0 0 0 0 0 0 0 0 0 0 0 0
A111915 0 0 0 0 0 0 0 0 0 0 0 0 0
A100023 0 0 0 0 0 0 0 0 0 0 0 0 0
A111723 0 0 0 0 0 0 0 0 0 0 0 0 0
A102480 0 0 0 0 0 0 0 0 0 0 0 0 0
A111661 0 0 0 0 0 0 0 0 0 0 0 0 0

Table C.5: Confusion Matrix T50050
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Truth A100006 76 233 362 123 4 2 15 19 3 5 0
A100024 0 25 1 0 0 0 0 0 0 0 0
A100078 0 15 487 3 0 1 1 0 0 1 1
A100023 0 6 6 131 1 1 0 0 0 0 0
A111661 0 0 0 0 0 0 0 0 0 0 0
A102480 0 0 0 0 0 0 0 0 0 0 0
A101068 0 0 0 0 0 0 1 0 0 0 0
A111487 0 0 0 0 0 0 0 0 0 0 0
A100042 0 0 0 0 0 0 0 0 0 0 0
A111723 0 0 0 0 0 0 0 1 0 0 0
A111915 0 0 0 0 0 0 0 0 0 0 0

Table C.6: Confusion Matrix T50128
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Prediction
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Truth A100023 1 0 0 0 0 0 0
A100078 0 1 0 0 0 0 0
A111487 1 19 733 3 4 3 1
A101068 0 0 0 0 0 0 0
A111661 0 0 0 0 1 0 0
A100024 0 0 0 0 0 0 0
A100006 0 0 0 0 0 0 0
Table C.7: Confusion Matrix T50015
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Table C.8: Confusion Matrix T50049
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Truth A100042 613 159 40 47 6 1 1 0 0 0
A100046 0 18 1 2 0 0 0 0 0 0
A102480 0 1 11 1 0 0 0 0 0 0
A111554 1 1 0 4 0 0 0 0 0 0
A100512 0 0 0 0 2 0 0 0 0 0
A111915 0 0 0 0 0 0 0 0 0 0
A100078 0 0 0 0 0 0 0 0 0 0
A113159 7 42 11 32 8 0 0 30 3 2
A111723 0 0 0 0 0 0 0 0 0 0
A100006 0 0 0 0 0 0 0 0 0 0

Table C.9: Confusion Matrix T50012
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Prediction
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Truth A100042 46 3 4 1 1 0 0 0 0 0 0 0 0
A111554 67 355 42 0 0 1 3 0 21 0 0 1 1
A100046 1 0 11 0 0 0 0 0 0 0 0 0 0
A100078 0 0 0 0 0 0 0 0 0 0 0 0 0
A111915 0 0 0 0 0 0 0 0 0 0 0 0 0
A100512 94 11 73 0 0 348 12 1 21 0 0 0 0
A111723 0 0 0 0 0 0 0 0 0 0 0 0 0
A111661 0 0 0 0 0 0 0 0 0 0 0 0 0
A102480 38 43 72 0 2 3 2 1 561 3 3 1 0
A100006 0 0 0 0 0 0 0 0 0 0 0 0 0
A100024 0 0 0 0 0 0 0 0 0 0 0 0 0
A113159 185 112 267 1 2 126 38 5 138 6 13 128 1
A101068 0 0 0 0 0 0 0 0 0 0 0 0 0

Table C.10: Confusion Matrix T50013
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Truth A100042 9 1 0 0 0 0 0
A100046 0 23 2 0 0 0 0
A102480 0 0 6 0 0 0 0
A100512 1 0 0 1 0 0 0
A111554 4 4 14 0 156 1 0
A101068 0 0 0 0 0 0 0
A113159 0 0 0 0 0 0 3
Table C.11: Confusion Matrix T50097
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Prediction
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Truth A100042 16 1 1 1 0 0 0 0 0 0 0 0
A100046 22 730 8 2 17 1 0 0 0 0 0 0
A102480 23 52 244 2 35 1 0 0 0 0 0 0
A100512 0 0 0 0 0 0 0 0 0 0 0 0
A111554 66 63 9 2 630 4 2 1 1 1 1 1
A113159 0 0 0 0 0 0 0 0 0 0 0 0
A100023 0 0 0 0 0 0 0 0 0 0 0 0
A101068 0 0 0 0 0 0 0 0 0 0 0 0
A111661 0 0 0 0 0 0 0 0 0 0 0 0
A100024 0 0 0 0 0 0 0 0 0 0 0 0
A111723 0 0 0 0 0 0 0 0 0 0 0 0
A100078 0 0 0 0 0 0 0 0 0 0 0 0

Table C.12: Confusion Matrix T50115
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Truth A100042 6 2 3 2 1 2 1 0 0 0 0 0 0 0
A102480 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A111554 1 1 15 0 2 6 0 0 0 0 0 0 0 0
A101068 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A100024 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A100046 1 0 0 0 0 31 0 1 0 0 0 0 0 0
A111661 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A100006 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A100512 41 11 4 0 13 103 0 0 285 15 9 6 1 2
A111915 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A100078 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A111723 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A100023 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A113159 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table C.13: Confusion Matrix T50273
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Truth A100042 122 6 3 15 6 1 1 1
A100046 0 0 0 0 0 0 0 0
A113159 0 0 0 0 0 0 0 0
A111554 0 0 0 4 1 1 0 0
A102480 0 0 0 0 1 0 0 0
A101068 0 0 0 0 0 0 0 0
A100023 0 0 0 0 0 0 0 0
A100078 0 0 0 0 0 0 0 0

Table C.14: Confusion Matrix T50368
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Truth A100042 4 1 0 0 0 0 0
A100006 0 0 0 0 0 0 0
A100046 62 0 82 5 3 3 2
A111554 3 0 0 1 0 0 0
A100512 0 0 0 0 0 0 0
A102480 0 0 0 0 0 0 0
A100078 0 0 0 0 0 0 0

Table C.15: Confusion Matrix T50383
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A102480 0 0 0 1

Table C.16: Confusion Matrix T50338
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A100078 0 0 0 0 0 0 0 0 0 0
A111723 0 0 0 0 0 0 0 0 0 0
A111661 0 0 0 0 0 0 0 0 0 0
A111487 0 0 0 0 0 0 0 0 0 0
A101068 0 0 0 0 0 0 0 0 0 0
A100023 0 0 0 0 0 0 0 0 0 0
A100024 0 0 0 0 0 0 0 0 0 0
A102480 0 0 0 0 0 0 0 0 0 0
A100042 0 0 0 0 0 0 0 0 0 0

Table C.17: Confusion Matrix T50172

Prediction
A1

11
91

5

Truth A111915 290
Table C.18: Confusion Matrix T50187
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A111723 6 24 3 0 0
A100024 0 0 0 0 0
A111487 1 0 1 3 0
A111915 0 0 0 0 1

Table C.19: Confusion Matrix T51556
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A1
11

48
7

Truth A111487 121
Table C.20: Confusion Matrix T50222
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Table C.21: Confusion Matrix T50077
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00
6

A1
00

51
2

A1
02

48
0

A1
11

91
5

Truth A111661 369 5 8 4 3 1 1 1 1 1
A100024 0 0 0 0 0 0 0 0 0 0
A100042 0 0 0 0 0 0 0 0 0 0
A100078 0 0 0 0 0 0 0 0 0 0
A100023 0 0 0 0 0 0 0 0 0 0
A111487 0 0 0 0 0 0 0 0 0 0
A100006 0 0 0 0 0 0 0 0 0 0
A100512 0 0 0 0 0 0 0 0 0 0
A102480 0 0 0 0 0 0 0 0 0 0
A111915 0 0 0 0 0 0 0 0 0 0

Table C.22: Confusion Matrix T50136

Prediction

A1
11

66
1

A1
11

72
3

Truth A111661 162 1
A111723 0 0

Table C.23: Confusion Matrix T50214
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APPENDIX D:
Confusion Matrices For PCA Projection

Prediction

A1
00

00
6

A1
11

91
5

A1
00

02
3

A1
00

02
4

A1
00

07
8

A1
11

66
1

A1
11

72
3

Truth A100006 0 2 0 0 0 0 0
A111915 0 12 0 0 0 0 0
A100023 0 3 0 0 0 0 0
A100024 0 9 0 0 0 0 0
A100078 0 6 0 0 0 0 0
A111661 0 1 0 0 0 0 0
A111723 0 2 0 0 0 0 0

Table D.1: Confusion Matrix T50006

Prediction

A1
00

00
6

A1
00

07
8

A1
00

02
3

A1
00

02
4

A1
00

04
2

A1
01

06
8

A1
11

91
5

A1
11

48
7

A1
11

66
1

A1
11

72
3

Truth A100006 0 18 0 0 0 0 0 0 0 0
A100078 0 4 0 0 0 0 0 0 0 0
A100023 0 1 0 0 0 0 0 0 0 0
A100024 0 3 0 0 0 0 0 0 0 0
A100042 0 1 0 0 0 0 0 0 0 0
A101068 0 354 0 0 0 0 0 0 0 0
A111915 0 4 0 0 0 0 0 0 0 0
A111487 0 3 0 0 0 0 0 0 0 0
A111661 0 1 0 0 0 0 0 0 0 0
A111723 0 1 0 0 0 0 0 0 0 0

Table D.2: Confusion Matrix T50014
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Prediction

A1
00

00
6

A1
00

02
4

A1
00

07
8

A1
11

72
3

Truth A100006 0 1 0 0
A100024 0 1 0 0
A100078 0 902 247 0
A111723 0 680 103 0

Table D.3: Confusion Matrix T50031

Prediction
A1

00
00

6
A1

00
02

3
A1

00
07

8
A1

00
02

4
A1

01
06

8
A1

11
48

7
A1

11
91

5

Truth A100006 5 0 0 0 0 0 0
A100023 741 0 11 0 0 0 0
A100078 1599 0 3 0 0 0 0
A100024 6 0 0 0 0 0 0
A101068 524 0 15 0 0 0 0
A111487 2 0 0 0 0 0 0
A111915 0 0 1 0 0 0 0
Table D.4: Confusion Matrix T50048

Prediction

A1
00

00
6

A1
00

07
8

A1
00

02
4

Truth A100006 0 1 0
A100078 0 6 0
A100024 0 1536 0

Table D.5: Confusion Matrix T50050
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Prediction

A1
00

00
6

A1
00

07
8

A1
00

02
3

A1
00

02
4

A1
01

06
8

A1
11

72
3

Truth A100006 122 720 0 0 0 0
A100078 35 474 0 0 0 0
A100023 78 67 0 0 0 0
A100024 7 19 0 0 0 0
A101068 1 0 0 0 0 0
A111723 0 1 0 0 0 0

Table D.6: Confusion Matrix T50128

Prediction

A1
00

02
3

A1
11

48
7

A1
00

07
8

A1
11

66
1

Truth A100023 0 1 0 0
A111487 0 764 0 0
A100078 0 1 0 0
A111661 0 0 1 0

Table D.7: Confusion Matrix T50015

Prediction

A1
00

02
4

A1
11

91
5

Truth A100024 0 1
A111915 0 63

Table D.8: Confusion Matrix T50049
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Prediction

A1
00

04
2

A1
11

55
4

A1
11

91
5

A1
00

04
6

A1
00

51
2

A1
02

48
0

A1
13

15
9

Truth A100042 0 866 1 0 0 0 0
A111554 0 6 0 0 0 0 0
A111915 0 0 0 0 0 0 0
A100046 0 21 0 0 0 0 0
A100512 0 2 0 0 0 0 0
A102480 0 13 0 0 0 0 0
A113159 0 135 0 0 0 0 0
Table D.9: Confusion Matrix T50012

Prediction
A1

00
04

2
A1

00
04

6
A1

00
51

2
A1

02
48

0
A1

11
55

4
A1

13
15

9

Truth A100042 55 0 0 0 0 0
A100046 12 0 0 0 0 0
A100512 560 0 0 0 0 0
A102480 729 0 0 0 0 0
A111554 491 0 0 0 0 0
A113159 1022 0 0 0 0 0

Table D.10: Confusion Matrix T50013

Prediction

A1
00

04
2

A1
11

55
4

A1
02

48
0

A1
00

04
6

A1
00

51
2

A1
13

15
9

Truth A100042 0 9 1 0 0 0
A111554 0 152 27 0 0 0
A102480 0 2 4 0 0 0
A100046 0 24 1 0 0 0
A100512 0 2 0 0 0 0
A113159 0 1 2 0 0 0

Table D.11: Confusion Matrix T50097
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Prediction

A1
00

04
2

A1
00

04
6

A1
02

48
0

A1
11

55
4

A1
11

91
5

Truth A100042 0 19 0 0 0
A100046 0 780 0 0 0
A102480 0 357 0 0 0
A111554 0 775 0 0 6
A111915 0 0 0 0 0

Table D.12: Confusion Matrix T50115

Prediction
A1

00
04

2
A1

00
04

6
A1

11
91

5
A1

00
51

2
A1

11
55

4

Truth A100042 0 10 7 0 0
A100046 0 33 0 0 0
A111915 0 0 0 0 0
A100512 0 490 0 0 0
A111554 0 20 5 0 0

Table D.13: Confusion Matrix T50273

Prediction

A1
00

04
2

A1
13

15
9

A1
02

48
0

A1
11

55
4

Truth A100042 3 152 0 0
A113159 0 0 0 0
A102480 0 1 0 0
A111554 0 6 0 0

Table D.14: Confusion Matrix T50368
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Prediction

A1
00

04
2

A1
00

04
6

A1
11

91
5

A1
11

55
4

Truth A100042 0 5 0 0
A100046 0 156 1 0
A111915 0 0 0 0
A111554 0 4 0 0

Table D.15: Confusion Matrix T50383

Prediction

A1
00

04
6

A1
02

48
0

A1
11

55
4

Truth A100046 154 0 0
A102480 1 0 0
A111554 1 0 0

Table D.16: Confusion Matrix T50338

Prediction

A1
11

91
5

Truth A111915 1487
Table D.17: Confusion Matrix T50172

Prediction

A1
11

91
5

Truth A111915 290
Table D.18: Confusion Matrix T50187
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Prediction

A1
00

07
8

A1
11

72
3

A1
11

48
7

A1
11

91
5

Truth A100078 0 16 0 0
A111723 0 33 0 0
A111487 0 5 0 0
A111915 0 1 0 0

Table D.19: Confusion Matrix T51556

Prediction

A1
11

48
7

Truth A111487 121
Table D.20: Confusion Matrix T50222

Prediction
A1

11
66

1

Truth A111661 64
Table D.21: Confusion Matrix T50077

Prediction

A1
11

66
1

A1
11

91
5

Truth A111661 381 13
A111915 0 0

Table D.22: Confusion Matrix T50136

Prediction

A1
11

66
1

A1
00

07
8

Truth A111661 147 16
A100078 0 0

Table D.23: Confusion Matrix T50214
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APPENDIX E:
Confusion Matrices For Unigrams

Prediction

A1
00

00
6

A1
00

02
3

A1
00

07
8

A1
00

02
4

A1
11

91
5

A1
11

66
1

A1
11

72
3

Truth A100006 2 0 0 0 0 0 0
A100023 0 2 1 0 0 0 0
A100078 0 0 6 0 0 0 0
A100024 0 0 0 9 0 0 0
A111915 0 0 0 0 12 0 0
A111661 0 0 0 0 1 0 0
A111723 0 0 0 0 0 0 2

Table E.1: Confusion Matrix T50006

Prediction

A1
00

00
6

A1
00

04
2

A1
11

72
3

A1
00

02
3

A1
11

48
7

A1
00

02
4

A1
00

07
8

A1
01

06
8

A1
11

91
5

A1
11

66
1

Truth A100006 16 1 1 0 0 0 0 0 0 0
A100042 0 1 0 0 0 0 0 0 0 0
A111723 0 0 1 0 0 0 0 0 0 0
A100023 0 0 0 0 1 0 0 0 0 0
A111487 0 0 0 0 3 0 0 0 0 0
A100024 0 0 0 0 0 3 0 0 0 0
A100078 0 0 0 0 0 0 4 0 0 0
A101068 38 1 3 8 13 11 27 253 0 0
A111915 0 0 0 0 0 0 1 1 2 0
A111661 0 0 0 0 0 0 0 0 0 1

Table E.2: Confusion Matrix T50014
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Prediction

A1
00

00
6

A1
00

07
8

A1
00

02
4

A1
11

66
1

A1
00

04
2

A1
02

48
0

A1
00

02
3

A1
11

48
7

A1
11

72
3

A1
01

06
8

A1
00

51
2

A1
13

15
9

A1
11

55
4

A1
11

91
5

Truth A100006 0 1 0 0 0 0 0 0 0 0 0 0 0 0
A100078 4 1110 23 5 1 1 1 1 1 2 0 0 0 0
A100024 0 0 1 0 0 0 0 0 0 0 0 0 0 0
A111661 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A100042 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A102480 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A100023 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A111487 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A111723 6 358 181 18 3 1 2 7 190 7 5 1 2 2
A101068 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A100512 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A113159 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A111554 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A111915 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table E.3: Confusion Matrix T50031

Prediction

A1
00

00
6

A1
11

72
3

A1
00

02
3

A1
00

07
8

A1
11

48
7

A1
00

02
4

A1
01

06
8

A1
00

04
2

A1
11

55
4

A1
11

66
1

A1
11

91
5

Truth A100006 4 1 0 0 0 0 0 0 0 0 0
A111723 0 0 0 0 0 0 0 0 0 0 0
A100023 34 0 533 155 8 20 1 1 0 0 0
A100078 35 1 40 1488 22 6 8 1 1 0 0
A111487 0 0 0 0 2 0 0 0 0 0 0
A100024 1 0 0 0 0 4 0 1 0 0 0
A101068 59 1 157 201 10 24 81 1 0 5 0
A100042 0 0 0 0 0 0 0 0 0 0 0
A111554 0 0 0 0 0 0 0 0 0 0 0
A111661 0 0 0 0 0 0 0 0 0 0 0
A111915 0 0 0 0 0 0 0 0 0 0 1

Table E.4: Confusion Matrix T50048
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Prediction

A1
00

00
6

A1
00

02
4

A1
00

07
8

A1
01
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A1
11
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1

A1
00
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6

A1
11

48
7

A1
11

72
3

A1
00

04
2

A1
11

55
4

A1
11

91
5

A1
00

02
3

A1
02

48
0

Truth A100006 1 0 0 0 0 0 0 0 0 0 0 0 0
A100024 45 1082 251 16 6 2 24 88 4 1 7 8 2
A100078 0 0 6 0 0 0 0 0 0 0 0 0 0
A101068 0 0 0 0 0 0 0 0 0 0 0 0 0
A111661 0 0 0 0 0 0 0 0 0 0 0 0 0
A100046 0 0 0 0 0 0 0 0 0 0 0 0 0
A111487 0 0 0 0 0 0 0 0 0 0 0 0 0
A111723 0 0 0 0 0 0 0 0 0 0 0 0 0
A100042 0 0 0 0 0 0 0 0 0 0 0 0 0
A111554 0 0 0 0 0 0 0 0 0 0 0 0 0
A111915 0 0 0 0 0 0 0 0 0 0 0 0 0
A100023 0 0 0 0 0 0 0 0 0 0 0 0 0
A102480 0 0 0 0 0 0 0 0 0 0 0 0 0

Table E.5: Confusion Matrix T50050

Prediction

A1
00

00
6

A1
00

02
4

A1
00

07
8

A1
00

02
3

A1
11

66
1

A1
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48
0

A1
01

06
8

A1
11

48
7

A1
00

04
2

A1
11

72
3

A1
11

91
5

Truth A100006 57 236 380 131 4 2 11 15 2 4 0
A100024 1 24 1 0 0 0 0 0 0 0 0
A100078 0 15 487 3 0 1 1 0 0 1 1
A100023 0 6 7 130 1 1 0 0 0 0 0
A111661 0 0 0 0 0 0 0 0 0 0 0
A102480 0 0 0 0 0 0 0 0 0 0 0
A101068 0 0 0 0 0 0 1 0 0 0 0
A111487 0 0 0 0 0 0 0 0 0 0 0
A100042 0 0 0 0 0 0 0 0 0 0 0
A111723 0 0 0 0 0 0 0 1 0 0 0
A111915 0 0 0 0 0 0 0 0 0 0 0

Table E.6: Confusion Matrix T50128
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Prediction

A1
00
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3

A1
00
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8

A1
11

48
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A1
11
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1

A1
00
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4

A1
01

06
8

A1
11

72
3

A1
00

00
6

Truth A100023 1 0 0 0 0 0 0 0
A100078 0 1 0 0 0 0 0 0
A111487 0 24 729 4 4 1 1 1
A111661 0 0 0 1 0 0 0 0
A100024 0 0 0 0 0 0 0 0
A101068 0 0 0 0 0 0 0 0
A111723 0 0 0 0 0 0 0 0
A100006 0 0 0 0 0 0 0 0

Table E.7: Confusion Matrix T50015

Prediction

A1
00

02
4

A1
11

91
5

Truth A100024 1 0
A111915 0 63

Table E.8: Confusion Matrix T50049

Prediction

A1
00

04
2

A1
02

48
0

A1
11

55
4

A1
00

04
6

A1
00

51
2

A1
11

66
1

A1
11

91
5

A1
00

07
8

A1
13

15
9

A1
00

00
6

A1
11

72
3

A1
00

02
4

Truth A100042 679 39 34 106 6 1 1 1 0 0 0 0
A102480 0 13 0 0 0 0 0 0 0 0 0 0
A111554 1 0 5 0 0 0 0 0 0 0 0 0
A100046 0 2 2 17 0 0 0 0 0 0 0 0
A100512 0 0 0 0 2 0 0 0 0 0 0 0
A111661 0 0 0 0 0 0 0 0 0 0 0 0
A111915 0 0 0 0 0 0 0 0 0 0 0 0
A100078 0 0 0 0 0 0 0 0 0 0 0 0
A113159 6 14 26 34 8 0 0 0 44 1 1 1
A100006 0 0 0 0 0 0 0 0 0 0 0 0
A111723 0 0 0 0 0 0 0 0 0 0 0 0
A100024 0 0 0 0 0 0 0 0 0 0 0 0

Table E.9: Confusion Matrix T50012
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Prediction

A1
00

04
2

A1
11

55
4

A1
00

51
2

A1
00

04
6

A1
00

07
8

A1
11

91
5

A1
11

72
3

A1
11

66
1

A1
02

48
0

A1
01

06
8

A1
00

02
4

A1
13

15
9

A1
00

00
6

Truth A100042 46 2 1 4 1 1 0 0 0 0 0 0 0
A111554 68 367 1 38 1 0 0 0 15 1 0 0 0
A100512 63 9 387 75 0 0 6 1 19 0 0 0 0
A100046 1 0 0 11 0 0 0 0 0 0 0 0 0
A100078 0 0 0 0 0 0 0 0 0 0 0 0 0
A111915 0 0 0 0 0 0 0 0 0 0 0 0 0
A111723 0 0 0 0 0 0 0 0 0 0 0 0 0
A111661 0 0 0 0 0 0 0 0 0 0 0 0 0
A102480 42 37 1 74 1 1 2 1 562 1 4 1 2
A101068 0 0 0 0 0 0 0 0 0 0 0 0 0
A100024 0 0 0 0 0 0 0 0 0 0 0 0 0
A113159 226 83 93 249 3 2 26 7 107 1 10 211 4
A100006 0 0 0 0 0 0 0 0 0 0 0 0 0

Table E.10: Confusion Matrix T50013

Prediction

A1
00

04
2

A1
00

04
6

A1
02

48
0

A1
00

51
2

A1
11

55
4

A1
13

15
9

A1
01

06
8

Truth A100042 9 1 0 0 0 0 0
A100046 0 23 2 0 0 0 0
A102480 0 0 6 0 0 0 0
A100512 1 0 0 1 0 0 0
A111554 4 3 21 0 149 1 1
A113159 0 0 0 0 0 3 0
A101068 0 0 0 0 0 0 0
Table E.11: Confusion Matrix T50097
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Prediction

A1
00
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2

A1
00

04
6

A1
00

51
2

A1
11

55
4

A1
02

48
0

A1
13

15
9

A1
11

66
1

Truth A100042 17 1 1 0 0 0 0
A100046 23 724 3 21 9 0 0
A100512 0 0 0 0 0 0 0
A111554 40 43 1 682 9 3 3
A102480 16 52 2 33 253 1 0
A113159 0 0 0 0 0 0 0
A111661 0 0 0 0 0 0 0

Table E.12: Confusion Matrix T50115

Prediction

A1
00

04
2

A1
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A1
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A1
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A1
13

15
9

A1
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48
7

Truth A100042 9 1 2 1 1 2 1 0 0 0 0 0 0 0
A102480 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A111554 1 3 15 0 2 3 0 0 0 0 0 0 0 1
A100078 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A100024 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A100046 1 0 0 0 0 31 0 1 0 0 0 0 0 0
A111661 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A100006 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A100512 41 14 4 11 18 103 2 0 269 19 6 1 2 0
A111915 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A111723 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A100023 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A113159 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A111487 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table E.13: Confusion Matrix T50273
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Prediction

A1
00
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2
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00
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6
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9
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00
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A1
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55
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0

A1
00
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3

A1
00

07
8

Truth A100042 123 6 2 2 13 7 1 1
A100046 0 0 0 0 0 0 0 0
A113159 0 0 0 0 0 0 0 0
A100512 0 0 0 0 0 0 0 0
A111554 0 0 0 0 5 1 0 0
A102480 0 0 0 0 0 1 0 0
A100023 0 0 0 0 0 0 0 0
A100078 0 0 0 0 0 0 0 0

Table E.14: Confusion Matrix T50368

Prediction
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48
0

A1
00

07
8

A1
11

48
7

Truth A100042 4 1 0 0 0 0 0 0 0
A101068 0 0 0 0 0 0 0 0 0
A100046 35 0 104 4 7 1 2 3 1
A100512 0 0 0 0 0 0 0 0 0
A111554 1 0 0 0 3 0 0 0 0
A100006 0 0 0 0 0 0 0 0 0
A102480 0 0 0 0 0 0 0 0 0
A100078 0 0 0 0 0 0 0 0 0
A111487 0 0 0 0 0 0 0 0 0

Table E.15: Confusion Matrix T50383

Prediction

A1
00

04
6

A1
11
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5

A1
00
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2

A1
02

48
0

A1
11

55
4

Truth A100046 133 1 20 0 0
A111915 0 0 0 0 0
A100042 0 0 0 0 0
A102480 0 0 0 1 0
A111554 0 0 0 0 1

Table E.16: Confusion Matrix T50338
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Prediction
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48
0

Truth A111915 1453 19 1 3 3 2 2 1 2 1
A100078 0 0 0 0 0 0 0 0 0 0
A111723 0 0 0 0 0 0 0 0 0 0
A111661 0 0 0 0 0 0 0 0 0 0
A100024 0 0 0 0 0 0 0 0 0 0
A111487 0 0 0 0 0 0 0 0 0 0
A101068 0 0 0 0 0 0 0 0 0 0
A100023 0 0 0 0 0 0 0 0 0 0
A100042 0 0 0 0 0 0 0 0 0 0
A102480 0 0 0 0 0 0 0 0 0 0

Table E.17: Confusion Matrix T50172

Prediction
A1

11
91

5

Truth A111915 290
Table E.18: Confusion Matrix T50187

Prediction

A1
00

07
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A1
11
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A1
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A1
00
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A1
11
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Truth A100078 15 1 0 0 0
A111723 5 26 0 2 0
A111487 1 0 3 1 0
A100024 0 0 0 0 0
A111915 0 0 0 0 1

Table E.19: Confusion Matrix T51556
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Prediction

A1
11

48
7

A1
00
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4

Truth A111487 120 1
A100024 0 0

Table E.20: Confusion Matrix T50222

Prediction

A1
11

66
1

Truth A111661 64
Table E.21: Confusion Matrix T50077

Prediction
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Truth A111661 345 1 9 9 17 7 1 1 1 3
A100512 0 0 0 0 0 0 0 0 0 0
A100024 0 0 0 0 0 0 0 0 0 0
A100042 0 0 0 0 0 0 0 0 0 0
A100078 0 0 0 0 0 0 0 0 0 0
A100023 0 0 0 0 0 0 0 0 0 0
A111487 0 0 0 0 0 0 0 0 0 0
A100006 0 0 0 0 0 0 0 0 0 0
A111723 0 0 0 0 0 0 0 0 0 0
A111915 0 0 0 0 0 0 0 0 0 0

Table E.22: Confusion Matrix T50136

Prediction

A1
11

66
1

A1
11

72
3

Truth A111661 162 1
A111723 0 0

Table E.23: Confusion Matrix T50214
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Monterey, California

3. USCYBERCOM
Fort George G Meade, Maryland

4. COMFLTCYBERCOM
Fort George G Meade, Maryland
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