
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2011-06

Assumptions, trust, and names in computer security protocols

Shearer, Charles Dylan

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/5657

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36699362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

ASSUMPTIONS, TRUST, AND NAMES IN COMPUTER
SECURITY PROTOCOLS

by

Charles Dylan Shearer

June 2011

Thesis Advisor: George W. Dinolt
Second Reader: James Bret Michael

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

21–6–2011 Master’s Thesis 27-09-2010—17-06-2011

Assumptions, Trust, and Names in Computer Security Protocols

Charles Dylan Shearer

Naval Postgraduate School
Monterey, CA 93943

N/A

Approved for public release; distribution is unlimited

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

A major goal of using any security protocol is to create certain beliefs in the participants. A security protocol will use
techniques like cryptography to guarantee some things, but it will still require a participant to make assumptions about other
things that the protocol cannot guarantee; such assumptions often constitute trust in other participants. In this thesis, we
attempt to precisely identify the required assumptions of some example protocols. In the process, we find that we must
consider the names that participants use to reason about each other. It turns out that naming is a complex topic with a rich
body of philosophical work, and we apply some ideas from this work to the problem of identifying security protocols’ required
assumptions. Finally, we begin work on a mathematical model of protocols and beliefs to which a formal logic of belief could
be applied. The model is left incomplete because of some unresolved problems with modeling belief caused by the design
requirement that the model’s elements have clear operational meanings. The solution of these problems is left as future work.

computer security, protocol, assumption, belief, trust, naming

Unclassified Unclassified Unclassified UU 85

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

ASSUMPTIONS, TRUST, AND NAMES IN COMPUTER SECURITY PROTOCOLS

Charles Dylan Shearer
Civilian

B.S., Kent State University, 2007
B.A., Kent State University, 2007

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2011

Author: Charles Dylan Shearer

Approved by: George W. Dinolt
Thesis Advisor

James Bret Michael
Second Reader

Peter J. Denning
Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

A major goal of using any security protocol is to create certain beliefs in the participants. A
security protocol will use techniques like cryptography to guarantee some things, but it will still
require a participant to make assumptions about other things that the protocol cannot guarantee;
such assumptions often constitute trust in other participants. In this thesis, we attempt to pre-
cisely identify the required assumptions of some example protocols. In the process, we find that
we must consider the names that participants use to reason about each other. It turns out that
naming is a complex topic with a rich body of philosophical work, and we apply some ideas
from this work to the problem of identifying security protocols’ required assumptions. Finally,
we begin work on a mathematical model of protocols and beliefs to which a formal logic of
belief could be applied. The model is left incomplete because of some unresolved problems
with modeling belief caused by the design requirement that the model’s elements have clear
operational meanings. The solution of these problems is left as future work.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Beliefs in Security Protocols . 1

1.2 Structure of the Thesis . 2

1.3 Attributing Belief to Participants . 3

1.4 Notation . 4

2 Background 7
2.1 Multi-Agent Systems. 7

2.2 Modeling Belief with Modal Logic 7

2.3 Quantified Modal Logic of Belief . 10

3 Literature Review 17
3.1 Rangan’s “Axiomatic Basis of Trust” 18

3.2 BAN Logic. 19

3.3 Yahalom, Klein, and Beth’s “Trust Relationships” 21

3.4 Appel and Felten’s “Proof-carrying Authentication” 22

3.5 Kaplan’s “Quantifying In”. 24

3.6 Grove’s Logic . 25

4 Survey of Beliefs in Security Protocols 31
4.1 General Model of Security Protocols’ Goals. 31

4.2 Message Authentication with Digital Signatures 32

4.3 OpenID . 36

4.4 Anonymous Adulthood Verification 43

4.5 Discussion . 46

vii

5 Toward a Mathematical Model 47
5.1 A Running Example: SimpleAdultVerify 47

5.2 Modeling Actions . 48

5.3 Modeling Beliefs . 51

6 Conclusion 61
6.1 More on NSTIC. 61

6.2 Future Work . 63

References 65

Initial Distribution List 71

viii

Acknowledgements

I thank my advisor, Prof. George Dinolt, and my second reader, Prof. Bret Michael, for their
advice and encouragement while I was working on this thesis. I thank Dr. Paul Bohan Broderick
(whose seminar, Philosophy & Cognitive Science, is the best class I have taken) for teaching
me about formal logic and the philosophy of computer science. I thank Dr. Michael Collard,
who was my advisor for my undergraduate thesis, for showing me how to do research. I am
able to attend NPS because of DoD’s SMART Scholarship, and so I thank the U.S. Congress
for establishing this scholarship, the SMART Scholarship Program Office for awarding it to
me, and U.S. Army CERDEC for sponsoring me, as well as the U.S. taxpayers for funding it.
Finally, I thank my cat Uzu for her support while I was working on this thesis — in fact, several
chapters are the result of her walking on my keyboard.

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

There are four sorts of men:
He who ¬K and ¬K¬K: he is a fool — shun him;
He who ¬K and K¬K: he is simple — teach him;
He who K and ¬KK: he is asleep — wake him;
He who K and KK: he is wise — follow him.

Paraphrased Arabian proverb.

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

CHAPTER 1:
Introduction

1.1 Beliefs in Security Protocols
In April 2011, the White House released “National Strategy for Trusted Identities in Cyberspace”
(NSTIC) ([1]), which describes a plan for encouraging the widespread use of a particular style
of online identification and authentication often called ‘federated identity’, ‘federated authen-
tication’, and ‘federated identity management’ (e.g., [2] and [3]). If the plan is successful,
Americans will log into their various online accounts — email accounts, bank accounts, Twit-
ter and Facebook and Skype accounts, etc.— using identifiers and credentials issued, or at
least vouched for, by a third-party “identity provider,” instead of using a potentially different
username-password pair for each account. With this scheme, the White House hopes to address
problems such as the burden on users of maintaining multiple username-password pairs and the
burden on service providers of performing authentication for each account; moreover, they be-
lieve that this scheme will provide authentication mechanisms with even greater assurance than
is currently possible, so that services currently deemed too sensitive to offer online will become
available.

The public draft of this plan, released in June 2010, was the primary motivator for this thesis.
This thesis is, in part, about the difference between “traditional” mechanisms of online identi-
fication and authentication and the kind of mechanisms advocated in NSTIC. This difference is
not in the strength of encryption, the quality of the credentials, or the sensitivity of the accounts
and activities that are protected, and yet the result is that the White House’s mechanisms are
riskier than traditional ones.

The difference is that NSTIC’s mechanisms require more trust on the part of participants. Trust
in this context can be thought of as a belief about a person or entity that one must have in
order to act and whose truth is important to one’s well-being. This thesis presents a view of
security protocols in general that emphasizes the beliefs that participants are supposed to have
(the “required assumptions”) before using the protocol, in order for it to achieve its goals. This
view also presents security protocols’ goals as beliefs (the “goal beliefs”) that the protocols are
supposed to induce in the participants. In other words, a security protocol presents an argument
to a participant, based on the participant’s assumptions, whose conclusions are the goals (for

1

that participant) of the protocol. One of our observations will be that, the more trust that a
protocol requires, the riskier it is (all else equal).

Another of our observations will be that identifying a protocol’s required assumptions, and the
beliefs that it is supposed to induce, is not trivial. Trust is just one kind of assumption that
participants may be required to make — some other kinds are assumptions about the meanings
of messages sent during a run and assumptions about the beliefs of other participants. Addition-
ally, we will see that, to describe these beliefs, we must account for the names that participants
use to refer to people, other participants, or themselves. Indeed, naming is an overlooked but
very important aspect of the use of security protocols.

1.2 Structure of the Thesis
The main parts of this thesis are Chapter 4 and Chapter 5. In Chapter 4, we continue the
discussion begun in the previous section by formulating appropriate goal beliefs and required
assumptions for five hypothetical applications of security protocols. In the process, we find that
these beliefs and assumptions can be quite complex and subtle, even for simple protocols, and
require us to answer some difficult philosophical questions. In Chapter 5, we take a first step
toward a rigorous model of protocol applications that will enable us to use a formal language
to specify goal beliefs and required assumptions and even a formal logic to show how the
assumptions imply the goal beliefs. We encounter a problem with applying the possible-worlds
model of belief, and, after describing it, we leave it as future work.

Chapter 2 reviews modeling techniques and formalisms that are important to any attempt at
building a rigorous model of protocol applications and belief — namely, multi-agent systems
and modal logic. Chapter 3 presents important works from computer security, formal logic, and
philosophy that are relevant to this thesis, and reviews several of them in more detail.

Finally, Chapter 6 presents conclusions and areas of useful future work.

This thesis includes some mathematical content that builds on the discussion of beliefs in se-
curity protocols. It is important, and a reader who is interested in applying formal methods
to security protocols should read this thesis straight through. But the mathematical content is
not essential; the main ideas are not about mathematical models but about security protocols,
belief, naming, and meaning. A reader who is not interested in formal methods should read the
following parts, in sequence:

2

1. The rest of the Introduction.

2. Section 3.3

3. Section 3.5

4. Chapter 4

5. Chapter 6

1.3 Attributing Belief to Participants
Traditionally, the term ‘principal’ is used to denote the things that perform roles in protocols,
and researchers have been comfortable attributing not only actions but also beliefs to these
things. This leads to difficult philosophical questions. Consider several ways of performing
a protocol role. A computer may be set up to perform a role completely without human in-
tervention (e.g., DNS servers). Or a computer may do most of the work but still interact with
a person at some point, perhaps at the beginning and end of a run (e.g., the “client” role of
HTTP) or somewhere in the middle (e.g., the “client” role of TLS when the user must decide
whether to trust the server’s certificate). Or a role may be performed entirely by a person (e.g.,
when someone uses a Telnet program to send an HTTP request). If ‘principal’ denotes just the
entity performing the actions, it is hard to specify the meanings of statements like ‘Principal A
believes X’ without explaining how a computer can have beliefs when no human is involved
in performing a role. At the same time, if ‘principal’ refers just to the person or organization
responsible for the computer that performs the actions, then we cannot attribute those actions to
the principal.

It thus seems that the properties we attribute to a principal — actions, knowledge, beliefs — are
often shared between one or more computers and one or more people who can access and control
those computers. I will use ‘principal’ to denote a combination of all entities that together
perform a protocol role. If a role is performed by a computer and you are not comfortable
attributing belief to computers, you can take sentences like ‘Principal A believes X’ to mean
that the person or people who can access and control the computer would believeX if they were
to review the data currently in the computer.

3

1.4 Notation
1.4.1 Quotation
Much of this thesis is about names and identifiers, and one of its points is that, to understand
security protocols, we should be precise with regard to naming in our descriptions of principals’
beliefs. In his paper on quotation, Donald Davidson wrote the following:

When I was initiated into the mysteries of logic and semantics, quotation was usu-
ally introduced as a somewhat shady device, and the introduction was accompa-
nied by a stern sermon on the sin of confusing the use and mention of expressions.
[4, p. 27]

Judging from my experience and the books on logic that I have read, he was the only mem-
ber of the congregation. (Quine was definitely present, but it might have been as the preacher
— cf. [5, §4].) Nevertheless, at some points I would like to rigorously observe the distinction
between using and mentioning expressions, in order to achieve that helpful precision in discus-
sions of security protocols. To this end, I will use single quotation marks always to mention an
expression and never in the ambiguous manner in which quotation marks are often used — in
which an expression is both mentioned and used at the same time. However, this ambiguous
use of quotation marks often has rhetorical value, and I will use double quotation marks (“scare
quotes”) for this purpose.

There will be places where I need to mention a class of expressions sharing a common form —
for example, the set of expressions that consist of ‘B’ followed by a formula of some formal
language. For this purpose, I will borrow Quine’s idea and notation of quasiquotation ([5, §6]).
For example, suppose we let ‘φ’ stand for an arbitrary formula of some formal language: with
the quasiquotation marks ‘p’ and ‘q’ we can denote the set of expressions that consist of ‘B’
followed by φ with the expression ‘pBφq’. For a quasiquotation to work, it must be clear
which parts of a quasiquotation denote themselves (or, more precisely, the types of expression
of which they are a token) (e.g., ‘B’) and which parts are metavariables — that is, stand-ins for
other expressions (e.g., ‘φ’). Throughout this thesis, I will use Greek letters like ‘φ’, ‘ψ’, and
‘τ ’ as metavariables, since they do not occur in any formal language that I discuss and stand out
among the symbols of these formal languages.

4

1.4.2 Protocol Messages
In Chapter 4 and occasionally elsewhere I need to describe the structures of protocol messages,
which are often the result of cryptographic operations. I will use the following notation:

pα1α2q
def
:= pthe result of concatenating α1 and α2q

p{|α|}κq
def
:= pthe result of encrypting α with key κq

pκ−1q
def
:= pthe inverse of key κq

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

CHAPTER 2:
Background

2.1 Multi-Agent Systems
The mathematical model of security protocols that we begin in Chapter 5 is based on the multi-
agent system framework, as presented in Fagin et al.’s book “Reasoning About Knowledge”
([6]). Using this framework, we start with a set A = {a1, . . . , an} of agents. At any particular
time, each agent ai is in some local state sai

that determines the properties of ai that we are
interested in (e.g., behavior, knowledge, beliefs). For each agent ai, there is a set Lai

of all
possible local states. We may also want to model properties of non-agent objects (e.g., message-
queues): we therefore include an environment e (along with its set Le of possible local states)
that also is in some local state se at any particular time. The whole system can be thought
of as being in a global state that is the composition (se, sa1 , . . . , san) of the local states of the
environment and all the agents at that time.

The system’s state changes when an event that we are interested in occurs. Time is discrete,
and we identify it with the natural numbers. (Time does not have to be discrete.) A run r is a
function from time (i.e., N) to the set of all possible global states (i.e., Le × La1 × · · · × Lan)
and thus is one possible history for the system. We identify our multi-agent system with a
particular set R of runs. R reflects all the constraints and possibilities of the agents’ actions.
For any run r and time t, we call the pair (r, t) ‘a point’. We use ‘r(t)’ to denote the system’s
global state at point (r, t), and we use ‘rai

(t)’ to denote the local state of agent ai at point (r, t).

For example, if S is a system containing agents a and b that pass messages to each other, then
there could be a run r such that ra(0) is a state in which a has a message M to send to b (but
has not yet sent it), and ra(1) is a state that means that a has sent M to b; of course, rb(1) could
mean that b has received M . If this is all we want to happen in r, then r(1) = r(t) for t > 1 —
that is, the system halts after time 1.

2.2 Modeling Belief with Modal Logic
Modal logic is a type of logic that deals with what are called ‘modes of truth’. ‘Modes of
truth’ is difficult to define, so I will just give some examples of sentences that modal logic is

7

particularly appropriate for formalizing:

9 is necessarily greater than 5.

One should not speed.

Bob thinks that the store is closed.

The modes of truth in these examples are necessity, obligation, and belief (respectively). In the
meanings of each of these sentences, there is a proposition and a mode that is applied to that
proposition specifying the way in which it is true. These two components are most evident in
the last sentence. We can bring them out in the first two by rewriting them thus:

It is necessary that 9 is greater than 5. (2.1)

It is required that one does not speed.

In modal logic, we take a standard logic like propositional logic or first-order logic and add
new operators (called ‘modal operators’) for specifying modes. For example, if we use ‘�’ as
a modal operator indicating necessity, and we use ‘p’ to denote the proposition that 9 is greater
than 5, then we could formalize (2.1) thus:

�p

If we were using a quantified modal logic, we might formalize (2.1) instead thus:

�GreaterThan(9, 5)

Propositional modal logic’s standard semantics — possible-worlds semantics — involves
“Kripke structures,” named for Saul Kripke who helped create possible-worlds semantics
(e.g., [7]). A model for non-modal propositional logic is an assignment of truth-values (i.e.,
{true, false}) to all proposition symbols (such a model is also called an “interpretation”);
given such an assignment, the truth-value of any formula in propositional logic can be com-
puted by applying the appropriate truth-functions (according to the operators in the formula) to
the truth-values of its proposition symbols. While an interpretation of a propositional language
represents the basic facts of the world, in possible-worlds semantics an interpretation represents

8

only one of the many possible worlds. The intuition for possible-worlds semantics is clearer if
we consider necessity: some propositions may be true in the real world, but we can conceive of
a world in which they are not (e.g., ‘There are nine planets’); in contrast, other propositions are
true in the real world, and it is not possible to conceive of a world in which they are false (e.g.,
‘9 is greater than 5’). Accordingly, in our Kripke structure there are worlds in which there are
nine planets and worlds in which there are some other amount of planets, but in all worlds 9 is
greater than 5. Let ‘p’ stand for ‘There are nine planets’ and ‘q’ stand for ‘9 is greater than 5’.
The modal formula ‘�q’ asserts the fact that 9 is greater than 5 in all possible worlds.

Now consider belief. People have different beliefs, and this difference means that people dis-
agree about which of the possible worlds is the actual world. If Bob believes that the store
is closed, then for all worlds that Bob thinks might be the actual one, the store is closed. Of
course, Bob’s beliefs change, and thus the worlds that he considers possible change. We model
this by putting Bob in one world w1 in which he believes that the store is closed, and in another
world w2 in which he believes that it is open. Formally,

w1 � ‘ B s’

w2 � ‘ B¬s’

(‘s’ stands for ‘The store is closed.’ and ‘B’ is our modal operator for Bob’s beliefs.) This is
possible because the worlds that Bob believes are possible in w1 and w2 differ.

In general, for a set P of proposition symbols, a Kripke structure is a tuple
M = (W , R1, . . . , Rn, π) where W is the set of all possible worlds, each Ri is a binary re-
lation overW , and π is an assignment of interpretations over P to worlds inW . Thus, for any
φ in P and any w in W , (M,w) � φ if and only if π(w)(φ) = true. For the truth-functional
operators, satisfaction takes the standard form:

(M,w) � p¬φq if and only if π(w)(φ) = false

(M,w) � p(φ ∧ ψ)q if and only if π(w)(φ) = true and π(w)(ψ) = true

etc.

(Of course, not all modal languages have the same operators or use these symbols.) The lan-

9

guage must have exactly n modal operators — Ξ1, . . . ,Ξn — such that:

(M,w) � pΞiφq if and only if (M,w′) � φ for every w′ such that (w,w′) ∈ Ri

(Cf. [6] and [8, Chapter 5] for more details on modal logic.)

2.2.1 Modeling Knowledge in Multi-agent Systems
It is straightforward to apply modal logic to a multi-agent system in order to model the knowl-
edge of the agents in the system. [6] is devoted to showing how to do this and how to apply
it to various problems. The main idea is that an agent’s knowledge is determined by its local
state, and therefore the agent will not be able to distinguish between any two points in which
it is in the same local state. For a given multi-agent system R over a set G of global states
and a set A of n agents, we describe the agents’ knowledge by building a Kripke structure
(W , K1, . . . , Kn, π). The set of possible worlds, W , is the set of points. For any point (r, t),
π((r, t)) is an interpretation of some set of proposition symbols that describes some facts about
the global state r(t) that we are interested in. For each agent i, Ki is a binary relation over
points such that ((r, t), (r′, t′)) ∈ Ki if and only if i is in the same local state at (r, t) and (r′, t′).

In this thesis, we are interested in belief rather than knowledge, but the method of [6] is the
starting-point from which (in Chapter 5) we begin developing a mathematical model of beliefs
in security protocols.

2.3 Quantified Modal Logic of Belief
The modal logic presented above is a propositional modal logic; if we remove the modal opera-
tor, we are left with simple propositional logic. Propositional modal logic, in all its varieties, is
well understood, in that there is a variety of classes of models from which to choose to represent
one’s particular modality of interest. This is not the case for quantified modal logic.

Quantified modal logic is a big topic, and I will not provide a comprehensive overview of it here.
Instead, I will discuss two issues that are particularly important for this thesis: the interpretation
of identifiers in quantified-modal-logic formulas, and the relation between quantifiers, modal
operators, and the domain of quantification. Since we are only concerned with modal logics of
belief, I will ignore other modalities like knowledge and necessity.

Languages for quantified modal logics are usually made by combining the syntax of proposi-

10

tional modal logics with the syntax of first-order non-modal logic. Models for quantified modal
logics of belief usually take the form of a relational Kripke structure M = (W , B1, . . . , Bn, π),
which is different from the Kripke structures for propositional modal logic in that π maps W
to what are sometimes called ‘relational structures’. These relational structures are simply the
kind of thing that can serve as a model for a first-order language — that is, they have a special
set that serves as the domain of the quantifiers, and they map constants to domain elements,
function-symbols to functions, and predicate-symbols to predicates. Thus, for both proposi-
tional modal logics and quantified modal logics, π maps W onto models appropriate for the
language.

The syntax and semantics of quantified modal languages vary, but the following is very com-
mon. For any w in W , let ‘w.Dom’ denote the domain of the quantifiers. For any w in W ,
π(w) assigns a member of w.Dom to each constant; it assigns a function in w to each function-
symbol; and it assigns a predicate in w to each predicate-symbol. Satisfaction (‘�’) is defined
defined over tuples of the form (M,w, V) where M is a relational Kripke structure, w is a
possible world, and V is a “valuation” — that is, a partial function mapping variables to do-
main elements. But before defining satisfaction, we need to show how terms — i.e., constants,
variables, and function-applications — are interpreted for a given (M,w, V). We will use the
notation ‘|·|M,w,V ’ to denote the interpretation of a term relative to some (M,w, V). For any
(M,w, V) (where M = (W , B1, . . . , Bn, π)), we have the following:

|κ|M,w,V = π(w)(κ) (κ is a constant)

|α|M,w,V = V (α) (α is a variable)

|ρ|M,w,V = π(w)(ρ) (ρ is a function-symbol)

|Φ|M,w,V = π(w)(Φ) (Φ is a predicate-symbol)

|pρ(τ1, . . . , τm)q|M,w,V = |ρ|M,w,V (|τ1|M,w,V , . . . , |τm|M,w,V) (each τi is a term)

11

Satisfaction (‘�’) is also defined recursively:

(M,w, V) � pΦ(τ)q if and only if |τ |M,w,V ∈ π(w)(Φ)

(M,w, V) � p∀αφq if and only if (M,w, V ′) � φ for any x in w.Dom

where V ′ is the same as V except for mapping α to x

(M,w, V) � p∃αφq if and only if (M,w, V ′) � φ for some x in w.Dom

where V ′ is the same as V except for mapping α to x

(M,w, V) � pΞiφq if and only if (M,w′, V) � φ for any w′ inW such that (w,w′) ∈ Bi

(Ξi is the modal operator corresponding to Bi)

(M,w, V) � p¬φq if and only if (M,w, V) 2 φ

(M,w, V) � p(φ ∧ ψ)q if and only if (M,w, V) � φ and (M,w, V) � ψ

And so on for the other truth-functional operators.

2.3.1 Dealing with Names
Designing a model for a quantified modal logic of belief beyond what we have done in the
previous paragraph involves some tricky questions about the nature of belief and the class of
linguistic objects that includes names, descriptions, identifiers, etc.. For convenience, I will call
such objects ‘names’. Consider the use of names inside the ‘that’-clauses in these sentences:

Alice believes that Obama is tall. (2.2)

Alice believes that the U.S. president is tall. (2.3)

If Alice for some reason (perhaps some sociological theorem) believes that the U.S. always
elects tall presidents, then (2.3) could be true even if she does not know who the president is.
If we were to model (2.3) with a relational Kripke structure, then in all the worlds that Alice
considers possible, the U.S. president is tall but not necessarily the same person. In this way, the
name ‘the U.S. president’ seems to refer to something abstract, perhaps the role of president,
although in any particular world it certainly refers to exactly one person (I hope). In contrast,
in (2.2) the name ‘Obama’ seems tied to a specific person, and so, in our relational Kripke
structure for this sentence, the same person would be tall in every world that Alice considers
possible. For Alice, ‘Obama’ is a rigid designator (to use the philosophical jargon), while ‘the

12

U.S. president’ is a non-rigid designator. (Cf. [9] for a good overview of the concept of “rigid
designator.”)

It is easy to model cases like this one in which it is clear whether a name is rigid or non-rigid; we
just include the denotations of the rigid names (in this example, ‘Obama’) in the domain, and we
add a predicate for each non-rigid designator. Let M = (W , Ba, π) be a Kripke structure where
Ba is Alice’s belief-relation. For each world w in W , the domain w.Dom contains people,
and there are a set w.T of all tall people and a set w.P containing just the person who is the
president. Let w1 be a world in which (2.2) is true and w2 be one in which (2.3) is true. Then
Obama is in both w.Dom and w.T for any w such that (w1, w) ∈ Ba, and w.P ⊆ w.T for any w
such that (w2, w) ∈ Ba. This model can be concisely described with a formal language. For all
w in W , let π(w)(‘ Tall ’) = w.T , π(w)(‘ President ’) = w.P , and π(w)(‘o’) = Obama. We
now have the following (V0 is an empty valuation):

(M,w1, V0) � ‘ Ba Tall(o)’

(M,w2, V0) � ‘ Ba ∀x(President(x)→ Tall(x))’

There are still cases involving non-rigid names that are difficult to describe with this logic.
(In [10], Grove makes the following points, and the following example is derived from there.)
Suppose we have a system of autonomous, mobile agents, and an agent a breaks down and
broadcasts a “help” message that it hopes will be received by the helper agent h. These agents
do not have a standard naming system, and so the “help” message contains directions to a’s
location. However, the transmission medium is quite unreliable and parts of the message may
have been lost or corrupted; a will keep broadcasting the “help” message until it receives an
acknowledgement from h. How should we formally express the condition under which a should
stop broadcasting the “help” message? Consider:

Bh NeedsHelp(a) (2.4)

Informally, ‘h believes that a needs help’. Is this good enough? Or is it possible that (2.4) is
true but a should continue calling for help? Suppose the message originally said ‘The agent in
room 22 needs help’ but was corrupted on its way to h, so that h ended up seeing ‘The agent
in room 2 needs help’. Unaware that the message was corrupted, h sends the acknowledgement
and proceeds toward room 2. Clearly a should continue sending the message, and yet (2.4) is

13

in some sense true: h believes ‘The agent that just sent that message needs help’ and the name
‘the agent that just sent that message’ denotes a.

The problem with (2.4) is that it does not say how h refers to a; it just says that h refers to a
somehow. What we need is a formula that says something like ‘h can find a by following some
list of directions, and h believes that the agent that it can find by following those directions
needs help’. Let the predicate ‘GoToRoom22’ denote the property whereby an agent can be
found by h by going to room 22: then we can replace (2.4) with this:

Bh ∀x
(
GoToRoom22(x)→ NeedsHelp(x)

)
(2.5)

The English equivalent to (2.5) is ‘h believes that the agent in room 22 needs help’, where ‘the
agent in room 22 is a non-rigid designator’. If awere to believe (2.5), it would stop broadcasting
the “help” message, because (2.5) says that h knows all it needs to in order for it to find and
help a. However, although (2.5) is fine for our current example, we would need a different
predicate instead of ‘GoToRoom22’ whenever a is in a different location. Moreover, we cannot
generalize (2.5) without a higher-order logic that can quantify over predicates; for example,
how would we formalize ‘h believes that, for any room r, the agent in r needs help’? So we
see that there are situations involving non-rigid names that conventional quantified modal logic
cannot handle.

2.3.2 Dealing with Quantification
In the above examples, I have been assuming that different worlds can have different domains.
In fact, this is not an obvious assumption; many quantified modal logics make the common-

domain assumption, which says that all the worlds have the same domain. It turns out that, with
the common-domain assumption, it is easier to adapt standard inference rules for quantifiers
to quantified modal logic than it is if we allow worlds to have different domains. Logics with
the common-domain assumption are characterized by the validity of what is called ‘the Barcan
Formula’ (cf. [11]), which is really a class of formulas:

p∀αΞφ→ Ξ∀αφq

(‘α’ stands for a variable, ‘Ξ’ a modal operator, and ‘φ’ a formula in which α may be free.) For
a quantified modal logic of belief, the common-domain assumption implies that in every world
everybody knows who or what exists.

14

The main purpose for allowing different domains is to represent cases in which the believer is
unsure (or incorrect) about who or what actually exists. One difficulty with this approach is
dealing with formulas like the following:

∀xBa Tall(x)

Suppose this formula is true at world w. This seems to say that Alice thinks that everyone is
tall. In fact, it effectively says more than this, because it forces the domains of all the worlds
that Alice thinks possible to be supersets of w’s domain. For, according to the definition of ‘�’
given earlier, the formula is true at w if and only if, for any member i of w.Dom, ‘Ba Tall(x)’
is true at w when ‘x’ is taken to denote i; but this means that, for any world w′ that Alice thinks
possible at w, ‘Tall(x)’ is true when ‘x’ is taken to denote i, and this in turn means that i is a
member of w′.T (the set of all tall people at w′) and thus a member of w′.Dom. It is difficult
to design quantified modal logics with varying domains, even though having varying domains
makes sense for many applications.

Quantified modal logic presents a minefield of issues, including philosophical ones, but it also
provides opportunities for formally dealing with naming. In Chapter 3 we will look at Grove’s
attempt ([10]) to take advantage of them.

15

THIS PAGE INTENTIONALLY LEFT BLANK

16

CHAPTER 3:
Literature Review

This thesis builds on works from three areas of inquiry: computer security, formal logic, and
philosophy of language and logic. Most relevant are works about belief in security protocols,
such as Rangan’s [12]; BAN Logic and related logics ([13], [14], [15], [16], [17], [18], and
[19]); and Yahalom et al.’s [20]. [12] and [20] are particularly relevant in that they are motivated
by the idea that it is important to understand a protocol’s trust-assumptions. BAN Logic, [12],
and [20] are discussed in more detail below.

Another related area is “trust management”: security systems that explicitly represent and rea-
son about trust in order to enforce security policies. The term ‘trust management’ seems to
have been introduced by Blaze et al. in [21]. Recent works in this area include Li et al.’s [22]
and Guttman et al.’s [23]. Although they do not use the term ‘trust management’, Appel et al.

present a similar system in [24], which is discussed below.

The mathematical model that we begin later in this thesis (Chapter 5) uses two important mod-
eling methods: modal logic with possible-worlds semantics, and multi-agent systems. The best
reference for combining these two methods is Fagin et al.’s [6]. This thesis’s pursuit of a math-
ematical model was inspired by the potential usefulness of a quantified modal logic of naming
such as that presented in Grove’s [10], which is presented below.

Perhaps surprisingly, quantified modal logic is closely related to philosophical questions about
naming and modes of truth (e.g., belief, necessity) that go back to Frege’s 1892 paper [25],
which is perhaps the first place where the strange logical properties of modalities and names are
discussed. Quine first presented his approach to these questions in [26]. Barcan’s [11], in which
she presents a quantified modal logic, and Quine’s response to Barcan in [27] clearly show how
these questions are relevant to quantified modal logic. (We already saw some of these issues
in Section 2.3.) Quine expands his approach in [28]. In [29], Kaplan compares the approaches
of Frege and Quine and then attempts to answer these questions in terms of different kinds of
names. Later (Chapter 4), we will find Kaplan’s ideas about kinds of names quite useful. As
a way of also introducing Frege’s and Quine’s approaches, Kaplan’s comparison of them is
presented very briefly below.

It is of course not possible to review in detail all previous works related to the problem and

17

approach presented in this thesis. Instead, I have chosen just a few works that, I hope, will put
the present work in context.

3.1 Rangan’s “Axiomatic Basis of Trust”
The goals and method of this thesis are very similar to those of the approach of P. Venkat Ran-
gan presented in the 1988 paper “An Axiomatic Basis of Trust in Distributed Systems” ([12]).
Rangan believed that security protocols for the then-emerging distributed systems of computers
would have to deal with the absence of a single universally trusted source of information, in
order for the independent organizations and people who own those computers to get any benefit
from interacting with each other. For any security protocol, it is necessary to understand the
particular kinds of trust it uses (or assumes), in order for us to decide whether that protocol
should be used for a given situation.

As we do in Chapter 5, Rangan models trust using a modal logic of belief and the multi-agent
system framework. He applies possible-worlds semantics to the modal logic and interprets
possible global states of a system as possible worlds. For each participant, belief is represented
with a transitive, Euclidean, and serial binary relation over the possible global states. (A binary
relationR over a set S is “transitive” if and only if, for any elements a, b, and c of S, if (a, b) ∈ R
and (b, c) ∈ R then (a, c) ∈ R. R is “Euclidean” if and only if, for any elements a, b, and c of
S, if (a, b) ∈ R and (a, c) ∈ R then (b, c) ∈ R. R is “serial” if and only if, for any element a of
S, there exists an element b of S such that (a, b) ∈ R.) A trust is a belief held by a participant
before and throughout a run of a protocol — in other words, an assumption. A participant’s
trusts are represented as constraints on the belief-relation, but the rest of the beliefs (that is,
beliefs acquired as a result of a run of the protocol) are determined solely by the participant’s
local state.

Another similarity between this thesis and Rangan’s work is in his approach to discovering
the trusts of a protocol. The security goals of a given system are encoded as formulas in the
modal logic; we then must look for other formulas (asserting some beliefs on the part of some
participants) such that, when they are added as additional axioms to the logic, the goal formulas
can be derived.

In our attempt to make a mathematical model of security protocols, we do not use Rangan’s
approach. His approach does not account for the use of names in participants’ beliefs, and
thus it is not possible for it to deal with cases of relative or ambiguous names. Also, in his

18

multi-agent system model, the meanings of messages that participants send to each other are
explicitly represented by formulas contained in the message, which prevents participants from
interpreting messages differently. Consequently, we must decide on the “correct” interpretation
of a protocol’s messages before we can model it. In contrast, in the approach presented in
Chapter 5 we represent participants’ interpretations of messages as assumptions made by these
participants.

3.2 BAN Logic
In the late 1980s and early 1990s, Michael Burrows, Martı́n Abadi, and Roger Needham devel-
oped a formal logic for analyzing authentication protocols that has been very influential and has
come to be called ‘BAN Logic’. There is no definitive version of BAN Logic; it was presented
with variations in multiple papers in 1989 and 1990 ([13], [30], and [16]). It quickly received
much attention (e.g., [17], [31], [32], and [18]). In response to some criticism (Syverson’s [32]
provides a good analysis of the issues), Abadi and Mark R. Tuttle presented ([19]) a revised
version with a new semantics. I present the revised version here.

The purpose of the logic is to enable analysis of authentication protocols in terms of the be-
liefs of the participants. The goal of a particular protocol would be defined as the holding of
particular beliefs by the participants, and the analysis would consist of showing the effects of
the protocol’s messages on the participants’ initial and subsequent beliefs. Therefore, BAN
Logic’s language focuses on belief, message-passing, and the construction of messages with
cryptographic operations. The semantics is based on a model of a distributed system as a multi-
agent system in which the set of agents contains all the principals along with a special agent
Pe representing the environment. Each principal’s state contains a record of the actions that
the principal has performed (a “local history”) and the set of keys that the principal holds (a
“key set”). The environment’s state includes a record of all the actions performed (a “global
history”), a set of keys, and, for each principal Pi, a buffer containing all the messages sent
to Pi but not yet received by Pi. A principal changes its state by executing actions, but only
its own state and the environment’s state can change. The possible actions include sending a
message, receiving a message, and receiving a previously unknown key. Runs are required to
satisfy certain reasonable constraints, such as the constraint that a message must be sent before
it is received.

An important feature of the model is the division of a run into two “epochs,” the past and the
present. The states in a run are assigned consecutive integers representing times. The negative

19

integers represent times in the past, while nonnegative integers represent times in the present.
In this way, BAN Logic can model recency of message-transmissions, which is important when
modeling nonces.

A protocol is modeled as a set of functions {A1, . . . , An, Ae}, one for each agent (the principals
and the environment), that map local states to actions. If agent i is in local state s, then i must
perform Ai(s).

Belief is modeled with the possible-worlds approach, using points as possible worlds.

Based on this model, BAN Logic defines formulas such as the following (‘φ’ is a metavariable
for formulas):

• ‘A says X’ (‘A sends the message X (in the present)’)

• ‘A said X’ (‘A sent the message X’)

• ‘fresh(X)’ (‘The message X was sent for the first time in the present’)

• ‘A has K’ (‘A has key K’)

• ‘A K↔ B’ (‘A and B share the key K’)

• ‘A
X

 B’ (‘A and B share the secret message X’)

• pA believes φq (pA believes that φq)

• pA controls φq (pWhenever A says that φ, then φq)

The definitions of ‘ says ’ and ‘fresh’ distinguish between the two epochs. ‘ has ’ is defined as
a condition on a principal’s set of known keys. ‘↔’ and ‘
’ are both defined as conditions on
the messages sent in a run (in both epochs). If K is a shared key (‘K↔’) between two principals,
then the only way another principal could send a message encrypted with K is by first receiving
that encrypted message from someone else. Similarly, if X is a shared secret (‘

X

’) between

two principals, then the only way another principal could send a message containing X is by
first receiving that message from someone else.

The papers in which BAN Logic was presented have been very influential. These papers start
with a strong and important claim: that the goal of authentication is to cause certain beliefs in

20

the participants. They then present an intuitive formalism for reasoning about how the messages
exchanged in authentication protocols affect participants’ beliefs. The language is very concise,
the rules are intuitive, and the focus of the analysis — belief — is explicitly represented. It has
some problems, some of which I discuss below, but in many ways it is an example of what a
formal method should be.

3.2.1 Messages and Names
We do not use BAN Logic in this thesis mostly because it assumes that all the principals have
unique and commonly known names. If in some protocol (e.g., AdultVerify, presented in Sec-
tion 4.4) a principal holds beliefs about another principal without knowing the latter’s proper
name, then this protocol cannot be analyzed with BAN Logic.

There are other problems with BAN Logic that should be briefly discussed. These problems are
in its treatment of messages. In the multi-agent system used as BAN Logic’s model, principals
can send keys, principals’ names, “primitive propositions” ([19, p. 207]) (whatever those are),
and “things like nonces” (ibid.) to each other as messages, as well as the results of applying
certain operations to messages: concatenation, encryption, and inclusion of a shared secret. The
problem is that they can also send BAN Logic formulas; BAN Logic’s language is thus a part
of its model! As we saw, this also occurs in Rangan’s model, and it is a problem for the same
reason: a principal’s interpretation of concrete messages (that is, bit-strings) should be our (the
analysts’) object of study; we should not interpret the concrete messages ourselves.

3.3 Yahalom, Klein, and Beth’s “Trust Relationships”
The basis of the 1993 paper “Trust Relationships in Secure Systems - A Distributed Authenti-
cation Perspective” ([20]), by Raphael Yahalom, Birgit Klein, and Thomas Beth, is the authors’
observation that communication protocols rely on the participants’ trust-relationships just as
much as they rely on cryptographic mechanisms and shared secrets, and that there are a variety
of trust-relationships that protocols can take advantage of. The authors examined protocols that
are used to establish secure communication over the Internet (e.g., Kerberos ([33])) and found
seven classes of trust-relationships that a user might need to hold with regard to a certification
authority (CA) in order to use such a protocol. Each class is related to a specific kind of ser-
vice that CAs typically provide, such as correctly asserting that a name belongs to a principal,
providing high-quality cryptographic keys, and maintaining a clock that can be used to ensure
freshness of messages.

21

The significance of “Trust Relationships” for this thesis is the fact that Yahalom et al. were
motivated by the following observations: (1) that trust has an important role in communication
protocols, (2) that there are multiple kinds of trust, and (3) that different protocols require
different kinds of trust. In the authors’ words:

Explicit specification of such relationships [i.e., trust] may help to determine whether
a certain protocol or certain initial assumptions are realistic in a given environment.
[. . .] Explicit analysis of required trust relationships can be used as a criterion for
comparing different protocols (e.g. which ones have weaker trust requirements) as
well as to extend protocols in a way which provides more flexibility — adapting
them to varying environments with different trust relationships. [p. 152]

Yahalom et al. thus made some of the same observations about assumptions in security pro-
tocols that we harp on in this thesis (Chapter 4 and Chapter 6). Unfortunately, they did not
consider trust classes involving names — that is, trust classes in which a principal is trusted to
use or generate names in some particular way. They also did not consider how to analyze trust
when there is no universal naming system.

3.4 Appel and Felten’s “Proof-carrying Authentication”
In 1999, Andrew W. Appel and Edward W. Felton presented ([24]) a formalism that can express
many of the things that BAN Logic can express. (I will refer to this formalism as ‘Appel-Felton
Logic’.) Appel-Felton Logic is a non-modal, higher-order logic. The key feature of this logic
is that it models each principal as a predicate that identifies the formulas that that principal
believes (or, in their words, “admits as true”). Such a predicate is called ‘a worldview’.

Identifiers in Appel-Felton Logic can refer to strings, formulas, functions, and predicates, in-
cluding worldviews; all of these sorts can be quantified over. Atomic formulas have the form
pω(φ)q, where ω is a variable denoting a worldview and φ is a formula or a variable denoting
a formula; pω(φ)q means that the formula (denoted by) φ is true in the worldview denoted by
ω. (This logic confusing using and mentioning because it is higher-order.) “Principals” are
a special type of worldview: worldview P is a principal if and only if the following are true

22

(p. 54):

∀F . F −→ P (F)

∀F∀G .
(
P (F) ∧ P (F → G)

)
−→ P (G)

(‘F ’ and ‘G’ range over formulas.) The logic includes a primitive function called ‘N ’ that
constructs principals from strings. In this way, Appel-Felton Logic distinguishes between prin-
cipals and their names. The logic does not have axioms, only inference rules. (Interestingly,
one of the inference-rules (n is prin, p. 55) implies that N is a total function.)

Unlike BAN Logic, Appel-Felton Logic was not designed as a protocol-analysis tool. Instead,
the intended use of this logic is as an implementation-language for various methods of dis-
tributed authentication — for example, the authors mention SPKI ([34], [35]) and X.509 ([36]).
The fact that this logic is higher-order enables one to define specific predicates for a partic-
ular authentication method — in other words, it can be used to implement a domain-specific
language for a particular type of authentication.

For example (pp. 56–57), we could define some predicates for authentication methods that use
public-key cryptography:

pω says φq
def
:= pω(φ)q

pω1 speaksfor ω2q
def
:= p∀x . ω1 says x −→ ω2 says xq

p(cert ω1 σ ω2)q
def
:= pω1 says (N (σ) speaksfor ω2)q (σ is an identifier of sort string)

Thus, ‘(cert C Ka A)’ can represent the fact that the certification authority C has bound the
public key Ka to A. Notice how Ka is used (appropriately) as a string. The assumption is that,
if the server receives a message containing the formula F signed with A’s private key, it will
infer ‘N (Ka) says F ’. The function N reflects the assumption that only one person has the
corresponding private key and can thus cause N (Ka) to “speak.”

Appel-Felton Logic shows how a higher-order language can be used to create domain-specific
languages which, in turn, can be used to enforce security policies. A key idea in their paper
is that requests should include proofs of the conditions which must hold (according to some
security policy) in order for the requests to be satisfied. This enables security policies to be
specified declaratively (in the domain-specific language) while still not requiring the server to

23

generate the proofs itself but merely to verify them.

Appel-Felton Logic is powerful, but it cannot deal with some of the issues of naming that are
of concern in this thesis — for example, the possibility that a name does not actually refer to
anything. Also, it does not have a model with which we can justify the inference rules.

3.5 Kaplan’s “Quantifying In”
David Kaplan takes up the issues raised by Quine ([28]) about the logical properties of what
Quine calls “referentially opaque” contexts. He contrasts Quine’s analysis with what he presents
as Frege’s ([25]), and argues that Frege’s provides a better explanation. Briefly, Kaplan de-
scribes Quine’s analysis as treating names inside opaque contexts as meaningless, since they
do not have the same logical properties as they do outside such contexts. By contrast, Kaplan
presents Frege’s analysis as treating names inside opaque contexts as just as meaningful as in
normal contexts, but having a different meaning from the normal one. For example, consider
the following sentence:

Ortcutt is a spy, and Ralph believes that Ortcutt is a spy. (3.1)

This sentence’s opaque context is everything to the right of ‘that’. For Quine (according to
Kaplan), the second occurrence of ‘Ortcutt’ does not mean anything, at least as far as logic is
concerned. But for Frege, the second occurrence of ‘Ortcutt’ is just as referential as the first,
but the two occurrences do not have the same meaning. The second one refers to something
other than Ortcutt, something more mental. Kaplan shows that with Frege’s analysis we can
explain why, for example, substitution fails when it crosses the border of opaque contexts: we
are substituting an expression that means something different than the one being replaced.

Kaplan hypothesizes that these strange mental entities that are referred to in opaque contexts
are linguistic — specifically, expressions. So, when we quantify into opaque contexts, we must
be sure to only quantify over expressions, as in the following:

∃α . Ralph believes pα is a spyq

(‘α’ ranges over expressions.)

This still leaves us unsure about what if any relation between Ralph and Ortcutt is implied

24

by (3.1), since it now seems that belief is just a relation between the believer and a sentence.
Kaplan’s main contribution to Frege’s approach in this paper is to shed some light on the very
tricky relations between believer, belief, and the things the belief is about, and to show that there
are different kinds of names that have different logical properties in opaque contexts. Consider
the difference between the following:

Ralph believes that Ortcutt is a spy.

Ralph believes that the shortest spy is a spy.

Assuming that ‘Ortcutt’ is the name of someone Ralph knows and that there is a shortest spy,
both of these sentences have names in opaque contexts that denote people, but, as Quine would
say, the FBI would only be interested in the first one. This is just a simple example of Kaplan’s
distinctions between kinds of names based on their causal relations with their subjects and ob-
jects and their descriptive contents; we will find this distinction useful later (Subsection 4.3.2).
At the end, he picks a kind of name (“vivid names”) that he claims guarantees a connection be-
tween the subject and object strong enough to allow quantification and substitution into opaque
contexts.

3.6 Grove’s Logic
In 1995, Adam Grove presented ([10]) a quantified modal logic of knowledge for describing
systems of multiple interacting agents. Grove’s principal goal for the logic was to account for
the names that agents use to refer to each other, but he also includes features to represent a
kind of subjective knowledge. This logic is an extension of a propositional logic with simi-
lar goals that Grove and Joseph Halpern presented ([37]) in 1993. Because of the quantified
logic’s explicit treatment of names, it is the inspiration for the mathematical model begun later
(Chapter 5) in this thesis.

3.6.1 The Issues
As Grove sees it, a formal model of knowledge that accounts for naming should deal with two
issues. The first issue is about the scope of non-rigid names used in descriptions of agents’
knowledge. To explain, Grove gives an example:

. . . consider an unreliable network in which some processes may have failed. Let the
formula φ stand for “p1 knows that all correct processes received p1’s last message”.

25

Suppose that, in fact, the correct processes are p1, p2, and p3, and p1 knows that all
three of these processes actually did receive the message. [10, p. 313]

Whether φ is true depends on the meaning of the name ‘all correct processes’. We know that
p1, p2, and p3 are all the correct processes, and so if we interpret this name from our (i.e.,
an objective) perspective, then φ is true. But suppose that p1 thinks that there is some other
process, p4, that is also correct: then from p1’s perspective, φ is false “(and, perhaps, may spend
more time — fruitlessly — waiting for additional acknowledgments)” (ibid.). Each perspective
introduces a scope in which names like ‘all correct processes’ are interpreted. p1’s perspective is
the innermost scope for this name, whereas the outermost scope is the real world — that is, the
world in which the sentence is said to hold. The issue is that different scopes can be useful for
different names and sentences, and so it is desirable that a formal model of knowledge enables
names to be interpreted at arbitrary scopes. In most quantified modal logics with non-rigid
constants, ‘all correct processes’ would be re-evaluated in each of the worlds that p1 considers
possible, thus giving it an innermost-scope interpretation.

Suppose that we interpret ‘all correct processes’ using the outermost scope, which would make
φ true. We thus know that the knowledge that φ attributes to p1 is about p1, p2, and p3, but we do
not know with what name or names p1 refers to p1, p2, and p3. There are many possibilities: for
example, p1 may use the name ‘all correct processes’ to refer to them collectively, or it may use
a different name for each of them. This is the issue that Grove calls ‘multiple ways of referring’.

3.6.2 The Logic
To build a logic that addressed these issues, Grove apparently found it necessary to have it deal
with subjective knowledge as well, as in ‘the agent who just sent me a message’ and ‘I know
that Bob needs help’. To do this, he used a variant of possible-worlds semantics based on ideas
from the work of David Lewis ([38]) and Yves Lesperance ([39]). In his model, a formula is
interpreted not in terms of a world but in terms of a world-agent pair, and instead of having
multiple knowledge-relations Ki over worlds, it has just one knowledge-relation K over world-
agent pairs. Briefly, a world-agent pair (w, a) represents the world w from the point of view of
agent a; if ((w, a), (w′, a′)) ∈ K, then a in w thinks that w′ could be the real world and that he
could be a′ in w′. It is difficult to get an intuition for this, and I will not do it much justice here
— for details, cf. Grove’s paper as well as Lesperance’s. The effect on the logic’s language is
that there is a term ‘me’ such that, if (w, a) � φ, then ‘me’ denotes a wherever it occurs in φ

26

outside the scope of a modal operator. For example, (w, p1) � ‘ NeedHelp(me)’ if and only if
p1 needs help in world w.

To deal with names, Grove made his logic multi-sorted, with two sorts: agents and names. This
means that all identifiers (i.e., all constants and variables) in the language fall into exactly one
of these sorts. All terms except ‘me’ consist of a single letter; lowercase terms are of sort
agent, and capital terms are of sort name. ‘me’ is also of sort agent. Correspondingly, in the
semantics each world has two domains: a domain of agents and a domain of names. Worlds can
contain different agents, but every world must have the same name-domain. Every world also
has a special ternary predicate, denoted by ‘ln’ in the language, that represents the relationship
between a name, the agent who uses the name, and the agent denoted by the name.

A key principle of Grove’s logic is that, when one agent reasons about another, it does so using
some name. This principle is reflected in the logic’s syntax in the form of a restriction that
bans formulas such as ‘∃xKme P (x)’ in which a quantifier over an agent variable binds into the
scope of a modal operator. As Grove says, “Such formulas assert knowledge about someone
(some x) but they do not say anything about how this agent is actually being referred to (by me,
or whoever is doing the reasoning)” ([10, p. 329]).

Grove gives (p. 326) the following formula to show off his logic:

∃x
(

Talking(me, x) ∧ ∃X
(
Location(X) ∧ ln(me, x,X)

∧Kme(∀y : ln(me, y,X)→ Tall(y))
))

He interprets it as follows:

I (me) am talking to some agent (x), x’s position relative to me is captured by some
“location-type” name X (for instance, X might be “in front of”), and I know that
the agent in that location is tall. [pp. 326–327]

To see how the logic confronts the issues mentioned above, consider again the example of
processes in an unreliable network. Suppose that they refer to each other using numbers, thus:

#1 knows that #5 knows that #1 needs help.

27

The logic should enable us to express all the different meanings of this sentence corresponding
to different scopes for the names. The innermost-scope interpretation is expressed thus:

∀x
(
ln(me, x,#1)→ Kx ∀y

(
ln(me, y,#5)→

Ky ∀z(ln(me, z,#1)→ NeedsHelp(z))
))

(3.2)

Each occurrence of ‘me’ potentially denotes a different agent; the denotation is determined by
the scope, and scope-boundaries are marked by occurrences of modal operators. For example,
the last ‘me’ is in the scope of ‘Ky’ and thus has the same denotation as ‘y’; the second ‘me’
has the same denotation as ‘x’. The first ‘me’ denotes the agent in whatever world-agent pair
this formula is interpreted for (which we have not specified). Notice that the second instance of
‘#1’ does not necessarily refer to the same agent as the first instance does.

There are multiple possible outer-scope interpretations. We will formalize one in which both
instances of ‘#1’ refer to the same agent:

∀x
(
ln(me, x,#1)→ Kx ∀y

(
ln(me, y,#5)→

∃X
(
ln(y,me, X) ∧Ky ∀z(ln(me, z,X)→ NeedsHelp(z))

)))
(3.3)

Because this outer-scope interpretation does not say how “y” (that is, the agent called ‘#5’)
refers to x — just that it does refer to x — this formula must hypothesize some name (‘∃X’) in
order to describe y’s knowledge.

(3.3) also shows how this logic resolves the issue of multiple ways of referring: after ‘∃X’, the
formula could have included material that says more about X — for example, ‘IpAddress(X)’.

3.6.3 Critique
I will mention one issue that should be resolved before employing the logic: the role of con-
stants other than ‘me’ — namely, ‘a’, ‘b’, ‘A’, ‘B’, etc. In the semantics of Grove’s logic as
well as traditional quantified modal logic, constants’ denotations can vary from world to world
— effectively, they always have innermost scope. Since Grove’s logic provides a more rigorous
way of expressing innermost-scope interpretations, what purpose do constants serve in the lan-
guage? Interestingly, in most of Grove’s examples of formulas in his language the only agent
constant is ‘me’. More importantly, the denotations of name constants also vary by world, and
this seems to undermine the usefulness of formulas like (3.2), because otherwise the rigidity of

28

the name constants (e.g., ‘#1’) would enable agents to reason about each other’s knowledge.

As mentioned above, Grove’s logic was very inspirational for the mathematical model begun
in Chapter 5. In fact, our goal in that chapter will be to create a model that could form a
semantics of a logic like Grove’s, adapted to belief. The most compelling aspect of Grove’s
logic is that it explicitly deals with names as well as agents, and this means that it can be used to
describe different kinds of names (such as the kinds mentioned by Kaplan). The ability to model
subjective knowledge has some interesting potential as well: for example, if agent c receives
some random message M , what better way is there to represent c’s name for the sender than
with something like ‘the agent who just sent me M ’?

29

THIS PAGE INTENTIONALLY LEFT BLANK

30

CHAPTER 4:
Survey of Beliefs in Security Protocols

In this chapter, we will consider five example protocols. For each example, we will choose one
of the principals and then consider the following questions:

• What belief is the principal supposed to have at the end of a run of the protocol?

• What assumptions is the principal supposed to make as a participant in the protocol?

Before we consider the examples, we must have a general idea of the relationships between a
protocol’s goals and the principals’ beliefs.

4.1 General Model of Security Protocols’ Goals
A security protocol is designed to enforce at least some parts of a security policy, which usu-
ally includes goals that fit into the venerable “CIA Triad” — Confidentiality, Integrity, and
Availability. The parts of the security policy that a protocol is supposed to enforce constitute
the protocol’s security goals. We consider a security protocol to be broken when we discover
that there is a (perhaps hypothetical) case in which the protocol is used correctly but does not
achieve its security goals.

Security goals can often be stated in terms of events or behaviors rather than beliefs or knowl-
edge (e.g., confidentiality of some messageM can be defined as the inability of an unauthorized
principal to send M). For example, the strand space method ([40]) analyzes protocols purely
in terms of possible sequences of events. To the extent that a protocol’s security goals do not
involve belief, whether that protocol is broken is independent of what any principal believes.

However, security protocols clearly do have goals that involve belief. For example, as Paul
Syverson ([32]) observed, a secure key is not much good to me if I do not believe that it is
secure. In general, for each role of a security protocol, there is a set of goal beliefs such that
whoever is playing that role is supposed to end up with those beliefs at the end of a run of the
protocol. In other words, one of the goals of a security protocol is that, at the end of a run, each
principal has acquired its goal beliefs. Security goals and goal beliefs are distinct but related: a

31

role’s goal belief expresses the security goals that are important to whoever is playing that role.
If those security goals have not been achieved, then the goal belief will be false.

During a run, principals are not expected to acquire their goal beliefs out of thin air; rather,
they should acquire them as a result of their participation in the run and of beliefs that they
held before the run began. For example, a principal — Bob — with knowledge of asymmetric
cryptography and the belief that K is a public key can conclude, after observing the message
M ′ = {|M |}K−1 , that M ′ was made by someone who possessed K−1. If Bob also believes that
Alice is the only principal who possesses K−1, then he can also conclude that Alice created
M ′. If Bob also has certain beliefs about the intended interpretation of M ′ in the context of the
protocol, then he can conclude that Alice wants to communicate some idea or proposition that
is encoded in M . In general, security-protocol designers assume that a participant starts out
with a particular set of beliefs, and these constitute his role’s required assumptions; designers
construct the protocol so that the participant will observe a sequence of events that causes him
to infer his role’s goal beliefs.

In this rest of this chapter, we will investigate the required assumptions of some example proto-
cols.

4.2 Message Authentication with Digital Signatures
Suppose Alice works at BigBank, and that BigBank signs all important internal email messages
with private key K−1

BB and gives its employees its public key KBB so that they can authenticate
the messages. Whatever the particular protocol used for signing email messages, it has the form
shown in Figure 4.1.

BigBank

•
M1{|M1|}K−1

BB //

Figure 4.1: A Simple Email Signature Protocol for BigBank. M1 is an unsigned email message. M1 also occurs
outside the signature so that the recipient can verify that he or she used the correct public key to check the signature.

Suppose the run shown in Figure 4.1 occurs — that is, Alice receivesM1{|M1|}K−1
BB

. Because she
has KBB, she knows that the term following the first instance of M1 is the result of encrypting
M1 with K−1

BB. For this run of the protocol, its goal is to convince Alice of the following:

32

Goal Belief 4.2.1 (For Alice). M1{|M1|}K−1
BB

was sent by BigBank.

Alice must start with some assumptions in order to infer this belief. There are many possible
assumptions that would work, but it is reasonable to assume that Alice’s role in the protocol is
intended to be filled by someone making assumptions like the following:

Assumption Set 4.2.1 (For Alice).

1. For any message M and public key K, if I receive M{|M |}K−1 then someone with K−1

sent it.

2. Only BigBank has K−1
BB.

There are some important differences between these two assumptions. The first assumption is
about the protocol’s cryptography, and if it is ever false we would consider the protocol to be
broken. But we would not necessarily consider it to be broken if the second assumption is false.

Now suppose that, instead of an employee of BigBank, Alice is a customer. KBB is now a
public key that BigBank publishes in a certificate and that it uses for communication with cus-
tomers (e.g., on a website). In general, along with a public key, a certificate contains iden-
tifying information such as a name, an address, and an email address; we will call such a
collection of information ‘an identifier’. For any identifier N and public keys K1 and K2, we
will use ‘sigcert(N,K1, K2)’ to denote the certificate containing N and K1 and signed with
K−1

2 . Let NBB be the identifier on BigBank’s certificate. Suppose that there is a certification
authority Auth whose public key is KAuth and who has signed BigBank’s certificate to make
sigcert(NBB, KBB, KAuth). Finally, suppose that Alice has KAuth. The protocol (whatever the
details) still has a simple form, shown in Figure 4.2.

BigBank

•
M1{|M1|}K−1

BB
C

C=sigcert(NBB,KBB,KAuth)
//

Figure 4.2: A Simple Email Signature Protocol for BigBank, with Certificate Exchange. M1 is an unsigned email
message.

33

Suppose such a run occurs. This run has a similar goal belief to the first one, but for this
kind of protocol (specifically, message-signature protocols relying on a public-key infrastruc-
ture (PKI)), Alice is supposed to make assumptions like the following:

Assumption Set 4.2.2 (For Alice).

1. For any message M and public key K, if I receive M{|M |}K−1 then someone with K−1

sent it.

2. For any identifierN and public keyK, if I receive sigcert(N,K,KAuth) then Auth believes

that only the principal identified by N has K−1.

3. For any identifier N and public key K, if Auth believes that only the principal identified

by N has K−1, then only the principal identified by N has K−1.

4. The principal identified by NBB is BigBank.

(Note that receiving M{|M |}K−1C counts as receiving M{|M |}K−1 .) The first assumption is
about the protocol’s cryptography. The second assumption says that sigcert(N,K,KAuth) is
Auth’s way of saying that it has a certain belief, and that Auth is telling the truth when it says
this. In other words, the second assumption says that Auth is honest. The third assumption says
that Auth’s belief is true — in other words, that Auth is competent. We could say that these
two assumptions constitute Alice’s trust in Auth. The fourth assumption is about the meaning
of the name NBB. The goal is achieved when Alice applies these assumptions to infer that
Auth believes that only the principal identified by NBB has K−1

BB, hence that only the principal
identified by NBB has K−1

BB, hence that only BigBank has K−1
BB, and finally that BigBank sent

M1{|M1|}K−1
BB

.

In this example, we have identified two categories of assumptions — assumptions of honesty
and assumptions of competence — that constitute trust in another principal. In general, many
security protocols (and all protocols that use “trusted third parties” like Auth) will have such
required assumptions, which the principals must accept in order to achieve their goals. We will
look at the required assumptions of three more protocols, but first we should consider what
these assumptions tell us about a protocol.

It may be that the cryptography used in this protocol is perfect; nevertheless, if the last three
assumptions are false, Alice could still end up in an insecure position. For example, the protocol

34

can guarantee that only someone with K−1
BB sent M{|M |}K−1

BB
, but it cannot guarantee that Big-

Bank did not share K−1
BB with someone else. These assumptions thus create risks. Identifying a

protocol’s required assumptions enables us to understand the ways in which it might fail other
than by being broken.

The way we express required assumptions affects how much we can learn about the ways a
protocol might fail. If we are imprecise, we might underestimate the risk of using the protocol.
Instead of Assumption Set 4.2.2, we might have described Alice’s assumptions thus:

1. For any message M and public key K, if I receive M{|M |}K−1 then someone with K−1

sent it.

2. For any principal P and public key K, if Auth says that only P has K−1, then Auth
believes this.

3. For any principal P and public key K, if Auth believes that only P has K−1, then it is
true.

This is quite concise and clearly shows the assumption of honesty and the assumption of com-
petence. Compared to Assumption Set 4.2.2, though, it leaves some important questions unan-
swered, such as: How (i.e., with what message) does Auth say that only P has K−1? What
name does Auth use for P ? How will a message be signed? Even without knowing it, by partic-
ipating in the protocol Alice will effectively assume some answers to these questions, and she
may be wrong.

Consequences of Failure
If Alice’s assumptions are false, then BigBank might not have sent M{|M |}K−1

BB
. Alice could

end up sharing her banking credentials with a criminal, which is clearly bad. But PKI proto-
cols like this one can be used in other, less risky ways. Suppose that, when Alice communi-
cates with BigBank for the first time (using this protocol), all of her assumptions are true, and
when finished she retains BigBank’s certificate, perhaps so that she can easily encrypt mes-
sages to BigBank with BigBank’s public key. Later, Auth is somehow compromised and makes
sigcert(NBB, KP, KAuth), whereKP is the public key of an attacker. If Alice still relies on Auth
to tell her what BigBank’s public key is, then she is in trouble, but fortunately she just continues
to use KBB. In her communications with BigBank, she no longer needs to trust Auth (or at

35

least she does not need to believe that Auth is trustworthy at this time), because now her only
assumption is that BigBank’s public key isKBB; she just needs to trust BigBank to protectK−1

BB.

4.3 OpenID
4.3.1 For Adult Verification
OpenID ([41]) is an authentication scheme of the kind advocated by the While House’s NSTIC
(discussed in the beginning of Chapter 1). The main function is to enable a user to use the
same name to log into multiple (unaffiliated) websites. One principal, the “identity provider,”
is responsible for ensuring that only that user can use his or her ID by, for example, requiring
the user to ender a password. Using the OpenID protocol, the website that the user wants to log
into (the “relying party”) interacts with the user and the identity provider so that the identity
provider authenticates the user and then tells the relying party that the user was authenticated,
without revealing the user’s credentials (usually a password) to the relying party.

OpenID can also be used to exchange information about a user when the protocol is combined
with an extension called ‘Attribute Exchange’ ([42]). In this case, the identity provider happens
to be an authority (at least in someone’s opinion) about some aspects (e.g., age) of its clients,
and the relying party happens to need to know about just such aspects. The user can have the
identity provider assert to the relying party that, for example, he or she has a certain age or
belongs to a certain security group, with or without revealing his or her ID to the relying party.
We will consider an example of this way of using OpenID.

Forget what we have said about Alice, BigBank, and Auth. Now suppose that Alice is a potential
customer of BigBank, that BigBank requires a potential customer to be an adult in order to open
an account, and that Auth is an identity provider that is willing to assert that Alice, who has an
ID with Auth, is an adult. LetNA be Alice’s ID. With Attribute Exchange, the relying party tells
the identity provider what attribute it wants the value of, and then the identity provider responds
with that value. Suppose there is an attribute — we will call it ‘the adulthood attribute’ — that
indicates whether the subject is an adult; its possible values are ‘true’ and ‘false’.

Suppose that the run shown in Figure 4.3 occurs. OpenID with Attribute Exchange is much
more complex than the previous two protocols, and so I will describe each step:

1. Alice sends BigBank a message (Mnew acct) that says that she would like to open an ac-
count, along with NA, which is her OpenID ID. She might do this by visiting a particular

36

Auth Alice BigBank

• NAMnew acct // •

��
•

��
creation of session with handle H and key K (using Diffie-Hellman Key Exchange)

•

��
•

��

•

��
•

��

•HAadult?oo

��

•

��

•

��

NAHAadult?oo

•

��
authentication against NA

•

��
•

��

•

��
• NAHAadult=T{|NAHAadult=T|}K // •

��
• NAHAadult=T{|NAHAadult=T|}K // •

Figure 4.3: Using OpenID for Adulthood Verification

URI (e.g., ‘/createAccount’) or by submitting an HTML form; in any case ‘Mnew acct’
denotes the part of the message that indicates Alice’s intention to BigBank.

2. BigBank and Auth use Diffie-Hellman Key Exchange ([43]) to agree on a shared key K
and on an “association handle” H , which they will use to recognize messages belonging
to this conversation.

3. BigBank sends Alice HAadult?, which she is supposed to forward to Auth. Aadult? is a
string that requests (in accordance with the Attribute Exchange specification) the value of
the adulthood attribute. (Actually, BigBank includes NA in the message as a convenience
to Alice, but I left this out since it is not important for this analysis.)

4. Alice sends NAHAadult? to Auth.

37

5. Auth somehow authenticates Alice against NA.

6. Auth sends Alice the message NAHAadult=T{|NAHAadult=T|}K , which she is supposed to
forward to BigBank. Aadult=T is a string that says (again, in accordance with the Attribute
Exchange specification) that the adulthood attribute’s value is ‘true’.

7. Alice forwards NAHAadult=T{|NAHAadult=T|}K to BigBank.

In the previous sections, we considered Alice’s point of view. Here, we will consider BigBank’s.
What is the goal of this run with regard to BigBank? That is, what is it supposed to convince
BigBank of? Consider this possible formulation of the goal belief:

Alice is an adult.

In a way, this is correct; indeed, if we were to ask Alice, she would say something like ‘The
goal is to convince the bank that I am an adult’. But look at the string that Auth signed and
sent (indirectly) to BigBank — NAHAadult=T: NA is not necessarily ‘Alice’, and BigBank does
not necessarily know whom NA belongs to. It is true that, in Goal Belief 4.2.1, we used the
name ‘BigBank’ in describing Alice’s beliefs, but in those examples Alice starts out knowing
BigBank in a way that BigBank, in the present example, may not know Alice. We want this
protocol to work even if BigBank initially knows nothing about Alice, but in such a case it
makes no sense to describe the belief arising from NAHAadult=T with a sentence containing the
name ‘Alice’. Therefore, a better formulation of the goal belief is this:

Goal Belief 4.3.1 (For BigBank). The principal whom Auth calls NA is an adult.

Now we can consider BigBank’s assumptions:

Assumption Set 4.3.1 (For BigBank).

1. For any stringH , OpenID IDN, and symmetric keyK, if I have established a session with

Auth whose handle isH and whose key isK, then if I receive NHAadult=T{|NHAadult=T|}K
then Auth believes that the principal whom it calls N is an adult.

2. If Auth believes that some principal is an adult, then that principal is an adult.

38

As in Assumption Set 4.2.2, we have one assumption about Auth’s honesty and another about
Auth’s competence.

The danger for BigBank of using this protocol is that the principal whom Auth is currently
callingN is not an adult. The risk depends on the consequences of BigBank opening an account
for a child; they are probably not catastrophic. But in the next subsection we will look at what
happens if BigBank uses OpenID for another purpose.

4.3.2 For Authentication
We will plausibly extend this example by supposing that customers can log into BigBank’s
website using their OpenID IDs — after all, BigBank was already using these IDs to verify
adulthood. The protocol (Figure 4.4) is almost the same as before.

Suppose Alice has established an account at BigBank and now uses her OpenID ID, NA, to log
into BigBank’s website. Suppose the run shown in Figure 4.4 occurs and afterward Alice can
access her account. Again, we will look at the example from BigBank’s point of view. The
goal belief must induce BigBank to let Alice access her account, and so to find the goal belief
we must consider how Alice will access her account. Notice that, at the beginning of the run,
BigBank sends Alice the string NSID: this is a tag that they will both use to recognize messages
in this session (perhaps by sending it back and forth in an HTTP cookie). Thus Alice will access
her account using NSID as a session ID. Immediately after the first message is sent, BigBank
does not know whom it is talking to, but it does have a name for this principal: NSID. The goal
belief must attribute some property φ to the principal called NSID that is sufficient (according to
BigBank’s security policy) to be allowed access to Alice’s account. It therefore must have the
following form:

For any principal x, if I call x NSID then φ(x).

At first it seems obvious that φ is the property of being Alice, but what does it mean to say
‘BigBank believes that the principal called NSID is Alice’ when (as we discussed above) Big-
Bank probably does not really know Alice? Since Alice’s account is a bank account, it must
include a set D of data — such as Alice’s full name, address, and even Social Security number
— that we would consider to be “identifying” in that there is a conventional and objective way
of interpreting it in order to find significant artifacts of a unique person, such as that very per-
son, that person’s house or family, or more identifying data about that person. So, rather than
claiming that BigBank requires the user to “be Alice,” we can claim that it requires the user to

39

Auth Alice BigBank

•

��

•NSIDoo

��
• NSIDNA // •

��
•

��
creation of session with handle H and key K (using Diffie-Hellman Key Exchange)

•

��
•

��

•

��
•

��

•NSIDHoo

��

•

��

•

��

NAHoo

•

��
authentication against NA

•

��
•

��

•

��
• NAH{|NAH|}K // •

��
• NSIDNAH{|NAH|}K // •

Figure 4.4: Using OpenID for Authentication

be the person thus identified by D — in other words, to be the person whom BigBank calls D.
Perhaps now we can state the goal belief:

For any principal x, if I call x NSID then I call x D.

There is something wrong this this formulation, however. Notice that we are using ‘call’ with
two different senses. To be “called NSID” by BigBank is not to be described by NSID, since
NSID does not describe anything — it is just an arbitrary value. Rather, it is to be able to
send messages containing NSID to BigBank, and whether a particular principal has this ability

40

depends on things like whether NSID was encrypted when it was sent, whether Alice has shared
NSID, and so on, and it is possible to imagine anyone having this ability, just as it is possible
to imagine that our solar system has only five planets. In other words, it is contingent. On the
other hand, to be “called D” by BigBank is, effectively, to be Alice, because a world where
BigBank calls someone else D makes as much sense as a world where BigBank calls an integer
other than 9 ‘the successor of 8’. Clearly NSID and D have different roles in this interaction
— they are different kinds of names corresponding to different meanings of ‘call’. It turns out
that David Kaplan has also discovered these (and other) kinds of names. In Kaplan’s terms (cf.
[29]), D is a “vivid name” that “denotes” Alice, whereas NSID is such that, if BigBank calls
Alice NSID, then NSID is “of” Alice, but it never “denotes” Alice because it has no “descriptive
content.” In just a few steps, our analysis of authentication has wondered into the territory of
philosophy. Going deeper than this would lead us out of the scope of this thesis, and so we
will just acknowledge the two meanings of ‘call’ and distinguish between them with subscripts:
‘call1’ will indicate that the name in question is non-vivid, while ‘call2’ will indicate that it is
vivid. We thus have the following:

Goal Belief 4.3.2 (For BigBank). For any principal x, if I call1 x NSID then I call2 x D.

(For more on these philosophical issues, cf. [25], [28], and especially [29].)

So how does OpenID achieve this goal? When Alice’s account was created, BigBank associated
NA with it, effectively creating the policy that whomever Auth calls NA is allowed to access
the account, and so BigBank must believe that whomever Auth calls1 NA BigBank calls2 D.
Which sense of ‘calls’ holds between Auth and NA? OpenID IDs are not very descriptive (and
certainly not as descriptive as identifiers like D), and so it seems best to choose ‘calls1’. Thus
all the protocol needs to do to convince BigBank of the goal belief is to convince BigBank that
whomever it calls1 NSID Auth calls1 NA. We therefore posit that BigBank makes the following
assumptions:

Assumption Set 4.3.2 (For BigBank).

1. For any stringH , OpenID IDN, session IDNSID, and session keyK, if I have established

a session with Auth whose handle isH and whose key isK and if I have sentNSIDH , then

if I receive NSIDNAH{|NAH|}K then whomever I call1 NSID Auth calls1 NA.

2. For any principal x, if Auth calls1 x NA then I call2 x D.

41

If the distinction indicated with the subscripts on ‘calls’ seems too academic, try formulating
Goal Belief 4.3.2 with only one sense of ‘calls’. We could use only ‘call1’, resulting in this:

For any principal x, if I call1 x NSID then I call1 x D. (4.1)

Now, imagine that, instead of Alice, an attacker plays her role, gets the session ID NSID from
BigBank, and sends NSIDNA to BigBank; and then Auth messes up for some reason and calls1

the penetrator NA, so that BigBank allows the penetrator to access Alice’s account. Does this
make (4.1) false? BigBank is certainly calling1 the penetrator D, and thus the consequent is
true; therefore BigBank cannot be accused of having a false belief. (4.1) thus fails to capture
BigBank’s security policy. Alternatively, we could use just ‘call2’ to formulate the goal belief,
but then the antecedent would never be true because names like NSID (which is just an arbitrary
value) have no meaning. So we see that we must make this distinction between kinds of names
in order to understand BigBank’s goal belief.

Consequences of Failure

Auth BigBank

•

��

•NSIDoo

��
•

��

NSIDNA // •

��
•

��
creation of session with handle H and key K

•

��
•

��

•

��
•

��

•NSIDHoo

��
• NSIDNAH{|NAH|}K // •

Figure 4.5: Using OpenID for Authentication, with Dishonest Auth

There are many ways in which these assumptions could be false, and many of them can be
found with a deeper discussion of the relations denoted by ‘calls1’ and ‘calls2’ (along the lines

42

of [29]). Here, I will just mention that, obviously, one general way is that Auth calls1 someone
other than Alice NA. To be concrete, suppose Auth calls1 itself NA. The run is now as shown
in Figure 4.5.

This is similar to a failure of PKI-based protocols in which the authority signs a bad certificate.
But the interesting thing is how the consequences in the present case differ from those in the
PKI case. The potential damage caused by Auth’s mischief in the PKI case is serious, but it
is at least limited by the fact that it does not provide the attacker access to data encrypted with
the legitimate public key and it does not hurt Alice if she always trusts the legitimate public
key instead of relying on Auth. In the present case, Auth’s mischief results in Auth having
complete access to Alice’s account; BigBank and Alice thus utterly depend on Auth’s honesty
and competence.

4.4 Anonymous Adulthood Verification
Finally, we will consider a security protocol called ‘AdultVerify’, for which it is almost impos-
sible to ignore names when formulating the required assumptions. I invented this protocol to
use as an example in this thesis. It has not been rigorously reviewed by anyone; although I think
that it is secure, it may be broken and therefore should not be used. However, I believe that, if it
is broken, any changes needed to fix it would not falsify the analysis presented in this section.

AdultVerify’s purpose is very similar to that of the first OpenID example: to convince a server
that a client is an adult using an assertion from an authority. The difference is that the client
does not want the server to know who he or she is, and does not want the authority to know that
he or she is using the server’s service. This “anonymity requirement” cannot be satisfied with
OpenID.

Applying AdultVerify to Alice, BigBank, and Auth results in the run shown in Figure 4.6.
Again, BigBank allows only adults to create accounts. The goal is for Alice to establish an
account with BigBank, under a username (NX) provided by BigBank. NX might be sensitive,
and so it must not be revealed to Auth; therefore BigBank must encrypt it before sending it to
Alice. At the beginning of the run, Alice and BigBank establish a temporary encryption session
with session ID NSID and symmetric key Kdh, which is created through Diffie-Hellman Key
Exchange. (If you are not familiar with Diffie-Hellman Key Exchange, you just need to know
that in Diffie-Hellman two principals send each other (unencrypted) integers from which they
can compute a symmetric key; the “magic” is that only those two principals can compute that

43

key, even if a penetrator intercepted both of the exchanged integers.)

Auth Alice BigBank

•

��

d1 // •

��
•

��

•

��

d2 {|{|d1 d2|}K−1
BB

NSID NX|}Kdh
oo

•

��

•

��

{|NA P {|NX|}Kdh |}KAoo

•
{|{|NX|}Kdh |}K−1

Av // •

��
•

NSID {|Z {|{|NX|}Kdh |}K−1
Av
|}Kdh

//

��

•

��
• •Zoo

Figure 4.6: Using AdultVerify.

The run is as follows:

1. As the first step in Diffie-Hellman Key Exchange, Alice picks and sends the integer d1.

2. BigBank sends d2 {|{|d1 d2|}K−1
BB
NSID NX|}Kdh

. d2 is BigBank’s half of Diffie-Hellman,
and Kdh is the symmetric key made from d1 and d2. In the encrypted part of the message,
d1d2 is signed with BigBank’s private key K−1

BB, and NSID and NX are nonces that Big-
Bank generated. NSID will be used as the session ID, and NX will be Alice’s username.

3. Alice now must prove that she is an adult to BigBank. She sends {|NA P {|NX|}Kdh
|}KA

to Auth. KA is Auth’s public key for encryption; NA is the ID Alice uses with Auth, and
P is her password. If Auth believes that she is an adult, it will sign {|NX|}Kdh

with the
private key K−1

Av , which it uses only for this purpose.

4. Auth verifies the IDNA and the password P , and because it believes that Alice is an adult,
it sends her {|{|NX|}Kdh

|}K−1
Av

.

44

5. Alice forwards {|{|NX|}Kdh
|}K−1

Av
to BigBank by sending NSID {|Z {|{|NX|}Kdh

|}K−1
Av
|}Kdh

.
Z is a nonce that Alice chooses at this point.

6. BigBank acknowledges Alice’s message by sending back the nonce Z.

We will consider this run from BigBank’s point of view. As in the first OpenID example,
BigBank’s goal belief is something like ‘The principal whom I call X is an adult’. At the end
of the run, BigBank has two names for the principal with whom it is communicating: NSID

and NX. As in the first OpenID example, NSID is just a temporary name, and we want the goal
belief to refer to a permanent name, like NX. NX is not a descriptive name, and so ‘call1’ is
more appropriate than ‘call2’. We thus get the following formulation:

Goal Belief 4.4.1 (For BigBank). The principal whom I call1 NX is an adult.

One of the required assumptions is that Auth is right when it thinks that someone is an adult. The
other one is an interpretation of a class of messages — namely, messages like {|{|NX|}Kdh

|}K−1
Av

— as Auth’s way of saying that it thinks someone in particular is an adult. In the first OpenID
example, BigBank knows which name Auth will use for the client — namely, NA — and so it is
accurate for BigBank to attribute the belief ‘The principal whom I call NA is an adult’ to Auth,
but in the current example BigBank does not know NA. Therefore the assumption should not
say anything about the name that Auth uses to refer to the client.

Assumption Set 4.4.1 (For BigBank).

1. If during a run of this protocol in which N is the username and K is the session key

I receive {|{|N|}K|}K−1
Av

, then the principal whom I call1 N is believed by Auth to be an

adult.

2. If Auth believes that some principal is an adult, then that principal is an adult.

In the first assumption, it would be misleading to attribute the belief ‘The principal whom
BigBank calls N is an adult’ to Auth, because the protocol is designed so that Auth does not
know N and is even unaware of BigBank’s involvement.

45

4.5 Discussion
We have seen that even simple protocols like the second message-signature protocol can require
non-trivial assumptions. In general, these assumptions fall into the following (overlapping)
categories:

1. Assumptions about the meaning of a message.

2. Assumptions about the use of a name or class of names.

3. Assumptions asserting the honesty of a principal.

4. Assumptions asserting the competence of a principal.

Assumptions of the last two categories are usually more obvious than assumptions of the first
two. To fully understand the risks of using a protocol, our formulation of the required assump-
tions should be precise enough to include those in the first two categories. But, as we have seen,
doing so can take us into tricky philosophical territory. Surprisingly, there is a body of work
in the philosophy of language going back more than a hundred years that is quite relevant to
computer security protocols. Of course, from the beginning computer science has had a num-
ber of significant connections to philosophy, and so perhaps we should not be surprised by yet
another.

Most of the formulations of the goal beliefs and required assumptions in this chapter have
resulted in convoluted sentences, and the cause has been our determination to explicitly state
assumptions about the use of names. It is easier to express these beliefs and assumptions using
a formal language. We could then come up with some formal inference rules and use them
to show that the goal beliefs follow from the assumptions. But proper use of a formal logic
requires, in Paul Syverson’s words, “an independently motivated semantics” ([32, p. 165]),
which in turn requires a model of our problem domain. In the next chapter, we take a step toward
developing a model of security protocols like those considered here that includes principals’
beliefs and their use of names, and we show how this model could be used as the basis of a
formal logic.

46

CHAPTER 5:
Toward a Mathematical Model

5.1 A Running Example: SimpleAdultVerify
Suppose we have a very simple protocol called ‘SimpleAdultVerify’ with which some authority
can reliably send unforgeable assertions about people’s ages. Specifically, SimpleAdultVerify
has two roles, Auth and Client, and a run consists of Auth sending Client a message saying either
that some person is an adult or that Auth does not know whether some person is an adult. (Auth
does not keep track of who is not an adult.) Client would be an online application that needs
to restrict access to certain age-groups. An assertion from Auth must be about some person,
and it must refer to that person by some name that is meaningful to both Auth and Client. We
will assume that SimpleAdultVerify is used in an environment in which every principal has at
most one name and everybody knows to whom these names refer. For simplicity, we will also
assume that Auth always serves only one Client, and so it does not need to keep track of who
sent what query.

In this chapter, we will attempt to build a model of an application of SimpleAdultVerify to a
world containing four principals — a, c, j, and k. a plays the role Auth, c plays Client, and
j and k do not play any role. When we make an important decision about the model, we will
express it as a “postulate.” Our first postulate expresses the goal of this protocol:

Postulate 5.1 (Successful Runs of SimpleAdultVerify). A run of SimpleAdultVerify is successful

if and only if there exists a name N such that exactly one of the following is true:

• Throughout the run a believes that the principal named N is an adult, and at the end so

does c.

• Throughout the run, a does not know whether the principal named N is an adult and c

does not change its belief about it.

The questions that we want our model to answer are the following: What assumptions does c
have to make for a run to be successful? How do principals’ beliefs change during a run?

47

5.2 Modeling Actions
In this section, we will build a model, SSAV , of all the ways the principals can interact in our
application of SimpleAdultVerify — that is, all the possible runs of the protocol application.

SSAV is an example of a kind of model that we will call ‘a protocol system’. Following the
multi-agent system approach (cf. Section 2.1), a protocol system models a protocol application
as a system of principals with finite local states. Runs are sequences of global states, and each
transition corresponds to one or more exchanges of messages prescribed by the protocol. Our
current task consists of two steps: defining the structures of the principals’ local states, and
defining the transition function. We will depart from the standard way of defining multi-agent
systems by requiring that runs be finite; runs of security protocols usually have a definite ending,
and it is often useful to refer to the system’s state at this ending.

Definition 1. A protocol system is a tuple (P , T ,L,R) where

• P is the set of principals in the system.

• T is the set of texts.

• For each p ∈ P , there exists a set Lp ∈ L, which is the set of all possible local states of p.

• R is a set of runs.

Let SSAV = (P , T ,L,R). In the rest of this section, we will specify the details of SSAV . We
can start with two obvious ones:

Postulate 5.2 (SSAV ’s Principals). P = {a, c, j, k}

Postulate 5.3 (Local-State Sets). L = {La, Lc, Lj, Lk}

Now we consider the principals’ local states. For most protocol applications, there is no single
right way to design the local states and the transition function; the usefulness of a given design
will depend on the interpretation the analyst gives to the principals’ local states. While there
are often many alternative designs, we will construct SSAV in accordance with the following
principle: a principal’s local state only represents previous or potential behavior, in accordance

with the protocol, of that principal. In particular, a local state must not be intended to indicate

48

how data is stored by the principal or the principal’s beliefs. When defining the structure of
a local state, it is a good idea to provide a behavioral interpretation for each element of the
structure. Since a principal’s behavior or history will always involve messages that are sent or
received, their local states will include sets of or relations over texts. The possible texts are
specified in the protocol system with T .

We start with the local states of a. Clearly, a’s local states must contain a set adultNames
of names of principals whom a would affirm to be adults (notice that I did not write ‘whom a

believes to be adults’). adultNames will not change during a run. We also add a set queries
of names contained in queries sent by c that a has not yet responded to. Since we are assuming
that c is the only principal that sends queries to a, we do not need queries to keep track of the
sender. So, we make the following postulate:

Postulate 5.4 (a’s Local States). Every local state in La consists of the following elements:

• adultNames ⊆ T : the set of names of the principals whom a would assert to be adults.

• queries ⊆ T : the set of names of the principals about whom c has queried but a has not

yet sent an assertion.

(Notice that we give a behavioral interpretation for each element.)

We now specify the structures of the local states of the other principals in a similar manner. c’s
behavior is to send a query and then receive the response:

Postulate 5.5 (c’s Local States). Every local state in Lc consists of the following elements:

• queriesToSend ⊆ T : the set of names about which c will (in the current or another run)

send a query.

• assertedAdultNames ⊆ T : the set of names of principals whom a has asserted to be

adults.

j and k have no prescribed behavior and therefore always have empty local states:

49

Postulate 5.6 (j’s and k’s Local States). Lj = Lk = {()}

Having specified the structures of the principals’ local states, we now specify the set R of runs
of the system. Runs consist of global states, and a global state is a tuple (sa, sc, (), ()) where
sa ∈ La and sc ∈ Lc (the last two elements are j’s and k’s local states, which are always
empty). Each run consists of two steps: (1) c sends a query to a containing some name, and
(2) a responds either that the named principal is an adult or that a does not know whether
the named principal is an adult. Just as for local states, there are various reasonable ways to
specifyR that differ in, for example, the allowed initial states or the allowed lengths of the runs.
The following is the least restrictive way that works with the postulates above and captures the
principals’ behavior:

Postulate 5.7 (Runs). R consists of all runs r of length 3 that satisfy the following:

• There exists a textX in T such that rc(1).queriesToSend = rc(0).queriesToSend \ {X}
and ra(1).queries = ra(0).queries ∪ {X}; r(0) and r(1) are the same in other respects.

• There exists a text X in T such that ra(2).queries = ra(1).queries \ {X},
X ∈ ra(1).adultNames (and ra(1).adultNames = ra(2).adultNames), and

rc(2).assertedAdultNames = rc(1).assertedAdultNames ∪ {X}; r(1) and r(2) are

the same in other respects.

We have now completely specified SSAV . Figure 5.1 shows a run of SSAV .

adultNames = {"joe"}
queries = {}

a

queriesToSend = {"joe"}
assertedAdultNames = {}

c

r*(0)

j k

queriesToSend = {}
assertedAdultNames = {}

c

r*(1)

j k

adultNames = {"joe"}
queries = {"joe"}

a

queriesToSend = {}
assertedAdultNames = {"joe"}

c

r*(2)

j k

adultNames = {"joe"}
queries = {}

a

Figure 5.1: A run of SSAV in which c asks a whether the principal called ‘joe’ is an adult and a replies that he is.

50

5.2.1 A Formal Language
Although a model like SSAV is a useful description of a protocol application, it is often easier to
use a formal language whose semantics is defined in terms of such models. We could adapt the
quantified modal language developed by Adam Grove ([10]; cf. Section 3.6) for this purpose.
Consider r∗ in Figure 5.1 to see how we might do this. Suppose our language has a predicate-
symbol for each element of a local state — for example, the predicate-symbol ‘AdultName’
corresponds to the set adultNames in a’s local state. Just as Grove’s logic is multi-sorted, our
language has two sorts: principals and texts. P is the domain of sort principal, and T is the
domain of sort text. Constants of sort text are made with quotation — for example, ‘ `joe´ ’
is a constant that denotes the text ‘joe’. As with Grove’s logic, all text-sort variables are upper-
case, and all principal-sort variables and constants are lowercase. Formulas in the language are
satisfied by points, but otherwise satisfaction (‘�’) is defined in the manner standard for quan-
tified modal languages (cf. Section 2.3), except that for now we ignore formulas with modal
operators. We get the following:

(r∗, 0) � ‘ AdultName(`joe´)’

(r∗, 0) � ‘ QueryToSend(`joe´)’

(r∗, 2) � ‘ AssertedAdultName(`joe´)’

(r∗, 2) � ‘¬∃X QueryToSend(X)’

5.2.2 Limits of the Model
Notice that, although the interpretations of the local states in r∗ capture all the important behav-
ior, they still leave a lot out. For example, they do not tell us whom ‘joe’ denotes or whether
that person is actually an adult. They also do not tell us anything about the beliefs of any of the
principals. In the next section, we will enhance our model so that it represents the principals’
beliefs and aspects of the world that are outside of the protocol but nevertheless relevant (e.g.,
adulthood).

5.3 Modeling Beliefs
The concept of ‘protocol system’ presented in the previous section enables us to describe a
protocol in terms of the actions of principals without assuming too much about how it is imple-
mented. It views principals only as things that can compute and exchange messages. It does
not, by itself, enable us to understand how a protocol achieves its goals — that is, how princi-

51

pals come to possess their goal beliefs. There are in fact two related problems with SSAV (and
protocol systems in general), which I mentioned at the end of the last section: (1) it leaves out
important aspects of the world, such as the set of adults and the assignment of names, and (2) it
does not represent principals’ beliefs.

In this section, we will use ideas from modal logic and the multi-agent systems approach to
confront these problems and create a new model BSAV by modifying SSAV . This will provide
us with a good solution for the first problem (Subsection 5.3.1), but leads to some new problems
when applied to the second (Subsection 5.3.2). This section ends with a discussion of these new
problems.

5.3.1 Modeling Other Aspects of the World
BSAV will be an expansion of SSAV . We can solve the first problem by including relevant
external aspects of the world in the local state of a new “pseudo-principal” e that represents the
environment in which a run occurs. With e’s local states, we can model who the adults are and
who has what name. As we did for the other principals, we must define a set Le of the possible
local states of e:

Postulate 5.8 (e’s Local States). Every local state in Le consists of the following elements:

• adults ⊆ P: the set of adults

• nameOf : P → T : the assignment of names (a partial function)

We call the members of Le ‘environment states’. Unlike our specifications of the local states
of the other principals, we do not need to provide a behavioral interpretation of the elements of
environment states, because the environment-state does not (necessarily) determine behavior. It
is just a model of aspects of the world external to the protocol application.

The set R of runs in BSAV is the same as in SSAV (cf. Postulate 5.7), except that the global
states include environment states. Within a run, only a’s and c’s local states change. An example
is shown in Figure 5.2.

5.3.2 Modeling Beliefs
In this section, we add aspects of relational Kripke structures to SSAV in order to model the
beliefs of the principals. (For an overview of relational Kripke structures, cf. Section 2.3.)

52

adultNames = {"joe"}
queries = {}

a

queriesToSend = {"joe"}
assertedAdultNames = {}

c

r*(0)

j k

adults = {j}
nameOf = {(j, "joe"), (k, "kevin")}

e

adultNames = {"joe"}
queries = {"joe"}

a

queriesToSend = {}
assertedAdultNames = {}

c

r*(1)

j k

adults = {j}
nameOf = {(j, "joe"), (k, "kevin")}

e

adultNames = {"joe"}
queries = {}

a

queriesToSend = {}
assertedAdultNames = {"joe"}

c

r*(2)

j k

adults = {j}
nameOf = {(j, "joe"), (k, "kevin")}

e

Figure 5.2: A run of BSAV in which c asks a whether the principal called ‘joe’ is an adult and a replies that he is.

Postulate 5.9. BSAV = (P , T ,L,R,W ,B) where

• P = {a, c, j, k}

• T is the set of texts.

• L = {La, Lc, Lj, Lk, Le}

• R the same as in SSAV , except that the global states include environment states.

• W is the set of possible worlds.

• B = {Ba, Bc, Bj, Bk}, and Bi ⊆ W ×W for each i in P

What exactly should be in W? In the multi-agent system approach (which is concerned with
knowledge rather than belief),W is the set of all points (r, t). The “meaning” of a world (r, t)

— that is, the set of propositions that are satisfied by that world — comes from the global
state r(t). Even if the set of global states is finite, the set of points is infinite because runs
are infinitely long. Because this approach is used to model agents’ knowledge rather than
beliefs, each accessibility relation Ki is simply defined to include exactly those pairs of points
((r, t), (r′, t′)) where agent i has the same local state in r(t) and r′(t′). If we were to do the
same thing with BSAV , W would be R× {1, 2, 3} (because all runs have a length of 3). For
now, we just takeW to be the set of global states — that is,W = La × Lc × Lj × Lk × Le —
and focus on the belief-relations.

53

In particular, consider Bc — c’s belief-relation — and how it should model c’s beliefs during
run r∗ (Figure 5.2). At the end of the run — that is, in r∗(2) — c should believe that the principal
called ‘joe’ is an adult. This would be modeled by imposing the following condition:

For any w inW such that (r∗(2), w) ∈ Bc,

for any p in P such that w.nameOf(p) = ‘joe’, p ∈ w.adults. (5.1)

Figure 5.3 shows a very small part of what Bc might look like if it satisfied this condition. A
very nice feature of this model is that it clearly shows the difference between a name and the
principal it denotes, and between a principal’s beliefs and the real world. This model highlights
the fact that principals know what messages they sent and received, but are still “stuck in their
own heads”; to believe something about the rest of the world (e.g., about the environment state)
requires an assumption, which could be false.

Bc

r*(2)

adultNames = {"joe"}
queries = {}

a

queriesToSend = {}
assertedAdultNames = {"joe"}

c

j k

adults = {k}
nameOf = {(j, "joe"), (k, "kevin")}

e

adultNames = {"joe"}
queries = {}

a

queriesToSend = {}
assertedAdultNames = {"joe"}

c

j k

adults = {k}
nameOf = {(k, "joe"), (j, "kevin")}

e

adultNames = {"joe"}
queries = {}

a

queriesToSend = {}
assertedAdultNames = {"joe"}

c

j k

adults = {j}
nameOf = {(j, "joe")}

e

Bc

Figure 5.3: A Small Sample of Bc.

54

It seems that we could develop this model into something like Rangan’s (Section 3.1) that cap-
tures the assumptions c must make about a’s honesty and competence, as well as its knowledge
in r∗(2) that a asserted that the principal called ‘joe’ is an adult. We then would no longer need
to explicitly impose (5.1) because the goal belief would logically follow. We could expand the
formal language begun in Subsection 5.2.1 into a modal language, add axioms and inference
rules appropriate for modal logics of belief, and then construct a formal proof of the goal be-
lief from the assumptions. To represent c’s assumption of a’s honesty, we would impose this
condition:

For any w inW such that (r∗(2), w) ∈ Bc and any X in T ,

if X ∈ w.assertedAdultNames then, for any w′ inW such that (w,w′) ∈ Ba,

for any p in P such that w′.nameOf(p) = X , p ∈ w′.adults.

This is a mouthful, and so we would express it with the formal language, perhaps thus (cf. the
definition of ‘�’ for formulas with modal operators in Section 2.3):

Bc ∀X
(

AssertedAdultName(X) −→ Ba ∀y
(
NameOf(y,X)→ Adult(y)

))
(5.2)

We would impose a similar condition to represent c’s assumption of a’s competence. It could
be expressed formally with a formula like this:

Bc ∀X
(
Ba ∀y

(
NameOf(y,X)→ Adult(y)

)
−→ ∀y

(
NameOf(y,X)→ Adult(y)

))
(5.3)

Finally, we would require that c knows that it has received a’s assertion that the principal called
‘joe’ is an adult. (Actually, this would probably be a consequence of a general condition that
principals know their own states.)

Bc AssertedAdultName(`joe´) (5.4)

So, to summarize, we would require that Bc and, incidentally, Ba be such that r∗(2) satisfies
(5.2), (5.3), and (5.4). We would next check (perhaps with a formal proof) that this implies that
r∗(2) satisfies the condition in (5.1), which would be expressed thus:

Bc ∀y
(
NameOf(y, `joe´)→ Adult(y)

)
(5.5)

55

In other words, if r∗(2) � (5.2), (5.3), and (5.4) then r∗(2) � (5.5). This turns out to be the case,
and the formal proof could be done using Modus Ponens, rules for instantiating quantifiers,
and a special set of axioms called ‘K’ that hold for all modal logics with a truth-functional
conditional operator (like our ‘→’) and a possible-worlds semantics. K (adapted to our formal
language) is the set of all formulas with the following form:

p
((

Bκ(φ→ ψ) ∧ Bκ φ
)
−→ Bκ ψ

)
q

(φ and ψ stand for any formulas and κ for any constant of sort principal.) All formulas in K are
valid no matter what the belief-relations are, because their validity comes from the way worlds
satisfy formulas whose main operator is ‘→’.

Below, we informally prove that, if r∗(2) � (5.2), (5.3), and (5.4) then r∗(2) � (5.5), using the
properties of the satisfaction-relation.

Proof. Remember that the “real world” (which is the perspective in which we are doing the
proof) is r∗(2). The main operator of the assumptions ((5.2), (5.3), and (5.4)) and the goal
((5.5)) is Bc, and we are thus always talking about c’s beliefs, which is the same as talking
about all the worlds that c considers possible (in r∗(2)). So we switch our perspective from
r∗(2) to an arbitrary world w such that (r∗(2), w) ∈ Bc. From the assumptions, we know the
following:

w � ‘ AssertedAdultName(`joe´)’

w � ‘∀X
(

AssertedAdultName(X) −→ Ba ∀y
(
NameOf(y,X)→ Adult(y)

))
’

w � ‘∀X
(
Ba ∀y

(
NameOf(y,X)→ Adult(y)

)
−→ ∀y

(
NameOf(y,X)→ Adult(y)

))
’

Therefore,

w � ‘
(

AssertedAdultName(`joe´) −→ Ba ∀y
(
NameOf(y, `joe´)→ Adult(y)

))
’

w � ‘
(
Ba ∀y

(
NameOf(y, `joe´)→ Adult(y)

)
−→ ∀y

(
NameOf(y, `joe´)→ Adult(y)

))
’

and so

w � ‘∀y
(
NameOf(y, `joe´)→ Adult(y)

)
’

56

We have now proved that ‘∀y
(
NameOf(y, `joe´)→ Adult(y)

)
’ is satisfied by all points that

c considers possible in r∗(2), and this is precisely the condition for r∗(2) to satisfy (5.5).

5.3.3 Problems with the Model
That was fun, but the proof rests on an uncertain assumption: that such a world as w exists. In
fact, it may be that there is no w such that (r∗(2), w) ∈ Bc. This would not mean that r∗(2) does
not satisfy (5.5): rather, it would mean that r∗(2) satisfies all formulas with the form pBc φq!
This is because a world w satisfies a formula pBc φq if and only if each world w′ such that
(w,w′) ∈ Bc satisfies φ, and, if there are no such worlds w′, then this is trivially the case. In
modal logics of belief, this is prevented by ensuring that each belief-relation Bp is serial —
that is, for each w in W there exists a w′ in W such that (w,w′) ∈ Bp. This means that all
formulas with the form p(Bκ φ→ ¬Bκ ¬φ)q are valid, and so they are usually added as axioms
(this is the axiom-set called ‘D’). But we do not know enough about Bc to determine whether
it is serial. Before trying to do proofs, we need to know more about Bc and Ba — in fact, we
need to define them, rather than just specify constraints on them. It turns out, though, that this
is difficult to do.

Problem 1
We have not defined Bc; we have not said what other beliefs c has at r∗(2), nor have we said
what c believes at any other world. We have also not defined Ba. One option is to generalize
the conditions we imposed on r∗(2) to represent c’s assumptions, so that (5.2), (5.3), and (5.4)
are satisfied by all worlds. In fact, this makes sense, since c would make these assumptions
“a priori,” independently of the run or the world. But if we take this general approach for all
principals’ assumptions in every system, we get some unexpected results. For example, it is
impossible to model a case where a principal p always believes φ (an assumption) but in some
world w∗ another principal q does not believe that p believes φ — formally:

w � pBp φq for any w inW (5.6a)

w∗ � p¬Bq Bp φq (5.6b)

Set (5.6) is unsatisfiable because (5.6b) implies that there exists some world w′ inW such that
(w∗, w′) ∈ Bq and w′ 2 pBp φq, which contradicts (5.6a). So it seems that we need to choose
just a subset of worlds in which principals make their assumptions. The problem is that I know
no natural criterion for choosing this subset. In general, a description of a situation that we are

57

trying to model will only tell us what beliefs hold in some of the worlds, and our modeling
technique does not have a general principle for filling out the rest of the belief-relations. For
example, in the multi-agent system approach (in whichW is the set of points), the knowledge-
relation Ki for any agent i is defined as the set of all pairs ((r, t), (r′, t′)) such that i is in the
same local state in r(t) and r′(t′); thus, given a set of agents and a set R of runs, this principle
completely defines the knowledge-relations. However, even if we had such a principle for
belief-relations, we would have another problem to deal with, which we consider next.

Problem 2
The second problem is that a given definition ofW might restrict which sets of beliefs we can
model with the belief-relations. To see how, consider a very simple example. Forget about our
protocol models and even relational Kripke structures, and instead suppose that a world consists
of just a bit, whose value is either 0 or 1. Suppose our formal language is a propositional modal
logic, and in this language ‘p’ denotes the proposition that the bit’s value is 1. There are two
principals, a and b. For now, let W contain just two worlds — one world in which the bit’s
value is 0, and another in which it is 1. Suppose we want to impose the following conditions on
the belief-relations Ba and Bb:

• a always (i.e., in all worlds) knows the bit’s value.

• There is a world w∗ inW in which a believes that b believes that the bit’s value is 1, but
in fact b does not believe this.

• Both belief-relations are serial.

Formally:

w � ‘
(
(p→ Ba p) ∧ (¬p→ Ba ¬p)

)
’ for any w inW (5.7a)

w∗ � ‘(Ba Bb p ∧ ¬Bb p)’ (5.7b)

w � p(Bκ φ→ ¬Bκ ¬φ)q for any w inW (5.7c)

The first two conditions are mundane. The last one — seriality — is important because without
it there are worlds for which at least one of the belief-relations is meaningless, in that it causes
a principal to believe everything in these worlds.

58

It turns out that it is impossible to satisfy conditions (5.7) with just the two worlds inW . If we
drop seriality ((5.7c)) we can satisfy (5.7a) and (5.7b), but the meanings of the belief-relations
then become questionable. The problem is not that these conditions are mutually contradictory:
in fact, if we add toW an additional world in which the bit’s value is 1, then all three conditions
can be satisfied. One way of doing this is shown in Figure 5.4. In this example, the bit’s value
happens to be 1 in w∗, and so its value must be 1 in every world that a considers possible at
w∗. a has a false belief about b’s belief about the bit, and so a cannot consider w∗ possible;
therefore, we need an extra world in which the bit’s value is 1 and a’s belief about b’s belief
is true. In general, it seems that this problem comes from principals having false beliefs about
other principals’ beliefs, which causes the belief-relations to interfere with each other if there
are not enough worlds inW .

Bb

Bb

Ba

bit = 0

Ba

Bb bit = 1

bit = 1

w*

Figure 5.4: One way of satisfying conditions (5.7) with an extra world.

The same thing can happen with BSAV . In Section 5.2 and Subsection 5.3.1 we came up with
well-motivated definitions of the local-state sets Li and the environment-state set Le, and it
seems that defining W as La × Lc × Lj × Lk × Le would capture all the interesting possibil-
ities for the protocol application. Nevertheless, if W is finite (which it is if and only if T is
finite), I would expect that there are still sets of reasonable conditions that cannot be satisfied.
This will not be a problem ifW is infinite, but then we get the first problem discussed above.

59

THIS PAGE INTENTIONALLY LEFT BLANK

60

CHAPTER 6:
Conclusion

This thesis has presented a view of security protocols as devices that enable principals to acquire
security-relevant beliefs based on their “technical” knowledge and beliefs (about, e.g., cryptog-
raphy and computer networks), on their assumptions about the meanings of messages and the
names that appear in messages, and on their trust in other principals. We call these beliefs a
protocol’s “required assumptions.”

We found that protocols’ required assumptions are often less about principals than about keys
and names and, in particular, the way names are used. We then quickly discovered that to
understand such assumptions we must make some very subtle distinctions between different
ways of naming, and such distinctions are usually made by philosophers rather than computer
scientists, and certainly not by the average user who encounters TLS most often when shopping
at Amazon. And yet these distinctions can be essential to understanding how a security protocol
is supposed to achieve its goals, as we saw with the example of using OpenID for authentication
(Subsection 4.3.2).

The complexity of some of the required assumptions calls for a formal modal language that can
deal with naming. This, in turn, calls for a meaningful model on which to build a semantics.
We took an initial step toward this, but found problems with modeling belief using Kripke
structures while requiring that the parts of the model representing a principal’s state have a
behavioral interpretation.

6.1 More on NSTIC
We discussed the White House’s “National Strategy for Trusted Identities in Cyberspace”
(NSTIC) in Chapter 1. I claimed that NSTIC’s mechanisms for online identification and au-
thentication are riskier than those they are meant to replace, because they require more trust on
the part of users. Here, I will give an example of this additional trust. (While I was working
on this thesis, Ross Anderson presented a paper ([44]) about similar problems with federated
authentication in general, in which he mentions NSTIC. I highly recommend it to anyone inter-
ested in the practical difficulties with requiring a lot of trust from users.)

There are multiple kinds of trust required by the White House’s mechanisms that are not re-

61

quired by traditional mechanisms, but one of the more important ones occurs in an example
provided by the White House itself in its discussion of the privacy-relevant aspects of its mech-
anisms:

The offline world has structural barriers that preserve individual privacy by limit-
ing information collection, use, and disclosure to a specific context. For example,
consider a driver’s license: an individual can use a driver’s license to open a bank
account, board an airplane, or view an age-restricted movie at the cinema, but the
Department of Motor Vehicles does not know every place that accepts driver’s li-
censes as identification. It is also difficult for the bank, the airport, and the movie
theater to collaborate and link the transactions together. At the same time, there are
aspects of these offline transactions that are not privacy-protective. The movie the-
ater attendant who checks an individual’s driver’s license needs to know only that
the individual is over age 17. But looking at the driver’s license reveals extraneous
information, such as the individual’s address and full date of birth. [1, p. 11]

As they say, the White House’s mechanisms ideally “should preserve the positive privacy bene-
fits of offline transactions while mitigating some of the negative privacy aspects” (ibid.), and of
course they should do the same for the traditional online mechanisms that they replace. How-
ever, while the White House’s mechanisms might be able to limit extraneous information given
to service providers without additional trust requirements (but probably not, although it de-
pends on the details of the mechanism), they will not be able to prevent identity providers like
the DMV from retaining information about the services that users use. They replace a physical
guarantee of privacy with a requirement that the user trusts the identity provider to protect the
user’s privacy by behaving well — specifically, by abiding by the “Fair Information Practice
Principles” (cf. ibid., p. 45).

Something similar will happen when an NSTIC mechanism replaces digital mechanisms like
password-based authentication. Right now, my online bank account is protected with a username-
password pair, and my bank and I know that, if the security mechanisms work, only we can
access that account. But in the NSTIC vision, my bank will depend on an assertion from
an identity provider to authenticate me, and therefore to be satisfied that only I or the bank
will access my account, we must trust the identity provider not to accidentally or deliberately
misidentify someone else as me. (An interesting question is, if someone gets into my account
somehow and steals money from it, how liable are the bank and the identity provider? For more

62

on this theme, cf. [44].)

6.2 Future Work
The most pressing future work is to address the issues with the belief model, discussed at
the end of Chapter 5. We may need to abandon the principle that all parts of a local state
have behavioral interpretations, and represent beliefs directly in local states. This then raises
the question of how to represent beliefs. BAN Logic and Rangan’s method include formulas
from the formal languages in the models, and this, at least on the surface, seems inappropriate.
Whatever approach is taken, the result should be a model with clear criteria for determining
whether it applies to a given real-world situation — in short, it should be meaningful.

In Chapter 4, we did not go far in understanding the differences between the two meanings
of ‘call’; we also did not consider whether there might be other types of names relevant to
security protocols. An interesting future project would be to list all the types of names that
security protocols use, and also to investigate the usefulness of the concepts in the philosophical
literature on naming such as [25], [28], and [29] with regard to understanding the types of names
used in security protocols.

Finally, the ultimate goal would be to present the required assumptions of a representative col-
lection of widely used security protocols, including multiple protocols for a given purpose (e.g.,
authentication). This would be very useful for understanding all the questionable assumptions
we are making without even knowing it whenever we use our computers.

63

THIS PAGE INTENTIONALLY LEFT BLANK

64

REFERENCES

[1] White House, “National strategy for trusted identities in cyberspace,” Apr. 2011. [Online].
Available: http://www.nist.gov/nstic/

[2] E. Maler and D. Reed, “The Venn of identity: Options and issues in federated identity
management,” IEEE Security and Privacy, vol. 6, no. 2, pp. 16–23, Mar.–Apr. 2008.

[3] R. Dhamija and L. Dusseault, “The seven flaws of identity management: Usability and
security challenges,” IEEE Security and Privacy, vol. 6, no. 2, pp. 24–29, Mar.–Apr. 2008.

[4] D. Davidson, “Quotation,” Theory and Decision, vol. 11, no. 1, pp. 27–40, Mar. 1979.

[5] W. V. Quine, Mathematical Logic, Revised Edition. Harvard University Press, 1981.

[6] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi, Reasoning About Knowledge.
MIT Press, 1995.

[7] S. A. Kripke, “Semantical analysis of modal logic I: Normal modal propositional calculi,”
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 9, no. 5–6, pp.
67–96, 1963.

[8] M. Huth and M. Ryan, Logic in Computer Science, 2nd ed. Cambridge University Press,
2004.

[9] J. LaPorte, “Rigid designators,” in The Stanford Encyclopedia of Philosophy,
Summer 2011 ed., E. N. Zalta, Ed., 2011, forthcoming. [Online]. Available:
http://plato.stanford.edu/archives/sum2011/entries/rigid-designators/

[10] A. J. Grove, “Naming and identity in epistemic logic part II: A first-order logic for nam-
ing,” Artificial Intelligence, vol. 74, no. 2, pp. 311–350, Apr. 1995.

[11] R. C. Barcan, “A functional calculus of first order based on strict implication,” The Journal

of Symbolic Logic, vol. 11, no. 1, pp. 1–16, Mar. 1946.

[12] P. V. Rangan, “An axiomatic basis of trust in distributed systems,” in Proceedings of the

1988 IEEE Symposium on Security and Privacy. IEEE Computer Society, Apr. 1988, pp.
204–211.

65

http://www.nist.gov/nstic/
http://plato.stanford.edu/archives/sum2011/entries/rigid-designators/

[13] M. Burrows, M. Abadi, and R. Needham, “A logic of authentication,” Proceedings of the

Royal Society of London A, vol. 426, no. 1871, pp. 233–271, 8 Dec. 1989, a preliminary
version appeared in February 1989 as Research Report 39, DEC Systems Research Center,
Palo Alto, CA.

[14] L. E. Moser, “A logic of knowledge and belief for reasoning about computer security,” in
Proceedings of Computer Security Foundations Workshop II. IEEE Computer Society,
Jun. 1989, pp. 57–63.

[15] M. Burrows, M. Abadi, and R. Needham, “A logic of authentication,” in Proceedings of

the Twelfth ACM Symposium on Operating Systems Principles (SOSP ’89). ACM, Nov.
1989, pp. 1–13, also published as [30].

[16] ——, “A logic of authentication,” ACM Transactions on Computer Systems, vol. 8, no. 1,
pp. 18–36, Feb. 1990.

[17] L. Gong, R. Needham, and R. Yahalom, “Reasoning about belief in cryptographic proto-
cols,” in Proceedings of the 1990 IEEE Symposium on Research in Security and Privacy.
IEEE Computer Society, May 1990, pp. 234–248.

[18] R. Kailar and V. D. Gligor, “On belief evolution in authentication protocols,” in Proceed-

ings of Computer Security Foundations Workshop IV. IEEE Computer Society, Jun. 1991,
pp. 103–116.

[19] M. Abadi and M. R. Tuttle, “A semantics for a logic of authentication (extended abstract),”
in Proceedings of the Tenth Annual ACM Symposium on Principles of Distributed Com-

puting (PODC ’91). ACM, Aug. 1991, pp. 201–216.

[20] R. Yahalom, B. Klein, and T. Beth, “Trust relationships in secure systems - a distributed
authentication perspective,” in Proceedings of the 1993 IEEE Symposium on Research in

Security and Privacy. IEEE Computer Society, May 1993, pp. 150–164.

[21] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust management,” in Proceedings

of the 1996 IEEE Symposium on Security and Privacy. IEEE Computer Society, May
1996, pp. 164–173.

[22] N. Li, J. C. Mitchell, and W. H. Winsborough, “Design of a role-based trust-management
framework,” in Proceedings of the 2002 IEEE Symposium on Security and Privacy. IEEE
Computer Society, 2002, pp. 114–130.

66

[23] J. D. Guttman, F. J. Thayer Fábrega, J. A. Carlson, J. C. Herzog, J. D. Ramsdell, and
B. T. Sniffen, “Trust management in strand spaces: A rely-guarantee method,” in Pro-

gramming Languages and Systems, ser. Lecture Notes in Computer Science, D. Schmidt,
Ed. Springer Berlin / Heidelberg, 2004, vol. 2986, pp. 325–339.

[24] A. W. Appel and E. W. Felten, “Proof-carrying authentication,” in Proceedings of the 6th

ACM Conference on Computer and Communications Security (CCS ’99). ACM, 1999,
pp. 52–62.

[25] G. Frege, “Über sinn und bedeutung,” Zeitschrift für Philosophie und philosophische Kri-

tik, vol. 100, pp. 25–50, 1892, English translation by Max Black as “Sense and Reference”,
The Philosophical Review, vol. 57, no. 3, pp. 209–230, 1948.

[26] W. V. Quine, “Notes on existence and necessity,” The Journal of Philosophy, vol. 40, no. 5,
pp. 113–127, 4 Mar. 1943.

[27] ——, “The problem of interpreting modal logic,” The Journal of Symbolic Logic, vol. 12,
no. 2, pp. 43–48, Jun. 1947.

[28] ——, “Quantifiers and propositional attitudes,” The Journal of Philosophy, vol. 53, no. 5,
pp. 177–187, 1 Mar. 1956.

[29] D. Kaplan, “Quantifying in,” Synthese, vol. 19, no. 1–2, pp. 178–214, Dec. 1968.

[30] M. Burrows, M. Abadi, and R. Needham, “A logic of authentication,” SIGOPS Operating

Systems Review, vol. 23, no. 5, pp. 1–13, Dec. 1989, also published as [15].

[31] E. Snekkenes, “Exploring the BAN approach to protocol analysis,” in Proceedings of the

1991 IEEE Symposium on Research in Security and Privacy. IEEE Computer Society,
May 1991, pp. 171–181.

[32] P. Syverson, “The use of logic in the analysis of cryptographic protocols,” in Proceedings

of the 1991 IEEE Symposium on Research in Security and Privacy. IEEE Computer
Society, May 1991, pp. 156–170.

[33] J. Steiner, C. Neuman, and J. I. Schiller, “Kerberos: An authentication service for open
network systems,” in USENIX Winter 1988 Technical Conference. USENIX Association,
1988.

67

[34] C. M. Ellison, “SPKI requirements,” RFC 2692 (Experimental), Sep. 1999. [Online].
Available: http://www.rfc-editor.org/rfc/rfc2692.txt

[35] C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen,
“SPKI certificate theory,” RFC 2693 (Experimental), Sep. 1999. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc2693.txt

[36] International Telecommunication Union, “Information technology — open systems
interconnection — the directory: Authentication framework,” ITU-T Recommendation
X.509, Aug. 1997. [Online]. Available: http://www.itu.int/rec/T-REC-X.509

[37] A. J. Grove and J. Y. Halpern, “Naming and identity in epistemic logics part I: The propo-
sitional case,” Journal of Logic and Computation, vol. 3, no. 4, pp. 345–378, Aug. 1993.

[38] D. Lewis, “Attitudes de dicto and de se,” The Philosophical Review, vol. 88, no. 4, pp.
513–543, Oct. 1979.

[39] Y. Lesperance, “A formal account of self knowledge and action,” in Proceedings of the

11th International Joint Conference on Artificial Intelligence, vol. 2. The International
Joint Conferences on Artificial Intelligence, Inc., 1989, pp. 868–874.

[40] F. J. Thayer Fábrega, J. C. Herzog, and J. D. Guttman, “Strand spaces: Proving security
protocols correct,” Journal of Computer Security, vol. 7, no. 2–3, pp. 191–230, 1999.

[41] OpenID Foundation, “OpenID Authentication 2.0 - final,” Dec. 2007, the specifications
for the other parts of OpenID are at http://openid.net/developers/specs/. [Online].
Available: http://openid.net/specs/openid-authentication-2 0.html

[42] D. Hardt, J. Bufu, and J. Hoyt, “OpenID Attribute Exchange 1.0 - final,” Dec. 2007.
[Online]. Available: http://openid.net/specs/openid-attribute-exchange-1 0.html

[43] E. Rescorla, “Diffie-Hellman key agreement method,” RFC 2631, Jun. 1999. [Online].
Available: http://www.rfc-editor.org/rfc/rfc2631.txt

[44] R. Anderson, “Can we fix the security economics of federated authentication?” 28 Mar.
2011, presented at the Nineteenth International Workshop on Security Protocols in Cam-
bridge, England.

68

http://www.rfc-editor.org/rfc/rfc2692.txt
http://www.rfc-editor.org/rfc/rfc2693.txt
http://www.itu.int/rec/T-REC-X.509
http://openid.net/developers/specs/
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://www.rfc-editor.org/rfc/rfc2631.txt

Referenced Authors

Abadi, Martı́n 17, 19, 21, 66, 67

Anderson, Ross 61, 62

Appel, Andrew W. 17, 22

Barcan, Ruth C. 14, 17

Beth, Thomas 17, 21

Blaze, Matt 17

Bufu, Johnny 36

Burrows, Michael 17, 19, 66, 67

Carlson, Jay A. 17

Davidson, Donald 4

Dhamija, Rachna 1

Dusseault, Lisa 1

Ellison, Carl M. 23

Fagin, Ronald 7, 10, 17

Feigenbaum, Joan 17

Felten, Edward W. 17, 22

Frantz, Bill 23

Frege, Gottlob 17, 24, 41, 63

Gligor, Virgil D. 17, 19

Gong, Li 17, 19

Grove, Adam J. 13, 15, 17, 25,

27, 50

Guttman, Joshua D. 17, 31

Halpern, Joseph Y. 7, 10, 17, 25

Hardt, Dick 36

Herzog, Jonathan C. 17, 31

Hoyt, Josh 36

Huth, Michael 10

International

Telecommunication Union 23

Kailar, Rajashekar 17, 19

Kaplan, David 17, 40–42, 63

Klein, Birgit 17, 21

Kripke, Saul A. 8

Lacy, Jack 17

Lampson, Butler 23

LaPorte, Joseph 12

Lesperance, Yves 26

Lewis, David 26

Li, Ninghui 17

Maler, Eve 1

Mitchell, John C. 17

Moser, Louise E. 17

Moses, Yoram 7, 10, 17

Needham, Roger 17, 19, 66, 67

Neuman, Clifford 21

OpenID Foundation 36

Quine, Willard V. 4, 17, 24, 41,

63

Ramsdell, John D. 17

Rangan, P. Venkat 17, 18

Reed, Drummond 1

Rescorla, Eric 37

Rivest, Ron 23

Ryan, Mark 10

Schiller, Jeffrey I. 21

Snekkenes, Einar 19

Sniffen, Brian T. 17

Steiner, Jennifer 21

Syverson, Paul 19, 31, 46

Thayer Fábrega, F. Javier 17, 31

Thomas, Brian 23

Tuttle, Mark R. 17, 19, 21

Vardi, Moshe Y. 7, 10, 17

White House 1, 62

Winsborough, William H. 17

Yahalom, Raphael 17, 19, 21

Ylonen, Tatu 23

69

THIS PAGE INTENTIONALLY LEFT BLANK

70

Initial Distribution List

1. Defense Technical Information Center
Fort Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Prof. Bret Michael
Naval Postgraduate School
Monterey, California

4. Prof. George Dinolt
Naval Postgraduate School
Monterey, California

5. Dr. Paul Syverson
Naval Research Laboratory
Washington, District of Columbia

6. Prof. Joshua Guttman
Worcester Polytechnic Institute
Worcester, Massachusetts

7. Dr. Ed Zieglar
National Security Agency
Fort Meade, Maryland

8. Prof. Duminda Wijesekera
George Mason University
Fairfax, Virginia

71

	Introduction
	Beliefs in Security Protocols
	Structure of the Thesis
	Attributing Belief to Participants
	Notation

	Background
	Multi-Agent Systems
	Modeling Belief with Modal Logic
	Quantified Modal Logic of Belief

	Literature Review
	Rangan's ``Axiomatic Basis of Trust''
	BAN Logic
	Yahalom, Klein, and Beth's ``Trust Relationships''
	Appel and Felten's ``Proof-carrying Authentication''
	Kaplan's ``Quantifying In''
	Grove's Logic

	Survey of Beliefs in Security Protocols
	General Model of Security Protocols' Goals
	Message Authentication with Digital Signatures
	OpenID
	Anonymous Adulthood Verification
	Discussion

	Toward a Mathematical Model
	A Running Example: SimpleAdultVerify
	Modeling Actions
	Modeling Beliefs

	Conclusion
	More on NSTIC
	Future Work

	References
	Initial Distribution List

