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ABSTRACT 

This thesis investigates implementing Discrete Event Simulation (DES) concepts using 

Simkit packages into a High-Level Architecture (HLA)-networked simulation, thus 

addressing sustainability of the HLA methodology into the future. Through the DES 

concept of predicting and anticipating the time of when events will occur, redundant and 

excessive exchange of common data, like position and sensory status, can be removed. 

This DES implementation considerably reduces the network load and removes data 

processing incompatibility between simulations. 

A design involving several concepts of DES and HLA simulation led to the 

creation of a Simkit based application library. Interfacing this application library with 

two DES models demonstrated and proved the feasibility of DES concepts in HLA-

networked simulations. A generic combat scenario modeled using this methodology, 

successfully showed the intended advantages of the thesis. The ease of linking non-DES 

and non-HLA simulations to an HLA environment was enhanced using a common set of 

interfaces built based on the resulting application library. Through a simple comparison 

with traditional time-stepped real-time simulation of the same scenario configuration, it 

was shown that data exchange between simulations was reduced by several orders of 

magnitude. This freed a substantial amount of network resources to perform other tasks, 

hence, improving network performance. 
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I. INTRODUCTION 

A. OVERVIEW 

Since the evolution of networked simulation, performing joint simulation training 

involving multiple virtual environment simulators has been feasible. Major players of the 

simulation industry have been researching and providing multiple network solutions to 

enable networked simulation training. These solutions created a hidden problem of 

interoperability identified in the early 1980s by the software standards community. The 

community believed that, as networked simulation technology matured and stabilized; 

there would be a need for a common standardization of data exchange across different 

simulation products from different industries and companies. This resulted in the creation 

of Distributed Interactive Simulation (DIS) in the late 1980s and, subsequently, High-

Level Architecture (HLA) in the mid-1990s. 

Although HLA has proven successful in many simulator implementations and 

designs, network performance, minimizing the amount of data exchanged and time 

synchronization are still topics of discussion and exploration. Improving network 

performance and reducing data exchange while maintaining equivalent, if not better, 

efficiency of a networked simulator has never diminished. As the size of networked 

simulators grows and data exchanged increases, network performance and reduction of 

data exchange have become crucial issues. 

In the current simulation industry, DIS and HLA are the common architectures 

used to enable interoperability and networking of multiple simulators for joint and cross-

domain simulation training. Neither DIS nor HLA have been able to fully replace 

customized data exchange format and architecture as the only method for networked 

simulation data exchange. However there is a trend of increasing utilization of these 

standards, especially HLA. The requirement for HLA compliance in new military 

simulation products has been in part responsible for this tendency. With new simulators 

becoming HLA-compliant, obsolescence of existing simulators and proprietary non-

HLA-compliant simulators have created a dilemma; in deciding between disposing of 
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these simulators versus incurring developmental cost to upgrade them to be HLA 

enabled. In addition, some simulator developers have used different semantic and 

syntactic interpretations of the data fields in the standardized Object Model Template 

(OMT) and customized the Federation Object Model (FOM) in their HLA. This poses 

major integration and standards compliance difficulties when performing networked 

simulation between these simulator systems. 

Several studies [1], [2] have explored leveraging the characteristics of event 

agents and discrete events in simulation to reduce excessive data exchange in time-

stepped simulations. These studies aimed to reduce semantic and syntactic error in data 

exchange and reduce the volume data exchanged while retaining simulation fidelity. The 

usage of Discrete Event Simulation (DES), in particular Simkit, in HLA-networked 

simulation has not been explored extensively. 

Dead reckoning algorithm has been implemented, traditionally, to overcome 

occurrence of update messages lost due to network latency or unreliable network 

transport protocol. The dead reckoning algorithm extrapolates or interpolates update 

points using last know data to justify these lost of data. They, however, have not been 

implemented extensively to a greater extent to provide higher fidelity and achieve better 

network bandwidth utilization. 

B. OBJECTIVES 

This thesis study was motivated by the vision of these problems escalating the 

increased possibility of crucial integration and implementation difficulties in HLA-

networked simulation. The main purpose of this study is to evaluate and to implement the 

concepts of DES into an HLA-networked environment with the use of Simkit [4], [15]. A 

Simkit application library for enabling HLA compliance and network data exchange 

reduction are the targeted results of this study. The thesis study also aims to address 

several of the emerging problems in the growing trend of HLA-networked environment 

simulation. 
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1. Excessive Data Exchange 

A characteristic behavior of time step simulation used in conventional HLA 

simulation is the constant update rate of simulation information onto the network. The 

amount of data exchanged could be trivial when the number of entities or components 

simulated is small. More simulated entities and simulator participants in the HLA 

network environment increases the amount of data exchanged. This can eventually result 

in degradation of data processing performance in participating simulators [25] and 

increasing data exchange error. 

2. Network Latency 

The volume of data exchanged and physical distance between simulator 

participants is a crucial factor to networked simulation performance. If timely data is 

important in maintaining a synchronized and smooth simulation display or representation, 

increasing network latency and delay due to heavy network traffic and propagation delay 

caused by greater distance is a destructive factor in the networked simulation. 

3. Simulation Synchronization 

A time-synchronized distributed simulation must maintain a shared simulation 

clock time; this is a difficult task when there are many simulation participants. This is 

especially obvious when each simulator has different data processing power and 

simulation update frequency. This often results in jittering in displaying simulated entities 

and inaccurate combat results, when data updates are not received in a timely manner and 

dead reckoning algorithm are not implemented to handle this lapse. In the event that 

conventional dead reckoning algorithms are implemented, conservative and incorrect 

implementation still poses difficulties during integration effort. 

The above problems prove to be major obstacles in HLA-networked simulation 

that cause obsolesce of older simulators and reduce the flexibility of HLA network 

simulation and training. These problems have also been the biggest obstacle when 

networking simulators using HLA. The resulting Simkit application library of this thesis 
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study intends to resolve, if not improve, the problem of excessive data exchange, 

increasing network latency, and synchronization issues through the usage of DES 

concepts in dead reckoning algorithm and event-driven simulation. An encapsulated 

implementation of HLA rules, DES as a replacement of conventional dead reckoning 

algorithms, and a series of common interfaces aims to standardize HLA compliancy and 

data interpretation without the need to understand these rules or algorithms in details. 

C. THESIS ORGANIZATION 

The thesis provides, in Chapter I, an overview of the emerging problems of HLA 

network simulation in the simulation industry and the objectives of this thesis. The basic 

understandings of the concepts of HLA, DES, and Simkit are illustrated in Chapter II. 

Subsequently, Chapter III shall explain in detail the design and methodology of the 

simulation architecture to be used in conjunction with existing simulation products. 

Chapter IV lists the components of the Simkit application library that caters to common 

simulation features and requirements. The suggested customization to HLA FOM and 

possible rule changes will be described in more details in Chapter V. Lastly, Chapters VI 

and VII detail the test and analysis of the improvements achieved using the 

implementation and recommended future improvements, respectively. 
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II. BACKGROUND 

Understanding the basic concepts and methodology of Discrete Event Simulation 

(DES) and High-Level Architecture (HLA), which form the fundamentals of this thesis, 

are required before performing any design. This chapter will explain the characteristics 

and methodologies used in the design of the Simkit application library. These 

methodologies mainly focus on enabling HLA compliancy in Simkit and reducing data 

interaction within the domain of movement and detecting sensor information. 

A. DISCRETE EVENT SIMULATION 

Discrete Event Simulation describes an event-oriented methodology of simulation 

where events may happen at any time. The operation of the system is represented as a 

chronological sequence of events. Each event occurs at an instant in time and marks a 

change of state in the system [3]. During this instant of time, processes involved in the 

event execution are performed and resulting events from these executions are also 

scheduled into the event list. 

With this characteristic, logical time of simulation is being advanced in an uneven 

manner instead of the usual regular time duration in a time step simulation. This next 

point of state change, commonly termed as Next Event, is referenced from an event list. 

The main purpose of this event list, Future Event List (FEL), is to hold and manage 

pending events, where future scheduled events are ordered chronologically according to 

time occurrence [4]. This provides a good indication of length in time that a simulation 

can be advanced safely to the next point of change. Since events are scheduled into the 

future and time advancement is discrete and immediate, this provides an “as-fast-as-

possible” manner of simulation execution. 

1. Next Event Algorithm 

To effectively create and design DES models, understanding the next event 

algorithm is critical. Implementing this mechanism properly would allow the proper 
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management of scheduled events and advancing time. Figure 1 shows the implementation 

logic of this algorithm in the form of a state chart diagram [4]. 

 

Figure 1.   Next Event Algorithm (From [4]) 

The sequence of activities for the next event algorithm begins with the scheduling 

of initial events to trigger the initialization of all related variables, parameters, and 

scheduling of subsequent events. This leads to the start of the iterative process with the 

check of the FEL. The decision to either proceed to stop the simulation or proceed to 

jump to the next scheduled event time is based on the availability of next scheduled 

events on the FEL. Upon advancing simulation time to the next earliest event time 

instance, the events are removed from the FEL and execution of the state transition is 

performed. Finally, new events forecasted are inserted into the FEL and events that turn 

invalid are removed from the FEL. The main characteristic of this event algorithm with 

the use of the FEL consists of the flexibility of insertion, removal and maintenance of 

events in the correct chronological sequence pending checks, and execution. 

2. Equation of Motion  

The characteristics of DES are the principles of scheduling events and 

information changes into the future. This enables knowledge of the next time of event or 



 7

state change. In conventional time step simulation, information of the location of an 

object in motion is always changing and in constant update. The simple movement model 

resolves this complexity through the notion of an implicit state of motion [5]. The 

implicit state of motion defines a state that is not an instance variable with its information 

explicitly stored in every turn of update. Relevant information, however, is computed 

based on an “On-Demand” approach. Although complex equations of motion may be 

considered, this thesis will only utilize the simplest form which describes linear motion 

Motion of an object or entity has a linear behavior regardless of distance. The 

basic linear movement of the object is uniform and can be described with primary 

information of moving from a starting location, ( , , )o o ox y z , towards a direction described 

by a velocity vector,
( , , )x y zv v v

. Hence, the position of the object in motion till time 

interval,   – ot t
, can easily be computed by applying the equation of motion and 

determining the distance travelled during this time interval. 

 

( )

( )

( )

t o x o

t o y o

t o z o

X x v t t

Y y v t t

Z z v t t

  
  

  
 

Figure 2.   Equation of motion for computation of location (Xt , Yt , Zt) 

This model depicts the simple relationship of distance, velocity, and time, which 

are the main components of motion. Utilizing the same equation of motion, however, 

( )ot t  

( , , )t t tX Y Z  
( , , ),o o ox y z velocity  
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modeling of the acceleration component can be easily incorporated as well through 

modeling the change behavior of velocity and direction. It will not affect the main 

concept of compute “On Demand,” which affects velocity. This can be forecasted with 

this dead reckoning algorithm with respect to time. 

3. Detection Model 

When simulating combat models, besides modeling the movement of entities and 

objects, sensor detection modeling is the next required aspect of simulation. The simple 

detection model [5] that this thesis uses depicts several important points of events 

throughout the whole detection process to describe this sensor detection and entity 

movement interaction. 

 

Figure 3.   Basic movement and Cookie-Cutter Sensor detection model (After [5]) 

As a simple example of this movement and detection model, Figure 3 shows the 

scenario of a stationary sensor representing an air defense sensor with a target moving in 

a linear path through the sensor detection range. The model classifies the detection into 

two regions that represent the realistic situation of the air defense sensor detection 

process. A target begins movement from point of origin and moves into the sensor 

maximum range of detection. Depending on the sensor capabilities, a confirmed detection 
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or tracking range is shorter. If no change of action is carried out, there is a high 

possibility the sensor would lose track of the target and, subsequently, the target would 

exit the sensor maximum range. 

In alignment with DES concepts, these events of movement to enter range, 

detection, undetection, and eventual exit range, could be computed and scheduled in 

advance into the event list. These events in turn prove useful to perform other events, 

such as alert upon entering range, engaging target when detected, reducing weapon 

effectiveness when tracking is lost, and reducing alert status when target exits range of 

defense. Although many variations of a scenario exist, these situations are all possible 

components of a combat operation scenario and can be simulated. 

  

Figure 4.   Detection equation (From [5]) 

Using the detection equation [5] provides the computation of time, t, which 

includes time to detection, tD, and exit detection, tE. With the provided start point of target 

movement, x, and movement velocity, v, varying the range of the sensor, R, would enable 

the same calculation at the two regions of range and detection perimeter. Using these 

timings, the respective events are subsequently scheduled into the FEL during simulation 

for processing to trigger other state changes. 
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B. HIGH-LEVEL ARCHITECTURE 

The High-Level Architecture (HLA) was developed by the Defense Modeling and 

Simulation Office (DMSO) of the US Department of Defense (DoD) to meet the needs of 

defense-related projects [6]. Through its HLA initiative, the DMSO intends to address the 

continuing need for interoperability between new and existing simulations. DMSO hopes 

to achieve this by providing a common technical framework and a standardized 

architecture for interoperability and enhance of the reusability of common modeling and 

simulation components. 

1. HLA Concept 

The main difference between DIS and HLA is the implementation of the HLA 

concept that did not standardize the format in which information is exchanged (as with 

DIS), but only interfaces and services among simulation applications. The HLA concept 

consists of three parts. These are a set of HLA simulation rules that govern the 

characteristics of HLA-compliant simulations, an object modeling scheme, and an 

interface specification. The set of ten HLA rules indicates the common guidelines that a 

system has to follow for creation and management of Federation and Federates. Adhering 

to these rules makes a simulation system HLA-compliant. 

The HLA paradigm requires the implementation of the concepts of Federation and 

Federates. The Federation refers to the overall simulation environment, and its 

participating members are identified as Federates. These Federates join the Federation to 

exchange information according to a common Federation Object Model (FOM) which is 

designed in accordance to the Object Model Template (OMT) defined in the IEEE 1516 

standards [7]. 

The FOM is a consolidated list of types of objects and their attribute values that 

are exchanged within a Federation. The FOM specifies the objects and attributes that 

Federates can publish and subscribe and allows data exchange in a controlled and 

standardized manner. Federates, however, are not required to simulate and provide 

information for all object formats indicated in the FOM. A Simulation Object Model 
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(SOM) residing in each individual Federate serves the purpose in specifying the types of 

information that the individual Federate is interested in receiving and the types of 

information that it would provide to the Federation. 

 

Figure 5.   Federations in execution (From [6]) 

After creating Federations and Federates, an interface is required to provide the 

medium for data exchange. The Run-Time Infrastructure (RTI) provides the required 

interface specifications that the software environment needs to exchange information in a 

coordinated fashion [8]. Federates in the Federation must communicate with each other 

via the RTI. Figure 6 shows the basic communication channels between the Federate and 

the RTI. The RTI ambassador provides the interface for a Federate to send information to 

the Federation. The implementation of standardized callback services in the Federate 

ambassador allows the Federate to receive the corresponding information and, 

subsequently, process the information internally in the Federate. 
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Figure 6.   Communication channels between the Federate and the RTI (After [6)) 

2. Declaration and Management Object Models 

The IEEE 1516 standards [7] define several management designs that are required 

to enable ease of HLA simulation. Two of the primary services that require 

implementation are the Declaration Management service and the Management Object 

Models (MOM). The HLA MOM concept implies that a Federation execution can be 

managed by a combination of Federate and RTI supplied information. Specifically, it 

consists of a set of predefined object and interaction classes that provides a manager 

Federate with the capability to monitor and control aspects of the Federation using the 

standard RTI run-time services [9], [10]. 

The major concepts involved in the implementation of the MOM service are the 

common interface of publishing, subscribing and registering of objects, data formats, and 

interactions. The publishing process declares the data types specified in the SOM of the 

Federate to the Federation. This informs the RTI of the type of data formats and 

interactions that the particular Federate is capable of producing and provides updates. On 

the receiving end of this MOM service is the interface of subscription, where the Federate 

indicates the data format and interactions that are of interest to the applications within the 

Federate. This interaction of publish and subscribe provides the baseline and partial 

controlling factors to entity data exchange. 
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Upon simulation execution, the declaration of these data types for communication 

follows the creation, updating, and deletion of objects and interaction. These actions are 

achieved using the standardized API calls in the RTI and Federation ambassadors. The 

registerObjectInstance() function call announces to the RTI the existence of the entity 

object within the simulated Federation. At this instance, the RTI would inform all 

Federates that indicated their interest in this object type during the subscription process, 

of the creation of this entity object through the callback discoverObjectInstance(). This 

forms a continuous process of registering and discovering of the entity object within the 

Federation for a common picture of simulation. 

 

Figure 7.   Registration and discovery process of entity object 

Attribute changes and updates of these object instances are interfaced with 

updateAttributeValues() for sending updates and reflectAttributesValues() for receiving 

changes. HLA interactions, which are events, have similar interfacing functions 

sendInteractions() and receiveInteractions() for sending and receiving, respectively. 

Lastly, deleteObjectInstance() removes the object instances that are invalid or destroyed 

in the simulation arena. The MOM forms the controlling agent in information exchange 

for HLA simulation. 

Federate A Federate B

RTI

registerObjectInstance() 
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3. Time Management 

The HLA Time Management (HLA-TM) is concerned with the mechanisms for 

controlling the advancement of time during the execution of a Federation. Time 

advancement mechanisms must be coordinated with other mechanisms responsible for 

delivering information, e.g., to ensure messages are not delivered in the past of the logical 

time of a Federate [11]. This service has the main purpose to support interoperability 

among Federates utilizing different internal time management mechanisms [12]. 

To implement these time management services, two aspects of the Federation 

execution must be considered: the transport for delivery of messages, and the type of time 

advance service to be used. The message transport type chosen is based on cost, network 

performance, and bandwidth consumption characteristics. Time advance mechanism is 

chosen based on the characteristics of the simulation and will determine the control 

measures used in Federate time advance. 

a. Transportation Services 

The different transport services are categorized based on two 

characteristics: the reliability of message delivery and message ordering. The reliability 

of message delivery refers to delivery by the RTI through retransmission or best effort 

delivery. This is a tradeoff between network latency and jitter versus probability of 

successful delivery of the message. Message ordering in HLA consists of five types of 

delivery mechanisms: receive, priority, causal, totally ordered, and time stamp ordered. 

The type of mechanism used in a simulation depends on the type of message required for 

the simulation execution. 

Receive Order is the most direct and lowest latency ordering mechanism. 

Messages are passed to the Federate in the order that they were received. The incoming 

messages are placed at the end of a first-in-first-out (FIFO) queue, which, subsequently, 

is sent to the Federate by removing them from the front of the queue. This message order 

type is usually used by hard real time simulation [12]. Priority Order stores the messages 

in a priority queue, where the time stamp denotes the priority of the messages. Messages 
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with order of the smallest time stamp are sent to Federate first. Thus, this mechanism 

does not prevent messages from reaching in the ‘past’ of the Federate. Causal Order is a 

more complicated mechanism where messages are sent in both order of time and in order 

of occurrence. For example, if message A is indicated to happen before message B, even 

when message B is received by the RTI first with a smaller time stamp, the RTI will hold 

message B in its buffer and wait for an instance of message A before sending message B. 

This is a more stringent method of implementing message order. 

Lastly, the Time Stamp Order (TSO) is the mechanism used commonly in 

DES. A message sent to the RTI requires a time indication of when the event or update 

occurs along the logical time of the Federate execution. The RTI will store all of the 

messages in its buffer and only send the messages when it can be sure that there will be 

no messages delivered to the RTI subsequently that contain a smaller time stamp order. 

The RTI ensures this condition through the time advancing service described in the next 

section. One of the characteristics of the TSO, when handling messages with the same 

time stamp, is that they would be delivered to the Federate in the same order that they 

were received. This provides an implicit ordering of messages. 

b. Time Advancing Services 

Time Advancing services requires an HLA execution to be either time 

constrained, time regulating, or both. If a Federate is defined to be time constrained, it is 

able to receive TSO messages and is limited by the time advancement of other Federates. 

Time regulating characterizes a Federate to be able to send TSO messages and 

determines the logical time of other Federates. Figure 8 shows the definitions of a 

regulating Federate and a constrained Federate. 
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Figure 8.   Two-axis diagram of TSO Events (From [13]) 

A regulating Federate has to deliver TSO messages with a time stamp 

equal to or larger than the Lower Bound Time Stamp (LBTS). This LBTS typically is the 

current logical time of the regulating Federate with addition of a Lookahead time. The 

Lookahead time serves the purpose of ensuring that TSO messages forwarded do not lag 

behind the logical time of the constrained Federate, i.e., constrained Federate will not 

receive TSO messages of the ‘past.’ 

To maintain this implementation of time advancing with time regulating 

and time constrained, the regulating Federate uses the HLA function call, 

timeAdvanceRequest() and nextEventRequest() to request for a time advancing grant. 

Once a Federate evokes either of these two messages, it guarantees that no TSO messages 

with time stamp less than the LBTS would be sent. The RTI subsequently makes the 

decision of sending a timeAdvanceGrant() message to allow the regulating Federate to 

advance time to the logical time stamp indicated in the grant. This process of request and 

grant provides a controlled time advancement environment. 

A good example that demonstrates this process is extracted from HLA 

Time Management Design Document [12]. Using a wall clock time to synchronize the 

LBTS enables a coordinated time advancing and message exchange process. The 
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important concept depicted in this example is the interaction of message exchange when 

the interfaces, sendInteraction() and nextEventRequest(), are invoked. It shows that after 

the event-driven Federate processes all local messages and events, it sends interaction 

updates with time stamp 40 and announces the next local event time with a time stamp of 

42. 

 

Figure 9.   Event-driven Federate using TSO time management (From [12]) 

The RTI holds all TSO messages in its buffer until the LBTS advances beyond the time 

stamp of 40. At the point of LBTS at 41, the RTI forwards all relevant messages with 

time stamp smaller than the LBTS and grants time advancement to logical time 40. A 

resend of nextEventRequest() with time stamp 42 was made to request time advancement 

to the intended logical time. 
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C. SIMKIT 

Simkit is an application library written in Java that harnesses the methodology of 

event graphs and discrete event scheduling paradigm. Its main objective is to enable ease 

of designing and creating discrete event-driven simulation as an open source toolkit. In 

this section of the thesis, the basic concepts of event graph paradigm, the Basic Linear 

Mover and Cookie Cutter sensor library classes are explained to provide foundation 

knowledge on the use of these classes in the design that follows in this thesis. 

1. Event Graph Methodology 

Event graph methodology is an attempt to use graphical means to explain the 

states and transitions of a DES model. This graphical representation is simple in nature 

and its expression strongly reflects the event-driven nature of event-oriented systems. The 

strength of its simplicity has tremendous value in enabling ease of analysis, especially in 

perceiving the sophistication of event-scheduling approaches in discrete-event system 

simulation [14]. A common event graph transition depicted in Figure 10 shows the 

transition from an event A to an event B on the condition of C. Thus, event B is 

scheduled into the future of the event list with delay t in time. The event graph also 

provides the information that an argument k is being passed to event B on the scheduling 

edge of the transition. 

 

Figure 10.   Common event graph transition with t delay and condition C (After [14]) 
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The event graph methodology is closely related to coding convention in Simkit. 

Every component of the overall event graph represents a Java class in the DES model and 

an event in the component is related to a function call with “do” appended in front of the 

function name as the usual naming convention. Using Figure 10 as an example event 

graph will yield a series of java code states as follows. 

 

Figure 11.   Simkit java coding convention example 

Another feature in the Simkit application library is the event listener and adapter 

mechanism. This mechanism provides the interface that links two separate components 

together. Each component in Simkit has an independent set of event-graph logic. The 

triggering of events within a component can cause dependency by other components in 

such a way that a system event occurring in a source component triggers the execution of 

the same kind of event in another dependent or listening component. This is the 

underlying concept of the listener mechanism in which there is an event-source 

component, an event-listener component, and a line that connects the two with a 

stethoscope symbol on the source end [15]. 

 

Figure 12.   Event listener mechanism (After [4]) 

public void doA() 
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public void doB(k) {…} 
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The event adapter is the more specific version of the event listener mechanism. 

The event listener allows the source component to trigger all dependency events in the 

listening component as long as events are of the same type and format. The event adapter 

allows a more deliberate listening of specific type of event. An event B in component X 

would be able to trigger an event C in the component Y as depicted in Figure 13, which 

shows the event graph annotation of an adaptor interface. With the use of the event 

adapter, Event B in component Y would not be executed unlike previous case depicted in 

Figure 12. This provides a more controlled manner of utilization of the listening 

mechanism to adhere to strict conformity of events. The adapter mechanism is useful 

when not all event types in the listening component intend to be dependent on the source 

component for activation. 

 

Figure 13.   Event adapter mechanism (After [4]) 

2. Basic Linear Mover 

As explained in the sections of equation of motion and detection model in the 

beginning of this chapter, it is more efficient to model linear and uniform movement of 

an object through forecasting the ending location of the object into the future. The Simple 

Movement and Detection (SMD) part of the Simkit library consists of the Basic Linear 

Mover component, intended to allow easier modeling of the movement of simulated 

objects by utilizing the equation of motion to describe the future location of the object. 

The basic linear mover component of Simkit uses a simple event graph to initialize the 
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start of movement and end of movement. The “Start Move” event indicates the beginning 

of the movement which records all initial parameters and conditions. The “End Move” 

event marks the completion of the linear movement and flags awareness in possible 

changes of parameters in the movement of the object. With starting and ending points, the 

component determines the required time to travel between the two points. Hence, the end 

of movement event could be scheduled into the future with the computed movement time, 

tM, as delay. Current location of the object along the time of movement can be computed 

and returned for the purpose of display or other activities. 

 

Figure 14.   Basic Linear Mover component event graph (From [5]) 

As an extension in modeling the motion of object with Simkit, the Basic Linear 

Mover component can be used in conjunction with the various mover managers: Path 

Mover Manager, Patrol Mover Manager, and Random Mover Manager. These mover 

managers aim to model movement characteristic of pre-defined path, patrolling 

movement in a recursive manner, and a randomized destination movement pattern, 

respectively. 
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III. ARCHITECTURE DESIGN 

Following an initial detailed research of the basic concepts in High-Level 

Architecture (HLA) and Discrete Event Simulation (DES), the overall architectural 

design of the intended resulting application library was researched as to applicability to 

meet the identified objectives. As a review of the objectives, the resulting design aims to 

fulfill three objectives: reducing excessive data exchange, decreasing the effects of 

network latency in simulation, and compatibility adaptation of simulator with different 

capability to perform synchronized HLA simulation. The aim of having the ability to 

implement HLA in a fast, simple, and accurate manner, without the need to understand its 

rules in details, was placed as one of the objectives of the architecture design. This is to 

relieve simulation developers from a lengthy and tedious process when developing an 

HLA simulation from the beginning.  

Having these objectives in mind, there are a total of two approaches to implement 

and to use the proposed architecture design of the resulting application library. The 

application library is designed with the intention to serve as a gateway between the 

simulators, regardless of HLA compliancy, simulation engine1 performance or simulation 

type2. The simulation engine (SimEngine) is in charge of implementing the application 

library and the various interfaces to enable the operability of this architecture.  

A. NONHLA-COMPLIANT SIMULATORS 

Through a detailed research on the current problems in HLA-networked 

simulation, the complex interfaces and required standardization of HLA rules deters 

simulator developers from implementing the HLA standards or implementation with full 

adherence to the HLA rules. The approach used in this thesis study is designed to enable 

ease of connecting to a HLA simulation environment for nonHLA-compliant simulators. 

                                                 
1 The application in a simulator performing computation, interfacing, and management of simulated 

objects.  

2 Constructive or virtual simulators for air, land or sea domain platforms. 
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Figure 15 shows that a SimEngine is not required to understand any of the HLA 

rules or interfaces to the Run-Time Infrastructure (RTI). The main requirements of the 

nonHLA-compliant simulators are to implement the interfaces of the resulting Simkit 

application library from this study and to provide a common RTI through installation 

from any available source. The focus of the interfaces is to provide simple method 

linkages and allow communication between the SimEngine and the application library. 

These interfaces will contain generic function calls for creation, updating, and deletion of 

simulated entities to be sent to the simulator at the other end. Callback functions exist in 

the interfaces simultaneously to provide a means of receiving data from the HLA 

environment. 

 

Figure 15.   Use of application library for interfacing two nonHLA simulations 

This architecture, designed as a method of use of the resulting application, targets 

to yield several advantages and satisfies most of the objectives in this thesis study. 
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1. Data Exchange Reduction 

To reduce excessive data exchange, use of the DES concept of updating upon 

change is used in both communication between the SimEngine to Simkit HLA 

application and bidirectional between the Simkit HLA applications via the RTI. The 

expected improvement in data exchange reduction can be measured through a simple 

example of position data of an entity, moving in a two way point path, sent from a 30 

updates per sec (30Hz) timed simulation to another simulation in the HLA network. 

 

Figure 16.   A simulated entity moving in a 5 mile path at 50 mph3 

If the entity is moving at a speed of 50 miles per hour (mph) on the path as 

depicted in Figure 16, it would take the entity six minutes to complete a five miles path in 

real time. When the traditional time-stepped simulation is used for HLA network, there 

would be 10,800 updates of the entity location sent to the destination simulation for 

processing. In this Simkit architecture design, there would only be three updates sent, 

during starting point of the movement, at the turning point where the entity direction is 

changed, and when the entity stops at the end point of the movement. There is a 

significant improvement in the amount of data exchange with this architectural design. 

                                                 
3 An illustration of the reduction of data exchange, this situation might not be realistic in normal 

combat modeling scenarios. 
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2. Network Latency 

As discussed previously, when the data exchange is reduced significantly, the 

number of data packets commuting on the network is reduced; thus, the RTI and network 

devices process less data. The network would have better bandwidth efficiency and 

availability of processing resources. This is expected to reduce the processing and 

propagation delays in the overall network latency. This method of data relation, however, 

causes every data packet exchanged in this architecture design to become extremely 

critical and sensitive to any amount of network delays or data lost in transfer. A reliable 

transport protocol is required in this architecture to ensure that the data packets 

exchanged are always performed successfully. 

3. Synchronized Simulation 

One of the problems in HLA-networked simulation is synchronizing simulation of 

different performances. As the simulation executes, there will be some detrimental data 

updates between simulators performing updates at different rates. Network latency and 

loss of data packets would further aggravate this causing the problem of jittering or a 

“teleport” image correlation phenomenon. Time step simulation traditionally implements 

a dead reckoning algorithm to overcome the problems of data packet loss or to make the 

display more visually appealing despite using low data update rates. 

This proposed approach overcomes these problems with the Simkit application 

library, which manages the changes of HLA entities4 data. The SimEngine performs 

update requests when simulated HLA entities data are required for display. Updating data 

for local simulated entities is still performed based on the “upon change” concept. 

Implementing this architecture would separate the required update rate of the SimEngine 

to display HLA entities from the data update characteristics of local entities by the Simkit 

application library to the RTI. Regardless of required update rate of display by the 

SimEngine, the Simkit application will reply with the computed data of the requested  

 

                                                 
4 These are entities that belong to other simulators and their data are updated from the RTI. 
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HLA entity based on the equation of motion and up to date data from the Federation. This 

resolves the issue of different update rates between HLA-networked Federates that cause 

correlation problems. 

To illustrate this characteristic of the architecture, Figure 17 shows the graphical 

display of simulator 1 with two entities: local entity A and an HLA entity B. It also 

includes the data exchange rate characteristics between the SimEngine, Simkit 

application library, and the HLA Federation. Local entity movement data is updated to 

the Simkit application library with the “upon change” concept of DES. The Simkit 

application library, subsequently, updates this information into the Federation. HLA 

entity is displayed graphically in the simulator with the data requested from the Simkit 

application library. There is no direct interaction between the SimEngine and the RTI to 

obtain data of the HLA entity. Rather, it is obtained from the Simkit application library. 

 

Figure 17.   Data exchange characteristics and rate of update 
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B. NONHLA-COMPLIANT AND HLA-NETWORKED SIMULATORS 

The other usage approach for the application library is a one-sided gateway of 

enabling a nonHLA SimEngine to communicate with an HLA-compliant networked 

SimEngine. This approach has the same advantages as the previous method of 

implementation. These advantages, however, depend on the definition of HLA entity data 

exchange of the HLA-compliant SimEngine. If the HLA-compliant SimEngine defines its 

data exchange using the DES concept of event-driven data definition, i.e., data represents 

entity change of state and updates are sent upon change, this approaches yields exactly 

the same pro factors. In opposite cases, when it is performing data exchange based on the 

time-stepped simulation definition, where entities’ data is sent at each constant time 

interval, this approach will only be beneficial for ease of HLA interoperability 

implementation. In the latter assumption, the amount of data exchanged will not be 

changed and this does not help in improving network performance. A synchronized 

HLA-networked simulation still can be achieved at the nonHLA SimEngine side. This is 

because the concept of dead reckoning still exists which will assist in filling the gap when 

entity data packets are lost or arrive late into the simulation. 

 

Figure 18.   Implementation of one-sided HLA gateway for nonHLA SimEngine 
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IV. TIME MANAGEMENT DESIGN 

When real-time simulation was placed into consideration, the need for some form 

of time management in the design of the application library was identified. Several 

previous works with time management [8], [11], [12] and implementation of Discrete 

Event Simulation (DES) in High-Level Architecture (HLA) [1], [2] was referenced, but 

there was no significant example or similar work related to the usage of DES to perform 

real-time simulation in an HLA-networked environment. After placing detailed research 

into the HLA Time Management (HLA-TM) design [12], a combination of an event-

driven simulation and usage of the time information in the Time Stamp Ordered (TSO) 

messages methodology was adopted. As a review of the HLA-TM implementation 

explained in Chapter II, this chapter will provide a detailed explanation of the various 

interfaces in terms of their uses to synchronize time and their roles in a simulation. This 

consists of two event-driven Federates. 

A. TIME MANAGEMENT IN DES 

In accordance to the HLA standards, the time management design provides a 

progressive time advancing methodology. Before explaining the details of this design, 

there are several terminologies of time that need to be defined: Simulation Time, Federate 

Time, Lookahead Time, Lower Bound Time Stamp (LBTS), and Wall Clock Time. 

The Simulation Time is the time component of the Simkit-modeled DES 

simulation that denotes the length of time the event list has been executed. All scheduled 

events in the event list follows this execution time. The Federate Time is the time 

component which the Local RTI Component (LRC) perceives that the Federate’s 

simulation has proceeded. This is important timing to the RTI host as it marks when the 

RTI host should be sending the corresponding TSO messages to each Federate. 

The Lookahead Time is an interval of time used with the Simulation Time in 

computing the LBTS. It acts as a safety interval bringing the LBTS far ahead of time, 

sufficiently to prevent any late arrival of messages into the simulation. The LBTS is the 
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boundary required in a time regulating HLA simulation. It limits and acts as a declaration 

to the RTI host the time limitation of time stamp messages that can be sent. This means 

that each time regulating Federate is not allowed to send any TSO messages with a time 

stamp less than the LBTS. 

Lastly, the wall clock time is an independent time of the system that is not 

affected by any factors. The wall clock time is determined by the system clock of the 

hardware platform. To ensure all participants of the networked simulation are running on 

the same time, this time component is usually synchronized via a time domain server. 

After understanding these terminologies, using the event-driven Federate time 

implementation in HLA-TM design document [12], the design is expanded further into a 

simple two event-driven Federate’s simulation to illustrate this time management design. 

At the start of the application, both Federates are declared to be time constrained and 

regulating during the Federate creation. This is a typical setup for an event-driven 

Federate. 

The HLA-TM design of the resulting application library utilizes the 

updateAttributeValue ( ) and nextMessageRequest ( ) to send the entity data updates and 

declaration of the next time an event will occur. Subsequently, the RTI forwards the 

updating messages to the destination Federates and answers the time advance request 

with reflectAttributeValue( ) and timeAdvanceGrant( ), respectively. Figure 19 depicts an 

example of how the TSO messages are exchanged. It also illustrates the time advancing 

mechanism in a real time event-driven simulation. In this design, the LBTS is tagged to 

the simulation time of each Simkit simulation with an addition of the Lookahead time of 

1 stated in the example. At the beginning of the simulation, both Federates perform an 

initial update of data at LBTS equal to 1. The updating message is sent with a time stamp 

of value equal to the LBTS. A request to advance time to the next event is made, 

subsequently, to declare that there are no other TSO messages with time stamps less than 

the next event time. In the example, the time stamp of the first next event request 

message of the Federates A and Federates B are 5 and 3, respectively. Upon receiving 

these two requests, the RTI would send the updates to the destination Federates with time 

stamp of 1. It also grants the time advancement to the lower time stamp value Federate, 
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which is Federate B of time stamp 3. This decision of which time advancing request to 

grant is decided by the RTI based on the smallest time interval advance. It will not send 

any messages or time advance grants unless it can be sure that no Federates will send any 

TSO message with less than the nearest requested time interval. 

 

Figure 19.   TSO message exchange between two event-driven Federates 

In the event that the TSO messages contain a time stamp that is substantially into 

the future, the messages are stored in the RTI until the LBTS has proceeded greater than 

time stamp of the received TSO message. This is a cyclic process of Federate sending 

updated TSO messages when its entities have changed properties. It requests time 

advancement according to the next possible time of event occurrence. The RTI holds onto 

TSO messages and forwards them to destination Federates only when their time stamps 

have passed, and grants the time advance to the Federate that has the request of the 

smallest interval jump in time. If the simulation proceeds, this process is performed 
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through the example at the time 0, 1, 3, 5, 7, and 12. To assist in maintaining a 

synchronized time advance between the Federates, a small modification was made to the 

original HLA-TM design. This modification uses the time stamp of the forwarded TSO 

messages to advance the Federates time besides the time advance grant reply. This is to 

allow Federates to advance in time simultaneously and not in a racing manner. 

B.  TIME OFFSET MECHANISM 

Although the time management design was modified to maintain synchronization 

in the time advancing of the Federates, there still exists a small amount of time racing. 

This is especially prominent when a large number of entities or objects are involved in 

the simulation. When there is a need to process many messages simultaneously during 

real-time simulation, the time required to process these messages will result in a small 

delay to advance in time. A “roll back” mechanism is usually used to resolve this in DES 

or event-driven simulation, but in this design a waiting algorithm was adopted. 

A limiting value is set in each of the Federates to trigger the time offset 

mechanism. Using the difference between Simkit simulation time and the time stamp of 

the last TSO message received, the amount of time offset to execute is determined. When 

this difference is larger than the stated limiting value, the offset mechanism will be 

activated. Before resuming, the Federate leading in the simulation will go into a wait state 

and pauses all simulation for the amount of time difference. 
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V. APPLICATION LIBRARY DESIGN 

This chapter gives a detailed explanation of the Simkit High-Level Architecture 

(HLA) application library design. The design and implementation of this application 

library is done using the event graph methodology. The components are designed with 

the purpose of enabling Simkit to be HLA-compliant and to maintain the entities of the 

simulation. Some sub-classes of the Simkit components were also designed with the aim 

to support the management of the Discrete Event Simulation (DES) concepts of event and 

motion prediction. 

A. HLA ENVIRONMENT DEFINITION 

As the first step to setting up an HLA Federation in accordance to the HLA 

standards, several prerequisites need to be defined and agreed upon by all participating 

Federates. The first requirement is to determine the host Federate for the Federation, 

since the host Federate will hold the Run-Time Infrastructure (RTI) host, provide 

Federates a destination address to connect to, and act as the primary controller to indicate 

the start and end of the whole simulation execution. Although the network address of the 

RTI host is identified after fulfilling the first requirement, a RTI host can contain multiple 

Federation executions. Allocating the Federation execution name that the Federate is 

going to participate in is, therefore, the next pre-requisite of the simulation environment 

setup. 

Prior to joining a Federation, one of the rules of the HLA standards is to define a 

common Federation Object Model (FOM) to be used that is designed according to the 

Object Model Template (OMT). This would provide the common data structure template 

for data exchanged in the HLA simulation network. Lastly, the number of Federates that 

are going to participate at the start of the simulation execution, or the number of 

Federates that the Federation host is required to wait for before beginning the execution 

of the interoperable simulation, have to be stated. This is to ensure synchronization of 

simulation time and the alleviation of the problem of earlier information not received by a  
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Federate that joins the simulation execution at a later time. The issue of time 

synchronization will be explained in further detail in the HLA Time Management (HLA-

TM) implementation section. 

B. EVENT GRAPH COMPONENTS 

After acquiring an understanding of the requirements prior to designing the 

application library, the Simkit application library has to be designed generically to allow 

flexibility for customization of future designs. The event graph components that make up 

the majority of the design keep this objective in mind. The design also fulfills the HLA 

rules and adheres to the Application Programming Interfaces (APIs) required for 

interfacing with the RTI host. There are a total of four event graph components designed 

to manage the different aspects of setting up the HLA simulation environment as well as 

the simulated entities in the simulation. 

1. HLA Connection Manager 

The main function of the connection manager is to execute the process of setting 

up an HLA Federation environment and/or joining a Federation environment as a 

Federate. As the beginning rule of setting up an HLA simulation environment, a 

Federation has to be created. This provides the participating Federates a common 

destination to join. 

The HLA Connection Manager consists of five events: Run, Create Federation, 

Join Federation, End Join Federation, and Publish Subscribe. As illustrated in Figure 20, 

the Run event, which is triggered by the execution of the SimEngine application, initiates 

the beginning of the setup process. Taking into consideration  

the pre-condition of whether the SimEngine is the Federation host or if the Federate  

has already joined the Federation successfully, determines the next event state that  

will be scheduled. Following the various iteration of creating a Federation, joining a 

Federation, and ending the Federation environment setup, defines the sequence of 

building up the HLA network and ensuring that this connection is set up properly.  

The three primary events, Create Federation, Join Federation, and End Join Federation, 
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call the standardized HLA API interface createFederationExecution( ), 

joinFederationExecution( ), and declaration to be enableTimeConstrained( ) and 

enableTimeRegulation( ), respectively. The purpose of being time constrained and time 

regulating is to synchronize the simulation time which will be discussed in detail in the 

following chapters. 

 

Figure 20.   HLA Connection Manager event graph 
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management of HLA data that are to be sent or received. The declaration management 

and Management of Object Model (MOM) concept are the two services that this event 

graph component implements. Referencing previous discussions on declaration 

management and MOM service, these services involve the interfaces of publishing, 

subscribing, and registering of objects and interactions. 

 

Figure 21.   HLA Data Manager event graph 
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the functionality of registering an object instance which informs the Federation of its 

creation, sending of data updates to the Federation of registered object instances, and 

removing of object instances from the simulation. The last process is the Send Interaction 

event that is scheduled when sending a Federation event. 

3. HLA Entity List Manager 

This architecture design developed in this thesis study involves a different 

concept of entity data exchange and management compared to conventional time-stepped 

simulation. Entity data is sent and received in a “upon change” methodology. This 

resulted in the requirement of a managing component in the whole design to manage and 

keep track of the simulated entities, both local and HLA entities. This is the functionality 

of the HLA Entity List Manager event graph component. Every object and entity instance 

creation, changes, and deletions is recorded and stored in two mapped lists of sub-classed 

entity types described in the following chapter. The lists provide information of the entity 

objects to the SimEngine for display or processing upon request. 
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Figure 22.   HLA Entity List Manager event graph 
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management is required to maintain time synchronization. This is especially prominent in 

real time simulation when the data of simulated entities are time sensitive for display 

accuracy and possible conflict resolution algorithm computation at all Federates. The 

HLA Time Manager was created for the sole purpose of ensuring time synchronization 

and as part of the implementation of the time management algorithm explained in 

Chapter IV. 

The HLA Time Manager event graph component involves two mechanisms of 

time management: synchronization point and time advance algorithm. The 

synchronization point mechanism is a series of message exchanges between the Federate 

and the RTI. The start of the mechanism is initiated by the Federation host, which keeps 

track of the number of Federates joined to the Federation. When the Federation host 

records sufficient number of Federates joined to the Federation and registration of 

synchronization point has not been initiated before, the Wait Register Sync event 

schedules the Register Sync Point event to begin the synchronization process. At this 

point of the message exchange, all Federates in the Federation are “waiting” in the Wait 

Announce Sync event. They are pending to be signaled by the RTI to request 

confirmation of their state of readiness. The Sync Achieved event state is scheduled to 

complete the Federate’s portion of readiness confirmation. While the Federate enters a 

last waiting event, Wait Federation Sync, the RTI will complete this synchronization 

process with a Federation Synchronized message. The replies of the Federate ambassador 

will feedback the status of this message exchange to the HLA Time Manager. 
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Figure 23.   HLA Time Manager event graph 
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C. SUB-CLASSED COMPONENTS 

In the design of the application library, there are several extended classes 

instantiated to represent objects and simulated entities exchanged within the component. 

These components contain crucial data of the entities, motion characteristics, and the 

events scheduled to be executed. 

The HLA Entity class is a sub-class of the Simkit SimEntity class. Every instance 

of this component represents a simulated entity in the Federate simulation, regardless of 

local or HLA. This instance of the HLA Entity class will hold the most updated 

information describing the simulated entity in terms of its movement characteristics, 

name, representative mover instance, and its action status. 

The next sub-classed component is the HLA Basic Linear Mover, which is an 

extension of the Basic Linear Mover in the Simkit library. To compute the location of a 

HLA entity during every request of the SimEngine, there is a need for the application 

library to have the ability to do some simple internal computation. The Basic Linear 

Mover class in the Simkit library requires an End Move event state to be scheduled to 

predict when the next change of movement characteristics. This behavior is not necessary 

in the HLA Basic Linear Mover as it is assumed that the HLA entity will behave in the 

recorded movement behavior infinitely till point-of-change. In this situation, when the 

point-of-change will occur is not known to the Federate as the event has not happened. 

The HLA Basic Linear Mover was, therefore, simplified to compute the location 

information based on the stored data at point of request. 

The last sub-classed component is the event list in Simkit. To differentiate and 

expose more functionality of the event list in Simkit, the HLA Event List was created. An 

event list holds and maintains all the local and generic critical events of the Federate 

simulation. It is important to avoid large extensive modification to the event list during 

simulation as this would cause unexpected error. The HLA Event List balances between 

data protection and exposure. The purpose is to minimize the required information, such 

as time of the next critical event and time query. 
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VI. INTERFACING APPLICATIONS 

Up to this point of designing the resulting application library, it consists only of 

description and explanation of the architecture for the processes and functions within the 

application library. There are missing interfaces to link these processes to exterior 

components, such as the Run-Time Infrastructure (RTI) host and the SimEngine. This 

chapter explains the design and implementation methodology of these important 

interfaces supporting the operations of the application library. Without these interfaces, 

any application developed using the application library will not be able to communicate 

to the external components and fulfill some purposes of the study. 

A. HLA FEDERATE AMBASSADOR 

The HLA Federate ambassador is one of the required interfaces that enable Simkit 

to be linked to the RTI and classified as High-Level Architecture (HLA)-compliant. The 

RTI ambassador serves the purpose of sending messages to the RTI with the standardized 

Application Programming Interfaces (APIs). The complementary interface is the Federate 

ambassador that allows reception of messages from the RTI. Similar to all interfaces 

within the HLA standards, all the interfaces and APIs that call in the Federate 

ambassador are standardized implementations. The Federate ambassador class in the RTI 

interface library was, thus, implemented and sub-classed to create the HLA Federate 

ambassador component. 

There is an extensive list of function calls in the Federate ambassador class. Not 

all the methods, however, are utilized in the design of the application library. The 

Federate ambassador class of the RTI requires a full implementation of all the function 

callbacks. This was overcome by implementing a null class, NullFederateAmbassador, to 

do nothing for all the function callbacks. The HLA Federate ambassador component, 

subsequently, sub-classed this null class and implements only required function callbacks 

to handle received messages. Appendix A lists the implemented function callbacks of the 

HLA Federate ambassador and their corresponding functions in the overall design. 
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B. HLA DATA ENCODER HELPER 

A Dynamic Link-Compatible HLA API Standard for the HLA Interface 

Specifications is defined in the Simulation Interoperability Standards Organization 

(SISO) standardization process for HLA interoperability. Compliance with the APIs in 

this specification will permit simulation developers to interchange link compatible HLA 

RTIs without recompiling Federate source code or re-linking Federate object code with 

Dynamic Link-Compatible (DLC) RTI libraries [20]. As a part of this DLC API standard, 

an encoder class is required to ensure that the data types of the correct properties are 

encoded and decoded accurately in the HLA Federation Object Model (FOM) objects 

sent and received, respectively. 

The design of the HLA Data Encoder Helper implemented is based on a Java 

Linked-Compatible (JLC) library of the RTI. The JLC APIs serves as a code wrapper 

around the original C++ object code. In terms of data size and coding, there is a 

possibility that the data type defined in the Java code is different from the C++ object 

code. The HLA Data Encoder Helper aims to bridge this gap and, at the same time, 

conform to the HLA 1516 Interface Specification standards definition of data type [20]. 

The helper class will directly pack the Java data type into the HLA object class structure 

and send out through the RTI ambassador APIs. The HLA messages received via the 

Federate ambassador is also unpacked using this helper class and stored into the 

respective object class structure listed in Appendix B. 

C. HLA SIMKIT API 

One of the objectives in the design of the application library is to provide a means 

for a SimEngine to connect to an HLA environment without the need to have any setup or 

implementation of the HLA standardized APIs. To achieve this functionality of the 

application library, it is necessary to have a simple and easy-to-implement interface. This 

interface class was designed and created based on the application library. The HLA 

Simkit API interface class, besides implementing this feature, encompasses all the 

internal APIs required for interfacing the Federate ambassador and the application 
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library. The purpose of this approach of encompassing all APIs is to provide a central 

location of all APIs, internal and external, for ease of reference. 

 

Figure 24.   HLA Simkit API class event listening mapping 
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The functionality of the various components was explained in Chapter V, while 

the internal interactions between components of the application library and external 

interfaces to the SimEngine and HLA host will be described in the following sections. 

The interfaces and event listening mechanism created in the HLA Simkit API class will 

be illustrated with respect to their functionality in environment setup, entity management, 

and time management. 

1. HLA Environment Setup 

As described in Chapter V, the creation of Federation host and joining to the 

Federation Execution as a Federate participant is triggered by running the SimEngine 

application. After the HLAConnectionManager component creates the Federation and 

joins the Federation, the setup process is handed over to the HLADataManager to handle 

publishing and subscribing events. This handover is performed through the event 

listening mechanism by having the HLADataManager listen to the Publish Subscribe 

event. Although the publishing and subscribing of object models is part of the setup 

process, this is done in the HLADataManager component. This is because the object 

handles that are returned when declaring that the object structure are used in subsequent 

events of sending object creation and data change updates. It also provides clear 

categorization of the functionality of event graph component, i.e., the HLADataManager 

is responsible for data updates of entity objects. 

 

Figure 25.   Environment setup interface through event listening 
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2. Local Entity Management 

The management of the local entities follows the publishing and subscribing 

events. The creation and registration of the first entity is performed when an entity 

requests function from the HLA Simkit API interface is called. When the CreateEntity( ) 

interface method is called, a record of the local entity is created and the Entity Request 

event state is scheduled. With the listening mechanism in place, HLAEntityListManager, 

which is listening for this event, will trigger the start of the creation process. This is the 

same flow of events used for updating and deleting local entities within the simulation. 

The only difference among these processes is the action performed that is recorded in the 

HLA Entity. This depends on which interface, CreateEntity( ), UpdateEntity( ), or 

DeleteEntity( ), is called at the HLASimkitAPI. The sequence of events ends with the 

HLADataManager hearing the Update Entity event from the HLAEntityListManager and 

handling the event based on the action recorded in the HLA Entity object to send register, 

update, or delete messages to the RTI. 

 

Figure 26.   Local entity management interfaces through event listening 
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3. HLA Entity Management 

In a similar manner, the entity data received from the Federation is managed and 

recorded into an entity list. The flow of the entity data goes through several components 

via the event listening mechanism. When entity data is received through the function 

callbacks in the Federate Ambassador, an instance of the HLAEntity type object is 

created and actions are set based on the callback function initiated. A 

discoverObjectInstance( ) sets the create action, reflectAttributeValue( ) is an update 

action and removeObjectInstance( ) removes the record of the HLA entity. 

The same interfacing function calls, CreateEntity( ), UpdateEntity( ), or 

DeleteEntity( ), are evoked to trigger the Entity Request event state. The flow of events at 

the end of the update process, however, diverts backwards to the HLA Simkit API instead 

of proceeding to the HLADataManager. This is unlike the local entity data and is because 

the entity data is from the Federation, so there is no need to update the Federation. At the 

HLAEntityListManager event graph component, the Entity Request event schedules two 

other event states: Add Entity and Start Move event states. The Add Entity event state 

informs the SimEngine of the new HLA entity through the HLA Simkit API, where a pre-

defined callback function, AddEntity( ), is created by the SimEngine. This callback 

function is one of the required functions that the SimEngine application has to provide 

when implementing the resulting application library. The Start Move event state marks 

the point where the HLA entity changes its properties of movement. This event state is 

heard by the HLAEntity object type, which contains an HLA Basic Linear Mover 

element, and schedules the same event state to update the movement properties of this 

entity into the entity list. Updating the movement properties in the entity list provides an 

updated computation of the entity location when a request for update is initiated by the 

SimEngine. 
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Figure 27.   HLA entity management interfaces through event listening 
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setup to listen for this event state, executes the time advancing process as a resulting 

action of this event state. This keeps the record of the current Federate time within the 

HLATimeManager for subsequent computation of the time offset mechanism and Lower 

Bound Time Stamp (LBTS) check. 

 

Figure 28.   Time management interface through HLA event listening 
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VII. TEST AND EVALUATION 

The objectives of this study are to reduce excessive data exchange, improve 

network performance, and ease the implementation requirements of a simulation into a 

synchronized High-Level Architecture (HLA) networked environment simulation. The 

resulting application library components and interfaces of this study were, therefore, put 

into a simple test to demonstrate whether these objectives were achieved. The test 

consists of implementing the resulting application library in a simple combat modeling 

situation with two nonHLA-compliant simulations. A numerical measurement of data 

traffic using a network monitoring tool, Wireshark [24], was also carried out to evaluate 

the network utilization during the simulation. 

A. SIMULATION ENVIRONMENT 

The architecture involving two nonHLA-compliant simulations was put to a test 

that implements the resulting application library. Although the application library is 

designed to be generic and compatible for most HLA design implementation, there are 

some specifications that are required to be standardized before any development can be 

done. These requirements include the Federation Object Model (FOM) to be used, the 

HLA standards version that the design refers, and the Simulation Engine (SimEngine) 

that will be used on the user interfacing ends of the virtual environment simulation. 

1. Real-Time Platform Reference FOM 

The FOM defines the objects and interactions that will be exchanged in the 

Federation. It enables a common understanding of the fields in a message packet that are 

exchanged within the Federation. This standardized template is one of the main criteria in 

a simulation to be declared as HLA-compliant. The FOM, as stated in the HLA rule, is 

supposed to be designed in accordance to the Object Model Template (OMT). Many 

vendors and sources of HLA simulation developers have customized their own 

proprietary versions of the FOM to be used in the simulation they have designed. This 

drives the need to create a common version of the FOM that would encompass most of 
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the parameters involved in military applications simulation in an object oriented 

hierarchical manner. The Real-time Platform Reference Federation Object Model (RPR 

FOM pronounced “reaper FOM”) was designed to organize the Protocol Data Units 

(PDUs) of Distributed Interaction System (DIS) into a robust HLA object classes and 

interactions [21]. Appendix C shows the hierarchical relationship of the full list of RPR 

FOM objects class structures. Among the list of object classes in the RPR FOM are 

parameters and fields that describe an entity from a general classification of Base Entity 

down to the specific platform domain type, such as aircrafts, ground vehicles, and surface 

vessels. There are also object classes that represent equipment on board an entity, such as 

Embedded System, Emitter System, and stationary environment objects like mine field 

and craters. These objects form the main composition of the FOM to fulfill the 

requirements of modeling dynamic moving objects to static terrain environment objects. 

In this study, to simplify the testing process and to provide a standardized model 

template, the RPR FOM version 2 draft 17 was used. This version of the RPR FOM was 

used because it is the latest object class definition and a reasonably well-rounded FOM 

that describes most general cases of entity configuration. The Base Entity object class is 

the top level class structure that contains movement parameters, such as world location, 

velocity, and acceleration information, required in this study. Figure 29 shows some of 

the possible objects of interest, sub-classed from the Base Entity Object, used in normal 

combat operations that can be expanded when necessary. For a simplistic proof of 

concept and verification of the success of this study, only the parameters in the Base 

Entity object class is used. 
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Figure 29.   Base Entity object class structure 
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The RTI 1516 standard was chosen in this study to be the underlying standard for 

RTI implementation. This choice was made because RTI 1516 is considered as the most 

recently matured standard that is used constantly by the standards community in the HLA 

simulation arena. Although HLA Evolved is the latest standard released by SISO, it is 

still quite far from having widespread RTI implementations. Another reason for using the 

RTI 1516 is due to the Dynamic Link Compatibility (DLC) capability stated in the IEEE 

1516 standards [20] that enabled the development in the Java Linked-Compatibility 

(JLC) libraries. The JLC definitions provided the interfaces between the RTI and Simkit, 

which is the simulation tool written in Java, driving the architecture design of this study. 

3. Simple Movement Detection Simulation 

The choice of nonHLA simulation application at the two ends of the simulation 

architecture, as mentioned in Figure 15, is purely based on the conditions of availability 

and ease of creating a simulation. The length of time available to be committed to this 

study is limited. It is, therefore, necessary to use any existing simulation tools, or ready-

to-use applications, to perform a simple real time simulation. Thus, two instances of the 

Simple Movement Detection (SMD) model were selected to perform the simulation at the 

two ends of the nonHLA simulation architecture. The SandBox animation library in 

Simkit was used, in conjunction with the SMD, as the means of animating and displaying 

the movement of the entities. These two libraries are readily available in the Simkit 

application library and have been proven to work with the Discrete Event Simulation 

(DES) concepts implemented. 

In addition to their availability, the SMD and SandBox library classes are built 

based on Simkit. This provides compatibility between the HLA Simkit API class and the 

SMD. For instance, it is not necessary to set up the update request loop between the 

SimEngine and the HLASimkitAPI classes since all events are scheduled to the same 

event list and the update request is performed by the ping thread. This simplifies the 

development process of creating the calling functions and callback methods required at 

the simulation side to interface to the HLASimkitAPI. 
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B. SCENARIO 

This study is targeted at enhancing the ability to conduct a networked simulation 

under a HLA environment and at embracing the DES concepts to achieve network 

efficiency. It also has the purpose of providing an easy and efficient methodology of 

conducting simulation training and analysis over the HLA network, in particular military 

combat operation scenarios. To effectively demonstrate that the usage of the resulting 

application library meets these objectives, a combat scenario, involving a bomber and a 

patrolling aircraft, was used. 

 

Figure 30.   Simple combat scenario involving a Bomber and Patrolling Aircraft 

The scenario illustrated in Figure 30 depicts a simple attack and defend combat 

scenario. From the attacker’s perspective, a fighter bomber, represented by the red icon, 

conducts a bombing mission towards the objective in a flight path indicated by the solid 

red arrows. In the defender side, an aircraft, the blue icon, equipped with detecting 

sensors, is patrolling near the objective as the protecting force. The two circles, in light 

blue and black, are the maximum range and effective detecting circumference of the 

sensor onboard the patrolling aircraft. 
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The scenario begins with the bomber flying towards the object in the indicated 

flight path at a velocity of 150 knots (nautical miles per hour), which is approximately 

230.4 miles per hour (mph). The patrolling aircraft is deployed from the objective to 

conduct a Combat Air Patrol (CAP) according to the patrol flight path, indicated by the 

blue arrows. The bomber proceeds according to the pre-planned flight path and enters the 

range of the sensor of the patrolling aircraft. The patrolling aircraft tracks and locks onto 

the attacking bomber to perform a defensive action of possible engagement. Given that 

the bomber is equipped with some form of Electronic Warfare (EW) system that notifies 

if defensive action is taken by the aircraft, it aborts its mission and performs an evasive 

maneuver.5 The bomber flight path changes and flies in a returning flight path. This is 

indicated by the dotted red arrow. The patrolling aircraft breaks from its defensive 

reaction and continues on its CAP until it returns to the objective. 

This is a situation commonly occurring in combat operations and is deemed 

sufficient in this study to provide several proofs of the concepts adopted. The concepts of 

HLA compliancy in Simkit, updating of entity data “upon change,” internal computation 

of entity location using the equation of movement, and assessing the overall network 

performance can be evaluated using this scenario. 

C. IMPLEMENTATION 

This section of the chapter explains the implementation of the resulting 

application library. After defining the environment parameters and designing the scenario 

to simulate, there is, as mentioned in Chapter VI, a need to design the interface 

requirements of the SimEngine. An initial analysis of the messages exchanged when 

simulating the scenario is conducted. 

 

                                                 
5 This reaction is purely for illustration purposes and does not represent normal reaction in combat 

operations. 
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1. Interface Implementation 

In Chapter VI, the design of the interfaces provided to external application, the 

SimEngine in particular, requires some processes to call the interfacing methods for 

managing local entities and callback functions to be defined for managing replies and 

updates of HLA entities. As explained in previous sections of this chapter, the SMD 

model from the Simkit application library is used to perform the role of the SimEngine. 

There is no need to specifically call the interfacing function to manage the local entities 

as the events involved, local and global, are scheduled to the same event list. Instead, this 

allowed the event listening mechanism to be setup as the interface. The 

SMDHLASimkitAPI6 Java class, an extension of the HLASimkitAPI class, which is 

designed to hold all the interfacing APIs, is created to setup these event listening 

mechanisms. These event listeners are created to specify the corresponding 

HLASimkitAPI interface to execute with respect to specific event states of the SMD 

simulation. 

                                                 
6 There are multiple approaches to implement the application library. These differ according to 

designer implementation. Sub-classing the HLASimkitAPI is just one of these ways. 
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Figure 31.   NonHLA Simulation implementation with SMD model 

Figure 31 shows a typical implementation of the resulting application library 

making use of the Simkit library to perform the simulation, event management, and event 

listening mechanisms. The SMD model consists of several event graph components that 

allowed it to achieve simulation of the entities’ movements. They are the mover manager 

that handles waypoint movements of the entity, referee and mediators that determine the 

detection events between entities and sensor, and, lastly, the SandBox classes that enable 

animated displays of the simulation with Java graphical components [5]. From the 

implementation of the SMD simulation model, there are two event states of particular 

importance when interfacing with the HLASimkitAPI. They are the Register Mover and 

the Start Move event states. 

The Register Mover event state is scheduled when an entity mover component is 

created in the SMD simulation model. It declares to all interested event graph 

components, such as the referee and mediator, of the existence of the entity. This is to 

 
 

Interfacing 
Methods 

SMDHLASimkitAPI 

Register 
Mover 

Start 
Move 

CreateEntity( ) 

UpdateEntity( ) 

HLASimkitAPI

Register 
Mover 

Start 
Move 

SMD Model 

NonHLA Simulation



 59

allow the referee, the mediator, and the Sandbox, to keep track of detection events 

scheduling and polling of entity data for graphical display. The Register Mover event 

state, therefore, is required to trigger the CreateEntity( ) interface to inform the 

Federation of this creation. The Start Move event state indicates the start in movement of 

an entity. It is, hence, an important event state to be listening for, so that the flagging of 

the change in entity motion can be recorded and updated to the Federation. 

2. Message Exchange Walkthrough 

After implementing the resulting application library and the related interfaces, it is 

useful to conduct a “pen and paper” simulation, without the exact reference to time, to 

step through the simulation processes. Listing the expected messages that would be 

exchanged over the network and events that would be scheduled into the event list 

provides a clearer picture of the expected results and ease the troubleshooting of errors 

that might be made during the development process. The simulation can be divided into 

three sections: the environment setup, the time synchronization, and the actual simulation 

process. 

After developing the SMD simulation model as the SimEngine and integrating it 

with the resulting application library, connecting and setting up the HLA environment for 

connection is the first step. Upon instantiating the SMDHLASimkitAPI class, the 

connection setup begins. The sequence of creating an HLA environment starts with the 

simulation host creating the Federation. This is followed by the local Federate joining to 

the Federation. While it waits for the rest of the participating Federate to join to the 

Federation, it executes the object class declaration. Figure 32 shows the Unified 

Modeling Language (UML) method of illustrating the function calls and message 

exchanges between the participants of the simulation. The Federation host, SMD1, and 

the participating Federate, SMD2, transit into a wait state for the next section of the 

simulation. These functions are all carried out at simulation time zero before the 

simulation starts. 
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Figure 32.   UML diagram of function calls for HLA connection setup 

The simulation continues, subsequently, with the two SMD simulation models 

creating the first local entity, the bomber and the patrol aircraft, respectively. The 

Register Mover event state is scheduled at the corresponding event list. A 

registerObjectInstance() function is delivered to the RTI and a discoverObjectInstance( ) 

delivered from the RTI to opposite Federate. This announces the creation of the entity 

object and acts as an indication to the Federation host that the Federate has joined 

successfully. In this simulation, the Federation host recorded that SMD2 has joined 

successfully and, thus, will begin the time synchronization process. Since the 

synchronization events are all scheduled with highest priority in the event list, the 

simulations at both sides are not able to start until the Federation is declared 

synchronized. 
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Figure 33.   UML diagram of Federation time synchronization process 

Declaration of the Federation as synchronized marks the completion of the setup 

process and the start of the actual simulation. With reference to the simulation scenario, 

the two entities are only created by the corresponding simulation. Their initial movement 

properties are not updated to the Federation execution. At simulation time equals 0, both 

simulations send updateAttributeValue( ) messages to inform other Federates in the 

Federation of the initial data of their local entities. Subsequently, the two instances of the 

resulting application library implementation, SMDHLASimkitAPI1 and 

SMDHLASimkitAPI2, request to advance their simulation time using 

nextMessageRequest( ) with time stamp 5 and 3, respectively. This updating pattern 

continues till the simulation time equals 5. The respective SMD simulations are doing 

their own time step simulations of requesting entity location updates through the Ping 

thread at different update rates and displaying entities on the Sandbox screen.  
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Figure 34.   Simulation walkthrough of messages exchanged 
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As illustrated in Figure 34, at time 5, the bomber and the patrolling aircraft have 

the next point of change at 10 and 12, respectively. After receiving the updates occurring 

at time 5, the detection model of the SMD simulation schedules a Detection event state 

into the event list. This triggers the reaction of the bomber to abort its mission due to the 

patrolling aircraft defensive action. At the same instance of time, the next points of 

change for both simulations are removed from their individual event lists. A point of 

change at time 7 is scheduled into their event lists for the bomber’s evasive action to 

return and the patrolling aircraft to prepare for engagement. Eventually, the patrolling 

aircraft continues its patrol route as the bomber has retreated, resulting in the 

nextMessageRequest( ) with time stamp 12 for both entities. The simulation completes 

with the patrolling aircraft returning to the objective in the last update of movement 

properties at time 18. 

D. RESULTS 

Through simulating the mentioned scenario under the indicated HLA 

environment, the results of the simulation were gathered and analyzed. Through the 

results obtained, the data exchange reduction objective can be verified. Using two 

separate computer platforms, each executing an instance of the developed simulation at 

different update rates, the HLA-networked simulation between two nonHLA-compliant 

simulations was conducted. In this test, the MAK RTI [23] was used as the RTI host. 

Figure 35 shows the resulting graphical display at each of the SMD simulations at 

the same time of 33.00. From the displays of the separated SMD simulations, the HLA 

data exchanges are shown to be successful and synchronized. This satisfies the objective 

of enabling ease of implementing nonHLA simulation into a HLA environment with the 

use of the resulting application library. It also shows that the methodology of using the 

HLA Time Management (HLA-TM) to perform a synchronized event-driven real-time 

simulation is possible and achievable. The difference in update rate and computer 

platform performance did not affect the synchronization of the simulation. It proves that 

the resulting application library achieved removing the possibility of problems occurring 

when linking simulations of different performances. 
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Figure 35.   SMD simulation display of the synchronized simulation 
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During the execution of the simulation, the network monitoring tool, Wireshark 

[24], was activated in the Federation host computer SMD1 to track and record the 

messages exchanged over the network. A comparison between the number of the 

messages captured by Wireshark tool when simulating with the resulting application 

library implementation and a simple calculation of the expected count in a conventional 

time-stepped HLA simulation, shows that there is a significant reduction of messages 

exchanged. 

 

 
 Time-Stepped Simulation HLA Simkit Application 

Library 
IGMP messages for multicast 
set up 

2 2 

UDP messages for data 
exchange 
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14 

Figure 36.   Wireshark records of messages and comparison of results 
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VIII. CONCLUSION 

Traditional time-stepped simulation in a High-Level Architecture (HLA) 

networked environment dominates most of the current HLA-compliant real-time 

simulation processes. The problems of excessive data exchange, increasing network 

latency, and incompatibility of simulation of different performance to conduct 

synchronized simulation, were noted during the initial research of the study. This thesis 

study was aimed at improving, if not resolving, these problems. Before designing a 

possible solution, discrete Event Simulation (DES) paradigm and dead reckoning 

methodology was researched to provide more insight. The result of the research and 

development was the resulting application library and implementation architecture. 

The proposed architecture and methodology of performing an HLA event-driven 

simulation, with the assistance of the concepts adopted from DES, was proven useful. 

Applying the HLA Simkit Application Programming Interface (API) library and the 

various event graph components enabled Simkit to be HLA-compliant. The DES concept 

of scheduling events into the future and the Simple Movement Detection (SMD) model 

of computing movement information in advance led to the achievement of the objectives 

identified at the beginning of the study. The study of implementing Discrete Event 

Simulation (DES) concepts in a High-Level Architecture (HLA) environment concluded 

with the successful implementation of the resulting application library. Conducting the 

test simulation between two nonHLA-compliant simulations and, eventually, enabling 

them to harness the advantages characteristically designed in the resulting application 

library, managed to significantly improve the issues of a traditionally designed HLA-

networked simulation. 

Although the results of this study have demonstrated improvements to an HLA-

networked simulation through the use of DES concepts, there are still unexplored 

improvements in the design and further verification of the capability of the application 

library. The current design of the resulting application utilizes only a small part of the 

Federation Object Model (FOM) to exchange basic information of movement and 
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location. Expansion of the design to utilize fully the set of object templates could prove to 

be beneficial to perform an all-rounded simulation. A suite of interactions in the FOM 

would be helpful to achieve proper action and reaction algorithm to the simulations. An 

unexplored arena of this domain is experimenting with the DES methodology to execute 

close distance and intensive maneuver combat situation, such as the dog-fight scenario in 

air combat operations. In the current state of the design, these situations of high 

frequency changes of motion deemed to be inconclusive and possibly detrimental to the 

aim of reducing excessive data exchange. 

Another recommendation for subsequent work is to test the boundary of this 

methodology of using DES in an HLA-networked environment. Developing a more data 

intensive simulation and integrating it with the resulting application library is another 

recommendation. This would create a load-test situation, thus, evaluating its limit to 

remain synchronized and collecting a more substantial amount of results in network 

performance improvements. Lastly, the only weakness of the application library is the 

importance of each message exchanged over the HLA network. Every message indicates 

a point-of-change to object information. Since DES concepts of dead reckoning are used 

to compute the location of the object, each message becomes crucial to the simulation. 

Losing a message during the exchange of data would cause the simulation to fail. 

Although reliable transport protocol is used in the design, with increasing network load 

and simulation lapse, in general there is no guarantee of message transportation. 

Investigation into some form of message re-transmission algorithm implementation 

would provide an insurance of message delivery. 

In conclusion, the application library developed in this study has proven to be 

effective and achieved the intended objectives. Although there are some weaknesses in 

this methodology with regards to intensive real-time simulation, it is beneficial to 

implement it in combination with normal time-stepped simulation. Using the resulting 

application library to handle pre-planned entities with simple movement behavior, such 

as Computer Generated Forces (CGF), in real-time simulation would significantly lighten 

processing load of the simulation application and simulation engine. 
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APPENDIX A. HLA FEDERATE AMBASSADOR CALLBACKS 

Function Callbacks Description Possible Exceptions 

public void timeConstrainedEnabled  
(LogicalTime arg0) 
 

A reply from the RTI indicating that 
declaring to be time constrained is 
successful 

InvalidLogicalTime 
NoRequestToEnableTimeConstrainedWasPending
FederateInternalError 

public void timeRegulationEnabled  
(LogicalTime arg0) 
 

A reply from the RTI indicating that 
declaring to be time regulating is 
successful 

InvalidLogicalTime 
NoRequestToEnableTimeRegulationWasPending 
FederateInternalError 

public void synchronizationPointRegistrationSucceeded 
(String arg0) 
 

Indicates the success of registering a 
synchronization point 

FederateInternalError 

public void synchronizationPointRegistrationFailed 
(String arg0,SynchronizationPointFailureReason arg1) 
 

Indicates the failure of registering a 
synchronization point 

FederateInternalError 

public void announceSynchronizationPoint 
(String arg0, byte[] arg1) A message from the RTI during the 

synchronixation process that is sent to all 
joined Federates to trigger synchronized 
declaration 

FederateInternalError 

public void federationSynchronized  
(String arg0) 
 

Final message of the synchronization 
process that informs Federates that the 
Federation is synchronized and 
simulation can begin 

FederateInternalError 

public void objectInstanceNameReservationSucceeded 
(String arg0) 
 

Successful reservation of the object name 
before starting to register object 

UnknownName 
FederateInternalError 

public void discoverObjectInstance 
(ObjectInstanceHandle theObject, 
ObjectClassHandle theClassHandle, 
String objectName)  

A forwarded message to all Federates 
interested the specified type of object 
informing of its creation 

CouldNotDiscover 
ObjectClassNotRecognized 
FederateInternalError 

public void reflectAttributeValues  
(ObjectInstanceHandle theObject, 
AttributeHandleValueMap theAttributeValues) 

An updating message of the data of the 
specific entity 

ObjectInstanceNotKnown 
AttributeNotRecognized 
AttributeNotSubscribed 
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Function Callbacks Description Possible Exceptions 

byte[] userSuppliedTag 
(OrderType sentOrdering, 
TransportationType theTransport, 
LogicalTime theTime, 
OrderType receivedOrdering) 

FederateInternalError  

public void receiveInteraction 
(InteractionClassHandle theInteractionClass, 
ParameterHandleValueMap theParameterValues,  
byte[] theUserSuppliedTag,  
OrderType sentOrder, 
TransportationType theType, 
LogicalTime theTime,  
OrderType receiveOrder) 

An indication of an incoming event 
InteractionClassNotRecognized 
InteractionParameterNotRecognized 
InteractionClassNotSubscribed 
InvalidLogicalTime 
FederateInternalError 

public void removeObjectInstance 
(ObjectInstanceHandle arg0,  
byte[] arg1, 
OrderType arg2,  
LogicalTime arg3,  
OrderType arg4)  

A deletion message of the specified entity 
ObjectInstanceNotKnown 
FederateInternalError 

public void timeAdvanceGrant 
(LogicalTime arg0) A result of a next message request 

allowing the indicated time advancing 
allowance 

InvalidLogicalTime 
JoinedFederateIsNotInTimeAdvancingState 
FederateInternalError 
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APPENDIX B. JAVA HLA SIMKIT FOM OBJECT CLASS 

Object Class Parameters Data Type Description 

entityType EntityTypeStruct Contains DIS coding of identifying the type of object 

entityIdentifier EntityIdentifierStruct Contains the specific identification of the object in the 
simulation 

BaseEntity 

spatial SpatialStruct Motion data of the object 

entityKind byte Defines the kind of entity the object represents. E.g.,  

1 - Platform 

2 - Munition 

9 - Sensor 

domain byte Defines the domain of the entity as a land, air, or surface 
object 

countryCode short Defines the country of origin of the object 

category byte Defines the category of type of object. E.g., a tank of the 
land platform domain 

subcategory byte Further break down of the object type into specifc group 
of category. E.g., M1 Abrams Main Battle Tank. 

specific byte Indicates the specific model or version of the object type. 
E.g., M1A1 Abrams 

EntityTypeStruct 

extra byte Indicates the an extra information of the object type 

FederateIdentifier FederateIdentifierStruct Indicates the ownership of the object EntityIdentifierStruct 

entityNumber short Entity number ID of the object in the simulation 

siteID short Specific numeric ID of the hardware location FederateIdentifierStruct 

applicationID short Specific numeric ID of the application in the hardware 
platform 
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Object Class Parameters Data Type Description 

deadReckoningAlgorithm  byte Indicates which type of dead reckoning algorithm is used 
in the simulation. E.g., 1-Static, 2-FPW 

padding byte  

spatialStatic SpatialStaticStruct Information of location and orientation if the object is 
using static dead reckoning 

SpatialStruct 

spatialFPW  Information of location,velocity, and orientation if the 
object is using FPW dead reckoning 

worldLocation 

 

WorldLocationStruct Location of the object in the world coordinates 

isFrozen boolean Indicates if object is paused 

SpatialStaticStruct 

orientation OrientationStruct Orientation of the object 

worldLocation 

 

WorldLocationStruct Location of the object in the world coordinates 

isFrozen boolean Indicates if object is paused 

orientation OrientationStruct Orientation of the object 

SpatialFPStruct 

velocityVector VelocityVectorStruct Velocity data of the object 

X double x-component of object location coordinates 

Y double y-component of object location coordinates 

WorldLocationStruct 

Z double z-component of object location coordinates 

Psi float Roll component of the object orientation 

Theta float Pitch component of the object orientation 

OrientationStruct 

Phi float Yaw component of the object orientation 

xVelocity float x-component of the object velocity vector 

yVelocity float y-component of the object velocity vector 

VelocityVectorStruct 

zVelocity float z-component of the object velocity vector 
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APPENDIX C.  RPR FOM OBJECT CLASS STRUCTURE [22] 
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