
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2010-12

A study on Discrete Event Simulation (DES) in a

High-Level Architecture (HLA) networked simulation

Wong, Chee Tzuon.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/4958

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36698668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS
This thesis was performed at the MOVES Institute

Approved for public release; distribution is unlimited

A STUDY ON DISCRETE EVENT SIMULATION (DES) IN
A HIGH-LEVEL ARCHITECTURE (HLA) NETWORKED

SIMULATION

by

Chee Tzuon Wong

December 2010

 Thesis Advisor: Arnold Buss
 Thesis Co-Advisor: Donald McGregor

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2010

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE A Study on Discrete Event Simulation (DES) in a
High-Level Architecture (HLA) Networked Simulation

6. AUTHOR(S) Chee Tzuon Wong

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Singapore Technologies Electronics (Training & Simulation System) Pte Ltd
24 Ang Mo Kio St 65 Singapore 569061

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
N/A

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ______N.A.__________.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis investigates implementing Discrete Event Simulation (DES) concepts using Simkit packages into a High-
Level Architecture (HLA)-networked simulation, thus addressing sustainability of the HLA methodology into the
future. Through the DES concept of predicting and anticipating the time of when events will occur, redundant and
excessive exchange of common data, like position and sensory status, can be removed. This DES implementation
considerably reduces the network load and removes data processing incompatibility between simulations.

A design involving several concepts of DES and HLA simulation led to the creation of a Simkit based
application library. Interfacing this application library with two DES models demonstrated and proved the feasibility
of DES concepts in HLA-networked simulations. A generic combat scenario modeled using this methodology,
successfully showed the intended advantages of the thesis. The ease of linking non-DES and non-HLA simulations to
an HLA environment was enhanced using a common set of interfaces built based on the resulting application library.
Through a simple comparison with traditional time-stepped real-time simulation of the same scenario configuration, it
was shown that data exchange between simulations was reduced by several orders of magnitude. This freed a
substantial amount of network resources to perform other tasks, hence, improving network performance.

15. NUMBER OF
PAGES

95

14. SUBJECT TERMS
Discrete Event Simulation, High-Level Architecture, Simkit, Dead Reckoning

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

A STUDY ON DISCRETE EVENT SIMULATION (DES) IN A HIGH-LEVEL
ARCHITECTURE (HLA) NETWORKED SIMULATION

Chee Tzuon Wong
Civilian, Singapore Technologies Electronics (Training & Simulation Systems)

B.Eng., Nanyang Technological University, 2004

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN

MODELING, VIRTUAL ENVIRONMENTS, AND SIMULATION (MOVES)

from the

NAVAL POSTGRADUATE SCHOOL
December 2010

Author: Chee Tzuon Wong

Approved by: Arnold Buss
Thesis Advisor

Donald McGregor
Thesis Co-Advisor

Mathias Kölsch
Chairman, MOVES Academic Committee

Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis investigates implementing Discrete Event Simulation (DES) concepts using

Simkit packages into a High-Level Architecture (HLA)-networked simulation, thus

addressing sustainability of the HLA methodology into the future. Through the DES

concept of predicting and anticipating the time of when events will occur, redundant and

excessive exchange of common data, like position and sensory status, can be removed.

This DES implementation considerably reduces the network load and removes data

processing incompatibility between simulations.

A design involving several concepts of DES and HLA simulation led to the

creation of a Simkit based application library. Interfacing this application library with

two DES models demonstrated and proved the feasibility of DES concepts in HLA-

networked simulations. A generic combat scenario modeled using this methodology,

successfully showed the intended advantages of the thesis. The ease of linking non-DES

and non-HLA simulations to an HLA environment was enhanced using a common set of

interfaces built based on the resulting application library. Through a simple comparison

with traditional time-stepped real-time simulation of the same scenario configuration, it

was shown that data exchange between simulations was reduced by several orders of

magnitude. This freed a substantial amount of network resources to perform other tasks,

hence, improving network performance.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. OVERVIEW...1
B. OBJECTIVES ..2

1. Excessive Data Exchange ..3
2. Network Latency..3
3. Simulation Synchronization..3

C. THESIS ORGANIZATION..4

II. BACKGROUND ..5
A. DISCRETE EVENT SIMULATION ...5

1. Next Event Algorithm..5
2. Equation of Motion..6
3. Detection Model ...8

B. HIGH-LEVEL ARCHITECTURE ..10
1. HLA Concept..10
2. Declaration and Management Object Models.................................12
3. Time Management ...14

a. Transportation Services ..14
b. Time Advancing Services..15

C. SIMKIT...18
1. Event Graph Methodology..18
2. Basic Linear Mover..20

III. ARCHITECTURE DESIGN...23
A. NONHLA-COMPLIANT SIMULATORS..23

1. Data Exchange Reduction ...25
2. Network Latency..26
3. Synchronized Simulation...26

B. NONHLA-COMPLIANT AND HLA-NETWORKED SIMULATORS ..28

IV. TIME MANAGEMENT DESIGN ...29
A. TIME MANAGEMENT IN DES ...29
B. TIME OFFSET MECHANISM..32

V. APPLICATION LIBRARY DESIGN..33
A. HLA ENVIRONMENT DEFINITION..33
B. EVENT GRAPH COMPONENTS...34

1. HLA Connection Manager..34
2. HLA Data Manager ...35
3. HLA Entity List Manager ...37
4. HLA Time Manager ..38

C. SUB-CLASSED COMPONENTS ..41

VI. INTERFACING APPLICATIONS..43
A. HLA FEDERATE AMBASSADOR...43

 viii

B. HLA DATA ENCODER HELPER ..44
C. HLA SIMKIT API ...44

1. HLA Environment Setup ..46
2. Local Entity Management...47
3. HLA Entity Management..48
4. Time Management ...49

VII. TEST AND EVALUATION..51
A. SIMULATION ENVIRONMENT ...51

1. Real-Time Platform Reference FOM...51
2. Run-Time Infrastructure ..53
3. Simple Movement Detection Simulation..54

B. SCENARIO ..55
C. IMPLEMENTATION ...56

1. Interface Implementation..57
2. Message Exchange Walkthrough ...59

D. RESULTS ...63

VIII. CONCLUSION ..67

APPENDIX A. HLA FEDERATE AMBASSADOR CALLBACKS.......................69

APPENDIX B. JAVA HLA SIMKIT FOM OBJECT CLASS71

APPENDIX C. RPR FOM OBJECT CLASS STRUCTURE [22]...........................73

LIST OF REFERENCES..75

INITIAL DISTRIBUTION LIST ...79

 ix

LIST OF FIGURES

Figure 1. Next Event Algorithm (From [4])..6
Figure 2. Equation of motion for computation of location (Xt , Yt , Zt)7
Figure 3. Basic movement and Cookie-Cutter Sensor detection model (After [5])..........8
Figure 4. Detection equation (From [5]) ...9
Figure 5. Federations in execution (From [6]) ..11
Figure 6. Communication channels between the Federate and the RTI (After [6))12
Figure 7. Registration and discovery process of entity object ..13
Figure 8. Two-axis diagram of TSO Events (From [13])..16
Figure 9. Event-driven Federate using TSO time management (From [12])17
Figure 10. Common event graph transition with t delay and condition C (After [14]).....18
Figure 11. Simkit java coding convention example ..19
Figure 12. Event listener mechanism (After [4]) ..19
Figure 13. Event adapter mechanism (After [4]) ..20
Figure 14. Basic Linear Mover component event graph (From [5])21
Figure 15. Use of application library for interfacing two nonHLA simulations...............24
Figure 16. A simulated entity moving in a 5 mile path at 50 mph....................................25
Figure 17. Data exchange characteristics and rate of update ..27
Figure 18. Implementation of one-sided HLA gateway for nonHLA SimEngine28
Figure 19. TSO message exchange between two event-driven Federates31
Figure 20. HLA Connection Manager event graph...35
Figure 21. HLA Data Manager event graph..36
Figure 22. HLA Entity List Manager event graph ..38
Figure 23. HLA Time Manager event graph...40
Figure 24. HLA Simkit API class event listening mapping ..45
Figure 25. Environment setup interface through event listening46
Figure 26. Local entity management interfaces through event listening47
Figure 27. HLA entity management interfaces through event listening49
Figure 28. Time management interface through HLA event listening..............................50
Figure 29. Base Entity object class structure ..53
Figure 30. Simple combat scenario involving a Bomber and Patrolling Aircraft.............55
Figure 31. NonHLA Simulation implementation with SMD model58
Figure 32. UML diagram of function calls for HLA connection setup.............................60
Figure 33. UML diagram of Federation time synchronization process61
Figure 34. Simulation walkthrough of messages exchanged ..62
Figure 35. SMD simulation display of the synchronized simulation................................64
Figure 36. Wireshark records of messages and comparison of results65

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF ACRONYMS AND ABBREVIATIONS

DES Discrete Event Simulation

DIS Distributed Interactive Simulation

HLA High-Level Architecture

FOM Federation Object Model

SOM Simulation Object Model

DMSO Defense Modeling and Simulation Office

DoD Department of Defense

HLA-TM HLA Time Management

FEL Future Event List

SimEngine Simulation Engine

RTI Run-Time Infrastructure

MOM Management of Object Model

API Application Programming Interface

TSO Time Stamp Ordered

FIFO First In First Out

LRC Local RTI Component

SISO Simulation Interoperability Standards Organization

DLC Dynamic Link Compatible

JLC Java Linked-Compatible

RPR FOM Real-Time Platform Reference FOM

PDU Protocol Data Unit

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

The author wishes to express his deepest gratitude to Professor Arnold H. Buss

for his patience and guidance during the course of this thesis study. His insightful vision

and unreserved imparting of the knowledge in Discrete Event Simulation inspired the

author’s impetus to research into the methodology of this study. As the creator of the

Simkit simulation tool, he provided all possible assistance to the author in the usage and

integration of Simkit into the study.

The author also wishes to acknowledge the experience and guidance of his Co-

Advisor, Mr. Don McGregor. His extensive knowledge in the field of High-Level

Architecture and networked simulation provide a firm foundation and confidence that

assisted the author in his design and implementation of the architecture involved.

In addition, the author would like to thank Miss Joy Newman for her expert

editing, which molds this study into a professionally written thesis.

The author would like to thank Mr. Koh Kim Leng from Singapore Technologies

Electronics (Training and Simulation Systems) for his continuous support and assistance

in obtaining a licensed RTI version from MAK technologies.

Lastly, the author wants to express his appreciation to Singapore Technologies

Electronics (Training and Simulation Systems) for their sponsorship that gave the author

the opportunity to venture further into the arena of Modeling and Simulation and broaden

his academic spectrum.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. OVERVIEW

Since the evolution of networked simulation, performing joint simulation training

involving multiple virtual environment simulators has been feasible. Major players of the

simulation industry have been researching and providing multiple network solutions to

enable networked simulation training. These solutions created a hidden problem of

interoperability identified in the early 1980s by the software standards community. The

community believed that, as networked simulation technology matured and stabilized;

there would be a need for a common standardization of data exchange across different

simulation products from different industries and companies. This resulted in the creation

of Distributed Interactive Simulation (DIS) in the late 1980s and, subsequently, High-

Level Architecture (HLA) in the mid-1990s.

Although HLA has proven successful in many simulator implementations and

designs, network performance, minimizing the amount of data exchanged and time

synchronization are still topics of discussion and exploration. Improving network

performance and reducing data exchange while maintaining equivalent, if not better,

efficiency of a networked simulator has never diminished. As the size of networked

simulators grows and data exchanged increases, network performance and reduction of

data exchange have become crucial issues.

In the current simulation industry, DIS and HLA are the common architectures

used to enable interoperability and networking of multiple simulators for joint and cross-

domain simulation training. Neither DIS nor HLA have been able to fully replace

customized data exchange format and architecture as the only method for networked

simulation data exchange. However there is a trend of increasing utilization of these

standards, especially HLA. The requirement for HLA compliance in new military

simulation products has been in part responsible for this tendency. With new simulators

becoming HLA-compliant, obsolescence of existing simulators and proprietary non-

HLA-compliant simulators have created a dilemma; in deciding between disposing of

 2

these simulators versus incurring developmental cost to upgrade them to be HLA

enabled. In addition, some simulator developers have used different semantic and

syntactic interpretations of the data fields in the standardized Object Model Template

(OMT) and customized the Federation Object Model (FOM) in their HLA. This poses

major integration and standards compliance difficulties when performing networked

simulation between these simulator systems.

Several studies [1], [2] have explored leveraging the characteristics of event

agents and discrete events in simulation to reduce excessive data exchange in time-

stepped simulations. These studies aimed to reduce semantic and syntactic error in data

exchange and reduce the volume data exchanged while retaining simulation fidelity. The

usage of Discrete Event Simulation (DES), in particular Simkit, in HLA-networked

simulation has not been explored extensively.

Dead reckoning algorithm has been implemented, traditionally, to overcome

occurrence of update messages lost due to network latency or unreliable network

transport protocol. The dead reckoning algorithm extrapolates or interpolates update

points using last know data to justify these lost of data. They, however, have not been

implemented extensively to a greater extent to provide higher fidelity and achieve better

network bandwidth utilization.

B. OBJECTIVES

This thesis study was motivated by the vision of these problems escalating the

increased possibility of crucial integration and implementation difficulties in HLA-

networked simulation. The main purpose of this study is to evaluate and to implement the

concepts of DES into an HLA-networked environment with the use of Simkit [4], [15]. A

Simkit application library for enabling HLA compliance and network data exchange

reduction are the targeted results of this study. The thesis study also aims to address

several of the emerging problems in the growing trend of HLA-networked environment

simulation.

 3

1. Excessive Data Exchange

A characteristic behavior of time step simulation used in conventional HLA

simulation is the constant update rate of simulation information onto the network. The

amount of data exchanged could be trivial when the number of entities or components

simulated is small. More simulated entities and simulator participants in the HLA

network environment increases the amount of data exchanged. This can eventually result

in degradation of data processing performance in participating simulators [25] and

increasing data exchange error.

2. Network Latency

The volume of data exchanged and physical distance between simulator

participants is a crucial factor to networked simulation performance. If timely data is

important in maintaining a synchronized and smooth simulation display or representation,

increasing network latency and delay due to heavy network traffic and propagation delay

caused by greater distance is a destructive factor in the networked simulation.

3. Simulation Synchronization

A time-synchronized distributed simulation must maintain a shared simulation

clock time; this is a difficult task when there are many simulation participants. This is

especially obvious when each simulator has different data processing power and

simulation update frequency. This often results in jittering in displaying simulated entities

and inaccurate combat results, when data updates are not received in a timely manner and

dead reckoning algorithm are not implemented to handle this lapse. In the event that

conventional dead reckoning algorithms are implemented, conservative and incorrect

implementation still poses difficulties during integration effort.

The above problems prove to be major obstacles in HLA-networked simulation

that cause obsolesce of older simulators and reduce the flexibility of HLA network

simulation and training. These problems have also been the biggest obstacle when

networking simulators using HLA. The resulting Simkit application library of this thesis

 4

study intends to resolve, if not improve, the problem of excessive data exchange,

increasing network latency, and synchronization issues through the usage of DES

concepts in dead reckoning algorithm and event-driven simulation. An encapsulated

implementation of HLA rules, DES as a replacement of conventional dead reckoning

algorithms, and a series of common interfaces aims to standardize HLA compliancy and

data interpretation without the need to understand these rules or algorithms in details.

C. THESIS ORGANIZATION

The thesis provides, in Chapter I, an overview of the emerging problems of HLA

network simulation in the simulation industry and the objectives of this thesis. The basic

understandings of the concepts of HLA, DES, and Simkit are illustrated in Chapter II.

Subsequently, Chapter III shall explain in detail the design and methodology of the

simulation architecture to be used in conjunction with existing simulation products.

Chapter IV lists the components of the Simkit application library that caters to common

simulation features and requirements. The suggested customization to HLA FOM and

possible rule changes will be described in more details in Chapter V. Lastly, Chapters VI

and VII detail the test and analysis of the improvements achieved using the

implementation and recommended future improvements, respectively.

 5

II. BACKGROUND

Understanding the basic concepts and methodology of Discrete Event Simulation

(DES) and High-Level Architecture (HLA), which form the fundamentals of this thesis,

are required before performing any design. This chapter will explain the characteristics

and methodologies used in the design of the Simkit application library. These

methodologies mainly focus on enabling HLA compliancy in Simkit and reducing data

interaction within the domain of movement and detecting sensor information.

A. DISCRETE EVENT SIMULATION

Discrete Event Simulation describes an event-oriented methodology of simulation

where events may happen at any time. The operation of the system is represented as a

chronological sequence of events. Each event occurs at an instant in time and marks a

change of state in the system [3]. During this instant of time, processes involved in the

event execution are performed and resulting events from these executions are also

scheduled into the event list.

With this characteristic, logical time of simulation is being advanced in an uneven

manner instead of the usual regular time duration in a time step simulation. This next

point of state change, commonly termed as Next Event, is referenced from an event list.

The main purpose of this event list, Future Event List (FEL), is to hold and manage

pending events, where future scheduled events are ordered chronologically according to

time occurrence [4]. This provides a good indication of length in time that a simulation

can be advanced safely to the next point of change. Since events are scheduled into the

future and time advancement is discrete and immediate, this provides an “as-fast-as-

possible” manner of simulation execution.

1. Next Event Algorithm

To effectively create and design DES models, understanding the next event

algorithm is critical. Implementing this mechanism properly would allow the proper

 6

management of scheduled events and advancing time. Figure 1 shows the implementation

logic of this algorithm in the form of a state chart diagram [4].

Figure 1. Next Event Algorithm (From [4])

The sequence of activities for the next event algorithm begins with the scheduling

of initial events to trigger the initialization of all related variables, parameters, and

scheduling of subsequent events. This leads to the start of the iterative process with the

check of the FEL. The decision to either proceed to stop the simulation or proceed to

jump to the next scheduled event time is based on the availability of next scheduled

events on the FEL. Upon advancing simulation time to the next earliest event time

instance, the events are removed from the FEL and execution of the state transition is

performed. Finally, new events forecasted are inserted into the FEL and events that turn

invalid are removed from the FEL. The main characteristic of this event algorithm with

the use of the FEL consists of the flexibility of insertion, removal and maintenance of

events in the correct chronological sequence pending checks, and execution.

2. Equation of Motion

The characteristics of DES are the principles of scheduling events and

information changes into the future. This enables knowledge of the next time of event or

 7

state change. In conventional time step simulation, information of the location of an

object in motion is always changing and in constant update. The simple movement model

resolves this complexity through the notion of an implicit state of motion [5]. The

implicit state of motion defines a state that is not an instance variable with its information

explicitly stored in every turn of update. Relevant information, however, is computed

based on an “On-Demand” approach. Although complex equations of motion may be

considered, this thesis will only utilize the simplest form which describes linear motion

Motion of an object or entity has a linear behavior regardless of distance. The

basic linear movement of the object is uniform and can be described with primary

information of moving from a starting location, (, ,)o o ox y z , towards a direction described

by a velocity vector,
(, ,)x y zv v v

. Hence, the position of the object in motion till time

interval,   – ot t
, can easily be computed by applying the equation of motion and

determining the distance travelled during this time interval.

()

()

()

t o x o

t o y o

t o z o

X x v t t

Y y v t t

Z z v t t

  
  

  

Figure 2. Equation of motion for computation of location (Xt , Yt , Zt)

This model depicts the simple relationship of distance, velocity, and time, which

are the main components of motion. Utilizing the same equation of motion, however,

()ot t

(, ,)t t tX Y Z
(, ,),o o ox y z velocity

 8

modeling of the acceleration component can be easily incorporated as well through

modeling the change behavior of velocity and direction. It will not affect the main

concept of compute “On Demand,” which affects velocity. This can be forecasted with

this dead reckoning algorithm with respect to time.

3. Detection Model

When simulating combat models, besides modeling the movement of entities and

objects, sensor detection modeling is the next required aspect of simulation. The simple

detection model [5] that this thesis uses depicts several important points of events

throughout the whole detection process to describe this sensor detection and entity

movement interaction.

Figure 3. Basic movement and Cookie-Cutter Sensor detection model (After [5])

As a simple example of this movement and detection model, Figure 3 shows the

scenario of a stationary sensor representing an air defense sensor with a target moving in

a linear path through the sensor detection range. The model classifies the detection into

two regions that represent the realistic situation of the air defense sensor detection

process. A target begins movement from point of origin and moves into the sensor

maximum range of detection. Depending on the sensor capabilities, a confirmed detection

 9

or tracking range is shorter. If no change of action is carried out, there is a high

possibility the sensor would lose track of the target and, subsequently, the target would

exit the sensor maximum range.

In alignment with DES concepts, these events of movement to enter range,

detection, undetection, and eventual exit range, could be computed and scheduled in

advance into the event list. These events in turn prove useful to perform other events,

such as alert upon entering range, engaging target when detected, reducing weapon

effectiveness when tracking is lost, and reducing alert status when target exits range of

defense. Although many variations of a scenario exist, these situations are all possible

components of a combat operation scenario and can be simulated.

Figure 4. Detection equation (From [5])

Using the detection equation [5] provides the computation of time, t, which

includes time to detection, tD, and exit detection, tE. With the provided start point of target

movement, x, and movement velocity, v, varying the range of the sensor, R, would enable

the same calculation at the two regions of range and detection perimeter. Using these

timings, the respective events are subsequently scheduled into the FEL during simulation

for processing to trigger other state changes.

 10

B. HIGH-LEVEL ARCHITECTURE

The High-Level Architecture (HLA) was developed by the Defense Modeling and

Simulation Office (DMSO) of the US Department of Defense (DoD) to meet the needs of

defense-related projects [6]. Through its HLA initiative, the DMSO intends to address the

continuing need for interoperability between new and existing simulations. DMSO hopes

to achieve this by providing a common technical framework and a standardized

architecture for interoperability and enhance of the reusability of common modeling and

simulation components.

1. HLA Concept

The main difference between DIS and HLA is the implementation of the HLA

concept that did not standardize the format in which information is exchanged (as with

DIS), but only interfaces and services among simulation applications. The HLA concept

consists of three parts. These are a set of HLA simulation rules that govern the

characteristics of HLA-compliant simulations, an object modeling scheme, and an

interface specification. The set of ten HLA rules indicates the common guidelines that a

system has to follow for creation and management of Federation and Federates. Adhering

to these rules makes a simulation system HLA-compliant.

The HLA paradigm requires the implementation of the concepts of Federation and

Federates. The Federation refers to the overall simulation environment, and its

participating members are identified as Federates. These Federates join the Federation to

exchange information according to a common Federation Object Model (FOM) which is

designed in accordance to the Object Model Template (OMT) defined in the IEEE 1516

standards [7].

The FOM is a consolidated list of types of objects and their attribute values that

are exchanged within a Federation. The FOM specifies the objects and attributes that

Federates can publish and subscribe and allows data exchange in a controlled and

standardized manner. Federates, however, are not required to simulate and provide

information for all object formats indicated in the FOM. A Simulation Object Model

 11

(SOM) residing in each individual Federate serves the purpose in specifying the types of

information that the individual Federate is interested in receiving and the types of

information that it would provide to the Federation.

Figure 5. Federations in execution (From [6])

After creating Federations and Federates, an interface is required to provide the

medium for data exchange. The Run-Time Infrastructure (RTI) provides the required

interface specifications that the software environment needs to exchange information in a

coordinated fashion [8]. Federates in the Federation must communicate with each other

via the RTI. Figure 6 shows the basic communication channels between the Federate and

the RTI. The RTI ambassador provides the interface for a Federate to send information to

the Federation. The implementation of standardized callback services in the Federate

ambassador allows the Federate to receive the corresponding information and,

subsequently, process the information internally in the Federate.

 12

Figure 6. Communication channels between the Federate and the RTI (After [6))

2. Declaration and Management Object Models

The IEEE 1516 standards [7] define several management designs that are required

to enable ease of HLA simulation. Two of the primary services that require

implementation are the Declaration Management service and the Management Object

Models (MOM). The HLA MOM concept implies that a Federation execution can be

managed by a combination of Federate and RTI supplied information. Specifically, it

consists of a set of predefined object and interaction classes that provides a manager

Federate with the capability to monitor and control aspects of the Federation using the

standard RTI run-time services [9], [10].

The major concepts involved in the implementation of the MOM service are the

common interface of publishing, subscribing and registering of objects, data formats, and

interactions. The publishing process declares the data types specified in the SOM of the

Federate to the Federation. This informs the RTI of the type of data formats and

interactions that the particular Federate is capable of producing and provides updates. On

the receiving end of this MOM service is the interface of subscription, where the Federate

indicates the data format and interactions that are of interest to the applications within the

Federate. This interaction of publish and subscribe provides the baseline and partial

controlling factors to entity data exchange.

Simulation
Application

Federate
Ambassador

Federate

RTI
Ambassador

RTI
Executive

HLA
RTI

 13

Upon simulation execution, the declaration of these data types for communication

follows the creation, updating, and deletion of objects and interaction. These actions are

achieved using the standardized API calls in the RTI and Federation ambassadors. The

registerObjectInstance() function call announces to the RTI the existence of the entity

object within the simulated Federation. At this instance, the RTI would inform all

Federates that indicated their interest in this object type during the subscription process,

of the creation of this entity object through the callback discoverObjectInstance(). This

forms a continuous process of registering and discovering of the entity object within the

Federation for a common picture of simulation.

Figure 7. Registration and discovery process of entity object

Attribute changes and updates of these object instances are interfaced with

updateAttributeValues() for sending updates and reflectAttributesValues() for receiving

changes. HLA interactions, which are events, have similar interfacing functions

sendInteractions() and receiveInteractions() for sending and receiving, respectively.

Lastly, deleteObjectInstance() removes the object instances that are invalid or destroyed

in the simulation arena. The MOM forms the controlling agent in information exchange

for HLA simulation.

Federate A Federate B

RTI

registerObjectInstance()

discoverObjectInstance()

 14

3. Time Management

The HLA Time Management (HLA-TM) is concerned with the mechanisms for

controlling the advancement of time during the execution of a Federation. Time

advancement mechanisms must be coordinated with other mechanisms responsible for

delivering information, e.g., to ensure messages are not delivered in the past of the logical

time of a Federate [11]. This service has the main purpose to support interoperability

among Federates utilizing different internal time management mechanisms [12].

To implement these time management services, two aspects of the Federation

execution must be considered: the transport for delivery of messages, and the type of time

advance service to be used. The message transport type chosen is based on cost, network

performance, and bandwidth consumption characteristics. Time advance mechanism is

chosen based on the characteristics of the simulation and will determine the control

measures used in Federate time advance.

a. Transportation Services

The different transport services are categorized based on two

characteristics: the reliability of message delivery and message ordering. The reliability

of message delivery refers to delivery by the RTI through retransmission or best effort

delivery. This is a tradeoff between network latency and jitter versus probability of

successful delivery of the message. Message ordering in HLA consists of five types of

delivery mechanisms: receive, priority, causal, totally ordered, and time stamp ordered.

The type of mechanism used in a simulation depends on the type of message required for

the simulation execution.

Receive Order is the most direct and lowest latency ordering mechanism.

Messages are passed to the Federate in the order that they were received. The incoming

messages are placed at the end of a first-in-first-out (FIFO) queue, which, subsequently,

is sent to the Federate by removing them from the front of the queue. This message order

type is usually used by hard real time simulation [12]. Priority Order stores the messages

in a priority queue, where the time stamp denotes the priority of the messages. Messages

 15

with order of the smallest time stamp are sent to Federate first. Thus, this mechanism

does not prevent messages from reaching in the ‘past’ of the Federate. Causal Order is a

more complicated mechanism where messages are sent in both order of time and in order

of occurrence. For example, if message A is indicated to happen before message B, even

when message B is received by the RTI first with a smaller time stamp, the RTI will hold

message B in its buffer and wait for an instance of message A before sending message B.

This is a more stringent method of implementing message order.

Lastly, the Time Stamp Order (TSO) is the mechanism used commonly in

DES. A message sent to the RTI requires a time indication of when the event or update

occurs along the logical time of the Federate execution. The RTI will store all of the

messages in its buffer and only send the messages when it can be sure that there will be

no messages delivered to the RTI subsequently that contain a smaller time stamp order.

The RTI ensures this condition through the time advancing service described in the next

section. One of the characteristics of the TSO, when handling messages with the same

time stamp, is that they would be delivered to the Federate in the same order that they

were received. This provides an implicit ordering of messages.

b. Time Advancing Services

Time Advancing services requires an HLA execution to be either time

constrained, time regulating, or both. If a Federate is defined to be time constrained, it is

able to receive TSO messages and is limited by the time advancement of other Federates.

Time regulating characterizes a Federate to be able to send TSO messages and

determines the logical time of other Federates. Figure 8 shows the definitions of a

regulating Federate and a constrained Federate.

 16

Figure 8. Two-axis diagram of TSO Events (From [13])

A regulating Federate has to deliver TSO messages with a time stamp

equal to or larger than the Lower Bound Time Stamp (LBTS). This LBTS typically is the

current logical time of the regulating Federate with addition of a Lookahead time. The

Lookahead time serves the purpose of ensuring that TSO messages forwarded do not lag

behind the logical time of the constrained Federate, i.e., constrained Federate will not

receive TSO messages of the ‘past.’

To maintain this implementation of time advancing with time regulating

and time constrained, the regulating Federate uses the HLA function call,

timeAdvanceRequest() and nextEventRequest() to request for a time advancing grant.

Once a Federate evokes either of these two messages, it guarantees that no TSO messages

with time stamp less than the LBTS would be sent. The RTI subsequently makes the

decision of sending a timeAdvanceGrant() message to allow the regulating Federate to

advance time to the logical time stamp indicated in the grant. This process of request and

grant provides a controlled time advancement environment.

A good example that demonstrates this process is extracted from HLA

Time Management Design Document [12]. Using a wall clock time to synchronize the

LBTS enables a coordinated time advancing and message exchange process. The

 17

important concept depicted in this example is the interaction of message exchange when

the interfaces, sendInteraction() and nextEventRequest(), are invoked. It shows that after

the event-driven Federate processes all local messages and events, it sends interaction

updates with time stamp 40 and announces the next local event time with a time stamp of

42.

Figure 9. Event-driven Federate using TSO time management (From [12])

The RTI holds all TSO messages in its buffer until the LBTS advances beyond the time

stamp of 40. At the point of LBTS at 41, the RTI forwards all relevant messages with

time stamp smaller than the LBTS and grants time advancement to logical time 40. A

resend of nextEventRequest() with time stamp 42 was made to request time advancement

to the intended logical time.

 18

C. SIMKIT

Simkit is an application library written in Java that harnesses the methodology of

event graphs and discrete event scheduling paradigm. Its main objective is to enable ease

of designing and creating discrete event-driven simulation as an open source toolkit. In

this section of the thesis, the basic concepts of event graph paradigm, the Basic Linear

Mover and Cookie Cutter sensor library classes are explained to provide foundation

knowledge on the use of these classes in the design that follows in this thesis.

1. Event Graph Methodology

Event graph methodology is an attempt to use graphical means to explain the

states and transitions of a DES model. This graphical representation is simple in nature

and its expression strongly reflects the event-driven nature of event-oriented systems. The

strength of its simplicity has tremendous value in enabling ease of analysis, especially in

perceiving the sophistication of event-scheduling approaches in discrete-event system

simulation [14]. A common event graph transition depicted in Figure 10 shows the

transition from an event A to an event B on the condition of C. Thus, event B is

scheduled into the future of the event list with delay t in time. The event graph also

provides the information that an argument k is being passed to event B on the scheduling

edge of the transition.

Figure 10. Common event graph transition with t delay and condition C (After [14])

A
B

(k)
t

(C)

k

 19

The event graph methodology is closely related to coding convention in Simkit.

Every component of the overall event graph represents a Java class in the DES model and

an event in the component is related to a function call with “do” appended in front of the

function name as the usual naming convention. Using Figure 10 as an example event

graph will yield a series of java code states as follows.

Figure 11. Simkit java coding convention example

Another feature in the Simkit application library is the event listener and adapter

mechanism. This mechanism provides the interface that links two separate components

together. Each component in Simkit has an independent set of event-graph logic. The

triggering of events within a component can cause dependency by other components in

such a way that a system event occurring in a source component triggers the execution of

the same kind of event in another dependent or listening component. This is the

underlying concept of the listener mechanism in which there is an event-source

component, an event-listener component, and a line that connects the two with a

stethoscope symbol on the source end [15].

Figure 12. Event listener mechanism (After [4])

public void doA()
{
 If (C)

waitDelay(“B”, t, k);
}
public void doB(k) {…}

A

B

B

C

Component X Component Y

 20

The event adapter is the more specific version of the event listener mechanism.

The event listener allows the source component to trigger all dependency events in the

listening component as long as events are of the same type and format. The event adapter

allows a more deliberate listening of specific type of event. An event B in component X

would be able to trigger an event C in the component Y as depicted in Figure 13, which

shows the event graph annotation of an adaptor interface. With the use of the event

adapter, Event B in component Y would not be executed unlike previous case depicted in

Figure 12. This provides a more controlled manner of utilization of the listening

mechanism to adhere to strict conformity of events. The adapter mechanism is useful

when not all event types in the listening component intend to be dependent on the source

component for activation.

Figure 13. Event adapter mechanism (After [4])

2. Basic Linear Mover

As explained in the sections of equation of motion and detection model in the

beginning of this chapter, it is more efficient to model linear and uniform movement of

an object through forecasting the ending location of the object into the future. The Simple

Movement and Detection (SMD) part of the Simkit library consists of the Basic Linear

Mover component, intended to allow easier modeling of the movement of simulated

objects by utilizing the equation of motion to describe the future location of the object.

The basic linear mover component of Simkit uses a simple event graph to initialize the

A

B

B

C

Component X Component Y

B

C

 21

start of movement and end of movement. The “Start Move” event indicates the beginning

of the movement which records all initial parameters and conditions. The “End Move”

event marks the completion of the linear movement and flags awareness in possible

changes of parameters in the movement of the object. With starting and ending points, the

component determines the required time to travel between the two points. Hence, the end

of movement event could be scheduled into the future with the computed movement time,

tM, as delay. Current location of the object along the time of movement can be computed

and returned for the purpose of display or other activities.

Figure 14. Basic Linear Mover component event graph (From [5])

As an extension in modeling the motion of object with Simkit, the Basic Linear

Mover component can be used in conjunction with the various mover managers: Path

Mover Manager, Patrol Mover Manager, and Random Mover Manager. These mover

managers aim to model movement characteristic of pre-defined path, patrolling

movement in a recursive manner, and a randomized destination movement pattern,

respectively.

Start
Move

End
Move

tM

 22

THIS PAGE INTENTIONALLY LEFT BLANK

 23

III. ARCHITECTURE DESIGN

Following an initial detailed research of the basic concepts in High-Level

Architecture (HLA) and Discrete Event Simulation (DES), the overall architectural

design of the intended resulting application library was researched as to applicability to

meet the identified objectives. As a review of the objectives, the resulting design aims to

fulfill three objectives: reducing excessive data exchange, decreasing the effects of

network latency in simulation, and compatibility adaptation of simulator with different

capability to perform synchronized HLA simulation. The aim of having the ability to

implement HLA in a fast, simple, and accurate manner, without the need to understand its

rules in details, was placed as one of the objectives of the architecture design. This is to

relieve simulation developers from a lengthy and tedious process when developing an

HLA simulation from the beginning.

Having these objectives in mind, there are a total of two approaches to implement

and to use the proposed architecture design of the resulting application library. The

application library is designed with the intention to serve as a gateway between the

simulators, regardless of HLA compliancy, simulation engine1 performance or simulation

type2. The simulation engine (SimEngine) is in charge of implementing the application

library and the various interfaces to enable the operability of this architecture.

A. NONHLA-COMPLIANT SIMULATORS

Through a detailed research on the current problems in HLA-networked

simulation, the complex interfaces and required standardization of HLA rules deters

simulator developers from implementing the HLA standards or implementation with full

adherence to the HLA rules. The approach used in this thesis study is designed to enable

ease of connecting to a HLA simulation environment for nonHLA-compliant simulators.

1 The application in a simulator performing computation, interfacing, and management of simulated

objects.

2 Constructive or virtual simulators for air, land or sea domain platforms.

 24

Figure 15 shows that a SimEngine is not required to understand any of the HLA

rules or interfaces to the Run-Time Infrastructure (RTI). The main requirements of the

nonHLA-compliant simulators are to implement the interfaces of the resulting Simkit

application library from this study and to provide a common RTI through installation

from any available source. The focus of the interfaces is to provide simple method

linkages and allow communication between the SimEngine and the application library.

These interfaces will contain generic function calls for creation, updating, and deletion of

simulated entities to be sent to the simulator at the other end. Callback functions exist in

the interfaces simultaneously to provide a means of receiving data from the HLA

environment.

Figure 15. Use of application library for interfacing two nonHLA simulations

This architecture, designed as a method of use of the resulting application, targets

to yield several advantages and satisfies most of the objectives in this thesis study.

R

T

I

NonHL
A- Sim
Engine

Simkit
HLA

Library

Interfacing
Function

Simkit
HLA

Library

Non-
HLA
Sim

Engine

Interfacing
Function

Simulator 1 Simulator 2

 25

1. Data Exchange Reduction

To reduce excessive data exchange, use of the DES concept of updating upon

change is used in both communication between the SimEngine to Simkit HLA

application and bidirectional between the Simkit HLA applications via the RTI. The

expected improvement in data exchange reduction can be measured through a simple

example of position data of an entity, moving in a two way point path, sent from a 30

updates per sec (30Hz) timed simulation to another simulation in the HLA network.

Figure 16. A simulated entity moving in a 5 mile path at 50 mph3

If the entity is moving at a speed of 50 miles per hour (mph) on the path as

depicted in Figure 16, it would take the entity six minutes to complete a five miles path in

real time. When the traditional time-stepped simulation is used for HLA network, there

would be 10,800 updates of the entity location sent to the destination simulation for

processing. In this Simkit architecture design, there would only be three updates sent,

during starting point of the movement, at the turning point where the entity direction is

changed, and when the entity stops at the end point of the movement. There is a

significant improvement in the amount of data exchange with this architectural design.

3 An illustration of the reduction of data exchange, this situation might not be realistic in normal

combat modeling scenarios.

2 miles
50 mph
2.4 minutes

3 miles
50 mph
3.6 minutes

START

TURN END

 26

2. Network Latency

As discussed previously, when the data exchange is reduced significantly, the

number of data packets commuting on the network is reduced; thus, the RTI and network

devices process less data. The network would have better bandwidth efficiency and

availability of processing resources. This is expected to reduce the processing and

propagation delays in the overall network latency. This method of data relation, however,

causes every data packet exchanged in this architecture design to become extremely

critical and sensitive to any amount of network delays or data lost in transfer. A reliable

transport protocol is required in this architecture to ensure that the data packets

exchanged are always performed successfully.

3. Synchronized Simulation

One of the problems in HLA-networked simulation is synchronizing simulation of

different performances. As the simulation executes, there will be some detrimental data

updates between simulators performing updates at different rates. Network latency and

loss of data packets would further aggravate this causing the problem of jittering or a

“teleport” image correlation phenomenon. Time step simulation traditionally implements

a dead reckoning algorithm to overcome the problems of data packet loss or to make the

display more visually appealing despite using low data update rates.

This proposed approach overcomes these problems with the Simkit application

library, which manages the changes of HLA entities4 data. The SimEngine performs

update requests when simulated HLA entities data are required for display. Updating data

for local simulated entities is still performed based on the “upon change” concept.

Implementing this architecture would separate the required update rate of the SimEngine

to display HLA entities from the data update characteristics of local entities by the Simkit

application library to the RTI. Regardless of required update rate of display by the

SimEngine, the Simkit application will reply with the computed data of the requested

4 These are entities that belong to other simulators and their data are updated from the RTI.

 27

HLA entity based on the equation of motion and up to date data from the Federation. This

resolves the issue of different update rates between HLA-networked Federates that cause

correlation problems.

To illustrate this characteristic of the architecture, Figure 17 shows the graphical

display of simulator 1 with two entities: local entity A and an HLA entity B. It also

includes the data exchange rate characteristics between the SimEngine, Simkit

application library, and the HLA Federation. Local entity movement data is updated to

the Simkit application library with the “upon change” concept of DES. The Simkit

application library, subsequently, updates this information into the Federation. HLA

entity is displayed graphically in the simulator with the data requested from the Simkit

application library. There is no direct interaction between the SimEngine and the RTI to

obtain data of the HLA entity. Rather, it is obtained from the Simkit application library.

Figure 17. Data exchange characteristics and rate of update

SimEngine

Simkit
Application

Library

Simulator 1
Graphical
Display

Updates entity A
data upon change

A

B

Updates entity A
data upon change R

T
 I

Receive updates of
entity B data upon
change

Request position data of entity B (30Hz)

Reply with computed position data of
entity B (30Hz)

 28

B. NONHLA-COMPLIANT AND HLA-NETWORKED SIMULATORS

The other usage approach for the application library is a one-sided gateway of

enabling a nonHLA SimEngine to communicate with an HLA-compliant networked

SimEngine. This approach has the same advantages as the previous method of

implementation. These advantages, however, depend on the definition of HLA entity data

exchange of the HLA-compliant SimEngine. If the HLA-compliant SimEngine defines its

data exchange using the DES concept of event-driven data definition, i.e., data represents

entity change of state and updates are sent upon change, this approaches yields exactly

the same pro factors. In opposite cases, when it is performing data exchange based on the

time-stepped simulation definition, where entities’ data is sent at each constant time

interval, this approach will only be beneficial for ease of HLA interoperability

implementation. In the latter assumption, the amount of data exchanged will not be

changed and this does not help in improving network performance. A synchronized

HLA-networked simulation still can be achieved at the nonHLA SimEngine side. This is

because the concept of dead reckoning still exists which will assist in filling the gap when

entity data packets are lost or arrive late into the simulation.

Figure 18. Implementation of one-sided HLA gateway for nonHLA SimEngine

R

T

I

NonHL
A- Sim
Engine

Simkit
HLA

Library

Interfacing
Function

HLA-compliant

Simulation
Engine

Simulator 1 Simulator 2

 29

IV. TIME MANAGEMENT DESIGN

When real-time simulation was placed into consideration, the need for some form

of time management in the design of the application library was identified. Several

previous works with time management [8], [11], [12] and implementation of Discrete

Event Simulation (DES) in High-Level Architecture (HLA) [1], [2] was referenced, but

there was no significant example or similar work related to the usage of DES to perform

real-time simulation in an HLA-networked environment. After placing detailed research

into the HLA Time Management (HLA-TM) design [12], a combination of an event-

driven simulation and usage of the time information in the Time Stamp Ordered (TSO)

messages methodology was adopted. As a review of the HLA-TM implementation

explained in Chapter II, this chapter will provide a detailed explanation of the various

interfaces in terms of their uses to synchronize time and their roles in a simulation. This

consists of two event-driven Federates.

A. TIME MANAGEMENT IN DES

In accordance to the HLA standards, the time management design provides a

progressive time advancing methodology. Before explaining the details of this design,

there are several terminologies of time that need to be defined: Simulation Time, Federate

Time, Lookahead Time, Lower Bound Time Stamp (LBTS), and Wall Clock Time.

The Simulation Time is the time component of the Simkit-modeled DES

simulation that denotes the length of time the event list has been executed. All scheduled

events in the event list follows this execution time. The Federate Time is the time

component which the Local RTI Component (LRC) perceives that the Federate’s

simulation has proceeded. This is important timing to the RTI host as it marks when the

RTI host should be sending the corresponding TSO messages to each Federate.

The Lookahead Time is an interval of time used with the Simulation Time in

computing the LBTS. It acts as a safety interval bringing the LBTS far ahead of time,

sufficiently to prevent any late arrival of messages into the simulation. The LBTS is the

 30

boundary required in a time regulating HLA simulation. It limits and acts as a declaration

to the RTI host the time limitation of time stamp messages that can be sent. This means

that each time regulating Federate is not allowed to send any TSO messages with a time

stamp less than the LBTS.

Lastly, the wall clock time is an independent time of the system that is not

affected by any factors. The wall clock time is determined by the system clock of the

hardware platform. To ensure all participants of the networked simulation are running on

the same time, this time component is usually synchronized via a time domain server.

After understanding these terminologies, using the event-driven Federate time

implementation in HLA-TM design document [12], the design is expanded further into a

simple two event-driven Federate’s simulation to illustrate this time management design.

At the start of the application, both Federates are declared to be time constrained and

regulating during the Federate creation. This is a typical setup for an event-driven

Federate.

The HLA-TM design of the resulting application library utilizes the

updateAttributeValue () and nextMessageRequest () to send the entity data updates and

declaration of the next time an event will occur. Subsequently, the RTI forwards the

updating messages to the destination Federates and answers the time advance request

with reflectAttributeValue() and timeAdvanceGrant(), respectively. Figure 19 depicts an

example of how the TSO messages are exchanged. It also illustrates the time advancing

mechanism in a real time event-driven simulation. In this design, the LBTS is tagged to

the simulation time of each Simkit simulation with an addition of the Lookahead time of

1 stated in the example. At the beginning of the simulation, both Federates perform an

initial update of data at LBTS equal to 1. The updating message is sent with a time stamp

of value equal to the LBTS. A request to advance time to the next event is made,

subsequently, to declare that there are no other TSO messages with time stamps less than

the next event time. In the example, the time stamp of the first next event request

message of the Federates A and Federates B are 5 and 3, respectively. Upon receiving

these two requests, the RTI would send the updates to the destination Federates with time

stamp of 1. It also grants the time advancement to the lower time stamp value Federate,

 31

which is Federate B of time stamp 3. This decision of which time advancing request to

grant is decided by the RTI based on the smallest time interval advance. It will not send

any messages or time advance grants unless it can be sure that no Federates will send any

TSO message with less than the nearest requested time interval.

Figure 19. TSO message exchange between two event-driven Federates

In the event that the TSO messages contain a time stamp that is substantially into

the future, the messages are stored in the RTI until the LBTS has proceeded greater than

time stamp of the received TSO message. This is a cyclic process of Federate sending

updated TSO messages when its entities have changed properties. It requests time

advancement according to the next possible time of event occurrence. The RTI holds onto

TSO messages and forwards them to destination Federates only when their time stamps

have passed, and grants the time advance to the Federate that has the request of the

smallest interval jump in time. If the simulation proceeds, this process is performed

UAV(TS) = UpdateAttributeValue with Time Stamp, TS
RAV(TS) = ReflectAttributeValue with Time Stamp, TS
NMR(TS) = NextMessageRequest with Time Stamp, TS
TAG(TS) = TimeAdvanceGrant to Time, TS

0

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

10

LBTS
Simulation

 Time A
Federate Time A RTI

UAV(1) UAV(1)
NMR(5)

RAV(1)

NMR(3)

RAV(1)

0

1

0

1

3

TAG(3)

UAV(4) RAV(4)
4 NMR(7) TAG(5)

5
UAV(6)

NMR(12)
RAV(6)

6

7
UAV(8)
NMR(15)

TAG(7)

RAV(8)
8 TAG(12)

0

1

2

3

4

5

6

7

8

9

Federate Time B
Simulation

 Time B

 32

through the example at the time 0, 1, 3, 5, 7, and 12. To assist in maintaining a

synchronized time advance between the Federates, a small modification was made to the

original HLA-TM design. This modification uses the time stamp of the forwarded TSO

messages to advance the Federates time besides the time advance grant reply. This is to

allow Federates to advance in time simultaneously and not in a racing manner.

B. TIME OFFSET MECHANISM

Although the time management design was modified to maintain synchronization

in the time advancing of the Federates, there still exists a small amount of time racing.

This is especially prominent when a large number of entities or objects are involved in

the simulation. When there is a need to process many messages simultaneously during

real-time simulation, the time required to process these messages will result in a small

delay to advance in time. A “roll back” mechanism is usually used to resolve this in DES

or event-driven simulation, but in this design a waiting algorithm was adopted.

A limiting value is set in each of the Federates to trigger the time offset

mechanism. Using the difference between Simkit simulation time and the time stamp of

the last TSO message received, the amount of time offset to execute is determined. When

this difference is larger than the stated limiting value, the offset mechanism will be

activated. Before resuming, the Federate leading in the simulation will go into a wait state

and pauses all simulation for the amount of time difference.

 33

V. APPLICATION LIBRARY DESIGN

This chapter gives a detailed explanation of the Simkit High-Level Architecture

(HLA) application library design. The design and implementation of this application

library is done using the event graph methodology. The components are designed with

the purpose of enabling Simkit to be HLA-compliant and to maintain the entities of the

simulation. Some sub-classes of the Simkit components were also designed with the aim

to support the management of the Discrete Event Simulation (DES) concepts of event and

motion prediction.

A. HLA ENVIRONMENT DEFINITION

As the first step to setting up an HLA Federation in accordance to the HLA

standards, several prerequisites need to be defined and agreed upon by all participating

Federates. The first requirement is to determine the host Federate for the Federation,

since the host Federate will hold the Run-Time Infrastructure (RTI) host, provide

Federates a destination address to connect to, and act as the primary controller to indicate

the start and end of the whole simulation execution. Although the network address of the

RTI host is identified after fulfilling the first requirement, a RTI host can contain multiple

Federation executions. Allocating the Federation execution name that the Federate is

going to participate in is, therefore, the next pre-requisite of the simulation environment

setup.

Prior to joining a Federation, one of the rules of the HLA standards is to define a

common Federation Object Model (FOM) to be used that is designed according to the

Object Model Template (OMT). This would provide the common data structure template

for data exchanged in the HLA simulation network. Lastly, the number of Federates that

are going to participate at the start of the simulation execution, or the number of

Federates that the Federation host is required to wait for before beginning the execution

of the interoperable simulation, have to be stated. This is to ensure synchronization of

simulation time and the alleviation of the problem of earlier information not received by a

 34

Federate that joins the simulation execution at a later time. The issue of time

synchronization will be explained in further detail in the HLA Time Management (HLA-

TM) implementation section.

B. EVENT GRAPH COMPONENTS

After acquiring an understanding of the requirements prior to designing the

application library, the Simkit application library has to be designed generically to allow

flexibility for customization of future designs. The event graph components that make up

the majority of the design keep this objective in mind. The design also fulfills the HLA

rules and adheres to the Application Programming Interfaces (APIs) required for

interfacing with the RTI host. There are a total of four event graph components designed

to manage the different aspects of setting up the HLA simulation environment as well as

the simulated entities in the simulation.

1. HLA Connection Manager

The main function of the connection manager is to execute the process of setting

up an HLA Federation environment and/or joining a Federation environment as a

Federate. As the beginning rule of setting up an HLA simulation environment, a

Federation has to be created. This provides the participating Federates a common

destination to join.

The HLA Connection Manager consists of five events: Run, Create Federation,

Join Federation, End Join Federation, and Publish Subscribe. As illustrated in Figure 20,

the Run event, which is triggered by the execution of the SimEngine application, initiates

the beginning of the setup process. Taking into consideration

the pre-condition of whether the SimEngine is the Federation host or if the Federate

has already joined the Federation successfully, determines the next event state that

will be scheduled. Following the various iteration of creating a Federation, joining a

Federation, and ending the Federation environment setup, defines the sequence of

building up the HLA network and ensuring that this connection is set up properly.

The three primary events, Create Federation, Join Federation, and End Join Federation,

 35

call the standardized HLA API interface createFederationExecution(),

joinFederationExecution(), and declaration to be enableTimeConstrained() and

enableTimeRegulation(), respectively. The purpose of being time constrained and time

regulating is to synchronize the simulation time which will be discussed in detail in the

following chapters.

Figure 20. HLA Connection Manager event graph

Following the process of Federation creation, Federate joining and enabling the

condition of time regulating and constrained, the Publish Subscribe event state is

scheduled to trigger the start of the HLA Data Manager Component. This is done using

the SimEventListener mechanism in Simkit.

2. HLA Data Manager

The event graph components mentioned in this application library have the

objective to handle a specific aspect of the HLA simulation; hence, events might not be

linked and may run individually. In conjunction with the name of this event graph

component, the HLA Data Manager handles all events and processes involving the

(isFederationhost
&&

FederationExecutionDoesNotExist)

Run

Create
Federation

Join
Federation

End Join
Federation

(fedHandle)

Publish
Subscribe

(isFederationhost)

(fedHandle = null)

{ fedHandle =
joinFederationExecution() }

(FederationExecutionDoesNotExist)

{ enableTimeRegulating()
enableTimeConstrained() }

(fedHandle not null)

{ createFederationExecution() }

tretry

 36

management of HLA data that are to be sent or received. The declaration management

and Management of Object Model (MOM) concept are the two services that this event

graph component implements. Referencing previous discussions on declaration

management and MOM service, these services involve the interfaces of publishing,

subscribing, and registering of objects and interactions.

Figure 21. HLA Data Manager event graph

The HLA Data Manager was designed with three separate processes: publishing

and subscription events, management of entity objects, and management of interactions.

The publishing and subscription processes are part of the declaration management

process. Their purpose is to inform the Federation which object classes the Federate is

capable of sending and which it is interested in receiving. This reduces the processing

and receiving of unwanted data. Starting from the Update Entity event, the process has

{ deleteObjectInstance() }

Publish
Subscribe

{ publishObjectClassAttributes()
 subscribeObjectClassAttributes()
 publishInteractionClass()
 subscribeInteractionClass() }

Reserve
Entity
Name

(entity)

Update
Entity
(entity)

Register
Entity
(entity)

Send
Interaction

(interaction)

Delete
Entity
(entity)

(action = create)

(action = change)

{ registerObjectInstance() } { reserveObjectInstanceName() }

{ updateAttributeValues() }

{ reserved
 success }

Send
Update
(entity)

(action = delete)

{ reserve unsuccessful }

{ sendInteraction() }

Request
Time

Advance

Wait
Announce

Sync

Wait
Register

Sync

tretry

 37

the functionality of registering an object instance which informs the Federation of its

creation, sending of data updates to the Federation of registered object instances, and

removing of object instances from the simulation. The last process is the Send Interaction

event that is scheduled when sending a Federation event.

3. HLA Entity List Manager

This architecture design developed in this thesis study involves a different

concept of entity data exchange and management compared to conventional time-stepped

simulation. Entity data is sent and received in a “upon change” methodology. This

resulted in the requirement of a managing component in the whole design to manage and

keep track of the simulated entities, both local and HLA entities. This is the functionality

of the HLA Entity List Manager event graph component. Every object and entity instance

creation, changes, and deletions is recorded and stored in two mapped lists of sub-classed

entity types described in the following chapter. The lists provide information of the entity

objects to the SimEngine for display or processing upon request.

 38

Figure 22. HLA Entity List Manager event graph

As shown in the event graph in Figure 22, the HLA Entity List Manager receives

the Entity Request event and the corresponding events, according to the action requested,

are scheduled. The entity list records are, subsequently, updated and depending on the

nature of this entity, local or HLA, the Federation and the SimEngine is informed of this

change through the Update Entity and Add Entity event state, respectively. An important

event state in this event graph component is the Start Move event that marks the point-of-

change of motion parameters in the simulation. The event schedules the Start Move event

in the sub-classed Basic Linear Mover to provide the accurate movement characteristics

of the HLA entity.

4. HLA Time Manager

The last event graph component designed is the HLA Time Manager event graph

component. Listed as one of the rules of the HLA standards, certain form of time

Entity
Request
(entity,
objInst)

Create
Entity
(entity,
objInst)

Delete
Entity

(objInst)

Change
Entity

(objInst)

Add Entity
(entity)

Update
Entity
(entity)

(action = create)

(action = delete)

(action = change)

(HLA entity)

(local entity)

(local entity)

(local entity)

{entityCount =+1,
entityList.add(entity) }

{entityList.remove(oldEntity),
 entityList.add(entity}

{ entityList.remove() }

Start Move
(position,
velocity,

start time) (HLA entity)

startTime – currentTime

 39

management is required to maintain time synchronization. This is especially prominent in

real time simulation when the data of simulated entities are time sensitive for display

accuracy and possible conflict resolution algorithm computation at all Federates. The

HLA Time Manager was created for the sole purpose of ensuring time synchronization

and as part of the implementation of the time management algorithm explained in

Chapter IV.

The HLA Time Manager event graph component involves two mechanisms of

time management: synchronization point and time advance algorithm. The

synchronization point mechanism is a series of message exchanges between the Federate

and the RTI. The start of the mechanism is initiated by the Federation host, which keeps

track of the number of Federates joined to the Federation. When the Federation host

records sufficient number of Federates joined to the Federation and registration of

synchronization point has not been initiated before, the Wait Register Sync event

schedules the Register Sync Point event to begin the synchronization process. At this

point of the message exchange, all Federates in the Federation are “waiting” in the Wait

Announce Sync event. They are pending to be signaled by the RTI to request

confirmation of their state of readiness. The Sync Achieved event state is scheduled to

complete the Federate’s portion of readiness confirmation. While the Federate enters a

last waiting event, Wait Federation Sync, the RTI will complete this synchronization

process with a Federation Synchronized message. The replies of the Federate ambassador

will feedback the status of this message exchange to the HLA Time Manager.

 40

Figure 23. HLA Time Manager event graph

The other mechanism in this event graph is the process of requesting time

advancement and of keeping track of the actual amount of time granted to advance. The

amount of time requested to advance is obtained from querying the event list for the time

of the next event that will impact the overall simulation. This means local events are not

placed into consideration. Only events that will impact the simulated entities are of

interest in this situation. The Wait Advance Reply event will then be scheduled in a

periodic time to query the RTI for the time advance grant. This is the only event that

mimics a time-stepped characteristic. Upon a time advancement grant, this periodic poll

is cancelled by the Advance Time To event state.

(FedJoined < f)

{ currentTimeGranted =
timeGranted }

Wait
Register

Sync

Wait
Announce

Sync

Request
Time

Advance

Register
Sync
Point

Advance

Time
To

(timeGranted)

Sync
Achieved

Wait
Federation

Sync

Wait

Advance Reply
(timeRequested)

(FedJoined >= f
&&

Not registered)
(announce

sync)

(not announce sync) (not federation sync)

{ registerSynchronizationPoint() } { synchronizationPointAchieved() }

(currentTimeGranted<= timeRequested)

{timeRequested =
 eventList.getNextEventTime() }

tD

{evokeMultipleCallback() }

tretry tretry tretry

 41

C. SUB-CLASSED COMPONENTS

In the design of the application library, there are several extended classes

instantiated to represent objects and simulated entities exchanged within the component.

These components contain crucial data of the entities, motion characteristics, and the

events scheduled to be executed.

The HLA Entity class is a sub-class of the Simkit SimEntity class. Every instance

of this component represents a simulated entity in the Federate simulation, regardless of

local or HLA. This instance of the HLA Entity class will hold the most updated

information describing the simulated entity in terms of its movement characteristics,

name, representative mover instance, and its action status.

The next sub-classed component is the HLA Basic Linear Mover, which is an

extension of the Basic Linear Mover in the Simkit library. To compute the location of a

HLA entity during every request of the SimEngine, there is a need for the application

library to have the ability to do some simple internal computation. The Basic Linear

Mover class in the Simkit library requires an End Move event state to be scheduled to

predict when the next change of movement characteristics. This behavior is not necessary

in the HLA Basic Linear Mover as it is assumed that the HLA entity will behave in the

recorded movement behavior infinitely till point-of-change. In this situation, when the

point-of-change will occur is not known to the Federate as the event has not happened.

The HLA Basic Linear Mover was, therefore, simplified to compute the location

information based on the stored data at point of request.

The last sub-classed component is the event list in Simkit. To differentiate and

expose more functionality of the event list in Simkit, the HLA Event List was created. An

event list holds and maintains all the local and generic critical events of the Federate

simulation. It is important to avoid large extensive modification to the event list during

simulation as this would cause unexpected error. The HLA Event List balances between

data protection and exposure. The purpose is to minimize the required information, such

as time of the next critical event and time query.

 42

THIS PAGE INTENTIONALLY LEFT BLANK

 43

VI. INTERFACING APPLICATIONS

Up to this point of designing the resulting application library, it consists only of

description and explanation of the architecture for the processes and functions within the

application library. There are missing interfaces to link these processes to exterior

components, such as the Run-Time Infrastructure (RTI) host and the SimEngine. This

chapter explains the design and implementation methodology of these important

interfaces supporting the operations of the application library. Without these interfaces,

any application developed using the application library will not be able to communicate

to the external components and fulfill some purposes of the study.

A. HLA FEDERATE AMBASSADOR

The HLA Federate ambassador is one of the required interfaces that enable Simkit

to be linked to the RTI and classified as High-Level Architecture (HLA)-compliant. The

RTI ambassador serves the purpose of sending messages to the RTI with the standardized

Application Programming Interfaces (APIs). The complementary interface is the Federate

ambassador that allows reception of messages from the RTI. Similar to all interfaces

within the HLA standards, all the interfaces and APIs that call in the Federate

ambassador are standardized implementations. The Federate ambassador class in the RTI

interface library was, thus, implemented and sub-classed to create the HLA Federate

ambassador component.

There is an extensive list of function calls in the Federate ambassador class. Not

all the methods, however, are utilized in the design of the application library. The

Federate ambassador class of the RTI requires a full implementation of all the function

callbacks. This was overcome by implementing a null class, NullFederateAmbassador, to

do nothing for all the function callbacks. The HLA Federate ambassador component,

subsequently, sub-classed this null class and implements only required function callbacks

to handle received messages. Appendix A lists the implemented function callbacks of the

HLA Federate ambassador and their corresponding functions in the overall design.

 44

B. HLA DATA ENCODER HELPER

A Dynamic Link-Compatible HLA API Standard for the HLA Interface

Specifications is defined in the Simulation Interoperability Standards Organization

(SISO) standardization process for HLA interoperability. Compliance with the APIs in

this specification will permit simulation developers to interchange link compatible HLA

RTIs without recompiling Federate source code or re-linking Federate object code with

Dynamic Link-Compatible (DLC) RTI libraries [20]. As a part of this DLC API standard,

an encoder class is required to ensure that the data types of the correct properties are

encoded and decoded accurately in the HLA Federation Object Model (FOM) objects

sent and received, respectively.

The design of the HLA Data Encoder Helper implemented is based on a Java

Linked-Compatible (JLC) library of the RTI. The JLC APIs serves as a code wrapper

around the original C++ object code. In terms of data size and coding, there is a

possibility that the data type defined in the Java code is different from the C++ object

code. The HLA Data Encoder Helper aims to bridge this gap and, at the same time,

conform to the HLA 1516 Interface Specification standards definition of data type [20].

The helper class will directly pack the Java data type into the HLA object class structure

and send out through the RTI ambassador APIs. The HLA messages received via the

Federate ambassador is also unpacked using this helper class and stored into the

respective object class structure listed in Appendix B.

C. HLA SIMKIT API

One of the objectives in the design of the application library is to provide a means

for a SimEngine to connect to an HLA environment without the need to have any setup or

implementation of the HLA standardized APIs. To achieve this functionality of the

application library, it is necessary to have a simple and easy-to-implement interface. This

interface class was designed and created based on the application library. The HLA

Simkit API interface class, besides implementing this feature, encompasses all the

internal APIs required for interfacing the Federate ambassador and the application

 45

library. The purpose of this approach of encompassing all APIs is to provide a central

location of all APIs, internal and external, for ease of reference.

Figure 24. HLA Simkit API class event listening mapping

The HLA Simkit API class functions like an individual application that creates

instances of all the components, subclasses, and interfaces of the application library when

instantiated. As illustrated in Figure 24, the event listening mapping is, subsequently,

created to link the components and to ensure that the proper event interactions are in

place. In addition to implementing the event listening mechanism, the HLA Simkit API

provides a series of interfaces between the SimEngine and the application library. These

interfaces are responsible for providing the SimEngine the means to manage the local and

HLA entities through simple function calls, such as create, update, and delete. Another

important interface that is also included in this series of interfaces is the update request

interface. When an HLA Entity data is required by the SimEngine for display or

computational purposes, the SimEngine requests an update through this interface. The

HLA Simkit API replies via a SimEngine pre-defined API, doReplyPing(), with the

latest computed location information.

HLASimkitAPI

HLAConnectionManager

HLADataManager

HLAEntityListManager

HLATimeManager

 HLAEntity

HLAFederateAmbassador

RTIAmbassador

Sim
Engine

 46

The functionality of the various components was explained in Chapter V, while

the internal interactions between components of the application library and external

interfaces to the SimEngine and HLA host will be described in the following sections.

The interfaces and event listening mechanism created in the HLA Simkit API class will

be illustrated with respect to their functionality in environment setup, entity management,

and time management.

1. HLA Environment Setup

As described in Chapter V, the creation of Federation host and joining to the

Federation Execution as a Federate participant is triggered by running the SimEngine

application. After the HLAConnectionManager component creates the Federation and

joins the Federation, the setup process is handed over to the HLADataManager to handle

publishing and subscribing events. This handover is performed through the event

listening mechanism by having the HLADataManager listen to the Publish Subscribe

event. Although the publishing and subscribing of object models is part of the setup

process, this is done in the HLADataManager component. This is because the object

handles that are returned when declaring that the object structure are used in subsequent

events of sending object creation and data change updates. It also provides clear

categorization of the functionality of event graph component, i.e., the HLADataManager

is responsible for data updates of entity objects.

Figure 25. Environment setup interface through event listening

Publish
Subscribe

HLAConnectionManager HLADataManager

Publish
Subscribe

 47

2. Local Entity Management

The management of the local entities follows the publishing and subscribing

events. The creation and registration of the first entity is performed when an entity

requests function from the HLA Simkit API interface is called. When the CreateEntity()

interface method is called, a record of the local entity is created and the Entity Request

event state is scheduled. With the listening mechanism in place, HLAEntityListManager,

which is listening for this event, will trigger the start of the creation process. This is the

same flow of events used for updating and deleting local entities within the simulation.

The only difference among these processes is the action performed that is recorded in the

HLA Entity. This depends on which interface, CreateEntity(), UpdateEntity(), or

DeleteEntity(), is called at the HLASimkitAPI. The sequence of events ends with the

HLADataManager hearing the Update Entity event from the HLAEntityListManager and

handling the event based on the action recorded in the HLA Entity object to send register,

update, or delete messages to the RTI.

Figure 26. Local entity management interfaces through event listening

Entity
Request
(entity)

Entity
Request
(entity)

Update
Entity

(entity)

Update
Entity

(entity)

registerObjectInstance()
updateAttributeValue()
deleteObjectInstance()

HLASimkitAPI

HLAEntityListManager HLADataManager

Sim
Engine

CreateEntity()
UpdateEntity()
DeleteEntity()

 48

3. HLA Entity Management

In a similar manner, the entity data received from the Federation is managed and

recorded into an entity list. The flow of the entity data goes through several components

via the event listening mechanism. When entity data is received through the function

callbacks in the Federate Ambassador, an instance of the HLAEntity type object is

created and actions are set based on the callback function initiated. A

discoverObjectInstance() sets the create action, reflectAttributeValue() is an update

action and removeObjectInstance() removes the record of the HLA entity.

The same interfacing function calls, CreateEntity(), UpdateEntity(), or

DeleteEntity(), are evoked to trigger the Entity Request event state. The flow of events at

the end of the update process, however, diverts backwards to the HLA Simkit API instead

of proceeding to the HLADataManager. This is unlike the local entity data and is because

the entity data is from the Federation, so there is no need to update the Federation. At the

HLAEntityListManager event graph component, the Entity Request event schedules two

other event states: Add Entity and Start Move event states. The Add Entity event state

informs the SimEngine of the new HLA entity through the HLA Simkit API, where a pre-

defined callback function, AddEntity(), is created by the SimEngine. This callback

function is one of the required functions that the SimEngine application has to provide

when implementing the resulting application library. The Start Move event state marks

the point where the HLA entity changes its properties of movement. This event state is

heard by the HLAEntity object type, which contains an HLA Basic Linear Mover

element, and schedules the same event state to update the movement properties of this

entity into the entity list. Updating the movement properties in the entity list provides an

updated computation of the entity location when a request for update is initiated by the

SimEngine.

 49

Figure 27. HLA entity management interfaces through event listening

4. Time Management

Chapter IV had an extensive discussion about the time management properties

implemented in the design of the resulting application library. The HLA Simkit API

supports the HLA Time Management (HLA-TM) implementation through relaying of

time advance grant messages to HLA Time Manager component and activating the time

offset mechanism. This is in addition to event listening mechanism mapping. After

sending a data update of the local entities, the HLADataManager event graph component

schedules a request to advance in time to the next time of event occurrence. This is

relayed through to the HLATimeManager, which calls the nextMessageRequest() API in

the RTI ambassador to submit the request. The timeAdvanceGrant() reply is issued by

the RTI when it has ensured that there will be no chance of Time Stamp Order (TSO)

messages with time stamp less than the requested. The HLA Federate ambassador calls

the TimeAdvance() in the HLA Simkit API, which schedules the AdvanceTimeTo event

state, subsequently, upon receiving the grant. The HLATimeManager component that is

CreateEntity()
UpdateEntity()
DeleteEntity() HLA

Federate
Ambassador

SimEngine AddEntity()

HLAEntityListManager

Add
Entity

(entity)

Entity
Request
(entity)

Start
Move Start

Move

HLAEntity

Entity
Request
(entity)

HLASimkitAPI

 50

setup to listen for this event state, executes the time advancing process as a resulting

action of this event state. This keeps the record of the current Federate time within the

HLATimeManager for subsequent computation of the time offset mechanism and Lower

Bound Time Stamp (LBTS) check.

Figure 28. Time management interface through HLA event listening

Advance
Time
To

Advance
Time
To

HLASimkitAPI

TimeAdvance()

HLA
Federate

Ambassador

Request
Time

Advance

Request
Time

Advance

HLADataManager

RTI
Ambassador

NextMessageRequest()

HLATimeManager

 51

VII. TEST AND EVALUATION

The objectives of this study are to reduce excessive data exchange, improve

network performance, and ease the implementation requirements of a simulation into a

synchronized High-Level Architecture (HLA) networked environment simulation. The

resulting application library components and interfaces of this study were, therefore, put

into a simple test to demonstrate whether these objectives were achieved. The test

consists of implementing the resulting application library in a simple combat modeling

situation with two nonHLA-compliant simulations. A numerical measurement of data

traffic using a network monitoring tool, Wireshark [24], was also carried out to evaluate

the network utilization during the simulation.

A. SIMULATION ENVIRONMENT

The architecture involving two nonHLA-compliant simulations was put to a test

that implements the resulting application library. Although the application library is

designed to be generic and compatible for most HLA design implementation, there are

some specifications that are required to be standardized before any development can be

done. These requirements include the Federation Object Model (FOM) to be used, the

HLA standards version that the design refers, and the Simulation Engine (SimEngine)

that will be used on the user interfacing ends of the virtual environment simulation.

1. Real-Time Platform Reference FOM

The FOM defines the objects and interactions that will be exchanged in the

Federation. It enables a common understanding of the fields in a message packet that are

exchanged within the Federation. This standardized template is one of the main criteria in

a simulation to be declared as HLA-compliant. The FOM, as stated in the HLA rule, is

supposed to be designed in accordance to the Object Model Template (OMT). Many

vendors and sources of HLA simulation developers have customized their own

proprietary versions of the FOM to be used in the simulation they have designed. This

drives the need to create a common version of the FOM that would encompass most of

 52

the parameters involved in military applications simulation in an object oriented

hierarchical manner. The Real-time Platform Reference Federation Object Model (RPR

FOM pronounced “reaper FOM”) was designed to organize the Protocol Data Units

(PDUs) of Distributed Interaction System (DIS) into a robust HLA object classes and

interactions [21]. Appendix C shows the hierarchical relationship of the full list of RPR

FOM objects class structures. Among the list of object classes in the RPR FOM are

parameters and fields that describe an entity from a general classification of Base Entity

down to the specific platform domain type, such as aircrafts, ground vehicles, and surface

vessels. There are also object classes that represent equipment on board an entity, such as

Embedded System, Emitter System, and stationary environment objects like mine field

and craters. These objects form the main composition of the FOM to fulfill the

requirements of modeling dynamic moving objects to static terrain environment objects.

In this study, to simplify the testing process and to provide a standardized model

template, the RPR FOM version 2 draft 17 was used. This version of the RPR FOM was

used because it is the latest object class definition and a reasonably well-rounded FOM

that describes most general cases of entity configuration. The Base Entity object class is

the top level class structure that contains movement parameters, such as world location,

velocity, and acceleration information, required in this study. Figure 29 shows some of

the possible objects of interest, sub-classed from the Base Entity Object, used in normal

combat operations that can be expanded when necessary. For a simplistic proof of

concept and verification of the success of this study, only the parameters in the Base

Entity object class is used.

 53

Figure 29. Base Entity object class structure

2. Run-Time Infrastructure

In the evolution of the HLA, several versions of HLA standards were developed.

In accordance to the HLA standards definition, the Run-Time Infrastructure (RTI)

coherently has to improve its design to be compatible to the IEEE definitions of the HLA

standards. An RTI 1.1 release was originally planned to correspond to version 1.2 of the

interface specifications, but the high frequency of specification and software releases and

discrepancies in the release numbering schemes proved to be complicated [13].The RTI

1.3 was set as the initial definition and implementation of the RTI. RTI 1.3, however,

needs to improve as technology advances and HLA standards specified by the Simulation

Interoperability Standards Organization (SISO) change. In chronological order of release,

this need to change resulted in the successors of the RTI 1.3: RTI 1.3-NG [13], RTI 1516,

and RTI for HLA Evolved.

Base Entity

Aggregated Entity Environmental Entity Physical Entity

Platform Sensor Munitions

Aircraft Surface Vessel Ground Vehicle

Class 1

Class 2

Class 3

Class 4

 54

The RTI 1516 standard was chosen in this study to be the underlying standard for

RTI implementation. This choice was made because RTI 1516 is considered as the most

recently matured standard that is used constantly by the standards community in the HLA

simulation arena. Although HLA Evolved is the latest standard released by SISO, it is

still quite far from having widespread RTI implementations. Another reason for using the

RTI 1516 is due to the Dynamic Link Compatibility (DLC) capability stated in the IEEE

1516 standards [20] that enabled the development in the Java Linked-Compatibility

(JLC) libraries. The JLC definitions provided the interfaces between the RTI and Simkit,

which is the simulation tool written in Java, driving the architecture design of this study.

3. Simple Movement Detection Simulation

The choice of nonHLA simulation application at the two ends of the simulation

architecture, as mentioned in Figure 15, is purely based on the conditions of availability

and ease of creating a simulation. The length of time available to be committed to this

study is limited. It is, therefore, necessary to use any existing simulation tools, or ready-

to-use applications, to perform a simple real time simulation. Thus, two instances of the

Simple Movement Detection (SMD) model were selected to perform the simulation at the

two ends of the nonHLA simulation architecture. The SandBox animation library in

Simkit was used, in conjunction with the SMD, as the means of animating and displaying

the movement of the entities. These two libraries are readily available in the Simkit

application library and have been proven to work with the Discrete Event Simulation

(DES) concepts implemented.

In addition to their availability, the SMD and SandBox library classes are built

based on Simkit. This provides compatibility between the HLA Simkit API class and the

SMD. For instance, it is not necessary to set up the update request loop between the

SimEngine and the HLASimkitAPI classes since all events are scheduled to the same

event list and the update request is performed by the ping thread. This simplifies the

development process of creating the calling functions and callback methods required at

the simulation side to interface to the HLASimkitAPI.

 55

B. SCENARIO

This study is targeted at enhancing the ability to conduct a networked simulation

under a HLA environment and at embracing the DES concepts to achieve network

efficiency. It also has the purpose of providing an easy and efficient methodology of

conducting simulation training and analysis over the HLA network, in particular military

combat operation scenarios. To effectively demonstrate that the usage of the resulting

application library meets these objectives, a combat scenario, involving a bomber and a

patrolling aircraft, was used.

Figure 30. Simple combat scenario involving a Bomber and Patrolling Aircraft

The scenario illustrated in Figure 30 depicts a simple attack and defend combat

scenario. From the attacker’s perspective, a fighter bomber, represented by the red icon,

conducts a bombing mission towards the objective in a flight path indicated by the solid

red arrows. In the defender side, an aircraft, the blue icon, equipped with detecting

sensors, is patrolling near the objective as the protecting force. The two circles, in light

blue and black, are the maximum range and effective detecting circumference of the

sensor onboard the patrolling aircraft.

Bomber

Patrolling
Aircraft

Objective

 56

The scenario begins with the bomber flying towards the object in the indicated

flight path at a velocity of 150 knots (nautical miles per hour), which is approximately

230.4 miles per hour (mph). The patrolling aircraft is deployed from the objective to

conduct a Combat Air Patrol (CAP) according to the patrol flight path, indicated by the

blue arrows. The bomber proceeds according to the pre-planned flight path and enters the

range of the sensor of the patrolling aircraft. The patrolling aircraft tracks and locks onto

the attacking bomber to perform a defensive action of possible engagement. Given that

the bomber is equipped with some form of Electronic Warfare (EW) system that notifies

if defensive action is taken by the aircraft, it aborts its mission and performs an evasive

maneuver.5 The bomber flight path changes and flies in a returning flight path. This is

indicated by the dotted red arrow. The patrolling aircraft breaks from its defensive

reaction and continues on its CAP until it returns to the objective.

This is a situation commonly occurring in combat operations and is deemed

sufficient in this study to provide several proofs of the concepts adopted. The concepts of

HLA compliancy in Simkit, updating of entity data “upon change,” internal computation

of entity location using the equation of movement, and assessing the overall network

performance can be evaluated using this scenario.

C. IMPLEMENTATION

This section of the chapter explains the implementation of the resulting

application library. After defining the environment parameters and designing the scenario

to simulate, there is, as mentioned in Chapter VI, a need to design the interface

requirements of the SimEngine. An initial analysis of the messages exchanged when

simulating the scenario is conducted.

5 This reaction is purely for illustration purposes and does not represent normal reaction in combat

operations.

 57

1. Interface Implementation

In Chapter VI, the design of the interfaces provided to external application, the

SimEngine in particular, requires some processes to call the interfacing methods for

managing local entities and callback functions to be defined for managing replies and

updates of HLA entities. As explained in previous sections of this chapter, the SMD

model from the Simkit application library is used to perform the role of the SimEngine.

There is no need to specifically call the interfacing function to manage the local entities

as the events involved, local and global, are scheduled to the same event list. Instead, this

allowed the event listening mechanism to be setup as the interface. The

SMDHLASimkitAPI6 Java class, an extension of the HLASimkitAPI class, which is

designed to hold all the interfacing APIs, is created to setup these event listening

mechanisms. These event listeners are created to specify the corresponding

HLASimkitAPI interface to execute with respect to specific event states of the SMD

simulation.

6 There are multiple approaches to implement the application library. These differ according to

designer implementation. Sub-classing the HLASimkitAPI is just one of these ways.

 58

Figure 31. NonHLA Simulation implementation with SMD model

Figure 31 shows a typical implementation of the resulting application library

making use of the Simkit library to perform the simulation, event management, and event

listening mechanisms. The SMD model consists of several event graph components that

allowed it to achieve simulation of the entities’ movements. They are the mover manager

that handles waypoint movements of the entity, referee and mediators that determine the

detection events between entities and sensor, and, lastly, the SandBox classes that enable

animated displays of the simulation with Java graphical components [5]. From the

implementation of the SMD simulation model, there are two event states of particular

importance when interfacing with the HLASimkitAPI. They are the Register Mover and

the Start Move event states.

The Register Mover event state is scheduled when an entity mover component is

created in the SMD simulation model. It declares to all interested event graph

components, such as the referee and mediator, of the existence of the entity. This is to

Interfacing
Methods

SMDHLASimkitAPI

Register
Mover

Start
Move

CreateEntity()

UpdateEntity()

HLASimkitAPI

Register
Mover

Start
Move

SMD Model

NonHLA Simulation

 59

allow the referee, the mediator, and the Sandbox, to keep track of detection events

scheduling and polling of entity data for graphical display. The Register Mover event

state, therefore, is required to trigger the CreateEntity() interface to inform the

Federation of this creation. The Start Move event state indicates the start in movement of

an entity. It is, hence, an important event state to be listening for, so that the flagging of

the change in entity motion can be recorded and updated to the Federation.

2. Message Exchange Walkthrough

After implementing the resulting application library and the related interfaces, it is

useful to conduct a “pen and paper” simulation, without the exact reference to time, to

step through the simulation processes. Listing the expected messages that would be

exchanged over the network and events that would be scheduled into the event list

provides a clearer picture of the expected results and ease the troubleshooting of errors

that might be made during the development process. The simulation can be divided into

three sections: the environment setup, the time synchronization, and the actual simulation

process.

After developing the SMD simulation model as the SimEngine and integrating it

with the resulting application library, connecting and setting up the HLA environment for

connection is the first step. Upon instantiating the SMDHLASimkitAPI class, the

connection setup begins. The sequence of creating an HLA environment starts with the

simulation host creating the Federation. This is followed by the local Federate joining to

the Federation. While it waits for the rest of the participating Federate to join to the

Federation, it executes the object class declaration. Figure 32 shows the Unified

Modeling Language (UML) method of illustrating the function calls and message

exchanges between the participants of the simulation. The Federation host, SMD1, and

the participating Federate, SMD2, transit into a wait state for the next section of the

simulation. These functions are all carried out at simulation time zero before the

simulation starts.

 60

Figure 32. UML diagram of function calls for HLA connection setup

The simulation continues, subsequently, with the two SMD simulation models

creating the first local entity, the bomber and the patrol aircraft, respectively. The

Register Mover event state is scheduled at the corresponding event list. A

registerObjectInstance() function is delivered to the RTI and a discoverObjectInstance()

delivered from the RTI to opposite Federate. This announces the creation of the entity

object and acts as an indication to the Federation host that the Federate has joined

successfully. In this simulation, the Federation host recorded that SMD2 has joined

successfully and, thus, will begin the time synchronization process. Since the

synchronization events are all scheduled with highest priority in the event list, the

simulations at both sides are not able to start until the Federation is declared

synchronized.

subscribeObjectClassAttribute()

publishObjectClassAttribute()

SMDHLASimkitAPI()

joinFederationExecution()

createFederationExecution()
SMDHLASimkitAPI()

SMD 1 SMDHLASimkitAPI1 RTI SMDHLASimkitAPI2 SMD 2

createFederationExecution()

joinFederationExecution()

RTIException:
FederationExecutionAlready

Exist
FederateHandle

FederateHandle

publishObjectClassAttribute()

subscribeObjectClassAttribute()

publishInteractionClass()

subscribeInteractionClass()

subscribeInteractionClass()

publishInteractionClass()

 61

Figure 33. UML diagram of Federation time synchronization process

Declaration of the Federation as synchronized marks the completion of the setup

process and the start of the actual simulation. With reference to the simulation scenario,

the two entities are only created by the corresponding simulation. Their initial movement

properties are not updated to the Federation execution. At simulation time equals 0, both

simulations send updateAttributeValue() messages to inform other Federates in the

Federation of the initial data of their local entities. Subsequently, the two instances of the

resulting application library implementation, SMDHLASimkitAPI1 and

SMDHLASimkitAPI2, request to advance their simulation time using

nextMessageRequest() with time stamp 5 and 3, respectively. This updating pattern

continues till the simulation time equals 5. The respective SMD simulations are doing

their own time step simulations of requesting entity location updates through the Ping

thread at different update rates and displaying entities on the Sandbox screen.

discoverObjectInstance
(bomber)

doRegisterMover() registerObjectInstance
(aircraft)

doRegisterMover ()

SMD 1 SMDHLASimkitAPI1 RTI SMDHLASimkitAPI2 SMD 2

registerObjectInstance(bomber)

discoverObjectInstance
(aircraft)

registerSynchronizationPoint()

announceSynchronizationPoint()

synchronizationPointAchieved()

federationSynchronized()

announceSynchronizationPoint()

synchronizationPointAchieved()

federationSynchronized()

AddEntity ()
AddEntity ()

 62

Figure 34. Simulation walkthrough of messages exchanged

SMD2
Simulation

 Time

Time = 10

Ping
ReplyPing

Ping
ReplyPing

Bomber

Patrolling
Aircraft

Objective

UAV(TS) = UpdateAttributeValue with Time Stamp, TS
RAV(TS) = ReflectAttributeValue with Time Stamp, TS
NMR(TS) = NextMessageRequest with Time Stamp, TS
TAG(TS) = TimeAdvanceGrant to Time, TS

0

1

2

3

4

5

6

7

8

9

SMD1
Simulation

 Time

SMDHLASimkitAPI1
Federate Time RTI

UAV(1) UAV(1)

NMR(5)

RAV(1)

NMR(3)

RAV(1)

0

1

0

1

3

TAG(3)

UAV(4)

RAV(6)

4 NMR(5)
TAG(5)

5
UAV(6)

5

7

NMR(7)

7

0

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

LBTS

10

SMDHLASimkitAPI2
Federate Time

Time = 3Time = 5

Time = 5

Time = 12 Time = 18

(Time = 12) Time = 15

TAG(5)

UAV(6)

RAV(6)
NMR(7)

TAG(7) TAG(7)

Time = 7

Start Move

Ping

ReplyPing

Ping

ReplyPing

Ping

Ping

Ping

ReplyPing

Start Move

Time = 30

UAV(8) UAV(8)

NMR(12) NMR(12)

Ping
ReplyPing

Ping
ReplyPing

Ping
ReplyPing

Ping
ReplyPing

Ping
ReplyPing

Ping
ReplyPing

Ping
ReplyPing

Start Move

Start Move Start Move

Start Move

RAV(4)

 63

As illustrated in Figure 34, at time 5, the bomber and the patrolling aircraft have

the next point of change at 10 and 12, respectively. After receiving the updates occurring

at time 5, the detection model of the SMD simulation schedules a Detection event state

into the event list. This triggers the reaction of the bomber to abort its mission due to the

patrolling aircraft defensive action. At the same instance of time, the next points of

change for both simulations are removed from their individual event lists. A point of

change at time 7 is scheduled into their event lists for the bomber’s evasive action to

return and the patrolling aircraft to prepare for engagement. Eventually, the patrolling

aircraft continues its patrol route as the bomber has retreated, resulting in the

nextMessageRequest() with time stamp 12 for both entities. The simulation completes

with the patrolling aircraft returning to the objective in the last update of movement

properties at time 18.

D. RESULTS

Through simulating the mentioned scenario under the indicated HLA

environment, the results of the simulation were gathered and analyzed. Through the

results obtained, the data exchange reduction objective can be verified. Using two

separate computer platforms, each executing an instance of the developed simulation at

different update rates, the HLA-networked simulation between two nonHLA-compliant

simulations was conducted. In this test, the MAK RTI [23] was used as the RTI host.

Figure 35 shows the resulting graphical display at each of the SMD simulations at

the same time of 33.00. From the displays of the separated SMD simulations, the HLA

data exchanges are shown to be successful and synchronized. This satisfies the objective

of enabling ease of implementing nonHLA simulation into a HLA environment with the

use of the resulting application library. It also shows that the methodology of using the

HLA Time Management (HLA-TM) to perform a synchronized event-driven real-time

simulation is possible and achievable. The difference in update rate and computer

platform performance did not affect the synchronization of the simulation. It proves that

the resulting application library achieved removing the possibility of problems occurring

when linking simulations of different performances.

 64

Figure 35. SMD simulation display of the synchronized simulation

 65

During the execution of the simulation, the network monitoring tool, Wireshark

[24], was activated in the Federation host computer SMD1 to track and record the

messages exchanged over the network. A comparison between the number of the

messages captured by Wireshark tool when simulating with the resulting application

library implementation and a simple calculation of the expected count in a conventional

time-stepped HLA simulation, shows that there is a significant reduction of messages

exchanged.

 Time-Stepped Simulation HLA Simkit Application

Library
IGMP messages for multicast
set up

2 2

UDP messages for data
exchange

30 updates per sec x 18.499346secs

≈ 555

14

Figure 36. Wireshark records of messages and comparison of results

 66

THIS PAGE INTENTIONALLY LEFT BLANK

 67

VIII. CONCLUSION

Traditional time-stepped simulation in a High-Level Architecture (HLA)

networked environment dominates most of the current HLA-compliant real-time

simulation processes. The problems of excessive data exchange, increasing network

latency, and incompatibility of simulation of different performance to conduct

synchronized simulation, were noted during the initial research of the study. This thesis

study was aimed at improving, if not resolving, these problems. Before designing a

possible solution, discrete Event Simulation (DES) paradigm and dead reckoning

methodology was researched to provide more insight. The result of the research and

development was the resulting application library and implementation architecture.

The proposed architecture and methodology of performing an HLA event-driven

simulation, with the assistance of the concepts adopted from DES, was proven useful.

Applying the HLA Simkit Application Programming Interface (API) library and the

various event graph components enabled Simkit to be HLA-compliant. The DES concept

of scheduling events into the future and the Simple Movement Detection (SMD) model

of computing movement information in advance led to the achievement of the objectives

identified at the beginning of the study. The study of implementing Discrete Event

Simulation (DES) concepts in a High-Level Architecture (HLA) environment concluded

with the successful implementation of the resulting application library. Conducting the

test simulation between two nonHLA-compliant simulations and, eventually, enabling

them to harness the advantages characteristically designed in the resulting application

library, managed to significantly improve the issues of a traditionally designed HLA-

networked simulation.

Although the results of this study have demonstrated improvements to an HLA-

networked simulation through the use of DES concepts, there are still unexplored

improvements in the design and further verification of the capability of the application

library. The current design of the resulting application utilizes only a small part of the

Federation Object Model (FOM) to exchange basic information of movement and

 68

location. Expansion of the design to utilize fully the set of object templates could prove to

be beneficial to perform an all-rounded simulation. A suite of interactions in the FOM

would be helpful to achieve proper action and reaction algorithm to the simulations. An

unexplored arena of this domain is experimenting with the DES methodology to execute

close distance and intensive maneuver combat situation, such as the dog-fight scenario in

air combat operations. In the current state of the design, these situations of high

frequency changes of motion deemed to be inconclusive and possibly detrimental to the

aim of reducing excessive data exchange.

Another recommendation for subsequent work is to test the boundary of this

methodology of using DES in an HLA-networked environment. Developing a more data

intensive simulation and integrating it with the resulting application library is another

recommendation. This would create a load-test situation, thus, evaluating its limit to

remain synchronized and collecting a more substantial amount of results in network

performance improvements. Lastly, the only weakness of the application library is the

importance of each message exchanged over the HLA network. Every message indicates

a point-of-change to object information. Since DES concepts of dead reckoning are used

to compute the location of the object, each message becomes crucial to the simulation.

Losing a message during the exchange of data would cause the simulation to fail.

Although reliable transport protocol is used in the design, with increasing network load

and simulation lapse, in general there is no guarantee of message transportation.

Investigation into some form of message re-transmission algorithm implementation

would provide an insurance of message delivery.

In conclusion, the application library developed in this study has proven to be

effective and achieved the intended objectives. Although there are some weaknesses in

this methodology with regards to intensive real-time simulation, it is beneficial to

implement it in combination with normal time-stepped simulation. Using the resulting

application library to handle pre-planned entities with simple movement behavior, such

as Computer Generated Forces (CGF), in real-time simulation would significantly lighten

processing load of the simulation application and simulation engine.

 69

APPENDIX A. HLA FEDERATE AMBASSADOR CALLBACKS

Function Callbacks Description Possible Exceptions

public void timeConstrainedEnabled
(LogicalTime arg0)

A reply from the RTI indicating that
declaring to be time constrained is
successful

InvalidLogicalTime
NoRequestToEnableTimeConstrainedWasPending
FederateInternalError

public void timeRegulationEnabled
(LogicalTime arg0)

A reply from the RTI indicating that
declaring to be time regulating is
successful

InvalidLogicalTime
NoRequestToEnableTimeRegulationWasPending
FederateInternalError

public void synchronizationPointRegistrationSucceeded
(String arg0)

Indicates the success of registering a
synchronization point

FederateInternalError

public void synchronizationPointRegistrationFailed
(String arg0,SynchronizationPointFailureReason arg1)

Indicates the failure of registering a
synchronization point

FederateInternalError

public void announceSynchronizationPoint
(String arg0, byte[] arg1) A message from the RTI during the

synchronixation process that is sent to all
joined Federates to trigger synchronized
declaration

FederateInternalError

public void federationSynchronized
(String arg0)

Final message of the synchronization
process that informs Federates that the
Federation is synchronized and
simulation can begin

FederateInternalError

public void objectInstanceNameReservationSucceeded
(String arg0)

Successful reservation of the object name
before starting to register object

UnknownName
FederateInternalError

public void discoverObjectInstance
(ObjectInstanceHandle theObject,
ObjectClassHandle theClassHandle,
String objectName)

A forwarded message to all Federates
interested the specified type of object
informing of its creation

CouldNotDiscover
ObjectClassNotRecognized
FederateInternalError

public void reflectAttributeValues
(ObjectInstanceHandle theObject,
AttributeHandleValueMap theAttributeValues)

An updating message of the data of the
specific entity

ObjectInstanceNotKnown
AttributeNotRecognized
AttributeNotSubscribed

 70

Function Callbacks Description Possible Exceptions

byte[] userSuppliedTag
(OrderType sentOrdering,
TransportationType theTransport,
LogicalTime theTime,
OrderType receivedOrdering)

FederateInternalError

public void receiveInteraction
(InteractionClassHandle theInteractionClass,
ParameterHandleValueMap theParameterValues,
byte[] theUserSuppliedTag,
OrderType sentOrder,
TransportationType theType,
LogicalTime theTime,
OrderType receiveOrder)

An indication of an incoming event
InteractionClassNotRecognized
InteractionParameterNotRecognized
InteractionClassNotSubscribed
InvalidLogicalTime
FederateInternalError

public void removeObjectInstance
(ObjectInstanceHandle arg0,
byte[] arg1,
OrderType arg2,
LogicalTime arg3,
OrderType arg4)

A deletion message of the specified entity
ObjectInstanceNotKnown
FederateInternalError

public void timeAdvanceGrant
(LogicalTime arg0) A result of a next message request

allowing the indicated time advancing
allowance

InvalidLogicalTime
JoinedFederateIsNotInTimeAdvancingState
FederateInternalError

 71

APPENDIX B. JAVA HLA SIMKIT FOM OBJECT CLASS

Object Class Parameters Data Type Description

entityType EntityTypeStruct Contains DIS coding of identifying the type of object

entityIdentifier EntityIdentifierStruct Contains the specific identification of the object in the
simulation

BaseEntity

spatial SpatialStruct Motion data of the object

entityKind byte Defines the kind of entity the object represents. E.g.,

1 - Platform

2 - Munition

9 - Sensor

domain byte Defines the domain of the entity as a land, air, or surface
object

countryCode short Defines the country of origin of the object

category byte Defines the category of type of object. E.g., a tank of the
land platform domain

subcategory byte Further break down of the object type into specifc group
of category. E.g., M1 Abrams Main Battle Tank.

specific byte Indicates the specific model or version of the object type.
E.g., M1A1 Abrams

EntityTypeStruct

extra byte Indicates the an extra information of the object type

FederateIdentifier FederateIdentifierStruct Indicates the ownership of the object EntityIdentifierStruct

entityNumber short Entity number ID of the object in the simulation

siteID short Specific numeric ID of the hardware location FederateIdentifierStruct

applicationID short Specific numeric ID of the application in the hardware
platform

 72

Object Class Parameters Data Type Description

deadReckoningAlgorithm byte Indicates which type of dead reckoning algorithm is used
in the simulation. E.g., 1-Static, 2-FPW

padding byte

spatialStatic SpatialStaticStruct Information of location and orientation if the object is
using static dead reckoning

SpatialStruct

spatialFPW Information of location,velocity, and orientation if the
object is using FPW dead reckoning

worldLocation

WorldLocationStruct Location of the object in the world coordinates

isFrozen boolean Indicates if object is paused

SpatialStaticStruct

orientation OrientationStruct Orientation of the object

worldLocation

WorldLocationStruct Location of the object in the world coordinates

isFrozen boolean Indicates if object is paused

orientation OrientationStruct Orientation of the object

SpatialFPStruct

velocityVector VelocityVectorStruct Velocity data of the object

X double x-component of object location coordinates

Y double y-component of object location coordinates

WorldLocationStruct

Z double z-component of object location coordinates

Psi float Roll component of the object orientation

Theta float Pitch component of the object orientation

OrientationStruct

Phi float Yaw component of the object orientation

xVelocity float x-component of the object velocity vector

yVelocity float y-component of the object velocity vector

VelocityVectorStruct

zVelocity float z-component of the object velocity vector

 73

APPENDIX C. RPR FOM OBJECT CLASS STRUCTURE [22]

 74

THIS PAGE INTENTIONALLY LEFT BLANK

 75

LIST OF REFERENCES

[1] D. J. Price, S. Nahavandi, S. Walsh, and D. Creighton, “Linking discrete event
simulation models using HLA,” Systems, Man and Cybernetics, 2005 IEEE
International Conference on, Oct. 10–12, 2005, vol. 1, no., pp. 696–701.

[2] C. D. Pham and R. Bagrodia, “HLA support in a discrete event simulation
language,” Proceedings of the Third Workshop on Distributed Interactive
Simulation and Real-Time Applications, Oct. 1999, pp. 93–100.

[3] Discrete event simulation. (October 6, 2010), Wikipedia, The Free Encyclopedia.
Retrieved 22:56, Oct. 8, 2010, Retrieved from
http://en.wikipedia.org/w/index.php?title=Discrete_event_simulation&oldid=389
026003.

[4] A. Buss, “Event graph models and simkit,” class notes for OA3302, Operations
Research Department, Naval Postgraduate School, Monterey, California, Winter
2009.

[5] A. H. Buss and P. J. Sánchez, “Simple movement and detection in discrete event
simulation,” Proceedings of the 2005 Winter Simulation Conference, 2005, pp.
992–1000.

[6] R. Crosbie, J. Zenor, and S. Goberstein, “High-Level Architecture module 1, part
1 introduction to the high-level architecture,” Cal State University, Chico,
California, Nov. 14, 2001,
http://www.ecst.csuchico.edu/~hla/LectureNotes/HLA_1516_M1_P1.doc.

[7] “IEEE standard for modeling and simulation (M&S) High-Level Architecture
(HLA)-Object Model Template (OMT) Specification,” IEEE Std 1516.2-2000,
pp. i–130, 2001. Retrieved from
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=915738

[8] R. M. Fujimoto and R. M. Weatherly, “HLA time management and DIS,” 14th
Workshop on Standards and Interoperability of Distributed Simulations, Mar.
1996.

[9] T. C. Hyon and R. M. Weatherly, “The High-Level Architecture (HLA)
Management Object Model (MOM) Extensions in RTI Version 1.0,” 1997 Spring
Simulation Interoperability Workshop.

[10] R. Crosbie, J. Zenor, and S. Goberstein, “High-Level Architecture module 2,
advance topics: management object model,” Cal State University, Chico, Sept. 16,
1999, http://www.ecst.csuchico.edu/~hla/LectureNotes/Mom.pdf.

 76

[11] R. M. Fujimoto and R. Weatherly, “Time management in the DoD High-Level
Architecture,” Proceedings of the 10th Workshop on Parallel and Distributed
Simulation, IEEE Computer Society Press, Los Alamitos, Calif., 1996, pp. 60–67.

[12] R. M. Fujimoto, “HLA time management: design document 1.0.,” Aug. 15, 1996.
Retrieved from www.cc.gatech.edu/computing/pads/PAPERS/HLA-TM-1.0.pdf.

[13] Department of Defense, Defense Modeling and Simulation Office, “High-Level
Architecture Run-Time Infrastructure: RTI 1.3-next generation programmer’s
guide version 3.2.” Retrieved from
http://sslab.cs.nthu.edu.tw/~fppai/HLA/RTI%201.3/RTI_NG13_Programer%20G
uide.pdf.

[14] L. Schruben, “Simulation modeling with event graphs,” Communications of the
ACM, vol. 26, No. 11, pp. 957–963, Nov. 1983.

[15] A. H. Buss, “Component based simulation modeling with Simkit,” Proceedings of
the 2002 Winter Simulation Conference, 2002, pp. 243–249.

[16] R. M. Fujimoto, “Parallel and distributed simulation,” 1995 Winter Simulation
Conference Proceedings, Dec. 1995, pp. 118–125.

[17] A. H. Buss, “Basic event graphs modeling,” Simulation News Europe, Technical
Notes, Issue 31, Apr. 2001.

[18] A. H. Buss and P. J. Sanchez, “Modeling very large scale systems: building
complex models with LEGOs (Listener Event Graph Objects),” Proceedings of
the 34th conference on Winter simulation: Exploring new frontiers, Dec. 8–11,
2002, San Diego, California.

[19] A. H. Buss, “Modeling with Event Graphs,” Proceedings of the 1996 Winter
Simulation Conference, 1996, pp. 153–160.

[20] SISO, “Dynamic Link Compatible HLA API Standard for the HLA Interface
Specification (IEEE 1516.1 Version),” SISO-STD-004.1-2004. Retrieved from
http://www.sisostds.org/DigitalLibrary.aspx?Command=Core_Download&EntryI
d=30828.

[21] SISO, “Guidance, rationale, and interoperability manual for the Real-time
Platform Reference Federation Object Model (RPR FOM) Version 2.0D17v3,”
Oct. 3, 2003. Retrieved from SISO Digital Library
http://www.sisostds.org/DigitalLibrary.aspx?Command=Core_Download&EntryI
d=17151

 77

[22] SISO, “Real-time Platform Reference Federation Object Model (RPR FOM)
Version 2.0D17,” Sept. 10, 2003. Retrieved from SISO Digital Library
http://www.sisostds.org/DigitalLibrary.aspx?Command=Core_Download&EntryI
d=17186

[23] MAK Run-Time Infrastructure trial version 4.0, Retrieved Sept. 3, 2010, from
www.mak.com

[24] Wireshark version 1.2.10, Retrieved Aug. 23, 2010, from http://media-
2.cacetech.com/wireshark/win64/wireshark-win64-1.4.1.exe

[25] Richard M. Fujimoto, Kalyan Perumalla, Alfred Park, Hao Wu, Mostafa H.
Ammar, George F. Riley, “Large-scale network simulation: how big? how fast?”
Modeling, Analysis, and Simulation of Computer Systems, International
Symposium on, p. 116, 11th IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunications Systems
(MASCOTS'03), 2003.

 78

THIS PAGE INTENTIONALLY LEFT BLANK

 79

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Arnold H. Buss
Naval Postgraduate School
Monterey, California

4. Donald McGregor
Naval Postgraduate School
Monterey, California

5. Professor Tat Soon Yeo
Director
Temasek Defence Systems Institute (TDSI)
National University of Singapore
Singapore

6. Ms Tan Lai Poh
Senior Manager
Temasek Defence Systems Institute (TDSI)
National University of Singapore
Singapore

7. Singapore Technologies Electronics (Training and Simulation Systems) Pte Ltd
Singapore

