

Calhoun: The NPS Institutional Archive

Theses and Dissertations

Thesis Collection

2009-03

A Business Case Analysis (BCA) of the One Box -One wire (OB1) Joint Combined Technology Demonstration (JCTD)

Slaybaugh, Paul J.

Monterey, California. Naval Postgraduate School

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

NAVAL POSTGRADUATE SCHOOL

MONTEREY, CALIFORNIA

THESIS

A BUSINESS CASE ANALYSIS (BCA) OF THE ONE BOX – ONE WIRE (OB1) JOINT COMBINED TECHNOLOGY DEMONSTRATION (JCTD)

by

Paul J. Slaybaugh Jr.

March 2009

Thesis Advisor: Second Reader: Daniel A. Nussbaum Steve Iatrou

Approved for public release; distribution is unlimited

REPORT DOCUMENTATION PAGE			Form Approv	ved OMB No. 0704-0188		
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sour ces, gather ing and maintaining the da ta needed, and co mpleting and r eviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.						
1. AGENCY USE ONLY (Leave	blank)	2. REPORT DATE March 2009	3. RE		ND DATES COVERED	
4. TITLE AND SUBTITLE A Be (OB1) Joint Combined Technology6. AUTHOR(S) Paul J. Slaybaugh	/ Demonstration (ne Wire	5. FUNDING N	IUMBERS	
7. PERFORMING ORGANIZAT Naval Postgraduate School Monterey, CA 93943-5000	FION NAME(S)	AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER		
			10. SPONSORING/MONITORING AGENCY REPORT NUMBER			
11. SUPPLEMENTARY NOTES or position of the Department of			nose of the	author and do no	ot reflect the official polic y	
12a. DISTRIBUTION / AVAILA Approved for public release; distrib				12b. DISTRIBU	UTION CODE	
13. ABSTRACT (maximum 200	words)					
Central Command (USCENTC primary goal of the JCTD Pro- innovative concepts to add rest needs of the warfighter. Sim Program, and now the Joint Ca- warfighting solutions to every to The OB1 JCTD is an networks (NIPR, SIPR, etc.) to while still preserving the separa This thesis will be a b compared to the cu rrent DoD converting the existing militar specifically on OB JCTD initia	20M) i nitiative ogram is to den s the joint, co a ace in ception in apability Techn major Combatan initiative design o an environmer ation and securi bu siness case an 0 m ulti-networ y network infra tive.	that has been approven nonstrate, op erationall lition an d inte ragency 19 95, th e Ad vance ology Demonstration at Command theater. ned to transform the en- that allo ws the user ty of data flows. n alysis of the cost of f k in frastructure. Th structure into OB1 is	ed by con ly assess, / op eratic d C oncer (JCTD) F x isting Do to access i mpleme is th esis financial	agress for a FY and transition of onal g aps and s of Tec hnology I Program, has d e epartment of De all networks front nting and susta will ad dress th ly feasible. This	cap ability so lutions and hortfalls in meeting the Dem onstration (ACTD) ployed critically needed efense (DoD) air-gapped om a single PC terminal ining the OB1 JC TD as e q uestion o f whether s thesis will concentrate	
SUBJECT TERMS Busine ss Ca Technology Demonstration, JC TE Operation Forces Cross domain s Assurance P latform, HAP, Class Management and Operations S ys ACTD, Agile Coalition Environme DoDIIS, DTW, NetTop	D, Advanced Con ervices Architect sification Stateles stem, COSMOS,	ncept Technology Demo sure and S ystem Enhanc ss Trusted Environment, Advanced Concept Te	em ents, S CS TE, C cchnology	OFCASE, High oali tion S ecure Demonstration,	15. NUMBER OF PAGES 77 16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT Unclassified	PAGE	TION OF THIS	ABSTRAC	ICATION OF	20. LIMITATION OF ABSTRACT UU	
NSN 7540-01-280-5500				Stand	lard Form 298 (Rev. 2-89)	

Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

A BUSINESS CASE ANALYSIS (BCA) OF THE ONE BOX – ONE WIRE (OB1) JOINT COMBINED TECHNOLOGY DEMONSTRATION (JCTD)

Paul J. Slaybaugh Jr. Lieutenant Commander, United States Navy B.S., University of North Florida, 1999

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS AND OPERATIONS

from the

NAVAL POSTGRADUATE SCHOOL March 2009

Author: Paul J. Slaybaugh Jr.

Approved by: Dr. Daniel A. Nussbaum Thesis Advisor

> Steve Iatrou Second Reader

Dr. Daniel C. Boger Chairman, Department of Information Sciences

ABSTRACT

The One Box One W ire (OB1) Joint Com bined Technology De monstration (JCTD) is a United Sta tes Central Comm and (USCENTCOM) initia tive that has been approved by congress for a FY 2009 rolling st art. The prim ary goal of the JCTD Program is to dem onstrate, operationally assess, and trans ition capability solutions and innovative concepts to address the joint, co alition and interagency operational gaps and shortfalls in meeting the needs of the warf ighter. Since inception in 1995, the Advanced Concept Technology Dem onstration (ACTD) Program, a nd now the Joint Capability Technology Demonstration (JCTD) Program, has deployed critically needed warfighting solutions to every major Combatant Command theater.

The OB1 JCTD is an initiativ e designed to transform the existing Departm ent of Defense (DoD) air-gapped networks (NIPR, SIPR, etc.) to an environment that allows the user to access all networks from a single PC terminal while still preserving the separation and security of data flows.

This thes is will be a b usiness c ase analys is of the cos t of im plementing and sustaining the OB1 JCTD as com pared to the current DoD multi-network infrastructure. This thesis will address the question of whether converting the existing military network infrastructure into OB1 is financially feasible. This thesis will concentrate specifically on OB JCTD initiative.

TABLE OF CONTENTS

I.	INT	RODUCTION	.1
	А.	PURPOSE AND BACKGROUND OF THE STUDY	.1
	В.	PROBLEM STATEMENTS	.3
	C.	CASE FOR CHANGE	
		1. Technical Environment	.4
		2. Operational Environment	.4
	D.	RESEARCH METHODOLOGIES, LIMITATIONS AND	
		ASSUMPTIONS	.6
II.	ANA	ALYSIS OF ALTERNATIVES (AOA)	7
	A.	SPECIAL OPERATION FORCES CROSS DOMAIN SERVICES	. /
	1 .	ARCHITECTURE AND SYSTEM ENHANCEMENTS (SOFCASE)	8
	B.	HIGH ASSURANCE PLATFORM (HAP)	
	C.	CLASSIFICATION – STATELESS, TRUSTED ENVIRONMENT	.0
	0.	(CSTE) JOINT COMBINED TECHNOLOGY DEMONSTRATION	
		(JCTD)	.9
	D.	COALITION SECURE MANAGEMENT AND OPERATIONS	
	21	SYSTEM (COSMOS) ADVANCED CONCEPT TECHNOLOGY	
		DEMONSTRATION (ACTD)	0
	E.	AGILE COALITION ENVIRONMENT (ACE)1	
	F.	DEPARTMENT OF DEFENSE INTELLIGENCE INFORMATION	
		SYSTEMS (DODIIS) TRUSTED WORKSTATION (DTW)1	5
		1. DTW and Trusted Computer Solutions (TCS)	
		2. DoDIIS Trusted Workstation1	
		3. DTW Return-on-Investment1	6
	G.	NETTOP1	7
		1. HP NetTop	20
		2. TCS NetTop	
III.	OR1	OPERATIONAL DESCRIPTION) 2
111.	A.	CURRENT NETWORK ENVIRONMENT ("AS-IS")	
	л. В.	NETWORK ENVIRONMENT WITH OB1 ("TO BE")	
	D.	1. Cross Domain Solution	
		2. High Robustness	
		0	
IV.		SINESS CASE ANALYSIS (BCA) DEFINED	
	A.	BUSINESS CASE ANALYSES	
		1. Definition	
		2. Data Collection	
		3. Evaluation Analysis	
	р	4. Results Presentation	
	B.	WORK BREAKDOWN STRUCTURE (WBS)	
	C.	NET PRESENT VALUE (NPV) ANALYSIS	
	D.	RETURN ON INVESTMENT (ROI) ANALYSIS	5

	Е.	PAYBACK PERIOD	36
	F.	SENSITIVITY ANALYSIS	36
V.	OB1	BUSINESS CASE ANALYSIS	37
	А.	OB1 WORK BREAKDOWN STRUCTURE (WBS)	37
		1. Investment	37
		2. Operations and Support (O&S)	37
	В.	ANALYSIS OF CENTCOM DATA	
		1. Net Present Value (NPV) Analysis	38
	C.	RETURN ON INVESTMENT (ROI)	40
	D.	SENSITIVITY ANALYSIS	
		1. Varying the Amount of Non-recurring Initial Investments	41
		2. Sensitivity Analysis on Recurring Investment	
		3. Varying % of Discount Factor	
VI.	CON	ICLUSION AND RECOMMENDATIONS	47
	А.	OVERVIEW	
	В.	FINANCIAL ANALYSIS	47
	C.	SENSITIVITY ANALYSIS	48
	D.	RISK ANALYSIS	48
	Е.	BOTTOM LINE	49
	F.	RECOMMENDATIONS FOR FUTURE RESEARCH	49
APP	ENDIX	ΚΑ	51
APP	ENDIX	КВ	55
LIST	C OF R	EFERENCES	57
INIT	'IAL D	ISTRIBUTION LIST	59

LIST OF FIGURES

Figure 1.	COSMOS vs. Current Operations [From Cosmos Aims, Fig 1-1]	11
Figure 2.	NetTop VMs in an ACE architecture [From Referentia Systems Inc, Fig 1]	14
Figure 3.	HP NetTop [From HP NetTop, Fig 2]	20
Figure 4.	Typical Desktop Environment [From Network, Fig 2-1]	24
Figure 5.	OB1 Operational View [From Network, Fig 2-2]	25
Figure 6.	Typical OB1 LAN Architecture [From Network Infrastructure, Fig 3]	26
Figure 7.	High Robustness Chart [From Staneszewski, Fig 3]	28
Figure 8.	BCA methodology as defined by the DAU [From Defense, Fig 1-3]	32
Figure 9.	OB1 Cash Flow Projection over 23 years (\$0.0M Add'l NRI)	41
Figure 10.	OB1 Cash Flow Projection over 23 years (\$10.0M Add'1 NRI)	42
Figure 11.	OB1 Cash Flow Projection over 23 years (\$20.0M Add'1 NRI)	42
Figure 12.	OB1 NPV Savings over 13 years	43
Figure 13.	OB1 NPV Savings over 23 years	43
Figure 14.	Cumulative ROI (%) Sensitivity to Varying Investment Levels	44
Figure 15.	Cumulative ROI (%) Sensitivity to Varying Recurring Investment Levels	45
Figure 16.	Cumulative ROI (%) Sensitivity to Varying Discount Rates	46

LIST OF TABLES

Table 1.	Alternative technologies to OB1 and CENTCOM requirements	7
Table 2.	OB1 NPV af ter 13 y ears with \$0.0M Additio nal Non-Re curring In itial	
	Investment.	.39
Table 3.	OB1 NPV af ter 23 y ears with \$0.0M Additio nal Non-Re curring In itial	
	Investment	.40
Table 4.	%ROI obtained over varying recurring investments. Assumes a 3% df and	
	\$0.0M Nonrecurring Investment.	.45
Table 5.	Life Cycle Cost Estimate (LCCE) for OB1 (23 years)	.47
Table 6.	NPV and ROI for our base case analysis	.48

EXECUTIVE SUMMARY

The One Box One W ire (OB1) Joint Com bined Technology De monstration (JCTD) is a United Sta tes Central Comm and (USCENTCOM) initia tive that has been approved by congress for a FY 2009 rolling st art. The prim ary goal of the JCTD Program is to demonstrate, operationally assess, rapidly deploy, and transition capability solutions and innovative concepts to addres s the joint, coalit ion and interagency operational gaps and shortfalls. Since inception in 1995, the Advanced Concept Technology Demonstration (ACTD) Program, and now the Joint Capability Technology Demonstration (JCTD) Program, has deployed critically needed warfighting solutions to every major Combatant Command theater.

Rolling starts have been successfully ve tted through the JC TD process however; there still remains a product development or resource management issue that needs to be resolved with the stakeholders prior to project initiation

The OB1 JCTD is an initiativ e designed to transform the existing Departm ent of Defense (DoD) air-gapped networks (NIP R, SIPR, J WICS, CENT RIX) to an environment that allows the user to access al 1 networks from a single PC term inal while still preserving the separation and security of data f lows. The inef fectiveness of air-gapped networks results in danger ous challenges to succe ssful multinational operations with increasing cost to life and high risk to mission failure.

This thes is will be a b usiness c ase analys is of the cos t of im plementing and sustaining the OB1 JCTD as com pared to the current DoD multi-network infrastructure. In order to m eet that objective it will a ddress the question of whether converting the existing military network (NIPR, SIPR, JW ICS, MCFI, CENTRIX, etc.) inf rastructure into OB1 is f inancially feasible. This thesis will concentrate specifically on OB JCTD initiative.

Specific research questions include: the cost of im plementing OB1, to include, research and development (R&D) and procurem ent, the sa vings of OB1 verses current infrastructure, and in what infrastructure will OB1 be implemented.

The results of the OB1 business case analysis are as follows:

- OB1 has a NPV Savings of \$263.1M
- OB1 has a ROI of 662.9%
- Positive sa vings and ROI are realized from the first year of OB1 implementation
- The base case annualized ROI never falls below 275.6% when the discount factor was varied from 3% to 10%
- The base case annualized ROI does not fall below 683.4%, even when the initial investment cost to field OB1 is increased by \$20.0M
- The base case annualized ROI does not fall below 231.7%, even when varying the recurring investment costs from 0% to 1000%
- Given a worst-case scenario for OB1:
 - o OB1 still yields a ROI of 49.9%
- The analysis conducted in this thesis shows that financially, OB1 is a viable and robust solu tion to the pr oblem of having m ultiple air gapped networks. OB1 provides a high return on investment over a wide range of varying input factors and appears to be a worthwhile investment for the DoD.

ACKNOWLEDGMENTS

First and forem ost, I w ould like to thank my beautiful wife of nearly 20 years, Bridget, for her constant encouragem ent and support. Even though our Navy life hasn't always been easy, and together, over the years, we have endured many hardships, she has always been fully supportive and understanding. Though I have not always been there for her, she has been there for m e every step of the way, from m oving to buying homes to having babies, all without m e by he r side. Sh e has m ade me a better person, and I am who I am today all because of her. For that I will be forever grateful.

I would a lso lik e to g ive a heartfelt thanks to m y thesis advisor, Dr. Dan Nussbaum. His m entorship, guidance and support throughout this experience have been second to none. I cannot im agine having a thes is advisor m ore approachable, down to earth or m ore available. Thank you for your time and thank you for m aking my thesis experience as enjoyable as possible.

Steve Iatrou's due dilig ence in reviewing my thesis and g uidance in h elping me navigate the final stages of the thesis process were also much appreciated.

The entire OB1 team was extrem ely professional and supportive throughout this process. They are a firs t-class group from which I have learned a great deal. Jerry "Too Big" Gellin g and Bud Jones at C ENTCOM were of particular help throughout this process. They provided m e with much of the data f or this thes is, as well as their invaluable feedback, guidance and support.

I. INTRODUCTION

A. PURPOSE AND BACKGROUND OF THE STUDY

The One Box One W ire (OB1) Joint Com bined Technology De monstration (JCTD) was born at the United States Ce ntral Command (USCENTCOM) MacDill Air Force Base in Tam pa, Florida. It was he re that CENTCOM 's Science and Technology Advisor discovered there was a problem . He observed that m any desks were cluttered with multiple personal com puters, monitors and miles of cabling. Not only that, even though CENTCOM buildings were relatively new, there was a trem endous a mount of extra cooling capacity required to cool all this equipment. There was a call put out to the scientific community and the Mu ltiple Independent Levels of Security (MILS) Group responded. Eventually, they went to CENTCO M and briefed them on MILS technology that was currently available. Som e of thes e technologies were be ing used in the F-35 Joint Strike Fighter (JSF), the F-22 Raptor and the Joint Tactical Radio System (JTRS) programs. It is the embedded software in these programs that provide a separation kernel which allo ws m ultiple independent levels of security (TOP SECRET to UNCLASSIFIED) in the aircraft on-board computer. CENTCOM inquired if the software could be used in a Local Area Networ k (LAN) environm ent and in August 2007, two commercial vendors, Green Hills Software (GHS), and Objectiv e Interface Solutions (OIS), responded with a proposal that would solve their problem. The pri mary components of which include the IN TEGRITY® secure operating system and separation kernel by GHS, a Black Channel gigabit swit ch and a Black Channel network interface card (NIC) provided by OIS.

The OB1 JCTD is a USCENTCOM initiative that has been approved by congress for a FY 2009 rolling start. According to the FY 2009 JCTD (2008), the primary goal of the JCTD Program is to demonstrate, operationally assess, rapidly deploy, and transition capability s olutions an d innovativ e concepts to addres s the join t, coalition and interagency operational gaps and shortfalls . Since inception in 1995, the Advanced Concept Technology Dem onstration (ACTD) Program, and now the Joint Capability Technology Demonstration (JCTD) Program, has deployed critically needed warfighting

1

solutions to every m ajor Com batant Command theater. Rolling s tarts have b een successfully vetted through th e JCTD process; however, th ere still rem ains a product development or resource m anagement issue that need s to b e re solved with the stakeholders prior to project initiation.

The FY 2009 JCTD Congressional Notification (2008) states:

By design, the JCTD p rogram is n ot an acquisition prog ram, but it is intended to jum p-start the acquisition proc ess th rough succes sful, innovative demonstrations of m ature technology...The JCTD program is integrated with the Jo int Capability Integration and Develo pment System (JCIDS) developed by the Joint Chiefs of Staff (JCS). The JCTD process seeks to increas e upfront trans ition planning of the concepts and technologies demonstrated...The adaptive JCTD process provides an agile technology development and demonstration program to better address the threats of an enemy who is not hampered by a rigid and m ore deliberative budgeting and acquisition process. (p. ii)

Another major goal of the JCTD program is to have a demonstration of concept in two to four years and critical Combatant Commander (CoCom) capability in two to three years with a major focus on tactics, technique s and procedures (TTPs). Often referred to as the "80% solution" with a "try with intent to buy" philos ophy the transition and acquisition strategy is not fully developed until significant military capability (via testing and operational demonstrations) has been veri fied by the CoCom s. The JCTD process is also designed to stream line the acquisition process by incorporat ing spiral technology insertion and risk mitigation potential (FY 2009 JCTD, 2008, p. iii).

The purpose of this study is to analy ze the cost savings and benefits of implementing the OB1 JCTD. Specifically, this research will:

- Describe other potential alternative technologies to OB1. This discuss ion will also in clude analys is as to why or why not these altern atives are v iable options.
- Conduct an OB1 JCTD busin ess case analysis, includi ng a baseline analysis and an extensive sensitivity analysis.

B. PROBLEM STATEMENTS

There are several op erational policies and constr aints in place t oday that inhibit information sharing and collaboration univers ally am ongst joint, coalition and interagency warfighters. According to the OB1 team some of those limitations are (Network, 2008, p. 2):

- Inability to rapidly sh are, collabo rate on, or synchronize operation al or intelligence information between mission partners
- Degraded capability to provide an a ssured environm ent to rapidly access relevant, accurate, and timely information
- Limited capability to interoperate with and leverage mission partner systems
- Inability to extend U.S. capabilities to mission partners rapidly and within a net-centric environment
- Limited res ources to o perate, m aintain, and def end the multiple se parate physical infrastructure/networks required by current policy
- An inability to create a single environm ent that enables the sharing of information at tactical through theater levels and within multiple classification domains
- Limited access to a co alition networks require creating infor mation on the SIPRNET and transferring files via an air gap¹ technique

In their draft CONOPS the OB1 team states, "These lim itations and constraints result in U. S. forces having no cohesive, integrated, effective, efficient, or flexible means to seam lessly and quickly shar e critica 1 in formation with m ission partners. This ineffectiveness results in dangerous challenge s to successf ul m ultinational opera tions with increasing cost to life and high risk to mission failure" (Network, 2008, p. 2).

¹ An air gap is a security measure often taken for computers and computer networks that have extreme security requirements. The architecture must ensure that secure networks are completely physically, electrically, and electromagnetically isolated from insecure networks, such as the public Internet or an insecure local area network.

C. CASE FOR CHANGE

1. Technical Environment

Like m ost of today's m ilitary f orces ac ross DoD an d acros s the world USCENTCOM has the need for multiple networks in order to accomplish its mission. At CENTCOM, SIPRNET (SECRET n etwork) and NIPRNET (UNCLASSIFIED network) are extremely prolific and present on almost every users' des k. CENTCOM, as well as most other Com batant Commands, have a ne ed for coalition networks. Other coalition networks include th e CENTRIXS Multin ational Coalition For ces I raq (MCFI), CENTRIX Global Counter Terrorism Forces (GCTF) and bilateral networks.

The large footprint required for the current DoD network architecture puts a huge economic, financial and logistics bu rden on combatant commanders and ultimately the warfighter. The requirement to have these networks air gapped and the inability to collapse them into a smaller footprint significantly increases the expense of the network, the infrastructure itself and the time to install and maintain.

2. **Operational Environment**

Today's en emy is elus ive and res ourceful. The enemy that our military faces today is looking less and less like the traditional enemy of old. Instead of our military engaging in campaigns against well defined nation states with known armies, our military is increasingly fighting an enemy that has no state boundaries, no readily apparent army and does not fight by traditional rules of war. Our new en emy is increasing ly radical, elusive and operates without concern for traditional nation borders. It is an enemy that can rapidly adapt and maneuver; it is very adept at not only mobilizing its own forces, but those of the local population, and indeed, the global community, as a whole. This enemy is increasingly able to employ technology at his disposal in a way that can quickly and effectively shapes global perceptions in his favor.

Our enemy is increasing ly winning the In formation Operations (IO) battle. COL Ralph O. Baker, former Commanding Officer of the 2d Brigade Com bat Team of the 1st Armored Division in Baghdad, expressed his frust ration with his superior's inability t o get his units version of events out to the media before the enemy in an article he wrote for Military Times in May 2006. According to COL Baker (2006), "While precious time was being spent 'gath ering facts', the e nemy was busily exploiting to the ir advantage the ensuing chaos. The message they passed to the press was that...the carnage on the street was not the result of a VBIED but, rather, the result of an undisciplined and excessive use of force by my Soldiers" (p. 17). In today' s world inform ation is readily abundant and, perception is reality. In order to build a str ong coalition and garn er the support of the local population in the eater, the U.S. military needs to get its version of events to the media before the enemy.

Therefore, it is CENTCOM's belief and guidance ² that their information sharing capability must move forward in a way that g ives warfighters the ability to shape the IO battlefield in CENTCOM's f avor. CENT COM claim s OB1 will help achieve this by providing timelier, accurate inform ation that the warfighter and his comm ander can use to, not only shape the physical battlefield, but the IO battlefield as well.

"The f uture joint f orce requires an agile infor mation sharing environm ent supporting tactical, op erational, and strateg ic m ilitary o perations and training with mission partners" (Network, 2008, p. 2). Acc ording to CENTCOM, "...the current architectural footprint is som ething they can no longer continue to scale operationally, logistically or financially."

The CENTCOM team argues in their CONOPS (Network, 2008):

The United States will probably always fight as a jo int/coalition force in the future. The political nature of Coalition compositions depends on the mission and situation, and sometimes requires us to operate under bilateral agreements. Our current security policy requires that the n etwork classification dom ains must be kept separate, hence m ultiple physical networks. This m odel has resulted in the deployment of multiple s ets of computing infrastructure—a solution that we cannot continue to scale operationally, logistically, or financially. (p. 4)

² Noted in USCENCOM's Requirements Statement for Network Infrastructure Consolidation dated October 2007.

D. RESEARCH METHODOLOGIES, LIMITATIONS AND ASSUMPTIONS

To achieve the purpose outlined in section I.A., we researched various online websites and corresponded with several programmanagers and teammembers of the various alternatives to O B1 in order to gain background information and an operational description of those technologies. Next, a literature review was conducted on business case writing and recommended analytic structure. My thesis advisor and I have conducted a critical financial analysis of data obtained from CENTCOM during their initial analysis of the financial viability of OB1. Finally, this thesis reports the results of the OB1 JCTD business case analysis and makes relevant recommendations for decision makers.

The following assumptions were made during the conduct of this analysis:

- The cost savings derived from the bus iness case analysis based on the data available from a service or system can be applied across services and systems.
- A conservative approach is adopted for the business case analysis. That is, when there is a choice between higher and lower costs, the higher cost will be used for the analys is. Similarly, when there is a choice between higher and lower benefits, the lower benefit will be used for the analysis.

II. ANALYSIS OF ALTERNATIVES (AOA)

There are several other technologies, eith er fully or partially developed, that CENTCOM has evaluated as possible alternatives to OB1. From Table 1 we can see each alternative to OB1 that CENTCOM has evaluated and reasons each technology does not meet CENTCOM requirem ents. Check m arks indicate failure to m eet a particular requirement.

	High Robustness	Evaluation Artifacts	CENTCOM IA Req'ts ³	Collapse Networks	Collapse Workstations	Cost Effective
SOFCASE	\checkmark	\checkmark	\checkmark			
НАР	\checkmark	\checkmark		\checkmark		
CSTE	\checkmark	\checkmark				
COSMOS	\checkmark			\checkmark	\checkmark	
ACE	\checkmark	\checkmark		\checkmark		
DTW	\checkmark			\checkmark		\checkmark
NetTop	\checkmark	\checkmark				
OB1						

 Table 1.
 Alternative technologies to OB1 and CENTCOM requirements

A brief synopsis of each CENTCOM reviewed AoA, as well as, reaso ns they do not achieve the OB1 objectives, follows:

³ CENTCOM uses chapter four of the Information Assurance Technical Framework to determine their assurance levels.

A. SPECIAL OPERATION FORCES CROSS DOMAIN SERVICES ARCHITECTURE AND SYSTEM ENHANCEMENTS (SOFCASE)

SOFCASE is a project that is leveraging two major government efforts; the High Assurance Platform (HAP) (m anaged by th e National Se curity Agency (NSA)) and a Cross Domain Solution (CDS) called Inform ation Support Server Environm ent (ISSE) managed by the Air Force Research Lab (AFRL). The United States Southern Command (USSOCOM) is building an architecture to address some specific te chnical, operational and acquisition requirements that are using technologies out of ex isting programs within these two organizations.

SOFCASE is not a v iable alternative to OB1 because there is no current plan to meet high robustness, develop evaluation artifacts or meet CENTCOM assurance requirements for threat levels (Staneszewski, 2008, p. 39).

B. HIGH ASSURANCE PLATFORM (HAP)

According to the National Security Agency (NSA) website (High, 2009), "HAP is a multi-year NSA program with the vision to d efine a framework for the development of the next generation of secure com puting platforms. NSA conducts this effort in collaboration with industry, academia, and other government organizations."

The secure com puting workstatio ns the HAP program intends to build use commercial-off-the-shelf (COTS) security technologies coupled with the latest information assurance (IA) techniques. This allows commercial vendors to develop assurable secure, m anageable, and usable computing platform com ponent products that integrate with a comm on architecture that will enable integrators to deliver COTS-based assurable commercial solution s to DoD, government and commercial entities (High, 2009).

HAP objectives include:

- Provide a secure com puting platform execution environm ent for operational users
- Enable technology integrator s to com pose cost-effective assurable platfor m instances from COTS components

• Enable COTS technology developers to build assurable platform components (hardware, software, firmware, I/O devices etc.)

Even though HAP is pursuing a one wire solution similar to OB1 the time frame on that is approxim ately FY 2014. That timeframe together with the fact they have no current plans for High Robustne ss makes HAP a less than desirable alternative to OB1. (Staneszewski, 2008, p. 39).

C. CLASSIFICATION – STATELESS, TRUSTED ENVIRONMENT (CSTE) JOINT COMBINED TECHNOLOGY DEMONSTRATION (JCTD)

CSTE is a Special Operations Comm and (SOCOM) sponsored JCTD. According to SOCOM, CSTE is "An assured (trus ted) electronic environment that has no inherent classification state when not processing or displaying data and is independent of the classification level of the network(s) to which it is attached." Its primary objectives are to have an ability to rapidly and securely share both unclassified and classified information between multiple coalition partners on a common operating system (network). As well as have a network that has the ability to qui ckly and dynamically host new capabilities and users.

In order to m eet these objectives, CSTE in corporates a data object encapsulation component. These data objects are encrypted and can be in only one of four states: at rest, in transit, in process or being displayed. The Data Object Protection System (DOPS) enables the protection of infor mation based on its content at the point of origin. C STE with DOPS implementation has several advantages:

- It implements encryption of information (data at rest) on the local device
- Access is based on content of the inform ation, user's authorizations and location, and the capability of the device
- It decouples the need for the infrastructure to protect the data

Encryption of the data object is critical for creating a classification- stateless environment and will protect the data when CSTE is under attack.

According to the OB1 team, CSTE does not meet their objectives because there is no current plan to m eet High Robus tness or develop evaluation artifacts (Staneszew ski, 2008, p. 39).

D. COALITION SECURE MANAGEMENT AND OPERATIONS SYSTEM (COSMOS) ADVANCED CONCEPT TECHNOLOGY DEMONSTRATION (ACTD)

COSMOS is a European Command (EUC OM) and Pacific Comm and (PACOM) sponsored ACTD. In addition to the U.S. the ACTD involves Aust ralia, Canada, Great Britain and more recently, Singapore. The goal is rapid, secure release and protection of critical comm and and c ontrol (C2) inform ation to and among coalition partners on a single and secure integrated coalition network to reduce confusion, uncertainty and delay in combat and cris is operations. The net r esult will be the bridging of coalition so urced information with U.S. Global Inf ormation Grid (GIG) Network Centric Ente rprise Services (NCES) for two-way information exchange.

The history of COSM OS stems from Op eration Iraq i Freedom (OIF) when Marine Forces Central Comm and (MARFO RCENT) could not rely on sneaker-net ⁴ information because all of the restrictions and security m easures in place impeded operations and led to confusion. Today, COSM OS participants are developing a way to allow the unambiguous sharing of information between coalition partners and attempting to collapse the number of operational networks required, while maintaining need-to-know levels of separation. C OSMOS will also im plement the Multilatera 1 Interoperability Program (MIP) C2 Inform ation Exchange da ta Model (C2IEDM) and Data Exchange Mechanism (DEM) to address the unambiguous sharing aspects and use VPN technology augmented with configuration and control t ools to achieve the need-to-know separation requirements. The United States Nationa 1 Sec urity Agenc y (NSA) is oversee ing the design of the security com ponents. Each pa rticipant nation will valid ate this appro ach against a national C2 system.

⁴ The transfer of electronic information, especially computer files, by physically carrying removable media such as magnetic tape, floppy disks, compact discs, USB flash drives, or external hard drives from one computer to another.

A brief by the COSMOS team ("COSMOS Aims", 2009) states:

There is more to multinational unity of effort than sharing C2 information, but the better the sharing, the bett er the poten tial for good m ultinational unity of effort. COSM OS i mproves C2 infor mation sharing by adding automation, security and dynamic management. Multinational partners are interested in sharing C2 information and commanders and coalitions have specific situation and role-based n eeds. However, each nation has longterm interests that can undercut short-term unity of effort. (p. 4)

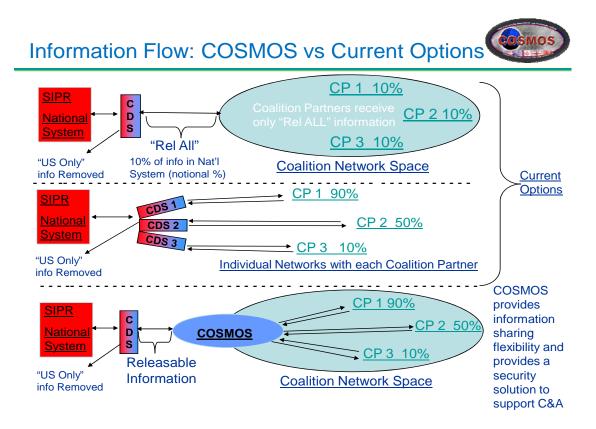


Figure 1. COSMOS vs. Current Operations [From Cosmos Aims, Fig 1-1]

The top line of Figure 1 shows the current network architecture for the SIPRNET across DoD. In this scenario there is a release of information via a CDS to a multinational "space" or network cloud. Within this cloud all inform ation is shared with all partners. The proble m with this inf rastructure is that based on the current operational and/or tactical scenario more applicable information can and should be released. However, long-term multinational interests significantly reduce this flow.

The middle row represents a current architecture that is sometimes employed, i.e., having many separate networks. Problem s with this approach include: high overhead in terms of equipm ent for the physical networ k, and it does not give a comm ander the ability to a djust what inf ormation is dissem inated as the operation and battle space evolve.

The bottom option is what COSMOS claim s it can do for the cus tomer. This is also the preferred architecture suggested the by GIG IA strategy. This type of network environment puts a U.S. node or enclave in the national space with sufficient information security tools and inform ation management tools that the c ommander can stage the C2 information he might share with partners (just as he stages ammunition and fuel forward) in the enclave and then share inform ation with partners as appropriate for the changing circumstances of the battlefield.

It takes many months to build, test, and certify the rules for a CDS for a specific operation in a specific theater. One of the greatest advan tages of COSMOS is that it allows real-time changes to information exchanges with coalition partners.

Even with these advantages, the COSMOS ACTD does not meet the objectives of OB1 because it do es not collapse workstations or networks with multiple security levels. Also, COSMOS is data-centric and does not provide a network solu tion (Staneszewski, 2008, p. 39).

E. AGILE COALITION ENVIRONMENT (ACE)

The ACE a rchitecture will soon b e instal led as component of the Commander Third Fleet (C3F) command and control (C 2) Network . Physical location f or the installation is C3F Headquarters in San Diego, CA, the Pacific Regional Netw ork Operations Center (PRNOC) and Naval Communications and Telecommunications Area Master Station Pacific (NCTAMSPAC) on the island of Oahu in Hawaii. "The Agile Coalition Environment (ACE) system is a combination of commercial off-the-shelf (COTS) and open source products designed to provide users with the ability to access multiple U.S. and allied /Coalition secure domains from a single workstation" (Referentia Systems Inc., 2007, p. 5).

The ACE program consists of a combined synergistic group of emerging networkcentric and information assurance (IA) technologies. These combined ACE technologies provide the warfighter with enhanced info rmation sharing, collaborative tools, and situational awareness capabilities that are both dynamic and secure. Warfighters have access to all required us er applications and multiple security enclaves of information at a single workstation. Interoperability is achieved across all applications, platform s, and security domains. ACE is presented as a ne twork capability that can be applied to the Combined Enterprise Regional In formation Exchange System (CENTRIXS) as well as other coalition or Community of Interest (COI) networks that require information sharing across multiple security dom ains between U. S. and coalition forces. ACE technologies have evolved during a f our-year spiral development cycle and have targeted warfig hters at all levels for im proving interoperability and knowledge m anagement for current and future joint and coalition operations. This evolution for developing tom orrow's IT capabilities has been base d on requirem ents, technology insertion, operational experimentation, and improvem ents as a resu lt of Joint, Coalit ion, and Naval Fleet feedback (Referentia Systems Inc., 2007, p. 5).

According to Referentia Systems Inc (2007):

The ACE archite cture is designed to provide ac cess to multiple security enclaves from a single term inal th rough the use of two Cross Dom ain Management Office base lined capabilities: NetTop 1.3.1 and JANUS 5.1. NetTop uses Virtual Machines (VMs) to provide separation on the client terminal be tween security enclaves. A term inal user is not a llowed to move information between enclaves. The C3F installation will consist of 14 ACE terminals that will be capable of accessing SIPRNET, Combined Enterprise Regional Information Exchange System – 4Eyes (CENTRIXS-4Eyes), the Cooperative Maritim e Forces Pacific (CMFP) virtual private network (VPN) on Combined Enterprise Regional Information Exchange System – Global Counterterroris m Force (CENTRIXS-GCTF), and Combined Enterprise Regional In formation Exchange System – Japan (CENTRIXS-JPN). (p. 5) For the C3F setup in San Diego and Hawaii, the ACE ter minal uses NetTop 1.3.1 to create "Fat" and "Th in" Virtual Machines (VMs) (referred t o as "GUI" VMs) t hat connect to the four secu rity domains. For SIPRNET, the ACE Term inals will use a Fat VM that will allow the use of any data type that the SIPRNET applications use. For the three CENTRIXS networks, the ACE Terminals will use a Thin VM. For the Th in VMs only, ICA type traf fic will be use d to commu nicate with Citrix se rvers located in the respective CENTRIXS data centers (Referentia Systems Inc., 2007, p. 5).

ACE achieves security separation thr ough the use of NetTop, VMs and Virtual Private Networks (VPNs). Each VM is tied to one VPN VM that uses and IPSec client to establish a connection with a VPN Concentrat or in the data center. All ACE ter minals and associated VMs are capable using one network interface card (NIC). Note in Figure 2 that the ACE term inals have no in teraction with VPN VM. VPN V Ms are automatically launched when the graphical user interface (G UI) VM is launched and they stay open until the GUI VM is shut down (Referentia Systems Inc., 2007, p. 6).

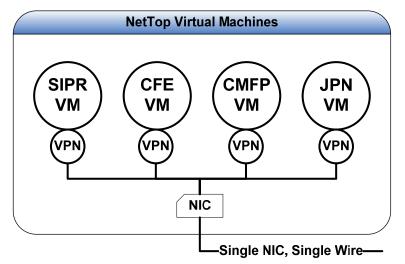


Figure 2. NetTop VMs in an ACE architecture [From Referentia Systems Inc, Figure 1]

Some of these concerns m ay not be valid, the OB1 team claim s that the ACE technology does not collapse m ultiple networks, does not support High Robustness and there are no current plans to generate evaluation artifacts (Staneszewski, 2008, p. 39).

F. DEPARTMENT OF DEFENSE INTELLIGENCE INFORMATION SYSTEMS (DODIIS) TRUSTED WORKSTATION (DTW)

DTW was designed f or and is m ostly used by the DoD intellig ence community. "DTW is an Air Force C ommand, Contro 1, Intelligence, Surveillance, and Reconnaissance Center sponsored, Defense Intelligence Agency (DIA) directed capability f or using a single des ktop workstation to a ccess a ll DoDIIS data and applications available to a par ticular user from multiple, concurrent security do mains" (DoD Trusted, 2006). It is designed to provid e a standard intellig ence system coupled with applications interoperability that enables collaboration between intelligence sites in a secure an d tim ely manner. DTW is an initia tive that was jointly developed b y Sun Microsystems and Trusted Computer Solutions (TCS).

1. DTW and Trusted Computer Solutions (TCS)

The TCS website states:

As with a ll organ izations m anaging critical inte lligence tasks, DoD intelligence sites face a major challenge in securely sharing information in a tim ely manner. This challeng e led the Defense Intelligence Agency (DIA) to turn to a commercial-off-the-shelf (COTS) product from Trusted Computer Solutions (T CS), a leader in secure infor mation sharing. They selected the TCS flagship deskt op product, SecureOffice® Trusted WorkstationTM, as an integral component of the Department of Defense Intelligence Information Systems (DoDIIS) Trusted Workstation (DTW). The DIA then assigned the Joint En terprise DoDIIS Infrastructure (JEDI) Program Management Office (PMO) to manage the program. The use of a single, ultra-thin client via Truste d Workstation to access multiple lev els of classified data and then dissem inate actionable inform ation provides many benefits, including: enhanced security, enhanced functionality, enhanced audit m anagement, simplifie d installation and adm inistration, reduced sup port costs and ease of certification and accred itation. DTW enables intelligence o rganizations to ensur e high-r isk processe s a re automated in a predictable, au ditable and accreditable manner. (JEDI PMO, n.d.)

2. DoDIIS Trusted Workstation

DoDIIS Trusted W orkstation is a JEDI PMO m anaged standard solution that includes the following features (JEDI PMO, n.d.):

- Ultra-Thin Client Appliance
- Full Microsoft® Windows® application and network functionality
- E-mail, Web browsing and collaboration
- JEDI Tools Trusted Se ssion Maintenance, Trusted User Maintenance, Enhanced Password Rules, User Password Utility, and Jumpstart scripts
- TCS Trusted Relabeler enables the secure m ovement of infor mation between security levels
- TCS trusted administration and configuration tools
- Existing application integration
- Simultaneous access to multiple classified networks
- Single DTW baseline image

3. DTW Return-on-Investment

Because D TW helps individuals, and ther efore org anizations, gain access to secure information across multiple networks and classification levels using familiar software applications DTW enables organizations to improve security and accountability in the high op-tem poenvironm ent that today's DoD operates in . Other advantages include (JEDI PMO, n.d.):

- Dramatically decrease the number of desktop workstations via ultra thin client architecture
- Reduce network and infrastructure costs
- Increase intelligence staff productivity
- Reduce information technology staff workload
- Provide simultaneous access to multiple networks across classification levels from a single screen
- Provide session mobility
- Previously accredited and operational solution

However, as the OB1 team (Staneszewski, 2008, p. 39) points out, and verified in a separate report by NYTOR Technologies (T he DoDIIS, 2007, p. 3), one of the m ajor disadvantages to DTW is that DTW is accr edited under Director of Central Intelligence Directive (DCID) 6/3 (m anual for protecting sensitive compartmented information (SCI) within information systems) at a level that only permits access to networks ranging from SECRET (including collateral) through TS/SCI sim ultaneously. Also, according to the same reports from OB1 and NYTOR, DTW cost up to ten tim es what OB1 would (cost per seat: \$10k-\$18k). F urthermore, it does not provide high robustness (Staneszewski, 2008, p. 39) or provide access to UNLCAS networks (The DoDIIS, 2007, p. 3).

Other possible concerns with DTW addressed in the May 2007 white paper by NYTOR technologies (The DoDIIS, 2007) include:

- All program execution noccurs on the server; applications that cannot be executed in a Citrix shared application environment are not supported
- Streaming video executes on the server, resulting in exceptionally high bandwidth requirements and poor performance
- Smartcard does not provide strong authentication or use an X.509 certificate
- Does not provide machine authentication
- Does not support printing
- Does not provide USB support
- Does not provide expansion slots
- Does not presently support multiple monitors
- Requires Trusted So laris adm inistrators to m aintain its serve r-side infrastructure
- Is better su ited for env ironments where there is a strong need for UNIX applications or UNIX is already the dominant operating system

G. NETTOP

NetTop was initially developed in 1999 by the National Security Agency (NSA). It was about this time the NSA realized much of its technology was changing over from government produced products to commercial products. It was with this transition, combined with the rapid growth of information technologies and the even m ore rapid increases in cheaper and faster computing power, that the NSA realized it could not k eep pace in its ability to p rotect information processed by the n ational security community. Historically, technologies flowed from within government to our homes. The Information Age and explosion in cost effective com puting power has begun to reverse that trend. Now more and m ore t echnologies are co ming from commercial vendors vice inside government and NSA. To further exacerb ate the inform ation assurance problem NSA also re alized m ore and m ore R&D dollars were going away from a reas designed to protect the data to that of intrusion detection and response (NetTop Commercial, 2000, p. 1).

To address the issues the NSA Advi sory B oard (NSAAB) challenged the Information Assurance Research Office (IARO) to develop architectures that would not only have the look and feel of Commercial- off-the-shelf (COTS) products but w ould utilize them as well. Ke y to the su ccess of the team would be the ability to us e the new technology in a high assurance environment. The result of their effort is NetTop (NetT op Commercial, 2000, p. 1).

As is the ca se with OB1, and the r est of these alternatives, NetTop a ttempts to address one of the m ajor concerns for the warf ighter and that is the am ount of desktops (CPUs, m onitors, keyboards, m ice, etc.) that are necessary in order to have access to multiple networks of different sensitivity at one user workstation. Other concerns NetTop attempts to address are: previous governm ent based security so lutions have been incompatible with other standards based IT products, this complicates the interoperability and upgrading of components, cost and com plexity of network adm inistration and the ability to rapidly add and remove users holding multiple security levels and from multiple DoD, gover nment agencies and m ultiple coa lition partners. In general the overarching goal of NetTop (as well as, OB1 and most of the other alternatives) is to deliver multiple network domains to one workstation in order to eliminate redundant hardware and reduce the total cost of ownership (TCO) of high-assurance computing.

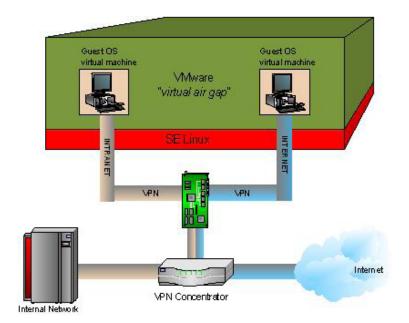
One of the consequences of requiring a high assurance platform for the end-user is that the end-user's environment must be considered untrustworthy. NetTop architecture

must protect against potentia lly hostile behavior. In order to do this, NSA bega n to explore the concept of encapsulation to limit, or minimize, the effects of the end-us er OS and application software.

According to Meushaw and Simard (2000):

The method selected for encapsulating the OS was based upon a 30-yearold technology, Virtual Machine Monitors (VMM). VMM technology was designed and developed in the era of large IBM mainframe computers, and was intended to help extend the life of legacy s oftware, when im proved hardware or OS software was released. In essence, a VMM was a software system that ran direc tly on the com puter hardware, and allowed multiple operating system s to be installed on top of it. By running older OS versions in som e virtual m achines, legacy software could be run, while newer application software could be executed in virtual machines (VM) . During this initial design and running m ore current OS versions production phase NSA discovered a new commercial product called VMware. VMware provided a commercially available application that could be integrated with VMMs. The VMware product is a spin-off of DARPA-sponsored research at Stanf ord University, and is generally used for providing a safe test environm ent for OS and networking software. (p. 2)

Meushaw and Si mard (2000, p.2) also clai med VMware had several advantages that made it attractive to the NetTop design team:


- VMware was designed for efficient ope ration on Intel x86 platform s vice large mainframe computers. This made it more suitable for NetTop's end-user who uses laptops, PCs and Thin Clients
- VMware operates on top of an underlying hos t OS rather than directly on the system hardware
- VMware provides and abstraction for vi rtual Ethernet hubs. Allows virtual machines to be interconnected in a way that is well understood by network administrators and designers

In 2005 NSA reached a licensing agreem ent with two commercial vendors which allows them to develop and m arket NetTop technology. Those commercial vendors are Hewlett Packard (HP) and Trusted Com puting Solutions (TCS). Both vendors are using the SELinux OS as the m ain building bloc k in their architectur e. E ven though both vendors benefit from all the advantages of NetTop technology, there are subtle differences in the technology used by the objectives of the NSAAB. Both HP and certification and accreditation. vendors, which m eet the original final TCS system s are currently undergoing

1. HP NetTop

A HP technical report ("HP NetTop", 2004) posted on their website describes their version of NetTop as follows:

Between the VM vaults provided by SELinux policy and the absence of any communication interface in the HP NetT op SELinux host OS, HP NetTop can be viewed as a software keyboard, video, mouse (KVM) device for switching between VMs. You don't need separate networks and multi-network in terface card (NIC) workstations to be enefit f rom HP NetTop. HP NetTop works with VPNs to provide end-to-end data encryption between different VMs and their virtual private network (VPN) termination points. In the same way that VMs can be bound to different physical NICs connected to different network backbones, this single network solution allow s HP NetTop to be used in any network where secure data separation is required. (p.3)

An operational description of NP NetTop is shown in Figure 3.

Figure 3. HP NetTop [From HP NetTop, Fig 2]

2. TCS NetTop

TCS NetTop also uses SELi nux as for the host OS. However, a m ajor difference between the HP architecture and T CS is that TCS does not use VPN technology as its core piece of equipment used to link multiple networks. TCS has developed what it calls a Distribution Center (DC). It is this DC that controls all networking and routing functions. The DC is als o a SELinux based sy stem that provides a multilevel gateway to single level networks (a prope rly configured NIC is required for each system high network). The DC handles the administrative functions via a user friendly graphical user interface (G UI), au tomatically commonly configures and authenticates each end-u sers Thin Client (workstation) and provides automatic failover and load distribution (SELinux Symposium, 2007, p.10).

OB1, and m any of these alternatives to OB1, have the ability to se t up their network with Thin Clients on the user end. The use of Thin Clients for the end user has many advantages, m ost notably, in the ar ea of infor mation assurance and com puter security. TCS has done an excellent job of le veraging all the advantag es of Thin Client computing and the NSA approved NetTop technology.

However, a ccording to the OB1 team, NetTop alone does not m eet the OB1 objectives of High Robustness and developm ent of evaluation artifacts (Staneszewski, 2008, p. 39).

As you can see from Table 1 in the beginning of this chapter, these alternatives to OB1 meet some, but not all, of the criteria set forth by the CENTCOM commander in his Requirements Statem ent for Network Infras tructure Consolidation ("USCENTCOM," 2007). The most notable exception to CENTCO M's requirements is the lack of a high robustness capability. The following chapter provides an OB1 operational description and shows how OB1 will meet CENTCOM's requirement for high robustness.

THIS PAGE INTENTIONALLY LEFT BLANK

III. OB1 OPERATIONAL DESCRIPTION

A. CURRENT NETWORK ENVIRONMENT ("AS-IS")

CENTCOM's network architecture is a microcosm of the larger DoD network. CENTCOM users are required to a ccess multiple networks in order to a ccomplish their mission. CENTCOM user required networks include:

- NIPRNET
- SIPRNET
- CENTRIXS-MCFI
- CENTRIXS-JCTF
- JWICS

Figure 4 sh ows a typic al CENTCOM user workstation with m ultiple computer CPUs, keyboards, m onitors and m ice. Due to the current DoD requirem ent to have networks of varying classification air gapped, eac h individual user is required to have all this ne twork architec ture at their workstation. This pa rticular network requirement significantly burdens the warfighter in areas such as:

- Expense of additional computers
- Expense of additional network architecture
- Expense of additional cooling requirements
- Expense of additional network administrative and maintenance personnel
- Additional time to install and maintain
- Excessive time requirements needed to deploy/re-deploy
- Lack of timely and pertinent information available to the warfighter

Figure 4. Typical Desktop Environment [From Network, Figure 2-1]

"The current mode of operation is to provide a desktop for each network. Each desktop is connected by fiber or CAT-5 cable to a distribution fr ame which connects to each of the data centers for each network. Type-1 encryption devices are used to interconnect enclaves (buildings, etc.). These networks range from UNCLASSIFIED to TOP SECRET. These components are generally replaced every three to five years as part of the lif e-cycle m aintenance p rogram. The cables from the d esktops are with in a "protected d istribution s ystem" (PDS). Da ta is encrypted when leavin g the PDS and decrypted when re-entering the data center PDS" (Network, 2008, p. 3).

In order to function as a command and carry out it s orders, CENTCOM often deploys teams of individual users to remote, unsecure locations. These locations are often in an unstable, high threat environm ent. Due to the am ount of network equipm ent required, the current network infrastructure is not conducive to a rapid deploy/re-deploy tempo of operations under which CENTCOM operates.

B. NETWORK ENVIRONMENT WITH OB1 ("TO BE")

The propos ed OB1 architect ure will allow for a sin gle infrastructure of workstations, switches and cables (see Figure 5). This so lution has multiple benefits on many di fferent levels: less power consum ption, easier to set-up/take down, easier to deploy/re-deploy and eases m any network administrative burdens, i.e., adding/rem oving users from the network, adding/rem oving computers from the network, adding/rem oving networks to at a workstation. In their C ONOPS, the OB1 team states, "This solution interoperates with leg acy and c oalition partner system s and allows for a rapid configuration of communities of interest (COI) without m ajor physical changes to the network. This solution m aximizes the use of our current IT investm ents" (Network Infrastructure, 2008, p. 5).

What we can achieve with OB1 (Operational View – OV1)

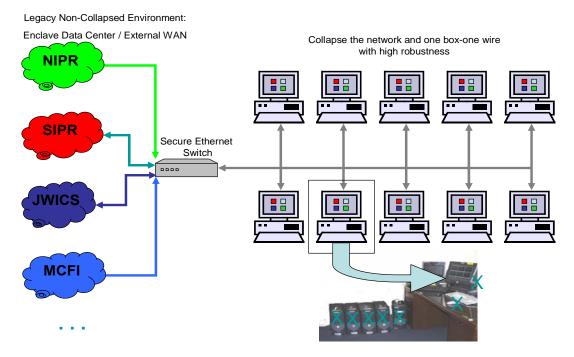


Figure 5. OB1 Operational View [From Network, Fig 2-2]

Figure 6 shows what a typical network architecture would look like with OB1. OB1 is not an attempt to modify the current way information is transferred across entire networks. What OB1 attempts to do is modify the last mile of the network infrastructure in such a way that reduces the burden of ha ving a large network footprint that is not conducive to information sharing in a multinational environment.

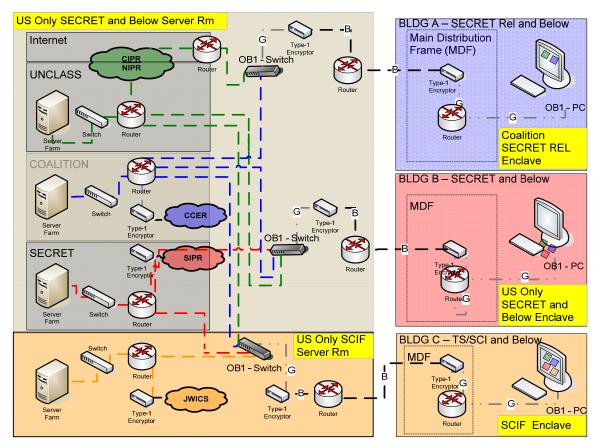


Figure 6. Typical OB1 LAN Architecture [From Network Infrastructure, Fig 3]

The primary components of OB1 consist of several technologies being developed by two primary vendors, Green Hills Software (GHS) and Objectiv e Interface Solutions (OIS). Their products are:

- Green Hills Software
 - o INTEGRITY® Operating System
 - o INTEGRITY® Separation Kernel

- Objective Interface Solutions
 - o Black Channel Gigabit Switch
 - Black Channel Network Interface Card (BC NIC)
 - o Black Channel Administrator
 - o Black Channel Authorizer

In Figure 6, the INTEGRITY® OS, Separa tion Kernel and BC NIC would reside on or in the CPU⁵ (OB1-PC) associated with each m onitor in the respected enclave. The three BC Gigabit switches are labeled "OB 1-Switch" a nd they ar e located in the appropriate Server Rm (Farm).

Together, these four components allow a single user to access m ultiple networks of varying classification from a single workstation.

1. Cross Domain Solution

A cross do main solution (CDS) is def ined as an inform ation assurance solution that provides the ability to manually and/or automatically access and/or transfer between two or more differing security domains (CJCSI, p. GL-5). OB1 is not a CDS. According to the OB1 team the Unif ied Command Dom ain Managem ent Office⁶ (UCDMO) has termed OB1 as an access CDS. What that means is OB1 will not be ab le to transfer data directly from one security clas sification level to another i.e., have the ability to s end and/or receive data from the SIPRNET while logged onto the NIPRNET and vice versa.

2. High Robustness

One of the major advantages and benefits of OB1 is its high robustness capability. CENTCOM uses chapter four of the Information Assurance Technical Framework (IATF) as their guidance for information as surance. The IATF defines what high

⁵ OB1 is compatible with and intends to use legacy commercial off-the-shelf (COTS) CPUs.

⁶ Established in July 2006. All DoD and Intelligence Community cross domain efforts now fall under their jurisdiction.

robustness is, as well as, other inform ation assurance requirements that need to be met in order for a network architecture to achieve certain standardized levels of security.

The OB1 team using the IATF as g uidance defines high robust ness as proving to the maximum extent possible, that information is secure, even in high threat environment. For CENTCOM, a high threat env ironment would be defined as Afghanistan, Iraq or similar operating environm ents. Figure 7 show s where high robustness falls in a high threat level, high information type environment.

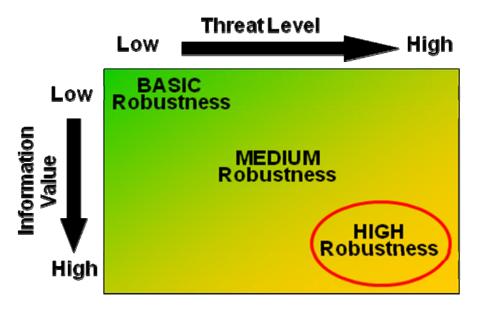


Figure 7. High Robustness Chart [From Staneszewski, Fig 3]

For the OB1 critical components (GHS and OIS vendor products) high robustness requires:

- Formal Methods Evaluation m athematical proof that the com ponent enforces security policy under all possible conditions
- Exhaustive testing total test cove rage, docum entation of processes, requirements, and traceability
- Penetration testing by skilled NSA attackers

All testing, proofs, and pro cesses are docum ented in a st ructured set of artifacts

for use by Information Assurance evaluators, certifiers, and accreditors.

According to CENTCOM's Requirem ents Statem ent dated October 2007, CENTCOM requires the capability to access separate networks on a single workstation connected to a single wire which is connected to a data center that stores information for those networks. Objectives of the new network architecture include reduced workstation and network infrastructure, a reduction in the requirement to air gap information across domains and the ability to interoperate with deployed Coalition partner systems. The solution must take into consideration the cost of developm ent, implementation and certification, use of legacy systems and peripherals and it must strive to minimize disruption of the existing system. CENTCOM believes OB1 meets all of their stated requirements and objectives. An independent Business Case Analysis of OB1 will be used to help verify CENTCOMs belief that OB1 is, in fact, a viable solution. THIS PAGE INTENTIONALLY LEFT BLANK

IV. BUSINESS CASE ANALYSIS (BCA) DEFINED

A. BUSINESS CASE ANALYSES

The Defens e Acquisition (DAU) website describes a BCA as "...a best-value analysis that considers not only cost, but other quantifiable and non-quantifiable factors supporting an investm ent decision. This can in clude, but is not lim ited to, perform ance, producibility, reliabilit y, m aintainability, and supportabil ity enhancem ents." It is an important business tool that he lps decision makers to evaluate alternative approaches and to decide on the allocation of scarce resources. The unde rlying purpose of a BCA i s to evaluate the financial soundness of a proposed solution to a problem with a financial analysis that will supply the decision maker with one important piece of information that will be considered together with other factors that bear on the decision.

It is important to note that a BCA is an all-purpose commonly used term and may also be referred to as Cost/Benefit Anal ysis, Cost of Ownership Analysis, Econom ic Analysis or Return on Investm ent (ROI) Analysis. Each term implies a slightly different approach in answering the general question: "What are the likely financial and other business consequences if we take this or the at action (or decision)?" Since none of these terms have a single precise or universally agreed upon definition, it is important to clarify our definition of a BCA.

In order to meet that objective, this thesis will model its BCA approach from that recommended by the DAU and s ummarized in a previous Naval Postgraduate School (NPS) thesis titled "A Methodical Approach for Conducting a Business Case Analysis for the Joint Distance S upport and Response (JDSR) Advanced Concept Technology Demonstration (ACTD)," dated December 2006.

As a minimum a BCA should include:

- An introduction that states what the case is about and why it is necessary
- A statement specifying assumptions and constraints
- Identify possible alternatives and status quo

- An estimate of costs and benefits of each alternative
- A Sensitivity and risk analysis
- A conclusion and recommendations

Most financial analyses can be described as a four phase process, our BCA is no different. Figure 8 shows our BCA concept as defined by the DAU on their website.

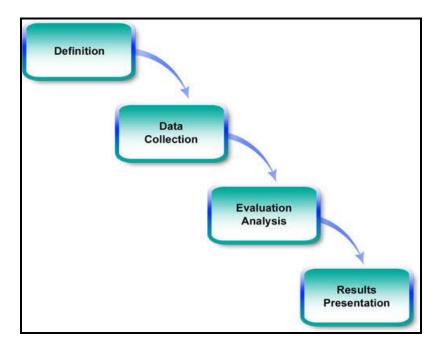


Figure 8. BCA methodology as defined by the DAU [From Defense, Fig 1-3]

1. Definition

In this phase, the scope of the analysis is defined. In order to do this, assumptions and constraints that will guide the analysis m ust be clarified. Analysts also identify the number of alternatives the BCA will cons ider. The definition stage ca n of ten m ake or break a BCA. It lays the groundwork for th e BCA, communicating to decision-m akers the reasoning of the analysts, which establishes the credibility of the BCA.

2. Data Collection

The plan will specify the types of data required, the potential data sources, and the approaches to obtain these data. Often times the data are difficult to obtain. It may be

hidden in company's databases accessible only to limited number of company personnel, it may be hidden deep in financial spreadshee ts or, if it is a new technology, that data simply may not be available yet. In situations where the required data are not available, an estimate is made with the approach for calculating the estimate clearly explained and documented. There are several costs es timating appro aches available: param etric estimation, analogy estimation and engineering estimation. Upon the completion of data collection, the data are exam ined for consistency and anomalies. Thereafter, the data ar e normalized to support "apple to apple" com parisons, such as adjustm ent for inflation/deflation to account for the time value of money.

3. Evaluation Analysis

In this phase, analysts do the actual br eakdown of the data obtained in the data collection phase. Here, analys ts build a cas e for each alternative us ing both qualitative and quantitative data. Each al ternative is compared aga inst the bas eline to de termine which one has the best overall value. So metimes this c an be ex tremely dif ficult, especially if com paring both quantitative data and qualitative data. O ne tool to help convert the data to a common ba seline is the analytic hierar chy process (AHP). AHP is a process that assigns numerical values to different aspects of an alternative and eventually assigns an overall numerical score to each alternative. This process allows analyst to rank alternatives in order of preference.

Once all the data have been collected by the analyst, a risk analysis and sensitivity analysis should be don e. A risk analysis attempts to predict the like lihood of an event occurring, and the potential impact of that on the case. A sensitivity analysis attempts to explain what happens if assumptions change or prove wrong, typical "What if" scenarios. A sensitivity analysis s hould show how sens itive your models' overall outputs are to changes in input and how those changes impact the bottom line.

4. **Results Presentation**

The best analysis in the world is worthless if the results of that analysis cannot be clearly articulated to the decision -makers. Conclusions should stat e the results of the analysis clearly and succinct ly as supported by previous evidence. Effective conclusions are based on the upfront stated objectives. It is here that analys the should explain any unexpected results or findings that could be misinterpreted.

Throughout the BCA process quantitative data should be expressed in charts and graphs. One should not expect decision-makers to labor through the analytic process attempting to ascertain the results of analysis on their own. The analysis should tell them exactly what is meant and why.

An effective BCA must also contain a recommended course of action (COA) for the decision-makers. The BCA should provi de reasonable support to back up analysts recommendations; enough support that the average person would find com pelling. A recommendation should bring closure to the analysis by reminding the reader the analytic part of the BCA process is done and the future of the project, the way ahead, is once again up to them.

B. WORK BREAKDOWN STRUCTURE (WBS)

A WBS has a hierarch ical tree structure that captures all the work of a project in an organized way. A WBS can be product or process oriented based on the ultimate enditems of the project. The Departm ent of Defense handbook (MIL-HDBK-881, 2005) had defined WBS as:

A WBS displays and defines the produce t, or products, to be developed and/or produced. It relates the elements of work to be a ccomplished to each other and to the end product. A WBS can be expressed down to any level of interest. However the top three levels are as far as any program or contract need go unless the item siden tified are high cost or high risk. Then, and only then, is it im portant to take the work breakd own structure to a lower level of definition.

There are several benefits to having a W BS planned out properly for a project. A WBS helps to keep track of the schedule, resource allocation, cash flow, expenditures, and performance of the project. Another goal is to provide a systematic and standardized method for gathering cost data across all pr ograms. Ha ving actual hi storical data to support cost estimates of similar defense materiel items is a valuable resource.

C. NET PRESENT VALUE (NPV) ANALYSIS

Net Present Value of an investment is defined as the sum of the present values of the annual cash flows. The annual cash flows are the Net Benefits (revenues minus costs) generated from the investment during its lifetime. These cash flows are discounted or adjusted by incorporating the uncertainty and time value of money. An investment with the larger NPV is a better option. The formula for calculating NPV is as follows:

$$NPV = \sum_{t=1}^{n} \frac{C_t}{\left(1+r\right)^t}$$

where

t – the time of the cash flow

n – the total time of the project

r – the discount rate

 C_t – the net cash flow at time

Discount rate is the rate used to discount future cash flows to their present values. An approach to choosing the discount rate fact or is to decide the rate w hich the capital needed for the project could return if invested in an alternative venture. For our analysis of OB1, a discount rate of 3% was chosen for the baseline com putation, because that is the current return of 10-year U.S. Treasury not es. This factor is in accordance with the instruction from Office of Managem ent and Budget, which instructs U.S. governm ent investment analyses to use a di scount factor equal to the interest rate on U.S. Trea sury notes whose duration equals the duration of the investment being analyzed.

D. RETURN ON INVESTMENT (ROI) ANALYSIS

Return on Investm ent (ROI) m easures the ratio of m oney gain ed or lost on an investment relative to the amount of money invested. An Annualized ROI is used here to calculate the investm ent over a certain period. An investment with a higher annualized ROI is a better investm ent option than an i nvestment with a lower annualized ROI. For our case, we are interested in an Annualized ROI over a period of 13 years.

E. PAYBACK PERIOD

Payback period answers the question of "When does the investment pay for itself?" It occurs at the point where the cumulative cash inflows are equal to the cumulative cash outflows, i.e., no net loss or gain.

F. SENSITIVITY ANALYSIS

A sensitivity analysis is a process of varying the input parameters of a model over a reasonable range and observing the relative change in the model output. The purpose of the sensitivity analysis is to determ ine the sensitivity of a model result to uncertainty in the input data, as in the case of financial an alyses evaluating multiple alternatives where an uncertain assum ption might change the selection of a recommende d alternative. In cases such as those, the assumption is allo wed to generate data at the upper and lower bounds of its confidence interval to test whether or not the recommendation supported by the basic assumption would be changed by modifying the values of the financial data that are based on the assumption.

V. OB1 BUSINESS CASE ANALYSIS

A. OB1 WORK BREAKDOWN STRUCTURE (WBS)

The top level WBS for the OB1 JCTD consists of Investment and Operations and Support. These WBS elements are described in the paragraphs below.

1. Investment

The investment for OB1 consists of

- Design, development, test and evaluation of GHS INTEGRI TY® secure operating system and separation kernel
- Objective Interface Solution's Black Channel NICs and switches
- Software and hardware integration and configuration
- Robustness certification for the INTEGRITY® PC and OIS's Black Channel NIC and switch

2. **Operations and Support (O&S)**

The O&S consists of

- Upgrading or replacing all hardware and/or software on a recurring basis as deem ed appropriate by individual comm ands. For our evaluation w e used the CENTCOM recommended refresh cycle of three years.
- Administrative and m aintenance personnel. For our evaluation we used CENTCOM recommended numbers based on the size of their network.

B. ANALYSIS OF CENTCOM DATA

The following sections provide a financial analysis of the cash flows that resu lt from investing in OB1 and then operating and supporting it. Baseline estim ates for the cash flows were supplied by CE NTCOM's OB 1 team . Additional data are the professional judgm ents myself and my thesis advisor. Complete data can be found in Appendix A and B. All costs are in FY 09 unless otherwise stated.

1. Net Present Value (NPV) Analysis

Our base case analys is for OB1 assum es a three-year im plementation phase in which OB1 will complete research and development, in cluding test and evaluation, robustness and integrity (Information A ssurance (IA)) certifications and other accreditations and certifications. We estimate these implementation phase, non-recurring investment costs at \$13.7M for year one, \$12.9M for year two and \$9.3M for year three.

Our base case analysis assumes FY 2009 dollar values; other base case parameters include a discount factor (df) of 3% and a recurring investm ent⁷ of \$1.8M every three years (assuming a three year refresh cycle).

The investment and savings data in the following NPV tables were obtained from the CENTCOM OB1 team. See Appendix A and B for further details. The tables b elow show a detailed analysis of the data provided by CENTCOM.

Specifically, NPV is computed using the following formula:

$$NPV = \sum_{t=1}^{n} \frac{C_t}{\left(1+r\right)^t}$$

where

t – the time of the cash flow

n – the total time of the project

r – the discount rate

 C_t – the net cash flow at time

Specifically, t = 1, 2, 3...13, n = 13, r = 0.03 and C = NPV Savings year 1, year 2, year 3...year 13. As shown in Table 2, over 13 years, we find that our base case analysis of OB1gives us a NPV Savings of \$263.1M.

⁷ The recurring investment comes from the upgrade and replacement of the OB1 Network Architecture every three years (CENTCOMM recommendation).

		Base	e Cas	e Plus S	60.0M	Addit	tional	Non-I	Recur	ring li	nvest	ment		
	Remaini	ing N-R Investment Recurring Investment + O&S Savings (\$M)												
	Year 1	2	3	4	5	6	7	8	9	10	11	12	13	
Investment	-13.7	-12.9	-9.3	-1.8	0.0	0.0	-1.8	0.0	0.0	-1.8	0.0	0.0	-1.8	
Savings	0.0	0.0	0.0	25.7	15.9	23.9	102.7	31.9	31.9	102.7	31.9	31.9	102.7	
Net Savings	-13.7	-12.9	-9.3	23.8	15.9	23.9	100.9	31.9	31.9	100.9	31.9	31.9	100.9	
						NPV S	avings	(\$M)						
df %	Year 1	2	3	4	5	6	7	8	9	10	11	12	13	NPV S
3%	-13.7	-12.5	-8.8	21.8	14.2	20.6	84.5	25.9	25.2	77.3	23.7	23.0	70.7	26
5%	-13.7	-12.3	-8.5	20.6	13.1	18.7	75.3	22.6	21.6	65.0	19.6	18.6	56.2	18
10%	-13.7	-11.7	-7.7	17.9	10.9	14.8	56.9	16.3	14.9	42.8	12.3	11.2	32.1	70

Table 2.OB1 NPV after 13 years with \$0.0M Additional Non-Recurring Initial Investment

NPV Savings (13yrs) = \$263.1M

We can also see from Table 2 that in year four (the first year of OB1 implementation at CENTCOM), using a 3% df, that we have NPV Sa vings of \$21.8M. This tells us that OB1 saves m oney from its first year of implem entation. It should be noted th at OB1 is assumed to us ether Life Cycle Replacem ent method⁸ for implementation. Thus, for our analysis, we phased in the benefits of OB1. Specifically, in year four we assumed OB1 would only achieve a 25% savings, year five 50%, year six 75%, and finally, OB1 will reach its full savings potential in years seven and beyond.

At CENTCOM most of the network architect ure gets replaced every th ree years. Since, one of the prim ary objectives that OB1 achieves is the consolid ation of multiple networks (NIPR, SIPR, JW ICS, etc) OB1 pr ovides a m uch smaller footprint than the current network architecture. Because of the is smaller footprint, OB1 obtains a large amount of savings (in hardware, software, personnel) every third year (years 7, 10, 13, etc). Consequently, we expect the savings of OB1 to be even m ore compelling over a period of 23 years than over 13.

Using the same formula as above for NPV, from Table 3 we can see that, with a 3% df over a period of 23 years, OB1 yields a NPV savings of \$444.7M.

⁸ With the Life Cycle Replacement method legacy systems will be swapped out with OB1 when the legacy systems are normally scheduled for replacement.

	Base Case Plus \$0.0M Additional Non-Recurring Investment																							
	Remainir	ining N-R Investmen Recurring Investment + O&S Savings (\$M)																						
	Year 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
Investment	-13.7	-12.9	-9.3	-1.8	0.0	0.0	-1.8	0.0	0.0	-1.8	0.0	0.0	-1.8	0.0	0.0	-1.8	0.0	0.0	-1.8	0.0	0.0	-1.8	0.0	
Savings	0.0	0.0	0.0	25.7	15.9	23.9	102.7	31.9	31.9	102.7	31.9	31.9	102.7	31.9	31.9	102.7	31.9	31.9	102.7	31.9	31.9	102.7	31.9	
Net Savings	-13.7	-12.9	-9.3	23.8	15.9	23.9	100.9	31.9	31.9	100.9	31.9	31.9	100.9	31.9	31.9	100.9	31.9	31.9	100.9	31.9	31.9	100.9	31.9	
											NPV	Saving	s (\$M)											
df %	Year 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	NF
3%	-13.7	-12.5	-8.8	21.8	14.2	20.6	84.5	25.9	25.2	77.3	23.7	23.0	70.7	21.7	21.1	64.7	19.9	19.3	59.2	18.2	17.6	54.2	16.6	
5%	-13.7	-12.3	-8.5	20.6	13.1	18.7	75.3	22.6	21.6	65.0	19.6	18.6	56.2	16.9	16.1	48.5	14.6	13.9	41.9	12.6	12.0	36.2	10.9	
10%	-13.7	-11.7	-7.7	17.9	10.9	14.8	56.9	16.3	14.9	42.8	12.3	11.2	32.1	9.2	8.4	24.1	6.9	6.3	18.1	5.2	4.7	13.6	3.9	

 Table 3.
 OB1 NPV after 23 years with \$0.0M Additional Non-Recurring Initial Investment

NPV Savings (23yrs) = \$444.7M

C. RETURN ON INVESTMENT (ROI)

ROI is computed over a period of 13 year s as the base case and over 23 years as an excursion. The base case discount factor remains at 3% with an initial non-recurring investment of \$13.7M for year one, \$12.9M for year two and \$9.3M for year three. The recurring investment cost is assumed to be \$1.8M every three years st arting at year four. The annualized ROI is computed using the formula:

 $ROI = \frac{NPV \text{ Savings}}{NPV \text{ of Investment}} X100$

Therefore, over a period of 13 years with a NPV savings of \$263.1M and a NPV of investments of \$39.7M our base case analysis of OB1 yields a ROI of 662.9%. Taking the analysis of OB1 out another 10 years to 23, using a NPV savings of \$444.7M and a NPV of investments of \$42.8M our base case analysis of OB1 yields a ROI of 1,038.7%.

Base Case Annualized ROI (13yrs) = 662.9%

Base Case Annualized ROI (23yrs) = 1,038.7%

From Figure 9, we can see OB1 c ash flow over 23 years shows, that after the initial investment costs of developing OB1, we have a consistent positive return on cash flow. There is a sp ike every th ree years due, primarily, to the larg e savings in n etwork infrastructure replacement.

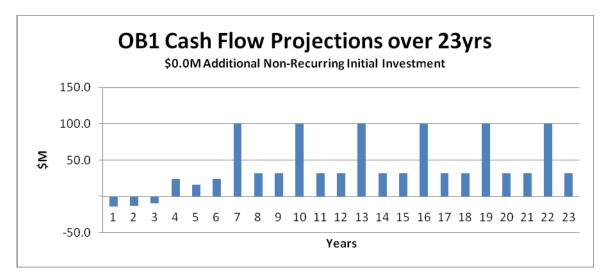


Figure 9. OB1 Cash Flow Projection over 23 years (\$0.0M Add'1 NRI)

D. SENSITIVITY ANALYSIS

Sensitivity analyses were conducted on thr ee key variables in the analysis : the initial non-recurring investm ent am ount, the recurring investm ent of OB1 after implementation, and the discount factors. Modifying one of these values at a time, while maintaining the others constant, provides a us eful analytical tool for understanding the financial behavior of the OB1 JCTD.

1. Varying the Amount of Non-recurring Initial Investments

The CENTCOM estimated initial investment costs for OB1 were \$35.9M. Figures 10 and 11 s how that by increasing the initia 1 non-recurring investment in OB1(\$39.7M) from \$10.0M m ore, and \$20.0M more respectively, we still have positive cash flows beginning in year f our. Figures 10 and 11 als o continue to show positive cash f lows throughout the life of OB1. Thus, we can say the at OB1 is a viable alternative to the current solution even if initial investment in OB1 is off by a factor of nearly two.

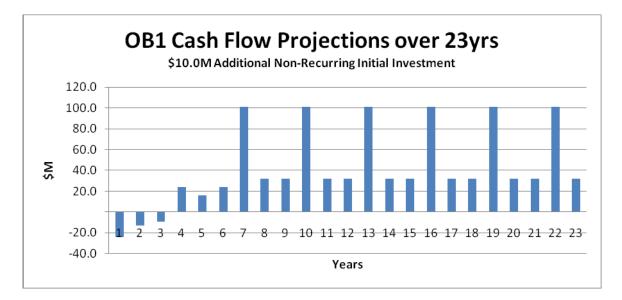


Figure 10. OB1 Cash Flow Projection over 23 years (\$10.0M Add'l NRI)

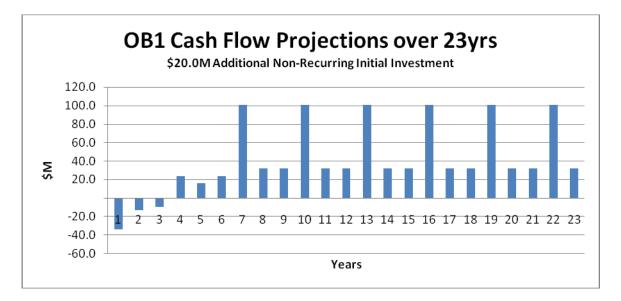


Figure 11. OB1 Cash Flow Projection over 23 years (\$20.0M Add'1 NRI)

A further analysis of OB1 can be seen in Figures 12 and 13. Figure 12 displays the NPV from the cash flows in Figure 10. Si milarly, Figure 13 shows the NPV from the cash flows in Figure 11.

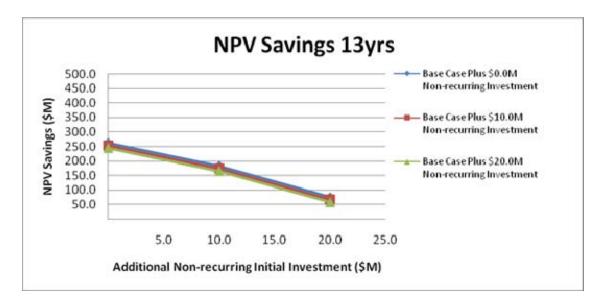


Figure 12. OB1 NPV Savings over 13 years

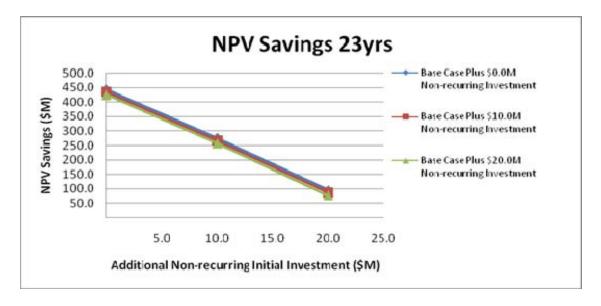


Figure 13. OB1 NPV Savings over 23 years

From the analysis of Figures 12 and 13 we can see that OB1 has a positive NPV Savings over 13 years, and 23 years, even if the initial investment cost for fielding OB1 is \$10.0M or \$20.0M more than originally budgeted (\$35.9M) over three years.

The results of converting the NPV analyses above to ROI are shown in Figure 14. We see that as initial investment increases, ROI decreases. An overall positive ROI is still obtained given our worst case scenario (\$20.0M investment over 23 years).

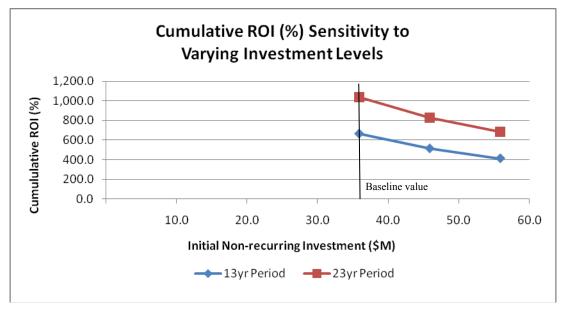


Figure 14. Cumulative ROI (%) Sensitivity to Varying Investment Levels

2. Sensitivity Analysis on Recurring Investment

This paragraph addresses the sensitivity an alysis of OB1's ROI to varying levels of recurring investment. Our base case an alysis of OB1 assumes a \$1.8M recurring investment for OB1 over its life span. This recurring investment comes from network architecture upgrades, including, deskt op P Cs, monitors, BC NICs, BC switches, upgraded cabling, software licenses and system certifications and/or re-certifications.

In this sensitivity analysis, we com pute ROI for recurring in vestments in a range from -50% of our baseline value of \$1.8M through 1000% of that value.

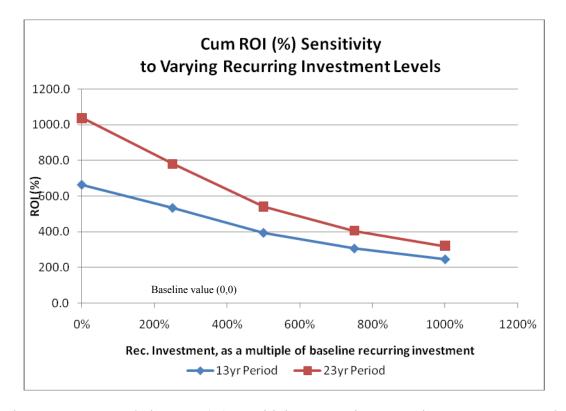


Figure 15. Cumulative ROI (%) Sensitivity to Varying Recurring Investment Levels

From Figure 15, we can see that even if the recurring investment estimate is off as much as 1000% (\$18.0 M vice \$1.8 M recurring) OB1 still has a positive ROI. Table 4 below shows these same results in tabular format.

Recurring Investment (\$M)	R-I (%)	ROI (\$M) (13 yrs)	ROI (\$M) (23 yrs)							
1.8	0%	662.9	1038.7							
4.5	250%	533.3	780.2							
9.0	500%	394.1	540.4							
13.5	750%	306.3	405.8							
18.0	1000%	245.9	319.6							
	S/A on R-I									

Table 4.%ROI obtained over varying recurring investments. Assumes a 3% df and \$0.0MNonrecurring Investment

3. Varying % of Discount Factor

Our base case analysis used a discount rate on a 10-year Treasury note of 3%. Thus, there is a lot of potential for inflation to weaken the future outlook of OB1. We analyzed OB1 ROI for discount rates of 3%, 5% and 10%.

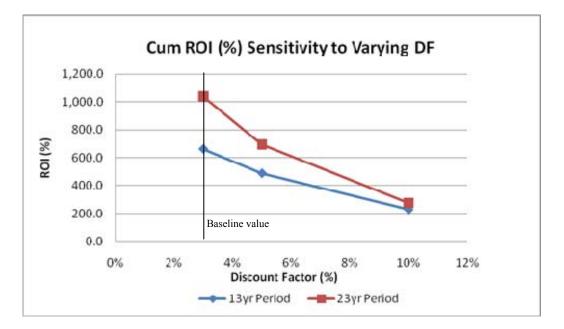


Figure 16. Cumulative ROI (%) Sensitivity to Varying Discount Rates

Figure 16 shows that even if the discount rate increases, from 3% to 10%, OB1 is a robust solution.

This BCA described a detailed W BS, analysis of CENTCOM provided data and sensitivity analysis. The following chapter will summarize the results of this analysis.

VI. CONCLUSION AND RECOMMENDATIONS

This report presented an overview of the OB1 JCTD, the OB1 technology itself, comparative alternative technologies to OB1, a generic structure to use as a guideline for performing BCAs, and the application of that generic BCA structure to the OB1 JCTD.

The BCA com pared the current D oD military network archite cture ("as-is") to what could be achieved ("to-be") with the OB1 technology. Life Cycle Costs consists of investment cost to develop OB1, as well as, the cost to upgrade, adm inistrate and maintain it.

The key results of the business case analysis are summarized as follows:

A. OVERVIEW

- The OB1 technology is not a new network topology. It is m erely modifying the existing network in a way that reduces the network footprint, streamlines the process of network set-up and take-down, helps ease the burden of adding and removi ng users to/from the network and, perhaps most important, provides more current and tim ely information to the warfighter.
- This thesis does not in any way an alyze whether the OB1 technology is capable of being built or if it m eets DoD networking security requirements, especially, regarding classified information.

B. FINANCIAL ANALYSIS

A sample of the cost benefits achieved from OB1 is contained in Table 5. As we can see from the table OB1 has the potenti al for a savings of \$2,656.1M over a 23-year life cycle of OB1. That is a 95.6% savings over the current architecture.

LCCE (23yrs)											
	As-ls (\$M)	OB1 (\$M)	Delta \$	Delta %							
Investments	1,294.7	48.7	1,246.1	96.2%							
O&S	1,482.3	72.3	1,410.0	95.1%							
Total	2,777.0	121.0	2,656.1	95.6%							

Table 5.Life Cycle Cost Estimate (LCCE) for OB1 (23 years)

Table 6 shows NPV and ROI for our base case analysis assuming:

- 10 year life cycle for OB1
- Discount factor of 3%
- \$35.9M initial non-recurring investment
- \$1.8M recurring investment.

NPV	ROI
\$263.1M	662.9%

Table 6.NPV and ROI for our base case analysis

Using our base case scenario of a 1 0-year life span for OB1, a discount factor of 3%, \$35.9M initial non-recurring investment and a \$1.8M recurring investment OB1 will yield a NPV of \$263.1M and a ROI of 662.9%.

C. SENSITIVITY ANALYSIS

- The base case annualized ROI never falls below 275.6% when the discount factor was varied from 3% to 10%
- The base case annualized ROI does not fall below 683.4% even when the initial investment cost to field OB1 is increased by \$20.0M dollars
- The base case annualized ROI does not fall below 231.7% even when varying the recurring investment costs from 0% to 1000%
- OB1 yields a ROI of 49.9% even under a worst case scenario:
 - o 10-year life of program
 - o 10% discount factor
 - o Additional non-recurring investment of \$20.0M
 - o 1000% (\$18.0M) increase in recurring costs (O&S)

D. RISK ANALYSIS

• The real risk involved with OB1 is the potential for it not to be able to perform as advertised. Specifically:

- Will OB1 be able to c onsolidate multiple ind ependent le vels of security (MILS) (i.e., multiple networks NIPR, SIPR, JW ICS) onto one workstation
- And if it is capable of doing this, will it be able to enforce all the applicable DoD security require ments regarding the handling and separation of classified material

E. BOTTOM LINE

The analysis conducted in this thesis shows that OB1 is a financially viable and robust solution to the problem of having multiple air gapp ed networks. OB1 provides a high return on investment over a wide range of varying input factors and appears to be a worthwhile investment for the DoD.

F. RECOMMENDATIONS FOR FUTURE RESEARCH

The technology required in order to cons olidate multiple air gapped n etworks, while maintaining security via data separation, is extremely technical and difficult to do. However, there are m any vendors and governm ent entities that have m ade significant strides in this area of research over the last couple of years.

One area of future research is the potential benefits that OB1 could bring to a command via improved knowledge management (KM) and knowledge superiority (KS) practices. Another area to be researched could be the benefits of thin client computing. OB1 has the ability to provide eithe r thin client, thick client computing or any combination ther eof. Thin c lient computing by itself holds several advantages for an organization. These advantages combined with the added benefits of better KS/KM have the potential to m ake OB1, or any other si milar technology, extrem ely appealing to a command, organization and, ultimately, warfighter.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX A

The following data were obtained from the OB1 team and used extensively in this BCA.

Workstation Re	Workstation Reduction										
Current Network	Total Users										
GCTF	13000										
MCFI	15000										
SIPR	35000										
NIPR	35000										
JWICS	4520										
		USCENTCOM									
Total Users		35000									
Total Workstations		102520									
Total workstations reduced		67520									
Average cost per workstation		\$1,700									
Savings through reduction		\$ 114,784,000									
OB1 cost/user (Black Channel NIC and INTEGRITY PC)		\$1,800									
Total Cost for Black Channel NIC and INTEGRITY PC		\$ (63,000,000)									
Total savings of reducing all CENTCOM workstations		I	\$51.8M								

Network Equipme	nt Red	uction		
Current Network	Total			
GCTF	271			
MCFI	313			
SIPR	729			
NIPR	729			
JWICS	94			
# workstations per switch		48		
Savings factor		34%		
Value of COTS switch		\$ 5,000		
Total switch savings All CENTCOM				\$3.6M
Black Channel (BC) Switch and Administration and Authority Workstations				
# of workstations/ BC switch - est workstations per				
subnet		225		
# of BC switches required CENTCOM		156		
Cost of Black Channel Switch		\$ 4,000		
Total Cost for BC Switches CENTCOM		+ 1,000	\$-0.6M	
# of BC Admin Workstations/User Workstation		500		
# of BC Admin Workstations required CENTCOM		70		
Administration Workstation Cost		\$ 10,000		
Total Cost BC Admin Workstations CENTCOM			\$-0.7M	
# of Authority workstations required (est 1 primary & 1 backup)		2		
Black Channel Authority Workstation Cost		\$ 250,000		
Cost of Black Channel Authority Workstations			\$-0.5M	
Total BC Switches, Admin and Authority Workstations CENTCOM				\$-1.8M
Total Network equipment savings CENTCOM				\$1.8M
Total hardware savings CENTCOM	1	1	1	\$53.6M

Network	Total				
GCTF	26				
MCFI	30				
SIPR	70				
NIPR	70				
JWICS	9				
# workstations/network admin personnel			500		
Loaded labor cost		\$	130,000		
Savings factor matches % of reduced network hardware			34%		
Total network personnel savings CENTCOM		\$8,	700,488	over 3 yrs	\$26.1M
PC Admin/Mainte	Total	soni	nei Reau		
Network	Total				
GCTF	52				
MCFI	60				
SIPR	140				
NIPR	140				
JWICS	18				
# workstations/PC admin/maint personnel			250		
Loaded labor cost		\$	110,000		
Savings factor - matches percentage of eliminated w/s			34%		
Total PC admin/maint personnel savings CENTCOM	\$ 15,396,996	over	3 yrs		\$46.2M
Total Personnel Saving CENTCOM					\$72.3M

Base Operating Systems Costs									
Avg annual electricity/workstation	\$	201	over 3 years	\$40.7M					
Avg annual air conditioning/workstation	\$	92	over 3 years	\$18.6M					
Avg annual costs for space/workstation	\$	50	over 3 years	\$10.1M					
Workstation wiring cost/workstation	\$	100	cost/workstation - one time savings	\$6.8M					
BOS savings of all CENTCOM				\$76.2M					

NOTE: BOS does NOT include:

- Lift/deployment costs
- Type 1 Encryptor savings

NOTE: Ambient Heat differential in desert AOR is greater than the Tampa factor used here

Total savings reducing		
CENTCOM with OB1		\$202.1M

APPENDIX B

Task / Item (cost in millions \$)	FY09	FY10	FY11	Т	OTAL
Operational					
Operational Management	\$ 0.09	\$ 0.09	\$ 0.10	\$	0.28
OPS IPT support (CONOPS/TTP, Scenario Development)	\$ 0.10	\$ 0.04	\$ 0.04	\$	0.18
Assessment IPT Support	\$ 0.03	\$ 0.06	\$ 0.13	\$	0.22
Travel	\$ 0.03	\$ 0.03	\$ 0.03	\$	0.09
Assessment Organization Support	\$ 0.22	\$ 0.24	\$ 0.30	\$	0.76
Demonstration	\$ -	\$ 0.32	\$ 0.39	\$	0.71
Operational Total	\$ 0.47	\$ 0.78	\$ 0.99	\$	2.24
Technical					
Technical Manager (incl travel, documentation, and training)	\$ 1.60	\$ 2.70	\$ 2.60	\$	6.90
Test and Evaluations: TD, LUA, and MUA	\$ 1.20	\$ 1.00	\$ 1.20	\$	3.40
Sofware & Hardware Integration, Configuration	\$ 2.40	\$ 1.10	\$ 1.10	\$	4.60
INTEGRITY PC + PCS SABI Certification	\$ 2.80	\$ 2.30	\$ 0.90	\$	6.00
INTEGRITY PC Robustness Certification	\$ 2.20	\$ 1.70	\$ 0.80	\$	4.70
PCS Robustness Certification	\$ 1.20	\$ 1.20	\$ 0.40	\$	2.80
PCS HW Switch Robustness Certification	\$ 1.60	\$ 1.80	\$ 0.60	\$	4.00
Technical Total	\$ 13.00	\$ 11.80	\$ 7.60	\$	32.40
Transition					
Transition Planning	\$ 0.20	\$ 0.30	\$ 0.70	\$	1.20
Travel	\$ 0.02	\$ 0.02	\$ 0.03	\$	0.07
Transition Total	\$ 0.22	\$ 0.32	\$ 0.73	\$	1.27
Grand TOTAL	\$ 13.69	\$ 12.90	\$ 9.32	\$	35.91

Projected initial non-recurring investment costs as reported by the OB1 team.

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF REFERENCES

- *Air gap (networking) Wikipedia, the Free Encyclopedia*. Retrieved 2/3/2009 from <u>http://en.wikipedia.org/wiki/Air_gap_(networking)</u>
- Baker, R. O. (2006). The Decisive Weapon: A Brigade Combat Team Commander's Perspective on Information Operations. *Military Review* (May-June), 13-32.
- *Business Case Analysis (BCA) [ACC]*. Retrieved 2/13/2009, from <u>https://acc.dau.mil/CommunityBrowser.aspx?id=32524</u>
- CFBLNET. (2007). Combined Federated Battle Laboratories Network (CFBLNet) 2007 Annual Report, CFBLNet.
- Commander Joints Chiefs of Staff Instruction 6211.02C. (2008). Retrieved 3/8/2009 from http://www.dtic.mil/cjcs_directives/cdata/unlimit/6211_02.pdf
- COSMOS Aims to Facilitate the Exchange of Data Among Allies (2007, Fall 2007). *CADRC Currents*, pp. 1-5. Retrieved 2/13/2009, from http://www.cadrc.calpoly.edu/pdf/Currents Fall 2007.pdf
- *The DODIIS Trusted Workstation (DTW) vs. The Trusted Multi-net*[™] (*TMN*). (2007). Retrieved 1/31/2009 from <u>http:/trustedmultinet.com/docs/2007%20May,%20DTW%20vs%20TMN.doc</u>
- DoDIIS Trusted Workstation Version 3.2 Installed at Multiple Sites (2006). Retrieved 1/31/2009 from http://www.wpafb.af.mil/news/story.asp?id=123033821
- *DTW DoDIIS Trusted Workstation* (2004). (DatasheetSun microsystems. Retrieved from <u>http://www.sun-rays.org/lib/hardware/sunray/ds/go_DTW_cc.pdf</u>
- FY 2009 Joint Capability Technology Demonstrations Congressional Notification (2008). Congressional Notification Director, Defense Research and Engineering.
- *High Assurance Platform Program NSA/CSS.* (2009). Retrieved 1/30/2009 from <u>http://www.nsa.gov/ia/programs/h_a_p/index.shtml</u>
- HP NetTop: A Technical Overview (2004). (Technical Overview Hewlett-Packard). Retrieved from <u>http://h71028.www7.hp.com/enterprise/downloads/HP_NetTop_Whitepaper2.pdf</u>
- JEDI PMO to Manage Rollout of the DoDIIS Trusted Workstation (DTW). (2007). Retrieved from <u>http://www.tcs-sec.com/documents/JEDICaseStudy.pdf</u>

- Meushaw, R., & Simard, D. (2000). NetTop Commercial Technology in High Assurance Applications. *Tech Trend Notes Preview of Tomorrow's Information Technologies*, 9(4), 1-8. Retrieved from <u>http://www.vmware.com/pdf/TechTrendNotes.pdf</u>
- MIL-HDBK-881a dtd 30 july 2005 [ACC]. Retrieved 2/23/2009 from https://acc.dau.mil/CommunityBrowser.aspx?id=54787&lang=en-US
- Network Infrastructure Reduction Concept of Operations (CONOPS) (2008). No. 1.0. MacDill AFB, Tampa, FL: USCENTCOM.
- Referentia Systems Inc. (2007). Design Description for the Agile Coalition Environment A Component of the Commander Third Fleet Command and Control (C2) Network (Design Description No. 1.2). Honolulu, HI: Referntia Systems Inc.
- Rutherford, S. (2008). *Creating the Ability to Access Information* (Brief). MacDill AFB, Tampa, FL: USSOCOM.
- SELinux Symposium Case Study: US Coast Guard NetTop2 -Thin Client Implementation(2007). (BriefTrusted Computer Solutions. Retrieved from http://selinux-symposium.org/2007/slides/08-tcs.pdf
- Staneszewski, D. L. (2008). USCENTCOM OB1 Briefing. MacDill AFB, Tampa, FL: USCENTCOM.

INITIAL DISTRIBUTION LIST

- 1. Defense Technical Information Center Ft. Belvoir, Virginia
- 2. Dudley Knox Library Naval Postgraduate School Monterey, California
- 3. Jerry Gelling SAIC Tampa, Florida