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ABSTRACT 

This thesis investigates the impact of various waveform parameters on the 

ability to estimate accurately the position of the source of a known data-less 

emission that is visible to multiple simultaneous collectors.  It provides an 

overview of the basic geolocation problem and identifies various parameters 

affecting geolocation accuracy, showing those that are affected by the waveform 

and those that are not.  Performance estimates are provided for detecting the 

signal and for estimating the time and frequency of arrival (TOA and FOA) of the 

signal, which are the key measure of a waveform’s ability to support geolocation.  

Several exemplar waveforms are chosen to illustrate the effects of various 

waveform parameters, and the performance of these example waveforms is 

verified through software simulations. 

Results show for additive white Gaussian noise (AWGN) interference that 

accuracy of estimates is predominantly determined by the transmit power (i.e., 

received SNR), signal bandwidth (for TOA), and signal duration (for FOA).   For a 

given SNR, occupied bandwidth, and total duration, a waveform can be "shaped" 

in the time and frequency domains to improve performance relative to a 

reference direct sequence spread spectrum (DSSS) signal.  Software simulations 

confirm theoretical performance estimates. 

This thesis summarizes the effects of various waveform parameters on 

geolocation performance, demonstrates these by modeling exemplar waveforms, 

and provides software that can be used to simulate performance. 
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 xv

EXECUTIVE SUMMARY 

This thesis examines the efficacy of a waveform to support geolocation.  

The research specifically explored how well a waveform could support identifying 

the location of an emitter based on a single transmission in the presence of 

additive white Gaussian noise (AWGN) given that the emitter is simultaneously 

visible to multiple coherent collectors.  Various exemplar waveforms are 

proposed, and MATLAB® simulations modeled the waveforms and processing of 

the signals for the key parameters, namely the time of arrival (TOA) and 

frequency of arrival (FOA).  These simulations confirm and illustrate the 

analytical formulae.  The simulation code is available to test the performance of 

other waveforms. 

The analysis also assumes that 

• the emitter is transmitting isotropically,  

• no multipath or atmospheric effects exist,  

• the entire channel is linear (including amplifiers),  

• the coherent collectors have perfect knowledge of time and 
their own location,  

• the collection geometry is static,  

• the transmitted signal is modulated by a completely known 
chipping sequence,  

• the collectors have a copy of the signal being transmitted, 
and  

• no data are being modulated onto the emission. 
 
This thesis identifies the ability of a waveform to support accurate 

estimation of TOA and FOA as the figures of merit to support geolocation of an 

emission.  The particular metric is the standard deviation σ  of these estimates.  

Any attempt to define the waveform accuracy by using a figure of merit involving 

physical location requires knowledge of the collectors and collection geometry, 

which is beyond the scope of this thesis.   
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The three main parameters affecting TOAσ  and FOAσ  are the ratio of signal 

power to noise power 0sE N , bandwidth, and signal duration.  These parameters 

are limited not just by physical constraints such as transmit power and the 

occupied bandwidth, but also by acceptable visibility by an adversary (e.g., low 

probability of intercept or detection). 

Analysis shows that the probability of correctly detecting the signal dP  

along with the probability of a false alarm FAP  are a function only of the signal 

power, noise power spectral density, duration of the signal, and detection 

threshold, but are otherwise independent of the waveform characteristics.  

Probability of detection dP , probability of false alarm FAP , and detection threshold 

are related.  For fixed signal power to noise power ratio (SNR), increasing the 

detection threshold decreases the probability of false alarm.  However, for fixed 

SNR, increasing the detection threshold will also decrease the probability of 

detection.  

On the other hand, the “shape” of the waveform does have an effect on 

TOAσ  and FOAσ  as stated by Stein [3].  For a given 0sE N , occupied bandwidth 

and total signal duration, manipulating the PSD and the signal amplitude profile 

vs. time of the signal cause variations in TOAσ  and FOAσ , respectively.   “Pushing” 

the waveform energy from the center to the extremes increases the root mean 

square rms value of that parameter.  For example, generating a waveform that 

has a higher PSD near the band edges than at the center of the band will provide 

a higher rms bandwidth signal than one that has a flat PSD, resulting in a smaller 

value for TOAσ  and improved location estimation.  Likewise, generating a 

waveform in which the signal amplitude is greater towards the beginning and end 

than in the middle of the signal results in an improved (i.e., smaller) FOAσ .   

Various bandwidth-constrained waveforms of the same duration and 

energy are proposed along with a reference waveform at various chip rates.  The 

reference waveform, 1F, and four other waveforms of similar total bandwidth are 
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listed in Table 1 and shown in Figure 1, which is a scatter plot of the two key 

parameters, rms radian frequency β  and rms duration eT .  In addition to the 

waveforms shown, the reference waveform is also chipped at higher rates to 

provide a reference for comparison with the waveform variations. 

Table 1 Waveform Summary Table (Bandwidth Constrained) 

WF# Name rms rad. Freq. (rad/s) rms duration (s) Bnn (kHz)
1F Filtered Reference 8506 0.5577 8
2F Filtered Time Gap 8434 0.8482 8
3F Filtered Split Spectrum 14463 0.558 8
4F Filtered Shortened Pulse 8655 0.1381 8
17 Sinc - 8.3kcps 14968 0.558 8  

 

 

Figure 1 Scatter Plot of Waveform Parameters for Select Waveforms. 

The next three sets of plots are of waveforms having the same rms 

interval eT .The left and right plots of Figure 2 show, respectively, the temporal 
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and spectral plots of the waveform #1F, the filtered reference wavefom.  Similar 

types of plots are shown for waveform #3F, Figure 3, and waveform #17, Figure 

4.  Note that that the power profiles for all three are very similar, although they 

may have different null depth and ripple.  However, the PSD profiles are 

significantly different for the three, even though they all have the same occupied 

bandwidth.  The unfiltered version of waveform #17 was used because it is not 

very different from its filtered version, #17F.  The shape of the PSD leads to 

significantly different rms radian frequency β  values but does not affect the rms 

duration as can be seen in Figure 1. 

 

Figure 2 Temporal and Spectral Plots of Waveform #1F. 

 

Figure 3 Temporal and Spectral Plots of Waveform #3F. 
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Figure 4 Temporal and Spectral Plots of Waveform #17. 

In a similar manner, temporal and spectral plots of the two other 

waveforms with the same rms radian frequency β  as waveform #1F, i.e., 

waveforms #2F, and #4F, are shown in Figure 5 and Figure 6, respectively.  Note 

that all three have very similar PSD profiles; However, the power profiles differ 

greatly.  Waveform #2F is similar to #1F except the energy in the middle was 

pushed to the outside.  Waveform #3 is the converse of this and has the energy 

pushed towards the middle of the waveform.  These variations in shape lead to 

significantly different rms duration eT  values while leaving β  unchanged as can 

also be seen in Figure 1. 

 

Figure 5 Temporal and Spectral Plots of Waveform #2F. 



 xx

 

Figure 6 Temporal and Spectral Plots of Waveforms #4F. 

These variations in β  and eT  lead to significant differences in waveform 

geolocation performance.  Figure 7 shows TOAσ  at various values of 0sSNR E N=  

for different waveforms.  In the region of high SNR  values ( 20dB≥ ), one can see 

that doubling the chip rate of the reference waveform causes a 50% reduction in 

TOAσ  for a given SNR .  Likewise, transmitting a signal with 6 dB more power 

would also cause a 50% reduction in TOAσ  for a given waveform at a given power.  

However, one could also achieve almost a 50% reduction in TOAσ  from the 

reference waveform, without increased energy or bandwidth, by reshaping it to 

waveform #3 (filtered) or #17 (unfiltered or filtered).  However, this is at a cost of 

increased peak power.   
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Figure 7 TOA Accuracies – Summary of Alternatives. 

Comparing the waveforms for FOA performance (Figure 8) shows that 

changing the bandwidth has no affect on the resulting standard deviation FOAσ ; 

however, shortening, lengthening, or otherwise changing the power profile over 

time does affect FOAσ . 
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Figure 8 FOA Accuracies – Summary of Alternatives. 

This shaping can be performed by filtering (temporal or spectral domain) 

the signal, synthesizing by adding up component signals of the waveform or 

otherwise modulating the signal, or by shaping the chipping pulses.  One 

potential cost relative to direct sequence spread spectrum (DSSS) of performing 

this shaping, however, is potentially greater visibility by an adversary, because 

shaping the PSD may make the signal more visible at those accentuated 

frequencies.  Another potential cost is forcing the system to deal with a non-

constant envelope waveform which can be a challenge in power constrained 

systems because they typically operate their power amplifiers at or near 

saturation to improve their power added efficiency (PAE), although techniques 

are being developed to help alleviate this constraint.   
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I. INTRODUCTION  

A. BACKGROUND 

The ability to accurately geolocate an object strictly through the use of its 

radio frequency (RF) emission can support blue force tracking, aid in locating a 

downed airman, or allow tracking of some object.  The numerous techniques 

which exist to determine the locations of an adversary’s signal emitters all involve 

solving a geometry problem by measuring angles, distances (or differential 

distances), or otherwise defining relationships in some geometry [1].  While some 

of these techniques are based solely on measuring the angle of arrival for peak 

energy detection and are thus waveform independent, others involve measuring 

the precise time and frequency of arrival of the signals [1], [2].  This thesis 

examines the effect of waveform parameters on the ability to accurately make 

these estimates.  

When those desiring to geolocate the transmitter also control the design of 

the transmitter, the waveform should be optimized to support detection and 

geolocation within the imposed constraints.  Examples of systems in which 

special waveforms are used to support geolocation are navigation systems such 

as Loran or GPS, which transmit specially designed signals from multiple 

emitters of known location to allow a receiver to determine its location [2].  This 

thesis describes the complementary process of geolocating a single emitter using 

multiple collectors.  

A goal of the research was to determine the waveform features one 

should consider in designing a waveform.  These concepts were then applied to 

develop several example waveforms to demonstrate the effect of each of these 

parameters and to show how these parameters can be traded off to vary 

performance. 

This analysis makes use of the cross ambiguity function (CAF), which is 

described later and is a method used to determine the time difference of arrival 
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(TDOA) and frequency difference of arrival (FDOA) between a signal received by 

collectors at two locations.  [3], [4], [5], [6] 

B. OBJECTIVE 

The objective of this thesis is to identify the major considerations when 

designing waveforms to support geolocation and also to develop an 

understanding of expected geolocation performance where one cannot control 

the waveform.  A waveform should optimize detectability (by the desired 

collectors) and estimation of the key parameters, time of arrival (TOA) and 

frequency of arrival (FOA).  This optimization must be bounded by real world 

limitations such as power, bandwidth, and acceptable level of observability by an 

adversary [15].  Conversely, one could also use the information to minimize the 

geolocation accuracy of an emission. 

Several key assumptions had to be made in this thesis.  The first 

assumption is that multipath does not exist and the only channel impairment is 

additive white Gaussian noise (AWGN).  The second assumption is that the 

signal is to support geolocation based on a single transmission burst which is 

received by multiple time-synchronized geographically dispersed collectors all 

having line of sight visibility to the emitter but no angle of arrival (AoA) 

capabilities.  The final assumption is that the emitter and collectors will undergo 

very limited relative motion during the burst, and each collector has perfect 

knowledge of time (i.e., it is coherent with the others) and its own location and 

velocity. 

Chapter V of this thesis proposes several different example waveforms to 

demonstrate the effects of these features and estimates expected performance 

of each.  Simulations were performed, and the results were compared with 

theoretical performance estimates.   
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C. RELATED WORK 

This thesis takes advantage of the theoretical work done by Stein [3] on 

the cross ambiguity function (CAF), which can be used to estimate jointly the 

time difference of arrival (TDOA) and frequency difference of arrival (FDOA) 

between signals received by two or more receivers undergoing limited Doppler 

effects [4].  If sufficient collectors are used, one may be able to use this 

information to estimate the location of an emitter [2].  Stein presents the CAF and 

expected accuracy of TDOA and FDOA measurements.  This thesis uses [3] to 

predict the accuracy of time of arrival (TOA) and frequency of arrival (FOA) 

estimates of a signal that is known a priori by the receivers.   

Johnson [5] developed MATLAB® software routines both to implement the 

CAF and to generate signals as would be received by a pair of independent 

receivers in a defined collection scenario.  The scenario generator allows the 

user to define the location and velocities of an emitter and two collectors, and the 

resulting generated signals model the effects of propagation delay, Doppler and 

noise.  This thesis uses the software developed in [5] the simulations performed.  

The signal generator software is used to synthesize the BPSK waveforms 

proposed in this thesis, and the CAF algorithms are used to estimate the TOA 

and FOA of synthesized signals.  

D. THESIS ORGANIZATION 

This thesis is organized into seven chapters.  Chapter II describes the 

basics of geolocation, identifies the key parameters to be estimated, and 

discusses figures of merit for geolocation.  Chapter III provides a discussion of 

the factors and constraints that affect geolocation performance but lie outside the 

control of the waveform developer.  Chapter IV quantifies expected performance 

(e.g., probability of detecting the transmitted burst and standard deviation in the 

TOA and FOA measurements) and describes the CAF.  Chapter V proposes 

several example waveforms, identifying the rationale for selecting them and the 

distinguishing features of each.  Chapter VI describes the simulation approach 
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and discusses the MATLAB® code used to perform this processing to assess 

deviation in TOA and FOA.  Finally, Chapter VII presents the simulation results, 

summarizes the findings of this thesis, and discusses possible follow on efforts. 
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II. THE GEOLOCATION PROBLEM 

A. THE EMITTER  

For the sake of bounding the problem, several assumptions are made 

about the emitter.  One basic assumption is that the emitter has no fixed receiver 

associated with it and it must be able to operate over a large area with neither 

knowledge of its own location nor that of any of the collectors.  This leads to the 

first assumption: the emitter asynchronously transmits its signal isotropically and 

any estimate of its location is based strictly on its radio frequency (RF) 

characteristics.   

Second, the emitter should have limited observability to reduce its 

vulnerability to being detected by an adversary.   This topic of low probability of 

intercept (LPI) or detection (LPD) goes well beyond the scope of this thesis, but 

the most basic guidelines to be followed are to reduce the power spectral density 

(PSD) of the signal and to limit the duration and quantity of transmissions.  This 

thesis addresses geolocation based on a single burst of energy. 

Third, the collectors know neither the time of this transmission burst nor its 

exact frequency (although, of course, the frequency must exist within some 

limited RF band).   Each collector does know, however, precise time and its own 

location.  Variability in the frequency can be a result of oscillator drift. 

Fourth, the emitter is assumed to be approximately stationary during the 

transmission burst.  Although lack of emitter motion may not always be 

operationally realistic, this thesis can only briefly discuss the effects of emitter 

motion.  

Finally, although an emitter would likely need to transmit a limited amount 

of data to identify itself and perhaps some condition or state, this thesis is limited 

to the case in which the collectors have a priori knowledge of the actual 

transmission.  Examples of such signals include preambles, synchronization 

patterns, and dataless bursts. 
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B. METHODS OF PASSIVE GEOLOCATION 

The various techniques for geolocating an emitter have existed for many 

years and all involve solving the geometry between the emitter and the various 

collectors.  Adamy [1] presents five basic approaches; the first of these is 

triangulation, which uses the intersection of lines of bearing from multiple 

collectors to estimate the emitter’s location.  The next involves measuring the 

angle and distance from a single site, such as is done with radar.  The third 

approach involves making multiple distance measurements (and the variation 

using time difference of arrival), which involves finding the intersection of arcs of 

known radii from the various collectors.  The fourth approach uses two angles 

and known elevation differential, which finds the intersection of elevation and 

azimuth angles and a known plane (or terrain map).  The fifth approach of using 

multiple angle measurements by a single moving collector against a stationary or 

slowly moving target is really a variation of the first method.  Because the various 

angle of arrival (AOA) methods are waveform independent, they will not be 

discussed in this thesis which is addressing waveform issues and will focus on 

the third of these, multiple distance measurements.   

Loomis [2] discusses geolocation of emitters using two collection platforms 

that make multiple observations of a relatively fixed emitter at various angles 

from the emitter.  Time difference of arrival (TDOA) measurements between the 

two collectors provide a locus of constant TDOA called an isochron (“constant 

time”), which in 3 dimensions is a hyperboloid of revolution about the axis joining 

the two collectors.  The location of the emitter can be estimated by finding the 

intersection of the various isochrons, each corresponding to a different 

observation.  This thesis extends the concept to one in which additional 

geographically distributed collectors can each observe a single transmission.  An 

isochron would then be formed for each pair of collectors, and finding the 

intersection of these isochrones leads to an estimate of the emitter location.   

Likewise, if the collectors have a velocity large enough that the relative 

Doppler frequency offset is significantly greater than that due to measurement 
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error or emitter motion, the measurements can provide a locus of constant 

FDOA, or an isodop (short for iso-doppler).  Solving for the intersection of all the 

isochrones and isodops provides an estimate of emitter location.  In the presence 

of measurement error, additional measurements can be made to provide an 

overconstrained set of equations, which can then be solved to give a minimum-

least-squares-error estimate of the position. [2] 

All the methods to perform geolocation are attempting to solve a set of 

simultaneous equations with multiple unknowns.  The emitter unknowns are 

location (x, y, and z), velocity (in the x, y, and z directions), time of emission, and 

exact frequency of emission.  The collectors know their own location (x, y, and z) 

and velocity (in the x, y, and z directions) and measure the signal’s time of arrival 

(TOA) and frequency of arrival (FOA).  If the emitter motion is insignificant, only 

four unknowns remain, the three position variables and the time of emission.  For 

example, if the emitter is known (or believed) to be on the surface of the earth, 

only three variables remain to be solved (x position, y position, and time) and all 

others are known.  If the altitude of the emitter is unknown, solving for location in 

three-dimensional space requires solving for an additional variable.  The Global 

Positioning System (GPS) in fact solves for all four of the variables. [2], [7]  

GPS consists of multiple satellites, each broadcasting signals containing 

precise time and position of the satellites.  The time from the various satellites is 

accurate enough that they can be considered synchronized.  If the GPS receiver 

also had this extrememly accurate time, it would be able to calculate directly the 

various signal propogation times and thus find its range from each of the 

satellites.  However, the clock on the receiver has an offset, which adds a bias to 

each of these range calculations.  These “pseudorange” estimates are thus the 

result of the receiver clock error and the time difference of the satellite and 

receiver clocks.  Because the receiver knows the location of each of the satellites 

from the received signal, it is left with four unknowns consisting of the three 

position estimates and the receiver clock offset.  Receiving the signal from four 

satellites allows the receiver to calculate these values.  [7]   
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Whether one views the geolocation problem as a version of Loomis’ 

intersection of isochrones or as an inverse GPS approach, relative time and the 

precise location and velocity of the collectors (or, conversely, the emitters in the 

case of GPS) must be known.   

C. KEY DETECTION PARAMETERS   

The previous section indicated that geolocation is dependent on the 

geometry between the emitter and the collectors, something the waveform 

cannot control.  The waveform, however, does have an effect on the accuracy of 

estimates of the time difference of arrival (TDOA) and the frequency difference of 

arrival (FDOA) [3].   

Although the collectors do not directly measure TDOA and FDOA, they 

are assumed to have perfect knowledge of time and can thus make estimates of 

the absolute time of arrival (TOA) of the received signal.  This time of arrival at 

the nth collector nTOA  is equal to the time the emission is transmitted txT  plus the 

propagation time ,prop nT  to that collector, ,tx prop n nT T TOA+ = . Because the two 

collectors share a common time reference, TDOA (and FDOA) is simply the 

difference of the two measurements,  

 

,1 1

,2 2

1 2 1 2

( )
tx prop

tx prop

prop prop

T T TOA

T T TOA
T T TOA TOA TDOA

+ =

− + =

− = − =
, (2.1) 

and this value can be used to perform geolocation in the manner indicated by 

Loomis [2].   

Because the focus of this thesis is on the waveform, it identifies those 

parameters affecting estimation of TOA, primarily, and FOA, secondarily.   

D. FIGURES OF MERIT FOR GEOLOCATION ACCURACY 

Inherent measurement errors result in a reduction in accuracy in the 

location estimate [1], [2].  Without discussing the sources of these errors, this 

section summarizes some of the metrics used to quantify the accuracy of a 
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geolocation estimate.  Because the system accuracies take into account many 

factors beyond the inherent limitations of the waveform, and thus go beyond the 

scope of this thesis, this information is provided as reference, and waveform 

variations are not projected back to geolocation accuracies. 

A basic figure of merit for position accuracy is the confidence ellipse, an 

ellipse that outlines the area, e.g., on the surface of the earth, containing the 

emitter with a probability of 1 eP−  and can be computed from an over-constrained 

matrix of measurements [2].  Thus one can speak of a “90% confidence ellipse”, 

i.e., 10% probability the emitter is really outside this ellipse, or a “50% confidence 

ellipse” by defining the center of the ellipse along with the major axis and minor 

axis.  Thus, a smaller ellipse indicates a greater certainty of emitter position, i.e., 

increased accuracy.  

Among other metrics of location accuracy are 2 drms, Circular Error 

Probable (CEP), and Spherical Error Probable (SEP).  Reference [8] typically 

designates accuracy in terms of 2 drms, which is defined as 2 22 N Eσ σ+  when 

referring to horizontal positioning where 2
Nσ  and 2

Eσ  are the variances of the 

north and east position estimates respectively.  It further states that in actuality, 

the percentage of horizontal positions, e.g., on the surface of the Earth, 

contained within the area specified by the 2 drms value varies between 

approximately 95.5 and 98.2 percent depending on the eccentricity of the ellipse 

of the error distribution [8].   

The CEP, which specifies the area defined by a scaled ellipse 

( )0.589 N Eσ σ+ , where Nσ  and Eσ  are the rms errors in the estimated user 

position coordinates along the nort and east axis, and is the same as the 

confidence ellipse with 0.5eP =  [8].  Although called ‘circular’, CEP is really 

elliptical unless the various variances are the same and the angles from the 

emitter to the various collectors are all 90º apart from each other as indicated in 
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Figure 9 [1].  It is sometimes called elliptical error probable (EEP) [1].  If the 

positioning errors have a circular normal distribution, then 2 drms = 2.4 CEP [8]. 

 

 

 

 

 

 

Figure 9 Eccentricity of Ellipse for CEP  is Geometry Dependent (after [1]). 

SEP defines a volume containing the emitter with a probability of 0.5.  As 

opposed to the previous measures which define an area on a plane, the SEP 

requires the addition of a vertical element and is defined to be ( )0.513 N E hσ σ σ+ +  

[8] where hσ  is the square root of the variance of the height.  SEP is truly 

‘spherical’ only when N E hσ σ σ= = .   

This chapter defined the geolocation problem by identifying assumptions 

about the transmission, presenting passive geolocation techniques, identifying 

the key detection parameters of TOA and FOA, and listing figures of merit for 

geolocation.  The next chapter identifies and discusses parameters that can 

affect geolocation performance  but are not waveform-related. 
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III. PARAMETERS BEYOND THE CONTROL OF THE 
WAVEFORM DEVELOPER THAT AFFECT GEOLOCATION 

PERFORMANCE 

A. NON-WAVEFORM PARAMETERS TO CONSIDER 

The waveform parameters are only a subset of the factors affecting the 

accuracy of the geolocation estimate.  Among other factors are the collection 

geometry (i.e., the geometric relationship between the location of the emitter and 

the locations of the various collectors), variations in the propagation delay, clock 

errors, and collector location errors.  

The position error is highly dependent on the position of the collectors 

relative to the emitter.  For example, if the distance between an emitter and 

collector is large, even a small error in angular estimate can result in a significant 

location error as illustrated in Figure 10.  As illustrated in Figure 9, the size and 

orientation of the confidence ellipse depends on the relative angle between the 

emitter and the various collectors.  

 

Figure 10 Relation Between Angular and Location Errors (from [1]). 

Analysis of the degradation of geolocation precision due to geometry has 

been well developed for the GPS system [9], [10], which is a complement to our 

geolocation problem (i.e., multiple emitters received by a single collector vs. a 

single emission received by multiple collectors).  Spilker [9] shows that geometric 

dilution of precision (GDOP) for a three-dimensional position with four satellites 

can be minimized by maximizing the volume of a tetrahedron formed by the unit 

vectors in the direction of each of the satellites.   

Location Error

Distance

Angular Error
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Because the scope of this thesis is to perform geolocation primarily on 

TOA, the error sources would be expected to be similar to the ranging errors for 

GPS.  Parkinson [9] identified six classes of these errors: 

• Error in knowledge of collector locations and velocities, 

• Error in knowledge of the time of emission, 

• Ionospheric propagation effects, 

• Tropospheric propagation effects, 

• Multipath, and  

• Receiver sources of error. 

These error sources are beyond control of the waveform but would need to be 

considered at the system level. 

The first two items in the bulleted list above would correspond to errors in 

knowledge of the positions and velocities of the collectors and any time reference 

errors they may have.  As an example of accuracies achievable with the GPS 

system, root mean square (rms) ranging errors for GPS (in 1984) attributable to 

ephemeris error, the difference between actual satellite location and reported 

location, was 2.1 m for satellite ephemeris data up to 24 hours old.  Likewise, the 

resulting positional error due to clock errors (also in 1984) was 4.1 m for 24-hour 

predictions and 1-2 m is expected for 12-hour updates of the GPS clock. [10] 

The next two items, ionospheric and tropospheric propagation effects 

cause error in the range estimate because of variations in the velocity of light as 

the radio signal passes through them, caused by varying number of free 

electrons in the ionosphere and variations in temperature, pressure, and humidity 

in the troposphere.  Ionospheric group delay can be approximated to the first 

order by 2

40.3( ) TECiont f
f

Δ =  where TEC is the time and spatially varying total 

electron count (sometimes called total electron content) and f  is the carrier 

frequency [11].  TEC is the total number of electrons in a 1-m2 cross-sectional 

tubing along the path of transmission through the ionosphere [11], with units of 

electrons per square meter, where 1016 electrons/m² = 1 TEC unit (TECU) [12].  
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World-wide TEC values can be viewed in near real-time from the Internet [13].  

Figure 11 shows an example of one of these TEC maps.  Effective accuracies 

with simple modeling are about 2-5 m for the ionosphere and about 1 meter for 

the troposphere [10]. 

 

Figure 11 Example TEC map (from [13]) 

The magnitudes of the final two sources of error are largely a function of 

the receiver design.  Although the receiver cannot prevent multipath, the 

processing approach can reduce its impact if the signal can be tracked, not 

something supported by a burst transmission.  As a reference, GPS error is 

typically less than 1 m under most circumstances for the multipath and less than 

0.5 m for the receiver error.  [10]  

Parkinson [10] summarizes all these error sources for GPS in Table 2.  

Note that he breaks out horizontal & vertical accuracies separately and these 

include values for dilution of precision (DOP), which are metrics defining the 

degradation from ideal due to geometry and need to be stated to indicate the 

assumptions for under which the errors are determined.  The two variations of 

DOP used in the figure are vertical dilution of precision, VDOP, equal to 2.5 and 
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horizontal dilution of precision, HDOP, equal to 2.0.  Parkinson breaks out each 

source of error into components referred to as bias, which is non-zero mean over 

a limited time or geographical area, and random which is zero mean.  The table 

is useful for showing the relative contribution of the various error sources as well 

as the absolute values of an example system that estimates location.  To give 

some context on timing accuracy required, an error of 1 m corresponds to a 

timing error of approximately 33 ns using 8

1 m 33 ns.
3 10 m s

dt
c

= = =    

Table 2 GPS Standard Errors (from [10]). 

 Standard Deviation, m 

Error Source Bias Random Total 

Ephemeris data 2.1 0.0 2.1 

Satellite Clock 2.0 0.7 2.1 

Ionosphere 4.0 0.5 4.0 

Troposphere 0.5 0.5 0.7 

Multipath 1.0 1.0 1.4 

Receiver Measurement 0.5 0.2 0.5 

User equivalent range error (UERE), rms 5.1 1.4 5.3 

Filtered UERE, rms 5.1 0.4 5.1 

Vertical one-sigma errors – VDOP=2.5 12.8 

Horizontal one-sigma errors – HDOP=2.0 

 

10.2 

B. WAVEFORM CONSTRAINTS 

The waveform is subject to design constraints that limit the features it may 

have and will limit the performance possible.  Key limitations include observability 

by an adversary, required detection and false alarm rates, and operational 

physical considerations. 
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Observability refers to the ability of an adversary to detect or intercept the 

transmitted signal.  For signals of low power spectral density, unless an 

adversary has knowledge of the signal structure, he cannot do significantly better 

than using an energy detector (Figure 12), a power detector followed by an 

integrator.  In use, the energy detector would be preceded by a bandpass filter 

and followed by a thresholder.  Another type of energy detector is the two-

receiver correlation radiometer, in which two inputs are multiplied together and 

the product is smoothed with a low-pass filter.  [15] 

 

 

 

Figure 12 Basic Radiometer (after [15]). 

The two-receiver correlation radiometer, Figure 13, is similar to the CAF 

processing approach (discussed in Chapter IV) in that both have separate 

antennas and receiver front ends to allow noise to be independent, and the two 

signals are multiplied by each other and undergo low-pass filtering.  The CAF 

processor, however, allows the time between the signals to be offset and can 

compensate for the frequency offset between the two receivers. 

 

 

 

 

 

 

 

Figure 13 Basic Two-Receiver Correlation Filter (from [15]). 
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The ability of an interceptor to detect a signal depends on not only the 

format and strength of the signal relative to the background noise, but also on 

how much knowledge he has of the signal and how dedicated he is to detecting 

it.  Among the knowledge that generally helps detection are carrier frequency, 

bandwidth, time, and any fundamental components of the waveform such as PN 

code or data bits and timing.  Additional features that can make a signal harder to 

detect in the presence of noise are time-hopping, frequency-hopping, and 

frequency spreading (DSSS or frequency sweep).  [15]  

Certain features of a waveform may be exploited to increase its 

detectability.  One technique useful against BPSK modulated waveforms 

(including DSSS) of sufficient signal-to-noise is to square the signal and look for 

the second harmonic of the modulated carrier.  Other techniques exploit the 

statistical properties of man-made signals known as cyclostationarity, which 

show themselves as periodic components in the mean and autocorrelation 

functions in signals of sufficient signal power to noise power ratio (SNR)  [16].  

In addition to managing the observability of a signal, the waveform 

developer must work within the limitations specified for probability of detection dP  

(by the desired receiver) within the context of a maximum probability of false 

alarm faP , which is covered in more detail in Chapter IV. 

Finally, the waveform must operate within the operational limitations such 

as power (e.g., battery life) and spectrum allocation.  For example, systems often 

use constant envelope waveforms because they can be transmitted using with 

high power-added efficiency (PAE) amplifiers operating near saturation (e.g., 

traveling wave tube or class “C” devices) [17], but new techniques in non-linear 

amplifiers may allow waveform freedom without sacrificing power efficiency [18].  

Although many constraints and limitations (both requirements and 

“desirements”) are placed upon the waveform, others need to be defined.  The 

next chapter discusses the effects of waveform parameters on the resulting 

performance. 



 17

IV. PERFORMANCE ESTIMATES 

The previous chapter identified various factors affecting geolocation that 

are beyond the control of the waveform (e.g., collection geometry) and 

constraints placed upon the waveform (e.g., bandwidth).  This chapter identifies 

expected performance of a waveform including detection by the intended 

receiver and the ability to support accurate estimation of time and frequency of 

the received signal.  

Determining the TOA and FOA of a signal is a two-step process, first 

detecting the signal (i.e., detection) and then estimating the TOA and FOA values 

of the detected signal.  This chapter develops performance estimates for 

detection and false alarm and TOA and FOA estimation.   

A. DETECTION  

This section develops performance estimates for probability of detection 

and probability of false alarm using both a coherent receiver and a non-coherent 

receiver.  For each type of receiver, the processing is mathematically described 

for a BPSK modulated direct sequence spread spectrum (DSSS) signal, the 

output statistics are derived, and the performance for detection and false alarm 

probabilities are developed in the presence of additive white Gaussian noise 

(AWGN).  

1. Coherent Detection 

Coherent detection is the process of attempting to detect a signal that is 

frequency and phase synchronized with the carrier of the receiver [19].  Any loss 

of synchronization may degrade performance.  Although perfect synchronization 

may be an unrealistic real-world situation, it allows the derivation of the optimal 

performance. 
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a. Receiver Processing 

Figure 14 shows a coherent receiver where ( )r t  is the received 

signal, ( )s t  is the reference signal, and X  is the resulting decision variable at 

the end of each integration time.  The received signal ( )r t  is composed of the 

sum of the desired signal ( )s t  and noise ( )n t  such that ( ) ( ) ( )r t s t n t= + .  The 

product of the received and reference signals is integrated over the period of 

interest and then sampled to produce the decision variable X . 

 

Figure 14 Coherent Receiver (after [20]). 

Let the reference signal ( )is t  be a BPSK modulated direct 

sequence spread spectrum (DSSS) signal,   

 ( ) ( ) ( )2 cos 2ref cs t c t f tπ= , (4.1) 

where ( ) { }1,1c t ∈ −  is the chip sequence used to modulate the carrier and cf  is 

the carrier frequency.  If the received signal is at the same frequency and in 

phase with refs , then 

 ( ) ( ) ( ) ( )cos 2c cr t A c t f t n tπ= + , (4.2) 

in which ( )n t  is additive white Gaussian noise (AWGN) with power spectral 

density (PSD) equal to 0 2N  and cA  is the magnitude of the signal carrier. The 

resulting decision variable X  is 

( )r t

( )refs t

( )
0

T
dt∫

Τ
X( )w t ( )x t
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( ) ( )

( ) ( )

0

0

sin 4
2 cos 2

4

T

ref

Tc
c c c

c

X r t s t dt

f TA T A c t n t f t dt
f
π

π
π

=

= + +

∫

∫
 (4.3) 

which simplifies to  

 ( ) ( )
0

2 cos 2
T

c cX A T c t n t f t dtπ= + ∫  (4.4) 

if 2cf m T=  or 1cf T . [21] 

b. Decision Variable Statistics 

The mean value of the output decision variable X  shown in (4.4) is 

 ( ) ( )
0

2 cos 2
T

c s ncX E A T X Xc t n t f t dtπ⎡ ⎤= + = +⎢ ⎥⎣ ⎦∫  (4.5) 

where sX  is the contribution to the mean from the signal input ( )s t  and nX  is 

the contribution from the noise input ( )n t . 

 [ ]s c cX E A T A T= =  (4.6) 
because the signal is deterministic, and  

 ( ) ( ) ( ) ( )
0 0

02 cos 2 2 cos 2
T T

n c cX E c t n t f t dt E f t dtc t n tπ π⎡ ⎤= = =⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦∫ ∫  (4.7) 

because the chip sequence is independent of the noise, which has zero mean. 

Thus the mean of X  is 

 s n cX X X A T= + = .  [21] (4.8) 

The variance of X  is 
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using the property of AWGN that ( ) ( ) ( )0

2
NE n t n tτ δ τ= −⎡ ⎤⎣ ⎦  [21].   

This further reduces to  

 2
0N Tσ =  (4.10) 

if 2cf m T= , where m  is an integer, or 1cf T .   

The probability distribution of the output X  is Gaussian because 

( )n t  is Gaussian and the integration is a linear process, and thus it has the 

probability density function 

 ( )
( )2

2

1 exp
22X

x X
f x

σπσ

⎡ ⎤− −⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 [20]. (4.11) 

The probability density function (pdf) of the detection variable depends on 

whether the signal was transmitted.  The variance 2σ  is independent of whether 

the signal is present (4.9); however, the mean when no signal exists (4.7) is 

different from that when the signal is present.  Thus, |0Xf  and 0m  represent the 

pdf and mean when no signal is present, and |1Xf  and 1m  represent the pdf and 

mean when the signal is present, where 0 0m =  and 1 sm X= .  The area under 

each of the curves is unity, and they have same width. [22]  

c. Probability of Detection and False Alarm 

The decision variable statistics allow one to determine the various 

detection probabilities.  A detection is declared if the decision variable X  coming 

out of the receiver (Figure 14) exceeds a threshold TV .  The probability of 

declaring a detection is thus 

 ( ) ( )Pr
T

T XV
X V f x dx

∞
> = ∫  [22], [23], (4.12) 

where TV  is the threshold value.   
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Figure 15 shows the probability density function (pdf) of X  when 

no signal is present |0Xf  and the pdf when the signal is present |1Xf .  A detection 

is declared both when a signal is present and detected, called a “detection”, and 

also when no signal is present but the noise causes X  to exceed the threshold 

TV , called a “false alarm.”  The probability of a false alarm FAP  corresponds to the 

area to the right of TV  under the first curve and shown in gray, and the probability 

of a detection dP  corresponds to the area to the right of TV  under the second 

curve, i.e., all the area under the second curve except that in black.   The area in 

black is 1 dP−  and is referred to as the probability of a miss.  Thus, increasing the 

threshold, i.e., moving TV  to the right, reduces the probability of a false alarm 

FAP , but it also reduces the probability of detecting a valid signal dP  for a fixed 

SNR.  Conversely, decreasing the threshold increases the probability of a false 

alarm FAP  but also increases the probability of detecting a valid signal dP  for a 

fixed SNR.  [22], [23], [24] 

 

TV

( )|0Xf x ( )|1Xf x

x0m 1m

FAP1 dP−

2σ2σ

( )Xf x

TV

( )|0Xf x ( )|1Xf x

x0m 1m

FAP1 dP−

2σ2σ
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Figure 15 Coherent Probability Distribution Functions (pdf) (after [22]). 
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Ideally, one wants to detect all signals (i.e., 1dP = ) and have no 

false alarms (i.e., 0FAP = ), but this is not possible because ( )Xf x  is never equal 

to zero.  To reduce this range of ambiguity, either ( )Xf x  must be narrower by 

making σ  smaller by reducing the noise, or the difference between them must be 

made larger, i.e., increasing the difference between 0m  and 1m , by increasing 

signal energy [22], [24].   

The probability of a false alarm is mathematically defined as 

 ( ) ( )|0Pr | 0
T

FA T XV
P X V f x dx

∞
= > = ∫  [22], [23] (4.13) 

where  

 ( )
( )2

|0 2

1 exp
22

n
X

x X
f x

σπσ

⎡ ⎤− −⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 [22] (4.14) 

in which 0nX =  as shown in (4.7).  Thus  

 
2

2

1 exp
22T

FA V

xP dx
σπσ

∞ ⎡ ⎤−
= ⎢ ⎥

⎣ ⎦
∫  (4.15) 

for which no closed form expression exists [23].  However, applying the variable 

substitution xλ σ=  gives 

 
21 exp

22 T
FA V

P d
σ

λ λ
π

∞ ⎡ ⎤−
= ⎢ ⎥

⎣ ⎦
∫ , (4.16) 

which is now the form of the Q-function, which is defined as 

 
2 21( )

2 x
Q x e dξ ξ

π

∞ −= ∫ , (4.17) 

for which equations to approximate this and lookup tables have been created, 

although these approximations and tables assume 0x ≥  [23].  Combining (4.16) 

and (4.17) and applying (4.10) leads to the final expression for FAP  in terms of the 

Q-function as 
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( ) ( )0

2

0

 ,

FA T T

T

P Q V Q V N T

VQ
N T

σ= =

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

 (4.18) 

which mathematically confirms the conclusion reached earlier that the probability 

of a false alarm FAP  will reduce as the threshold TV  increases or as the product of 

noise PSD and integration time, 0N T , decreases.   

In a similar manner, the probability of valid detection dP  is the 

probability of declaring a detection when the signal is indeed present, 

 ( ) ( )|1Pr |1
T

d T XV
P X V f x dx

∞
= > = ∫  (4.19) 

where  

 ( )
( )2

|1 2

1 exp
22

n
X

x X
f x

σπσ

⎡ ⎤− −⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. (4.20) 

Using (4.8) and the substitution variable ( )cx A Tλ σ= − ,  
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. 
Finally, substituting (4.10) into (4.21) gives 

 
0

1 c T
d

A T VP Q
N T

⎛ ⎞−
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
, (4.22) 

where TV  is the detection threshold.  Note that the probability of detect dP  is  
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waveform independent and is a function of only the signal amplitude cA , the 

noise power spectral density 0

2
N , the integration time T , and the detection 

threshold TV .   

d. An Example 

Suppose one wanted to establish the threshold for a FAP  of once 

per day for a system with a 1 MHz sampling frequency in which the received 

signal will be at the same frequency and in phase with the reference signal.  The 

detector makes a threshold decisions for each sample.  The resulting FAP  per 

sample is  

 11
6

1 day hr sec 1.157 10
day 24 hr 3600sec 10  SFAP −= = ×  per Sample. (4.23) 

One Can solve for TV  using (4.18) and a Q-table to find 

 

( ) ( ) 11
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6.685   .

FA T T
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T

P Q V Q V N T

V N T

V N T

σ −= = = ×

⇒ =

⇒ =

 (4.24) 

Now supposing the requirement is to detect 99% of the emissions, then one can 

in a similar manner solve for TV  using (4.22), such that  
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. (4.25) 
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Equating the two expressions for TV  and solving to find the required 

ratio of signal power to noise power SNR  using 2
0 02 2cA T N E N SNR= =  [24], 

where E  is the energy in the pulse, gives 

 

0 0

0

2

0 00

2

2.325 6.685

9.01

29.01 2

9.01 2 40.6 16.1 dB.

c

c

c c

A T N T N T

A T N T

A T A T E SNR
N NN T
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− =

⇒ =

⇒ = = = =

⇒ = = =

 (4.26) 

2. Noncoherent Detection 

The previous section described coherent processing; however, in the real 

world, even if one knew the exact frequency of the received signal he would not 

know the phase of the signal.  This section addresses a non-coherent strategy to 

detect a signal of unknown phase.  

a. Receiver Processing 

The noncoherent receiver shown in Figure 16 consists of two 

receiver arms in which the squared outputs are summed and where the 

reference signals ( ) ( ) ( )1 2 cos 2 cs t c t f tπ=  and ( ) ( ) ( )2 2 sin 2 cs t c t f tπ= −  are 

orthogonal [24].  This summed signal is then sampled to provide the decision 

variable, or the receiver may take the square root of the summed signal as 

shown in Figure 16.  The resulting distribution of the decision variable with signal 

present is non-central Chi-squared with two degrees of freedom for the case of 

the sum of the squares or Ricean in the case where the square root is taken [20], 

[23].   The resulting distribution for the case with no signal, i.e., noise only, is 

central Chi-squared with two degrees of freedom or Rayleigh for the case in 

which the  decision variable is the sum of the squares or the square root of this 

sum, respectively [20], [25]. 
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Figure 16 Noncoherent Receiver (after [20]). 

b. Probability of Detection and False Alarm 

For the detector that is basing its decision on the magnitude of the 

signal, i.e., 2 2
I Iz z+ , it can be shown that 

 2

1, 2 lnc
d

fa

AP Q
Pσ

⎡ ⎤⎛ ⎞
⎢ ⎥= ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

, (4.27) 

where  

 ( ) ( ) ( )2 2 2
0,Q I e dξ α

β
α β ξ αξ ξ

∞ − +
= ∫  (4.28) 

is called Marcum’s Q-function [23]. 

When the probability of false alarm FAP  is small and probability of 

detection dP  is relatively large, (4.27) can be approximated as  

 0 12 lnd
fa

AP F
Pσ

⎡ ⎤⎛ ⎞
⎢ ⎥≈ − ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (4.29) 

where 
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∫   [23]. (4.30) 
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Applying (4.29) for 111 10FAP −≈ ×  and 0.99dP =  as in the coherent 

example and using an ( )F  table, such as Table B-1 in [23],  gives 
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. (4.31) 

Finally, the required SNR  can be found to be  

 
( )22

2

9.4
44.2

2 2
16.5 dB

cASNR
σ

= = =

≈

[25]. (4.32) 

B. FREQUENCY AND TIME ESTIMATION  

The previously developed estimates of FAP  and dP  assumed that the 

received signal was at the same frequency, but the signal is likely to have a 

frequency offset because of Doppler shifts1 or oscillator drift.  This section 

addresses the joint detection of time and frequency offset between a received 

and a desired signal. 

1. The Complex Ambiguity Function (CAF) 

The coherent receiver shown in Figure 14 is a matched filter or correlator 

receiver and can be mathematically described as 

 
0

( ) ( ) ( )X r t s T t dt
τ

τ τ= − +∫  [24], (4.33) 

where T is the integration time and τ  is the time offset between signals, provides 

the maximum SNR  at the filter output when Tτ =  in AWGN [24].  Setting t T=  in 

(4.33) and generalizing for complex variables results in  

                                            
1 Doppler shift is really an approximation for a “narrowband” signal in which relative motion 

exists between the transmitter and receiver.  In reality, the Doppler frequency shift varies across 
the bandwidth and the modulating signal experiences compression or dilation. 
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 *

0
( ) ( ) ( )

T
X T r t s t dt= ∫  [19]. (4.34) 

Finding the resulting value of τ  when searching for a peak magnitude 

(i.e., 
max

( )X τ ) is a reasonable method to find the best approximation of time of 

arrival for the signal.   

The ambiguity function, sometimes referred to as the complex ambiguity 

function [3] or the cross ambiguity function [5], [6], as presented by Stein [3] is 

very similar to (4.34), but with the addition of a complex exponential factor is  

 ( ) ( ) ( )* 2
1 20

,
T j ftA f s t s t e dtπτ τ −= +∫ , (4.35) 

where ( )1s t  and ( )2s t  are the two received signals in analytic form containing a 

common component, while τ  and f  are arbitrary time lag and frequency offsets. 

The similarity of the cross ambiguity function (CAF) (4.35) to the 

correlation receiver (4.34) can be shown as follows.  Let ( ) ( ) ( )12
1 1

j f t
Ls t s t e n tπ= +  

and ( ) ( ) ( )22
2 2

j f t
Ls t s t e n tπτ= + +  where ( )Ls t  is the complex modulating signal,τ  

is the difference in propagation times, 1f  and 2f  are the respective apparent 

carrier frequencies, and ( )in t  is the noise received by the thi  collector.  Putting 

this all together results in 
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which simplifies to  

 ( ) ( ) ( ) ( )*

0 L

T

L L SA s t s t dt Rτ τ τ= + =∫  (4.37) 
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in the presence of no noise and when 1 2f f f= − .  The peak amplitude of 

ambiguity function occurs when ( ) ( ) ( ) ( )*

0
, 0

L

T

L L SA f s t s t dt Rτ τ= + =∫  [23].  Thus, 

one can search for the values of τ  and f  which cause ( ),A fτ  to peak to find 

the TOA and FOA of a received signal. 

2. Theoretical Performance 

Stein [3] presents the expected accuracy of the time difference of arrival 

(TDOA) and frequency difference of arrival (FOA) estimates between two signals 

in terms of the standard deviation for each.  Because, the time of the reference 

signal inside the receiver is known and can be declared to be zero, his equations 

can take the forms: 

 1 1
TOA BT

σ
β γ

=  (4.38) 

and 

 1 1
FOA

eT BT
σ

γ
=  (4.39) 

where 

B  is the noise bandwidth at the receiver input, 

T  is the integration time of the signal, 

β  is the “rms radian frequency” of the signal spectrum, detailed below, 

eT  is the “rms integration time” of the signal, detailed below, and  

γ  is the effective input signal to noise ratio. 

Each of these is further defined in [3] as follows.  The input signal to noise ratio γ  

is calculated using  

 
1 2 1 2

1 1 1 1 1
2γ γ γ γ γ
⎡ ⎤

= + +⎢ ⎥
⎣ ⎦

 (4.40) 
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where 1γ  and 2γ  are the signal-to-noise ratio for each of the respective received 

signals.  By definition, the rms radian frequency β  is 

 ( )
( )

1
22

2  s

s

f W f df
W f df

β π
∞
−∞
∞
−∞

⎡ ⎤∫= ⎢ ⎥
∫⎢ ⎥⎣ ⎦

 (4.41) 

where ( )sW f  is the signal power spectral density, as shaped by the receiver and 

centered about zero.  And the rms integration time eT  is   
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⎢ ⎥∫⎣ ⎦

 (4.42) 

where ( )u t  is centered about zero.   

The rms radian frequency β  is similar to the what is referred to as rms 

bandwidth rmsB , defined to be “the square root of the second moment of a 

properly normalized form of the squared amplitude spectrum of the signal about 

a suitably chosen point,” which is often used because it facilitates mathematical 

evaluation better than other definitions of bandwidth [19].  Thus β  is 2 rmsBβ π= .  

Likewise, the definition for rms integration time eT   has a form similar  to what is 

sometimes referred to in literature as the rms duration rmsT  [19], where the 

relationship between the two is 2e rmsT Tπ= .  This thesis uses the terms laid out by 

Stein, β  and eT .  

For example, if the signal has a flat PSD of amplitude 1 over the spectrum 

from 2sB−  to 2sB+ , where sB  is the signal bandwidth, 
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. (4.43) 

This leads to  
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 1 1 0.55 1
1.8TOA

s sB BBT BT
σ

γ γ
≈ = . (4.44) 

Likewise, if the signal is constant amplitude over the time interval from 

2T−  to 2T+ , eT  can be shown to be 

 1.8
3eT T Tπ

= ≈ , (4.45) 

where T  is the integration time.  This leads to  

 1 1 0.55 1
1.8DFO T TBT BT

σ
γ γ

≈ = . (4.46) 

Stein points out that the quantity BTγ  can be viewed as the effective 

output SNR, with γ  improved by the BT  product of the processing.  Because 

SNR is defined as 0/sE N  and not 0/cE N , this improvement is already taken into 

account and thus 1BT = .  Also, because the SNR of the reference has no noise, 

γ  equals twice the SNR of the received signal.   

In summary, the accuracy of the estimates of TOA and FOA generally 

improve with increased SNR, bandwidth, and integration time.  Because TOAσ  is 

dependent on the rms radian frequency, which is different but related to 

bandwidth, shaping a waveform may improve the accuracy of TOA estimates 

without requiring more signal energy or bandwidth.  The next chapter applies 

these equations and concepts to propose waveform variations with improved 

geolocation performance. 
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V. PROPOSED WAVEFORMS 

In the previous chapter, equations (4.38) and (4.39) indicated the 

accuracies for the estimates of TOA and FOA are a function of the Time-

Bandwidth-SNR product TBγ  along with the rms radian frequency β  or rms 

integration time eT  for the TOA or FOA, respectively.  This chapter proposes 

several waveforms of the same signal energy sE  but shaped in the time and 

frequency dimensions to improve (or degrade) these last two parameters.   

The waveforms presented are direct sequence spread spectrum (DSSS) 

to reduce the power spectral density for reduced observability, to provide 

interference rejection, and to increase the bandwidth to improve the TOA 

estimation.  DSSS is typically a BPSK-modulated chip sequence and is the basis 

for the reference waveform.  Variations of this signal are proposed giving three 

classes of waveforms: BPSK-modulated waveforms, filtered BPSK-based 

waveforms, and spectrally constrained waveforms based on sinc-shaped chips.  

The performance of the various waveforms is to be compared against the 

reference BPSK waveform of constant amplitude and duration, waveform #1, 

unless otherwise indicated.  The amplitude of the various waveforms are 

normalized so the total energy of a signal is the same as the reference.  

Bandwidth is referenced to the null-to-null bandwidth of the signal nnB . 

Table 3 summarizes the key parameters of the waveforms proposed in 

this chapter.  The ‘WF#’ column lists the designator for the waveform and the 

next column lists the respective name.  The first four waveforms are the BPSK-

modulated waveforms, and the following set use the respective designator 

followed by an ‘F’ to designate filtered version of the waveform.  An additional 

letter such  as ‘a’, ‘b’, or ‘c’ may also be appended to designate variations that 

use different chipping rates.  The next two columns present the rms radian 

frequency β  and the rms duration eT .  These values were determined from 

waveforms generated using 30720N =  samples (S), 100sf =  kS/s, carrier 
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frequency 25cf =  kHz, and the chip rate cR  specified in the last column of the 

table.  The fifth column presents the approximate null-to-null bandwidth nnB  of 

the signal.  The asterisk associated with the first four is a reminder that the 

bandwidth of these signals is really infinite.  Finally, the sixth column identifies 

whether the signal can be generated using the gen_sig MATLAB code which can 

simulate the effects of a dynamic collection geometry.  All of the waveforms 

produced have the same duration, 0.31 s, and energy.  Except for the first four 

waveforms, the energy is mainly constrained to nnB listed in the 5th column of 

Table 3.  The simulations to estimate the TOA and FOA were performed under 

various levels of SNR. 

Table 3 Waveform Summary Table. 

WF# Name rms rad. Freq. (rad/s) rms duration (s) Bnn (kHz) gen_sig comments
1 Reference 23622 0.5572 8* Yes Rc=4kcps
2 Time Gap 23226 0.8473 8* Yes Rc=4kcps
3 Split Spectrum 26310 0.5572 8* Yes Rc=4kcps
4 Shortened Pulse 24101 0.1393 8* Yes Rc=4kcps

1F Filtered Reference 8506 0.5577 8 Yes Rc=4kcps
1Fa Filtered Reference 2031 0.5606 1 Yes Rc=1kcps
1Fb Filtered Reference 4261 0.5581 2 Yes Rc=2kcps
1Fc Filtered Reference 17039 0.5576 16 Yes Rc=8kcps
2F Filtered Time Gap 8434 0.8482 8 Yes Rc=4kcps
3F Filtered Split Spectrum 14463 0.558 8 Yes Rc=4kcps
4F Filtered Shortened Pulse 8655 0.1381 8 Yes Rc=4kcps
11 Sinc WB 45569 0.5567 25 No Rc=25kcps
12 Sinc MB 22616 0.5571 13 No Rc=12.5kcps
13 Sinc NB 11221 0.5581 6 No Rc=6.25kcps
14 Sinc VNB 5578 0.555 3 No Rc=3.1kcps
15 Sinc UNB 2753 0.5511 2 No Rc=1.5kcps
16 Sinc ENB 1460 0.5526 1 No Rc=0.75kcps
17 Sinc - 8.3kcps 14968 0.558 8 No Rc=8.3kcps  

Figure 17 shows all the proposed waveforms and how each of the 

different waveforms compare with each other regarding the two main parameters 

affecting geolocation accuracy.  The circle is at the location determined by these 

values and the waveform designator is placed beside the respective circle.  

Improved geolocation accuracy is supported for waveforms in the upper right 

corner of the plot and reduced performance in the lower left.  More specifically, 

increased values of β  lead to improved estimates of TOA and increased values 

of eT  lead to improved estimates of FOA.  
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Figure 18 shows a subset of the waveforms that have their energy 

constrained to 8nnB =  kHz.  These were selected to better illustrate how 

waveform shaping can affect the key parameters under the constraint of signal 

power, transmission duration, and occupied bandwidth.  Based on this figure, an 

ideal waveform (from a geolocation accuracy viewpoint) would have features of 

filtered waveforms #2 and either #3 or #17. 

 

Figure 17 Scatter Plot of Waveform Parameters for All Waveforms. 
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Figure 18 Scatter Plot of Parameters for Waveforms with 8nnB =  kHz. 

The remainder of this chapter presents details on the waveforms to be 

processed using the simulations described in the next chapter.  Chapter VII 

presents the results of these simulations. 

A. BPSK WAVEFORMS  

The first four waveforms (waveforms #1-4) are BPSK modulated and are 

of the same duration (from beginning to end of the waveform).  They consist of  

• a constant amplitude waveform (#1),  
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• amplitude modulated versions of the baseline that disable transmission either 
during the middle of a pulse (waveform #2) or at the beginning and end of the 
pulse (waveform #4)2, and  

• a waveform made up of two narrower band BPSK signals spaced in 
frequency so the composite waveform has the same null-to-null bandwidth as 
waveform #1. 

Waveforms #1 through #4 have the same energy sE , null-to-null bandwidth nnB , 

and time duration T . The difference between the waveforms is that they are 

shaped to improve (or degrade) the rms integration time and/or the rms radian 

frequency.   

The BPSK waveforms are produced by MATLAB code based on 

sig_gen.m developed by Johnson [5].  The main feature of this code is that it 

generates a BPSK signal from a randomly generated bit sequence and projects it 

out to two collectors based on a defined geometry (emitter and collector 

locations) and velocities, thus properly modeling Doppler effects.  The BPSK 

modulator parameters include: 

• carrier frequency 0f , 

• sampling frequency sf ,  

• total number of samples N , and  

• symbol rate sR , i.e., bit rate for BPSK, which is really the chip rate in this 
application. 

The BPSK waveforms used the following parameters: 30720N =  Samples (S), 

100sf =  kS/s, and sR  was nominally 4 kchips/s but was varied for some runs.  In 

addition, 0 20f =  kHz was used for the simulations but was set to 25 kHz for the 

plotting of the waveforms and calculations of eT  and  to better compare with the 

final set of waveforms in which 0 4sf f= .   The duration of the waveform can be 

found using these values to be 

                                            
2 Although this latter waveform could be considered a pulse of different duration from the 

others, it can also be considered one of the same duration in which the amplitude is zero at the 
beginning and ends.  
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 30720 S 0.3072 s
100 kS/ss

NT
f

= = =  (5.1) 

The number of chips transmitted during this period is  

 4 kchips_ 0.3072 s 1228 chips
ssno chips R T= = =  (5.2) 

The plots shown for the different waveforms are from the analytic signal as 

implemented in the simulations.  The analytic signal is generated by taking the 

Hilbert transform of the real signal [5], which results in a complex waveform with 

no negative frequencies.  This feature is needed by the CAF process but is also 

is useful for presenting the single-sided power spectral density (PSD).   

Measurements of the rms bandwidth of a representative signal 

corresponding to each of the waveforms shows β  to be on the order of 25,000 

radians/second for all four waveforms.  The waveform variations do, however, 

affect the rms duration eT  which ranges in value from 0.14 to 0.85 seconds. 

1. Waveform #1 – “Reference Waveform” 

Waveform #1, the reference waveform, is a BPSK modulated DSSS signal 

of unity amplitude.   Figure 19 plots the instantaneous power of the signal as a 

function time over the entire waveform in the upper plot and for a shorter time 

segment in the lower plot.  Recognizing that the signal is complex, the signal 

power is the square of the signal magnitude 

 2
sP s= . (5.3) 

Except for the small glitches, which can be better seen in the lower plot, the 

signal power has unity magnitude.  These glitches occur at the chip transitions 

and are caused by the limited bandwidth inherent in the digital signal.  This 

bandwidth limitation removes the higher order frequencies that make up the 

rectangular modulation pulses [19].     
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The rms integration time eT  can be calculated for this constant amplitude 

signal using (4.45) for the signal of duration 0.3072T =  s, from equation (5.1), 

giving   

 1.8 0.55eT T s= = . (5.4) 

This compares favorably with the value displayed at the top of Figure 19, 

“ 0.5572eT s= ”, which was calculated from the digitized waveform using equation 

(4.42)  by summing the waveform power weighted by time from the central time, 

and dividing this by the sum of the unweighted waveform power, or signal energy 

sE . 

 

Figure 19 Waveform #1 – Power vs. Time. 

In the frequency domain, modulation is equivalent to the Fourier transform 

of the modulating signal shifted by the frequency of the carrier which for 

rectangular pulses is represented as 
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 ( ) ( ) ( ){ }rect cos 2 sinc sinc
2c c c

t Tf t T f f T f f
T

π⎛ ⎞ − + +⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎝ ⎠
 (5.5) 

where rect t
T
⎛ ⎞
⎜ ⎟
⎝ ⎠

 is a pulse of unit amplitude and width T  centered about 0t = , 

( )cos 2 cf tπ  is the carrier with center frequency cf , and t  and f  are time and 

frequency, respectively [19].  Because instantaneous power is the square of the 

signal, the PSD takes on a shape of the form ( )2sinc cf f−  which can be seen in 

Figure 20, which is a plot of the PSD generated by squaring the magnitude of the 

signal’s fast Fourier transform (FFT) and normalizing by the number of samples 

and sampling frequency [27].   

 

Figure 20 Waveform #1 – Power Spectral Density. 

Note that the signal shows some distortion from a sinc-type function which 

has infinite bandwidth.  Because this was generated digitally, those frequency 

components greater than 2sf  form aliases which are mapped back into this 
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range [26].  This aliasing is evident in the distortion of the lobes at the edges of 

the spectrum as the higher frequency lobes fold back upon the lower frequency 

components filling in some of the nulls. 

This PSD, which is basically of the form  

 ( ) ( ) ( ) 2

2 sin
sincs

f
W f f

f
π

π
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

,   (5.6) 

when inserted into (4.41) gives it the form 
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where ( )2
sk W f df∞

−∞= ∫  is a normalizing factor.  Using the equality   

2 1 1sin sin 2
2 4

udu u u C= − +∫  [28], results in  

 
1

22 1 1 sin 2
2 4

u u
k

β
π

∞

−∞

⎧ ⎫⎪ ⎪⎡ ⎤= − = ∞⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭
, where 0k ≠ . (5.8) 

Thus, if one had an infinite bandwidth collector, any pure BPSK modulated 

signal, exhibiting a sinc-squared power spectral density, would yield no TOA 

error. 

In the real world, however, a collector has limited bandwidth, and thus a 

non-zero value for β  exists.  A wider bandwidth collector will cause β  to be 

larger resulting in better TOA accuracy using (4.38). 

Finally, one last feature to notice in Figure 20 is the rectangular box 

showing Hzβ+ − , which is the rms radian frequency β  converted from radians to 
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Hz.  β  was numerically calculated from the generated waveform and displayed 

in the title.  The amplitude of this rectangle has no meaning and is included only 

to allow the bandwidth to be better visualized.  For this waveform, Hzβ  

coincidently falls at approximately the frequency of the first null. 

Another feature of a waveform is its autocorrelation, which indicates 

significance in both the shape of the peak and in the height of minor correlations 

relative to the peak.  Figure 21 shows the autocorrelation R  of waveform #1, with 

sufficient lags to cover the entire waveform in the left plot and with fewer lags in 

the right plot to see the shape of the correlation near the peak.  The MATLAB 

xcorr function, which was used to compute these values, by default computes 

raw correlations with no normalization using  
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but the ‘coeff’ option was applied to normalize such that the autocorrelations at 

zero lag are “identically 1.0” [29].  Because the correlation R  is a power, the 

value was converted to decibel scale using  

 1010 logdBR R= . (5.10) 

If the signal were truly noise-like (AWGN), the its autocorrelation would 

approach that of white noise ( )N t  which is zero everywhere except at lag equal 

zero  

 ( ) ( ) ( )0 2NNR Nτ δ τ=   [23]. (5.11) 

Values of τ  where ( )NNR τ  is not equal to zero represent hidden periodicities in 

the signal.  DSSS signals can be made noise-like by using m-sequences of 

length l  in which the correlation is constant near zero except at lag zero were the 

correlation value is l  or by using other codes which, while not as good, 

approximate the noise-like property of equation (5.11) [21].    
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As can be seen in Figure 21, minor correlation peaks are only 12-13 dB 

below the peak correlation because the signal did not transmit the full length of 

the reference m-sequence3 [30].  These artifacts create a type of noise floor that  

reduces the margin of discrimination.  The correlation performance of this 

waveform should be able to be improved significantly.  This waveform used the 

first 1228 chips (per equation (5.2)) from a 65,535 bit m-sequence.  Matching the 

number of bits transmitted to the number of bits in an m-sequence [30] should 

give optimal performance [21].  A 1023 –bit m-sequence should have better than 

30dB between the peak and the floor with no minor correlation peaks.   

 

Figure 21 Autocorrelation  of Waveform #1. 

                                            
3 No attempt was made to match the length of the m-sequence to the no. of chips 

transmitted.   
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2. Waveform #2 – “Time Gap” 

The second waveform is designed to improve the rms integration time eT  

of waveform #1.  Equation (4.42) shows that shaping the pulse by moving the 

power from the middle of the waveform to its beginning and end should increase 

eT .   Waveform # 2 does this by inhibiting transmission of the signal during the 

central ¾ of the waveform and transmitting this power during the remaining ¼ of 

the time, as shown in the upper plot of Figure 22.  The lower plot in this figure 

shows that the signal is still constant power (while transmitting) but is 6 dB higher 

(i.e., 4 times stronger) to have the same signal energy as waveform #1.  The rms 

integration time eT  is almost 0.85, as seen in the title of the upper plot, an 

increase of almost 50% over the reference waveform without an increase in 

actual transmit time which has not changed. 

 

Figure 22 Waveform #2 – Power vs. Time. 
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Because the chip rate is identical, no significant difference should be 

expected in bandwidth.  Indeed, Figure 25 shows the resulting PSD and rms 

bandwidths are basically the same as seen for waveform #1.   

 

Figure 23 Waveform #2 – Power Spectral Density. 

The width of the peak autocorrelation for waveform #2 (right plot of Figure 

24)  is similar to that for waveform #1, but the minor correlation peaks are now 

within 10 dB of the peak, consistent with the fact that fewer chips are being 

transmitted.  Note that the correlation peaks near the edges of the waveform (i.e., 

at larger lags) are approximately four to 5 dB higher that seen in Figure 21 at 

similar lags.     
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Figure 24 Waveform #2 – Autocorrelation. 

3. Waveform #3 – “Split Spectrum” 

Just as waveform #2 increased eT  without actually increasing the total 

transmit duration, waveform #3 attempts to increase the rms radian frequency β  

without actually increasing the null-to-null bandwidth nnB .  Examining (4.41), one 

notices that moving the energy from the middle of the spectrum to the outer 

edges (but still within nnB ) should increase β  without consuming additional 

bandwidth. 

Waveform #3 is created from the addition of two BPSK waveforms, each 

chipped at half the specified chip rate and offset from the nominal center 

frequency by half the chip rate, as seen in PSD (Figure 25), and it is described by  
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, (5.12) 

where ,1ic  and ,2ic  are the is the chip sequence modulated onto each of the two 
offset subcarriers, cf  is the carrier frequency, cR  is the chip rate, and k  is a 
normalizing factor to set signal power. 

 

 

Figure 25 Waveform #3 – Power Spectral Density. 

Using the trigonometric identity  

 ( ) ( )1cos cos cos cos
2

x y x y x y= + + −⎡ ⎤⎣ ⎦   [31] (5.13) 

and letting ,1 ,2i i ic c c= = , equation (5.12) can be rewritten as  

 ( ) ( )2 cos 2 cos 2
2

c
i c

Rs t kc ft tπ π⎛ ⎞= ⎜ ⎟
⎝ ⎠

, (5.14) 

which is identical to the BPSK signal modulated by a tone at half the chip rate.  

This modulation of the BPSK is evident in the time domain, Figure 26, where it 
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can be seen in the bottom plot that amplitude of the signal is no longer constant.  

The glitches, corresponding to the chip transitions, occur as expected at one 

millisecond apart, which is equal to the inverse of half the chip rate used, 2000 

chips per second.  Also note that the peak power is four times that of waveform 

#1.  No attempt was made to form this waveform such that the chip transitions 

occur at a null, nor to assess whether doing this would reduce spectral artifacts.  

 

Figure 26 Waveform #3 – Power vs. Time. 

The autocorrelation of waveform #3, Figure 27, shows the magnitude of 

the minor sidelobes are higher than waveform #1 but lower than waveform #2.   

This is consistent with the fact that the number of chips contained within a 

transmission is half that of waveform #1 and twice that of waveform #2, because 

both subcarriers are modulated by the same sequence.  The structure around the 

peak correlation shows the main lobe to be quite narrow, but it has several strong 
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sidelobes around it.  Whether this is because the two constituent signal used the 

same chip sequence has not been investigated.   

 

Figure 27 Waveform #3 – Autocorrelation. 

4. Waveform #4 – “Shortened Pulse” 

Waveform #4 is the complement to waveform #2; however, instead of 

pushing the signal energy from the center out toward the front and back, it brings 

the energy form the two ends back to the middle as can be seen in Figure 28.  As 

in waveform #2, the duty cycle is only one quarter of waveform #1 leading to a 

commensurate increase in peak power to maintain constant signal energy. 
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Figure 28 Waveform #4 – Power vs. Time. 

The PSD of waveform #4 (Figure 29) is similar to waveform #1 because 

the signal has the same modulation and chip rate as waveform #1.  The PSD 

should not be expected to be identical because the signal duration is shorter than 

that of waveform #2 and uses fewer chips; the corresponding short-term statistics 

causes minor variations between the two waveforms.  Likewise, the amplitude of 

the autocorrelation minor peaks (Figure 30) are similar to those of waveform #2 

which has similar duty cycle, although variation do exist because of differences in 

the chip sequence used. 
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Figure 29 Waveform #4 – Power Spectral Density. 
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Figure 30 Waveform #4 – Autocorrelation. 

B. FILTERED BPSK WAVEFORMS  

The measured values for the rms radian frequency β  did not vary much between 

the BPSK waveform types because the relatively slow roll-off of power for the 

signal sidelobes.  Instead these values were limited by the bandwidth of the 

collector, which in our case was half the sampling frequency, i.e., 2sf .  A real-

world collector does not have infinite bandwidth but is usually limited by the 

signal it needs to collect.  This section limits the occupied bandwidth of the signal 

to the null-to-null bandwidth nnB of the signal, because this bandwidth contains 

most of the signal power and is the most popular measure of bandwidth for digital 

communications [24].  This bandwidth is  

 2 2nn c
c

R
T

β = = . (5.15) 
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A new set of waveforms, filtered waveforms #1-4, correspond to the 

original waveforms #1-4 which have been filtered to remove components outside 

the null-to-null bandwidth nnB .  Filtering was performed by taking the FFT of the 

analytic signal, setting to zero the value of all bins corresponding to being outside 

nnB , taking the inverse FFT (IFFT) of this, extracting the real component of this 

signal, and scaling the signal so the total energy is the same as waveform #1. 

Filtering the signals did not affect the respective rms duration eT , which 

ranges in value from 0.14 to 0.85 seconds for the four waveforms.  The rms 

radian frequency β , however, for the filtered signals range from 8500 to over 

14,000 radians/second for a reference waveform at 4000 chips per second, 4 

kc/s, as compared with approximately 25,000 for all the unfiltered waveforms..   

1. Filtered Waveform #1 – “Reference Waveform” 

Figure 31 shows the PSD of filtered waveform #1 chipped at 4 kcps.  The 

rms radian frequency β  is approximately 8500 radians per second, about one- 

third the value for the unfiltered waveform #1 with the sampling frequency  sf  of 

100 ksamples/second.   

Because the higher frequency components of the signal are removed, the 

amplitude of the signal is no longer constant over time (Figure 32) with deeper 

and wider nulls at the chip transitions along with additional peak power required 

to compensate for this loss.  The autocorrelation shown in Figure 33 is very 

similar to the corresponding unfiltered version shown Figure 21, except that the 

sharper features are rounded.  Because the autocorrelation of the filtered 

waveform is so similar to that of the corresponding unfiltered waveform, the 

autocorellation plots for the remaining waveforms are not shown.  
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Figure 31 Filtered Waveform #1 – Power Spectral Density. 
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Figure 32 Filtered Waveform #1 – Power vs. Time. 
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Figure 33 Filtered Waveform #1 – Autocorrelation. 

2. Filtered Waveform #2 – “Time Gap” 

The PSD of filtered waveform #2 as shown in Figure 34 is very similar to 

the filtered waveform #1 just discussed, and again β  is approximately 8500 

radians per second4.  The waveform also exhibits the deeper and wider nulls at 

chip transitions along with the additional peak power required to compensate for 

this loss (Figure 35).  

 

 

 

 
                                            

4 The different values measured for β  can be attributed to the fewer chips transmitted. 
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Figure 34 Filtered Waveform #2 – Power Spectral Density. 
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Figure 35 Filtered Waveform #2 – Power vs. Time. 

3. Filtered Waveform #3 – “Split Spectrum” 

The PSD of filtered waveform #3 (Figure 36) is similar to the unfiltered 

waveform #3 (Figure 25) but with the removal of any significant energy outside 

the nnB .  The resulting rms bandwidth ends up occurring at the subcarrier 

frequencies, as can be expected, because half the energy occurs within this 

frequency range and half outside as can be readily observed in Figure 36.  The 

rms radian frequency β  is approaching 15,000 radians per second, almost 70% 

higher than waveform #1 without consuming more bandwidth. 

The removal of this out of band energy, however, affects the signal in the 

time domain.  The peak power for each of the peaks varies (Figure 37), and the 

peak amplitude of the signal is higher to compensate for this variability, 

sometimes approaching close to 10 dB above that required for waveform #1.  A 
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pair of shorter pulses coincides with each chip transitions, which occur at the 

peak of the signal.  Timing the chip transition to occur at the null of the signal 

such as by modifying (5.14) to instead be 

 ( ) ( )2 cos 2 sin 2
2

c
i c

Rs t kc ft tπ π⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (5.16) 

might restore the pulses to the same amplitude and duration, regardless of 

whether a chip transition occurs. 

 

Figure 36 Filtered Waveform #3 – Power Spectral Density. 
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Figure 37 Filtered Waveform #3 – Power vs. Time. 

4. Filtered Waveform #4 – “Shortened Pulse” 

The PSD of filtered waveform #4 as shown in Figure 38 is very similar to 

the filtered waveforms #1 and #2, and again β  is on the order of 8500 radians 

per second5.  This filtered waveform also exhibits nulls that are deeper and wider 

at chip transitions than for the unfiltered waveform, along with the additional peak 

power required to compensate for this loss as can be seen in Figure 39. 

 

 

 
                                            

5 The different values measured for β  may be attributable to the fewer chips transmitted. 
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Figure 38 Filtered Waveform #4 – Power Spectral Density. 
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Figure 39 Filtered Waveform #4 – Power vs. Time. 

C. SHAPED CHIP WAVEFORMS 

A different method from the BPSK signal generator is used to create the 

waveforms.  Recognizing this thesis is assessing the performance of waveforms 

only in a static collection geometry, arbitrary waveforms can be created and 

used.  Although these waveforms cannot be used in the scenario based 

generator developed by Johnson [5], they can be effective in assessing 

performance of different waveforms.    

Instead of modulating the carrier with rectangular pulses (chips) as is done 

for the previous waveforms, this class of waveforms modulates the carrier with 

sinc shaped pulses to constrain the energy to a limited bandwidth.  Applying the 

Fourier duality and dilation properties to (5.5) gives 
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,  (5.17) 

which shows that because the Fourier transform of a sinc pulse is is zero for 

f W> , modulating with a sinc pulse results in a signal that has all its energy 

constrained within 2W [19]. 

As can be seen in Figure 40, the sinc has its peak at a lag of zero and is 

zero at lags corresponding to other chip transitions.  This particular sinc function 

has 12 samples per chip and extends out to five chips (it is actually infinitely long, 

but it is reasonably well approximated over a limited time duration), thus it 

represents a chip rate of 12 8333sf =  chips per second.  Because the sinc 

function extends well beyond the particular chip, the transmitted signal is the 

superposition of all the overlapping sinc functions, which in this case would be 

ten because that is the length of this particular example.  This combined signal is 

created by passing the impulses corresponding to the chips through a finite 

impulse response (FIR) filter which has the impulse response shown in Figure 

40.  
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Figure 40 Sinc Function. 

Figure 41 shows the PSD of a carrier at 4sf  modulated by the 

rectangular pulses and sinc pulses.  Almost all the energy in the sinc modulated 

signal is contained in half the null-to-null bandwidth nnB  of the BPSK modulated 

signal, and the sidelobes roll-off much more quickly. 
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Figure 41 PSD of Rectangular and Sinc Modulated Signal. 

Waveform #17 applies the impulse response shown in Figure 40 to the 

same chip sequence used in the earlier waveforms to generate a signal 

occupying about the same null-to-null bandwidth nnB  as the other waveforms (at 

4000 chips per second).   

The  corresponding rms radian frequency is about 15,000 radians per 

second (Figure 42), slightly better than the filtered waveform #3 and without the 

tell-tale double hump of Figure 36.  The time domain plots (Figure 43) show that 

slightly less peak power is required to send waveform #17 with the same energy 

as waveform #3 (Figure 37).  The autocorrelation of waveform #17 (Figure 44) 

shows the peak minor correlations are at a lower level than for the filtered 

waveform #3, probably because more chips are transmitted. 
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Figure 42 Waveform #17 – Power Spectral Density. 

Shaping the chips is very effective in constraining the frequency and can 

reduce or eliminate the need to filter the signal.  The PSD of the filtered 

waveform #17 (Figure 45) is fairly similar to the filtered signal and the time 

domain plots (Figure 46) show negligible difference between filtered and 

unfiltered versions.  Because of this, the simulations use only the unfiltered 

version of waveform #17.  
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Figure 43 Waveform #17 – Power vs. Time. 
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Figure 44 Waveform #17 – Autocorrelation. 
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Figure 45 Filtered Waveform #17 – Power Spectral Density. 
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Figure 46 Filtered Waveform #17 – Power vs. Time. 

Other waveforms were produced using different numbers of samples per 

chip to generate different bandwidth signals of the same duration.  The relative 

efficacy of these various waveforms to support accurate geolocation are 

compared using the results of the simulations discussed in Chapter VI. 
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VI. SIMULATION SOFTWARE 

This chapter presents the overall processing performed by the 

simulations, describes the MATLAB routines developed or modified, and 

discusses scripts developed to perform specific simulations.  The next Chapter 

explains the results of the simulations of the various waveforms, and the 

appendix lists the code from the various MATLAB m-files.   

A. SIMULATION OVERVIEW 

The purpose of the simulations was to compare the TOA and FOA 

performance that could be achieved by the different waveforms under various 

SNR levels, where SNR is 0sE N .  The figure of merit used to assess 

performance is the standard deviation of the TOA and FOA estimates for the 

signal calculated across the different realizations of noise at a given level. 

The simulations are run for variations of waveforms to first compare the 

performance of the filtered vs. the unfiltered BPSK-based waveforms (i.e., 

unfiltered and filtered waveforms #1-4).  Next, the reference waveform and the 

shaped chip waveforms (i.e., waveform #1 and waveforms #11-16) are 

compared.  Finally, finally the bandwidth constrained waveforms (shown in 

Figure 18) are compared along with the reference waveform at various chip 

rates.  Unless otherwise specified, the chip rate used is 4cR =  kcps to maintain 

the same collector bandwidth, which is defined to be the null-to-null bandwidth 

nnB .   

The main reason code from [5] was chosen was to allow the simulations to 

be performed in dynamic collection scenarios to assess detection performance of 

a moving target by a single collector.  The code generates a BPSK signal and 

projects this waveform onto two different collectors at specified locations and 

velocities.  This enables one to synthesize signals that have time and frequency 

offsets as one would have when performing a matched filter detection between a 
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known reference signal and a distorted received signal.  The reference, or basis, 

waveform s  corresponds to the signal received by one of the static collectors, 

and the received signal r  corresponds to the signal received by the other 

collector.  Because the simulations performed in this thesis are static, the two 

collectors are at the same location and have no velocity and the emitter has no 

velocity.  Thus the generator produces two signals with zero time difference of 

arrival (TDOA) and zero frequency difference of arrival (FDOA).  The simulation 

would support future analysis involving moving collectors and/or emitter.    

The core of the simulation is the MATLAB code main_simulation.m, which 

loads in various parameters to define the reference and received signals, 

generates these signals, iterates over a number of noise realizations that are 

added to the noiseless received signal, and processes each iteration to find the 

TOA and FOA values that give a peak CAF output.  The resulting array of TOA 

and FOA values can then be processed by the script 

display_toa_foa_v_snr_and_prep_data.m, which computes and plots the mean 

and standard deviation for the TOA and FOA at each SNR value for that 

waveform.  These values for each waveform are renamed to a unique variable 

name (e.g., WFname.stat_summary_array) that is then saved in a MATLAB mat-

file of the same name for use by the MATLAB script 

script_toa_foa_v_snr_across_runs_mrkrs.m, which generates the plots 

containing multiple waveforms shown in the next chapter. 

Figure 47 shows a high-level view of the MATLAB code written or modified 

for this effort.  The m-files, which are shown in the boxes, fall into two basic 

categories, scripts shown on the left side and routines shown on the right.  The 

script files are custom written for a particular set of simulation runs, and the 

routines are code that accepts configurations and should not need to be modified 

to perform different runs.  In addition, some of the mat-files are shown along with 

arrows to indicate source and destination of the data.  Note that some of the 

routines are indented beneath others to indicate what routine calls it.  For 

example, main_simulation.m calls generate_waveform.m, and filt_bnn_fft.m is 
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called by both generate_waveform.m and get_canned_waveform.m.  In addition, 

some of the mat-files are shown along with arrows to indicate source and 

destination of the data.  For example, mls_gen.m is used to create the file 

mls65535a.mat, which in turn is used by gen_sinc.m to create the file 

sinc_XX_mls65535.mat.  

Of the MATLAB files shown in Figure 47, only gen_sig.m and CAFv2.m 

are based on existing code.  In addition, the following three files are called by 

CAFv2.m but have not been modified and thus are not presented here: shiftud.m, 

tdoa_fdoa.m, and caf_peak.m.  All the m-files files shown Figure 47 are listed in 

the appendix.   

Scripts Routines

script_top_level_simulate_various_WFs.m main_simulation.m

script_display_toa_foa_v_snr_across_runs_mrkrs..m generate_waveform.m

script_plot_WFs.m gen_sig.m

filt_bnn_fft.m

get_canned_waveform.m

filt_bnn_fft.m

display_waveform_calc_rmsBW.m

display_waveform_calc_rmsT.m

gen_noise_vector.m

perf_demod_test.m

CAFv2.m

gen_sinc.m display_toa_foa_v_snr_and_prep_data.m

mls_gen.m display_scatter_foa_toa.m

sinc_XX_mls65535a.mat

(optional)
config.mat

mls65535a.mat

 

Figure 47 MATLAB m-files Created or Modified. 

The following sections of this chapter provide additional detail on each of 

the various MATLAB routines and scripts used to model the waveforms, simulate 

TOA and FOA estimation, and process the resulting data.  The resulting plots are 

shown and described in the next chapter. 
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B. ROUTINES 

The routines are MATLAB code m-files that accept parameters and do not 

need to be edited or modified to perform different simulations of the proposed 

waveforms.  The most significant one of these is main_simulation.m, which reads 

in a configuration file, if one exists, defining the simulation parameters and in turn 

calls a number of custom MATLAB functions as shown in Figure 47.  Two other 

m-files that can be used without modification are 

display_topa_foa_v_snr_and_prep_data.m, which performs the statistical 

calculations (i.e., finds the mean and standard deviation) on the data generated 

in the main code, and display_scatter_foa_toa.m, which generates scatter plots 

of the TOA and FOA data the outputs from the main code to better understand 

the distribution of the data.  

1. main_simulation.m 

The core of the simulation is main_simulation.m, which creates an array of 

TOA and FOA estimates for a desired waveform at multiple SNR values.  Most 

basically, this routine defines operating parameters using configuration data, 

generates clean versions of the received and reference signals, and then for the 

desired number of itereations, adds noise to the “clean” received signal and 

performs the CAF process to determine the combined TOA and FOA values 

giving the peak correlation magnitude.  
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- get configuration (e.g., WF#, chip rate and filtering, collection geometry)
- LOOP for each SNR value

- LOOP for offset between reference and received signal
- generate clean received and reference signals
- calculate and plot rms radian frequency (if enabled)
- calculate and plot rms duration (if enabled)
- LOOP for each noise realization

- generate noise and and add to received signal
- compute analytic signal (Hilbert Transform)
- peform BER test (if enabled)
- compute crosscorrelation
- if detection, find TOA & FOA at max CAF amplitude

- end loop 
- end loop 

- end loop  

Figure 48 Overview of main_simulation.m. 

The routine uses the parameters summarized in Table 4 to control 

processing.  The user can either edit the routine to modify the default parameters 

(allowing him to run the routine directly from the MATLAB interface) or place 

these values in a file named config.mat to enable running the routine with 

different parameter values.  These parameters include setting the waveform 

number and whether filtering is on or off, the carrier frequency, the sampling 

frequency, the chip rate, the length of the waveform in samples, the SNR values 

to be processed, the number of iterations (noise realizations) at each SNR value, 

various monitor and debug settings, the collection scenario geometry, and dither 

variables. 
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Table 4 Summary of main_simulation.m Parameters. 

- Waveform
- waveform number
- filtering on/off

- RF carrier frequency (Hz)
- Sampling frequency (Hz)
- Chip rate (Hz) ['Rsym']
- Signal length (Samples)

- zero_pad length
- padded vector length

- SNR (Es/No)
- min value
- max value
- step size

- Iterations at each SNR
- Monitor and debug settings
- Collection scenario geometry

- Position of collector #1
- Velocity of collector #1
- Position of collector #2
- Velocity of collector #2
- Position of emitter
- Velocity of emitter

- Dither variables  

Several of these parameters define the waveform characteristics.  The 

waveform number and filtering are for the proposed waveforms as defined in 

Chapter V.  The carrier frequency, chip rate6, and sampling frequency further 

define the waveform.  The carrier frequency affects the location of the signal 

within the digitized bandwidth and also affects the Doppler frequency offset in a 

nonstatic collection geometry [5].  Using carrier frequencies greater than the 

Nyquist frequency work because the signal aliases into a different Nyquist zone 

[32].  The length N  (samples) of the desired signal must also be specified.  The 

routine allows a vector to be specified as the waveform plus padding zeros of 

length _pad length  to support better unnormalized correlation statistics.  The  

 

                                            
6 Occasionally this document uses the term symbol rate for chip rate because the legacy 

BPSK modulator treats each chip as a symbol; however, the entire waveform is only a single 
symbol, so no confusion should exist. 
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CAF processing becomes extremely inefficient if the total length of the vector 

processed is not 2n , where n  is an integer, thus N  should be specified as 

2 _nN pad length= − .   

The SNR values are specified by defining the minimum (starting) SNR  

value (dB), the step size for the SNR (dB), and the maximum SNR value (dB).  

Depending on the minimum value and step size, the maximum may not actually 

be processed.  The total number of steps must not be greater than eight if 

verbose_plot_waveform is not equal to zero, because this will cause an error in 

trying to plot too many subplots in a figure.  The user must also specify the 

number of monte carlo runs _ _no noise iterations  using different realizations of 

the noise random vector for each SNR value. 

The monitor and debug settings include verbose, verbose_wf_gen, and 

verbose_plot_wf.  The former enables additional outputs (should be set to zero 

for normal processing) and the latter two enable additional plotting of the 

waveform and processing.  Process_detections allows CAF processing if a signal 

is detected; setting this to zero allows much faster operation of the code to 

support simulating detections but not TOA and FOA estimates.  Setting 

enable_BER_test enables the running the BER test function, which was used to 

verify the noise vector had the correct amplitude.  BER testing is discussed later.   

The collection geometry settings specify the location and velocity for each 

of the two collectors and the emitter.  The position information is in the form of an 

array [ x , y , z ] , where x , y , and z  are the respective distance in meters from a 

reference, and the velocity information is in a similar format defined in meters per 

second.  This information is used to generate the BPSK-based waveforms, only, 

and enables generation of signals that have Doppler effects [5].  Because this 

thesis is only investigating performance in a static collection geometry (i.e., no 

Doppler), the velocity values are all set to zero and the position of the two 

collectors are set to be equal.  This information does not have any affect on 

waveforms #11-17 which are pre-formed. 
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2. generate_waveform.m 

The function main_simulation.m generates the noise-less reference and 

receive signals using generate_waveform.m for BPSK-based signals (waveforms 

#1-4, unfiltered and filtered) or get_canned_waveform.m functions for those that 

are fixed (i.e, waveforms #11-17).  The generate waveform manipulates the 

signals produced by the gen_sig.m function to create waveforms #1-4, and filter 

them if enabled, to the null-to-null bandwidth nnB .  The function can also produce 

additional plots of the waveform produced, if enabled.  It is invoked using  

 [S1,Sref] = generate_waveform(Pc1,Vc1,Pc2,Vc2,Pe,Ve,f0,fs,Rsym,N, ... 

    wf_type, pad_length, filter_outside_bnn, verbose),  

where S1 and Sref are the noise-free receive and reference signals, respectively, 

and the input arguments are from the configuration previously discussed. 

Waveform #1 is the signal provided by gen_sig.m.  Waveforms #2 and #4 

manipulate this signal by removing either the middle or outer three-fourths of the 

signal and rescaling the amplitude so the total energy of the signal is the same 

as the original. 

Waveform #3, on the other hand, sums the signals generated by calling 

gen_sig.m twice with a “new” carrier frequency 0 0, 2orig symf f R= ±  and a new chip 

rate , 2sym sym origR R= .  The amplitude of this new summed signal is then scaled so 

it has the same energy as waveform #1.  

3. gen_sig.m 
The function gen_sig.m generates two noiseless BPSK modulated signals 

as would be received by two collectors receiving an emission in the defined 

collection scenario.  The simulation accurately models the Doppler effects, 

including frequency offsets as well as time dilation and compression of the 

modulating signal.  BPSK modulation is performed starting with the first bit from 

the file mls65535a.mat. using the parameters passed to it.  The function is 

invoked using 



 79

[S1,S2] = gen_sig(Pc1,Vc1,Pc2,Vc2,Pe,Ve,f0,fs,Rsym,N),  

where S1 and S2 are the noise-free signals received at the two collectors and the 

input arguments are passed from the simulation parameters.  

The function gen_sig uses the core of the MATLAB© code sig_gen.m 

developed by Johnson [5] but was changed in name because the significance of 

the variances.  The major changes to this code are 

• The function does not prompt for user input, 

• Noise is not added within this function, 

• The function does not convert the signal into the analytic 
signal, and 

• The bit sequence is read from a file (not random). 
Instead of prompting for the input parameters, these values need to be passed 

into the function when called.  Table 5 lists the various user specified settings 

required by the gensig.m. 

Table 5 User Specified Settings in gensig.m. 

 

- Position of collector #1
- Velocity of collector #1
- Position of collector #2
- Velocity of collector #2
- Position of emitter
- Velocity of emitter
- RF carrier frequency (Hz)
- Sampling frequency (Hz)
- Symbol rate (Hz)
- No. of samples collected  

4. filt_bnn_fft.m 

The function filt_bnn_fft.m performs a bandpass function, filtering out 

signal energy that is outside the null-to-null bandwidth nnB  of the signal.  The 

amplitude of the resulting signal is rescaled so the signal has the same energy as 

the original signal.    The function is invoked using 
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S = filt_bnn_fft(S, Rsym, f0, fs), 

where S is the signal, Rsym is the chip rate, f0 is the carrier frequency, and fs is 

the sampling frequency. 

The function first computes the energy of the signal.  It then converts the 

signal to the analytic form (i.e., no negative frequencies) using the Hilbert 

function and converts the signal to the frequency domain using the FFT function.  

At this point, all the FFT bins which correspond to frequencies up to 0 symf R−  

along with those corresponding to 0 symf R+  and above are set to zero.  The signal 

is then converted back to the time domain using the IFFT function, made real, 

and amplitude scaled to restore signal power to that of the original signal.   

5. get_canned_waveform.m 

The function get_canned_waveform.m loads a predefined waveform.  It is 

invoked using  

S1 = get_canned_waveform(Es, N, wf_type, pad_length, Rsym, f0, fs, 

filter_outside_bnn, verbose_wf_gen),  

where S1 is the new waveform, and the only input parameters used are the 

desired signal energy (Es), the length of the waveform in samples (N), the 

waveform number (wf_type), and the number of leading and trailing pad zeros. 

The function first loads in the proper mat-file depending on the waveform 

number selected, and then uses only the first N samples.  The amplitude of this 

signal is then scaled to get the desired signal energy.  Next the signal is filtered 

to the null-to-null bandwidth, if enabled, using the previously defined routine.  

Finally the signal is padded at the front and back with the specified number of 

zeros. 
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6. display_waveform_calc_rmsBW.m 

The function display_waveform_calc_rmsBW.m calculates the rms radian 

frequency of the waveform and plots the PSD of the waveform along with the rms 

radian frequency and rms bandwidth.  It is invoked using  

display_waveform_calc_rmsBW(Sref, f0, fs, wf_type, filter_outside_bnn), 

where Sref is the signal to be analyzed, f0 is the carrier frequency, fs is the 

sampling frequency, wf_type is the waveform number, and filter_outside_bnn is 

set to zero if filtering is not desired.   

The function displays the value of the variable filter_outside _bnn on the 

PSD plot to document this setting, and it also plots the Welch PSD, which is a 

particular type of periodogram, and the weighted and unweighted PSD values 

used to calculate the rms radian frequency β . 

7. display_waveform_calc_rmsT.m 

The function display_waveform_calc_rmsT.m calculates the rms duration 

of the waveform eT  and plots the power vs. time of the entire signal along with a 

zoomed version.  It is invoked using  

display_waveform_calc_rmsT(Sref, f0, fs, wf_type, filter_outside_bnn), 

where Sref is the signal to be analyzed, f0 is the carrier frequency, fs is the 

sampling frequency, wf_type is the waveform number, and filter_outside_bnn is 

set to zero if filtering is not desired.   

The function calculates the instantaneous power by squaring the input 

signal and uses this to calculate the rms duration.  This value, along with whether 

the signal was filtered is printed in the title of the plot. 

8. gen_noise_vector.m 

As stated earlier, one of the differences between the routine gen_sig.m 

and the original sig_gen.m developed by Johnson [5] is that the random noise is 

no longer added within that routine.  Instead, this task was extracted and placed 
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as its own function in main_simulation.m to allow simulating the same signal with 

multiple realizations of the noise.  It is invoked using  

Noise=gen_noise_vector(N, SNR, Tsym, fs), 

where Noise is a vector of length N such that the values in this vector have zero-

mean Gaussian distribution and variance 2σ  to give the desired signal-to-noise 

power ratio SNR .  Tsym and fs are the chip period and sampling frequency, 

respectively.  The amplitude of the signal is assumed to be unity.  If this is not 

true, the signal needs to be scaled accordingly. 

Testing of the sig_gen.m code in [5] revealed that the code properly 

modulated the signal but failed to add the proper noise.  Johnson correctly states 

(in his equation 5-9) that 

 2

0

s sym

s

PT B
E N

σ =  (5.18) 

where the σ  is the standard deviation and is used as the factor to scale from the 

MATLAB© generated randn normalized (zero mean) Gaussian random variables 

to the desired noise values based on specified values for signal-to-noise ratio 

(SNR) 0sE N , signal power sP , symbol period symT , and bandwidth B .  However 

the bandwidth B  should be actual bandwidth of the digitized signal which is 

2sf , and not the digital frequency.  Thus the noise samples added to the signal 

were too low by a factor of 2sf .  Figure 49 shows the spectral plots of the 

signal with 3dB SNR based on original calculations and the correction for 

2sB f= .   
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Figure 49 Signal Spectrum Before and After Adjusting Noise Equation. 

9. perf_demod_test.m 

Before running the simulation, several basic checks were made to assess 

the accuracy of the outputs of the model, especially in the areas of carrier 

frequency, symbol rate, and SNR.  The function perf_demod_test.m allows these 

parameters to be verified by attempting to demodulate a reference signal using 

the modulation parameters.  This test is designed to verify the proper operation in 

the simpler case of a static collection geometry. 

The function produces various diagnostic plots and calculates the bit error 

rate, BER, by comparing demodulated bits to first bits loaded from 

mls65535a.mat.  The user is asked to manually perform phase synchronization 

by identifying the peak of signal, which assumes no or very low noise (i.e., high 

SNR).  It is invoked using  

[BER, no_of_errors, no_of_bits]=perf_demod_test(Sa1, Sa2, fs, f0, Rsym, 

SNRdB, verbose), 

where the returned value BER is the bit error rate calculated by dividing 

no_of_errors by no_of_bits.  Sa1 and Sa2 are the modulated signal with and 

without added noise, respectively.  Other input variables include the carrier 
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frequency f0, the sampling frequency fs, the waveform number wf_type, and a 

flag to indicate whether filtering is performed, filter_outside_bnn.  To use this 

function, the parameters listed in Table 6 are suggested when running 

main_simulation.m. 

Table 6 Suggested Parameters When Using perf_demod_test.m. 

- verbose=1
- verbose_wf_gen=1
- enable_BER_test=1
- process_detections=0
- wf_type=1
- Es_No_db_min=4.15 (dB)
- Es_No_db_max=4.15 (dB)
- no_noise_iterations=1
- pad_length=0
- Rsym=2000 or 5000  

 

The demodulation test consisted in generating the signal with an 0cE N  of 

4.15 dB which should give an average BER on the order of 210−  for BPSK, a 

carrier frequency 0f  of 20 kHz, a sampling frequency sf  of 100 kHz, a symbol 

rate symR  of 2 kHz, and 65536 samples.  The actual BER, calculated using  

 ( )02 bBER Q E N=   [20], (5.19) 

Shows the BER should be  

 ( ) ( )4.15 10 22 10 2.28 1.13 10BER Q Q −= ⋅ = = ⋅ . (5.20) 

Running this loop 20 times resulted in 175 errors out of a total of 13,120 bits for 

an average BER of 0.013 ( 21.3 10x − ), indicating accurate modeling.   

The demodulation process consists of the following steps: 

• mixing the signal back down to baseband using the nominal 
carrier frequency 0f ,  

• making sure that the signal is all in the I-channel,  

• passing this signal through a matched filter for a pulse,  
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• downsampling and comparing to a threshold of zero, and  

• comparing the resulting bitstream with the modulated 
bitstream. 

Figure 50 shows the result of mixing the signal down to baseband.  The 

plot on the left shows the analytic signal in the frequency domain, and the plot on 

the right shows the signal after multiplying it by 02j fe π− , where 0f  is the carrier 

frequency, to center the signal back at baseband. 
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Figure 50 Analytic Signal Before and After Mixing Down to Baseband. 

Figure 51 plots the baseband signal in time domain, showing the real 

component, the imaginary component, and the phase of the signal.  Note that 

almost all the energy, except during bit transitions, is in the I-channel, showing 

carrier phase synchronization (although ignoring potential phase ambiguity).  
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Figure 51 Signal in I-Channel vs. Q-Channel.in High SNR. 

Figure 52 shows the output of the matched filter (matched to the pulse) in 

the top plot.  The middle plot shows the output of the comparator at the sample 

times where the reference is set to zero.  In this plot the output is “1” if the 

sampled decision variable is greater than zero, otherwise the output is “0.”  The 

lines connect the points for improved visibility and are not intended to extrapolate 

between the points (i.e., the sloped line merely indicates a bit transition).  The 

bottom plot shows the actual data used to modulate the signal.  Comparing the 

two bottom plots, one can see that the bitstream begins with a series of zeros 

and that the 13th demodulated bit is in error.  For BER calculations, the first bit is 

ignored because it is invalid (i.e., the signal has not yet passed through the 

matched filter.)  
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Figure 52 The Sampled Decision Variable, Resulting Bits, and Reference Bits. 

10. CAFv2.m 

The function CAFv2.m returns the TOA and FOA corresponding to the 

peak amplitude of the CAF function.  It is invoked using  

[TDOA, FDOA] = CAFv2(S1, S2, Max_f, fs, Max_t, display_CAF_peak), 

where S1 is the analytic form of the noisy receive signal and S2 is the noise-free 

analytic reference signal.  Max_f and Max_t define the maximum expected FOA 

and TOA values (i.e., they set the CAF search window).  Finally, the routine gets 

input variables specifying the sampling frequency sf  and whether to plot the 

resulting CAF.  

The function CAFv2.m is almost the same as the function CAF.m 

developed in [5], except the user inputs were removed so that the process keeps 

iterating until it determines that it has reached its maximum accuracy.  The 

function CAF utilizes Stein's method [3] to initially compute estimates of TDOA 
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and FDOA between S1 & S2 before switching to using "fine mode" calculations.  

The speed of the processing is severely degraded if the length of the signal (in 

samples) is not 2n , where n  is an integer.  The routine calls CAF_peak.m, if 

enabled, to plot the results of the CAF process. [5] 

11. display_toa_foa_v_snr_and_prep_data.m 

The function display_toa_foa_v_snr_and_prep_data.m uses the arrays of 

TOA and FOA estimates produced by main_simulation.m, which still reside in the 

MATLAB workspace,to compute the mean and standard deviation for the TOA 

and FOA at each of the SNR values simulated and then plots this data as a 

function of SNR.  It is invoked using  

display_toa_foa_v_snr_and_prep_data. 

After running this routine, the array named stat_summary_array, containing these 

data, resides in the MATLAB workspace. 

12.  display_scatter_toa_foa.m 

The function display_scatter_foa_toa.m also reads in the arrays of TOA 

and FOA estimates produced by main_simulation.m, which still reside in the 

MATLAB workspace.  It generates a scatter of the FOA vs. TOA for each of the 

SNR levels.  It is invoked using  

display_toa_foa_v_snr_and_prep_data. 

C. SCRIPT FILES 

The script files are MATLAB code m-files that are customized for a given 

set of simulations performed.  Unlike the routines which are controlled through 

parameters but don’t need to be edited, these files need to be customized with 

the various parameters embedded into them.   

Three scripts are listed here.  The first script,  

script_top_level_simulate_various_WFs.m, is used to create summary data files 

for simulations of the various waveforms.  The second, 
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script_display_toa_foa_v_snr_across runs_mrkrs.m, reads in these various files 

and creates the performance plots shown in the next chapter.  Finally, the third 

script, script_plot_WFs.m, is used to generate plots and data about each of the 

waveforms.  The scripts use the routines previously defined as well as operate 

directly on some of the variables in the MATLAB workspace.  In addition, two 

other m-files are presented, gen_sinc.m, which is used to create the fixed 

waveforms #11-17, and mls_gen.m, which creates m-sequences, maximal length 

PN sequences as defined in [30]. 

1. script_top_level_simulate_various_WFs.m 

The script script_top_level_simulate_various_WFs.m is used to call 

main_simulation.m and save the resulting TOA and FOA statistics into 

appropriately named data mat-files.  For each of the waveform parameters 

configurations shown in Table 7, the script  

• clears the workspace,  

• runs a short m-file that has the configuration information,  

• saves the workspace as config_file.m.,  

• runs main_simulation.m to simulate using these data,  

• creates the statistical summary data by calling 
display_toa_foa_v_snr_and_prep_data.m,  

• renames the variable to match the name shown inTable 7, 
and  

• saves this as a mat-file of the same name. 
When execution is completed, data for each waveform run is saved in its own 

file. 
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Table 7 Waveform Variations Simulated. 

Name WF# Filtered Iterations Chip Rate
WF1It1000Rs4000 1 No 1000 4 kcps
WF2It1000Rs4000 2 No 1000 4 kcps
WF3It1000Rs4000 3 No 1000 4 kcps
WF4It1000Rs4000 4 No 1000 4 kcps
WF1filtIt1000Rs4000 1 Yes 1000 4 kcps
WF2filtIt1000Rs4000 2 Yes 1000 4 kcps
WF3filtIt1000Rs4000 3 Yes 1000 4 kcps
WF4filtIt1000Rs4000 4 Yes 1000 4 kcps
WF1filtIt1000Rs1000 1 Yes 1000 1 kcps
WF1filtIt1000Rs2000 1 Yes 1000 2 kcps
WF1filtIt1000Rs8000 1 Yes 1000 8 kcps
WF1It1000Rs1000 1 No 1000 1 kcps
WF1It1000Rs2000 1 No 1000 2 kcps
WF1It1000Rs8000 1 No 1000 8 kcps
WF11It1000 11 No 1000 25 kcpc
WF12It1000 12 No 1000 12.5 kcps
WF13It1000 13 No 1000 6.25 kcps
WF14It1000 14 No 1000 3.13 kcps
WF15It1000 15 No 1000 1.66 kcps
WF16It1000 16 No 1000 0.83 kcps
WF17It1000 17 No 1000 8.3 kcps
WFfilt17It1000 17 Yes 1000 8.3 kcps  

2. script_display_toa_foa_v_snr_across_runs_mrkrs.m 

The script script_display_toa_foa_v_snr_across_runs_mrkrs.m is used to 

read in the data files saved in the last section and plot the data.  These plots are 

shown in the next chapter.   

3. script_plot_WFs.m 

The script script_plot_WFs.m is used to generate plots and data, β  and 

eT , for a given waveform.  The script sets the variables to be used by 

main_simulation.m, saves these in the mat-file config_file.mat, and calls the main 

simulation routine. 
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4. gen_sinc.m 

The script gen_sinc.m was used to create waveforms #11-17.  It loads the 

file mls65535a.mat, converts data bits into bipolar pulses, and shapes these into 

sinc pulses.  For a given waveform, the code generates a sinc pattern signal +/- 

five chips wide with the specified number of samples per pulse to create a FIR 

filter impulse response.  The bipolar pulses are also upsampled by the number of 

samples per bit, where the new “samples” are equal to zero.  This new data is 

run through the FIR filter and used to modulate a carrier at 4cf .  Table 8 shows 

by waveform number the number of samples used to make each sinc pulse.  The 

resulting chip rate cR shown in Table 7 is the sampling frequency sf  divided by 

the number of samples per pulse.  The resulting vector, modulation, is saved into 

the respective mat-file as shown in Table 8. 

Table 8 Samples per Shaped Pulse. 

 
Waveform# Samples per Pulse mat-file name

11 4 sinc_wb_mls65535a
12 8 sinc_mb_mls65535a
13 16 sinc_nb_mls65535a
14 32 sinc_vnb_mls65535a
15 64 sinc_unb_mls65535a
16 128 sinc_xnb_mls65535a
17 12 sinc_12Spc_mls65535a  

5. mls_gen.m 

The script mls_gen.m is used to create a maximal sequence, m-sequence, 

using the linear feedback shift register (LFSR) parameters selected.  The 

particular configuration shown in the appendix is for a 65536 bit long m-sequence 

using a 16-bit LFSR with feedback from the taps 1, 3, 12, and 16.  The two 

vectors it creates are mls_code, in which each element { }0,1∈ , and signal_sent, 

in which each element { }1,1∈ − .  The script also plots the autocorrelation of the 

generated sequence to allow a user to assess the autocorrelation properties. 
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This chapter presented the MATLAB files used to perform the simulations.  

The code itself is included in the appendix.  The resulting plots are shown and 

described in the next chapter. 
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VII. RESULTS AND CONCLUSIONS 

This chapter discusses the specific simulations performed and explains 

the results of the simulations of the various waveforms.  

A. SIMULATIONS PERFORMED 

Each of the waveforms presented in Chapter V was generated and 

processed over 1000 realizations of noise for each 0sE N  value ranging from 0 

to 35 dB in steps of 5 dB.  All of the waveforms use the sampling frequency 

100sf =  kS/s and the number of samples of the waveform (not including zero 

padding) is 30720N =  Samples.  The chipping rates sR  are the same as defined 

in Table 3, and the carrier frequency 0f  is 20 kHz for waveforms #1-4 (both 

unfiltered and filtered) and 25 kHz, which is 4sf , for waveforms #11-17.  The 

resulting values for β  and eT  are also shown in Table 3. 

The resulting statistics (summary_array) from each of these runs provides 

mean and standard deviation for TOA and FOA at each 0sE N .  The MATLAB 

script script_top_level_simulate_various_WFs configured the settings for each 

waveform, called the main MATLAB routines to run the simulations, 

main_simulation, and to generate the summary statistics for the waveforms, 

display_toa_foa_v_snr_and_prep_data, and saved the resulting summary 

statistics in the appropriately name MATLAB .mat data file.    

The MATLAB script script_display_toa_foa_v_snr_across_runs reads in 

all these saved data files and plots the standard deviations for TOA and FOA on 

a logarithmic scale.  The mean of these values is not plotted because they were 

all about zero, as expected. 

B. RESULTS OF SIMULATIONS AND COMPARISON 

The results of simulation showed the standard deviations of the TOA and 

FOA estimates found in simulation matched the expected values determined by 
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(4.38) and (4.39).  For waveforms of similar SNR, the standard deviation of the 

TOA, TOAσ , was inversely related to β  as defined in (4.41).  Likewise, for 

waveforms of similar SNR, the standard deviation of the FOA, FOAσ , was 

inversely related to eT  as defined in (4.42).  Because SNR is defined to be 

0sE N , as opposed to 0cE N , γ  will not undergo improvement due to processing 

gain and therefore the quantity BT  in (4.38) and (4.39) equals unity.  

Three sets of comparisons are presented.  Unless otherwise specified, the 

chip rate is 4cR =  kcps.  First, the BPSK-generated waveforms (i.e., waveforms 

#1-4 filtered and unfiltered) are compared.  Next, the reference waveform and 

various shaped-chip waveforms (i.e., waveform #1 and waveforms #11-16) are 

compared.  Finally, the bandwidth constrained waveforms (shown in Figure 18) 

along with the reference waveform at various chip rates are all compared.  For 

each of these, TOA and FOA data are plotted for the waveforms under 

consideration along with the theoretical performance expected for the filtered 

waveform #1 derived using (4.38) and (4.39). 

1. BPSK-Generated Waveforms 

The first comparison made is between the filtered and unfiltered BPSK 

generated waveforms all at the same chip rate, and hence the same null-to-null 

bandwidth nnB  as shown in Table 3.  Filtering of a BPSK signal will reduce the 

rms radian frequency β , which would be infinite for an infinite bandwidth 

receiver, but the rms duration eT  would remain unchanged.  Thus, one would 

expect to see a larger standard deviation σ  of TOA but no change for σ  of FOA 

going from a particular waveform (i.e., waveform #1-4) to its corresponding 

filtered version. 

Waveforms #1-4, both filtered and unfiltered, were simulated with 1000 

noise realizations for each waveform at each SNR.  The standard deviation σ  of 

the TOA and FOA values determined from these simulations are plotted in Figure 
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53 and Figure 54, respectively.  The data points, which are at SNR values in 5 

dB steps and indicated by the symbols, are connected by straight line 

interpolations.  These lines are not meant to imply the actual values between the 

data points but to aid visualizing the data points and observe trends.  
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Figure 53 TOA Accuracies – Unfiltered BPSK vs. Filtered. 
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Figure 54 FOA Accuracies – Unfiltered BPSK vs. Filtered. 

In addition, the theoretical TOA and FOA values are also calculated for the 

filtered waveform #1 for various SNR  and plotted on the respective plot.  These 

values are calculated using (4.38) and (4.39), where β  and eT  are extracted 

from Table 3,  the waveform duration T  is from (5.1), the signal bandwidth out of 

the receiver is 1 T , and γ  is twice the SNR defined as 0sE N . 

As can be seen on the right side of these plots, at high SNR  values 

( 20dB≥ ), all the curves either match the theoretical curve or are parallel with it, 

and at low SNR  values ( 10dB≤ ), the curves flatten out with a very poor σ  

indicating the spurious detections throughout the CAF space (i.e., the region 

being searched over TOA and FOA).  This is consistent with Stein [3] who 

comments, “In order for the desired lobe peak to be uniquely identified (very low 

probability of spurious noise lobes exceeding a detection threshold), the SNR in 
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the output has to exceed about 10 dB.”  Viewing the resulting CAF at high and 

low SNR helps to illustrate this.  Figure 55 shows an example CAF output 

(magnitude only) of waveform #4 in a basically noiseless environment (100 dB 

SNR).  Note how the peak of the mainlobe in the center of the plot is easily 

discernable.  Figure 56, on the other hand, shows an example CAF of the same 

waveform with 0 dB SNR  (i.e., the noise power is equal to signal power).  Note in 

this case how the peaks can be seen distributed throughout the CAF space.  

Because the CAF space is limited, it will set a limit on how poor σ  can become, 

thus causing the flattening of the curves. 

 

Figure 55 Waveform #4 Example CAF with 100SNR =  dB. 
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Figure 56 Waveform #4 Example CAF with 0SNR =  dB. 

Inspecting the curves at high SNR in Figure 53 in more detail, one can 

note three things.  First, the simulation results for the filtered waveform #1 fall 

directly on top of the lines for expected of theoretical performance and filtered 

waveforms #2 and #4, matching theory.  Second, filtered waveform #3, which 

has a higher rms radian frequency β  than the other three filtered waveforms, 

also has a smaller standard deviation for TOA.  Finally, all four of the unfiltered 

waveforms have about the same standard deviation because β  for these 

waveforms is really limited by the collector bandwidth. 

Likewise, examination of the curves at high SNR in Figure 54 in more 

detail shows, first, that the standard deviations for FOA FOAσ  for both the filtered 

and unfiltered versions of waveform #1 fall directly on the curve for theoretical 

performance.  Second, filtering has no effect on FOAσ  for a given waveform (i.e., 
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the curve of the performance for a filtered waveform falls directly on top of the 

respective unfiltered waveform).  Third, it shows that shaping the time domain 

profile of the waveform does indeed have a significant impact on the standard 

deviation. 

2. Shaped-Chip Waveforms 

The next comparison is between the filtered waveform #1, the reference 

signal, and sinc-shaped chipping of the carrier at various chip rates and 

corresponding bandwidth.  As the chip rate increases, the bandwidth and rms 

radian frequency should also increase, thus improving TOA accuracy (i.e., 

reducing TOAσ ). 

The standard deviation σ  of the TOA and FOA values, respectively, 

determined from simulations for filtered waveform #1 and unfiltered waveforms 

#11-16 are plotted in Figure 57 and Figure 58.  As can be seen on the right side 

of these plots once again, at high SNR  values ( 20dB≥ ), all the curves either lie 

on top of the theoretical curve or are parallel with it, and at low SNR  values 

( 10dB≤ ), the curves flatten out with a very poor σ  indicating the spurious 

detections throughout the CAF space.  In addition, all the curves in Figure 58 lie 

on top of each other, as expected, because the waveforms are all of the same 

duration and have basically constant power over this duration,ignoring the ripples 

and nulls.  Finally, the theoretical value of TOAσ  for each of the waveforms #11-16 

at 25 dB SNR are shown with the dark bullseyes.  These were computed using 

the values of β  from the third column in Table 3.   
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Figure 57 TOA Accuracies – Reference Waveform vs. Shaped Chips. 

Examining the curves at high SNR  in Figure 57, one can note that each 

doubling of the chip rate (i.e., bandwidth) causes a 50% reduction in TOAσ  for the 

same SNR (i.e., one can double the accuracy of the measurements by doubling 

the bandwidth without increasing the transmit power).  Conversely, one can also 

note from these plots that for a given bandwidth, one can double the accuracy by 

increasing transmit power by 6 dB.  These two observations are consistent with 

(4.38). 
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Figure 58 FOA Accuracies – Reference Waveform vs Shaped Chips. 

3. Bandwidth Constrained Waveforms 

The final comparison is between the various bandwidth constrained 

waveforms of 8nnB =  kHz and with the reference waveform (filtered waveform 

#1) at various chip rates.  The bandwidth constrained waveforms, which are 

shown in Figure 18, consist of filtered waveforms #1-4 at the chip rate 4cR =  

kcps and waveform #17, which is modulated with sinc-shaped pulses, is chipped 

at 8.3cR =  kcps to give a similar null-to-null bandwidth nnB .  The reference 

waveform chipped at higher rates provides a reference by which to compare the 

various waveforms. 

The standard deviation σ  of the TOA and FOA values, respectively, 

determined from simulations for these waveforms are plotted in Figure 59 and 

Figure 60.  As can be seen on the right side of these plots once again, at high 
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SNR  values ( 20dB≥ ), all the curves either lie on top of the theoretical curve for 

the reference waveform or are parallel with it.  In addition, the theoretical values 

of TOAσ  for the reference waveform, #1F, at each of the chipping rates and at 25 

dB SNR are shown with the dark bullseyes.  Note how well they match the 

results of the simulation for the various bandwidths. 

In the region of high SNR values ( 20dB≥ ), Figure 59 makes evident once 

again that doubling the chip rate of the reference waveform causes a 50% 

reduction in TOAσ  for a given SNR .  Likewise, transmitting a signal with 6 dB more 

power would also cause a 50% reduction in TOAσ  for a given waveform at a given 

power.  However, one could also achieve almost a 50% reduction in TOAσ  from 

the reference waveform, without increased energy or bandwidth, by reshaping it 

to waveform #3 (filtered) or #17 (unfiltered or filtered).  However, this is at a cost 

of increased peak power.   
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Figure 59 TOA Accuracies – Summary of Alternatives. 

Comparing the waveforms for FOA performance (Figure 60) shows that 

changing the bandwidth has no effect on the resulting standard deviation FOAσ ; 

however, shortening, lengthening, or otherwise changing the power profile over 

time does affect FOAσ . 
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Figure 60 FOA Accuracies – Summary of Alternatives. 

C. SUMMARY OF FINDINGS 

This effort examined the efficacy of a waveform to support geolocation.  It 

specifically investigated how well a waveform could support identifying the 

location of a single emission in the presence of AWGN given that the emitter is 

simultaneously visible to multiple coherent collectors.  The analysis also 

assumes that  

• the emitter is transmitting isotropically,  

• no multipath or atmospheric effects exist,  

• the entire channel is linear (including amplifiers),  

• the coherent collectors have perfect knowledge of time and 
their own location,  

• the collection geometry is static,  
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• the transmitted signal is modulated by a completely known 
chipping sequence,  

• the collectors have a copy of the signal being transmitted, 
and  

• no data are being modulated onto the emission. 
This thesis identified the ability of a waveform to support accurate 

estimation of TOA and FOA as the figures of merit to support geolocation of an 

emission.  The particular metric is the standard deviation σ  of these estimates.  

Any attempt to define the waveform accuracy by using a figure of merit involving 

physical location requires knowledge of the collectors and collection geometry.  

The three main parameters affecting TOAσ  and FOAσ  are 0sE N , bandwidth, and 

signal duration.  These parameters are limited not just by physical constraints on 

transmit power and the occupied bandwidth, but also by acceptable visibility by 

an adversary (e.g., low probability of intercept or detection). 

Equations show that the probability of correctly detecting the signal dP  

along with the probability of a false alarm FAP  (“detecting” a signal that is not 

really there) are a function only of the signal power, noise power spectral density, 

duration of the signal, and detection threshold, but are otherwise independent of 

the waveform characteristics.  Probability of detection dP , probability of false 

alarm FAP , and detection threshold are related.  For fixed signal power to noise 

power ratio (SNR), increasing the detection threshold decreases the probability 

of false alarm.  However, for fixed SNR, increasing the detection threshold will 

also decrease the probability of detection. 

On the other hand, the “shape” of the waveform does have an effect on σ  

as stated by Stein [3].  For a given 0sE N , occupied bandwidth (e.g., null-to-null 

bandwidth nnB ), and total signal duration, manipulating the PSD and the 

amplitude profile (vs. time) of the signal affect TOAσ  and FOAσ , respectively.  This 

shaping can be performed by filtering (temporal or spectral domain) the signal, 

synthesizing by adding up component signals of the waveform or otherwise 
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modulating the signal, or by shaping the chipping pulses.  However this shaping 

is accomplished, “pushing” the waveform energy from the center to the extremes 

increases the rms value of that parameter.  For example, generating a waveform 

that has a higher PSD near the band edges than at the center of the band will 

provide a higher rms bandwidth signal than one, which has flat PSD, resulting in 

a smaller value for TOAσ  and improved location estimation.  Likewise, generating 

a waveform in which the signal amplitude is greater towards the beginning and 

end than in the middle of the signal results in an improved (i.e., smaller) FOAσ .  

One potential cost relative to DSSS7 of performing this shaping, however, is 

potentially greater visibility by an adversary (e.g., shaping the PSD implies that 

the signal may be more visible at those accentuated frequencies).  Another 

potential cost is forcing the system to deal with a non-constant envelope 

waveform which can be a challenge in power constrained systems because they 

typically operate their power amplifiers at or near saturation to improve their 

power added efficiency (PAE), although techniques are being developed to help 

alleviate this constraint [18].   

D. FUTURE WORK 

Future work is needed to better define the real-world performance one 

might expect to see in a fielded system.  The first of these would be to run 

simulations in which the length of the chip sequence matches the m-sequence to 

find optimal performance.  Because these were not matched, the chips appear 

random, but they do not experience the noise-like property of having a 

autocorrelation peak only when the two signals have no lag (i.e., no minor 

correlation peaks).  The existing model and routines support this; however new 

mat-files need to be created for chip sequence (i.e, mls65535a.mat) using 

mls_gen.m and the corresponding shaped chip waveforms using gen_sinc.m. 

                                            
7 Typically DSSS is PSK modulated. 
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A second area is to extend the analysis and simulation into a dynamic 

collection geometry with at least velocity, but also limited acceleration, which 

would affect waveform length (or at least coherent processing length). 

A third area of investigation is to identify the effect from non-AWGN 

interference (both colored noise and other emitters).  This analysis should be 

supplemented by simulation.  

A fourth area is to model propagation effects.  These effects include 

multipath fading and atmospheric distortion, but they may also include the effects 

of nonlinear channels (e.g., nonlinear amplifiers).  Although the former would be 

scenario dependent, the latter would not and could be useful in system design to 

better understand and specify linearity tolerances. 

A fifth area is to evaluate different waveforms balanced by the constraint 

of hardware complexity.  For example, an infinitely wide bandwidth signal would 

give optimal TOAσ  performance, but it is also not realizable.  Tradeoffs should be 

evaluated to identify features and limitations in a waveform that greatly simplify 

processing without significantly degrading performance.  

A sixth area is to investigate vulnerability of specific waveforms.  This, 

however, becomes very scenario specific. 

Finally, another area would be investigating the feasibility of using shaped 

noise waveforms.  Instead of shaping BPSK waveforms as was done for 

waveforms #1-4, spectrally and temporally shaping a noise burst, although not 

deterministic, may lead to some interesting concepts and conclusion. 
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APPENDIX 

This Appendix contains all the MATLAB® functions and scripts developed 

for this thesis. MATLAB® Version 2008a and 2008b were used in this thesis. 

A. MATLAB CODE: SCRIPT_TOP_LEVEL_SIMULATE VARIOUS_WFS.M  

% ********************************************************************* 
% script_top_level_simulate various_WFs.M; 
% This code establishes the simulation parameters and calls functions  
% to perform the simulation and plot resulting data. 
% 
% Written by: Joe Crnkovich, NRL 
% Last modified: 14 May 2009 
% 
% ********************************************************************* 
 
 % unfiltered waveforms 1-4 
  
clear all 
WF1It1000Rs4000_config_file  
save config_file 
main_simulation %run simulation using config parameters from above 
display_toa_foa_v_snr_and_prep_data 
WF1It1000Rs4000_stat_summary_array = stat_summary_array; 
save WF1It1000Rs4000_stat_summary_array WF1It1000Rs4000_stat_summary_array 
  
clear all 
WF2It1000Rs4000_config_file 
save config_file 
main_simulation %run simulation using config parameters from above 
display_toa_foa_v_snr_and_prep_data 
WF2It1000Rs4000_stat_summary_array = stat_summary_array; 
save WF2It1000Rs4000_stat_summary_array WF2It1000Rs4000_stat_summary_array 
  
clear all 
WF3It1000Rs4000_config_file 
save config_file 
main_simulation %run simulation using config parameters from above 
display_toa_foa_v_snr_and_prep_data 
WF3It1000Rs4000_stat_summary_array = stat_summary_array; 
save WF3It1000Rs4000_stat_summary_array WF3It1000Rs4000_stat_summary_array 
  
clear all 
WF4It1000Rs4000_config_file 
save config_file 
main_simulation %run simulation using config parameters from above 
display_toa_foa_v_snr_and_prep_data 
WF4It1000Rs4000_stat_summary_array = stat_summary_array; 
save WF4It1000Rs4000_stat_summary_array WF4It1000Rs4000_stat_summary_array 
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% filtered waveforms 1-4 
  
clear all 
WF1filtIt1000Rs4000_config_file 
save config_file 
main_simulation %run simulation using config parameters from above 
display_toa_foa_v_snr_and_prep_data 
WF1filtIt1000Rs4000_stat_summary_array = stat_summary_array; 
save WF1filtIt1000Rs4000_stat_summary_array WF1filtIt1000Rs4000_stat_summary_array 
  
clear all 
WF2filtIt1000Rs4000_config_file 
save config_file 
main_simulation %run simulation using config parameters from above 
display_toa_foa_v_snr_and_prep_data 
WF2filtIt1000Rs4000_stat_summary_array = stat_summary_array; 
save WF2filtIt1000Rs4000_stat_summary_array WF2filtIt1000Rs4000_stat_summary_array 
  
clear all 
WF3filtIt1000Rs4000_config_file 
save config_file 
main_simulation %run simulation using config parameters from above 
display_toa_foa_v_snr_and_prep_data 
WF3filtIt1000Rs4000_stat_summary_array = stat_summary_array; 
save WF3filtIt1000Rs4000_stat_summary_array WF3filtIt1000Rs4000_stat_summary_array 
  
clear all 
WF4filtIt1000Rs4000_config_file 
save config_file 
main_simulation %run simulation using config parameters from above 
display_toa_foa_v_snr_and_prep_data 
WF4filtIt1000Rs4000_stat_summary_array = stat_summary_array; 
save WF4filtIt1000Rs4000_stat_summary_array WF4filtIt1000Rs4000_stat_summary_array 
  
% filtered waveform 1 at other Rs values 
  
clear all 
WF1filtIt1000Rs1000_config_file 
save config_file 
main_simulation %run simulation using config parameters from above 
display_toa_foa_v_snr_and_prep_data 
WF1filtIt1000Rs1000_stat_summary_array = stat_summary_array; 
save WF1filtIt1000Rs1000_stat_summary_array WF1filtIt1000Rs1000_stat_summary_array 
  
clear all 
WF1filtIt1000Rs2000_config_file 
save config_file 
main_simulation %run simulation using config parameters from above 
display_toa_foa_v_snr_and_prep_data 
WF1filtIt1000Rs2000_stat_summary_array = stat_summary_array; 
save WF1filtIt1000Rs2000_stat_summary_array WF1filtIt1000Rs2000_stat_summary_array 
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clear all 
WF1filtIt1000Rs8000_config_file 
save config_file 
main_simulation %run simulation using config parameters from above 
display_toa_foa_v_snr_and_prep_data 
WF1filtIt1000Rs8000_stat_summary_array = stat_summary_array; 
save WF1filtIt1000Rs8000_stat_summary_array WF1filtIt1000Rs8000_stat_summary_array 
  
  
% unfiltered waveform 1 at other Rs values 
  
clear all 
WF1It1000Rs1000_config_file 
save config_file 
main_simulation %run simulation using config parameters from above 
display_toa_foa_v_snr_and_prep_data 
WF1It1000Rs1000_stat_summary_array = stat_summary_array; 
save WF1It1000Rs1000_stat_summary_array WF1It1000Rs1000_stat_summary_array 
  
clear all 
WF1It1000Rs2000_config_file 
save config_file 
main_simulation %run simulation using config parameters from above 
display_toa_foa_v_snr_and_prep_data 
WF1It1000Rs2000_stat_summary_array = stat_summary_array; 
save WF1It1000Rs2000_stat_summary_array WF1It1000Rs2000_stat_summary_array 
  
clear all 
WF1It1000Rs8000_config_file 
save config_file 
main_simulation %run simulation using config parameters from above 
display_toa_foa_v_snr_and_prep_data 
WF1It1000Rs8000_stat_summary_array = stat_summary_array; 
save WF1It1000Rs8000_stat_summary_array WF1It1000Rs8000_stat_summary_array 
  
  
% canned waveforms 11-16 --- shaped chips 
  
clear all 
WF11It1000_config_file 
save config_file 
main_simulation %run simulation using config parameters from above 
display_toa_foa_v_snr_and_prep_data 
WF11It1000_stat_summary_array = stat_summary_array; 
save WF11It1000_stat_summary_array WF11It1000_stat_summary_array 
  
clear all 
WF12It1000_config_file 
save config_file 
main_simulation %run simulation using config parameters from above 
display_toa_foa_v_snr_and_prep_data 
WF12It1000_stat_summary_array = stat_summary_array; 
save WF12It1000_stat_summary_array WF12It1000_stat_summary_array 
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clear all 
WF13It1000_config_file 
save config_file 
main_simulation %run simulation using config parameters from above 
display_toa_foa_v_snr_and_prep_data 
WF13It1000_stat_summary_array = stat_summary_array; 
save WF13It1000_stat_summary_array WF13It1000_stat_summary_array 
  
clear all 
WF14It1000_config_file 
save config_file 
main_simulation %run simulation using config parameters from above 
display_toa_foa_v_snr_and_prep_data 
WF14It1000_stat_summary_array = stat_summary_array; 
save WF14It1000_stat_summary_array WF14It1000_stat_summary_array 
  
clear all 
WF15It1000_config_file 
save config_file 
main_simulation %run simulation using config parameters from above 
display_toa_foa_v_snr_and_prep_data 
WF15It1000_stat_summary_array = stat_summary_array; 
save WF15It1000_stat_summary_array WF15It1000_stat_summary_array 
  
clear all 
WF16It1000_config_file 
save config_file 
main_simulation %run simulation using config parameters from above 
display_toa_foa_v_snr_and_prep_data 
WF16It1000_stat_summary_array = stat_summary_array; 
save WF16It1000_stat_summary_array WF16It1000_stat_summary_array 
  
  
% canned waveform 17 (unfiltered and filtered) --- shaped chips 
  
clear all 
WF17It1000_config_file 
save config_file 
main_simulation %run simulation using config parameters from above 
display_toa_foa_v_snr_and_prep_data 
WF17It1000_stat_summary_array = stat_summary_array; 
save WF17It1000_stat_summary_array WF17It1000_stat_summary_array 
  
clear all 
WF17filtIt1000_config_file 
save config_file 
main_simulation %run simulation using config parameters from above 
display_toa_foa_v_snr_and_prep_data 
WF17filtIt1000_stat_summary_array = stat_summary_array; 
save WF17filtIt1000_stat_summary_array WF17filtIt1000_stat_summary_array 
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B. MATLAB CODE: 
SCRIPT_DISPLAY_TOA_FOA_V_SNR_ACROSS_RUNS_MRKRS.M  

% ********************************************************************* 
% script_display_toa_foa_v_snr_across_runs_mrkrs.m; 
% Calls functions to generate final plots. 
% 
% Written by: Joe Crnkovich, NRL 
% Last modified: 14 May 2009 
% 
% ********************************************************************* 
 
clear all 
close all 
clc 
  
load WF1It1000Rs4000_stat_summary_array 
load WF2It1000Rs4000_stat_summary_array 
load WF3It1000Rs4000_stat_summary_array 
load WF4It1000Rs4000_stat_summary_array 
  
load WF1filtIt1000Rs4000_stat_summary_array 
load WF2filtIt1000Rs4000_stat_summary_array 
load WF3filtIt1000Rs4000_stat_summary_array 
load WF4filtIt1000Rs4000_stat_summary_array 
  
load WF1filtIt1000Rs1000_stat_summary_array 
load WF1filtIt1000Rs2000_stat_summary_array 
load WF1filtIt1000Rs8000_stat_summary_array 
  
load WF11It1000_stat_summary_array 
load WF12It1000_stat_summary_array 
load WF13It1000_stat_summary_array 
load WF14It1000_stat_summary_array 
load WF15It1000_stat_summary_array 
load WF16It1000_stat_summary_array 
  
load WF17It1000_stat_summary_array 
  
[no_rows, no_cols] = size(WF1It1000Rs4000_stat_summary_array) 
  
[no_rows, no_cols] = size(WF1It1000Rs4000_stat_summary_array) 
  
%% Calculate theoretical TDOA and FDOA 
  
SNR_idx = 0; 
for SNR_dB = WF1It1000Rs4000_stat_summary_array(1,1): 
WF1It1000Rs4000_stat_summary_array(no_rows,1) 
    SNR_idx = SNR_idx+1; 
     
    SNR = 10^(SNR_dB/10); 
    gamma = 2* SNR; 
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    T = 0.3; %sec i.e., signal duration  
    B = 3.3; %Hz  i.e., 1/T 
  
    BTg = B*T*gamma 
    sqrt_BTg = sqrt(BTg); 
         
    % compute theoretical for Filtered WF#1 from computed values 
    Beta = 8506   
    Te = 0.5577 
     
    sigma_tdoa = (1/Beta)/sqrt_BTg; 
    sigma_fdoa = (1/Te)/sqrt_BTg; 
     
    theor_stat_summary_array(SNR_idx,1) = SNR_dB;  
    theor_stat_summary_array(SNR_idx,2) = 0; %mean theoretical tdoa = 0 
    theor_stat_summary_array(SNR_idx,3) = sigma_tdoa;  
    theor_stat_summary_array(SNR_idx,4) = 0; %mean theoretical fdoa = 0  
    theor_stat_summary_array(SNR_idx,5) = sigma_fdoa;  
end 
  
theor_stat_summary_array 
  
%% Plot WF1-4 & filtered-WF1-4 at 4kcps, fs=100kSps, fc=20kHz 
  
figure; 
%subplot(2,1,1); 
semilogy( ... 
    WF1It1000Rs4000_stat_summary_array(:,1), WF1It1000Rs4000_stat_summary_array(:,3), 
':+', ... 
    WF2It1000Rs4000_stat_summary_array(:,1), WF2It1000Rs4000_stat_summary_array(:,3), 
':o', ... 
    WF3It1000Rs4000_stat_summary_array(:,1), WF3It1000Rs4000_stat_summary_array(:,3), 
':x', ... 
    WF4It1000Rs4000_stat_summary_array(:,1), WF4It1000Rs4000_stat_summary_array(:,3), 
':s', ... 
    WF1filtIt1000Rs4000_stat_summary_array(:,1), 
WF1filtIt1000Rs4000_stat_summary_array(:,3), '-+', ... 
    WF2filtIt1000Rs4000_stat_summary_array(:,1), 
WF2filtIt1000Rs4000_stat_summary_array(:,3), '-o', ... 
    WF3filtIt1000Rs4000_stat_summary_array(:,1), 
WF3filtIt1000Rs4000_stat_summary_array(:,3), '-x', ... 
    WF4filtIt1000Rs4000_stat_summary_array(:,1), 
WF4filtIt1000Rs4000_stat_summary_array(:,3), '-s', ... 
    theor_stat_summary_array(:,1), theor_stat_summary_array(:,3), '--'    ); 
title('TOA Summary - STD (1000 iterations)'); xlabel('Es/No (dB)'); ylabel('\sigma_{TOA} (s)');  
legend('WF1 (4 kcps)', 'WF2 (4 kcps)', 'WF3 (4 kcps)', 'WF4 (4 kcps)', ... 
    'WF1filt (4 kcps)', 'WF2filt (4 kcps)', 'WF3filt (4 kcps)', 'WF4filt (4 kcps)', ... 
    ['Theor: \beta = ', num2str(Beta), ' (rad/s)']); 
grid on 
  
  
figure; 
%subplot(2,1,1); 
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semilogy( ... 
    WF1It1000Rs4000_stat_summary_array(:,1), WF1It1000Rs4000_stat_summary_array(:,5), 
':+', ... 
    WF2It1000Rs4000_stat_summary_array(:,1), WF2It1000Rs4000_stat_summary_array(:,5), 
':o', ... 
    WF3It1000Rs4000_stat_summary_array(:,1), WF3It1000Rs4000_stat_summary_array(:,5), 
':x', ... 
    WF4It1000Rs4000_stat_summary_array(:,1), WF4It1000Rs4000_stat_summary_array(:,5), 
':s', ... 
    WF1filtIt1000Rs4000_stat_summary_array(:,1), 
WF1filtIt1000Rs4000_stat_summary_array(:,5), '-+', ... 
    WF2filtIt1000Rs4000_stat_summary_array(:,1), 
WF2filtIt1000Rs4000_stat_summary_array(:,5), '-o', ... 
    WF3filtIt1000Rs4000_stat_summary_array(:,1), 
WF3filtIt1000Rs4000_stat_summary_array(:,5), '-x', ... 
    WF4filtIt1000Rs4000_stat_summary_array(:,1), 
WF4filtIt1000Rs4000_stat_summary_array(:,5), '-s', ... 
    theor_stat_summary_array(:,1), theor_stat_summary_array(:,5), '--'    ); 
title('FOA Summary - STD (1000 iterations)'); xlabel('Es/No (dB)'); ylabel('\sigma_{FOA} (Hz)');  
legend('WF1 (4 kcps)', 'WF2 (4 kcps)', 'WF3 (4 kcps)', 'WF4 (4 kcps)', ... 
    'WF1filt (4 kcps)', 'WF2filt (4 kcps)', 'WF3filt (4 kcps)', 'WF4filt (4 kcps)', ... 
    ['Theor: T_e = ', num2str(Te), ' (s)']); 
grid on 
  
%% Plot WF1 at 1,2,8kcps & filtered-WF1-4 at 4kcps, fs=100kSps, fc=20kHz, 
%% also overlay WF17 
  
figure; 
%subplot(2,1,1); 
semilogy( ... 
    WF1filtIt1000Rs1000_stat_summary_array(:,1), 
WF1filtIt1000Rs1000_stat_summary_array(:,3), '-+', ... 
    WF1filtIt1000Rs2000_stat_summary_array(:,1), 
WF1filtIt1000Rs2000_stat_summary_array(:,3), '-o', ... 
    WF1filtIt1000Rs4000_stat_summary_array(:,1), 
WF1filtIt1000Rs4000_stat_summary_array(:,3), '-x', ... 
    WF1filtIt1000Rs8000_stat_summary_array(:,1), 
WF1filtIt1000Rs8000_stat_summary_array(:,3), '-s', ... 
    WF2filtIt1000Rs4000_stat_summary_array(:,1), 
WF2filtIt1000Rs4000_stat_summary_array(:,3), '-d', ... 
    WF3filtIt1000Rs4000_stat_summary_array(:,1), 
WF3filtIt1000Rs4000_stat_summary_array(:,3), '-p', ... 
    WF4filtIt1000Rs4000_stat_summary_array(:,1), 
WF4filtIt1000Rs4000_stat_summary_array(:,3), '-h', ... 
    WF17It1000_stat_summary_array(:,1), WF17It1000_stat_summary_array(:,3), '-*', ... 
    theor_stat_summary_array(:,1), theor_stat_summary_array(:,3), '--'    ); 
title('TOA Summary - STD (1000 iterations)'); xlabel('Es/No (dB)'); ylabel('\sigma_{TOA} (s)');  
legend('WF1filt (1 kcps)', 'WF1filt (2 kcps)', ... 
    'WF1filt (4 kcps)', 'WF1filt (8 kcps)', ... 
    'WF2filt (4 kcps)', 'WF3filt (4 kcps)', ... 
    'WF4filt (4 kcps)', 'WF17 (8.3 kcps)', ... 
    ['Theor: \beta = ', num2str(Beta), ' (rad/s)']); 
grid on 
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figure; 
%subplot(2,1,1); 
semilogy( ... 
    WF1filtIt1000Rs1000_stat_summary_array(:,1), 
WF1filtIt1000Rs1000_stat_summary_array(:,5), '-+', ... 
    WF1filtIt1000Rs2000_stat_summary_array(:,1), 
WF1filtIt1000Rs2000_stat_summary_array(:,5), '-o', ... 
    WF1filtIt1000Rs4000_stat_summary_array(:,1), 
WF1filtIt1000Rs4000_stat_summary_array(:,5), '-x', ... 
    WF1filtIt1000Rs8000_stat_summary_array(:,1), 
WF1filtIt1000Rs8000_stat_summary_array(:,5), '-s', ... 
    WF2filtIt1000Rs4000_stat_summary_array(:,1), 
WF2filtIt1000Rs4000_stat_summary_array(:,5), '-d', ... 
    WF3filtIt1000Rs4000_stat_summary_array(:,1), 
WF3filtIt1000Rs4000_stat_summary_array(:,5), '-p', ... 
    WF4filtIt1000Rs4000_stat_summary_array(:,1), 
WF4filtIt1000Rs4000_stat_summary_array(:,5), '-h', ... 
    WF17It1000_stat_summary_array(:,1), WF17It1000_stat_summary_array(:,5), '-*', ... 
    theor_stat_summary_array(:,1), theor_stat_summary_array(:,5), '--'    ); 
title('FOA Summary - STD (1000 iterations)'); xlabel('Es/No (dB)'); ylabel('\sigma_{FOA} (Hz)');  
legend('WF1filt (1 kcps)', 'WF1filt (2 kcps)', ... 
    'WF1filt (4 kcps)', 'WF1filt (8 kcps)', ... 
    'WF2filt (4 kcps)', 'WF3filt (4 kcps)', ... 
    'WF4filt (4 kcps)', 'WF17 (8.3 kcps)', ... 
    ['Theor: T_e = ', num2str(Te), ' (s)']); 
grid on 
  
  
%% Plot WF11-16 & filtered-WF1-4 at 4kcps, fs=100kSps, fc=20kHz 
  
figure; 
%subplot(2,1,1); 
semilogy( ... 
    WF1filtIt1000Rs4000_stat_summary_array(:,1), 
WF1filtIt1000Rs4000_stat_summary_array(:,3), '-+', ... 
    WF11It1000_stat_summary_array(:,1), WF11It1000_stat_summary_array(:,3), '-o', ... 
    WF12It1000_stat_summary_array(:,1), WF12It1000_stat_summary_array(:,3), '-x', ... 
    WF13It1000_stat_summary_array(:,1), WF13It1000_stat_summary_array(:,3), '-s', ... 
    WF14It1000_stat_summary_array(:,1), WF14It1000_stat_summary_array(:,3), '-d', ... 
    WF15It1000_stat_summary_array(:,1), WF15It1000_stat_summary_array(:,3), '-p', ... 
    WF16It1000_stat_summary_array(:,1), WF16It1000_stat_summary_array(:,3), '-h', ... 
    theor_stat_summary_array(:,1), theor_stat_summary_array(:,3), '--'    ); 
title('TOA Summary - STD (1000 iterations)'); xlabel('Es/No (dB)'); ylabel('\sigma_{TOA} (s)');  
legend('WF1filt (4 kcps)', 'WF11 (25 kcps)', 'WF12 (12.5 kcps)', ... 
    'WF13 (6.25 kcps)', 'WF14 (3.125 kcps)', 'WF15 (1.65 kcps)', ... 
    'WF16 (0.83 kcps)', ... 
    ['Theor: \beta = ', num2str(Beta), ' (rad/s)']); 
grid on 
  
  
figure; 
%subplot(2,1,1); 
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semilogy( ... 
    WF1filtIt1000Rs4000_stat_summary_array(:,1), 
WF1filtIt1000Rs4000_stat_summary_array(:,5), '-+', ... 
    WF11It1000_stat_summary_array(:,1), WF11It1000_stat_summary_array(:,5), '-o', ... 
    WF12It1000_stat_summary_array(:,1), WF12It1000_stat_summary_array(:,5), '-x', ... 
    WF13It1000_stat_summary_array(:,1), WF13It1000_stat_summary_array(:,5), '-s', ... 
    WF14It1000_stat_summary_array(:,1), WF14It1000_stat_summary_array(:,5), '-d', ... 
    WF15It1000_stat_summary_array(:,1), WF15It1000_stat_summary_array(:,5), '-p', ... 
    WF16It1000_stat_summary_array(:,1), WF16It1000_stat_summary_array(:,5), '-h', ... 
    theor_stat_summary_array(:,1), theor_stat_summary_array(:,5), '--'    ); 
title('FOA Summary - STD (1000 iterations)'); xlabel('Es/No (dB)'); ylabel('\sigma_{FOA} (Hz)');  
legend('WF1filt (4 kcps)', 'WF11 (25 kcps)', 'WF12 (12.5 kcps)', ... 
    'WF13 (6.25 kcps)', 'WF14 (3.125 kcps)', 'WF15 (1.65 kcps)', ... 
    'WF16 (0.83 kcps)', ... 
    ['Theor: T_e = ', num2str(Te), ' (s)']); 
grid on 

C. MATLAB CODE: SCRIPT_PLOT_WFS.M  

% ********************************************************************* 
% script_plot_WFs.M; 
% This code set the variables and and calls functions  
% to plot a particular waveform. 
% 
% Written by: Joe Crnkovich, NRL 
% Last modified: 14 May 2009 
% 
% ********************************************************************* 
 
% signal parameters 
wf_type=4; % 1:const env, const psd; 2:gap in time; 3:gap in psd; 4:shortened pulse 
filter_outside_bnn=0; %limit signal, if generated (i.s., WF1-4), to within Bnn 
process_detections=1; %set to '1' to CAF and get estimates of TOA and FOA 
  
f0 = 20000;  %carrier frequency 
%f0 = 25000;  %carrier frequency - f0 of canned WF is fs/4 
fs = 100000; %sample frequency 
Rsym=4000; %2000 %10000;   %symbol rate 
  
pad_length = 1024; %no. of zeros to add onto each side of S1 
N = 32768-2*pad_length  %length(samples) of burst; CAF alg. prefers N=2^k 
  
%--- SNR (Ec_No) of 2.6 (4.15 dB) should give BER .01 for BPSK 
Es_No_dB_min = 10  
Es_No_dB_step = 500; 
Es_No_dB_max = 100  
  
no_noise_iterations = 1000; 
no_noise_iterations = 1 %200%0; %500 %40 %250; 
  
%monitor and debug setting 
verbose=0; %set to zero to stop sending debug info to MATLAB window 
verbose_wf_gen=1; %enable plots and sending debug info to MATLAB window 
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verbose_plot_wf=1; %enable plots of waveform and calculate rms BW 
enable_BER_test=0; %set to 1 to enable running of BER test function 
limit_CAF_to_search_freq_only=0;  % remove ambiguity in CAF (find FDOA only) %Warning: 
assumes tau =0 
limit_CAF_to_search_time_only=0;  % remove ambiguity in CAF (find TDOA only) 
  
%geometry 
Pc1 = [0 0 500]; %use only z position (i.e., leave x&y=0) 
Vc1 = [0 0 0]; 
Pc2 = Pc1; 
Vc2 = [0 0 0]; 
Pe = [0 0 0];   
Ve = [0 0 0]; 
  
tau = 1.25e-7 % time offset step used to dither sampling relative to signal 
c = 2.997925e8; % Speed of light in m/s 
  
% dither position to remove clock sync between runs 
pos_offset_min = 0; % in meters   
pos_offset_step = c*tau; % in meters 
pos_offset_max = 0; %9*c*tau; % in meters  %run ten iterations 
  
save config_file 
main_simulation 

D. MATLAB CODE: DISPLAY_TOA_FOA_V_SNR_AND_PREP_DATA.M  

% ********************************************************************* 
% display_toa_foa_v_snr_and_prep_data.m; 
% This code reads the arrays produced by the simulation code, 
% generates the statistics, and plots data from a singlesim run. 
% 
% Written by: Joe Crnkovich, NRL 
% Last modified: 15 May 2009 
% 
% ********************************************************************* 
 
    fprintf('\n *** Statistical Summary *** \n'); 
     
    for stat_index=1:Es_No_step_no 
        offset=(stat_index-1)*no_noise_iterations*pos_offset_index; 
        fprintf('\nEs/No = %f dB (%d samples)\n', toa_est(offset+1,2), 
no_noise_iterations*pos_offset_index); 
        fprintf('- TOA estimates: mean=%f  std=%f \n', ... 
            mean(toa_est(offset+1:offset+no_noise_iterations*pos_offset_index,1)), ... 
            std(toa_est(offset+1:offset+no_noise_iterations*pos_offset_index,1))); 
        fprintf('- FOA estimates: mean=%f  std=%f \n', ... 
            mean(foa_est(offset+1:offset+no_noise_iterations*pos_offset_index,1)), ... 
            std(foa_est(offset+1:offset+no_noise_iterations*pos_offset_index,1))); 
  
        stat_summary_array(stat_index,1)=toa_est(offset+1,2); %Es_No 
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stat_summary_array(stat_index,2)=mean(toa_est(offset+1:offset+no_noise_iterations*pos_offset
_index,1)); %mean toa 
        
stat_summary_array(stat_index,3)=std(toa_est(offset+1:offset+no_noise_iterations*pos_offset_in
dex,1)); %std toa 
        
stat_summary_array(stat_index,4)=mean(foa_est(offset+1:offset+no_noise_iterations*pos_offset
_index,1)); %mean foa 
        
stat_summary_array(stat_index,5)=std(foa_est(offset+1:offset+no_noise_iterations*pos_offset_in
dex,1)); %std foa 
    end 
     
    %% 
%     % Template to save data 
%     WFxxItxx_stat_summary_array = stat_summary_array 
%     save WFxxItxx_stat_summary_array WFxxItxx_stat_summary_array 
  
%   %example: 
%    WF3filtIt100Rs4000_stat_summary_array = stat_summary_array 
%    save WF3filtIt100Rs4000_stat_summary_array WF3filtIt100Rs4000_stat_summary_array 
     
    %% 
     
    figure; 
    subplot(2,1,1);  
    plot(stat_summary_array(:,1), stat_summary_array(:,2), stat_summary_array(:,1), 
stat_summary_array(:,3)); 
        title('TOA Summary'); xlabel('Es/No (dB)'); ylabel('TDOA (s)'); legend('Mean', 'Standard 
Deviation'); 
    subplot(2,1,2);  
    plot(stat_summary_array(:,1), stat_summary_array(:,4), stat_summary_array(:,1), 
stat_summary_array(:,5)); 
        title('FOA Summary'); xlabel('Es/No (dB)'); ylabel('FDOA (Hz)'); legend('Mean', 'Standard 
Deviation'); 
  
         
    figure; 
    subplot(2,1,1);  
    plot(stat_summary_array(:,1), stat_summary_array(:,2), stat_summary_array(:,1), 
stat_summary_array(:,3)); 
        title('TOA Summary'); xlabel('Es/No (dB)'); ylabel('TDOA (s)'); legend('Mean', 'Standard 
Deviation'); 
        xlim([10,35]); 
    subplot(2,1,2);  
    plot(stat_summary_array(:,1), stat_summary_array(:,4), stat_summary_array(:,1), 
stat_summary_array(:,5)); 
        title('FOA Summary'); xlabel('Es/No (dB)'); ylabel('FDOA (Hz)'); legend('Mean', 'Standard 
Deviation'); 
        xlim([10,35]); 
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    figure; 
    subplot(2,1,1);  
    plot(stat_summary_array(:,1), stat_summary_array(:,2), stat_summary_array(:,1), 
stat_summary_array(:,3)); 
        title('TOA Summary'); xlabel('Es/No (dB)'); ylabel('TDOA (s)'); legend('Mean', 'Standard 
Deviation'); 
        xlim([20,35]); 
    subplot(2,1,2);  
    plot(stat_summary_array(:,1), stat_summary_array(:,4), stat_summary_array(:,1), 
stat_summary_array(:,5)); 
        title('FOA Summary'); xlabel('Es/No (dB)'); ylabel('FDOA (Hz)'); legend('Mean', 'Standard 
Deviation'); 
        xlim([20,35]); 
   
  
    figure; 
    subplot(2,1,1);  
    semilogy(stat_summary_array(:,1), stat_summary_array(:,3),'-x'); 
        title('TOA Summary'); xlabel('Es/No (dB)'); ylabel('TDOA (s)'); legend('Standard Deviation'); 
        grid on 
    subplot(2,1,2);  
    semilogy(stat_summary_array(:,1), stat_summary_array(:,5),'-x'); 
        title('FOA Summary'); xlabel('Es/No (dB)'); ylabel('FDOA (Hz)'); legend('Standard Deviation'); 
        grid on 

E. MATLAB CODE: DISPLAY_SCATTER_FOA_TOA.M 

% ********************************************************************* 
% display_scatter_foa_toa.m; 
% routine to display scatter plots of FOA v. TOA of detections  
% for various levels of noise. 
% requires: snr_step_no, no_noise_iterations, toa_est, foa_est 
% 
% Written by: Joe Crnkovich, NRL 
% Last modified: 9 April 2009 
% ********************************************************************* 
  
 close all 
  
for stat_index=1:Es_No_step_no 
    %offset=(stat_index-1)*no_noise_iterations; 
    offset=(stat_index-1)*no_noise_iterations*pos_offset_index; 
     
    %toa_series=toa_est(offset+1:offset+no_noise_iterations,1); 
    %foa_series=foa_est(offset+1:offset+no_noise_iterations,1); 
    toa_series=toa_est(offset+1:offset+no_noise_iterations*pos_offset_index,1); 
    foa_series=foa_est(offset+1:offset+no_noise_iterations*pos_offset_index,1); 
     
    title_string=['FOA v. TOA Scatterplot (Ec/No=',num2str(toa_est(offset+1,2)),'dB)']; 
     
    figure; 
    subplot(2,1,1); 
    plot(toa_series, foa_series, 'x'); 
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    xlabel('Time of Arrival (TOA) (s)'), ylabel('Frequency of Arrival (FOA) (Hz)'); 
    title(title_string); 
     
%    figure; 
    [n,xout] = hist(toa_series) 
%    subplot(2,1,1); 
    subplot(4,1,3); 
    bar(xout,n) 
    xlabel('Time of Arrival (TOA) (s)'), ylabel('Occurences');     
%    title_string=['Histogram of TOA results (Ec/No=',num2str(toa_est(offset+1,2)),'dB)']; 
    title_string=['---------------- Histograms of results ----------------']; 
    title(title_string); 
     
    %figure; 
    [n,xout] = hist(foa_series) 
%    subplot(2,1,2); 
    subplot(4,1,4); 
    bar(xout,n) 
    xlabel('Frequency of Arrival (FOA) (Hz)'), ylabel('Occurences');     
%    title_string=['Histogram of FOA results (Ec/No=',num2str(toa_est(offset+1,2)),'dB)']; 
%    title(title_string); 
  
  
end 
 

F. MATLAB CODE: GEN_SINC.M 

% ********************************************************************* 
% gen_sinc.m; 
% script used to generate canned waveform using sinc-shaped  
% chips. 
% 
% Written by: Joe Crnkovich, NRL 
% Last modified: 17 April 2009 
% ********************************************************************* 
 
clear 
close all 
clc 
  
samples_per_pulse = 12;  %no of quantizations per pulse 
%samples_per_pulse = 50;  %no of quantizations per pulse 
no_repeat=1;             %no of times a given sample is repeated 
  
  
t = linspace(-5,5,10*samples_per_pulse); 
y = sinc(t); 
stem(t,y); 
xlabel('Time (chips)');ylabel('Amplitude');  
title_text = ['Sinc Function (', num2str(samples_per_pulse),' Samples per Chip)'] 
title(title_text) 
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load mls65535a 
  
bit_stream = -1 + 2*mls65535a(1:5000); %first 5,000 chips 
% bit_stream = zeros(1,200); % test vector 
% bit_stream(50) = 1;  
  
%upsample bitstream by inserting zeros 
bit_stream = upsample(bit_stream, samples_per_pulse);   
  
modulation=filter(y,1,bit_stream);  % sinc-shaped modulation 
bit_stream=filter(ones(1,samples_per_pulse),1,bit_stream); %rect. mod. 
  
%modulation samples are repeated based on no_repeat 
modulation = upsample(modulation, no_repeat);   
modulation=filter(ones(1,no_repeat),1,modulation); 
  
bit_stream = upsample(bit_stream, no_repeat); 
bit_stream=filter(ones(1,no_repeat),1,bit_stream); 
  
  
% plot baseband modulation signal 
figure 
subplot(2,1,1) 
plot(10*log10(abs(fft(bit_stream)).^2)) 
%title_text = ['"Squared" Baseband Signal (Samples per pulse=', num2str(samples_per_pulse),')'] 
title_text = ['num-repeat=', num2str(no_repeat), ... 
    '; "Squared" Baseband Signal (Samples per pulse=', num2str(samples_per_pulse),')']; 
title(title_text)  
ylim([0,80]) 
grid on 
%figure 
subplot(2,1,2) 
plot(10*log10(abs(fft(modulation)).^2)) 
%title_text = ['"Shaped" Baseband Signal (Samples per pulse=', num2str(samples_per_pulse),')'] 
title_text = ['num-repeat=', num2str(no_repeat), ... 
    '; "Shaped" Baseband Signal (Samples per pulse=', num2str(samples_per_pulse),')']; 
title(title_text)  
ylim([0,80]) 
grid on 
  
% plot modulated signal @ IF = fs/4 
n=0:length(modulation)-1; 
signal1 = cos(0.25*2*pi*n); 
  
figure 
x_axis = [0:length(modulation)-1]/length(modulation); 
  
subplot(2,1,1) 
plot(x_axis, 10*log10(abs(fft(signal1.*bit_stream)).^2)) 
%title_text = ['num-repeat=', num2str(no_repeat),'; "Squared" Signal (Samples per pulse=', 
num2str(samples_per_pulse),')'] 
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title_text = ['Rectangular-shaped Modulation (', num2str(samples_per_pulse),' Samples per 
pulse)'] 
title(title_text)  
xlabel('Frequency Normalized to f_s (Hz)'); 
ylabel('Signal Power (dB)'); 
xlim([0,0.5]) %fs/2 
ylim([0,80]) 
grid on 
  
subplot(2,1,2) 
plot(x_axis, 10*log10(abs(fft(signal1.*modulation)).^2)) 
%title_text = ['num-repeat=', num2str(no_repeat),'; "Shaped" Baseband Signal (Samples per 
pulse=', num2str(samples_per_pulse),')'] 
title_text = ['Sinc-shaped Modulation (', num2str(samples_per_pulse),' Samples per pulse)'] 
title(title_text)  
xlabel('Frequency Normalized to f_s (Hz)'); 
ylabel('Signal Power (dB)'); 
xlim([0,0.5]) %fs/2 
ylim([0,80]) 
grid on 
  
% modulated signal 
modulation = signal1.*modulation; 
  
  
% save sinc_unb_mls65535a modulation samples_per_pulse 
 

G. MATLAB CODE: MLS_GEN.M 

% ********************************************************************* 
% mls_gen.m; 
% script used to generate m-sequence. 
% 
% Written by: Joe Crnkovich, NRL 
% Last modified: 15 May 2009 
% ********************************************************************* 
 
clear 
close all 
clc 
  
  
reg_len = 16; 
taps = [1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1]; 
out_len =70000;  %length of mls code returned (max val 2^reg_len - 1) 
seed = [1 0 0]; 
% ref Dixin table 3.7 for mls codes and respecdtive taps (not all shown) 
% 2: [2,1] 
% 3: [3,1] 
% 4: [4,1] 
% 5: [5,2] 
% 6: [6,1] 
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% 7: [7,1], [7,3] (127) 
% 8: [8,4,3,2], [8,6,5,3] (255) 
% 9: [9,4], [9,6,4,3] (511) 
%10: [10,3], [10,8,3,2] (1023) 
%11: [11,1], [11,8,5,2] (2047) 
%12: [12,6,4,1], [12,9,3,2] (4095) 
%13: [13,4,3,1], [13,10,9,7,5,4] (8191) 
%14: [14,12,2,1], [14,13,4,2] (16383) 
%15: [15,13,10,9] (32767) 
%16: [16,12,3,1] (65535) 
  
reg = [seed, zeros(1, reg_len-length(seed))]; 
%reg(1:length(seed)) = seed+ seed; 
  
%fprintf('register: [%1d%1d%1d%1d]\n',reg(1), reg(2), reg(3), reg(4)) 
fprintf('    register: ['); 
fprintf('%1d',reg); 
fprintf(']\n'); 
  
for i=1:out_len 
    %feedback = xor(reg(1),reg(4)); 
    %feedback = xor(and(reg,taps)); 
    feedback = mod(sum(and(reg,taps)),2); 
    reg = [feedback, reg(1:reg_len-1)]; 
    fprintf('%3d register: [',i); 
    fprintf('%1d',reg); 
    fprintf(']\n'); 
    mls_code(i) = reg(reg_len); 
end 
  
mls_code 
  
A=1; 
signal_sent = -A + 2*A * mls_code; 
plot(xcorr(signal_sent,'none')) 
  
% use thge following to verify autocorrelation 
mls_len=2^reg_len-1 
for i = 1:200 
    corrval(i) = signal_sent(1:mls_len)*signal_sent(1+i:mls_len+i)'; 
end 
figure; plot(corrval) 

 

H. MATLAB CODE: MAIN_SIMULATION.M 

  
% ********************************************************************* 
% main_simulation.m; 
% main_simulation calls functions to generate signals and compute detection and  
% TOA & FOA statistics for various levels of noise. 
% 
% Written by: Joe Crnkovich, NRL 
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% Last modified: 15 May 2009 
% 
% ********************************************************************* 
  
%% reset working environment 
clear 
close all 
%clc 
  
%% set operating variables 
  
if exist('config_file.mat','file')  % check if 'config_file.mat' exists 
    % use paramters defined in config_file 
    source_config_text = ['"config_file.mat" used as parameter source'] 
    load config_file 
else  % use default signal parameters if 'config_file.m' does not exist 
    source_config_text = ['DEFAULT values used as parameter source'] 
    wf_type=3; % 1:const env, const psd; 2:gap in time; 3:gap in psd; 4:shortened pulse 
    filter_outside_bnn=1; %limit signal, if generated (i.s., WF1-4), to within Bnn 
     
    f0 = 20000;  %carrier frequency 
    fs = 100000; %sample frequency 
    Rsym=4000; %2000 %10000;   %symbol rate 
     
    pad_length = 1024; %no. of zeros to add onto each side of S1 
    N = 32768-2*pad_length;  %length(samples) of burst; CAF alg. prefers N=2^k 
     
    %--- SNR (Ec_No) of 2.6 (4.15 dB) should give BER .01 for BPSK 
    Es_No_dB_min = 0; 
    Es_No_dB_step = 5; 
    Es_No_dB_max = +35; 
     
    no_noise_iterations = 1000; 
    %no_noise_iterations = 100 %200%0; %500 %40 %250; 
     
    %monitor and debug setting 
    verbose=0; %set to zero to stop sending debug info to MATLAB window 
    verbose_wf_gen=1; %enable plots and sending debug info to MATLAB window 
    verbose_plot_wf=1; %enable plots of waveform and calculate rms BW 
    enable_BER_test=0; %set to 1 to enable running of BER test function 
    process_detections=1; %process detections to get estimates of TOA and FOA 
    limit_CAF_to_search_freq_only=0;  % remove ambiguity in CAF (find FDOA only) %Warning: 
assumes tau =0 
    limit_CAF_to_search_time_only=0;  % remove ambiguity in CAF (find TDOA only) 
     
    %geometry 
    Pc1 = [0 0 500]; %use only z position (i.e., leave x&y=0) 
    Vc1 = [0 0 0]; 
    Pc2 = Pc1; 
    Vc2 = [0 0 0]; 
    Pe = [0 0 0]; 
    Ve = [0 0 0]; 
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    tau = 1.25e-7; % time offset step used to dither sampling relative to signal 
    c = 2.997925e8; % Speed of light in m/s 
     
    % dither position to remove clock sync between runs 
    pos_offset_min = 0; % in meters 
    pos_offset_step = c*tau; % in meters 
    pos_offset_max = 0; %9*c*tau; % in meters  %run ten iterations 
end 
  
%no_noise_iterations = 1 
wf_type 
  
save init_parameters_dump 
  
%% initialize variables 
  
distr_plot_no = figure(1); %used to plot all the distribution on same figure  
  
Es_No_min = 10^(Es_No_dB_min/10); %convert from dB 
Es_No_step = 10^(Es_No_dB_step/10); 
Es_No_max = 10^(Es_No_dB_max/10);  
Ts = 1/fs; 
Tsym = 1/Rsym; 
total_bit_errors = 0; total_bits = 0; 
no_chips = (Rsym/fs)*N;  %no of PN chips in burst 
no_chips_dB = 10*log10(no_chips); 
  
threshold = N/2; %This can be refined, but it allows a quick check 
  
% define CAF search window 
Max_f = 1/(N*Ts); % for CAF; 1st null at 1/T = fs/N 
Max_t = 2/Rsym;  % for CAF; for a m-sequence, "trainagular peak between +/- 1/Rsym  
if limit_CAF_to_search_freq_only  
    Max_t=0; end  %Warning: assumes tau =0 
if limit_CAF_to_search_time_only  
    Max_f=0; end 
     
%clear counters 
proc_index=0; %to be incremented for each detection iteration 
Es_No_step_no=0; 
prev_Es_No_dB = NaN; 
  
%for Es_No=Es_No_min:Es_No_step:Es_No_max 
for Es_No_dB=Es_No_dB_min:Es_No_dB_step:Es_No_dB_max 
    Es_No_dB; % display SNR (in dB) to MATLAB window 
    Es_No = 10^(Es_No_dB/10); %convert from dB 
    Es_No_step_no=Es_No_step_no+1; 
     
    Ec_No = Es_No/no_chips; 
    Ec_No_dB = 10*log10(Ec_No); 
     
    threshold = 1;  % TBD 
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    %clear counters 
    pos_offset_index=0;  % keep track of the number of position offsets 
    detects_vector_cum(Es_No_step_no)=0; detects_cum(Es_No_step_no)=0; 
     
    for pos_offset=pos_offset_min:pos_offset_step:pos_offset_max 
         
        pos_offset_index=pos_offset_index+1; 
        Pc2(3) = Pc1(3) + pos_offset; 
        % Pc1(3) = Pc2(3) + pos_offset;  %used to test 3-23-09v2 toa offset 
         
        % First, generate the "received" & "reference" waveforms 
        if (wf_type < 10) %  generate_waveform(); 
            [S1,Sref] = generate_waveform(Pc1,Vc1,Pc2,Vc2,Pe,Ve,f0,fs,Rsym,N, ... 
                wf_type, pad_length, filter_outside_bnn, verbose_wf_gen);  
        end 
  
        if (wf_type > 10)  % use previously generated waveform - does not use model 
            % generate a waveform to get Es 
            wf_type_tmp=1; verbose_wf_gen_tmp=0; 
            [S1,Sref] = generate_waveform(Pc1,Vc1,Pc2,Vc2,Pe,Ve,f0,fs,Rsym,N, ... 
                wf_type_tmp, pad_length, verbose_wf_gen_tmp); %  generate_waveform(); 
            Es = sum(S1.^2); 
  
            %S1 = get_canned_waveform(Es, N, wf_type, pad_length, verbose_wf_gen); 
            S1 = get_canned_waveform(Es, N, wf_type, pad_length, Rsym, f0, fs, filter_outside_bnn, 
verbose_wf_gen) 
            Sref = S1; 
             
            f0 = fs/4;  % the canned waveforms were generated with fc=fs/4 
        end 
         
        if (verbose_plot_wf && ~proc_index) 
            display_waveform_calc_rmsBW(Sref, f0, fs, wf_type, filter_outside_bnn); 
            display_waveform_calc_rmsT(Sref, f0, fs, wf_type, filter_outside_bnn); 
        end 
             
        SAref = hilbert(Sref); % Calculates the ANALYTIC SIGNAL of Sref 
        clear Sref; %free up memory 
        for noise_iteration=1:no_noise_iterations 
            proc_index=proc_index+1 
             
            %check if Es/No is new value (and set flag if it is) 
            flag_is_new_Es_No = ~(prev_Es_No_dB == Es_No_dB);   
            prev_Es_No_dB = Es_No_dB;     
             
            %add noise and take hilbert transform to get I&Q channels 
            N_t = gen_noise_vector(length(S1),Ec_No, Tsym, fs); 
            S1wnoise=S1+N_t'; 
            SA1 = hilbert(S1wnoise); % Calculate the ANALYTIC SIGNAL 
            clear S1wnoise;  % free up memory 
  
            if enable_BER_test %perform test on gen_sig output with noise 
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                %To use, set: 
                % - verbose=1; %set to zero to stop sending debug info to MATLAB window 
                % - verbose_wf_gen=1; %enable plots and sending debug info to MATLAB window 
                % - enable_BER_test=1; %set to 1 to enable running of BER test function 
                % - process_detections=0; %process detections to get estimates of TOA and FOA 
                % - wf_type=1; % 1:const env, const psd; 2:gap in time; 3:gap in psd; 4:shortened 
pulse 
                % - Es_No_dB_min & Es_No_dB_max = 4.15 (dB) + no_chips_dB (to give BER .01 for 
BPSK) 
                % - no_noise_iterations = 1 
                % - pad_length = 0; %no. of zeros to add onto each side of S1 
                % - Rsym=2000 or 5000;   %symbol rate 
                %--- SNR of 2.6 (4.15 dB) should give BER .01 for BPSK 
                [BER, no_of_errors, no_of_bits]= perf_demod_test(SA1, ... 
                    SAref, fs, f0, Rsym, Ec_No_dB, verbose); 
                if verbose  
                    prinf('BER from test demod is %f \n',BER);  
                end; 
                BER_array(proc_index)=BER;  
                total_bit_errors = total_bit_errors + no_of_errors; 
                total_bits = total_bits + no_of_bits; 
            end 
       
            [rx_out,lags] = xcorr(SA1, SAref, 500); 
  
            if (flag_is_new_Es_No)  % verbose || (flag_is_new_Es_No) 
                figure; subplot(1,2,1) 
                plot(lags,abs(rx_out));  %'abs' gives envelope, i.e., sqrt(I^2+Q^2) 
                %title(['Crosscorrelation Output - Es/No=',num2str(Es_No_dB),'dB']); 
                title(['R_{rs} (Es/No=',num2str(Es_No_dB),'dB)']); 
                xlabel('# of Lags'); ylabel('Crosscorrelation'); 
                grid on; 
                 
                subplot(1,2,2) %figure;  
                plot(lags,10*log10(abs(rx_out)));  %'abs' gives envelope, i.e., sqrt(I^2+Q^2) 
                %title(['Crosscorrelation Output - Es/No=',num2str(Es_No_dB),'dB']); 
                title(['R_{rs} (Es/No=',num2str(Es_No_dB),'dB)']); 
                xlabel('# of Lags'); ylabel('Crosscorrelation (dB)');             
                ylim([20, 50]); 
                grid on; 
            end             
  
            % generate decsion variable at T0 for s+n, s, and noise-only 
            xcorr_val(proc_index) = xcorr(SA1, SAref, 0); 
            xcorr_val_s(proc_index) = xcorr(hilbert(S1), SAref, 0); 
            xcorr_val_n(proc_index) = xcorr(hilbert(N_t),SAref, 0); 
             
            detection = (max(abs(rx_out)) > threshold); 
            if detection && process_detections  % if detection occurs (and processing for TOA/FOA 
desired 
                detects_cum(Es_No_step_no)=detects_cum(Es_No_step_no)+1; 
                 
                fprintf('...starting CAF processing...\n'); 
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                display_CAF_peak = flag_is_new_Es_No; %display CAF plot for 1st iteration 
                 
                % Returns TDOA in seconds, FDOA in Hz                 
                [TDOA, FDOA] = CAFv2(SA1, SAref, Max_f, fs, Max_t,display_CAF_peak); 
  
                if (flag_is_new_Es_No && verbose_plot_wf)  %generate FDOA view of CAF 
                    [TDOA, FDOA] = CAFv2(SA1, SAref, Max_f, fs, Max_t,display_CAF_peak); 
                    az = 90; el = 0; view(az, el); 
                end 
                 
                TDOA=TDOA-tau;  %compensate for position offset 
                 
                if(flag_is_new_Es_No)  
                    title(['Cross Ambiguity Function - Es/No=', num2str(Es_No_dB),'dB']);  
                end 
  
                toa_est(proc_index,1)=TDOA; 
                toa_est(proc_index,2)=Es_No_dB; 
toa_est(proc_index,3)=pos_offset;toa_est(proc_index,4)=noise_iteration; 
                 
                foa_est(proc_index,1)=FDOA; 
                foa_est(proc_index,2)=Es_No_dB; 
foa_est(proc_index,3)=pos_offset;foa_est(proc_index,4)=noise_iteration; 
            end 
  
        end 
        %no_chips = (Rsym/fs)*N 
        %fprintf('Es/No (dB):\n'); 
        %true_snr(snr_step_no) = 10*log10(no_chips*SNR) 
         
        if (verbose_plot_wf) 
            figure; %(1); 
            subplot(2,2,1); plot(real(SA1)); 
            %title(['I-Channel Amplitude vs. Samples - Es/No=', num2str(Es_No_dB),'dB']); 
            title('I-Channel Amplitude vs. Samples'); 
            xlabel('Sample number'); ylabel('Magnitude'); 
             
            subplot(2,2,3); plot(abs(SA1)); 
            %title(['Signal Amplitude vs. Samples - Es/No=', num2str(Es_No_dB),'dB']); 
            title('Signal Amplitude vs. Samples'); 
            xlabel('Sample number'); ylabel('Magnitude'); 
             
             
            no_samples_displayed = 100; % zoom in and display fewer samples 
            start_indx = find( (abs(SA1)>0.5), 1, 'first') + 20*fs/Rsym; %4 chips in 
            stop_indx = start_indx + no_samples_displayed - 1; 
             
            %subplot(2,2,2); plot([start_indx:stop_indx],real(SA1(start_indx:stop_indx) )); 
            subplot(2,2,2); plot(real(SA1)); 
            xlim([start_indx,stop_indx]); 
            title('I-Channel Amplitude vs. Samples'); 
            xlabel('Sample number'); ylabel('Magnitude'); 
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            subplot(2,2,4); plot(abs(SA1)); 
            xlim([start_indx,stop_indx]); 
            title('Signal Amplitude vs. Samples'); 
            xlabel('Sample number'); ylabel('Magnitude'); 
        end 
     
    end 
%     no_chips_dB=10*log10(no_chips) 
%     fprintf('Es/No (dB):\n'); 
%     disp(true_snr); 
     
    if (verbose_plot_wf)  %fills in subplot for each of 8 SNR steps 
        figure(distr_plot_no); %(6); 
        subplot(4,2,Es_No_step_no); 
        %for coherent processing use... (real) 
        histfit(real(xcorr_val_n(proc_index-no_noise_iterations+1:proc_index))); 
        %otherwise for envelope (magnitude) use... (abs) 
        histfit(abs(xcorr_val_n(proc_index-no_noise_iterations+1:proc_index))); 
        title(['Correlation Value Distribution - Es/No=', num2str(Es_No_dB),'dB']); 
  
        save interim_all_variables_dump  %save for each iteration of Es/No 
    end 
  
end 
  
  
if enable_BER_test %print out BER results 
    fprintf('Cumulative BER is %f (%d of %d)\n', mean(BER_array), ... 
        total_bit_errors, total_bits); 
end 
  
% save variables to file so they're not lost 
save all_variables_dump 
save tdoa-fdoa_est_lastrun no_noise_iterations Es_No_step_no toa_est foa_est 

I. MATLAB CODE: GENERATE_WAVEFORM.M 

 function [S1,Sref] = generate_waveform(Pc1,Vc1,Pc2,Vc2,Pe,Ve,f0,fs,Rsym,N, ... 
    wf_type, pad_length, filter_outside_bnn, verbose) 
  
% ********************************************************************* 
% GENERATE_WAVEFORM.m; 
% This function generates waveforms 1-4, using gen_sig (a derivative of  
% sig_gen developed by Johnson, NPS Thesis Sep '01)which projects a  
% BPSK modulated signal onto two collectors as defined by a scenario and 
% can accurately introduce doppler compression/expansion onto the signal. 
% Waveform #1 (WF1) is the waveform produced by gen_sig (sinc^2 PSD,  
% constant amplitude waveform). 
% Waveform #2 excises the middle 3/4 of WF1 and increases amplitude so WF2 
% has the same energy as WF1. 
% Waveform #4 excises the outer 3/4 of WF1 and increases amplitude so WF2 
% has the same energy as WF1. 
% Waveform #3 has same duration as WF1 but is the sum of two BPSK signals 
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% offset from fc but having same Bnn as WF1. 
% 
% Written by: Joe Crnkovich, NRL 
% Last modified: 15 May 2009 
% 
% ********************************************************************* 
  
  
% if verbose  %open figure for plotting 
     wfX_fig = figure; 
%     wf3_fig_freq=figure; 
% end % end verbose 
  
if wf_type==3 % 1:const env, const psd; 2:gap in time; 3:gap in psd; 4:shortrened pulse 
     
    %generate baseline once to find Es 
    [S1,Sref] = gen_sig(Pc1,Vc1,Pc2,Vc2,Pe,Ve,f0,fs,Rsym,N);   
    if verbose 
        wfX_fig_freq=figure; 
        wf3_fig_freq=figure; 
        figure(wfX_fig); subplot(4,1,1); plot(S1);  
        title('S1 Amplitude v. Sample Number'); 
        figure(wf3_fig_freq); subplot(3,1,1); plot(abs(fft(S1)));  
        title('S1 FFT'); 
        xlim([0,N/2]); 
    end 
    E_s_tmp = sum(S1.^2); % calculate energy in baseline signal 
     
    %generate lower frequency component 
    [S1,Sref] = gen_sig(Pc1,Vc1,Pc2,Vc2,Pe,Ve,f0-Rsym/2,fs,Rsym/2,N); 
    if verbose 
        figure(wfX_fig); subplot(4,1,2); plot(S1);  
        title('Lower Freq Component'); 
        figure(wf3_fig_freq); subplot(3,1,2); plot(abs(fft(S1)));  
        title('FFT of Lower Freq Component'); 
        xlim([0,N/2]); 
    end 
    S1_tmp=S1;  Sref_tmp=Sref;  % make copy of data 
     
    %generate upper frequency component and add to lower  
    [S1,Sref] = gen_sig(Pc1,Vc1,Pc2,Vc2,Pe,Ve,f0+Rsym/2,fs,Rsym/2,N); 
    S1=S1+S1_tmp; Sref=Sref+Sref_tmp; 
    if verbose 
        figure(wfX_fig); subplot(4,1,3); plot(S1);  
        title('New Composite S1'); 
    end 
     
    % normalize amplitude so same Es 
    E_s_reduction = sum(S1.^2)/E_s_tmp 
    S1=S1/sqrt(E_s_reduction);  % normalize ampl. so Es same as baseline 
    if verbose 
        figure(wfX_fig); subplot(4,1,4); plot(S1); title('New Normalized S1'); 
        figure(wf3_fig_freq); subplot(3,1,3); plot(abs(fft(S1))); title('New Normalized S1'); 
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        xlim([0,N/2]); 
    end 
     
else % WF type is constant PSD (but may have gaps) such as WF1, WF2, WF4, ... 
     
    [S1,Sref] = gen_sig(Pc1,Vc1,Pc2,Vc2,Pe,Ve,f0,fs,Rsym,N);  % WF1 (baseline) 
     
    if wf_type==2 % (2:gap in time) move power from middle to ends 
         
        E_s_tmp = sum(S1.^2) % calculate energy in baseline signal 
        if verbose 
            wfX_fig = figure; 
            figure(wfX_fig); subplot(3,1,1); plot(S1); 
            title('S1 Amplitude v. Sample Number'); 
        end 
         
        % next zeroize signal for middle 3/4 of baseline waveform 
        S1(length(S1)/2-3*length(S1)/8:length(S1)/2+3*length(S1)/8)=0; 
        if verbose 
            subplot(3,1,2); plot(S1); title('S1 After Excising Middle'); 
        end 
         
        % normalize amplitude so same Es 
        E_s_reduction = sum(S1.^2)/E_s_tmp 
        S1=S1/sqrt(E_s_reduction);   
        if verbose 
            subplot(3,1,3); plot(S1); title('New Normalized S1'); 
        end 
        %new_E_s_tmp = sum(S1.^2); 
         
        %...and do the same for the reference signal 
        E_s_tmp = sum(Sref.^2) % calculate energy in baseline signal 
        Sref(length(Sref)/2-3*length(Sref)/8:length(Sref)/2+3*length(Sref)/8)=0; 
        E_s_reduction = sum(Sref.^2)/E_s_tmp 
        Sref=Sref/sqrt(E_s_reduction);  % normalize amplitude so same Es 
    end 
     
    if wf_type==4 % (4:shortened pulse) move power from ends to middle 
         
        E_s_tmp = sum(S1.^2) % calculate energy in baseline signal 
        if verbose 
            wfX_fig_freq=figure; 
            figure(wfX_fig); subplot(3,1,1); plot(S1); title('S1 Amplitude v. Sample Number'); 
        end  %end verbose 
        S1(1:length(S1)/2-length(S1)/8)=0;  % remove signal from front 
        S1(length(S1)/2+length(S1)/8:length(S1))=0;  %remove signal from back 
        if verbose 
            subplot(3,1,2); plot(S1); title('S1 After Excising Ends'); 
        end  %end verbose 
         
        % normalize amplitude so same Es 
        E_s_reduction = sum(S1.^2)/E_s_tmp 
        S1=S1/sqrt(E_s_reduction);  % normalize amplitude so same Es 
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        if verbose 
            subplot(3,1,3); plot(S1); title('New Normalized S1'); 
        end  %end verbose 
         
        %...and do the same for the reference signal 
        %new_E_s_tmp = sum(S1.^2) 
        E_s_tmp = sum(Sref.^2) % calculate energy in baseline signal 
        if verbose 
            figure(wfX_fig); subplot(3,1,1); plot(Sref); 
            title('Sref Amplitude v. Sample Number'); 
        end  %end verbose 
        Sref(1:length(Sref)/2-length(Sref)/8)=0;  % remove signal from front 
        Sref(length(Sref)/2+length(Sref)/8:length(Sref))=0;  %remove signal from back 
        if verbose 
            subplot(3,1,2); plot(Sref); title('Sref After Excising Middle'); 
        end  %end verbose 
        E_s_reduction = sum(Sref.^2)/E_s_tmp 
        Sref=Sref/sqrt(E_s_reduction);  % normalize amplitude so same Es 
        if verbose 
            subplot(3,1,3); plot(Sref); title('New Normalized Sref'); 
        end  %end verbose 
         
    end  %end wf_type=4 
     
end  
  
if filter_outside_bnn 
    % note: this was meant to be used only for static signal scenario 
    S1 = filt_bnn_fft(S1, Rsym, f0, fs); 
    Sref = filt_bnn_fft(Sref, Rsym, f0, fs); 
end 
  
if pad_length %pad beginning and end of waveform with zeros 
    S1 = [zeros(1,pad_length), S1, zeros(1,pad_length)]; 
    Sref = [zeros(1,pad_length), Sref, zeros(1,pad_length)]; 
end 

J. MATLAB CODE: GEN_SIG.M 

 function [S1,S2] = gen_sig(Pc1,Vc1,Pc2,Vc2,Pe,Ve,f0,fs,Rsym,N) 
% ********************************************************************* 
% [S1] = gen_sig; 
% GEN_SIG generates BPSK signal pairs based upon user-defined param- 
% eters and Cartesian emitter-collector geometries usign the signal . The following 
% input arguments are used: 
%   Pc1 - initial position of collector1 in meters [x y z] (e.g., [0 0 7500]) 
%   Vc1 - velocity of collector1 in m/s [x y z]  
%   Pc2 - initial position of collector2 in meters [x y z] (e.g., [0 0 7500]) 
%   Vc2 - velocity of collector2 in m/s [x y z]  
%   Pe - initial position of emitter in meters [x y z] (e.g., [0 0 7500]) 
%   Ve - velocity of emitter in m/s [x y z]  
%   f0 - carrier frequency 
%   fs - sampling rate 
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%   Rsym - symbol rate 
%   N - number of samples 
% 
% The function returns the vector S1 which is the Real representation  
% of the received signal. 
% 
% Extracted from SIG_GEN.m, which was by: LCDR Joe J. Johnson, USN 
% 
% Modified by J. Crnkovich  
% major changes from SIG_GEN.m:  
%    1- Does not prompt for input arguments (they must now be passed in) 
%    2- Es_No not used because this is processed externally 
%    3- Conversion to analytic signal performed externally 
%    4- bit sequence is read in from file (currently an m-sequence) 
%    5- does not perform Hilbert transform to convert to analytic signal 
% 
% Last modified: 15 May 2009 
% 
% ********************************************************************* 
  
Ts = 1/fs; 
Tsym = 1/Rsym; 
  
Pc1 = [Pc1; zeros(N-1, 3)]; % Initializing all the matrices makes 
Pe1 = zeros(N, 3); % later computations much faster. 
Pc2 = [Pc2; zeros(N-1, 3)]; 
Pe2 = zeros(N, 3); 
t1 = zeros(1, N); 
t2 = zeros(1, N); 
S1 = zeros(1, N); 
S2 = zeros(1, N); 
  
A = 1; % Amplitude of Signal 
c = 2.997925e8; % Speed of light in m/s 
Ps = (A^2)/2; % Power of Signal 
  
% % sigma1 = sqrt(Ps*Tsym/Es_No1) % Calculate Noise Amplification fac 
% % sigma2= sqrt(Ps*Tsym/Es_No2) % tors using Es/No = Ps*Tsym/sigma^2 
% % Corrected formula below - JGC 2/12/09 
% % From Johnson paper, sigma^2 = (Ps*Tsym*B/Es_No):  However B is not equal 
% % to 1 (as stated in the paper), the digital frequency bandwidth, but is 
% % rather the true bandwidth, fs/2 (or 1/2Ts). 
% % sigma1 = sqrt(Ps*Tsym/Es_No1) % Calculate Noise Amplification fac 
% % sigma2= sqrt(Ps*Tsym/Es_No2) % tors using Es/No = Ps*Tsym/sigma^2 
%  sigma1 = sqrt(0.5*Ps*(Tsym/Ts)/Es_No1) % Calculate Noise Amplification fac 
%  sigma2 = sqrt(0.5*Ps*(Tsym/Ts)/Es_No2) % tors using Es/No = Ps*Tsym*B/sigma^2 
%  
% Noise1 = sigma1.*randn(N, 1); % Random Noise values for Signal 1 
% Noise2 = sigma2.*randn(N, 1); % Random Noise values for Signal 2 
  
  
% Builds the position vectors for the two collectors 
for index = 2 : N 
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    Pc1(index,:) = Pc1(index - 1,:) + Ts*Vc1; 
    Pc2(index,:) = Pc2(index - 1,:) + Ts*Vc2; 
end 
  
% While loop determines first elements of Pe1 and t1. t1(1) is the 
% time AT THE EMITTER that produces the 1st sample received at 
% collector 1! Pe1(1,:) is the position of the emitter when it 
% produces the 1st sample received by collector 1. 
  
temp = inf; % Ensures while loop executes at least once 
t1(1) = 0; 
tempPe = Pe(1,:); 
while abs(temp - t1(1)) > 1/f0 
    temp = t1(1); 
    t1(1) = -norm(Pc1(1,:) - tempPe) / c; 
    tempPe = Pe(1,:) + t1(1)*Ve; 
end 
Pe1(1,:) = tempPe; 
  
% While loop determines first elements of Pe2 and t2. t2(1) is the 
% time AT THE EMITTER that produces the 1st sample received at 
% collector 2! Pe2(1,:) is the position of the emitter when it 
% produces the 1st sample received by collector 2. 
  
temp = inf; % Ensures while loop executes at least once 
t2(1) = 0; 
tempPe = Pe(1,:); 
while abs(temp - t2(1)) > 1/f0 
    temp = t2(1); 
    t2(1) = -norm(Pc2(1,:) - tempPe) / c; 
    tempPe = Pe(1,:) + t2(1)*Ve; 
end 
Pe2(1,:) = tempPe; 
  
% Platform positions at middle of snapshot 
Pcc1=(Pc1(N/2,:)); 
Pcc2=(Pc2(N/2,:)); 
% Determines the earliest time at the emitter for this pair of signals. 
StartPoint = min(t1(1), t2(1)); 
  
  
% Next 2 lines determine offsets needed for signals 1 & 2 to enter the 
% phase vector (P). This simply ensures proper line up so that bit 
% changes occur at the right times. 
SymbolIndex1 = 1 + floor(abs(t1(1) - t2(1))/Tsym) * (t1(1)>t2(1)); 
SymbolIndex2 = 1 + floor(abs(t1(1) - t2(1))/Tsym) * (t2(1)>t1(1)); 
  
  
for index = 2 : N % Builds the Pe1 and t1 vectors 
    temp = inf; 
    t1(index) = 0; 
     
    % 1st guess is that emitter will advance exactly Ts seconds. 
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    tempPe = Pe1(1,:) + (t1(index -1) + Ts)*Ve; 
     
    % While loop iteratively determines actual time & position for 
    % emitter, based on instantaneous geometry. 
  
    while abs(temp - t1(index)) > 1/f0 
        temp = t1(index); 
        t1(index) = (index - 1)*Ts - norm(Pc1(index,:) - tempPe) / c; 
         
        % Due to negative times, must multiply Ve by ELAPSED time! 
        tempPe = Pe1(1,:) + abs(t1(1)-t1(index))*Ve; 
    end 
    Pe1(index,:) = tempPe; 
end 
  
  
for index = 2 : N %Builds the Pe2 and t2 vectors 
    temp = inf; 
    t2(index) = 0; 
     
    % 1st guess is that emitter will advance exactly Ts seconds. 
    tempPe = Pe2(1,:) + (t2(index -1) + Ts)*Ve; 
     
    % While loop iteratively determines actual time & position for 
    % emitter, based on instantaneous geometry. 
    while abs(temp - t2(index)) > 1/f0 
        temp = t2(index); 
        t2(index) = (index - 1)*Ts - norm(Pc2(index,:) - tempPe) / c; 
        % Due to negative times, must multiply Ve by ELAPSED time! 
        tempPe = Pe2(1,:) + abs(t2(1)-t2(index))*Ve; 
    end 
    Pe2(index,:) = tempPe; 
end 
  
  
% Could change this seed to whatever you want; or could have user 
% define it as an input. This just ensures, for simulation purposes 
% that every time the program is run, the BPSK signals created will 
% have the same random set of data bits. 
rand('seed',5); 
  
% % Create enough random #'s to figure phase shift (data bits) 
% r = rand(N,1); 
% P = (r > 0.5)*0 + (r <= 0.5)*1; % Since BPSK, random # determines if phase is 0 or pi 
  
%%  Import 65535 length m-sequence to use instead of random numbers 
load mls65535a 
P = zeros(N,1); 
tmp=min(N,65535); 
P(1:tmp)=mls65535a(1:tmp); 
  
% Building Xmitted Signal #1 vector... These represent the pieces of 
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% the signal that were transmitted by the emitter to arrive at 
% Collector 1 at its sample intervals. 
  
S1(1) = A*cos(2*pi*f0*t1(1) + P(SymbolIndex1)*pi) ;%+ Noise1(1); 
  
% The if statement inside the loop changes the data bit if the time 
% has advanced into the next symbol period. 
for index = 2 : N 
    if t1(index) - StartPoint >= (SymbolIndex1) * Tsym 
        SymbolIndex1 = SymbolIndex1 + 1; 
    end 
    S1(index) = A*cos(2*pi*f0*t1(index) + P(SymbolIndex1)*pi) ;%+ ... 
%        Noise1(index); 
end 
  
% Sa1 = hilbert(S1); % Calculates the ANALYTIC SIGNAL of S1. To 
                % compute the COMPLEX ENVELOPE, multiply Sa1 
                % by .*exp(-j*2*pi*f0.*t1); 
  
                 
% Building Xmitted Signal #2 vector... These represent the pieces of 
% the signal that were transmitted by the emitter to arrive at 
% Collector 2 at its sample intervals. 
  
S2(1) = A*cos(2*pi*f0*t2(1) + P(SymbolIndex2)*pi) ;%+ Noise2(1); 
  
% The if statement inside the loop changes the data bit if the time 
% has advanced into the next symbol period. 
for index = 2 : N 
    if t2(index) - StartPoint >= (SymbolIndex2) * Tsym 
        SymbolIndex2 = SymbolIndex2 + 1; 
    end 
    S2(index) = A*cos(2*pi*f0*t2(index) + P(SymbolIndex2)*pi) ;%+ ... 
%        Noise2(index); 
end 

K. MATLAB CODE: FILT_BNN_FFT.M 

 function S = filt_bnn_fft(S, Rsym, f0, fs) 
% ********************************************************************* 
% filt_bnn_fft.m; 
% This function filters the out all signal energy outside the 
% null-null-bandwidth (fc +/- Rsym) and returns the real signal S.   
% The output signal is rescaled so that it has the same energy as the  
% input signal. 
% 
% Note, a constant envelope signal passing through this "brick-wall"  
% filter will no longert be constant envelope. 
% 
% Written by: Joe Crnkovich, NRL 
% Last modified: 15 May 2009 
% 
% ********************************************************************* 
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Es_in = sum(S.^2);  % Energy in original signal 
  
SA=hilbert(S);  % calculate the analytic signal (make "positive spectrum only") 
  
SA_fft = fft(SA); % convert to frequency domain 
  
% filter out any signal outside Bnn (i.e., fc+/-Rsy 
SA_fft(1:round((f0-Rsym)*length(S)/fs)) = 0; 
SA_fft(round((f0+Rsym)*length(S)/fs:length(S))) = 0; 
  
SA = ifft(SA_fft);  % convert back to time domain 
  
S = real(SA); % make the signal real again 
  
Es_filt = sum(S.^2);  % Energy in filtered signal 
  
S = S*sqrt(Es_in/Es_filt);  % scale signal so it has same energy as input 
  
% figure; plot(abs(fft(S))) 
% figure; plot(S) 

L. MATLAB CODE: GET_CANNED_WAVEFORM.M 

 function S1 = get_canned_waveform(Es, N, wf_type, pad_length, Rsym, f0, fs, 
filter_outside_bnn, verbose_wf_gen) 
% ********************************************************************* 
% get_canned_waveform.m; 
% get_canned_waveform retrieves previous saved waveforms as determined  
% by wf_type.  The waveform is truncated to N samples plus padded at 
% the beginning and end wit zeros each of length 'pad_length'.  It is  
% scaled to so total energy is Es. 
% 
% Written by: Joe Crnkovich, NRL 
% Last modified: 4 May 2009 
% 
% ********************************************************************* 
if (wf_type==11) % wideband shaped pulses (4 Samples/pulse) 
    load sinc_wb_mls65535a 
end 
  
if (wf_type==12) % mediumband shaped pulses (8 Samples/pulse) 
    load sinc_mb_mls65535a 
end 
  
if (wf_type==13) % narrowband shaped pulses (16 Samples/pulse) 
    load sinc_nb_mls65535a 
end 
  
if wf_type==14 % very-narrow-band shaped pulses (32 Samples/pulse) 
    load sinc_vnb_mls65535a 
end 



 139

  
if wf_type==15 % ultra-narrow-band shaped pulses (64 Samples/pulse) 
    load sinc_unb_mls65535a 
end 
  
if wf_type==16 % extremely-narrow-band shaped pulses (128 Samples/pulse) 
    load sinc_xnb_mls65535a 
end 
  
if wf_type==17 % 12 Samples/pulse (~Bnn of 4kcps BPSK @fs=100000 
    load sinc_12Spc_mls65535a 
end 
  
  
S1 = modulation(1:N); 
  
Es_new = sum(S1.^2); 
  
% normalize Es 
S1 = S1*sqrt(Es/Es_new); 
  
if filter_outside_bnn 
    % note: this was meant to be used only for static signal scenario 
    S1 = filt_bnn_fft(S1, Rsym, f0, fs); 
end 
  
if pad_length %pad beginning and end of waveform with zeros 
    S1 = [zeros(1,pad_length), S1, zeros(1,pad_length)]; 
end 
  
%             figure; plot(abs(fft(S1))) 
%             figure; plot(10*log10(abs(fft(S1)).^2)) 

M. MATLAB CODE: DISPLAY_WAVEFORM_CALC_RMSBW.M 

function display_waveform_calc_rmsBW(Sref, f0, fs, wf_type, filter_outside_bnn) 
% ********************************************************************* 
% display_waveform.m; 
% display_waveform plots waveform and calculates rms radian frequency. 
% 
% Written by: Joe Crnkovich (NRL) 
% Last modified: 10 June 2009 
% 
% ********************************************************************* 
  
%%  display psd (Welch) 
  
figure; 
h = spectrum.welch;                  % Create a Welch spectral estimator. 
Hpsd = psd(h,Sref,'Fs',fs);             % Calculate the PSD 
plot(Hpsd); 
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%%  display psd along with bandwidths used 
  
% PSD = (1/N)|fft(x(n)|^2 
  
% Convert to analytic waveform 
Sref = hilbert(Sref); 
  
% calculate true rms radian frequency 
fc_idx = floor(f0*length(Sref)/fs); 
i=1:length(Sref); 
Sref_psd = abs(fft(Sref)).^2;  % find (unnormalized) PSD 
f_squared = ( abs(i-fc_idx) .* (fs/length(Sref)) ).^2;  % f is weighting 
  
% calculate rms radian frequncy (beta) 
beta_Hz = ( sum(f_squared.*Sref_psd)/sum(Sref_psd) ).^0.5 
beta = 2*pi*beta_Hz; 
  
x_axis=(i-1)*fs/length(Sref); 
  
b_rms=[f0-beta,f0-beta,f0+beta,f0+beta]; 
b_Hz = [f0-beta_Hz,f0-beta_Hz,f0+beta_Hz,f0+beta_Hz]; 
  
%% Plot PSD overlayed with both \beta and B_{Hz} 'bandwidths' 
  
PSD = (abs(fft(Sref)).^2)/(length(Sref)*fs);  % PSD in linear (non-dB) scale 
  
figure; 
plot(x_axis/1000,10*log10(PSD), ... 
    b_Hz/1000,[-90,-22,-22,-90], '-k') 
  
if filter_outside_bnn 
    title_text=['PSD (Waveform #', ... 
        num2str(wf_type),'-Filt; \beta=', num2str(beta),' rad/s)']; 
else 
    title_text=['PSD (Waveform #', ... 
        num2str(wf_type),'; \beta=', num2str(beta),' rad/s)']; 
end 
title(title_text); 
ylabel('Power (dB/Hz)'); xlabel('Frequency (kHz)') 
legend('PSD of signal', '+/- \beta_{Hz}') 
xlim([0 fs/2000]) 
ylim([-90,-20]) 
grid on 
  
%%  Plot 'weighted' vs 'unweighted' PSD in separate subplots 
  
x_axis = ((i-1)*fs/length(Sref))/1000; 
  
figure 
subplot(2,1,1) 
plot(x_axis, 10*log10(f_squared.*Sref_psd)) 
title_text = ['Weighted PSD of Analytic Signal -- Waveform #', num2str(wf_type)]; 
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title(title_text) 
xlim([0,fs/2000]); ylim([80, 140]) 
xlabel('kHz');  ylabel('dB') 
grid on 
  
%figure 
subplot(2,1,2) 
plot(x_axis, 10*log10(Sref_psd)) 
title_text = ['PSD of Analytic Signal -- Waveform #', num2str(wf_type)]; 
title(title_text) 
xlim([0,fs/2000]); ylim([10, 70]) 
xlabel('kHz');  ylabel('dB') 
grid on 

N. MATLAB CODE: DISPLAY_WAVEFORM_CALC_RMST.M 

 function display_waveform_calc_rmsT(Sref, f0, fs, wf_type, filter_outside_bnn) 
% ********************************************************************* 
% display_waveform_calc_rmsT.m; 
% display_waveform plots waveform and calculates rms Time ('Te'). 
% 
% Written by: Joe Crnkovich (NRL) 
% Last modified: 15 May 2009 
% 
% ********************************************************************* 
  
%%  convert to analytic signal 
  
Sref = hilbert(Sref); 
  
%% calculate true rms time 
  
tc_idx = floor(length(Sref)/2)  %index to center of waveform (assumes symmetric) 
i=1:length(Sref); 
  
Sref_ut2 = abs(Sref).^2;  %power vs. time 
  
t_squared = ( abs(i-tc_idx)/fs ).^2; 
%plot(t_squared) 
  
Te = 2*pi*( sum(t_squared.*Sref_ut2)/sum(Sref_ut2) ).^0.5 
  
%% 
  
%% Plot Power vs. Time and zoomed Power vs. Time in separate subplots 
x_axis = [1:length(Sref)]/fs; 
  
%first find where signal power breaks threshold 
no_samples_displayed = 500; 
offset=500;  %4 chips in @ 4kcps, 100kS/s 
  
start_indx = find( (abs(Sref)>0.5), 1, 'first') + offset; %4 chips in 
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stop_indx = start_indx + no_samples_displayed - 1; 
  
start_indx = start_indx/fs 
stop_indx = stop_indx/fs 
  
figure 
subplot(2,1,1) 
plot(x_axis,10*log10(Sref_ut2)) 
  
if filter_outside_bnn 
    title_text = ['Power vs. Time of Analytic Signal -- Waveform #', ... 
        num2str(wf_type), '-Filt, Te=', num2str(Te),' s']; 
else 
    title_text = ['Power vs. Time of Analytic Signal -- Waveform #', ... 
        num2str(wf_type), ', Te=', num2str(Te),' s']; 
end 
title(title_text) 
ylim([-50, 20]) 
xlabel('Time (s)');  ylabel('Power (dB)') 
grid on 
  
%figure 
subplot(2,1,2) 
plot(x_axis, 10*log10(Sref_ut2)) 
title_text = ['Zoomed Power vs. Time of Analytic Signal']; 
title(title_text) 
xlim([start_indx,stop_indx]); ylim([-40,10]) 
xlabel('Time (s)');  ylabel('Power (dB)') 
grid on 
  
  
%% Plot autocorrelation of reference signal 
  
% find autocorrelation of signal normalized to 1 
%[autocorrel,lags] = xcorr( Sref, 1000,'coeff'); 
[autocorrel,lags] = xcorr( Sref,'coeff'); 
  
figure; subplot(1,2,1) 
plot(lags,abs(autocorrel),'LineWidth',2);  %'abs' gives envelope, i.e., sqrt(I^2+Q^2) 
title('R_s'); 
xlabel('# of Lags'); ylabel('Magnitude of Autocorrelation'); 
xlim([lags(1), -lags(1)]); 
grid on; 
  
subplot(1,2,2) %figure; 
plot(lags,10*log10(abs(autocorrel)),'LineWidth',2);  %'abs' gives envelope, i.e., sqrt(I^2+Q^2) 
title('R_s'); 
xlabel('# of Lags'); ylabel('Magnitude of Autocorrelation (dB)'); 
xlim([lags(1), -lags(1)]); 
ylim([-40, 0]); 
grid on; 
  
% and zoomed dB version... 
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no_lags_displ = 150; 
  
figure; subplot(1,2,1) 
plot(lags,10*log10(abs(autocorrel)));  %'abs' gives envelope, i.e., sqrt(I^2+Q^2) 
title('R_s'); 
xlabel('# of Lags'); ylabel('Normalized Magnitude of Autocorrelation (dB)'); 
xlim([lags(1), -lags(1)]); 
ylim([-40, 0]); 
set(gca,'YGrid','on'); 
  
subplot(1,2,2) %figure; 
plot(lags,10*log10(abs(autocorrel)));  %'abs' gives envelope, i.e., sqrt(I^2+Q^2) 
title('R_s'); 
xlabel('# of Lags'); ylabel('Normalized Magnitude of Autocorrelation (dB)'); 
xlim([-no_lags_displ, no_lags_displ]); 
ylim([-40, 0]); 
%set(gca,'YGrid','on'); 
grid on 
  
figure 
%plot(abs(fft(autocorrel))) 
plot(10*log10(abs(fft(autocorrel)))) 
title('|FFT(R_s)|_{dB}'); 
xlabel('FFT bin number'); ylabel('Magnitude (dB)'); 
 

O. MATLAB CODE: GEN_NOISE_VECTOR.M 

 function Noise=gen_noise_vector(N, SNR, Tsym, fs) 
% ********************************************************************* 
% gen_noise_vector.m; 
% gen_noise_vector generates vector containing noise samples. 
% 
% Written by: Joe Crnkovich, NRL 
% Last modified: 3 April 2009 
% 
% ********************************************************************* 
  
A = 1; % Amplitude of Signal 
% % c = 2.997925e8; % Speed of light in m/s 
Ps = (A^2)/2; % Power of Signal 
  
% % sigma1 = sqrt(Ps*Tsym/Es_No1) % Calculate Noise Amplification fac 
% % sigma2= sqrt(Ps*Tsym/Es_No2) % tors using Es/No = Ps*Tsym/sigma^2 
% % Corrected formula below - JGC 2/12/09 
% % From Johnson paper, sigma^2 = (Ps*Tsym*B/Es_No):  However B is not equal 
% % to 1 (as stated in the paper), the digital frequency bandwidth, but is 
% % rather the true bandwidth, fs/2 (or 1/2Ts). 
% % sigma1 = sqrt(Ps*Tsym/Es_No1) % Calculate Noise Amplification fac 
% % sigma2= sqrt(Ps*Tsym/Es_No2) % tors using Es/No = Ps*Tsym/sigma^2 
% % sigma1 = sqrt(0.5*Ps*(Tsym/Ts)/Es_No1) % Calculate Noise Amplification fac 
%  sigma2 = sqrt(0.5*Ps*(Tsym/Ts)/Es_No2) % tors using Es/No = Ps*Tsym*B/sigma^2 
  



 144

sigma1 = sqrt(Ps*(Tsym*fs/2)/SNR); % Calculate Noise Amplification fac 
  
Noise = sigma1.*randn(N, 1); % Random Noise values for Signal 1 
 

P. MATLAB CODE: PERF_DEMOD_TEST.M 

 function [BER, no_of_errors, no_of_bits]=perf_demod_test(Sa1, Sa2, fs, f0, Rsym, SNRdB, 
verbose)   
  
% ********************************************************************* 
% PERF_DEMOD_TEST.m; 
% This function is used to test validity of Sa1 signal by attempting to  
% demodulate a BPSK modulated signal.  Various diagnostic plots are  
% produced, the user is asked to manually perform phase synchronization 
% by identifying peak signal (assume no/low noise (high SNR), and BER is  
% calculated by comparing demodulated bits to first bits loaded from  
% mls65535a.mat. 
% 
%To use within main_simulate.m, set the following parameters: 
% - verbose=1; %set to zero to stop sending debug info to MATLAB window 
% - verbose_wf_gen=1; %enable plots and sending debug info to MATLAB window 
% - enable_BER_test=1; %set to 1 to enable running of BER test function 
% - process_detections=0; %process detections to get estimates of TOA and FOA 
% - wf_type=1; % 1:const env, const psd; 2:gap in time; 3:gap in psd; 4:shortened pulse 
% - Es_No_dB_min & Es_No_dB_max = 4.15 (dB) + no_chips_dB (to give BER .01 for BPSK) 
% - no_noise_iterations = 1 
% - pad_length = 0; %no. of zeros to add onto each side of S1 
% - Rsym=2000 or 5000;   %symbol rate 
%--- SNR of 2.6 (4.15 dB) should give BER .01 for BPSK 
  
% 
% Written by: Joe Crnkovich, NRL 
% Last modified:  15 May 2009 
% 
% ********************************************************************* 
  
%%  
% use the following to perform crosscorrelation 
  
N=length(Sa1); 
window = 1000; 
hlfwndw = window/2; 
for i = 1:window 
    corrval(i) = Sa1(hlfwndw:N-hlfwndw)*Sa2(i:N-window+i)'; 
end 
  
if verbose  
    figure;  
    subplot(4,1,1); plot(real(corrval)) 
    title('real(corrval) - Sa1 & Sa2'); 
    subplot(4,1,2); plot(imag(corrval)) 
    title('imag(corrval) - Sa1 & Sa2'); 
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    subplot(4,1,3); plot(abs(corrval)) 
    title('abs(corrval) - Sa1 & Sa2'); 
    subplot(4,1,4); plot(10*log10(abs(corrval))) 
    title('abs(corrval) - Sa1 & Sa2'); 
end 
  
%%  
% Plot Sa1 & Sa2 (freq domain) to show old v. new calc of noise signal 
mix=[1:length(Sa1)]; 
if verbose  
    figure;  
    subplot(1,2,1); plot((mix/length(mix) * fs)-fs/2, fftshift(abs(fft(real(Sa1)))));  
    title(['FFT of RF Signal With Noise - SNR=',num2str(SNRdB),' dB']); 
    xlabel('Frequency (Hz)'); 
    ylim([0,2000]); 
      
    subplot(1,2,2); plot((mix/length(mix) * fs)-fs/2, fftshift(abs(fft(real(Sa2)))));  
    title('FFT of RF Signal - No noise'); 
    xlabel('Frequency (Hz)'); 
    ylim([0,2000]); 
end 
  
%% Mix signal back down to baseband 
mix=[1:length(Sa1)]; 
  
if verbose  
    figure; plot(mix/length(mix) * fs, abs(fft(Sa1)));  
    %figure; plot((mix/length(mix) * fs)-fs/2, fftshift(abs(fft(Sa1))));  
    title('FFT of (analytic) RF Signal (Sa1)'); 
    xlabel('Frequency (Hz)'); 
    (1.319/6.554)*fs 
end 
     
% show baseband signal 
% f0 = 20000; 
SaBB = Sa1.*exp(-2*pi*(f0/100000)*1j.*mix); 
SaBBref = Sa2.*exp(-2*pi*(f0/100000)*1j.*mix); 
  
if verbose  
    figure; plot(mix/length(mix) * fs, abs(fft(SaBB)));  
    title('FFT of Baseband Signal (SaBB)'); 
    xlabel('Frequency (Hz)'); 
     
    figure;  
    subplot(1,2,1); plot((mix/length(mix) * fs)-fs/2, fftshift(abs(fft(Sa1))));  
    title('FFT of (analytic) RF Signal (Sa1)'); 
    xlabel('Frequency (Hz)'); 
    subplot(1,2,2); plot((mix/length(mix) * fs)-fs/2, fftshift(abs(fft(SaBB))));  
    title('FFT of Baseband Signal (SaBB)'); 
    xlabel('Frequency (Hz)'); 
end 
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%% 
% figure out phase error 
mix2=[0:0.01:2*pi]; SaBB2500=SaBBref(2500); %SaBB2500=SaBBref(2500); 
SaBB2 = SaBB2500.*exp(1j*mix2); 
  
default_phase_offset = 4.6; %4.83; 
  
if verbose  
    figure; plot(mix2,real(SaBB2));  
    title('Amplitude (I) vs. Phase Offset of Baseband Sample #2500'); %Sample #2500'); 
    xlabel('Phase Offset (Radians)'); 
    fprintf('default phase offset is %d\n',default_phase_offset); 
end 
  
% ask user for phase offset (i.e., when is signal peak) 
phase_offset = input('Enter Desired Phase Offset (radians) from Plot ("d" for default): ') 
if (phase_offset=='d') 
    phase_offset = default_phase_offset  
end; 
  
%% 
% show phase corrected I&Q signals  
  
SaBB = SaBB.*exp(1j*phase_offset);  %add phase offset to bring signal to I channel 
%SaBB = SaBBref.*exp(j*phase_offset);  %add phase offset to bring signal to I channel 
  
if verbose  
    figure;  
    subplot(3,1,1); plot(real(SaBB)); xlim([1,5000]); title('SaBB - Baseband I channel') 
    subplot(3,1,2); plot(imag(SaBB)); xlim([1,5000]); title('SaBB - Baseband Q channel') 
    subplot(3,1,3); plot(unwrap(angle(SaBB))); xlim([1,5000]); title('SaBB - Baseband Phase') 
end 
  
%% 
if verbose  
    figure;  
    subplot(2,2,1); histfit(real(SaBB)); title('real(SaBB)'); 
    subplot(2,2,3); histfit(imag(SaBB)); title('imag(SaBB)'); 
    subplot(2,2,2); qqplot(real(SaBB)); title('real(SaBB)'); 
    subplot(2,2,4); qqplot(imag(SaBB)); title('imag(SaBB)'); 
    fprintf('mean(real(SaBB)=%f\n', mean(real(SaBB))); 
    fprintf('variance(real(SaBB)=%f\n', (std(real(SaBB)))^2); 
    fprintf('mean(imag(SaBB)=%f\n', mean(imag(SaBB))); 
    fprintf('variance(imag(SaBB)=%f\n\n', (std(imag(SaBB)))^2); 
    fprintf('skewness(real(SaBB)=%f\n', skewness(real(SaBB))); 
    fprintf('kurtosis(real(SaBB)=%f\n', kurtosis(real(SaBB))-3); 
    fprintf('skewness(imag(SaBB)=%f\n', skewness(imag(SaBB))); 
    fprintf('kurtosis(imag(SaBB)=%f\n', kurtosis(imag(SaBB))-3); 
end 
  
%% 
% apply matched filter for pulse of length p_length 
p_length = fs/Rsym; %50; 



 147

if verbose p_length; end 
mf_pulse = ones(p_length,1); %column vector 
mf_out = filter(mf_pulse,1,real(SaBB)); 
if verbose  
    figure; plot(mf_out); xlim([1,5000]); 
    title('Output of I-Channel Matched Filter') 
     
    figure;  
    subplot(2,2,1); histfit(real(mf_out)); title('real(mf out)'); 
    subplot(2,2,3); histfit(imag(mf_out)); title('imag(mf out)'); 
    subplot(2,2,2); qqplot(real(mf_out)); title('real(mf out)'); 
    subplot(2,2,4); qqplot(imag(mf_out)); title('imag(mf out)'); 
end 
  
%% 
sampled_decision_variable = downsample(mf_out,p_length); 
load mls65535a; 
ref_data = [0,mls65535a(1:length(sampled_decision_variable)-1)]; 
demodulated_bits = (sampled_decision_variable > 0); 
errors=xor(demodulated_bits, ref_data); 
no_of_errors = sum(errors); 
no_of_bits = length(errors); 
BER = no_of_errors/no_of_bits; 
if verbose  
    no_of_errors 
    no_of_bits 
    BER 
     
    figure;  
    subplot(3,1,1); plot(sampled_decision_variable); title('Sampled Decision Variable'); 
    xlim([1,75]); %ylim([-1.1,1.1]); 
    subplot(3,1,2); plot(demodulated_bits); title('Demodulated Bits'); 
    xlim([1,75]); ylim([-0.1,1.1]); 
    subplot(3,1,3); plot(ref_data); title('Transmitted Data (m-sequence)'); 
    xlim([1,75]); ylim([-0.1,1.1]); 
     
    % Squaring the signal  - should produce tone at twice the carrier freq 
    figure; plot(mix/length(mix) * fs, abs(fft(Sa1.*Sa1))) 
    %plot(mix/length(mix) * fs, 10*log10(abs(fft(Sa1.*Sa1)))) 
    title('FFT of Sa1^2 (i.e., Sa1 Squared'); 
    xlabel('Frequency (Hz)'); 
     
    figure;plot(mix/length(mix) * fs, 10*log10(abs(fft(Sa1.*Sa1)))) 
    title('FFT of Sa1^2 (i.e., Sa1 Squared'); 
    xlabel('Frequency (Hz)'); 
    ylabel('dB') 
end 

Q. MATLAB CODE: CAFV2.M 

 function [TDOA, FDOA] = CAFv2(S1, S2, Max_f, fs, Max_t, display_CAF_peak); 
  
% ********************************************************************* 
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% CAF takes as inputs two sampled signal vectors (S1 & S2) in analytic 
%       signal format, the maximum expected FDOA in Hertz (Max_f), the  
%       sampling frequency used to generate S1 & S2 (fs), and the maximum 
%       expected TDOA in seconds (Max_t).  The function then utilizes  
%       Stein's method in [1] to compute coarse estimations of TDOA and  
%       FDOA between S1 & S2.  Finally, "fine mode" calcualtions are made 
%       to compute the final TDOA and FDOA, which are returned to the  
%       user via the output arguments. 
  
% Written by:  LCDR Joe J. Johnson, USN 
% Last modified:  17 September 2001 
% 
% Modified by J. Crnkovich, NRL 
% Last Modified: 5 March 2009 
%  
% ********************************************************************* 
  
%clc; 
  
%display_CAF_peak=1; %allows program to call CAF_peak.m which displays CAF peak 
  
N = length(S1); 
S1 = reshape(S1,N,1);       % Ensures signals are column vectors due to  
S2 = reshape(S2,N,1);       % Matlab's better efficiency on columns 
  
S1_orig = S1;                   % Want to preserve original input signals 
S2_orig = S2;                   % for later use; S1 & S2 will be  
                                    % manipulated in the fine mode below. 
TDOAold=NaN; 
FDOAold=NaN; 
  
  
% The following while loop ensures that the sub-block size, N1, is 
% large enough to ensure proper resolution.  If Max_f/fs*N1 were 
% less than 1, then the Freq calculated at the end would always be 
% + or - 1/N1!  2^19 = 524288 is about the limit for efficient 
% processing speed. 
N1=1024; 
while (Max_f/fs*N1 < 2) & (N1 < 2^19)    
   N1 = 2*N1;                                 
end                                          
                                         
N2=N1/2; 
  
if N1 > N                               % For cases where resolution calls for 
   S1 = [S1;zeros(N1-N,1)];     % a sub-block size larger than the   
   S2 = [S2;zeros(N1-N,1)];     % signal vectors, pad the vectors with 
   N = N1;                              % zeros so that they have a total of  
end                                     % N1 elements. 
  
% Want magnitude of Max_f, since +&- will be used below 
Max_f = abs(Max_f);          
Number_of_Blocks = length(S1)/N1;   % Number of sub-blocks to break 
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                                                % the signal into 
  
Min_v = floor(-Max_f/fs*N1);            % Smallest freq bin to search 
Max_v = -Min_v;                         % Largest freq bin to search 
v_values = Min_v : Max_v;               % Vector of all bins to search 
  
Max_samples = Max_t * fs;       % Maximum number of samples to search 
  
% Finds max number of block shifts (q) that must occur for each 
% R and v below. 
if Max_samples > N2      
    q_max = min(ceil((Max_samples - N2)/N1),Number_of_Blocks-1); 
else q_max = 0; 
end 
  
x=0; 
divisors = Number_of_Blocks:-1:1;       % Used to scale "temp" below... 
  
  
% ********************************************************************* 
% COARSE MODE computations. 
% ********************************************************************* 
  
for v = 1:length(v_values) 
   temp(1:N1,1:q_max+1)=0;          % Initializing -- saves time.... 
   for R = 0:Number_of_Blocks-1 
       
      % temp1 is the FFT of the R'th block of S1, shifted by "v" bins. 
      temp1 = fftshift(fft(S1(1+R*N1 : N1*(R+1))));  
      temp1 = shiftud(temp1,v_values(v),0);      
      for q = 0:q_max 
         % R+q cannot exceed the number of sub-blocks 
         if R + q > Number_of_Blocks-1 break     
         end 
          
         % FFT of the (R+q)'th block of S2 
         temp2 = fftshift(fft([S2(1+(R+q)*N1 : N2 + N1*(R+q));... 
                          zeros(N2,1)])); 
         
         % Multiplies temp1 & temp2, FFTs the product, then adds to  
            % previous values for the same value of q (but different R) 
         temp(:,q+1) = temp(:,q+1) + ... 
                                    abs(fftshift(fft(temp1.*conj(temp2)))); 
      end 
   end 
  
    % Each value of q was used a different # of times, so they must be 
    % scaled properly. 
   for q_index = 1:q_max+1       
      temp(:,q_index) = temp(:,q_index) / divisors(q_index);     
   end 
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    % If combination of current v and any q provides a greater value 
    % than the previous max, then remember m, Q, & V. 
   if max(max(temp))>x           
      x = max(max(temp));        
      [m Q] = find(temp == max(max(temp))); 
       
      % Must do this since q starts at 0, but Matlab doesn't allow for 
      % zero indexing. 
      Q = Q - 1;             
      V = v_values(v); 
   end 
end 
  
% Coarse estimate of TDOA (in # of samples) 
TDOA_Coarse = Q * N1 + (-N2+1 + m);      
  
% Coarse estimate of FDOA (in Freq Bin #) 
FDOA_Coarse = V/N1*N;                        
  
  
% The following 3 lines can be used to display the coarse estimates,  
% if desired. 
  
%disp(['The coarse TDOA estimate is: ', num2str(TDOA_Coarse),... 
%       ' samples.']); 
%disp(['The coarse FDOA estimate is: ', num2str(FDOA_Coarse/N),... 
%      ' (digital frequency).']); 
  
  
% ********************************************************************* 
% FINE MODE computations. 
% ********************************************************************* 
  
S2 = conj(S2);          % S2 is conjugated in basic CAF definition 
  
  
% Vector of freq "bins" to use (DON'T have to be integers!!) 
k_val = FDOA_Coarse-10 : FDOA_Coarse+10; 
  
% Vectors of TDOAs to use (must be integers) 
tau_val = TDOA_Coarse-10 : TDOA_Coarse+10;   
  
done = 0; 
multiple = 1; 
decimal = 0; 
while ~done     % Fine mode iterations continue until user is done. 
    
   % Initialize to make later computations faster 
   amb(length(k_val),length(tau_val))=0;     
    Ntemp = N * multiple; 
    for k = 1:length(k_val)     % Must loop through all values of k 
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        % Vector of complex exponentials that will be used 
      exponents = exp(-j*2*pi*k_val(k)/Ntemp*(0:Ntemp-1)'); 
       
    % Must loop through all potential TDOAs 
      for t = 1:length(tau_val)  
          
         % S2 is shifted "tau" samples 
         S2temp = shiftud(S2,tau_val(t),0); 
          
         % Definition of CAF summation 
         temp = abs(sum(S1.*S2temp.*exponents)); 
          
         % Save CAF magnitude for the values of k & t 
        amb(k,t)=temp;       
      end 
   end 
  
    [k, t]=find(amb==max(max(amb)));     % Find the peak of the CAF matrix 
  
  
    TDOA = tau_val(t);  % TDOA and FDOA associated with the peak of the 
   FDOA = k_val(k);     % CAF plane.  These represent the final TDOA  
                            % & FDOA estimates. 
                         
                       
    % The results are displayed.                         
    disp(' ');disp(' ');disp(' '); 
    disp(['The TDOA is ', num2str(TDOA/multiple), ' samples']); 
   disp(['         or ', num2str(TDOA/(multiple*fs)), ' seconds.']); 
   disp(' '); 
   disp(['The resolution is ', num2str(0.5/... 
                                                (multiple*fs)),' seconds.']); 
    disp(' ');disp(' '); 
  
    disp(['The FDOA is ', num2str(FDOA/N),... 
                                        ' in digital frequency (k/N)']); 
    disp(['         or ', num2str(FDOA/N*fs), ' Hz.']); disp(' '); 
   disp(['The resolution is ', num2str(0.5*... 
                                                (10^decimal)/N*fs), ' Hz.']); 
    disp(' ');disp(' ');disp(' '); 
    
    
   % If the signal length exceeds 524288 elements, max processing 
   % capability has been achieved, and the user will not be given 
   % the option of refining TDOA any further. 
    if Ntemp >= 2^19 
      disp('Maximum TDOA processing capability has been achieved.') 
      doneT = 1; 
   else doneT = 0; 
   end 
    
%    % User chooses whether to compute more accurate TDOA &/or 
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%    % FDOA, or to stop fine mode computations. 
%    disp('Do you desire a solution with finer resolution?'); 
%    disp('Select one of the following:'); disp(' '); 
%     
%    if ~doneT 
%       disp('1.  Finer resolution for TDOA.'); 
%    else disp(' '); 
%    end 
%     
%    disp('2.  Finer resolution for FDOA.'); 
%     
%    if ~doneT 
%       disp('3.  Finer resolution for both TDOA and FDOA.'); 
%    else disp(' '); 
%    end 
%     
%    disp('4.  The TDOA and FDOA resolutions are fine enough.'); 
%    disp(' '); 
%    choice = input('What is your selection?  '); 
  
choice= ~(TDOAold==TDOA) + ~(FDOAold==FDOA)*2; 
  
switch choice 
       
   % TDOA is refined by resampling the signals at twice the 
   % previous sampling rate.  Increases resolution two-fold. 
   case 1 
      if ~doneT 
         multiple = multiple*2; 
          S1 = interp(S1, 2); 
       S2 = interp(S2, 2); 
         tau_val = TDOA*2 - 1 : TDOA*2 + 1; 
      else done = 1; 
      end 
      %clc; 
       
   % FDOA resolution is improved by a factor of 10. 
   case 2 
      decimal = decimal - 1; 
      k_val = FDOA - 5*10^decimal : 10^decimal : FDOA + 5*10^decimal; 
      %clc; 
       
   % Both TDOA and FDOA resolutions are improved. 
   case 3 
      if ~doneT 
         multiple = multiple*2; 
          S1 = interp(S1, 2); 
       S2 = interp(S2, 2); 
        tau_val = TDOA*2 - 1 : TDOA*2 + 1; 
       
        decimal = decimal - 1; 
         k_val = FDOA - 5*10^decimal : 10^decimal : FDOA + ... 
                                                                    5*10^decimal; 
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      else done = 1; 
      end 
      %clc; 
   otherwise 
      done = 1; 
   end 
    
   if done 
      disp(' ');disp(' '); disp('TDOA & FDOA estimation complete.'); 
   end 
end 
   
   
% % If user wants to see the CAF surface graphically, a call to 
% % CAF_peak is made. 
% disp(' ');%disp(' ');disp(' '); 
% choice = input... 
%    ('Would you like to see the CAF peak graphically (Y or N)?  ','s'); 
% choice = upper(choice); 
%  
% switch choice 
% case 'Y' 
%    intp=4; 
%    caf_peak(S1_orig, S2_orig, floor(TDOA/multiple) - 50, ... 
%       floor(TDOA/multiple) + 50, (FDOA-20)/N, (FDOA+20)/N, fs,intp); 
% end 
  
if display_CAF_peak  %display CAF surface graphically by calling CAF_peak.m 
    intp=4; 
   caf_peak(S1_orig, S2_orig, floor(TDOA/multiple) - 50, ... 
      floor(TDOA/multiple) + 50, (FDOA-20)/N, (FDOA+20)/N, fs,intp); 
end 
  
  
TDOA = TDOA/(multiple*fs);          % Returns TDOA in seconds. 
FDOA = FDOA/N*fs;                       % Returns FDOA in Hertz. 
%disp('Program Complete.');    
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