
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2009-06

Efficacy of various waveforms to support geolocation

Crnkovich, Joseph G.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/4754

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36698468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

EFFICACY OF VARIOUS WAVEFORMS TO
SUPPORT GEOLOCATION

by

Joseph G. Crnkovich, Jr.

June 2009

 Thesis Advisor: Frank Kragh
 Co-advisor: Herschel H. Loomis, Jr.

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2009

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
Efficacy of Various Waveforms to Support Geolocation
6. AUTHOR(S) Joseph G. Crnkovich, Jr.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This thesis investigates the impact of various waveform parameters on the ability to estimate accurately the

position of the source of a known data-less emission that is visible to multiple simultaneous collectors. It provides an
overview of the basic geolocation problem and identifies various parameters affecting geolocation accuracy, showing
those that are affected by the waveform and those that are not. Performance estimates are provided for detecting the
signal and for estimating the time and frequency of arrival (TOA and FOA) of the signal, which are the key measure of
a waveform’s ability to support geolocation. Several exemplar waveforms are chosen to illustrate the effects of various
waveform parameters, and the performance of these example waveforms is verified through software simulations.

Results show for additive white Gaussian noise (AWGN) interference that accuracy of estimates is
predominantly determined by the transmit power (i.e., received SNR), signal bandwidth (for TOA), and signal duration
(for FOA). For a given SNR, occupied bandwidth, and total duration, a waveform can be "shaped" in the time and
frequency domains to improve performance relative to a reference direct sequence spread spectrum (DSSS) signal.
Software simulations confirm theoretical performance estimates.

This thesis summarizes the effects of various waveform parameters on geolocation performance,
demonstrates these by modeling exemplar waveforms, and provides software that can be used to simulate
performance.

15. NUMBER OF
PAGES

185

14. SUBJECT TERMS
Geolocation, Cross Ambiguity Function, CAF, Matched Filter Detection

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

EFFICACY OF VARIOUS WAVEFORMS TO SUPPORT GEOLOCATION

Joseph G. Crnkovich, Jr.
Civilian, Naval Research Laboratory, Washington, D.C.

B.S., Marquette University, 1985

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2009

Author: Joseph G. Crnkovich, Jr.

Approved by: Frank Kragh
Thesis Advisor

Herschel H. Loomis, Jr.
Co-advisor

Jeffrey B. Knorr
Chairman, Department of Electrical and Computer
Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis investigates the impact of various waveform parameters on the

ability to estimate accurately the position of the source of a known data-less

emission that is visible to multiple simultaneous collectors. It provides an

overview of the basic geolocation problem and identifies various parameters

affecting geolocation accuracy, showing those that are affected by the waveform

and those that are not. Performance estimates are provided for detecting the

signal and for estimating the time and frequency of arrival (TOA and FOA) of the

signal, which are the key measure of a waveform’s ability to support geolocation.

Several exemplar waveforms are chosen to illustrate the effects of various

waveform parameters, and the performance of these example waveforms is

verified through software simulations.

Results show for additive white Gaussian noise (AWGN) interference that

accuracy of estimates is predominantly determined by the transmit power (i.e.,

received SNR), signal bandwidth (for TOA), and signal duration (for FOA). For a

given SNR, occupied bandwidth, and total duration, a waveform can be "shaped"

in the time and frequency domains to improve performance relative to a

reference direct sequence spread spectrum (DSSS) signal. Software simulations

confirm theoretical performance estimates.

This thesis summarizes the effects of various waveform parameters on

geolocation performance, demonstrates these by modeling exemplar waveforms,

and provides software that can be used to simulate performance.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. BACKGROUND ... 1
B. OBJECTIVE ... 2
C. RELATED WORK .. 3
D. THESIS ORGANIZATION.. 3

II. THE GEOLOCATION PROBLEM .. 5
A. THE EMITTER ... 5
B. METHODS OF PASSIVE GEOLOCATION ... 6
C. KEY DETECTION PARAMETERS .. 8
D. FIGURES OF MERIT FOR GEOLOCATION ACCURACY.................. 8

III. PARAMETERS BEYOND THE CONTROL OF THE WAVEFORM
DEVELOPER THAT AFFECT GEOLOCATION PERFORMANCE.............. 11
A. NON-WAVEFORM PARAMETERS TO CONSIDER 11
B. WAVEFORM CONSTRAINTS ... 14

IV. PERFORMANCE ESTIMATES... 17
A. DETECTION... 17

1. Coherent Detection.. 17
a. Receiver Processing... 18
b. Decision Variable Statistics 19
c. Probability of Detection and False Alarm 20
d. An Example ... 24

2. Noncoherent Detection ... 25
a. Receiver Processing... 25
b. Probability of Detection and False Alarm 26

B. FREQUENCY AND TIME ESTIMATION.. 27
1. The Complex Ambiguity Function (CAF) 27
2. Theoretical Performance... 29

V. PROPOSED WAVEFORMS ... 33
A. BPSK WAVEFORMS... 36

1. Waveform #1 – “Reference Waveform” 38
2. Waveform #2 – “Time Gap”... 44
3. Waveform #3 – “Split Spectrum”.. 46
4. Waveform #4 – “Shortened Pulse”....................................... 49

B. FILTERED BPSK WAVEFORMS .. 52
1. Filtered Waveform #1 – “Reference Waveform” 53
2. Filtered Waveform #2 – “Time Gap”..................................... 56
3. Filtered Waveform #3 – “Split Spectrum”............................ 58
4. Filtered Waveform #4 – “Shortened Pulse”......................... 60

C. SHAPED CHIP WAVEFORMS .. 62

VI. SIMULATION SOFTWARE .. 71

 viii

A. SIMULATION OVERVIEW... 71
B. ROUTINES... 74

1. main_simulation.m .. 74
2. generate_waveform.m... 78
3. gen_sig.m... 78
4. filt_bnn_fft.m.. 79
5. get_canned_waveform.m.. 80
6. display_waveform_calc_rmsBW.m...................................... 81
7. display_waveform_calc_rmsT.m.. 81
8. gen_noise_vector.m .. 81
9. perf_demod_test.m.. 83
10. CAFv2.m ... 87
11. display_toa_foa_v_snr_and_prep_data.m........................... 88
12. display_scatter_toa_foa.m.. 88

C. SCRIPT FILES ... 88
1. script_top_level_simulate_various_WFs.m......................... 89
2. script_display_toa_foa_v_snr_across_runs_mrkrs.m 90
3. script_plot_WFs.m... 90
4. gen_sinc.m... 91
5. mls_gen.m.. 91

VII. RESULTS AND CONCLUSIONS ... 93
A. SIMULATIONS PERFORMED... 93
B. RESULTS OF SIMULATIONS AND COMPARISON......................... 93

1. BPSK-Generated Waveforms.. 94
2. Shaped-Chip Waveforms .. 99
3. Bandwidth Constrained Waveforms 101

C. SUMMARY OF FINDINGS... 104
D. FUTURE WORK... 106

APPENDIX .. 109
A. MATLAB CODE: SCRIPT_TOP_LEVEL_SIMULATE

VARIOUS_WFS.M ... 109
B. MATLAB CODE:

SCRIPT_DISPLAY_TOA_FOA_V_SNR_ACROSS_RUNS_MRKR
S.M... 113

C. MATLAB CODE: SCRIPT_PLOT_WFS.M 117
D. MATLAB CODE:

DISPLAY_TOA_FOA_V_SNR_AND_PREP_DATA.M.................... 118
E. MATLAB CODE: DISPLAY_SCATTER_FOA_TOA.M 120
F. MATLAB CODE: GEN_SINC.M .. 121
G. MATLAB CODE: MLS_GEN.M ... 123
H. MATLAB CODE: MAIN_SIMULATION.M 124
I. MATLAB CODE: GENERATE_WAVEFORM.M.............................. 130
J. MATLAB CODE: GEN_SIG.M... 133
K. MATLAB CODE: FILT_BNN_FFT.M... 137
L. MATLAB CODE: GET_CANNED_WAVEFORM.M......................... 138

 ix

M. MATLAB CODE: DISPLAY_WAVEFORM_CALC_RMSBW.M 139
N. MATLAB CODE: DISPLAY_WAVEFORM_CALC_RMST.M 141
O. MATLAB CODE: GEN_NOISE_VECTOR.M 143
P. MATLAB CODE: PERF_DEMOD_TEST.M..................................... 144
Q. MATLAB CODE: CAFV2.M ... 147

LIST OF REFERENCES.. 155

INITIAL DISTRIBUTION LIST ... 159

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1 Scatter Plot of Waveform Parameters for Select Waveforms. xvii
Figure 2 Temporal and Spectral Plots of Waveform #1F................................ xviii
Figure 3 Temporal and Spectral Plots of Waveform #3F................................ xviii
Figure 4 Temporal and Spectral Plots of Waveform #17.xix
Figure 5 Temporal and Spectral Plots of Waveform #2F..................................xix
Figure 6 Temporal and Spectral Plots of Waveforms #4F.xx
Figure 7 TOA Accuracies – Summary of Alternatives.......................................xxi
Figure 8 FOA Accuracies – Summary of Alternatives...................................... xxii
Figure 9 Eccentricity of Ellipse for CEP is Geometry Dependent (after [1]). 10
Figure 10 Relation Between Angular and Location Errors (from [1]). 11
Figure 11 Example TEC map (from [13]).. 13
Figure 12 Basic Radiometer (after [15]).. 15
Figure 13 Basic Two-Receiver Correlation Filter (from [15])............................... 15
Figure 14 Coherent Receiver (after [20]). ... 18
Figure 15 Coherent Probability Distribution Functions (pdf) (after [22]).............. 21
Figure 16 Noncoherent Receiver (after [20]). ... 26
Figure 17 Scatter Plot of Waveform Parameters for All Waveforms. 35
Figure 18 Scatter Plot of Parameters for Waveforms with 8nnB = kHz. 36
Figure 19 Waveform #1 – Power vs. Time. .. 39
Figure 20 Waveform #1 – Power Spectral Density. .. 40
Figure 21 Autocorrelation of Waveform #1. ... 43
Figure 22 Waveform #2 – Power vs. Time. .. 44
Figure 23 Waveform #2 – Power Spectral Density. .. 45
Figure 24 Waveform #2 – Autocorrelation. ... 46
Figure 25 Waveform #3 – Power Spectral Density. .. 47
Figure 26 Waveform #3 – Power vs. Time. .. 48
Figure 27 Waveform #3 – Autocorrelation. ... 49
Figure 28 Waveform #4 – Power vs. Time. .. 50
Figure 29 Waveform #4 – Power Spectral Density. .. 51
Figure 30 Waveform #4 – Autocorrelation. ... 52
Figure 31 Filtered Waveform #1 – Power Spectral Density. 54
Figure 32 Filtered Waveform #1 – Power vs. Time... 55
Figure 33 Filtered Waveform #1 – Autocorrelation. .. 56
Figure 34 Filtered Waveform #2 – Power Spectral Density. 57
Figure 35 Filtered Waveform #2 – Power vs. Time... 58
Figure 36 Filtered Waveform #3 – Power Spectral Density. 59
Figure 37 Filtered Waveform #3 – Power vs. Time... 60
Figure 38 Filtered Waveform #4 – Power Spectral Density. 61
Figure 39 Filtered Waveform #4 – Power vs. Time... 62
Figure 40 Sinc Function.. 64
Figure 41 PSD of Rectangular and Sinc Modulated Signal. 65
Figure 42 Waveform #17 – Power Spectral Density. .. 66

 xii

Figure 43 Waveform #17 – Power vs. Time. .. 67
Figure 44 Waveform #17 – Autocorrelation. ... 68
Figure 45 Filtered Waveform #17 – Power Spectral Density. 69
Figure 46 Filtered Waveform #17 – Power vs. Time... 70
Figure 47 MATLAB m-files Created or Modified. .. 73
Figure 48 Overview of main_simulation.m.. 75
Figure 49 Signal Spectrum Before and After Adjusting Noise Equation. 83
Figure 50 Analytic Signal Before and After Mixing Down to Baseband. 85
Figure 51 Signal in I-Channel vs. Q-Channel.in High SNR................................. 86
Figure 52 The Sampled Decision Variable, Resulting Bits, and Reference

Bits. .. 87
Figure 53 TOA Accuracies – Unfiltered BPSK vs. Filtered. 95
Figure 54 FOA Accuracies – Unfiltered BPSK vs. Filtered. 96
Figure 55 Waveform #4 Example CAF with 100SNR = dB. 97
Figure 56 Waveform #4 Example CAF with 0SNR = dB..................................... 98
Figure 57 TOA Accuracies – Reference Waveform vs. Shaped Chips............. 100
Figure 58 FOA Accuracies – Reference Waveform vs Shaped Chips.............. 101
Figure 59 TOA Accuracies – Summary of Alternatives..................................... 103
Figure 60 FOA Accuracies – Summary of Alternatives..................................... 104

 xiii

LIST OF TABLES

Table 1 Waveform Summary Table (Bandwidth Constrained)........................ xvii
Table 2 GPS Standard Errors (from [10]). ... 14
Table 3 Waveform Summary Table... 34
Table 4 Summary of main_simulation.m Parameters...................................... 76
Table 5 User Specified Settings in gensig.m. .. 79
Table 6 Suggested Parameters When Using perf_demod_test.m................... 84
Table 7 Waveform Variations Simulated. .. 90
Table 8 Samples per Shaped Pulse. ... 91

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

This thesis examines the efficacy of a waveform to support geolocation.

The research specifically explored how well a waveform could support identifying

the location of an emitter based on a single transmission in the presence of

additive white Gaussian noise (AWGN) given that the emitter is simultaneously

visible to multiple coherent collectors. Various exemplar waveforms are

proposed, and MATLAB® simulations modeled the waveforms and processing of

the signals for the key parameters, namely the time of arrival (TOA) and

frequency of arrival (FOA). These simulations confirm and illustrate the

analytical formulae. The simulation code is available to test the performance of

other waveforms.

The analysis also assumes that

• the emitter is transmitting isotropically,

• no multipath or atmospheric effects exist,

• the entire channel is linear (including amplifiers),

• the coherent collectors have perfect knowledge of time and
their own location,

• the collection geometry is static,

• the transmitted signal is modulated by a completely known
chipping sequence,

• the collectors have a copy of the signal being transmitted,
and

• no data are being modulated onto the emission.

This thesis identifies the ability of a waveform to support accurate

estimation of TOA and FOA as the figures of merit to support geolocation of an

emission. The particular metric is the standard deviation σ of these estimates.

Any attempt to define the waveform accuracy by using a figure of merit involving

physical location requires knowledge of the collectors and collection geometry,

which is beyond the scope of this thesis.

 xvi

The three main parameters affecting TOAσ and FOAσ are the ratio of signal

power to noise power 0sE N , bandwidth, and signal duration. These parameters

are limited not just by physical constraints such as transmit power and the

occupied bandwidth, but also by acceptable visibility by an adversary (e.g., low

probability of intercept or detection).

Analysis shows that the probability of correctly detecting the signal dP

along with the probability of a false alarm FAP are a function only of the signal

power, noise power spectral density, duration of the signal, and detection

threshold, but are otherwise independent of the waveform characteristics.

Probability of detection dP , probability of false alarm FAP , and detection threshold

are related. For fixed signal power to noise power ratio (SNR), increasing the

detection threshold decreases the probability of false alarm. However, for fixed

SNR, increasing the detection threshold will also decrease the probability of

detection.

On the other hand, the “shape” of the waveform does have an effect on

TOAσ and FOAσ as stated by Stein [3]. For a given 0sE N , occupied bandwidth

and total signal duration, manipulating the PSD and the signal amplitude profile

vs. time of the signal cause variations in TOAσ and FOAσ , respectively. “Pushing”

the waveform energy from the center to the extremes increases the root mean

square rms value of that parameter. For example, generating a waveform that

has a higher PSD near the band edges than at the center of the band will provide

a higher rms bandwidth signal than one that has a flat PSD, resulting in a smaller

value for TOAσ and improved location estimation. Likewise, generating a

waveform in which the signal amplitude is greater towards the beginning and end

than in the middle of the signal results in an improved (i.e., smaller) FOAσ .

Various bandwidth-constrained waveforms of the same duration and

energy are proposed along with a reference waveform at various chip rates. The

reference waveform, 1F, and four other waveforms of similar total bandwidth are

 xvii

listed in Table 1 and shown in Figure 1, which is a scatter plot of the two key

parameters, rms radian frequency β and rms duration eT . In addition to the

waveforms shown, the reference waveform is also chipped at higher rates to

provide a reference for comparison with the waveform variations.

Table 1 Waveform Summary Table (Bandwidth Constrained)

WF# Name rms rad. Freq. (rad/s) rms duration (s) Bnn (kHz)
1F Filtered Reference 8506 0.5577 8
2F Filtered Time Gap 8434 0.8482 8
3F Filtered Split Spectrum 14463 0.558 8
4F Filtered Shortened Pulse 8655 0.1381 8
17 Sinc - 8.3kcps 14968 0.558 8

Figure 1 Scatter Plot of Waveform Parameters for Select Waveforms.

The next three sets of plots are of waveforms having the same rms

interval eT .The left and right plots of Figure 2 show, respectively, the temporal

 xviii

and spectral plots of the waveform #1F, the filtered reference wavefom. Similar

types of plots are shown for waveform #3F, Figure 3, and waveform #17, Figure

4. Note that that the power profiles for all three are very similar, although they

may have different null depth and ripple. However, the PSD profiles are

significantly different for the three, even though they all have the same occupied

bandwidth. The unfiltered version of waveform #17 was used because it is not

very different from its filtered version, #17F. The shape of the PSD leads to

significantly different rms radian frequency β values but does not affect the rms

duration as can be seen in Figure 1.

Figure 2 Temporal and Spectral Plots of Waveform #1F.

Figure 3 Temporal and Spectral Plots of Waveform #3F.

 xix

Figure 4 Temporal and Spectral Plots of Waveform #17.

In a similar manner, temporal and spectral plots of the two other

waveforms with the same rms radian frequency β as waveform #1F, i.e.,

waveforms #2F, and #4F, are shown in Figure 5 and Figure 6, respectively. Note

that all three have very similar PSD profiles; However, the power profiles differ

greatly. Waveform #2F is similar to #1F except the energy in the middle was

pushed to the outside. Waveform #3 is the converse of this and has the energy

pushed towards the middle of the waveform. These variations in shape lead to

significantly different rms duration eT values while leaving β unchanged as can

also be seen in Figure 1.

Figure 5 Temporal and Spectral Plots of Waveform #2F.

 xx

Figure 6 Temporal and Spectral Plots of Waveforms #4F.

These variations in β and eT lead to significant differences in waveform

geolocation performance. Figure 7 shows TOAσ at various values of 0sSNR E N=

for different waveforms. In the region of high SNR values (20dB≥), one can see

that doubling the chip rate of the reference waveform causes a 50% reduction in

TOAσ for a given SNR . Likewise, transmitting a signal with 6 dB more power

would also cause a 50% reduction in TOAσ for a given waveform at a given power.

However, one could also achieve almost a 50% reduction in TOAσ from the

reference waveform, without increased energy or bandwidth, by reshaping it to

waveform #3 (filtered) or #17 (unfiltered or filtered). However, this is at a cost of

increased peak power.

 xxi

Figure 7 TOA Accuracies – Summary of Alternatives.

Comparing the waveforms for FOA performance (Figure 8) shows that

changing the bandwidth has no affect on the resulting standard deviation FOAσ ;

however, shortening, lengthening, or otherwise changing the power profile over

time does affect FOAσ .

 xxii

Figure 8 FOA Accuracies – Summary of Alternatives.

This shaping can be performed by filtering (temporal or spectral domain)

the signal, synthesizing by adding up component signals of the waveform or

otherwise modulating the signal, or by shaping the chipping pulses. One

potential cost relative to direct sequence spread spectrum (DSSS) of performing

this shaping, however, is potentially greater visibility by an adversary, because

shaping the PSD may make the signal more visible at those accentuated

frequencies. Another potential cost is forcing the system to deal with a non-

constant envelope waveform which can be a challenge in power constrained

systems because they typically operate their power amplifiers at or near

saturation to improve their power added efficiency (PAE), although techniques

are being developed to help alleviate this constraint.

 xxiii

ACKNOWLEDGMENTS

I wish to acknowledge with a huge debt of gratitude my wife, Nela, who

ended up bearing so much of the burden in moving, making our temporary house

a home and keeping it running, and being so understanding when she could tell

my mind was somewhere else. I also thank Zef, Tony, Veronica, Teresa, and

Mike for supporting daddy in this endeavor.

I would also like to thank my advisors Frank Kragh and Hersch Loomis for

giving me their insights, pointing me in the right directions, and instilling the

needed rigor.

 xxiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

The ability to accurately geolocate an object strictly through the use of its

radio frequency (RF) emission can support blue force tracking, aid in locating a

downed airman, or allow tracking of some object. The numerous techniques

which exist to determine the locations of an adversary’s signal emitters all involve

solving a geometry problem by measuring angles, distances (or differential

distances), or otherwise defining relationships in some geometry [1]. While some

of these techniques are based solely on measuring the angle of arrival for peak

energy detection and are thus waveform independent, others involve measuring

the precise time and frequency of arrival of the signals [1], [2]. This thesis

examines the effect of waveform parameters on the ability to accurately make

these estimates.

When those desiring to geolocate the transmitter also control the design of

the transmitter, the waveform should be optimized to support detection and

geolocation within the imposed constraints. Examples of systems in which

special waveforms are used to support geolocation are navigation systems such

as Loran or GPS, which transmit specially designed signals from multiple

emitters of known location to allow a receiver to determine its location [2]. This

thesis describes the complementary process of geolocating a single emitter using

multiple collectors.

A goal of the research was to determine the waveform features one

should consider in designing a waveform. These concepts were then applied to

develop several example waveforms to demonstrate the effect of each of these

parameters and to show how these parameters can be traded off to vary

performance.

This analysis makes use of the cross ambiguity function (CAF), which is

described later and is a method used to determine the time difference of arrival

 2

(TDOA) and frequency difference of arrival (FDOA) between a signal received by

collectors at two locations. [3], [4], [5], [6]

B. OBJECTIVE

The objective of this thesis is to identify the major considerations when

designing waveforms to support geolocation and also to develop an

understanding of expected geolocation performance where one cannot control

the waveform. A waveform should optimize detectability (by the desired

collectors) and estimation of the key parameters, time of arrival (TOA) and

frequency of arrival (FOA). This optimization must be bounded by real world

limitations such as power, bandwidth, and acceptable level of observability by an

adversary [15]. Conversely, one could also use the information to minimize the

geolocation accuracy of an emission.

Several key assumptions had to be made in this thesis. The first

assumption is that multipath does not exist and the only channel impairment is

additive white Gaussian noise (AWGN). The second assumption is that the

signal is to support geolocation based on a single transmission burst which is

received by multiple time-synchronized geographically dispersed collectors all

having line of sight visibility to the emitter but no angle of arrival (AoA)

capabilities. The final assumption is that the emitter and collectors will undergo

very limited relative motion during the burst, and each collector has perfect

knowledge of time (i.e., it is coherent with the others) and its own location and

velocity.

Chapter V of this thesis proposes several different example waveforms to

demonstrate the effects of these features and estimates expected performance

of each. Simulations were performed, and the results were compared with

theoretical performance estimates.

 3

C. RELATED WORK

This thesis takes advantage of the theoretical work done by Stein [3] on

the cross ambiguity function (CAF), which can be used to estimate jointly the

time difference of arrival (TDOA) and frequency difference of arrival (FDOA)

between signals received by two or more receivers undergoing limited Doppler

effects [4]. If sufficient collectors are used, one may be able to use this

information to estimate the location of an emitter [2]. Stein presents the CAF and

expected accuracy of TDOA and FDOA measurements. This thesis uses [3] to

predict the accuracy of time of arrival (TOA) and frequency of arrival (FOA)

estimates of a signal that is known a priori by the receivers.

Johnson [5] developed MATLAB® software routines both to implement the

CAF and to generate signals as would be received by a pair of independent

receivers in a defined collection scenario. The scenario generator allows the

user to define the location and velocities of an emitter and two collectors, and the

resulting generated signals model the effects of propagation delay, Doppler and

noise. This thesis uses the software developed in [5] the simulations performed.

The signal generator software is used to synthesize the BPSK waveforms

proposed in this thesis, and the CAF algorithms are used to estimate the TOA

and FOA of synthesized signals.

D. THESIS ORGANIZATION

This thesis is organized into seven chapters. Chapter II describes the

basics of geolocation, identifies the key parameters to be estimated, and

discusses figures of merit for geolocation. Chapter III provides a discussion of

the factors and constraints that affect geolocation performance but lie outside the

control of the waveform developer. Chapter IV quantifies expected performance

(e.g., probability of detecting the transmitted burst and standard deviation in the

TOA and FOA measurements) and describes the CAF. Chapter V proposes

several example waveforms, identifying the rationale for selecting them and the

distinguishing features of each. Chapter VI describes the simulation approach

 4

and discusses the MATLAB® code used to perform this processing to assess

deviation in TOA and FOA. Finally, Chapter VII presents the simulation results,

summarizes the findings of this thesis, and discusses possible follow on efforts.

 5

II. THE GEOLOCATION PROBLEM

A. THE EMITTER

For the sake of bounding the problem, several assumptions are made

about the emitter. One basic assumption is that the emitter has no fixed receiver

associated with it and it must be able to operate over a large area with neither

knowledge of its own location nor that of any of the collectors. This leads to the

first assumption: the emitter asynchronously transmits its signal isotropically and

any estimate of its location is based strictly on its radio frequency (RF)

characteristics.

Second, the emitter should have limited observability to reduce its

vulnerability to being detected by an adversary. This topic of low probability of

intercept (LPI) or detection (LPD) goes well beyond the scope of this thesis, but

the most basic guidelines to be followed are to reduce the power spectral density

(PSD) of the signal and to limit the duration and quantity of transmissions. This

thesis addresses geolocation based on a single burst of energy.

Third, the collectors know neither the time of this transmission burst nor its

exact frequency (although, of course, the frequency must exist within some

limited RF band). Each collector does know, however, precise time and its own

location. Variability in the frequency can be a result of oscillator drift.

Fourth, the emitter is assumed to be approximately stationary during the

transmission burst. Although lack of emitter motion may not always be

operationally realistic, this thesis can only briefly discuss the effects of emitter

motion.

Finally, although an emitter would likely need to transmit a limited amount

of data to identify itself and perhaps some condition or state, this thesis is limited

to the case in which the collectors have a priori knowledge of the actual

transmission. Examples of such signals include preambles, synchronization

patterns, and dataless bursts.

 6

B. METHODS OF PASSIVE GEOLOCATION

The various techniques for geolocating an emitter have existed for many

years and all involve solving the geometry between the emitter and the various

collectors. Adamy [1] presents five basic approaches; the first of these is

triangulation, which uses the intersection of lines of bearing from multiple

collectors to estimate the emitter’s location. The next involves measuring the

angle and distance from a single site, such as is done with radar. The third

approach involves making multiple distance measurements (and the variation

using time difference of arrival), which involves finding the intersection of arcs of

known radii from the various collectors. The fourth approach uses two angles

and known elevation differential, which finds the intersection of elevation and

azimuth angles and a known plane (or terrain map). The fifth approach of using

multiple angle measurements by a single moving collector against a stationary or

slowly moving target is really a variation of the first method. Because the various

angle of arrival (AOA) methods are waveform independent, they will not be

discussed in this thesis which is addressing waveform issues and will focus on

the third of these, multiple distance measurements.

Loomis [2] discusses geolocation of emitters using two collection platforms

that make multiple observations of a relatively fixed emitter at various angles

from the emitter. Time difference of arrival (TDOA) measurements between the

two collectors provide a locus of constant TDOA called an isochron (“constant

time”), which in 3 dimensions is a hyperboloid of revolution about the axis joining

the two collectors. The location of the emitter can be estimated by finding the

intersection of the various isochrons, each corresponding to a different

observation. This thesis extends the concept to one in which additional

geographically distributed collectors can each observe a single transmission. An

isochron would then be formed for each pair of collectors, and finding the

intersection of these isochrones leads to an estimate of the emitter location.

Likewise, if the collectors have a velocity large enough that the relative

Doppler frequency offset is significantly greater than that due to measurement

 7

error or emitter motion, the measurements can provide a locus of constant

FDOA, or an isodop (short for iso-doppler). Solving for the intersection of all the

isochrones and isodops provides an estimate of emitter location. In the presence

of measurement error, additional measurements can be made to provide an

overconstrained set of equations, which can then be solved to give a minimum-

least-squares-error estimate of the position. [2]

All the methods to perform geolocation are attempting to solve a set of

simultaneous equations with multiple unknowns. The emitter unknowns are

location (x, y, and z), velocity (in the x, y, and z directions), time of emission, and

exact frequency of emission. The collectors know their own location (x, y, and z)

and velocity (in the x, y, and z directions) and measure the signal’s time of arrival

(TOA) and frequency of arrival (FOA). If the emitter motion is insignificant, only

four unknowns remain, the three position variables and the time of emission. For

example, if the emitter is known (or believed) to be on the surface of the earth,

only three variables remain to be solved (x position, y position, and time) and all

others are known. If the altitude of the emitter is unknown, solving for location in

three-dimensional space requires solving for an additional variable. The Global

Positioning System (GPS) in fact solves for all four of the variables. [2], [7]

GPS consists of multiple satellites, each broadcasting signals containing

precise time and position of the satellites. The time from the various satellites is

accurate enough that they can be considered synchronized. If the GPS receiver

also had this extrememly accurate time, it would be able to calculate directly the

various signal propogation times and thus find its range from each of the

satellites. However, the clock on the receiver has an offset, which adds a bias to

each of these range calculations. These “pseudorange” estimates are thus the

result of the receiver clock error and the time difference of the satellite and

receiver clocks. Because the receiver knows the location of each of the satellites

from the received signal, it is left with four unknowns consisting of the three

position estimates and the receiver clock offset. Receiving the signal from four

satellites allows the receiver to calculate these values. [7]

 8

Whether one views the geolocation problem as a version of Loomis’

intersection of isochrones or as an inverse GPS approach, relative time and the

precise location and velocity of the collectors (or, conversely, the emitters in the

case of GPS) must be known.

C. KEY DETECTION PARAMETERS

The previous section indicated that geolocation is dependent on the

geometry between the emitter and the collectors, something the waveform

cannot control. The waveform, however, does have an effect on the accuracy of

estimates of the time difference of arrival (TDOA) and the frequency difference of

arrival (FDOA) [3].

Although the collectors do not directly measure TDOA and FDOA, they

are assumed to have perfect knowledge of time and can thus make estimates of

the absolute time of arrival (TOA) of the received signal. This time of arrival at

the nth collector nTOA is equal to the time the emission is transmitted txT plus the

propagation time ,prop nT to that collector, ,tx prop n nT T TOA+ = . Because the two

collectors share a common time reference, TDOA (and FDOA) is simply the

difference of the two measurements,

,1 1

,2 2

1 2 1 2

()
tx prop

tx prop

prop prop

T T TOA

T T TOA
T T TOA TOA TDOA

+ =

− + =

− = − =
, (2.1)

and this value can be used to perform geolocation in the manner indicated by

Loomis [2].

Because the focus of this thesis is on the waveform, it identifies those

parameters affecting estimation of TOA, primarily, and FOA, secondarily.

D. FIGURES OF MERIT FOR GEOLOCATION ACCURACY

Inherent measurement errors result in a reduction in accuracy in the

location estimate [1], [2]. Without discussing the sources of these errors, this

section summarizes some of the metrics used to quantify the accuracy of a

 9

geolocation estimate. Because the system accuracies take into account many

factors beyond the inherent limitations of the waveform, and thus go beyond the

scope of this thesis, this information is provided as reference, and waveform

variations are not projected back to geolocation accuracies.

A basic figure of merit for position accuracy is the confidence ellipse, an

ellipse that outlines the area, e.g., on the surface of the earth, containing the

emitter with a probability of 1 eP− and can be computed from an over-constrained

matrix of measurements [2]. Thus one can speak of a “90% confidence ellipse”,

i.e., 10% probability the emitter is really outside this ellipse, or a “50% confidence

ellipse” by defining the center of the ellipse along with the major axis and minor

axis. Thus, a smaller ellipse indicates a greater certainty of emitter position, i.e.,

increased accuracy.

Among other metrics of location accuracy are 2 drms, Circular Error

Probable (CEP), and Spherical Error Probable (SEP). Reference [8] typically

designates accuracy in terms of 2 drms, which is defined as 2 22 N Eσ σ+ when

referring to horizontal positioning where 2
Nσ and 2

Eσ are the variances of the

north and east position estimates respectively. It further states that in actuality,

the percentage of horizontal positions, e.g., on the surface of the Earth,

contained within the area specified by the 2 drms value varies between

approximately 95.5 and 98.2 percent depending on the eccentricity of the ellipse

of the error distribution [8].

The CEP, which specifies the area defined by a scaled ellipse

()0.589 N Eσ σ+ , where Nσ and Eσ are the rms errors in the estimated user

position coordinates along the nort and east axis, and is the same as the

confidence ellipse with 0.5eP = [8]. Although called ‘circular’, CEP is really

elliptical unless the various variances are the same and the angles from the

emitter to the various collectors are all 90º apart from each other as indicated in

 10

Figure 9 [1]. It is sometimes called elliptical error probable (EEP) [1]. If the

positioning errors have a circular normal distribution, then 2 drms = 2.4 CEP [8].

Figure 9 Eccentricity of Ellipse for CEP is Geometry Dependent (after [1]).

SEP defines a volume containing the emitter with a probability of 0.5. As

opposed to the previous measures which define an area on a plane, the SEP

requires the addition of a vertical element and is defined to be ()0.513 N E hσ σ σ+ +

[8] where hσ is the square root of the variance of the height. SEP is truly

‘spherical’ only when N E hσ σ σ= = .

This chapter defined the geolocation problem by identifying assumptions

about the transmission, presenting passive geolocation techniques, identifying

the key detection parameters of TOA and FOA, and listing figures of merit for

geolocation. The next chapter identifies and discusses parameters that can

affect geolocation performance but are not waveform-related.

 11

III. PARAMETERS BEYOND THE CONTROL OF THE
WAVEFORM DEVELOPER THAT AFFECT GEOLOCATION

PERFORMANCE

A. NON-WAVEFORM PARAMETERS TO CONSIDER

The waveform parameters are only a subset of the factors affecting the

accuracy of the geolocation estimate. Among other factors are the collection

geometry (i.e., the geometric relationship between the location of the emitter and

the locations of the various collectors), variations in the propagation delay, clock

errors, and collector location errors.

The position error is highly dependent on the position of the collectors

relative to the emitter. For example, if the distance between an emitter and

collector is large, even a small error in angular estimate can result in a significant

location error as illustrated in Figure 10. As illustrated in Figure 9, the size and

orientation of the confidence ellipse depends on the relative angle between the

emitter and the various collectors.

Figure 10 Relation Between Angular and Location Errors (from [1]).

Analysis of the degradation of geolocation precision due to geometry has

been well developed for the GPS system [9], [10], which is a complement to our

geolocation problem (i.e., multiple emitters received by a single collector vs. a

single emission received by multiple collectors). Spilker [9] shows that geometric

dilution of precision (GDOP) for a three-dimensional position with four satellites

can be minimized by maximizing the volume of a tetrahedron formed by the unit

vectors in the direction of each of the satellites.

Location Error

Distance

Angular Error

 12

Because the scope of this thesis is to perform geolocation primarily on

TOA, the error sources would be expected to be similar to the ranging errors for

GPS. Parkinson [9] identified six classes of these errors:

• Error in knowledge of collector locations and velocities,

• Error in knowledge of the time of emission,

• Ionospheric propagation effects,

• Tropospheric propagation effects,

• Multipath, and

• Receiver sources of error.

These error sources are beyond control of the waveform but would need to be

considered at the system level.

The first two items in the bulleted list above would correspond to errors in

knowledge of the positions and velocities of the collectors and any time reference

errors they may have. As an example of accuracies achievable with the GPS

system, root mean square (rms) ranging errors for GPS (in 1984) attributable to

ephemeris error, the difference between actual satellite location and reported

location, was 2.1 m for satellite ephemeris data up to 24 hours old. Likewise, the

resulting positional error due to clock errors (also in 1984) was 4.1 m for 24-hour

predictions and 1-2 m is expected for 12-hour updates of the GPS clock. [10]

The next two items, ionospheric and tropospheric propagation effects

cause error in the range estimate because of variations in the velocity of light as

the radio signal passes through them, caused by varying number of free

electrons in the ionosphere and variations in temperature, pressure, and humidity

in the troposphere. Ionospheric group delay can be approximated to the first

order by 2

40.3() TECiont f
f

Δ = where TEC is the time and spatially varying total

electron count (sometimes called total electron content) and f is the carrier

frequency [11]. TEC is the total number of electrons in a 1-m2 cross-sectional

tubing along the path of transmission through the ionosphere [11], with units of

electrons per square meter, where 1016 electrons/m² = 1 TEC unit (TECU) [12].

 13

World-wide TEC values can be viewed in near real-time from the Internet [13].

Figure 11 shows an example of one of these TEC maps. Effective accuracies

with simple modeling are about 2-5 m for the ionosphere and about 1 meter for

the troposphere [10].

Figure 11 Example TEC map (from [13])

The magnitudes of the final two sources of error are largely a function of

the receiver design. Although the receiver cannot prevent multipath, the

processing approach can reduce its impact if the signal can be tracked, not

something supported by a burst transmission. As a reference, GPS error is

typically less than 1 m under most circumstances for the multipath and less than

0.5 m for the receiver error. [10]

Parkinson [10] summarizes all these error sources for GPS in Table 2.

Note that he breaks out horizontal & vertical accuracies separately and these

include values for dilution of precision (DOP), which are metrics defining the

degradation from ideal due to geometry and need to be stated to indicate the

assumptions for under which the errors are determined. The two variations of

DOP used in the figure are vertical dilution of precision, VDOP, equal to 2.5 and

 14

horizontal dilution of precision, HDOP, equal to 2.0. Parkinson breaks out each

source of error into components referred to as bias, which is non-zero mean over

a limited time or geographical area, and random which is zero mean. The table

is useful for showing the relative contribution of the various error sources as well

as the absolute values of an example system that estimates location. To give

some context on timing accuracy required, an error of 1 m corresponds to a

timing error of approximately 33 ns using 8

1 m 33 ns.
3 10 m s

dt
c

= = =

Table 2 GPS Standard Errors (from [10]).

 Standard Deviation, m

Error Source Bias Random Total

Ephemeris data 2.1 0.0 2.1

Satellite Clock 2.0 0.7 2.1

Ionosphere 4.0 0.5 4.0

Troposphere 0.5 0.5 0.7

Multipath 1.0 1.0 1.4

Receiver Measurement 0.5 0.2 0.5

User equivalent range error (UERE), rms 5.1 1.4 5.3

Filtered UERE, rms 5.1 0.4 5.1

Vertical one-sigma errors – VDOP=2.5 12.8

Horizontal one-sigma errors – HDOP=2.0

10.2

B. WAVEFORM CONSTRAINTS

The waveform is subject to design constraints that limit the features it may

have and will limit the performance possible. Key limitations include observability

by an adversary, required detection and false alarm rates, and operational

physical considerations.

 15

Observability refers to the ability of an adversary to detect or intercept the

transmitted signal. For signals of low power spectral density, unless an

adversary has knowledge of the signal structure, he cannot do significantly better

than using an energy detector (Figure 12), a power detector followed by an

integrator. In use, the energy detector would be preceded by a bandpass filter

and followed by a thresholder. Another type of energy detector is the two-

receiver correlation radiometer, in which two inputs are multiplied together and

the product is smoothed with a low-pass filter. [15]

Figure 12 Basic Radiometer (after [15]).

The two-receiver correlation radiometer, Figure 13, is similar to the CAF

processing approach (discussed in Chapter IV) in that both have separate

antennas and receiver front ends to allow noise to be independent, and the two

signals are multiplied by each other and undergo low-pass filtering. The CAF

processor, however, allows the time between the signals to be offset and can

compensate for the frequency offset between the two receivers.

Figure 13 Basic Two-Receiver Correlation Filter (from [15]).

 16

The ability of an interceptor to detect a signal depends on not only the

format and strength of the signal relative to the background noise, but also on

how much knowledge he has of the signal and how dedicated he is to detecting

it. Among the knowledge that generally helps detection are carrier frequency,

bandwidth, time, and any fundamental components of the waveform such as PN

code or data bits and timing. Additional features that can make a signal harder to

detect in the presence of noise are time-hopping, frequency-hopping, and

frequency spreading (DSSS or frequency sweep). [15]

Certain features of a waveform may be exploited to increase its

detectability. One technique useful against BPSK modulated waveforms

(including DSSS) of sufficient signal-to-noise is to square the signal and look for

the second harmonic of the modulated carrier. Other techniques exploit the

statistical properties of man-made signals known as cyclostationarity, which

show themselves as periodic components in the mean and autocorrelation

functions in signals of sufficient signal power to noise power ratio (SNR) [16].

In addition to managing the observability of a signal, the waveform

developer must work within the limitations specified for probability of detection dP

(by the desired receiver) within the context of a maximum probability of false

alarm faP , which is covered in more detail in Chapter IV.

Finally, the waveform must operate within the operational limitations such

as power (e.g., battery life) and spectrum allocation. For example, systems often

use constant envelope waveforms because they can be transmitted using with

high power-added efficiency (PAE) amplifiers operating near saturation (e.g.,

traveling wave tube or class “C” devices) [17], but new techniques in non-linear

amplifiers may allow waveform freedom without sacrificing power efficiency [18].

Although many constraints and limitations (both requirements and

“desirements”) are placed upon the waveform, others need to be defined. The

next chapter discusses the effects of waveform parameters on the resulting

performance.

 17

IV. PERFORMANCE ESTIMATES

The previous chapter identified various factors affecting geolocation that

are beyond the control of the waveform (e.g., collection geometry) and

constraints placed upon the waveform (e.g., bandwidth). This chapter identifies

expected performance of a waveform including detection by the intended

receiver and the ability to support accurate estimation of time and frequency of

the received signal.

Determining the TOA and FOA of a signal is a two-step process, first

detecting the signal (i.e., detection) and then estimating the TOA and FOA values

of the detected signal. This chapter develops performance estimates for

detection and false alarm and TOA and FOA estimation.

A. DETECTION

This section develops performance estimates for probability of detection

and probability of false alarm using both a coherent receiver and a non-coherent

receiver. For each type of receiver, the processing is mathematically described

for a BPSK modulated direct sequence spread spectrum (DSSS) signal, the

output statistics are derived, and the performance for detection and false alarm

probabilities are developed in the presence of additive white Gaussian noise

(AWGN).

1. Coherent Detection

Coherent detection is the process of attempting to detect a signal that is

frequency and phase synchronized with the carrier of the receiver [19]. Any loss

of synchronization may degrade performance. Although perfect synchronization

may be an unrealistic real-world situation, it allows the derivation of the optimal

performance.

 18

a. Receiver Processing

Figure 14 shows a coherent receiver where ()r t is the received

signal, ()s t is the reference signal, and X is the resulting decision variable at

the end of each integration time. The received signal ()r t is composed of the

sum of the desired signal ()s t and noise ()n t such that () () ()r t s t n t= + . The

product of the received and reference signals is integrated over the period of

interest and then sampled to produce the decision variable X .

Figure 14 Coherent Receiver (after [20]).

Let the reference signal ()is t be a BPSK modulated direct

sequence spread spectrum (DSSS) signal,

 () () ()2 cos 2ref cs t c t f tπ= , (4.1)

where () { }1,1c t ∈ − is the chip sequence used to modulate the carrier and cf is

the carrier frequency. If the received signal is at the same frequency and in

phase with refs , then

 () () () ()cos 2c cr t A c t f t n tπ= + , (4.2)

in which ()n t is additive white Gaussian noise (AWGN) with power spectral

density (PSD) equal to 0 2N and cA is the magnitude of the signal carrier. The

resulting decision variable X is

()r t

()refs t

()
0

T
dt∫

Τ
X()w t ()x t

 19

() ()

() ()

0

0

sin 4
2 cos 2

4

T

ref

Tc
c c c

c

X r t s t dt

f TA T A c t n t f t dt
f
π

π
π

=

= + +

∫

∫
 (4.3)

which simplifies to

 () ()
0

2 cos 2
T

c cX A T c t n t f t dtπ= + ∫ (4.4)

if 2cf m T= or 1cf T . [21]

b. Decision Variable Statistics

The mean value of the output decision variable X shown in (4.4) is

 () ()
0

2 cos 2
T

c s ncX E A T X Xc t n t f t dtπ⎡ ⎤= + = +⎢ ⎥⎣ ⎦∫ (4.5)

where sX is the contribution to the mean from the signal input ()s t and nX is

the contribution from the noise input ()n t .

 []s c cX E A T A T= = (4.6)
because the signal is deterministic, and

 () () () ()
0 0

02 cos 2 2 cos 2
T T

n c cX E c t n t f t dt E f t dtc t n tπ π⎡ ⎤= = =⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦∫ ∫ (4.7)

because the chip sequence is independent of the noise, which has zero mean.

Thus the mean of X is

 s n cX X X A T= + = . [21] (4.8)

The variance of X is

() () () () ()

() () () ()

()

()

22

0 0

0 0

2 20
0

0 0

0

2 cos 2 2 cos 2

4 cos 2 cos 2

4 cos 2
2

1 4cos

sin 4 ,
4

T T

c c

T T

c c

T

c

T

c

c

c

E X X E c t n t f t dt c n f d

E c t n t f t f dc n dt

N tc t f dt

N tf dt

TfN T
f

σ π τ πτ τ τ

π πτ τ ττ

π

π

π
π

⎡ ⎤ ⎡ ⎤= − = ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

=

= +

= +

∫ ∫

∫ ∫

∫

∫

 (4.9)

 20

using the property of AWGN that () () ()0

2
NE n t n tτ δ τ= −⎡ ⎤⎣ ⎦ [21].

This further reduces to

 2
0N Tσ = (4.10)

if 2cf m T= , where m is an integer, or 1cf T .

The probability distribution of the output X is Gaussian because

()n t is Gaussian and the integration is a linear process, and thus it has the

probability density function

 ()
()2

2

1 exp
22X

x X
f x

σπσ

⎡ ⎤− −⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 [20]. (4.11)

The probability density function (pdf) of the detection variable depends on

whether the signal was transmitted. The variance 2σ is independent of whether

the signal is present (4.9); however, the mean when no signal exists (4.7) is

different from that when the signal is present. Thus, |0Xf and 0m represent the

pdf and mean when no signal is present, and |1Xf and 1m represent the pdf and

mean when the signal is present, where 0 0m = and 1 sm X= . The area under

each of the curves is unity, and they have same width. [22]

c. Probability of Detection and False Alarm

The decision variable statistics allow one to determine the various

detection probabilities. A detection is declared if the decision variable X coming

out of the receiver (Figure 14) exceeds a threshold TV . The probability of

declaring a detection is thus

 () ()Pr
T

T XV
X V f x dx

∞
> = ∫ [22], [23], (4.12)

where TV is the threshold value.

 21

Figure 15 shows the probability density function (pdf) of X when

no signal is present |0Xf and the pdf when the signal is present |1Xf . A detection

is declared both when a signal is present and detected, called a “detection”, and

also when no signal is present but the noise causes X to exceed the threshold

TV , called a “false alarm.” The probability of a false alarm FAP corresponds to the

area to the right of TV under the first curve and shown in gray, and the probability

of a detection dP corresponds to the area to the right of TV under the second

curve, i.e., all the area under the second curve except that in black. The area in

black is 1 dP− and is referred to as the probability of a miss. Thus, increasing the

threshold, i.e., moving TV to the right, reduces the probability of a false alarm

FAP , but it also reduces the probability of detecting a valid signal dP for a fixed

SNR. Conversely, decreasing the threshold increases the probability of a false

alarm FAP but also increases the probability of detecting a valid signal dP for a

fixed SNR. [22], [23], [24]

TV

()|0Xf x ()|1Xf x

x0m 1m

FAP1 dP−

2σ2σ

()Xf x

TV

()|0Xf x ()|1Xf x

x0m 1m

FAP1 dP−

2σ2σ

()Xf x

Figure 15 Coherent Probability Distribution Functions (pdf) (after [22]).

 22

Ideally, one wants to detect all signals (i.e., 1dP =) and have no

false alarms (i.e., 0FAP =), but this is not possible because ()Xf x is never equal

to zero. To reduce this range of ambiguity, either ()Xf x must be narrower by

making σ smaller by reducing the noise, or the difference between them must be

made larger, i.e., increasing the difference between 0m and 1m , by increasing

signal energy [22], [24].

The probability of a false alarm is mathematically defined as

 () ()|0Pr | 0
T

FA T XV
P X V f x dx

∞
= > = ∫ [22], [23] (4.13)

where

 ()
()2

|0 2

1 exp
22

n
X

x X
f x

σπσ

⎡ ⎤− −⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 [22] (4.14)

in which 0nX = as shown in (4.7). Thus

2

2

1 exp
22T

FA V

xP dx
σπσ

∞ ⎡ ⎤−
= ⎢ ⎥

⎣ ⎦
∫ (4.15)

for which no closed form expression exists [23]. However, applying the variable

substitution xλ σ= gives

21 exp

22 T
FA V

P d
σ

λ λ
π

∞ ⎡ ⎤−
= ⎢ ⎥

⎣ ⎦
∫ , (4.16)

which is now the form of the Q-function, which is defined as

2 21()

2 x
Q x e dξ ξ

π

∞ −= ∫ , (4.17)

for which equations to approximate this and lookup tables have been created,

although these approximations and tables assume 0x ≥ [23]. Combining (4.16)

and (4.17) and applying (4.10) leads to the final expression for FAP in terms of the

Q-function as

 23

() ()0

2

0

 ,

FA T T

T

P Q V Q V N T

VQ
N T

σ= =

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

 (4.18)

which mathematically confirms the conclusion reached earlier that the probability

of a false alarm FAP will reduce as the threshold TV increases or as the product of

noise PSD and integration time, 0N T , decreases.

In a similar manner, the probability of valid detection dP is the

probability of declaring a detection when the signal is indeed present,

 () ()|1Pr |1
T

d T XV
P X V f x dx

∞
= > = ∫ (4.19)

where

 ()
()2

|1 2

1 exp
22

n
X

x X
f x

σπσ

⎡ ⎤− −⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. (4.20)

Using (4.8) and the substitution variable ()cx A Tλ σ= − ,

()2

2

2

1 exp
22

1 exp
22

1 .

T

T c

T c

c T

c
d V

V A T

V A T

A T V

x A T
P dx

d

Q

Q

σ

σ

σ

σπσ

λ λ
π

∞

∞

−

−

−

⎡ ⎤− −
= ⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤−

= ⎢ ⎥
⎣ ⎦

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

∫

∫
 (4.21)

.
Finally, substituting (4.10) into (4.21) gives

0

1 c T
d

A T VP Q
N T

⎛ ⎞−
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
, (4.22)

where TV is the detection threshold. Note that the probability of detect dP is

 24

waveform independent and is a function of only the signal amplitude cA , the

noise power spectral density 0

2
N , the integration time T , and the detection

threshold TV .

d. An Example

Suppose one wanted to establish the threshold for a FAP of once

per day for a system with a 1 MHz sampling frequency in which the received

signal will be at the same frequency and in phase with the reference signal. The

detector makes a threshold decisions for each sample. The resulting FAP per

sample is

 11
6

1 day hr sec 1.157 10
day 24 hr 3600sec 10 SFAP −= = × per Sample. (4.23)

One Can solve for TV using (4.18) and a Q-table to find

() () 11
0

0

0

1.157 10

6.685

6.685 .

FA T T

T

T

P Q V Q V N T

V N T

V N T

σ −= = = ×

⇒ =

⇒ =

 (4.24)

Now supposing the requirement is to detect 99% of the emissions, then one can

in a similar manner solve for TV using (4.22), such that

0

0

0

0

1 0.99

0.01

2.325

2.325

c T
d

c T

c T

T c

A T VP Q
N T

A T VQ
N T

A T V
N T

V A T N T

⎛ ⎞−
= − =⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞−

⇒ =⎜ ⎟⎜ ⎟
⎝ ⎠
−

⇒ =

⇒ = −

. (4.25)

 25

Equating the two expressions for TV and solving to find the required

ratio of signal power to noise power SNR using 2
0 02 2cA T N E N SNR= = [24],

where E is the energy in the pulse, gives

0 0

0

2

0 00

2

2.325 6.685

9.01

29.01 2

9.01 2 40.6 16.1 dB.

c

c

c c

A T N T N T

A T N T

A T A T E SNR
N NN T

SNR

− =

⇒ =

⇒ = = = =

⇒ = = =

 (4.26)

2. Noncoherent Detection

The previous section described coherent processing; however, in the real

world, even if one knew the exact frequency of the received signal he would not

know the phase of the signal. This section addresses a non-coherent strategy to

detect a signal of unknown phase.

a. Receiver Processing

The noncoherent receiver shown in Figure 16 consists of two

receiver arms in which the squared outputs are summed and where the

reference signals () () ()1 2 cos 2 cs t c t f tπ= and () () ()2 2 sin 2 cs t c t f tπ= − are

orthogonal [24]. This summed signal is then sampled to provide the decision

variable, or the receiver may take the square root of the summed signal as

shown in Figure 16. The resulting distribution of the decision variable with signal

present is non-central Chi-squared with two degrees of freedom for the case of

the sum of the squares or Ricean in the case where the square root is taken [20],

[23]. The resulting distribution for the case with no signal, i.e., noise only, is

central Chi-squared with two degrees of freedom or Rayleigh for the case in

which the decision variable is the sum of the squares or the square root of this

sum, respectively [20], [25].

 26

()r t
()1s t

()
0

T
dt∫

Τ
X

()2s t

()
0

T
dt∫

()2

()2

Σ

Iz

Qz

2
Iz

2
Qz

2 2
I Iz z+

I-channel

Q-channel

()
1

2

Figure 16 Noncoherent Receiver (after [20]).

b. Probability of Detection and False Alarm

For the detector that is basing its decision on the magnitude of the

signal, i.e., 2 2
I Iz z+ , it can be shown that

 2

1, 2 lnc
d

fa

AP Q
Pσ

⎡ ⎤⎛ ⎞
⎢ ⎥= ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

, (4.27)

where

 () () ()2 2 2
0,Q I e dξ α

β
α β ξ αξ ξ

∞ − +
= ∫ (4.28)

is called Marcum’s Q-function [23].

When the probability of false alarm FAP is small and probability of

detection dP is relatively large, (4.27) can be approximated as

 0 12 lnd
fa

AP F
Pσ

⎡ ⎤⎛ ⎞
⎢ ⎥≈ − ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (4.29)

where

()

()

2 21
2

1

x
F x e d

Q x

ξ ξ
π

−

−∞
=

= −

∫ [23]. (4.30)

 27

Applying (4.29) for 111 10FAP −≈ × and 0.99dP = as in the coherent

example and using an ()F table, such as Table B-1 in [23], gives

11

11

11

12 ln 0.99
1.2 10

12ln 2.33
1.2 10

12.33 2ln 9.4
1.2 10

c
d

c

c

AP F

A

A

σ

σ

σ

−

−

−

⎡ ⎤⎛ ⎞≈ − =⎢ ⎥⎜ ⎟×⎝ ⎠⎢ ⎥⎣ ⎦

⎛ ⎞⇒ − =⎜ ⎟×⎝ ⎠

⎛ ⎞⇒ = + =⎜ ⎟×⎝ ⎠

. (4.31)

Finally, the required SNR can be found to be

()22

2

9.4
44.2

2 2
16.5 dB

cASNR
σ

= = =

≈

[25]. (4.32)

B. FREQUENCY AND TIME ESTIMATION

The previously developed estimates of FAP and dP assumed that the

received signal was at the same frequency, but the signal is likely to have a

frequency offset because of Doppler shifts1 or oscillator drift. This section

addresses the joint detection of time and frequency offset between a received

and a desired signal.

1. The Complex Ambiguity Function (CAF)

The coherent receiver shown in Figure 14 is a matched filter or correlator

receiver and can be mathematically described as

0

() () ()X r t s T t dt
τ

τ τ= − +∫ [24], (4.33)

where T is the integration time and τ is the time offset between signals, provides

the maximum SNR at the filter output when Tτ = in AWGN [24]. Setting t T= in

(4.33) and generalizing for complex variables results in

1 Doppler shift is really an approximation for a “narrowband” signal in which relative motion

exists between the transmitter and receiver. In reality, the Doppler frequency shift varies across
the bandwidth and the modulating signal experiences compression or dilation.

 28

 *

0
() () ()

T
X T r t s t dt= ∫ [19]. (4.34)

Finding the resulting value of τ when searching for a peak magnitude

(i.e.,
max

()X τ) is a reasonable method to find the best approximation of time of

arrival for the signal.

The ambiguity function, sometimes referred to as the complex ambiguity

function [3] or the cross ambiguity function [5], [6], as presented by Stein [3] is

very similar to (4.34), but with the addition of a complex exponential factor is

 () () ()* 2
1 20

,
T j ftA f s t s t e dtπτ τ −= +∫ , (4.35)

where ()1s t and ()2s t are the two received signals in analytic form containing a

common component, while τ and f are arbitrary time lag and frequency offsets.

The similarity of the cross ambiguity function (CAF) (4.35) to the

correlation receiver (4.34) can be shown as follows. Let () () ()12
1 1

j f t
Ls t s t e n tπ= +

and () () ()22
2 2

j f t
Ls t s t e n tπτ= + + where ()Ls t is the complex modulating signal,τ

is the difference in propagation times, 1f and 2f are the respective apparent

carrier frequencies, and ()in t is the noise received by the thi collector. Putting

this all together results in

() () ()

() () () ()

() () () ()

() () () () ()
() () () ()

1 2

1 2

1 2 2

1

* 2
1 20

*2 2 2
1 20

2 2* * 2
1 20

2 2* *
1

2* *
2 1 2

,
T j ft

T j f t j f t j ft
L L

T j f t j f t j ft
L L

j f f t j f t
L L L

j f t
L

A f s t s t e dt

s t e n t s t e n t e dt

s t e n t s t e n t e dt

s t s t e n t s t e

n t s t e n t n t

π

π π π

π π π

π π

π

τ τ

τ

τ

τ τ

−

−

− −

− −

= +

⎡ ⎤ ⎡ ⎤= + + +⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= + + +⎣ ⎦ ⎣ ⎦

⎡ ⎤+ + +
= ⎢ ⎥

+ +⎢⎣ ⎦

∫
∫
∫

2

0

T j fte dtπ−

⎥
∫

, (4.36)

which simplifies to

 () () () ()*

0 L

T

L L SA s t s t dt Rτ τ τ= + =∫ (4.37)

 29

in the presence of no noise and when 1 2f f f= − . The peak amplitude of

ambiguity function occurs when () () () ()*

0
, 0

L

T

L L SA f s t s t dt Rτ τ= + =∫ [23]. Thus,

one can search for the values of τ and f which cause (),A fτ to peak to find

the TOA and FOA of a received signal.

2. Theoretical Performance

Stein [3] presents the expected accuracy of the time difference of arrival

(TDOA) and frequency difference of arrival (FOA) estimates between two signals

in terms of the standard deviation for each. Because, the time of the reference

signal inside the receiver is known and can be declared to be zero, his equations

can take the forms:

 1 1
TOA BT

σ
β γ

= (4.38)

and

 1 1
FOA

eT BT
σ

γ
= (4.39)

where

B is the noise bandwidth at the receiver input,

T is the integration time of the signal,

β is the “rms radian frequency” of the signal spectrum, detailed below,

eT is the “rms integration time” of the signal, detailed below, and

γ is the effective input signal to noise ratio.

Each of these is further defined in [3] as follows. The input signal to noise ratio γ

is calculated using

1 2 1 2

1 1 1 1 1
2γ γ γ γ γ
⎡ ⎤

= + +⎢ ⎥
⎣ ⎦

 (4.40)

 30

where 1γ and 2γ are the signal-to-noise ratio for each of the respective received

signals. By definition, the rms radian frequency β is

 ()
()

1
22

2 s

s

f W f df
W f df

β π
∞
−∞
∞
−∞

⎡ ⎤∫= ⎢ ⎥
∫⎢ ⎥⎣ ⎦

 (4.41)

where ()sW f is the signal power spectral density, as shaped by the receiver and

centered about zero. And the rms integration time eT is

()
()

1
2 22

22e
t u t dt

T
u t dt

π
∞
−∞

∞
−∞

⎡ ⎤∫⎢ ⎥=
⎢ ⎥∫⎣ ⎦

 (4.42)

where ()u t is centered about zero.

The rms radian frequency β is similar to the what is referred to as rms

bandwidth rmsB , defined to be “the square root of the second moment of a

properly normalized form of the squared amplitude spectrum of the signal about

a suitably chosen point,” which is often used because it facilitates mathematical

evaluation better than other definitions of bandwidth [19]. Thus β is 2 rmsBβ π= .

Likewise, the definition for rms integration time eT has a form similar to what is

sometimes referred to in literature as the rms duration rmsT [19], where the

relationship between the two is 2e rmsT Tπ= . This thesis uses the terms laid out by

Stein, β and eT .

For example, if the signal has a flat PSD of amplitude 1 over the spectrum

from 2sB− to 2sB+ , where sB is the signal bandwidth,

()
()

11 2 2222
2
2
2

2 2

1.8
3

Bs
Bs s
Bs

s Bs

s s

f dff W f df
W f df df

B B

β π π

π

∞
−−∞

∞
−∞ −

⎡ ⎤⎡ ⎤ ∫∫ ⎢ ⎥= =⎢ ⎥
⎢ ⎥∫ ∫⎢ ⎥⎣ ⎦ ⎣ ⎦

= ≈

. (4.43)

This leads to

 31

 1 1 0.55 1
1.8TOA

s sB BBT BT
σ

γ γ
≈ = . (4.44)

Likewise, if the signal is constant amplitude over the time interval from

2T− to 2T+ , eT can be shown to be

 1.8
3eT T Tπ

= ≈ , (4.45)

where T is the integration time. This leads to

 1 1 0.55 1
1.8DFO T TBT BT

σ
γ γ

≈ = . (4.46)

Stein points out that the quantity BTγ can be viewed as the effective

output SNR, with γ improved by the BT product of the processing. Because

SNR is defined as 0/sE N and not 0/cE N , this improvement is already taken into

account and thus 1BT = . Also, because the SNR of the reference has no noise,

γ equals twice the SNR of the received signal.

In summary, the accuracy of the estimates of TOA and FOA generally

improve with increased SNR, bandwidth, and integration time. Because TOAσ is

dependent on the rms radian frequency, which is different but related to

bandwidth, shaping a waveform may improve the accuracy of TOA estimates

without requiring more signal energy or bandwidth. The next chapter applies

these equations and concepts to propose waveform variations with improved

geolocation performance.

 32

THIS PAGE INTENTIONALLY LEFT BLANK

 33

V. PROPOSED WAVEFORMS

In the previous chapter, equations (4.38) and (4.39) indicated the

accuracies for the estimates of TOA and FOA are a function of the Time-

Bandwidth-SNR product TBγ along with the rms radian frequency β or rms

integration time eT for the TOA or FOA, respectively. This chapter proposes

several waveforms of the same signal energy sE but shaped in the time and

frequency dimensions to improve (or degrade) these last two parameters.

The waveforms presented are direct sequence spread spectrum (DSSS)

to reduce the power spectral density for reduced observability, to provide

interference rejection, and to increase the bandwidth to improve the TOA

estimation. DSSS is typically a BPSK-modulated chip sequence and is the basis

for the reference waveform. Variations of this signal are proposed giving three

classes of waveforms: BPSK-modulated waveforms, filtered BPSK-based

waveforms, and spectrally constrained waveforms based on sinc-shaped chips.

The performance of the various waveforms is to be compared against the

reference BPSK waveform of constant amplitude and duration, waveform #1,

unless otherwise indicated. The amplitude of the various waveforms are

normalized so the total energy of a signal is the same as the reference.

Bandwidth is referenced to the null-to-null bandwidth of the signal nnB .

Table 3 summarizes the key parameters of the waveforms proposed in

this chapter. The ‘WF#’ column lists the designator for the waveform and the

next column lists the respective name. The first four waveforms are the BPSK-

modulated waveforms, and the following set use the respective designator

followed by an ‘F’ to designate filtered version of the waveform. An additional

letter such as ‘a’, ‘b’, or ‘c’ may also be appended to designate variations that

use different chipping rates. The next two columns present the rms radian

frequency β and the rms duration eT . These values were determined from

waveforms generated using 30720N = samples (S), 100sf = kS/s, carrier

 34

frequency 25cf = kHz, and the chip rate cR specified in the last column of the

table. The fifth column presents the approximate null-to-null bandwidth nnB of

the signal. The asterisk associated with the first four is a reminder that the

bandwidth of these signals is really infinite. Finally, the sixth column identifies

whether the signal can be generated using the gen_sig MATLAB code which can

simulate the effects of a dynamic collection geometry. All of the waveforms

produced have the same duration, 0.31 s, and energy. Except for the first four

waveforms, the energy is mainly constrained to nnB listed in the 5th column of

Table 3. The simulations to estimate the TOA and FOA were performed under

various levels of SNR.

Table 3 Waveform Summary Table.

WF# Name rms rad. Freq. (rad/s) rms duration (s) Bnn (kHz) gen_sig comments
1 Reference 23622 0.5572 8* Yes Rc=4kcps
2 Time Gap 23226 0.8473 8* Yes Rc=4kcps
3 Split Spectrum 26310 0.5572 8* Yes Rc=4kcps
4 Shortened Pulse 24101 0.1393 8* Yes Rc=4kcps

1F Filtered Reference 8506 0.5577 8 Yes Rc=4kcps
1Fa Filtered Reference 2031 0.5606 1 Yes Rc=1kcps
1Fb Filtered Reference 4261 0.5581 2 Yes Rc=2kcps
1Fc Filtered Reference 17039 0.5576 16 Yes Rc=8kcps
2F Filtered Time Gap 8434 0.8482 8 Yes Rc=4kcps
3F Filtered Split Spectrum 14463 0.558 8 Yes Rc=4kcps
4F Filtered Shortened Pulse 8655 0.1381 8 Yes Rc=4kcps
11 Sinc WB 45569 0.5567 25 No Rc=25kcps
12 Sinc MB 22616 0.5571 13 No Rc=12.5kcps
13 Sinc NB 11221 0.5581 6 No Rc=6.25kcps
14 Sinc VNB 5578 0.555 3 No Rc=3.1kcps
15 Sinc UNB 2753 0.5511 2 No Rc=1.5kcps
16 Sinc ENB 1460 0.5526 1 No Rc=0.75kcps
17 Sinc - 8.3kcps 14968 0.558 8 No Rc=8.3kcps

Figure 17 shows all the proposed waveforms and how each of the

different waveforms compare with each other regarding the two main parameters

affecting geolocation accuracy. The circle is at the location determined by these

values and the waveform designator is placed beside the respective circle.

Improved geolocation accuracy is supported for waveforms in the upper right

corner of the plot and reduced performance in the lower left. More specifically,

increased values of β lead to improved estimates of TOA and increased values

of eT lead to improved estimates of FOA.

 35

Figure 18 shows a subset of the waveforms that have their energy

constrained to 8nnB = kHz. These were selected to better illustrate how

waveform shaping can affect the key parameters under the constraint of signal

power, transmission duration, and occupied bandwidth. Based on this figure, an

ideal waveform (from a geolocation accuracy viewpoint) would have features of

filtered waveforms #2 and either #3 or #17.

Figure 17 Scatter Plot of Waveform Parameters for All Waveforms.

 36

Figure 18 Scatter Plot of Parameters for Waveforms with 8nnB = kHz.

The remainder of this chapter presents details on the waveforms to be

processed using the simulations described in the next chapter. Chapter VII

presents the results of these simulations.

A. BPSK WAVEFORMS

The first four waveforms (waveforms #1-4) are BPSK modulated and are

of the same duration (from beginning to end of the waveform). They consist of

• a constant amplitude waveform (#1),

 37

• amplitude modulated versions of the baseline that disable transmission either
during the middle of a pulse (waveform #2) or at the beginning and end of the
pulse (waveform #4)2, and

• a waveform made up of two narrower band BPSK signals spaced in
frequency so the composite waveform has the same null-to-null bandwidth as
waveform #1.

Waveforms #1 through #4 have the same energy sE , null-to-null bandwidth nnB ,

and time duration T . The difference between the waveforms is that they are

shaped to improve (or degrade) the rms integration time and/or the rms radian

frequency.

The BPSK waveforms are produced by MATLAB code based on

sig_gen.m developed by Johnson [5]. The main feature of this code is that it

generates a BPSK signal from a randomly generated bit sequence and projects it

out to two collectors based on a defined geometry (emitter and collector

locations) and velocities, thus properly modeling Doppler effects. The BPSK

modulator parameters include:

• carrier frequency 0f ,

• sampling frequency sf ,

• total number of samples N , and

• symbol rate sR , i.e., bit rate for BPSK, which is really the chip rate in this
application.

The BPSK waveforms used the following parameters: 30720N = Samples (S),

100sf = kS/s, and sR was nominally 4 kchips/s but was varied for some runs. In

addition, 0 20f = kHz was used for the simulations but was set to 25 kHz for the

plotting of the waveforms and calculations of eT and to better compare with the

final set of waveforms in which 0 4sf f= . The duration of the waveform can be

found using these values to be

2 Although this latter waveform could be considered a pulse of different duration from the

others, it can also be considered one of the same duration in which the amplitude is zero at the
beginning and ends.

 38

 30720 S 0.3072 s
100 kS/ss

NT
f

= = = (5.1)

The number of chips transmitted during this period is

 4 kchips_ 0.3072 s 1228 chips
ssno chips R T= = = (5.2)

The plots shown for the different waveforms are from the analytic signal as

implemented in the simulations. The analytic signal is generated by taking the

Hilbert transform of the real signal [5], which results in a complex waveform with

no negative frequencies. This feature is needed by the CAF process but is also

is useful for presenting the single-sided power spectral density (PSD).

Measurements of the rms bandwidth of a representative signal

corresponding to each of the waveforms shows β to be on the order of 25,000

radians/second for all four waveforms. The waveform variations do, however,

affect the rms duration eT which ranges in value from 0.14 to 0.85 seconds.

1. Waveform #1 – “Reference Waveform”

Waveform #1, the reference waveform, is a BPSK modulated DSSS signal

of unity amplitude. Figure 19 plots the instantaneous power of the signal as a

function time over the entire waveform in the upper plot and for a shorter time

segment in the lower plot. Recognizing that the signal is complex, the signal

power is the square of the signal magnitude

 2
sP s= . (5.3)

Except for the small glitches, which can be better seen in the lower plot, the

signal power has unity magnitude. These glitches occur at the chip transitions

and are caused by the limited bandwidth inherent in the digital signal. This

bandwidth limitation removes the higher order frequencies that make up the

rectangular modulation pulses [19].

 39

The rms integration time eT can be calculated for this constant amplitude

signal using (4.45) for the signal of duration 0.3072T = s, from equation (5.1),

giving

 1.8 0.55eT T s= = . (5.4)

This compares favorably with the value displayed at the top of Figure 19,

“ 0.5572eT s= ”, which was calculated from the digitized waveform using equation

(4.42) by summing the waveform power weighted by time from the central time,

and dividing this by the sum of the unweighted waveform power, or signal energy

sE .

Figure 19 Waveform #1 – Power vs. Time.

In the frequency domain, modulation is equivalent to the Fourier transform

of the modulating signal shifted by the frequency of the carrier which for

rectangular pulses is represented as

 40

 () () (){ }rect cos 2 sinc sinc
2c c c

t Tf t T f f T f f
T

π⎛ ⎞ − + +⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎝ ⎠
 (5.5)

where rect t
T
⎛ ⎞
⎜ ⎟
⎝ ⎠

 is a pulse of unit amplitude and width T centered about 0t = ,

()cos 2 cf tπ is the carrier with center frequency cf , and t and f are time and

frequency, respectively [19]. Because instantaneous power is the square of the

signal, the PSD takes on a shape of the form ()2sinc cf f− which can be seen in

Figure 20, which is a plot of the PSD generated by squaring the magnitude of the

signal’s fast Fourier transform (FFT) and normalizing by the number of samples

and sampling frequency [27].

Figure 20 Waveform #1 – Power Spectral Density.

Note that the signal shows some distortion from a sinc-type function which

has infinite bandwidth. Because this was generated digitally, those frequency

components greater than 2sf form aliases which are mapped back into this

 41

range [26]. This aliasing is evident in the distortion of the lobes at the edges of

the spectrum as the higher frequency lobes fold back upon the lower frequency

components filling in some of the nulls.

This PSD, which is basically of the form

 () () () 2

2 sin
sincs

f
W f f

f
π

π
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

, (5.6)

when inserted into (4.41) gives it the form

()
()

()
()

()

()

1
22

1
22

2
2 2

1
2 2

2 2

1
22

2

sin
2

sin
=2

2= sin

s

s

f W f df
W f df

f
f df

f k

f
df

k

f df
k

β π

π
π

π

π
π

π

π

∞
−∞
∞
−∞

∞
−∞

∞
−∞

∞
−∞

⎡ ⎤∫= ⎢ ⎥
∫⎢ ⎥⎣ ⎦

⎡ ⎤
= ⎢ ⎥∫

⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥∫
⎢ ⎥⎣ ⎦

⎡ ⎤∫⎣ ⎦

 (5.7)

where ()2
sk W f df∞

−∞= ∫ is a normalizing factor. Using the equality

2 1 1sin sin 2
2 4

udu u u C= − +∫ [28], results in

1

22 1 1 sin 2
2 4

u u
k

β
π

∞

−∞

⎧ ⎫⎪ ⎪⎡ ⎤= − = ∞⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭
, where 0k ≠ . (5.8)

Thus, if one had an infinite bandwidth collector, any pure BPSK modulated

signal, exhibiting a sinc-squared power spectral density, would yield no TOA

error.

In the real world, however, a collector has limited bandwidth, and thus a

non-zero value for β exists. A wider bandwidth collector will cause β to be

larger resulting in better TOA accuracy using (4.38).

Finally, one last feature to notice in Figure 20 is the rectangular box

showing Hzβ+ − , which is the rms radian frequency β converted from radians to

 42

Hz. β was numerically calculated from the generated waveform and displayed

in the title. The amplitude of this rectangle has no meaning and is included only

to allow the bandwidth to be better visualized. For this waveform, Hzβ

coincidently falls at approximately the frequency of the first null.

Another feature of a waveform is its autocorrelation, which indicates

significance in both the shape of the peak and in the height of minor correlations

relative to the peak. Figure 21 shows the autocorrelation R of waveform #1, with

sufficient lags to cover the entire waveform in the left plot and with fewer lags in

the right plot to see the shape of the correlation near the peak. The MATLAB

xcorr function, which was used to compute these values, by default computes

raw correlations with no normalization using

1
*

^
0

 ^ *

0
()

() 0

N m

n m n
nxy

yx

x y m
R m

R m m

− −

+
=

⎧
≥⎪

= ⎨
⎪

− <⎩

∑
 (5.9)

but the ‘coeff’ option was applied to normalize such that the autocorrelations at

zero lag are “identically 1.0” [29]. Because the correlation R is a power, the

value was converted to decibel scale using

 1010 logdBR R= . (5.10)

If the signal were truly noise-like (AWGN), the its autocorrelation would

approach that of white noise ()N t which is zero everywhere except at lag equal

zero

 () () ()0 2NNR Nτ δ τ= [23]. (5.11)

Values of τ where ()NNR τ is not equal to zero represent hidden periodicities in

the signal. DSSS signals can be made noise-like by using m-sequences of

length l in which the correlation is constant near zero except at lag zero were the

correlation value is l or by using other codes which, while not as good,

approximate the noise-like property of equation (5.11) [21].

 43

As can be seen in Figure 21, minor correlation peaks are only 12-13 dB

below the peak correlation because the signal did not transmit the full length of

the reference m-sequence3 [30]. These artifacts create a type of noise floor that

reduces the margin of discrimination. The correlation performance of this

waveform should be able to be improved significantly. This waveform used the

first 1228 chips (per equation (5.2)) from a 65,535 bit m-sequence. Matching the

number of bits transmitted to the number of bits in an m-sequence [30] should

give optimal performance [21]. A 1023 –bit m-sequence should have better than

30dB between the peak and the floor with no minor correlation peaks.

Figure 21 Autocorrelation of Waveform #1.

3 No attempt was made to match the length of the m-sequence to the no. of chips

transmitted.

 44

2. Waveform #2 – “Time Gap”

The second waveform is designed to improve the rms integration time eT

of waveform #1. Equation (4.42) shows that shaping the pulse by moving the

power from the middle of the waveform to its beginning and end should increase

eT . Waveform # 2 does this by inhibiting transmission of the signal during the

central ¾ of the waveform and transmitting this power during the remaining ¼ of

the time, as shown in the upper plot of Figure 22. The lower plot in this figure

shows that the signal is still constant power (while transmitting) but is 6 dB higher

(i.e., 4 times stronger) to have the same signal energy as waveform #1. The rms

integration time eT is almost 0.85, as seen in the title of the upper plot, an

increase of almost 50% over the reference waveform without an increase in

actual transmit time which has not changed.

Figure 22 Waveform #2 – Power vs. Time.

 45

Because the chip rate is identical, no significant difference should be

expected in bandwidth. Indeed, Figure 25 shows the resulting PSD and rms

bandwidths are basically the same as seen for waveform #1.

Figure 23 Waveform #2 – Power Spectral Density.

The width of the peak autocorrelation for waveform #2 (right plot of Figure

24) is similar to that for waveform #1, but the minor correlation peaks are now

within 10 dB of the peak, consistent with the fact that fewer chips are being

transmitted. Note that the correlation peaks near the edges of the waveform (i.e.,

at larger lags) are approximately four to 5 dB higher that seen in Figure 21 at

similar lags.

 46

Figure 24 Waveform #2 – Autocorrelation.

3. Waveform #3 – “Split Spectrum”

Just as waveform #2 increased eT without actually increasing the total

transmit duration, waveform #3 attempts to increase the rms radian frequency β

without actually increasing the null-to-null bandwidth nnB . Examining (4.41), one

notices that moving the energy from the middle of the spectrum to the outer

edges (but still within nnB) should increase β without consuming additional

bandwidth.

Waveform #3 is created from the addition of two BPSK waveforms, each

chipped at half the specified chip rate and offset from the nominal center

frequency by half the chip rate, as seen in PSD (Figure 25), and it is described by

 47

 () ,1 ,2cos 2 cos 2
2 2

c c
i c i c

R Rs t k c f t c f tπ π
⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= + + −⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎩ ⎭

, (5.12)

where ,1ic and ,2ic are the is the chip sequence modulated onto each of the two
offset subcarriers, cf is the carrier frequency, cR is the chip rate, and k is a
normalizing factor to set signal power.

Figure 25 Waveform #3 – Power Spectral Density.

Using the trigonometric identity

 () ()1cos cos cos cos
2

x y x y x y= + + −⎡ ⎤⎣ ⎦ [31] (5.13)

and letting ,1 ,2i i ic c c= = , equation (5.12) can be rewritten as

 () ()2 cos 2 cos 2
2

c
i c

Rs t kc ft tπ π⎛ ⎞= ⎜ ⎟
⎝ ⎠

, (5.14)

which is identical to the BPSK signal modulated by a tone at half the chip rate.

This modulation of the BPSK is evident in the time domain, Figure 26, where it

 48

can be seen in the bottom plot that amplitude of the signal is no longer constant.

The glitches, corresponding to the chip transitions, occur as expected at one

millisecond apart, which is equal to the inverse of half the chip rate used, 2000

chips per second. Also note that the peak power is four times that of waveform

#1. No attempt was made to form this waveform such that the chip transitions

occur at a null, nor to assess whether doing this would reduce spectral artifacts.

Figure 26 Waveform #3 – Power vs. Time.

The autocorrelation of waveform #3, Figure 27, shows the magnitude of

the minor sidelobes are higher than waveform #1 but lower than waveform #2.

This is consistent with the fact that the number of chips contained within a

transmission is half that of waveform #1 and twice that of waveform #2, because

both subcarriers are modulated by the same sequence. The structure around the

peak correlation shows the main lobe to be quite narrow, but it has several strong

 49

sidelobes around it. Whether this is because the two constituent signal used the

same chip sequence has not been investigated.

Figure 27 Waveform #3 – Autocorrelation.

4. Waveform #4 – “Shortened Pulse”

Waveform #4 is the complement to waveform #2; however, instead of

pushing the signal energy from the center out toward the front and back, it brings

the energy form the two ends back to the middle as can be seen in Figure 28. As

in waveform #2, the duty cycle is only one quarter of waveform #1 leading to a

commensurate increase in peak power to maintain constant signal energy.

 50

Figure 28 Waveform #4 – Power vs. Time.

The PSD of waveform #4 (Figure 29) is similar to waveform #1 because

the signal has the same modulation and chip rate as waveform #1. The PSD

should not be expected to be identical because the signal duration is shorter than

that of waveform #2 and uses fewer chips; the corresponding short-term statistics

causes minor variations between the two waveforms. Likewise, the amplitude of

the autocorrelation minor peaks (Figure 30) are similar to those of waveform #2

which has similar duty cycle, although variation do exist because of differences in

the chip sequence used.

 51

Figure 29 Waveform #4 – Power Spectral Density.

 52

Figure 30 Waveform #4 – Autocorrelation.

B. FILTERED BPSK WAVEFORMS

The measured values for the rms radian frequency β did not vary much between

the BPSK waveform types because the relatively slow roll-off of power for the

signal sidelobes. Instead these values were limited by the bandwidth of the

collector, which in our case was half the sampling frequency, i.e., 2sf . A real-

world collector does not have infinite bandwidth but is usually limited by the

signal it needs to collect. This section limits the occupied bandwidth of the signal

to the null-to-null bandwidth nnB of the signal, because this bandwidth contains

most of the signal power and is the most popular measure of bandwidth for digital

communications [24]. This bandwidth is

 2 2nn c
c

R
T

β = = . (5.15)

 53

A new set of waveforms, filtered waveforms #1-4, correspond to the

original waveforms #1-4 which have been filtered to remove components outside

the null-to-null bandwidth nnB . Filtering was performed by taking the FFT of the

analytic signal, setting to zero the value of all bins corresponding to being outside

nnB , taking the inverse FFT (IFFT) of this, extracting the real component of this

signal, and scaling the signal so the total energy is the same as waveform #1.

Filtering the signals did not affect the respective rms duration eT , which

ranges in value from 0.14 to 0.85 seconds for the four waveforms. The rms

radian frequency β , however, for the filtered signals range from 8500 to over

14,000 radians/second for a reference waveform at 4000 chips per second, 4

kc/s, as compared with approximately 25,000 for all the unfiltered waveforms..

1. Filtered Waveform #1 – “Reference Waveform”

Figure 31 shows the PSD of filtered waveform #1 chipped at 4 kcps. The

rms radian frequency β is approximately 8500 radians per second, about one-

third the value for the unfiltered waveform #1 with the sampling frequency sf of

100 ksamples/second.

Because the higher frequency components of the signal are removed, the

amplitude of the signal is no longer constant over time (Figure 32) with deeper

and wider nulls at the chip transitions along with additional peak power required

to compensate for this loss. The autocorrelation shown in Figure 33 is very

similar to the corresponding unfiltered version shown Figure 21, except that the

sharper features are rounded. Because the autocorrelation of the filtered

waveform is so similar to that of the corresponding unfiltered waveform, the

autocorellation plots for the remaining waveforms are not shown.

 54

Figure 31 Filtered Waveform #1 – Power Spectral Density.

 55

Figure 32 Filtered Waveform #1 – Power vs. Time.

 56

Figure 33 Filtered Waveform #1 – Autocorrelation.

2. Filtered Waveform #2 – “Time Gap”

The PSD of filtered waveform #2 as shown in Figure 34 is very similar to

the filtered waveform #1 just discussed, and again β is approximately 8500

radians per second4. The waveform also exhibits the deeper and wider nulls at

chip transitions along with the additional peak power required to compensate for

this loss (Figure 35).

4 The different values measured for β can be attributed to the fewer chips transmitted.

 57

Figure 34 Filtered Waveform #2 – Power Spectral Density.

 58

Figure 35 Filtered Waveform #2 – Power vs. Time.

3. Filtered Waveform #3 – “Split Spectrum”

The PSD of filtered waveform #3 (Figure 36) is similar to the unfiltered

waveform #3 (Figure 25) but with the removal of any significant energy outside

the nnB . The resulting rms bandwidth ends up occurring at the subcarrier

frequencies, as can be expected, because half the energy occurs within this

frequency range and half outside as can be readily observed in Figure 36. The

rms radian frequency β is approaching 15,000 radians per second, almost 70%

higher than waveform #1 without consuming more bandwidth.

The removal of this out of band energy, however, affects the signal in the

time domain. The peak power for each of the peaks varies (Figure 37), and the

peak amplitude of the signal is higher to compensate for this variability,

sometimes approaching close to 10 dB above that required for waveform #1. A

 59

pair of shorter pulses coincides with each chip transitions, which occur at the

peak of the signal. Timing the chip transition to occur at the null of the signal

such as by modifying (5.14) to instead be

 () ()2 cos 2 sin 2
2

c
i c

Rs t kc ft tπ π⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (5.16)

might restore the pulses to the same amplitude and duration, regardless of

whether a chip transition occurs.

Figure 36 Filtered Waveform #3 – Power Spectral Density.

 60

Figure 37 Filtered Waveform #3 – Power vs. Time.

4. Filtered Waveform #4 – “Shortened Pulse”

The PSD of filtered waveform #4 as shown in Figure 38 is very similar to

the filtered waveforms #1 and #2, and again β is on the order of 8500 radians

per second5. This filtered waveform also exhibits nulls that are deeper and wider

at chip transitions than for the unfiltered waveform, along with the additional peak

power required to compensate for this loss as can be seen in Figure 39.

5 The different values measured for β may be attributable to the fewer chips transmitted.

 61

Figure 38 Filtered Waveform #4 – Power Spectral Density.

 62

Figure 39 Filtered Waveform #4 – Power vs. Time.

C. SHAPED CHIP WAVEFORMS

A different method from the BPSK signal generator is used to create the

waveforms. Recognizing this thesis is assessing the performance of waveforms

only in a static collection geometry, arbitrary waveforms can be created and

used. Although these waveforms cannot be used in the scenario based

generator developed by Johnson [5], they can be effective in assessing

performance of different waveforms.

Instead of modulating the carrier with rectangular pulses (chips) as is done

for the previous waveforms, this class of waveforms modulates the carrier with

sinc shaped pulses to constrain the energy to a limited bandwidth. Applying the

Fourier duality and dilation properties to (5.5) gives

 63

 []Asinc 2 rect
2 2
A fWt
W W

⎛ ⎞
⎜ ⎟
⎝ ⎠

, (5.17)

which shows that because the Fourier transform of a sinc pulse is is zero for

f W> , modulating with a sinc pulse results in a signal that has all its energy

constrained within 2W [19].

As can be seen in Figure 40, the sinc has its peak at a lag of zero and is

zero at lags corresponding to other chip transitions. This particular sinc function

has 12 samples per chip and extends out to five chips (it is actually infinitely long,

but it is reasonably well approximated over a limited time duration), thus it

represents a chip rate of 12 8333sf = chips per second. Because the sinc

function extends well beyond the particular chip, the transmitted signal is the

superposition of all the overlapping sinc functions, which in this case would be

ten because that is the length of this particular example. This combined signal is

created by passing the impulses corresponding to the chips through a finite

impulse response (FIR) filter which has the impulse response shown in Figure

40.

 64

Figure 40 Sinc Function.

Figure 41 shows the PSD of a carrier at 4sf modulated by the

rectangular pulses and sinc pulses. Almost all the energy in the sinc modulated

signal is contained in half the null-to-null bandwidth nnB of the BPSK modulated

signal, and the sidelobes roll-off much more quickly.

 65

Figure 41 PSD of Rectangular and Sinc Modulated Signal.

Waveform #17 applies the impulse response shown in Figure 40 to the

same chip sequence used in the earlier waveforms to generate a signal

occupying about the same null-to-null bandwidth nnB as the other waveforms (at

4000 chips per second).

The corresponding rms radian frequency is about 15,000 radians per

second (Figure 42), slightly better than the filtered waveform #3 and without the

tell-tale double hump of Figure 36. The time domain plots (Figure 43) show that

slightly less peak power is required to send waveform #17 with the same energy

as waveform #3 (Figure 37). The autocorrelation of waveform #17 (Figure 44)

shows the peak minor correlations are at a lower level than for the filtered

waveform #3, probably because more chips are transmitted.

 66

Figure 42 Waveform #17 – Power Spectral Density.

Shaping the chips is very effective in constraining the frequency and can

reduce or eliminate the need to filter the signal. The PSD of the filtered

waveform #17 (Figure 45) is fairly similar to the filtered signal and the time

domain plots (Figure 46) show negligible difference between filtered and

unfiltered versions. Because of this, the simulations use only the unfiltered

version of waveform #17.

 67

Figure 43 Waveform #17 – Power vs. Time.

 68

Figure 44 Waveform #17 – Autocorrelation.

 69

Figure 45 Filtered Waveform #17 – Power Spectral Density.

 70

Figure 46 Filtered Waveform #17 – Power vs. Time.

Other waveforms were produced using different numbers of samples per

chip to generate different bandwidth signals of the same duration. The relative

efficacy of these various waveforms to support accurate geolocation are

compared using the results of the simulations discussed in Chapter VI.

 71

VI. SIMULATION SOFTWARE

This chapter presents the overall processing performed by the

simulations, describes the MATLAB routines developed or modified, and

discusses scripts developed to perform specific simulations. The next Chapter

explains the results of the simulations of the various waveforms, and the

appendix lists the code from the various MATLAB m-files.

A. SIMULATION OVERVIEW

The purpose of the simulations was to compare the TOA and FOA

performance that could be achieved by the different waveforms under various

SNR levels, where SNR is 0sE N . The figure of merit used to assess

performance is the standard deviation of the TOA and FOA estimates for the

signal calculated across the different realizations of noise at a given level.

The simulations are run for variations of waveforms to first compare the

performance of the filtered vs. the unfiltered BPSK-based waveforms (i.e.,

unfiltered and filtered waveforms #1-4). Next, the reference waveform and the

shaped chip waveforms (i.e., waveform #1 and waveforms #11-16) are

compared. Finally, finally the bandwidth constrained waveforms (shown in

Figure 18) are compared along with the reference waveform at various chip

rates. Unless otherwise specified, the chip rate used is 4cR = kcps to maintain

the same collector bandwidth, which is defined to be the null-to-null bandwidth

nnB .

The main reason code from [5] was chosen was to allow the simulations to

be performed in dynamic collection scenarios to assess detection performance of

a moving target by a single collector. The code generates a BPSK signal and

projects this waveform onto two different collectors at specified locations and

velocities. This enables one to synthesize signals that have time and frequency

offsets as one would have when performing a matched filter detection between a

 72

known reference signal and a distorted received signal. The reference, or basis,

waveform s corresponds to the signal received by one of the static collectors,

and the received signal r corresponds to the signal received by the other

collector. Because the simulations performed in this thesis are static, the two

collectors are at the same location and have no velocity and the emitter has no

velocity. Thus the generator produces two signals with zero time difference of

arrival (TDOA) and zero frequency difference of arrival (FDOA). The simulation

would support future analysis involving moving collectors and/or emitter.

The core of the simulation is the MATLAB code main_simulation.m, which

loads in various parameters to define the reference and received signals,

generates these signals, iterates over a number of noise realizations that are

added to the noiseless received signal, and processes each iteration to find the

TOA and FOA values that give a peak CAF output. The resulting array of TOA

and FOA values can then be processed by the script

display_toa_foa_v_snr_and_prep_data.m, which computes and plots the mean

and standard deviation for the TOA and FOA at each SNR value for that

waveform. These values for each waveform are renamed to a unique variable

name (e.g., WFname.stat_summary_array) that is then saved in a MATLAB mat-

file of the same name for use by the MATLAB script

script_toa_foa_v_snr_across_runs_mrkrs.m, which generates the plots

containing multiple waveforms shown in the next chapter.

Figure 47 shows a high-level view of the MATLAB code written or modified

for this effort. The m-files, which are shown in the boxes, fall into two basic

categories, scripts shown on the left side and routines shown on the right. The

script files are custom written for a particular set of simulation runs, and the

routines are code that accepts configurations and should not need to be modified

to perform different runs. In addition, some of the mat-files are shown along with

arrows to indicate source and destination of the data. Note that some of the

routines are indented beneath others to indicate what routine calls it. For

example, main_simulation.m calls generate_waveform.m, and filt_bnn_fft.m is

 73

called by both generate_waveform.m and get_canned_waveform.m. In addition,

some of the mat-files are shown along with arrows to indicate source and

destination of the data. For example, mls_gen.m is used to create the file

mls65535a.mat, which in turn is used by gen_sinc.m to create the file

sinc_XX_mls65535.mat.

Of the MATLAB files shown in Figure 47, only gen_sig.m and CAFv2.m

are based on existing code. In addition, the following three files are called by

CAFv2.m but have not been modified and thus are not presented here: shiftud.m,

tdoa_fdoa.m, and caf_peak.m. All the m-files files shown Figure 47 are listed in

the appendix.

Scripts Routines

script_top_level_simulate_various_WFs.m main_simulation.m

script_display_toa_foa_v_snr_across_runs_mrkrs..m generate_waveform.m

script_plot_WFs.m gen_sig.m

filt_bnn_fft.m

get_canned_waveform.m

filt_bnn_fft.m

display_waveform_calc_rmsBW.m

display_waveform_calc_rmsT.m

gen_noise_vector.m

perf_demod_test.m

CAFv2.m

gen_sinc.m display_toa_foa_v_snr_and_prep_data.m

mls_gen.m display_scatter_foa_toa.m

sinc_XX_mls65535a.mat

(optional)
config.mat

mls65535a.mat

Figure 47 MATLAB m-files Created or Modified.

The following sections of this chapter provide additional detail on each of

the various MATLAB routines and scripts used to model the waveforms, simulate

TOA and FOA estimation, and process the resulting data. The resulting plots are

shown and described in the next chapter.

 74

B. ROUTINES

The routines are MATLAB code m-files that accept parameters and do not

need to be edited or modified to perform different simulations of the proposed

waveforms. The most significant one of these is main_simulation.m, which reads

in a configuration file, if one exists, defining the simulation parameters and in turn

calls a number of custom MATLAB functions as shown in Figure 47. Two other

m-files that can be used without modification are

display_topa_foa_v_snr_and_prep_data.m, which performs the statistical

calculations (i.e., finds the mean and standard deviation) on the data generated

in the main code, and display_scatter_foa_toa.m, which generates scatter plots

of the TOA and FOA data the outputs from the main code to better understand

the distribution of the data.

1. main_simulation.m

The core of the simulation is main_simulation.m, which creates an array of

TOA and FOA estimates for a desired waveform at multiple SNR values. Most

basically, this routine defines operating parameters using configuration data,

generates clean versions of the received and reference signals, and then for the

desired number of itereations, adds noise to the “clean” received signal and

performs the CAF process to determine the combined TOA and FOA values

giving the peak correlation magnitude.

 75

- get configuration (e.g., WF#, chip rate and filtering, collection geometry)
- LOOP for each SNR value

- LOOP for offset between reference and received signal
- generate clean received and reference signals
- calculate and plot rms radian frequency (if enabled)
- calculate and plot rms duration (if enabled)
- LOOP for each noise realization

- generate noise and and add to received signal
- compute analytic signal (Hilbert Transform)
- peform BER test (if enabled)
- compute crosscorrelation
- if detection, find TOA & FOA at max CAF amplitude

- end loop
- end loop

- end loop

Figure 48 Overview of main_simulation.m.

The routine uses the parameters summarized in Table 4 to control

processing. The user can either edit the routine to modify the default parameters

(allowing him to run the routine directly from the MATLAB interface) or place

these values in a file named config.mat to enable running the routine with

different parameter values. These parameters include setting the waveform

number and whether filtering is on or off, the carrier frequency, the sampling

frequency, the chip rate, the length of the waveform in samples, the SNR values

to be processed, the number of iterations (noise realizations) at each SNR value,

various monitor and debug settings, the collection scenario geometry, and dither

variables.

 76

Table 4 Summary of main_simulation.m Parameters.

- Waveform
- waveform number
- filtering on/off

- RF carrier frequency (Hz)
- Sampling frequency (Hz)
- Chip rate (Hz) ['Rsym']
- Signal length (Samples)

- zero_pad length
- padded vector length

- SNR (Es/No)
- min value
- max value
- step size

- Iterations at each SNR
- Monitor and debug settings
- Collection scenario geometry

- Position of collector #1
- Velocity of collector #1
- Position of collector #2
- Velocity of collector #2
- Position of emitter
- Velocity of emitter

- Dither variables

Several of these parameters define the waveform characteristics. The

waveform number and filtering are for the proposed waveforms as defined in

Chapter V. The carrier frequency, chip rate6, and sampling frequency further

define the waveform. The carrier frequency affects the location of the signal

within the digitized bandwidth and also affects the Doppler frequency offset in a

nonstatic collection geometry [5]. Using carrier frequencies greater than the

Nyquist frequency work because the signal aliases into a different Nyquist zone

[32]. The length N (samples) of the desired signal must also be specified. The

routine allows a vector to be specified as the waveform plus padding zeros of

length _pad length to support better unnormalized correlation statistics. The

6 Occasionally this document uses the term symbol rate for chip rate because the legacy

BPSK modulator treats each chip as a symbol; however, the entire waveform is only a single
symbol, so no confusion should exist.

 77

CAF processing becomes extremely inefficient if the total length of the vector

processed is not 2n , where n is an integer, thus N should be specified as

2 _nN pad length= − .

The SNR values are specified by defining the minimum (starting) SNR

value (dB), the step size for the SNR (dB), and the maximum SNR value (dB).

Depending on the minimum value and step size, the maximum may not actually

be processed. The total number of steps must not be greater than eight if

verbose_plot_waveform is not equal to zero, because this will cause an error in

trying to plot too many subplots in a figure. The user must also specify the

number of monte carlo runs _ _no noise iterations using different realizations of

the noise random vector for each SNR value.

The monitor and debug settings include verbose, verbose_wf_gen, and

verbose_plot_wf. The former enables additional outputs (should be set to zero

for normal processing) and the latter two enable additional plotting of the

waveform and processing. Process_detections allows CAF processing if a signal

is detected; setting this to zero allows much faster operation of the code to

support simulating detections but not TOA and FOA estimates. Setting

enable_BER_test enables the running the BER test function, which was used to

verify the noise vector had the correct amplitude. BER testing is discussed later.

The collection geometry settings specify the location and velocity for each

of the two collectors and the emitter. The position information is in the form of an

array [x , y , z] , where x , y , and z are the respective distance in meters from a

reference, and the velocity information is in a similar format defined in meters per

second. This information is used to generate the BPSK-based waveforms, only,

and enables generation of signals that have Doppler effects [5]. Because this

thesis is only investigating performance in a static collection geometry (i.e., no

Doppler), the velocity values are all set to zero and the position of the two

collectors are set to be equal. This information does not have any affect on

waveforms #11-17 which are pre-formed.

 78

2. generate_waveform.m

The function main_simulation.m generates the noise-less reference and

receive signals using generate_waveform.m for BPSK-based signals (waveforms

#1-4, unfiltered and filtered) or get_canned_waveform.m functions for those that

are fixed (i.e, waveforms #11-17). The generate waveform manipulates the

signals produced by the gen_sig.m function to create waveforms #1-4, and filter

them if enabled, to the null-to-null bandwidth nnB . The function can also produce

additional plots of the waveform produced, if enabled. It is invoked using

 [S1,Sref] = generate_waveform(Pc1,Vc1,Pc2,Vc2,Pe,Ve,f0,fs,Rsym,N, ...

 wf_type, pad_length, filter_outside_bnn, verbose),

where S1 and Sref are the noise-free receive and reference signals, respectively,

and the input arguments are from the configuration previously discussed.

Waveform #1 is the signal provided by gen_sig.m. Waveforms #2 and #4

manipulate this signal by removing either the middle or outer three-fourths of the

signal and rescaling the amplitude so the total energy of the signal is the same

as the original.

Waveform #3, on the other hand, sums the signals generated by calling

gen_sig.m twice with a “new” carrier frequency 0 0, 2orig symf f R= ± and a new chip

rate , 2sym sym origR R= . The amplitude of this new summed signal is then scaled so

it has the same energy as waveform #1.

3. gen_sig.m
The function gen_sig.m generates two noiseless BPSK modulated signals

as would be received by two collectors receiving an emission in the defined

collection scenario. The simulation accurately models the Doppler effects,

including frequency offsets as well as time dilation and compression of the

modulating signal. BPSK modulation is performed starting with the first bit from

the file mls65535a.mat. using the parameters passed to it. The function is

invoked using

 79

[S1,S2] = gen_sig(Pc1,Vc1,Pc2,Vc2,Pe,Ve,f0,fs,Rsym,N),

where S1 and S2 are the noise-free signals received at the two collectors and the

input arguments are passed from the simulation parameters.

The function gen_sig uses the core of the MATLAB© code sig_gen.m

developed by Johnson [5] but was changed in name because the significance of

the variances. The major changes to this code are

• The function does not prompt for user input,

• Noise is not added within this function,

• The function does not convert the signal into the analytic
signal, and

• The bit sequence is read from a file (not random).
Instead of prompting for the input parameters, these values need to be passed

into the function when called. Table 5 lists the various user specified settings

required by the gensig.m.

Table 5 User Specified Settings in gensig.m.

- Position of collector #1
- Velocity of collector #1
- Position of collector #2
- Velocity of collector #2
- Position of emitter
- Velocity of emitter
- RF carrier frequency (Hz)
- Sampling frequency (Hz)
- Symbol rate (Hz)
- No. of samples collected

4. filt_bnn_fft.m

The function filt_bnn_fft.m performs a bandpass function, filtering out

signal energy that is outside the null-to-null bandwidth nnB of the signal. The

amplitude of the resulting signal is rescaled so the signal has the same energy as

the original signal. The function is invoked using

 80

S = filt_bnn_fft(S, Rsym, f0, fs),

where S is the signal, Rsym is the chip rate, f0 is the carrier frequency, and fs is

the sampling frequency.

The function first computes the energy of the signal. It then converts the

signal to the analytic form (i.e., no negative frequencies) using the Hilbert

function and converts the signal to the frequency domain using the FFT function.

At this point, all the FFT bins which correspond to frequencies up to 0 symf R−

along with those corresponding to 0 symf R+ and above are set to zero. The signal

is then converted back to the time domain using the IFFT function, made real,

and amplitude scaled to restore signal power to that of the original signal.

5. get_canned_waveform.m

The function get_canned_waveform.m loads a predefined waveform. It is

invoked using

S1 = get_canned_waveform(Es, N, wf_type, pad_length, Rsym, f0, fs,

filter_outside_bnn, verbose_wf_gen),

where S1 is the new waveform, and the only input parameters used are the

desired signal energy (Es), the length of the waveform in samples (N), the

waveform number (wf_type), and the number of leading and trailing pad zeros.

The function first loads in the proper mat-file depending on the waveform

number selected, and then uses only the first N samples. The amplitude of this

signal is then scaled to get the desired signal energy. Next the signal is filtered

to the null-to-null bandwidth, if enabled, using the previously defined routine.

Finally the signal is padded at the front and back with the specified number of

zeros.

 81

6. display_waveform_calc_rmsBW.m

The function display_waveform_calc_rmsBW.m calculates the rms radian

frequency of the waveform and plots the PSD of the waveform along with the rms

radian frequency and rms bandwidth. It is invoked using

display_waveform_calc_rmsBW(Sref, f0, fs, wf_type, filter_outside_bnn),

where Sref is the signal to be analyzed, f0 is the carrier frequency, fs is the

sampling frequency, wf_type is the waveform number, and filter_outside_bnn is

set to zero if filtering is not desired.

The function displays the value of the variable filter_outside _bnn on the

PSD plot to document this setting, and it also plots the Welch PSD, which is a

particular type of periodogram, and the weighted and unweighted PSD values

used to calculate the rms radian frequency β .

7. display_waveform_calc_rmsT.m

The function display_waveform_calc_rmsT.m calculates the rms duration

of the waveform eT and plots the power vs. time of the entire signal along with a

zoomed version. It is invoked using

display_waveform_calc_rmsT(Sref, f0, fs, wf_type, filter_outside_bnn),

where Sref is the signal to be analyzed, f0 is the carrier frequency, fs is the

sampling frequency, wf_type is the waveform number, and filter_outside_bnn is

set to zero if filtering is not desired.

The function calculates the instantaneous power by squaring the input

signal and uses this to calculate the rms duration. This value, along with whether

the signal was filtered is printed in the title of the plot.

8. gen_noise_vector.m

As stated earlier, one of the differences between the routine gen_sig.m

and the original sig_gen.m developed by Johnson [5] is that the random noise is

no longer added within that routine. Instead, this task was extracted and placed

 82

as its own function in main_simulation.m to allow simulating the same signal with

multiple realizations of the noise. It is invoked using

Noise=gen_noise_vector(N, SNR, Tsym, fs),

where Noise is a vector of length N such that the values in this vector have zero-

mean Gaussian distribution and variance 2σ to give the desired signal-to-noise

power ratio SNR . Tsym and fs are the chip period and sampling frequency,

respectively. The amplitude of the signal is assumed to be unity. If this is not

true, the signal needs to be scaled accordingly.

Testing of the sig_gen.m code in [5] revealed that the code properly

modulated the signal but failed to add the proper noise. Johnson correctly states

(in his equation 5-9) that

 2

0

s sym

s

PT B
E N

σ = (5.18)

where the σ is the standard deviation and is used as the factor to scale from the

MATLAB© generated randn normalized (zero mean) Gaussian random variables

to the desired noise values based on specified values for signal-to-noise ratio

(SNR) 0sE N , signal power sP , symbol period symT , and bandwidth B . However

the bandwidth B should be actual bandwidth of the digitized signal which is

2sf , and not the digital frequency. Thus the noise samples added to the signal

were too low by a factor of 2sf . Figure 49 shows the spectral plots of the

signal with 3dB SNR based on original calculations and the correction for

2sB f= .

 83

Figure 49 Signal Spectrum Before and After Adjusting Noise Equation.

9. perf_demod_test.m

Before running the simulation, several basic checks were made to assess

the accuracy of the outputs of the model, especially in the areas of carrier

frequency, symbol rate, and SNR. The function perf_demod_test.m allows these

parameters to be verified by attempting to demodulate a reference signal using

the modulation parameters. This test is designed to verify the proper operation in

the simpler case of a static collection geometry.

The function produces various diagnostic plots and calculates the bit error

rate, BER, by comparing demodulated bits to first bits loaded from

mls65535a.mat. The user is asked to manually perform phase synchronization

by identifying the peak of signal, which assumes no or very low noise (i.e., high

SNR). It is invoked using

[BER, no_of_errors, no_of_bits]=perf_demod_test(Sa1, Sa2, fs, f0, Rsym,

SNRdB, verbose),

where the returned value BER is the bit error rate calculated by dividing

no_of_errors by no_of_bits. Sa1 and Sa2 are the modulated signal with and

without added noise, respectively. Other input variables include the carrier

 84

frequency f0, the sampling frequency fs, the waveform number wf_type, and a

flag to indicate whether filtering is performed, filter_outside_bnn. To use this

function, the parameters listed in Table 6 are suggested when running

main_simulation.m.

Table 6 Suggested Parameters When Using perf_demod_test.m.

- verbose=1
- verbose_wf_gen=1
- enable_BER_test=1
- process_detections=0
- wf_type=1
- Es_No_db_min=4.15 (dB)
- Es_No_db_max=4.15 (dB)
- no_noise_iterations=1
- pad_length=0
- Rsym=2000 or 5000

The demodulation test consisted in generating the signal with an 0cE N of

4.15 dB which should give an average BER on the order of 210− for BPSK, a

carrier frequency 0f of 20 kHz, a sampling frequency sf of 100 kHz, a symbol

rate symR of 2 kHz, and 65536 samples. The actual BER, calculated using

 ()02 bBER Q E N= [20], (5.19)

Shows the BER should be

 () ()4.15 10 22 10 2.28 1.13 10BER Q Q −= ⋅ = = ⋅ . (5.20)

Running this loop 20 times resulted in 175 errors out of a total of 13,120 bits for

an average BER of 0.013 (21.3 10x −), indicating accurate modeling.

The demodulation process consists of the following steps:

• mixing the signal back down to baseband using the nominal
carrier frequency 0f ,

• making sure that the signal is all in the I-channel,

• passing this signal through a matched filter for a pulse,

 85

• downsampling and comparing to a threshold of zero, and

• comparing the resulting bitstream with the modulated
bitstream.

Figure 50 shows the result of mixing the signal down to baseband. The

plot on the left shows the analytic signal in the frequency domain, and the plot on

the right shows the signal after multiplying it by 02j fe π− , where 0f is the carrier

frequency, to center the signal back at baseband.

-5 0 5

x 10
4

0

1000

2000

3000

4000
FFT of (analytic) RF Signal (Sa1)

Frequency (Hz)
-5 0 5

x 10
4

0

1000

2000

3000

4000
FFT of Baseband Signal (SaBB)

Frequency (Hz)

Figure 50 Analytic Signal Before and After Mixing Down to Baseband.

Figure 51 plots the baseband signal in time domain, showing the real

component, the imaginary component, and the phase of the signal. Note that

almost all the energy, except during bit transitions, is in the I-channel, showing

carrier phase synchronization (although ignoring potential phase ambiguity).

 86

Figure 51 Signal in I-Channel vs. Q-Channel.in High SNR.

Figure 52 shows the output of the matched filter (matched to the pulse) in

the top plot. The middle plot shows the output of the comparator at the sample

times where the reference is set to zero. In this plot the output is “1” if the

sampled decision variable is greater than zero, otherwise the output is “0.” The

lines connect the points for improved visibility and are not intended to extrapolate

between the points (i.e., the sloped line merely indicates a bit transition). The

bottom plot shows the actual data used to modulate the signal. Comparing the

two bottom plots, one can see that the bitstream begins with a series of zeros

and that the 13th demodulated bit is in error. For BER calculations, the first bit is

ignored because it is invalid (i.e., the signal has not yet passed through the

matched filter.)

 87

Figure 52 The Sampled Decision Variable, Resulting Bits, and Reference Bits.

10. CAFv2.m

The function CAFv2.m returns the TOA and FOA corresponding to the

peak amplitude of the CAF function. It is invoked using

[TDOA, FDOA] = CAFv2(S1, S2, Max_f, fs, Max_t, display_CAF_peak),

where S1 is the analytic form of the noisy receive signal and S2 is the noise-free

analytic reference signal. Max_f and Max_t define the maximum expected FOA

and TOA values (i.e., they set the CAF search window). Finally, the routine gets

input variables specifying the sampling frequency sf and whether to plot the

resulting CAF.

The function CAFv2.m is almost the same as the function CAF.m

developed in [5], except the user inputs were removed so that the process keeps

iterating until it determines that it has reached its maximum accuracy. The

function CAF utilizes Stein's method [3] to initially compute estimates of TDOA

 88

and FDOA between S1 & S2 before switching to using "fine mode" calculations.

The speed of the processing is severely degraded if the length of the signal (in

samples) is not 2n , where n is an integer. The routine calls CAF_peak.m, if

enabled, to plot the results of the CAF process. [5]

11. display_toa_foa_v_snr_and_prep_data.m

The function display_toa_foa_v_snr_and_prep_data.m uses the arrays of

TOA and FOA estimates produced by main_simulation.m, which still reside in the

MATLAB workspace,to compute the mean and standard deviation for the TOA

and FOA at each of the SNR values simulated and then plots this data as a

function of SNR. It is invoked using

display_toa_foa_v_snr_and_prep_data.

After running this routine, the array named stat_summary_array, containing these

data, resides in the MATLAB workspace.

12. display_scatter_toa_foa.m

The function display_scatter_foa_toa.m also reads in the arrays of TOA

and FOA estimates produced by main_simulation.m, which still reside in the

MATLAB workspace. It generates a scatter of the FOA vs. TOA for each of the

SNR levels. It is invoked using

display_toa_foa_v_snr_and_prep_data.

C. SCRIPT FILES

The script files are MATLAB code m-files that are customized for a given

set of simulations performed. Unlike the routines which are controlled through

parameters but don’t need to be edited, these files need to be customized with

the various parameters embedded into them.

Three scripts are listed here. The first script,

script_top_level_simulate_various_WFs.m, is used to create summary data files

for simulations of the various waveforms. The second,

 89

script_display_toa_foa_v_snr_across runs_mrkrs.m, reads in these various files

and creates the performance plots shown in the next chapter. Finally, the third

script, script_plot_WFs.m, is used to generate plots and data about each of the

waveforms. The scripts use the routines previously defined as well as operate

directly on some of the variables in the MATLAB workspace. In addition, two

other m-files are presented, gen_sinc.m, which is used to create the fixed

waveforms #11-17, and mls_gen.m, which creates m-sequences, maximal length

PN sequences as defined in [30].

1. script_top_level_simulate_various_WFs.m

The script script_top_level_simulate_various_WFs.m is used to call

main_simulation.m and save the resulting TOA and FOA statistics into

appropriately named data mat-files. For each of the waveform parameters

configurations shown in Table 7, the script

• clears the workspace,

• runs a short m-file that has the configuration information,

• saves the workspace as config_file.m.,

• runs main_simulation.m to simulate using these data,

• creates the statistical summary data by calling
display_toa_foa_v_snr_and_prep_data.m,

• renames the variable to match the name shown inTable 7,
and

• saves this as a mat-file of the same name.
When execution is completed, data for each waveform run is saved in its own

file.

 90

Table 7 Waveform Variations Simulated.

Name WF# Filtered Iterations Chip Rate
WF1It1000Rs4000 1 No 1000 4 kcps
WF2It1000Rs4000 2 No 1000 4 kcps
WF3It1000Rs4000 3 No 1000 4 kcps
WF4It1000Rs4000 4 No 1000 4 kcps
WF1filtIt1000Rs4000 1 Yes 1000 4 kcps
WF2filtIt1000Rs4000 2 Yes 1000 4 kcps
WF3filtIt1000Rs4000 3 Yes 1000 4 kcps
WF4filtIt1000Rs4000 4 Yes 1000 4 kcps
WF1filtIt1000Rs1000 1 Yes 1000 1 kcps
WF1filtIt1000Rs2000 1 Yes 1000 2 kcps
WF1filtIt1000Rs8000 1 Yes 1000 8 kcps
WF1It1000Rs1000 1 No 1000 1 kcps
WF1It1000Rs2000 1 No 1000 2 kcps
WF1It1000Rs8000 1 No 1000 8 kcps
WF11It1000 11 No 1000 25 kcpc
WF12It1000 12 No 1000 12.5 kcps
WF13It1000 13 No 1000 6.25 kcps
WF14It1000 14 No 1000 3.13 kcps
WF15It1000 15 No 1000 1.66 kcps
WF16It1000 16 No 1000 0.83 kcps
WF17It1000 17 No 1000 8.3 kcps
WFfilt17It1000 17 Yes 1000 8.3 kcps

2. script_display_toa_foa_v_snr_across_runs_mrkrs.m

The script script_display_toa_foa_v_snr_across_runs_mrkrs.m is used to

read in the data files saved in the last section and plot the data. These plots are

shown in the next chapter.

3. script_plot_WFs.m

The script script_plot_WFs.m is used to generate plots and data, β and

eT , for a given waveform. The script sets the variables to be used by

main_simulation.m, saves these in the mat-file config_file.mat, and calls the main

simulation routine.

 91

4. gen_sinc.m

The script gen_sinc.m was used to create waveforms #11-17. It loads the

file mls65535a.mat, converts data bits into bipolar pulses, and shapes these into

sinc pulses. For a given waveform, the code generates a sinc pattern signal +/-

five chips wide with the specified number of samples per pulse to create a FIR

filter impulse response. The bipolar pulses are also upsampled by the number of

samples per bit, where the new “samples” are equal to zero. This new data is

run through the FIR filter and used to modulate a carrier at 4cf . Table 8 shows

by waveform number the number of samples used to make each sinc pulse. The

resulting chip rate cR shown in Table 7 is the sampling frequency sf divided by

the number of samples per pulse. The resulting vector, modulation, is saved into

the respective mat-file as shown in Table 8.

Table 8 Samples per Shaped Pulse.

Waveform# Samples per Pulse mat-file name

11 4 sinc_wb_mls65535a
12 8 sinc_mb_mls65535a
13 16 sinc_nb_mls65535a
14 32 sinc_vnb_mls65535a
15 64 sinc_unb_mls65535a
16 128 sinc_xnb_mls65535a
17 12 sinc_12Spc_mls65535a

5. mls_gen.m

The script mls_gen.m is used to create a maximal sequence, m-sequence,

using the linear feedback shift register (LFSR) parameters selected. The

particular configuration shown in the appendix is for a 65536 bit long m-sequence

using a 16-bit LFSR with feedback from the taps 1, 3, 12, and 16. The two

vectors it creates are mls_code, in which each element { }0,1∈ , and signal_sent,

in which each element { }1,1∈ − . The script also plots the autocorrelation of the

generated sequence to allow a user to assess the autocorrelation properties.

 92

This chapter presented the MATLAB files used to perform the simulations.

The code itself is included in the appendix. The resulting plots are shown and

described in the next chapter.

 93

VII. RESULTS AND CONCLUSIONS

This chapter discusses the specific simulations performed and explains

the results of the simulations of the various waveforms.

A. SIMULATIONS PERFORMED

Each of the waveforms presented in Chapter V was generated and

processed over 1000 realizations of noise for each 0sE N value ranging from 0

to 35 dB in steps of 5 dB. All of the waveforms use the sampling frequency

100sf = kS/s and the number of samples of the waveform (not including zero

padding) is 30720N = Samples. The chipping rates sR are the same as defined

in Table 3, and the carrier frequency 0f is 20 kHz for waveforms #1-4 (both

unfiltered and filtered) and 25 kHz, which is 4sf , for waveforms #11-17. The

resulting values for β and eT are also shown in Table 3.

The resulting statistics (summary_array) from each of these runs provides

mean and standard deviation for TOA and FOA at each 0sE N . The MATLAB

script script_top_level_simulate_various_WFs configured the settings for each

waveform, called the main MATLAB routines to run the simulations,

main_simulation, and to generate the summary statistics for the waveforms,

display_toa_foa_v_snr_and_prep_data, and saved the resulting summary

statistics in the appropriately name MATLAB .mat data file.

The MATLAB script script_display_toa_foa_v_snr_across_runs reads in

all these saved data files and plots the standard deviations for TOA and FOA on

a logarithmic scale. The mean of these values is not plotted because they were

all about zero, as expected.

B. RESULTS OF SIMULATIONS AND COMPARISON

The results of simulation showed the standard deviations of the TOA and

FOA estimates found in simulation matched the expected values determined by

 94

(4.38) and (4.39). For waveforms of similar SNR, the standard deviation of the

TOA, TOAσ , was inversely related to β as defined in (4.41). Likewise, for

waveforms of similar SNR, the standard deviation of the FOA, FOAσ , was

inversely related to eT as defined in (4.42). Because SNR is defined to be

0sE N , as opposed to 0cE N , γ will not undergo improvement due to processing

gain and therefore the quantity BT in (4.38) and (4.39) equals unity.

Three sets of comparisons are presented. Unless otherwise specified, the

chip rate is 4cR = kcps. First, the BPSK-generated waveforms (i.e., waveforms

#1-4 filtered and unfiltered) are compared. Next, the reference waveform and

various shaped-chip waveforms (i.e., waveform #1 and waveforms #11-16) are

compared. Finally, the bandwidth constrained waveforms (shown in Figure 18)

along with the reference waveform at various chip rates are all compared. For

each of these, TOA and FOA data are plotted for the waveforms under

consideration along with the theoretical performance expected for the filtered

waveform #1 derived using (4.38) and (4.39).

1. BPSK-Generated Waveforms

The first comparison made is between the filtered and unfiltered BPSK

generated waveforms all at the same chip rate, and hence the same null-to-null

bandwidth nnB as shown in Table 3. Filtering of a BPSK signal will reduce the

rms radian frequency β , which would be infinite for an infinite bandwidth

receiver, but the rms duration eT would remain unchanged. Thus, one would

expect to see a larger standard deviation σ of TOA but no change for σ of FOA

going from a particular waveform (i.e., waveform #1-4) to its corresponding

filtered version.

Waveforms #1-4, both filtered and unfiltered, were simulated with 1000

noise realizations for each waveform at each SNR. The standard deviation σ of

the TOA and FOA values determined from these simulations are plotted in Figure

 95

53 and Figure 54, respectively. The data points, which are at SNR values in 5

dB steps and indicated by the symbols, are connected by straight line

interpolations. These lines are not meant to imply the actual values between the

data points but to aid visualizing the data points and observe trends.

0 5 10 15 20 25 30 35
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

TOA Summary - STD (1000 iterations)

Es/No (dB)

σ
T

O
A (

s)

WF1 (4 kcps)
WF2 (4 kcps)

WF3 (4 kcps)

WF4 (4 kcps)
WF1filt (4 kcps)

WF2filt (4 kcps)

WF3filt (4 kcps)

WF4filt (4 kcps)

Theor: β = 8506 (rad/s)

Figure 53 TOA Accuracies – Unfiltered BPSK vs. Filtered.

 96

0 5 10 15 20 25 30 35
10

-2

10
-1

10
0

10
1

FOA Summary - STD (1000 iterations)

Es/No (dB)

σ
F

O
A (

H
z)

WF1 (4 kcps)
WF2 (4 kcps)

WF3 (4 kcps)

WF4 (4 kcps)
WF1filt (4 kcps)

WF2filt (4 kcps)

WF3filt (4 kcps)

WF4filt (4 kcps)
Theor: Te = 0.5577 (s)

Figure 54 FOA Accuracies – Unfiltered BPSK vs. Filtered.

In addition, the theoretical TOA and FOA values are also calculated for the

filtered waveform #1 for various SNR and plotted on the respective plot. These

values are calculated using (4.38) and (4.39), where β and eT are extracted

from Table 3, the waveform duration T is from (5.1), the signal bandwidth out of

the receiver is 1 T , and γ is twice the SNR defined as 0sE N .

As can be seen on the right side of these plots, at high SNR values

(20dB≥), all the curves either match the theoretical curve or are parallel with it,

and at low SNR values (10dB≤), the curves flatten out with a very poor σ

indicating the spurious detections throughout the CAF space (i.e., the region

being searched over TOA and FOA). This is consistent with Stein [3] who

comments, “In order for the desired lobe peak to be uniquely identified (very low

probability of spurious noise lobes exceeding a detection threshold), the SNR in

 97

the output has to exceed about 10 dB.” Viewing the resulting CAF at high and

low SNR helps to illustrate this. Figure 55 shows an example CAF output

(magnitude only) of waveform #4 in a basically noiseless environment (100 dB

SNR). Note how the peak of the mainlobe in the center of the plot is easily

discernable. Figure 56, on the other hand, shows an example CAF of the same

waveform with 0 dB SNR (i.e., the noise power is equal to signal power). Note in

this case how the peaks can be seen distributed throughout the CAF space.

Because the CAF space is limited, it will set a limit on how poor σ can become,

thus causing the flattening of the curves.

Figure 55 Waveform #4 Example CAF with 100SNR = dB.

 98

Figure 56 Waveform #4 Example CAF with 0SNR = dB.

Inspecting the curves at high SNR in Figure 53 in more detail, one can

note three things. First, the simulation results for the filtered waveform #1 fall

directly on top of the lines for expected of theoretical performance and filtered

waveforms #2 and #4, matching theory. Second, filtered waveform #3, which

has a higher rms radian frequency β than the other three filtered waveforms,

also has a smaller standard deviation for TOA. Finally, all four of the unfiltered

waveforms have about the same standard deviation because β for these

waveforms is really limited by the collector bandwidth.

Likewise, examination of the curves at high SNR in Figure 54 in more

detail shows, first, that the standard deviations for FOA FOAσ for both the filtered

and unfiltered versions of waveform #1 fall directly on the curve for theoretical

performance. Second, filtering has no effect on FOAσ for a given waveform (i.e.,

 99

the curve of the performance for a filtered waveform falls directly on top of the

respective unfiltered waveform). Third, it shows that shaping the time domain

profile of the waveform does indeed have a significant impact on the standard

deviation.

2. Shaped-Chip Waveforms

The next comparison is between the filtered waveform #1, the reference

signal, and sinc-shaped chipping of the carrier at various chip rates and

corresponding bandwidth. As the chip rate increases, the bandwidth and rms

radian frequency should also increase, thus improving TOA accuracy (i.e.,

reducing TOAσ).

The standard deviation σ of the TOA and FOA values, respectively,

determined from simulations for filtered waveform #1 and unfiltered waveforms

#11-16 are plotted in Figure 57 and Figure 58. As can be seen on the right side

of these plots once again, at high SNR values (20dB≥), all the curves either lie

on top of the theoretical curve or are parallel with it, and at low SNR values

(10dB≤), the curves flatten out with a very poor σ indicating the spurious

detections throughout the CAF space. In addition, all the curves in Figure 58 lie

on top of each other, as expected, because the waveforms are all of the same

duration and have basically constant power over this duration,ignoring the ripples

and nulls. Finally, the theoretical value of TOAσ for each of the waveforms #11-16

at 25 dB SNR are shown with the dark bullseyes. These were computed using

the values of β from the third column in Table 3.

 100

0 5 10 15 20 25 30 35
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

TOA Summary - STD (1000 iterations)

Es/No (dB)

σ
T

O
A (

s)

WF1filt (4 kcps)

WF11 (25 kcps)
WF12 (12.5 kcps)

WF13 (6.25 kcps)

WF14 (3.125 kcps)

WF15 (1.65 kcps)
WF16 (0.83 kcps)

Theor: β = 17039 (rad/s)

Figure 57 TOA Accuracies – Reference Waveform vs. Shaped Chips.

Examining the curves at high SNR in Figure 57, one can note that each

doubling of the chip rate (i.e., bandwidth) causes a 50% reduction in TOAσ for the

same SNR (i.e., one can double the accuracy of the measurements by doubling

the bandwidth without increasing the transmit power). Conversely, one can also

note from these plots that for a given bandwidth, one can double the accuracy by

increasing transmit power by 6 dB. These two observations are consistent with

(4.38).

 101

0 5 10 15 20 25 30 35
10

-2

10
-1

10
0

10
1

FOA Summary - STD (1000 iterations)

Es/No (dB)

σ
F

O
A (

H
z)

WF1filt (4 kcps)

WF11 (25 kcps)
WF12 (12.5 kcps)

WF13 (6.25 kcps)

WF14 (3.125 kcps)

WF15 (1.65 kcps)
WF16 (0.83 kcps)

Theor: Te = 0.5577 (s)

Figure 58 FOA Accuracies – Reference Waveform vs Shaped Chips.

3. Bandwidth Constrained Waveforms

The final comparison is between the various bandwidth constrained

waveforms of 8nnB = kHz and with the reference waveform (filtered waveform

#1) at various chip rates. The bandwidth constrained waveforms, which are

shown in Figure 18, consist of filtered waveforms #1-4 at the chip rate 4cR =

kcps and waveform #17, which is modulated with sinc-shaped pulses, is chipped

at 8.3cR = kcps to give a similar null-to-null bandwidth nnB . The reference

waveform chipped at higher rates provides a reference by which to compare the

various waveforms.

The standard deviation σ of the TOA and FOA values, respectively,

determined from simulations for these waveforms are plotted in Figure 59 and

Figure 60. As can be seen on the right side of these plots once again, at high

 102

SNR values (20dB≥), all the curves either lie on top of the theoretical curve for

the reference waveform or are parallel with it. In addition, the theoretical values

of TOAσ for the reference waveform, #1F, at each of the chipping rates and at 25

dB SNR are shown with the dark bullseyes. Note how well they match the

results of the simulation for the various bandwidths.

In the region of high SNR values (20dB≥), Figure 59 makes evident once

again that doubling the chip rate of the reference waveform causes a 50%

reduction in TOAσ for a given SNR . Likewise, transmitting a signal with 6 dB more

power would also cause a 50% reduction in TOAσ for a given waveform at a given

power. However, one could also achieve almost a 50% reduction in TOAσ from

the reference waveform, without increased energy or bandwidth, by reshaping it

to waveform #3 (filtered) or #17 (unfiltered or filtered). However, this is at a cost

of increased peak power.

 103

0 5 10 15 20 25 30 35
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

TOA Summary - STD (1000 iterations)

Es/No (dB)

σ
T

O
A (

s)

WF1filt (1 kcps)
WF1filt (2 kcps)

WF1filt (4 kcps)

WF1filt (8 kcps)
WF2filt (4 kcps)

WF3filt (4 kcps)

WF4filt (4 kcps)

WF17 (8.3 kcps)

Theor: β = 8506 (rad/s)

Figure 59 TOA Accuracies – Summary of Alternatives.

Comparing the waveforms for FOA performance (Figure 60) shows that

changing the bandwidth has no effect on the resulting standard deviation FOAσ ;

however, shortening, lengthening, or otherwise changing the power profile over

time does affect FOAσ .

 104

0 5 10 15 20 25 30 35
10

-2

10
-1

10
0

10
1

FOA Summary - STD (1000 iterations)

Es/No (dB)

σ
F

O
A (

H
z)

WF1filt (1 kcps)
WF1filt (2 kcps)

WF1filt (4 kcps)

WF1filt (8 kcps)
WF2filt (4 kcps)

WF3filt (4 kcps)

WF4filt (4 kcps)

WF17 (8.3 kcps)
Theor: Te = 0.5577 (s)

Figure 60 FOA Accuracies – Summary of Alternatives.

C. SUMMARY OF FINDINGS

This effort examined the efficacy of a waveform to support geolocation. It

specifically investigated how well a waveform could support identifying the

location of a single emission in the presence of AWGN given that the emitter is

simultaneously visible to multiple coherent collectors. The analysis also

assumes that

• the emitter is transmitting isotropically,

• no multipath or atmospheric effects exist,

• the entire channel is linear (including amplifiers),

• the coherent collectors have perfect knowledge of time and
their own location,

• the collection geometry is static,

 105

• the transmitted signal is modulated by a completely known
chipping sequence,

• the collectors have a copy of the signal being transmitted,
and

• no data are being modulated onto the emission.
This thesis identified the ability of a waveform to support accurate

estimation of TOA and FOA as the figures of merit to support geolocation of an

emission. The particular metric is the standard deviation σ of these estimates.

Any attempt to define the waveform accuracy by using a figure of merit involving

physical location requires knowledge of the collectors and collection geometry.

The three main parameters affecting TOAσ and FOAσ are 0sE N , bandwidth, and

signal duration. These parameters are limited not just by physical constraints on

transmit power and the occupied bandwidth, but also by acceptable visibility by

an adversary (e.g., low probability of intercept or detection).

Equations show that the probability of correctly detecting the signal dP

along with the probability of a false alarm FAP (“detecting” a signal that is not

really there) are a function only of the signal power, noise power spectral density,

duration of the signal, and detection threshold, but are otherwise independent of

the waveform characteristics. Probability of detection dP , probability of false

alarm FAP , and detection threshold are related. For fixed signal power to noise

power ratio (SNR), increasing the detection threshold decreases the probability

of false alarm. However, for fixed SNR, increasing the detection threshold will

also decrease the probability of detection.

On the other hand, the “shape” of the waveform does have an effect on σ

as stated by Stein [3]. For a given 0sE N , occupied bandwidth (e.g., null-to-null

bandwidth nnB), and total signal duration, manipulating the PSD and the

amplitude profile (vs. time) of the signal affect TOAσ and FOAσ , respectively. This

shaping can be performed by filtering (temporal or spectral domain) the signal,

synthesizing by adding up component signals of the waveform or otherwise

 106

modulating the signal, or by shaping the chipping pulses. However this shaping

is accomplished, “pushing” the waveform energy from the center to the extremes

increases the rms value of that parameter. For example, generating a waveform

that has a higher PSD near the band edges than at the center of the band will

provide a higher rms bandwidth signal than one, which has flat PSD, resulting in

a smaller value for TOAσ and improved location estimation. Likewise, generating

a waveform in which the signal amplitude is greater towards the beginning and

end than in the middle of the signal results in an improved (i.e., smaller) FOAσ .

One potential cost relative to DSSS7 of performing this shaping, however, is

potentially greater visibility by an adversary (e.g., shaping the PSD implies that

the signal may be more visible at those accentuated frequencies). Another

potential cost is forcing the system to deal with a non-constant envelope

waveform which can be a challenge in power constrained systems because they

typically operate their power amplifiers at or near saturation to improve their

power added efficiency (PAE), although techniques are being developed to help

alleviate this constraint [18].

D. FUTURE WORK

Future work is needed to better define the real-world performance one

might expect to see in a fielded system. The first of these would be to run

simulations in which the length of the chip sequence matches the m-sequence to

find optimal performance. Because these were not matched, the chips appear

random, but they do not experience the noise-like property of having a

autocorrelation peak only when the two signals have no lag (i.e., no minor

correlation peaks). The existing model and routines support this; however new

mat-files need to be created for chip sequence (i.e, mls65535a.mat) using

mls_gen.m and the corresponding shaped chip waveforms using gen_sinc.m.

7 Typically DSSS is PSK modulated.

 107

A second area is to extend the analysis and simulation into a dynamic

collection geometry with at least velocity, but also limited acceleration, which

would affect waveform length (or at least coherent processing length).

A third area of investigation is to identify the effect from non-AWGN

interference (both colored noise and other emitters). This analysis should be

supplemented by simulation.

A fourth area is to model propagation effects. These effects include

multipath fading and atmospheric distortion, but they may also include the effects

of nonlinear channels (e.g., nonlinear amplifiers). Although the former would be

scenario dependent, the latter would not and could be useful in system design to

better understand and specify linearity tolerances.

A fifth area is to evaluate different waveforms balanced by the constraint

of hardware complexity. For example, an infinitely wide bandwidth signal would

give optimal TOAσ performance, but it is also not realizable. Tradeoffs should be

evaluated to identify features and limitations in a waveform that greatly simplify

processing without significantly degrading performance.

A sixth area is to investigate vulnerability of specific waveforms. This,

however, becomes very scenario specific.

Finally, another area would be investigating the feasibility of using shaped

noise waveforms. Instead of shaping BPSK waveforms as was done for

waveforms #1-4, spectrally and temporally shaping a noise burst, although not

deterministic, may lead to some interesting concepts and conclusion.

 108

THIS PAGE INTENTIONALLY LEFT BLANK

 109

APPENDIX

This Appendix contains all the MATLAB® functions and scripts developed

for this thesis. MATLAB® Version 2008a and 2008b were used in this thesis.

A. MATLAB CODE: SCRIPT_TOP_LEVEL_SIMULATE VARIOUS_WFS.M

% ***
% script_top_level_simulate various_WFs.M;
% This code establishes the simulation parameters and calls functions
% to perform the simulation and plot resulting data.
%
% Written by: Joe Crnkovich, NRL
% Last modified: 14 May 2009
%
% ***

 % unfiltered waveforms 1-4

clear all
WF1It1000Rs4000_config_file
save config_file
main_simulation %run simulation using config parameters from above
display_toa_foa_v_snr_and_prep_data
WF1It1000Rs4000_stat_summary_array = stat_summary_array;
save WF1It1000Rs4000_stat_summary_array WF1It1000Rs4000_stat_summary_array

clear all
WF2It1000Rs4000_config_file
save config_file
main_simulation %run simulation using config parameters from above
display_toa_foa_v_snr_and_prep_data
WF2It1000Rs4000_stat_summary_array = stat_summary_array;
save WF2It1000Rs4000_stat_summary_array WF2It1000Rs4000_stat_summary_array

clear all
WF3It1000Rs4000_config_file
save config_file
main_simulation %run simulation using config parameters from above
display_toa_foa_v_snr_and_prep_data
WF3It1000Rs4000_stat_summary_array = stat_summary_array;
save WF3It1000Rs4000_stat_summary_array WF3It1000Rs4000_stat_summary_array

clear all
WF4It1000Rs4000_config_file
save config_file
main_simulation %run simulation using config parameters from above
display_toa_foa_v_snr_and_prep_data
WF4It1000Rs4000_stat_summary_array = stat_summary_array;
save WF4It1000Rs4000_stat_summary_array WF4It1000Rs4000_stat_summary_array

 110

% filtered waveforms 1-4

clear all
WF1filtIt1000Rs4000_config_file
save config_file
main_simulation %run simulation using config parameters from above
display_toa_foa_v_snr_and_prep_data
WF1filtIt1000Rs4000_stat_summary_array = stat_summary_array;
save WF1filtIt1000Rs4000_stat_summary_array WF1filtIt1000Rs4000_stat_summary_array

clear all
WF2filtIt1000Rs4000_config_file
save config_file
main_simulation %run simulation using config parameters from above
display_toa_foa_v_snr_and_prep_data
WF2filtIt1000Rs4000_stat_summary_array = stat_summary_array;
save WF2filtIt1000Rs4000_stat_summary_array WF2filtIt1000Rs4000_stat_summary_array

clear all
WF3filtIt1000Rs4000_config_file
save config_file
main_simulation %run simulation using config parameters from above
display_toa_foa_v_snr_and_prep_data
WF3filtIt1000Rs4000_stat_summary_array = stat_summary_array;
save WF3filtIt1000Rs4000_stat_summary_array WF3filtIt1000Rs4000_stat_summary_array

clear all
WF4filtIt1000Rs4000_config_file
save config_file
main_simulation %run simulation using config parameters from above
display_toa_foa_v_snr_and_prep_data
WF4filtIt1000Rs4000_stat_summary_array = stat_summary_array;
save WF4filtIt1000Rs4000_stat_summary_array WF4filtIt1000Rs4000_stat_summary_array

% filtered waveform 1 at other Rs values

clear all
WF1filtIt1000Rs1000_config_file
save config_file
main_simulation %run simulation using config parameters from above
display_toa_foa_v_snr_and_prep_data
WF1filtIt1000Rs1000_stat_summary_array = stat_summary_array;
save WF1filtIt1000Rs1000_stat_summary_array WF1filtIt1000Rs1000_stat_summary_array

clear all
WF1filtIt1000Rs2000_config_file
save config_file
main_simulation %run simulation using config parameters from above
display_toa_foa_v_snr_and_prep_data
WF1filtIt1000Rs2000_stat_summary_array = stat_summary_array;
save WF1filtIt1000Rs2000_stat_summary_array WF1filtIt1000Rs2000_stat_summary_array

 111

clear all
WF1filtIt1000Rs8000_config_file
save config_file
main_simulation %run simulation using config parameters from above
display_toa_foa_v_snr_and_prep_data
WF1filtIt1000Rs8000_stat_summary_array = stat_summary_array;
save WF1filtIt1000Rs8000_stat_summary_array WF1filtIt1000Rs8000_stat_summary_array

% unfiltered waveform 1 at other Rs values

clear all
WF1It1000Rs1000_config_file
save config_file
main_simulation %run simulation using config parameters from above
display_toa_foa_v_snr_and_prep_data
WF1It1000Rs1000_stat_summary_array = stat_summary_array;
save WF1It1000Rs1000_stat_summary_array WF1It1000Rs1000_stat_summary_array

clear all
WF1It1000Rs2000_config_file
save config_file
main_simulation %run simulation using config parameters from above
display_toa_foa_v_snr_and_prep_data
WF1It1000Rs2000_stat_summary_array = stat_summary_array;
save WF1It1000Rs2000_stat_summary_array WF1It1000Rs2000_stat_summary_array

clear all
WF1It1000Rs8000_config_file
save config_file
main_simulation %run simulation using config parameters from above
display_toa_foa_v_snr_and_prep_data
WF1It1000Rs8000_stat_summary_array = stat_summary_array;
save WF1It1000Rs8000_stat_summary_array WF1It1000Rs8000_stat_summary_array

% canned waveforms 11-16 --- shaped chips

clear all
WF11It1000_config_file
save config_file
main_simulation %run simulation using config parameters from above
display_toa_foa_v_snr_and_prep_data
WF11It1000_stat_summary_array = stat_summary_array;
save WF11It1000_stat_summary_array WF11It1000_stat_summary_array

clear all
WF12It1000_config_file
save config_file
main_simulation %run simulation using config parameters from above
display_toa_foa_v_snr_and_prep_data
WF12It1000_stat_summary_array = stat_summary_array;
save WF12It1000_stat_summary_array WF12It1000_stat_summary_array

 112

clear all
WF13It1000_config_file
save config_file
main_simulation %run simulation using config parameters from above
display_toa_foa_v_snr_and_prep_data
WF13It1000_stat_summary_array = stat_summary_array;
save WF13It1000_stat_summary_array WF13It1000_stat_summary_array

clear all
WF14It1000_config_file
save config_file
main_simulation %run simulation using config parameters from above
display_toa_foa_v_snr_and_prep_data
WF14It1000_stat_summary_array = stat_summary_array;
save WF14It1000_stat_summary_array WF14It1000_stat_summary_array

clear all
WF15It1000_config_file
save config_file
main_simulation %run simulation using config parameters from above
display_toa_foa_v_snr_and_prep_data
WF15It1000_stat_summary_array = stat_summary_array;
save WF15It1000_stat_summary_array WF15It1000_stat_summary_array

clear all
WF16It1000_config_file
save config_file
main_simulation %run simulation using config parameters from above
display_toa_foa_v_snr_and_prep_data
WF16It1000_stat_summary_array = stat_summary_array;
save WF16It1000_stat_summary_array WF16It1000_stat_summary_array

% canned waveform 17 (unfiltered and filtered) --- shaped chips

clear all
WF17It1000_config_file
save config_file
main_simulation %run simulation using config parameters from above
display_toa_foa_v_snr_and_prep_data
WF17It1000_stat_summary_array = stat_summary_array;
save WF17It1000_stat_summary_array WF17It1000_stat_summary_array

clear all
WF17filtIt1000_config_file
save config_file
main_simulation %run simulation using config parameters from above
display_toa_foa_v_snr_and_prep_data
WF17filtIt1000_stat_summary_array = stat_summary_array;
save WF17filtIt1000_stat_summary_array WF17filtIt1000_stat_summary_array

 113

B. MATLAB CODE:
SCRIPT_DISPLAY_TOA_FOA_V_SNR_ACROSS_RUNS_MRKRS.M

% ***
% script_display_toa_foa_v_snr_across_runs_mrkrs.m;
% Calls functions to generate final plots.
%
% Written by: Joe Crnkovich, NRL
% Last modified: 14 May 2009
%
% ***

clear all
close all
clc

load WF1It1000Rs4000_stat_summary_array
load WF2It1000Rs4000_stat_summary_array
load WF3It1000Rs4000_stat_summary_array
load WF4It1000Rs4000_stat_summary_array

load WF1filtIt1000Rs4000_stat_summary_array
load WF2filtIt1000Rs4000_stat_summary_array
load WF3filtIt1000Rs4000_stat_summary_array
load WF4filtIt1000Rs4000_stat_summary_array

load WF1filtIt1000Rs1000_stat_summary_array
load WF1filtIt1000Rs2000_stat_summary_array
load WF1filtIt1000Rs8000_stat_summary_array

load WF11It1000_stat_summary_array
load WF12It1000_stat_summary_array
load WF13It1000_stat_summary_array
load WF14It1000_stat_summary_array
load WF15It1000_stat_summary_array
load WF16It1000_stat_summary_array

load WF17It1000_stat_summary_array

[no_rows, no_cols] = size(WF1It1000Rs4000_stat_summary_array)

[no_rows, no_cols] = size(WF1It1000Rs4000_stat_summary_array)

%% Calculate theoretical TDOA and FDOA

SNR_idx = 0;
for SNR_dB = WF1It1000Rs4000_stat_summary_array(1,1):
WF1It1000Rs4000_stat_summary_array(no_rows,1)
 SNR_idx = SNR_idx+1;

 SNR = 10^(SNR_dB/10);
 gamma = 2* SNR;

 114

 T = 0.3; %sec i.e., signal duration
 B = 3.3; %Hz i.e., 1/T

 BTg = B*T*gamma
 sqrt_BTg = sqrt(BTg);

 % compute theoretical for Filtered WF#1 from computed values
 Beta = 8506
 Te = 0.5577

 sigma_tdoa = (1/Beta)/sqrt_BTg;
 sigma_fdoa = (1/Te)/sqrt_BTg;

 theor_stat_summary_array(SNR_idx,1) = SNR_dB;
 theor_stat_summary_array(SNR_idx,2) = 0; %mean theoretical tdoa = 0
 theor_stat_summary_array(SNR_idx,3) = sigma_tdoa;
 theor_stat_summary_array(SNR_idx,4) = 0; %mean theoretical fdoa = 0
 theor_stat_summary_array(SNR_idx,5) = sigma_fdoa;
end

theor_stat_summary_array

%% Plot WF1-4 & filtered-WF1-4 at 4kcps, fs=100kSps, fc=20kHz

figure;
%subplot(2,1,1);
semilogy(...
 WF1It1000Rs4000_stat_summary_array(:,1), WF1It1000Rs4000_stat_summary_array(:,3),
':+', ...
 WF2It1000Rs4000_stat_summary_array(:,1), WF2It1000Rs4000_stat_summary_array(:,3),
':o', ...
 WF3It1000Rs4000_stat_summary_array(:,1), WF3It1000Rs4000_stat_summary_array(:,3),
':x', ...
 WF4It1000Rs4000_stat_summary_array(:,1), WF4It1000Rs4000_stat_summary_array(:,3),
':s', ...
 WF1filtIt1000Rs4000_stat_summary_array(:,1),
WF1filtIt1000Rs4000_stat_summary_array(:,3), '-+', ...
 WF2filtIt1000Rs4000_stat_summary_array(:,1),
WF2filtIt1000Rs4000_stat_summary_array(:,3), '-o', ...
 WF3filtIt1000Rs4000_stat_summary_array(:,1),
WF3filtIt1000Rs4000_stat_summary_array(:,3), '-x', ...
 WF4filtIt1000Rs4000_stat_summary_array(:,1),
WF4filtIt1000Rs4000_stat_summary_array(:,3), '-s', ...
 theor_stat_summary_array(:,1), theor_stat_summary_array(:,3), '--');
title('TOA Summary - STD (1000 iterations)'); xlabel('Es/No (dB)'); ylabel('\sigma_{TOA} (s)');
legend('WF1 (4 kcps)', 'WF2 (4 kcps)', 'WF3 (4 kcps)', 'WF4 (4 kcps)', ...
 'WF1filt (4 kcps)', 'WF2filt (4 kcps)', 'WF3filt (4 kcps)', 'WF4filt (4 kcps)', ...
 ['Theor: \beta = ', num2str(Beta), ' (rad/s)']);
grid on

figure;
%subplot(2,1,1);

 115

semilogy(...
 WF1It1000Rs4000_stat_summary_array(:,1), WF1It1000Rs4000_stat_summary_array(:,5),
':+', ...
 WF2It1000Rs4000_stat_summary_array(:,1), WF2It1000Rs4000_stat_summary_array(:,5),
':o', ...
 WF3It1000Rs4000_stat_summary_array(:,1), WF3It1000Rs4000_stat_summary_array(:,5),
':x', ...
 WF4It1000Rs4000_stat_summary_array(:,1), WF4It1000Rs4000_stat_summary_array(:,5),
':s', ...
 WF1filtIt1000Rs4000_stat_summary_array(:,1),
WF1filtIt1000Rs4000_stat_summary_array(:,5), '-+', ...
 WF2filtIt1000Rs4000_stat_summary_array(:,1),
WF2filtIt1000Rs4000_stat_summary_array(:,5), '-o', ...
 WF3filtIt1000Rs4000_stat_summary_array(:,1),
WF3filtIt1000Rs4000_stat_summary_array(:,5), '-x', ...
 WF4filtIt1000Rs4000_stat_summary_array(:,1),
WF4filtIt1000Rs4000_stat_summary_array(:,5), '-s', ...
 theor_stat_summary_array(:,1), theor_stat_summary_array(:,5), '--');
title('FOA Summary - STD (1000 iterations)'); xlabel('Es/No (dB)'); ylabel('\sigma_{FOA} (Hz)');
legend('WF1 (4 kcps)', 'WF2 (4 kcps)', 'WF3 (4 kcps)', 'WF4 (4 kcps)', ...
 'WF1filt (4 kcps)', 'WF2filt (4 kcps)', 'WF3filt (4 kcps)', 'WF4filt (4 kcps)', ...
 ['Theor: T_e = ', num2str(Te), ' (s)']);
grid on

%% Plot WF1 at 1,2,8kcps & filtered-WF1-4 at 4kcps, fs=100kSps, fc=20kHz,
%% also overlay WF17

figure;
%subplot(2,1,1);
semilogy(...
 WF1filtIt1000Rs1000_stat_summary_array(:,1),
WF1filtIt1000Rs1000_stat_summary_array(:,3), '-+', ...
 WF1filtIt1000Rs2000_stat_summary_array(:,1),
WF1filtIt1000Rs2000_stat_summary_array(:,3), '-o', ...
 WF1filtIt1000Rs4000_stat_summary_array(:,1),
WF1filtIt1000Rs4000_stat_summary_array(:,3), '-x', ...
 WF1filtIt1000Rs8000_stat_summary_array(:,1),
WF1filtIt1000Rs8000_stat_summary_array(:,3), '-s', ...
 WF2filtIt1000Rs4000_stat_summary_array(:,1),
WF2filtIt1000Rs4000_stat_summary_array(:,3), '-d', ...
 WF3filtIt1000Rs4000_stat_summary_array(:,1),
WF3filtIt1000Rs4000_stat_summary_array(:,3), '-p', ...
 WF4filtIt1000Rs4000_stat_summary_array(:,1),
WF4filtIt1000Rs4000_stat_summary_array(:,3), '-h', ...
 WF17It1000_stat_summary_array(:,1), WF17It1000_stat_summary_array(:,3), '-*', ...
 theor_stat_summary_array(:,1), theor_stat_summary_array(:,3), '--');
title('TOA Summary - STD (1000 iterations)'); xlabel('Es/No (dB)'); ylabel('\sigma_{TOA} (s)');
legend('WF1filt (1 kcps)', 'WF1filt (2 kcps)', ...
 'WF1filt (4 kcps)', 'WF1filt (8 kcps)', ...
 'WF2filt (4 kcps)', 'WF3filt (4 kcps)', ...
 'WF4filt (4 kcps)', 'WF17 (8.3 kcps)', ...
 ['Theor: \beta = ', num2str(Beta), ' (rad/s)']);
grid on

 116

figure;
%subplot(2,1,1);
semilogy(...
 WF1filtIt1000Rs1000_stat_summary_array(:,1),
WF1filtIt1000Rs1000_stat_summary_array(:,5), '-+', ...
 WF1filtIt1000Rs2000_stat_summary_array(:,1),
WF1filtIt1000Rs2000_stat_summary_array(:,5), '-o', ...
 WF1filtIt1000Rs4000_stat_summary_array(:,1),
WF1filtIt1000Rs4000_stat_summary_array(:,5), '-x', ...
 WF1filtIt1000Rs8000_stat_summary_array(:,1),
WF1filtIt1000Rs8000_stat_summary_array(:,5), '-s', ...
 WF2filtIt1000Rs4000_stat_summary_array(:,1),
WF2filtIt1000Rs4000_stat_summary_array(:,5), '-d', ...
 WF3filtIt1000Rs4000_stat_summary_array(:,1),
WF3filtIt1000Rs4000_stat_summary_array(:,5), '-p', ...
 WF4filtIt1000Rs4000_stat_summary_array(:,1),
WF4filtIt1000Rs4000_stat_summary_array(:,5), '-h', ...
 WF17It1000_stat_summary_array(:,1), WF17It1000_stat_summary_array(:,5), '-*', ...
 theor_stat_summary_array(:,1), theor_stat_summary_array(:,5), '--');
title('FOA Summary - STD (1000 iterations)'); xlabel('Es/No (dB)'); ylabel('\sigma_{FOA} (Hz)');
legend('WF1filt (1 kcps)', 'WF1filt (2 kcps)', ...
 'WF1filt (4 kcps)', 'WF1filt (8 kcps)', ...
 'WF2filt (4 kcps)', 'WF3filt (4 kcps)', ...
 'WF4filt (4 kcps)', 'WF17 (8.3 kcps)', ...
 ['Theor: T_e = ', num2str(Te), ' (s)']);
grid on

%% Plot WF11-16 & filtered-WF1-4 at 4kcps, fs=100kSps, fc=20kHz

figure;
%subplot(2,1,1);
semilogy(...
 WF1filtIt1000Rs4000_stat_summary_array(:,1),
WF1filtIt1000Rs4000_stat_summary_array(:,3), '-+', ...
 WF11It1000_stat_summary_array(:,1), WF11It1000_stat_summary_array(:,3), '-o', ...
 WF12It1000_stat_summary_array(:,1), WF12It1000_stat_summary_array(:,3), '-x', ...
 WF13It1000_stat_summary_array(:,1), WF13It1000_stat_summary_array(:,3), '-s', ...
 WF14It1000_stat_summary_array(:,1), WF14It1000_stat_summary_array(:,3), '-d', ...
 WF15It1000_stat_summary_array(:,1), WF15It1000_stat_summary_array(:,3), '-p', ...
 WF16It1000_stat_summary_array(:,1), WF16It1000_stat_summary_array(:,3), '-h', ...
 theor_stat_summary_array(:,1), theor_stat_summary_array(:,3), '--');
title('TOA Summary - STD (1000 iterations)'); xlabel('Es/No (dB)'); ylabel('\sigma_{TOA} (s)');
legend('WF1filt (4 kcps)', 'WF11 (25 kcps)', 'WF12 (12.5 kcps)', ...
 'WF13 (6.25 kcps)', 'WF14 (3.125 kcps)', 'WF15 (1.65 kcps)', ...
 'WF16 (0.83 kcps)', ...
 ['Theor: \beta = ', num2str(Beta), ' (rad/s)']);
grid on

figure;
%subplot(2,1,1);

 117

semilogy(...
 WF1filtIt1000Rs4000_stat_summary_array(:,1),
WF1filtIt1000Rs4000_stat_summary_array(:,5), '-+', ...
 WF11It1000_stat_summary_array(:,1), WF11It1000_stat_summary_array(:,5), '-o', ...
 WF12It1000_stat_summary_array(:,1), WF12It1000_stat_summary_array(:,5), '-x', ...
 WF13It1000_stat_summary_array(:,1), WF13It1000_stat_summary_array(:,5), '-s', ...
 WF14It1000_stat_summary_array(:,1), WF14It1000_stat_summary_array(:,5), '-d', ...
 WF15It1000_stat_summary_array(:,1), WF15It1000_stat_summary_array(:,5), '-p', ...
 WF16It1000_stat_summary_array(:,1), WF16It1000_stat_summary_array(:,5), '-h', ...
 theor_stat_summary_array(:,1), theor_stat_summary_array(:,5), '--');
title('FOA Summary - STD (1000 iterations)'); xlabel('Es/No (dB)'); ylabel('\sigma_{FOA} (Hz)');
legend('WF1filt (4 kcps)', 'WF11 (25 kcps)', 'WF12 (12.5 kcps)', ...
 'WF13 (6.25 kcps)', 'WF14 (3.125 kcps)', 'WF15 (1.65 kcps)', ...
 'WF16 (0.83 kcps)', ...
 ['Theor: T_e = ', num2str(Te), ' (s)']);
grid on

C. MATLAB CODE: SCRIPT_PLOT_WFS.M

% ***
% script_plot_WFs.M;
% This code set the variables and and calls functions
% to plot a particular waveform.
%
% Written by: Joe Crnkovich, NRL
% Last modified: 14 May 2009
%
% ***

% signal parameters
wf_type=4; % 1:const env, const psd; 2:gap in time; 3:gap in psd; 4:shortened pulse
filter_outside_bnn=0; %limit signal, if generated (i.s., WF1-4), to within Bnn
process_detections=1; %set to '1' to CAF and get estimates of TOA and FOA

f0 = 20000; %carrier frequency
%f0 = 25000; %carrier frequency - f0 of canned WF is fs/4
fs = 100000; %sample frequency
Rsym=4000; %2000 %10000; %symbol rate

pad_length = 1024; %no. of zeros to add onto each side of S1
N = 32768-2*pad_length %length(samples) of burst; CAF alg. prefers N=2^k

%--- SNR (Ec_No) of 2.6 (4.15 dB) should give BER .01 for BPSK
Es_No_dB_min = 10
Es_No_dB_step = 500;
Es_No_dB_max = 100

no_noise_iterations = 1000;
no_noise_iterations = 1 %200%0; %500 %40 %250;

%monitor and debug setting
verbose=0; %set to zero to stop sending debug info to MATLAB window
verbose_wf_gen=1; %enable plots and sending debug info to MATLAB window

 118

verbose_plot_wf=1; %enable plots of waveform and calculate rms BW
enable_BER_test=0; %set to 1 to enable running of BER test function
limit_CAF_to_search_freq_only=0; % remove ambiguity in CAF (find FDOA only) %Warning:
assumes tau =0
limit_CAF_to_search_time_only=0; % remove ambiguity in CAF (find TDOA only)

%geometry
Pc1 = [0 0 500]; %use only z position (i.e., leave x&y=0)
Vc1 = [0 0 0];
Pc2 = Pc1;
Vc2 = [0 0 0];
Pe = [0 0 0];
Ve = [0 0 0];

tau = 1.25e-7 % time offset step used to dither sampling relative to signal
c = 2.997925e8; % Speed of light in m/s

% dither position to remove clock sync between runs
pos_offset_min = 0; % in meters
pos_offset_step = c*tau; % in meters
pos_offset_max = 0; %9*c*tau; % in meters %run ten iterations

save config_file
main_simulation

D. MATLAB CODE: DISPLAY_TOA_FOA_V_SNR_AND_PREP_DATA.M

% ***
% display_toa_foa_v_snr_and_prep_data.m;
% This code reads the arrays produced by the simulation code,
% generates the statistics, and plots data from a singlesim run.
%
% Written by: Joe Crnkovich, NRL
% Last modified: 15 May 2009
%
% ***

 fprintf('\n *** Statistical Summary *** \n');

 for stat_index=1:Es_No_step_no
 offset=(stat_index-1)*no_noise_iterations*pos_offset_index;
 fprintf('\nEs/No = %f dB (%d samples)\n', toa_est(offset+1,2),
no_noise_iterations*pos_offset_index);
 fprintf('- TOA estimates: mean=%f std=%f \n', ...
 mean(toa_est(offset+1:offset+no_noise_iterations*pos_offset_index,1)), ...
 std(toa_est(offset+1:offset+no_noise_iterations*pos_offset_index,1)));
 fprintf('- FOA estimates: mean=%f std=%f \n', ...
 mean(foa_est(offset+1:offset+no_noise_iterations*pos_offset_index,1)), ...
 std(foa_est(offset+1:offset+no_noise_iterations*pos_offset_index,1)));

 stat_summary_array(stat_index,1)=toa_est(offset+1,2); %Es_No

 119

stat_summary_array(stat_index,2)=mean(toa_est(offset+1:offset+no_noise_iterations*pos_offset
_index,1)); %mean toa

stat_summary_array(stat_index,3)=std(toa_est(offset+1:offset+no_noise_iterations*pos_offset_in
dex,1)); %std toa

stat_summary_array(stat_index,4)=mean(foa_est(offset+1:offset+no_noise_iterations*pos_offset
_index,1)); %mean foa

stat_summary_array(stat_index,5)=std(foa_est(offset+1:offset+no_noise_iterations*pos_offset_in
dex,1)); %std foa
 end

 %%
% % Template to save data
% WFxxItxx_stat_summary_array = stat_summary_array
% save WFxxItxx_stat_summary_array WFxxItxx_stat_summary_array

% %example:
% WF3filtIt100Rs4000_stat_summary_array = stat_summary_array
% save WF3filtIt100Rs4000_stat_summary_array WF3filtIt100Rs4000_stat_summary_array

 %%

 figure;
 subplot(2,1,1);
 plot(stat_summary_array(:,1), stat_summary_array(:,2), stat_summary_array(:,1),
stat_summary_array(:,3));
 title('TOA Summary'); xlabel('Es/No (dB)'); ylabel('TDOA (s)'); legend('Mean', 'Standard
Deviation');
 subplot(2,1,2);
 plot(stat_summary_array(:,1), stat_summary_array(:,4), stat_summary_array(:,1),
stat_summary_array(:,5));
 title('FOA Summary'); xlabel('Es/No (dB)'); ylabel('FDOA (Hz)'); legend('Mean', 'Standard
Deviation');

 figure;
 subplot(2,1,1);
 plot(stat_summary_array(:,1), stat_summary_array(:,2), stat_summary_array(:,1),
stat_summary_array(:,3));
 title('TOA Summary'); xlabel('Es/No (dB)'); ylabel('TDOA (s)'); legend('Mean', 'Standard
Deviation');
 xlim([10,35]);
 subplot(2,1,2);
 plot(stat_summary_array(:,1), stat_summary_array(:,4), stat_summary_array(:,1),
stat_summary_array(:,5));
 title('FOA Summary'); xlabel('Es/No (dB)'); ylabel('FDOA (Hz)'); legend('Mean', 'Standard
Deviation');
 xlim([10,35]);

 120

 figure;
 subplot(2,1,1);
 plot(stat_summary_array(:,1), stat_summary_array(:,2), stat_summary_array(:,1),
stat_summary_array(:,3));
 title('TOA Summary'); xlabel('Es/No (dB)'); ylabel('TDOA (s)'); legend('Mean', 'Standard
Deviation');
 xlim([20,35]);
 subplot(2,1,2);
 plot(stat_summary_array(:,1), stat_summary_array(:,4), stat_summary_array(:,1),
stat_summary_array(:,5));
 title('FOA Summary'); xlabel('Es/No (dB)'); ylabel('FDOA (Hz)'); legend('Mean', 'Standard
Deviation');
 xlim([20,35]);

 figure;
 subplot(2,1,1);
 semilogy(stat_summary_array(:,1), stat_summary_array(:,3),'-x');
 title('TOA Summary'); xlabel('Es/No (dB)'); ylabel('TDOA (s)'); legend('Standard Deviation');
 grid on
 subplot(2,1,2);
 semilogy(stat_summary_array(:,1), stat_summary_array(:,5),'-x');
 title('FOA Summary'); xlabel('Es/No (dB)'); ylabel('FDOA (Hz)'); legend('Standard Deviation');
 grid on

E. MATLAB CODE: DISPLAY_SCATTER_FOA_TOA.M

% ***
% display_scatter_foa_toa.m;
% routine to display scatter plots of FOA v. TOA of detections
% for various levels of noise.
% requires: snr_step_no, no_noise_iterations, toa_est, foa_est
%
% Written by: Joe Crnkovich, NRL
% Last modified: 9 April 2009
% ***

 close all

for stat_index=1:Es_No_step_no
 %offset=(stat_index-1)*no_noise_iterations;
 offset=(stat_index-1)*no_noise_iterations*pos_offset_index;

 %toa_series=toa_est(offset+1:offset+no_noise_iterations,1);
 %foa_series=foa_est(offset+1:offset+no_noise_iterations,1);
 toa_series=toa_est(offset+1:offset+no_noise_iterations*pos_offset_index,1);
 foa_series=foa_est(offset+1:offset+no_noise_iterations*pos_offset_index,1);

 title_string=['FOA v. TOA Scatterplot (Ec/No=',num2str(toa_est(offset+1,2)),'dB)'];

 figure;
 subplot(2,1,1);
 plot(toa_series, foa_series, 'x');

 121

 xlabel('Time of Arrival (TOA) (s)'), ylabel('Frequency of Arrival (FOA) (Hz)');
 title(title_string);

% figure;
 [n,xout] = hist(toa_series)
% subplot(2,1,1);
 subplot(4,1,3);
 bar(xout,n)
 xlabel('Time of Arrival (TOA) (s)'), ylabel('Occurences');
% title_string=['Histogram of TOA results (Ec/No=',num2str(toa_est(offset+1,2)),'dB)'];
 title_string=['---------------- Histograms of results ----------------'];
 title(title_string);

 %figure;
 [n,xout] = hist(foa_series)
% subplot(2,1,2);
 subplot(4,1,4);
 bar(xout,n)
 xlabel('Frequency of Arrival (FOA) (Hz)'), ylabel('Occurences');
% title_string=['Histogram of FOA results (Ec/No=',num2str(toa_est(offset+1,2)),'dB)'];
% title(title_string);

end

F. MATLAB CODE: GEN_SINC.M

% ***
% gen_sinc.m;
% script used to generate canned waveform using sinc-shaped
% chips.
%
% Written by: Joe Crnkovich, NRL
% Last modified: 17 April 2009
% ***

clear
close all
clc

samples_per_pulse = 12; %no of quantizations per pulse
%samples_per_pulse = 50; %no of quantizations per pulse
no_repeat=1; %no of times a given sample is repeated

t = linspace(-5,5,10*samples_per_pulse);
y = sinc(t);
stem(t,y);
xlabel('Time (chips)');ylabel('Amplitude');
title_text = ['Sinc Function (', num2str(samples_per_pulse),' Samples per Chip)']
title(title_text)

 122

load mls65535a

bit_stream = -1 + 2*mls65535a(1:5000); %first 5,000 chips
% bit_stream = zeros(1,200); % test vector
% bit_stream(50) = 1;

%upsample bitstream by inserting zeros
bit_stream = upsample(bit_stream, samples_per_pulse);

modulation=filter(y,1,bit_stream); % sinc-shaped modulation
bit_stream=filter(ones(1,samples_per_pulse),1,bit_stream); %rect. mod.

%modulation samples are repeated based on no_repeat
modulation = upsample(modulation, no_repeat);
modulation=filter(ones(1,no_repeat),1,modulation);

bit_stream = upsample(bit_stream, no_repeat);
bit_stream=filter(ones(1,no_repeat),1,bit_stream);

% plot baseband modulation signal
figure
subplot(2,1,1)
plot(10*log10(abs(fft(bit_stream)).^2))
%title_text = ['"Squared" Baseband Signal (Samples per pulse=', num2str(samples_per_pulse),')']
title_text = ['num-repeat=', num2str(no_repeat), ...
 '; "Squared" Baseband Signal (Samples per pulse=', num2str(samples_per_pulse),')'];
title(title_text)
ylim([0,80])
grid on
%figure
subplot(2,1,2)
plot(10*log10(abs(fft(modulation)).^2))
%title_text = ['"Shaped" Baseband Signal (Samples per pulse=', num2str(samples_per_pulse),')']
title_text = ['num-repeat=', num2str(no_repeat), ...
 '; "Shaped" Baseband Signal (Samples per pulse=', num2str(samples_per_pulse),')'];
title(title_text)
ylim([0,80])
grid on

% plot modulated signal @ IF = fs/4
n=0:length(modulation)-1;
signal1 = cos(0.25*2*pi*n);

figure
x_axis = [0:length(modulation)-1]/length(modulation);

subplot(2,1,1)
plot(x_axis, 10*log10(abs(fft(signal1.*bit_stream)).^2))
%title_text = ['num-repeat=', num2str(no_repeat),'; "Squared" Signal (Samples per pulse=',
num2str(samples_per_pulse),')']

 123

title_text = ['Rectangular-shaped Modulation (', num2str(samples_per_pulse),' Samples per
pulse)']
title(title_text)
xlabel('Frequency Normalized to f_s (Hz)');
ylabel('Signal Power (dB)');
xlim([0,0.5]) %fs/2
ylim([0,80])
grid on

subplot(2,1,2)
plot(x_axis, 10*log10(abs(fft(signal1.*modulation)).^2))
%title_text = ['num-repeat=', num2str(no_repeat),'; "Shaped" Baseband Signal (Samples per
pulse=', num2str(samples_per_pulse),')']
title_text = ['Sinc-shaped Modulation (', num2str(samples_per_pulse),' Samples per pulse)']
title(title_text)
xlabel('Frequency Normalized to f_s (Hz)');
ylabel('Signal Power (dB)');
xlim([0,0.5]) %fs/2
ylim([0,80])
grid on

% modulated signal
modulation = signal1.*modulation;

% save sinc_unb_mls65535a modulation samples_per_pulse

G. MATLAB CODE: MLS_GEN.M

% ***
% mls_gen.m;
% script used to generate m-sequence.
%
% Written by: Joe Crnkovich, NRL
% Last modified: 15 May 2009
% ***

clear
close all
clc

reg_len = 16;
taps = [1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1];
out_len =70000; %length of mls code returned (max val 2^reg_len - 1)
seed = [1 0 0];
% ref Dixin table 3.7 for mls codes and respecdtive taps (not all shown)
% 2: [2,1]
% 3: [3,1]
% 4: [4,1]
% 5: [5,2]
% 6: [6,1]

 124

% 7: [7,1], [7,3] (127)
% 8: [8,4,3,2], [8,6,5,3] (255)
% 9: [9,4], [9,6,4,3] (511)
%10: [10,3], [10,8,3,2] (1023)
%11: [11,1], [11,8,5,2] (2047)
%12: [12,6,4,1], [12,9,3,2] (4095)
%13: [13,4,3,1], [13,10,9,7,5,4] (8191)
%14: [14,12,2,1], [14,13,4,2] (16383)
%15: [15,13,10,9] (32767)
%16: [16,12,3,1] (65535)

reg = [seed, zeros(1, reg_len-length(seed))];
%reg(1:length(seed)) = seed+ seed;

%fprintf('register: [%1d%1d%1d%1d]\n',reg(1), reg(2), reg(3), reg(4))
fprintf(' register: [');
fprintf('%1d',reg);
fprintf(']\n');

for i=1:out_len
 %feedback = xor(reg(1),reg(4));
 %feedback = xor(and(reg,taps));
 feedback = mod(sum(and(reg,taps)),2);
 reg = [feedback, reg(1:reg_len-1)];
 fprintf('%3d register: [',i);
 fprintf('%1d',reg);
 fprintf(']\n');
 mls_code(i) = reg(reg_len);
end

mls_code

A=1;
signal_sent = -A + 2*A * mls_code;
plot(xcorr(signal_sent,'none'))

% use thge following to verify autocorrelation
mls_len=2^reg_len-1
for i = 1:200
 corrval(i) = signal_sent(1:mls_len)*signal_sent(1+i:mls_len+i)';
end
figure; plot(corrval)

H. MATLAB CODE: MAIN_SIMULATION.M

% ***
% main_simulation.m;
% main_simulation calls functions to generate signals and compute detection and
% TOA & FOA statistics for various levels of noise.
%
% Written by: Joe Crnkovich, NRL

 125

% Last modified: 15 May 2009
%
% ***

%% reset working environment
clear
close all
%clc

%% set operating variables

if exist('config_file.mat','file') % check if 'config_file.mat' exists
 % use paramters defined in config_file
 source_config_text = ['"config_file.mat" used as parameter source']
 load config_file
else % use default signal parameters if 'config_file.m' does not exist
 source_config_text = ['DEFAULT values used as parameter source']
 wf_type=3; % 1:const env, const psd; 2:gap in time; 3:gap in psd; 4:shortened pulse
 filter_outside_bnn=1; %limit signal, if generated (i.s., WF1-4), to within Bnn

 f0 = 20000; %carrier frequency
 fs = 100000; %sample frequency
 Rsym=4000; %2000 %10000; %symbol rate

 pad_length = 1024; %no. of zeros to add onto each side of S1
 N = 32768-2*pad_length; %length(samples) of burst; CAF alg. prefers N=2^k

 %--- SNR (Ec_No) of 2.6 (4.15 dB) should give BER .01 for BPSK
 Es_No_dB_min = 0;
 Es_No_dB_step = 5;
 Es_No_dB_max = +35;

 no_noise_iterations = 1000;
 %no_noise_iterations = 100 %200%0; %500 %40 %250;

 %monitor and debug setting
 verbose=0; %set to zero to stop sending debug info to MATLAB window
 verbose_wf_gen=1; %enable plots and sending debug info to MATLAB window
 verbose_plot_wf=1; %enable plots of waveform and calculate rms BW
 enable_BER_test=0; %set to 1 to enable running of BER test function
 process_detections=1; %process detections to get estimates of TOA and FOA
 limit_CAF_to_search_freq_only=0; % remove ambiguity in CAF (find FDOA only) %Warning:
assumes tau =0
 limit_CAF_to_search_time_only=0; % remove ambiguity in CAF (find TDOA only)

 %geometry
 Pc1 = [0 0 500]; %use only z position (i.e., leave x&y=0)
 Vc1 = [0 0 0];
 Pc2 = Pc1;
 Vc2 = [0 0 0];
 Pe = [0 0 0];
 Ve = [0 0 0];

 126

 tau = 1.25e-7; % time offset step used to dither sampling relative to signal
 c = 2.997925e8; % Speed of light in m/s

 % dither position to remove clock sync between runs
 pos_offset_min = 0; % in meters
 pos_offset_step = c*tau; % in meters
 pos_offset_max = 0; %9*c*tau; % in meters %run ten iterations
end

%no_noise_iterations = 1
wf_type

save init_parameters_dump

%% initialize variables

distr_plot_no = figure(1); %used to plot all the distribution on same figure

Es_No_min = 10^(Es_No_dB_min/10); %convert from dB
Es_No_step = 10^(Es_No_dB_step/10);
Es_No_max = 10^(Es_No_dB_max/10);
Ts = 1/fs;
Tsym = 1/Rsym;
total_bit_errors = 0; total_bits = 0;
no_chips = (Rsym/fs)*N; %no of PN chips in burst
no_chips_dB = 10*log10(no_chips);

threshold = N/2; %This can be refined, but it allows a quick check

% define CAF search window
Max_f = 1/(N*Ts); % for CAF; 1st null at 1/T = fs/N
Max_t = 2/Rsym; % for CAF; for a m-sequence, "trainagular peak between +/- 1/Rsym
if limit_CAF_to_search_freq_only
 Max_t=0; end %Warning: assumes tau =0
if limit_CAF_to_search_time_only
 Max_f=0; end

%clear counters
proc_index=0; %to be incremented for each detection iteration
Es_No_step_no=0;
prev_Es_No_dB = NaN;

%for Es_No=Es_No_min:Es_No_step:Es_No_max
for Es_No_dB=Es_No_dB_min:Es_No_dB_step:Es_No_dB_max
 Es_No_dB; % display SNR (in dB) to MATLAB window
 Es_No = 10^(Es_No_dB/10); %convert from dB
 Es_No_step_no=Es_No_step_no+1;

 Ec_No = Es_No/no_chips;
 Ec_No_dB = 10*log10(Ec_No);

 threshold = 1; % TBD

 127

 %clear counters
 pos_offset_index=0; % keep track of the number of position offsets
 detects_vector_cum(Es_No_step_no)=0; detects_cum(Es_No_step_no)=0;

 for pos_offset=pos_offset_min:pos_offset_step:pos_offset_max

 pos_offset_index=pos_offset_index+1;
 Pc2(3) = Pc1(3) + pos_offset;
 % Pc1(3) = Pc2(3) + pos_offset; %used to test 3-23-09v2 toa offset

 % First, generate the "received" & "reference" waveforms
 if (wf_type < 10) % generate_waveform();
 [S1,Sref] = generate_waveform(Pc1,Vc1,Pc2,Vc2,Pe,Ve,f0,fs,Rsym,N, ...
 wf_type, pad_length, filter_outside_bnn, verbose_wf_gen);
 end

 if (wf_type > 10) % use previously generated waveform - does not use model
 % generate a waveform to get Es
 wf_type_tmp=1; verbose_wf_gen_tmp=0;
 [S1,Sref] = generate_waveform(Pc1,Vc1,Pc2,Vc2,Pe,Ve,f0,fs,Rsym,N, ...
 wf_type_tmp, pad_length, verbose_wf_gen_tmp); % generate_waveform();
 Es = sum(S1.^2);

 %S1 = get_canned_waveform(Es, N, wf_type, pad_length, verbose_wf_gen);
 S1 = get_canned_waveform(Es, N, wf_type, pad_length, Rsym, f0, fs, filter_outside_bnn,
verbose_wf_gen)
 Sref = S1;

 f0 = fs/4; % the canned waveforms were generated with fc=fs/4
 end

 if (verbose_plot_wf && ~proc_index)
 display_waveform_calc_rmsBW(Sref, f0, fs, wf_type, filter_outside_bnn);
 display_waveform_calc_rmsT(Sref, f0, fs, wf_type, filter_outside_bnn);
 end

 SAref = hilbert(Sref); % Calculates the ANALYTIC SIGNAL of Sref
 clear Sref; %free up memory
 for noise_iteration=1:no_noise_iterations
 proc_index=proc_index+1

 %check if Es/No is new value (and set flag if it is)
 flag_is_new_Es_No = ~(prev_Es_No_dB == Es_No_dB);
 prev_Es_No_dB = Es_No_dB;

 %add noise and take hilbert transform to get I&Q channels
 N_t = gen_noise_vector(length(S1),Ec_No, Tsym, fs);
 S1wnoise=S1+N_t';
 SA1 = hilbert(S1wnoise); % Calculate the ANALYTIC SIGNAL
 clear S1wnoise; % free up memory

 if enable_BER_test %perform test on gen_sig output with noise

 128

 %To use, set:
 % - verbose=1; %set to zero to stop sending debug info to MATLAB window
 % - verbose_wf_gen=1; %enable plots and sending debug info to MATLAB window
 % - enable_BER_test=1; %set to 1 to enable running of BER test function
 % - process_detections=0; %process detections to get estimates of TOA and FOA
 % - wf_type=1; % 1:const env, const psd; 2:gap in time; 3:gap in psd; 4:shortened
pulse
 % - Es_No_dB_min & Es_No_dB_max = 4.15 (dB) + no_chips_dB (to give BER .01 for
BPSK)
 % - no_noise_iterations = 1
 % - pad_length = 0; %no. of zeros to add onto each side of S1
 % - Rsym=2000 or 5000; %symbol rate
 %--- SNR of 2.6 (4.15 dB) should give BER .01 for BPSK
 [BER, no_of_errors, no_of_bits]= perf_demod_test(SA1, ...
 SAref, fs, f0, Rsym, Ec_No_dB, verbose);
 if verbose
 prinf('BER from test demod is %f \n',BER);
 end;
 BER_array(proc_index)=BER;
 total_bit_errors = total_bit_errors + no_of_errors;
 total_bits = total_bits + no_of_bits;
 end

 [rx_out,lags] = xcorr(SA1, SAref, 500);

 if (flag_is_new_Es_No) % verbose || (flag_is_new_Es_No)
 figure; subplot(1,2,1)
 plot(lags,abs(rx_out)); %'abs' gives envelope, i.e., sqrt(I^2+Q^2)
 %title(['Crosscorrelation Output - Es/No=',num2str(Es_No_dB),'dB']);
 title(['R_{rs} (Es/No=',num2str(Es_No_dB),'dB)']);
 xlabel('# of Lags'); ylabel('Crosscorrelation');
 grid on;

 subplot(1,2,2) %figure;
 plot(lags,10*log10(abs(rx_out))); %'abs' gives envelope, i.e., sqrt(I^2+Q^2)
 %title(['Crosscorrelation Output - Es/No=',num2str(Es_No_dB),'dB']);
 title(['R_{rs} (Es/No=',num2str(Es_No_dB),'dB)']);
 xlabel('# of Lags'); ylabel('Crosscorrelation (dB)');
 ylim([20, 50]);
 grid on;
 end

 % generate decsion variable at T0 for s+n, s, and noise-only
 xcorr_val(proc_index) = xcorr(SA1, SAref, 0);
 xcorr_val_s(proc_index) = xcorr(hilbert(S1), SAref, 0);
 xcorr_val_n(proc_index) = xcorr(hilbert(N_t),SAref, 0);

 detection = (max(abs(rx_out)) > threshold);
 if detection && process_detections % if detection occurs (and processing for TOA/FOA
desired
 detects_cum(Es_No_step_no)=detects_cum(Es_No_step_no)+1;

 fprintf('...starting CAF processing...\n');

 129

 display_CAF_peak = flag_is_new_Es_No; %display CAF plot for 1st iteration

 % Returns TDOA in seconds, FDOA in Hz
 [TDOA, FDOA] = CAFv2(SA1, SAref, Max_f, fs, Max_t,display_CAF_peak);

 if (flag_is_new_Es_No && verbose_plot_wf) %generate FDOA view of CAF
 [TDOA, FDOA] = CAFv2(SA1, SAref, Max_f, fs, Max_t,display_CAF_peak);
 az = 90; el = 0; view(az, el);
 end

 TDOA=TDOA-tau; %compensate for position offset

 if(flag_is_new_Es_No)
 title(['Cross Ambiguity Function - Es/No=', num2str(Es_No_dB),'dB']);
 end

 toa_est(proc_index,1)=TDOA;
 toa_est(proc_index,2)=Es_No_dB;
toa_est(proc_index,3)=pos_offset;toa_est(proc_index,4)=noise_iteration;

 foa_est(proc_index,1)=FDOA;
 foa_est(proc_index,2)=Es_No_dB;
foa_est(proc_index,3)=pos_offset;foa_est(proc_index,4)=noise_iteration;
 end

 end
 %no_chips = (Rsym/fs)*N
 %fprintf('Es/No (dB):\n');
 %true_snr(snr_step_no) = 10*log10(no_chips*SNR)

 if (verbose_plot_wf)
 figure; %(1);
 subplot(2,2,1); plot(real(SA1));
 %title(['I-Channel Amplitude vs. Samples - Es/No=', num2str(Es_No_dB),'dB']);
 title('I-Channel Amplitude vs. Samples');
 xlabel('Sample number'); ylabel('Magnitude');

 subplot(2,2,3); plot(abs(SA1));
 %title(['Signal Amplitude vs. Samples - Es/No=', num2str(Es_No_dB),'dB']);
 title('Signal Amplitude vs. Samples');
 xlabel('Sample number'); ylabel('Magnitude');

 no_samples_displayed = 100; % zoom in and display fewer samples
 start_indx = find((abs(SA1)>0.5), 1, 'first') + 20*fs/Rsym; %4 chips in
 stop_indx = start_indx + no_samples_displayed - 1;

 %subplot(2,2,2); plot([start_indx:stop_indx],real(SA1(start_indx:stop_indx)));
 subplot(2,2,2); plot(real(SA1));
 xlim([start_indx,stop_indx]);
 title('I-Channel Amplitude vs. Samples');
 xlabel('Sample number'); ylabel('Magnitude');

 130

 subplot(2,2,4); plot(abs(SA1));
 xlim([start_indx,stop_indx]);
 title('Signal Amplitude vs. Samples');
 xlabel('Sample number'); ylabel('Magnitude');
 end

 end
% no_chips_dB=10*log10(no_chips)
% fprintf('Es/No (dB):\n');
% disp(true_snr);

 if (verbose_plot_wf) %fills in subplot for each of 8 SNR steps
 figure(distr_plot_no); %(6);
 subplot(4,2,Es_No_step_no);
 %for coherent processing use... (real)
 histfit(real(xcorr_val_n(proc_index-no_noise_iterations+1:proc_index)));
 %otherwise for envelope (magnitude) use... (abs)
 histfit(abs(xcorr_val_n(proc_index-no_noise_iterations+1:proc_index)));
 title(['Correlation Value Distribution - Es/No=', num2str(Es_No_dB),'dB']);

 save interim_all_variables_dump %save for each iteration of Es/No
 end

end

if enable_BER_test %print out BER results
 fprintf('Cumulative BER is %f (%d of %d)\n', mean(BER_array), ...
 total_bit_errors, total_bits);
end

% save variables to file so they're not lost
save all_variables_dump
save tdoa-fdoa_est_lastrun no_noise_iterations Es_No_step_no toa_est foa_est

I. MATLAB CODE: GENERATE_WAVEFORM.M

 function [S1,Sref] = generate_waveform(Pc1,Vc1,Pc2,Vc2,Pe,Ve,f0,fs,Rsym,N, ...
 wf_type, pad_length, filter_outside_bnn, verbose)

% ***
% GENERATE_WAVEFORM.m;
% This function generates waveforms 1-4, using gen_sig (a derivative of
% sig_gen developed by Johnson, NPS Thesis Sep '01)which projects a
% BPSK modulated signal onto two collectors as defined by a scenario and
% can accurately introduce doppler compression/expansion onto the signal.
% Waveform #1 (WF1) is the waveform produced by gen_sig (sinc^2 PSD,
% constant amplitude waveform).
% Waveform #2 excises the middle 3/4 of WF1 and increases amplitude so WF2
% has the same energy as WF1.
% Waveform #4 excises the outer 3/4 of WF1 and increases amplitude so WF2
% has the same energy as WF1.
% Waveform #3 has same duration as WF1 but is the sum of two BPSK signals

 131

% offset from fc but having same Bnn as WF1.
%
% Written by: Joe Crnkovich, NRL
% Last modified: 15 May 2009
%
% ***

% if verbose %open figure for plotting
 wfX_fig = figure;
% wf3_fig_freq=figure;
% end % end verbose

if wf_type==3 % 1:const env, const psd; 2:gap in time; 3:gap in psd; 4:shortrened pulse

 %generate baseline once to find Es
 [S1,Sref] = gen_sig(Pc1,Vc1,Pc2,Vc2,Pe,Ve,f0,fs,Rsym,N);
 if verbose
 wfX_fig_freq=figure;
 wf3_fig_freq=figure;
 figure(wfX_fig); subplot(4,1,1); plot(S1);
 title('S1 Amplitude v. Sample Number');
 figure(wf3_fig_freq); subplot(3,1,1); plot(abs(fft(S1)));
 title('S1 FFT');
 xlim([0,N/2]);
 end
 E_s_tmp = sum(S1.^2); % calculate energy in baseline signal

 %generate lower frequency component
 [S1,Sref] = gen_sig(Pc1,Vc1,Pc2,Vc2,Pe,Ve,f0-Rsym/2,fs,Rsym/2,N);
 if verbose
 figure(wfX_fig); subplot(4,1,2); plot(S1);
 title('Lower Freq Component');
 figure(wf3_fig_freq); subplot(3,1,2); plot(abs(fft(S1)));
 title('FFT of Lower Freq Component');
 xlim([0,N/2]);
 end
 S1_tmp=S1; Sref_tmp=Sref; % make copy of data

 %generate upper frequency component and add to lower
 [S1,Sref] = gen_sig(Pc1,Vc1,Pc2,Vc2,Pe,Ve,f0+Rsym/2,fs,Rsym/2,N);
 S1=S1+S1_tmp; Sref=Sref+Sref_tmp;
 if verbose
 figure(wfX_fig); subplot(4,1,3); plot(S1);
 title('New Composite S1');
 end

 % normalize amplitude so same Es
 E_s_reduction = sum(S1.^2)/E_s_tmp
 S1=S1/sqrt(E_s_reduction); % normalize ampl. so Es same as baseline
 if verbose
 figure(wfX_fig); subplot(4,1,4); plot(S1); title('New Normalized S1');
 figure(wf3_fig_freq); subplot(3,1,3); plot(abs(fft(S1))); title('New Normalized S1');

 132

 xlim([0,N/2]);
 end

else % WF type is constant PSD (but may have gaps) such as WF1, WF2, WF4, ...

 [S1,Sref] = gen_sig(Pc1,Vc1,Pc2,Vc2,Pe,Ve,f0,fs,Rsym,N); % WF1 (baseline)

 if wf_type==2 % (2:gap in time) move power from middle to ends

 E_s_tmp = sum(S1.^2) % calculate energy in baseline signal
 if verbose
 wfX_fig = figure;
 figure(wfX_fig); subplot(3,1,1); plot(S1);
 title('S1 Amplitude v. Sample Number');
 end

 % next zeroize signal for middle 3/4 of baseline waveform
 S1(length(S1)/2-3*length(S1)/8:length(S1)/2+3*length(S1)/8)=0;
 if verbose
 subplot(3,1,2); plot(S1); title('S1 After Excising Middle');
 end

 % normalize amplitude so same Es
 E_s_reduction = sum(S1.^2)/E_s_tmp
 S1=S1/sqrt(E_s_reduction);
 if verbose
 subplot(3,1,3); plot(S1); title('New Normalized S1');
 end
 %new_E_s_tmp = sum(S1.^2);

 %...and do the same for the reference signal
 E_s_tmp = sum(Sref.^2) % calculate energy in baseline signal
 Sref(length(Sref)/2-3*length(Sref)/8:length(Sref)/2+3*length(Sref)/8)=0;
 E_s_reduction = sum(Sref.^2)/E_s_tmp
 Sref=Sref/sqrt(E_s_reduction); % normalize amplitude so same Es
 end

 if wf_type==4 % (4:shortened pulse) move power from ends to middle

 E_s_tmp = sum(S1.^2) % calculate energy in baseline signal
 if verbose
 wfX_fig_freq=figure;
 figure(wfX_fig); subplot(3,1,1); plot(S1); title('S1 Amplitude v. Sample Number');
 end %end verbose
 S1(1:length(S1)/2-length(S1)/8)=0; % remove signal from front
 S1(length(S1)/2+length(S1)/8:length(S1))=0; %remove signal from back
 if verbose
 subplot(3,1,2); plot(S1); title('S1 After Excising Ends');
 end %end verbose

 % normalize amplitude so same Es
 E_s_reduction = sum(S1.^2)/E_s_tmp
 S1=S1/sqrt(E_s_reduction); % normalize amplitude so same Es

 133

 if verbose
 subplot(3,1,3); plot(S1); title('New Normalized S1');
 end %end verbose

 %...and do the same for the reference signal
 %new_E_s_tmp = sum(S1.^2)
 E_s_tmp = sum(Sref.^2) % calculate energy in baseline signal
 if verbose
 figure(wfX_fig); subplot(3,1,1); plot(Sref);
 title('Sref Amplitude v. Sample Number');
 end %end verbose
 Sref(1:length(Sref)/2-length(Sref)/8)=0; % remove signal from front
 Sref(length(Sref)/2+length(Sref)/8:length(Sref))=0; %remove signal from back
 if verbose
 subplot(3,1,2); plot(Sref); title('Sref After Excising Middle');
 end %end verbose
 E_s_reduction = sum(Sref.^2)/E_s_tmp
 Sref=Sref/sqrt(E_s_reduction); % normalize amplitude so same Es
 if verbose
 subplot(3,1,3); plot(Sref); title('New Normalized Sref');
 end %end verbose

 end %end wf_type=4

end

if filter_outside_bnn
 % note: this was meant to be used only for static signal scenario
 S1 = filt_bnn_fft(S1, Rsym, f0, fs);
 Sref = filt_bnn_fft(Sref, Rsym, f0, fs);
end

if pad_length %pad beginning and end of waveform with zeros
 S1 = [zeros(1,pad_length), S1, zeros(1,pad_length)];
 Sref = [zeros(1,pad_length), Sref, zeros(1,pad_length)];
end

J. MATLAB CODE: GEN_SIG.M

 function [S1,S2] = gen_sig(Pc1,Vc1,Pc2,Vc2,Pe,Ve,f0,fs,Rsym,N)
% ***
% [S1] = gen_sig;
% GEN_SIG generates BPSK signal pairs based upon user-defined param-
% eters and Cartesian emitter-collector geometries usign the signal . The following
% input arguments are used:
% Pc1 - initial position of collector1 in meters [x y z] (e.g., [0 0 7500])
% Vc1 - velocity of collector1 in m/s [x y z]
% Pc2 - initial position of collector2 in meters [x y z] (e.g., [0 0 7500])
% Vc2 - velocity of collector2 in m/s [x y z]
% Pe - initial position of emitter in meters [x y z] (e.g., [0 0 7500])
% Ve - velocity of emitter in m/s [x y z]
% f0 - carrier frequency
% fs - sampling rate

 134

% Rsym - symbol rate
% N - number of samples
%
% The function returns the vector S1 which is the Real representation
% of the received signal.
%
% Extracted from SIG_GEN.m, which was by: LCDR Joe J. Johnson, USN
%
% Modified by J. Crnkovich
% major changes from SIG_GEN.m:
% 1- Does not prompt for input arguments (they must now be passed in)
% 2- Es_No not used because this is processed externally
% 3- Conversion to analytic signal performed externally
% 4- bit sequence is read in from file (currently an m-sequence)
% 5- does not perform Hilbert transform to convert to analytic signal
%
% Last modified: 15 May 2009
%
% ***

Ts = 1/fs;
Tsym = 1/Rsym;

Pc1 = [Pc1; zeros(N-1, 3)]; % Initializing all the matrices makes
Pe1 = zeros(N, 3); % later computations much faster.
Pc2 = [Pc2; zeros(N-1, 3)];
Pe2 = zeros(N, 3);
t1 = zeros(1, N);
t2 = zeros(1, N);
S1 = zeros(1, N);
S2 = zeros(1, N);

A = 1; % Amplitude of Signal
c = 2.997925e8; % Speed of light in m/s
Ps = (A^2)/2; % Power of Signal

% % sigma1 = sqrt(Ps*Tsym/Es_No1) % Calculate Noise Amplification fac
% % sigma2= sqrt(Ps*Tsym/Es_No2) % tors using Es/No = Ps*Tsym/sigma^2
% % Corrected formula below - JGC 2/12/09
% % From Johnson paper, sigma^2 = (Ps*Tsym*B/Es_No): However B is not equal
% % to 1 (as stated in the paper), the digital frequency bandwidth, but is
% % rather the true bandwidth, fs/2 (or 1/2Ts).
% % sigma1 = sqrt(Ps*Tsym/Es_No1) % Calculate Noise Amplification fac
% % sigma2= sqrt(Ps*Tsym/Es_No2) % tors using Es/No = Ps*Tsym/sigma^2
% sigma1 = sqrt(0.5*Ps*(Tsym/Ts)/Es_No1) % Calculate Noise Amplification fac
% sigma2 = sqrt(0.5*Ps*(Tsym/Ts)/Es_No2) % tors using Es/No = Ps*Tsym*B/sigma^2
%
% Noise1 = sigma1.*randn(N, 1); % Random Noise values for Signal 1
% Noise2 = sigma2.*randn(N, 1); % Random Noise values for Signal 2

% Builds the position vectors for the two collectors
for index = 2 : N

 135

 Pc1(index,:) = Pc1(index - 1,:) + Ts*Vc1;
 Pc2(index,:) = Pc2(index - 1,:) + Ts*Vc2;
end

% While loop determines first elements of Pe1 and t1. t1(1) is the
% time AT THE EMITTER that produces the 1st sample received at
% collector 1! Pe1(1,:) is the position of the emitter when it
% produces the 1st sample received by collector 1.

temp = inf; % Ensures while loop executes at least once
t1(1) = 0;
tempPe = Pe(1,:);
while abs(temp - t1(1)) > 1/f0
 temp = t1(1);
 t1(1) = -norm(Pc1(1,:) - tempPe) / c;
 tempPe = Pe(1,:) + t1(1)*Ve;
end
Pe1(1,:) = tempPe;

% While loop determines first elements of Pe2 and t2. t2(1) is the
% time AT THE EMITTER that produces the 1st sample received at
% collector 2! Pe2(1,:) is the position of the emitter when it
% produces the 1st sample received by collector 2.

temp = inf; % Ensures while loop executes at least once
t2(1) = 0;
tempPe = Pe(1,:);
while abs(temp - t2(1)) > 1/f0
 temp = t2(1);
 t2(1) = -norm(Pc2(1,:) - tempPe) / c;
 tempPe = Pe(1,:) + t2(1)*Ve;
end
Pe2(1,:) = tempPe;

% Platform positions at middle of snapshot
Pcc1=(Pc1(N/2,:));
Pcc2=(Pc2(N/2,:));
% Determines the earliest time at the emitter for this pair of signals.
StartPoint = min(t1(1), t2(1));

% Next 2 lines determine offsets needed for signals 1 & 2 to enter the
% phase vector (P). This simply ensures proper line up so that bit
% changes occur at the right times.
SymbolIndex1 = 1 + floor(abs(t1(1) - t2(1))/Tsym) * (t1(1)>t2(1));
SymbolIndex2 = 1 + floor(abs(t1(1) - t2(1))/Tsym) * (t2(1)>t1(1));

for index = 2 : N % Builds the Pe1 and t1 vectors
 temp = inf;
 t1(index) = 0;

 % 1st guess is that emitter will advance exactly Ts seconds.

 136

 tempPe = Pe1(1,:) + (t1(index -1) + Ts)*Ve;

 % While loop iteratively determines actual time & position for
 % emitter, based on instantaneous geometry.

 while abs(temp - t1(index)) > 1/f0
 temp = t1(index);
 t1(index) = (index - 1)*Ts - norm(Pc1(index,:) - tempPe) / c;

 % Due to negative times, must multiply Ve by ELAPSED time!
 tempPe = Pe1(1,:) + abs(t1(1)-t1(index))*Ve;
 end
 Pe1(index,:) = tempPe;
end

for index = 2 : N %Builds the Pe2 and t2 vectors
 temp = inf;
 t2(index) = 0;

 % 1st guess is that emitter will advance exactly Ts seconds.
 tempPe = Pe2(1,:) + (t2(index -1) + Ts)*Ve;

 % While loop iteratively determines actual time & position for
 % emitter, based on instantaneous geometry.
 while abs(temp - t2(index)) > 1/f0
 temp = t2(index);
 t2(index) = (index - 1)*Ts - norm(Pc2(index,:) - tempPe) / c;
 % Due to negative times, must multiply Ve by ELAPSED time!
 tempPe = Pe2(1,:) + abs(t2(1)-t2(index))*Ve;
 end
 Pe2(index,:) = tempPe;
end

% Could change this seed to whatever you want; or could have user
% define it as an input. This just ensures, for simulation purposes
% that every time the program is run, the BPSK signals created will
% have the same random set of data bits.
rand('seed',5);

% % Create enough random #'s to figure phase shift (data bits)
% r = rand(N,1);
% P = (r > 0.5)*0 + (r <= 0.5)*1; % Since BPSK, random # determines if phase is 0 or pi

%% Import 65535 length m-sequence to use instead of random numbers
load mls65535a
P = zeros(N,1);
tmp=min(N,65535);
P(1:tmp)=mls65535a(1:tmp);

% Building Xmitted Signal #1 vector... These represent the pieces of

 137

% the signal that were transmitted by the emitter to arrive at
% Collector 1 at its sample intervals.

S1(1) = A*cos(2*pi*f0*t1(1) + P(SymbolIndex1)*pi) ;%+ Noise1(1);

% The if statement inside the loop changes the data bit if the time
% has advanced into the next symbol period.
for index = 2 : N
 if t1(index) - StartPoint >= (SymbolIndex1) * Tsym
 SymbolIndex1 = SymbolIndex1 + 1;
 end
 S1(index) = A*cos(2*pi*f0*t1(index) + P(SymbolIndex1)*pi) ;%+ ...
% Noise1(index);
end

% Sa1 = hilbert(S1); % Calculates the ANALYTIC SIGNAL of S1. To
 % compute the COMPLEX ENVELOPE, multiply Sa1
 % by .*exp(-j*2*pi*f0.*t1);

% Building Xmitted Signal #2 vector... These represent the pieces of
% the signal that were transmitted by the emitter to arrive at
% Collector 2 at its sample intervals.

S2(1) = A*cos(2*pi*f0*t2(1) + P(SymbolIndex2)*pi) ;%+ Noise2(1);

% The if statement inside the loop changes the data bit if the time
% has advanced into the next symbol period.
for index = 2 : N
 if t2(index) - StartPoint >= (SymbolIndex2) * Tsym
 SymbolIndex2 = SymbolIndex2 + 1;
 end
 S2(index) = A*cos(2*pi*f0*t2(index) + P(SymbolIndex2)*pi) ;%+ ...
% Noise2(index);
end

K. MATLAB CODE: FILT_BNN_FFT.M

 function S = filt_bnn_fft(S, Rsym, f0, fs)
% ***
% filt_bnn_fft.m;
% This function filters the out all signal energy outside the
% null-null-bandwidth (fc +/- Rsym) and returns the real signal S.
% The output signal is rescaled so that it has the same energy as the
% input signal.
%
% Note, a constant envelope signal passing through this "brick-wall"
% filter will no longert be constant envelope.
%
% Written by: Joe Crnkovich, NRL
% Last modified: 15 May 2009
%
% ***

 138

Es_in = sum(S.^2); % Energy in original signal

SA=hilbert(S); % calculate the analytic signal (make "positive spectrum only")

SA_fft = fft(SA); % convert to frequency domain

% filter out any signal outside Bnn (i.e., fc+/-Rsy
SA_fft(1:round((f0-Rsym)*length(S)/fs)) = 0;
SA_fft(round((f0+Rsym)*length(S)/fs:length(S))) = 0;

SA = ifft(SA_fft); % convert back to time domain

S = real(SA); % make the signal real again

Es_filt = sum(S.^2); % Energy in filtered signal

S = S*sqrt(Es_in/Es_filt); % scale signal so it has same energy as input

% figure; plot(abs(fft(S)))
% figure; plot(S)

L. MATLAB CODE: GET_CANNED_WAVEFORM.M

 function S1 = get_canned_waveform(Es, N, wf_type, pad_length, Rsym, f0, fs,
filter_outside_bnn, verbose_wf_gen)
% ***
% get_canned_waveform.m;
% get_canned_waveform retrieves previous saved waveforms as determined
% by wf_type. The waveform is truncated to N samples plus padded at
% the beginning and end wit zeros each of length 'pad_length'. It is
% scaled to so total energy is Es.
%
% Written by: Joe Crnkovich, NRL
% Last modified: 4 May 2009
%
% ***
if (wf_type==11) % wideband shaped pulses (4 Samples/pulse)
 load sinc_wb_mls65535a
end

if (wf_type==12) % mediumband shaped pulses (8 Samples/pulse)
 load sinc_mb_mls65535a
end

if (wf_type==13) % narrowband shaped pulses (16 Samples/pulse)
 load sinc_nb_mls65535a
end

if wf_type==14 % very-narrow-band shaped pulses (32 Samples/pulse)
 load sinc_vnb_mls65535a
end

 139

if wf_type==15 % ultra-narrow-band shaped pulses (64 Samples/pulse)
 load sinc_unb_mls65535a
end

if wf_type==16 % extremely-narrow-band shaped pulses (128 Samples/pulse)
 load sinc_xnb_mls65535a
end

if wf_type==17 % 12 Samples/pulse (~Bnn of 4kcps BPSK @fs=100000
 load sinc_12Spc_mls65535a
end

S1 = modulation(1:N);

Es_new = sum(S1.^2);

% normalize Es
S1 = S1*sqrt(Es/Es_new);

if filter_outside_bnn
 % note: this was meant to be used only for static signal scenario
 S1 = filt_bnn_fft(S1, Rsym, f0, fs);
end

if pad_length %pad beginning and end of waveform with zeros
 S1 = [zeros(1,pad_length), S1, zeros(1,pad_length)];
end

% figure; plot(abs(fft(S1)))
% figure; plot(10*log10(abs(fft(S1)).^2))

M. MATLAB CODE: DISPLAY_WAVEFORM_CALC_RMSBW.M

function display_waveform_calc_rmsBW(Sref, f0, fs, wf_type, filter_outside_bnn)
% ***
% display_waveform.m;
% display_waveform plots waveform and calculates rms radian frequency.
%
% Written by: Joe Crnkovich (NRL)
% Last modified: 10 June 2009
%
% ***

%% display psd (Welch)

figure;
h = spectrum.welch; % Create a Welch spectral estimator.
Hpsd = psd(h,Sref,'Fs',fs); % Calculate the PSD
plot(Hpsd);

 140

%% display psd along with bandwidths used

% PSD = (1/N)|fft(x(n)|^2

% Convert to analytic waveform
Sref = hilbert(Sref);

% calculate true rms radian frequency
fc_idx = floor(f0*length(Sref)/fs);
i=1:length(Sref);
Sref_psd = abs(fft(Sref)).^2; % find (unnormalized) PSD
f_squared = (abs(i-fc_idx) .* (fs/length(Sref))).^2; % f is weighting

% calculate rms radian frequncy (beta)
beta_Hz = (sum(f_squared.*Sref_psd)/sum(Sref_psd)).^0.5
beta = 2*pi*beta_Hz;

x_axis=(i-1)*fs/length(Sref);

b_rms=[f0-beta,f0-beta,f0+beta,f0+beta];
b_Hz = [f0-beta_Hz,f0-beta_Hz,f0+beta_Hz,f0+beta_Hz];

%% Plot PSD overlayed with both \beta and B_{Hz} 'bandwidths'

PSD = (abs(fft(Sref)).^2)/(length(Sref)*fs); % PSD in linear (non-dB) scale

figure;
plot(x_axis/1000,10*log10(PSD), ...
 b_Hz/1000,[-90,-22,-22,-90], '-k')

if filter_outside_bnn
 title_text=['PSD (Waveform #', ...
 num2str(wf_type),'-Filt; \beta=', num2str(beta),' rad/s)'];
else
 title_text=['PSD (Waveform #', ...
 num2str(wf_type),'; \beta=', num2str(beta),' rad/s)'];
end
title(title_text);
ylabel('Power (dB/Hz)'); xlabel('Frequency (kHz)')
legend('PSD of signal', '+/- \beta_{Hz}')
xlim([0 fs/2000])
ylim([-90,-20])
grid on

%% Plot 'weighted' vs 'unweighted' PSD in separate subplots

x_axis = ((i-1)*fs/length(Sref))/1000;

figure
subplot(2,1,1)
plot(x_axis, 10*log10(f_squared.*Sref_psd))
title_text = ['Weighted PSD of Analytic Signal -- Waveform #', num2str(wf_type)];

 141

title(title_text)
xlim([0,fs/2000]); ylim([80, 140])
xlabel('kHz'); ylabel('dB')
grid on

%figure
subplot(2,1,2)
plot(x_axis, 10*log10(Sref_psd))
title_text = ['PSD of Analytic Signal -- Waveform #', num2str(wf_type)];
title(title_text)
xlim([0,fs/2000]); ylim([10, 70])
xlabel('kHz'); ylabel('dB')
grid on

N. MATLAB CODE: DISPLAY_WAVEFORM_CALC_RMST.M

 function display_waveform_calc_rmsT(Sref, f0, fs, wf_type, filter_outside_bnn)
% ***
% display_waveform_calc_rmsT.m;
% display_waveform plots waveform and calculates rms Time ('Te').
%
% Written by: Joe Crnkovich (NRL)
% Last modified: 15 May 2009
%
% ***

%% convert to analytic signal

Sref = hilbert(Sref);

%% calculate true rms time

tc_idx = floor(length(Sref)/2) %index to center of waveform (assumes symmetric)
i=1:length(Sref);

Sref_ut2 = abs(Sref).^2; %power vs. time

t_squared = (abs(i-tc_idx)/fs).^2;
%plot(t_squared)

Te = 2*pi*(sum(t_squared.*Sref_ut2)/sum(Sref_ut2)).^0.5

%%

%% Plot Power vs. Time and zoomed Power vs. Time in separate subplots
x_axis = [1:length(Sref)]/fs;

%first find where signal power breaks threshold
no_samples_displayed = 500;
offset=500; %4 chips in @ 4kcps, 100kS/s

start_indx = find((abs(Sref)>0.5), 1, 'first') + offset; %4 chips in

 142

stop_indx = start_indx + no_samples_displayed - 1;

start_indx = start_indx/fs
stop_indx = stop_indx/fs

figure
subplot(2,1,1)
plot(x_axis,10*log10(Sref_ut2))

if filter_outside_bnn
 title_text = ['Power vs. Time of Analytic Signal -- Waveform #', ...
 num2str(wf_type), '-Filt, Te=', num2str(Te),' s'];
else
 title_text = ['Power vs. Time of Analytic Signal -- Waveform #', ...
 num2str(wf_type), ', Te=', num2str(Te),' s'];
end
title(title_text)
ylim([-50, 20])
xlabel('Time (s)'); ylabel('Power (dB)')
grid on

%figure
subplot(2,1,2)
plot(x_axis, 10*log10(Sref_ut2))
title_text = ['Zoomed Power vs. Time of Analytic Signal'];
title(title_text)
xlim([start_indx,stop_indx]); ylim([-40,10])
xlabel('Time (s)'); ylabel('Power (dB)')
grid on

%% Plot autocorrelation of reference signal

% find autocorrelation of signal normalized to 1
%[autocorrel,lags] = xcorr(Sref, 1000,'coeff');
[autocorrel,lags] = xcorr(Sref,'coeff');

figure; subplot(1,2,1)
plot(lags,abs(autocorrel),'LineWidth',2); %'abs' gives envelope, i.e., sqrt(I^2+Q^2)
title('R_s');
xlabel('# of Lags'); ylabel('Magnitude of Autocorrelation');
xlim([lags(1), -lags(1)]);
grid on;

subplot(1,2,2) %figure;
plot(lags,10*log10(abs(autocorrel)),'LineWidth',2); %'abs' gives envelope, i.e., sqrt(I^2+Q^2)
title('R_s');
xlabel('# of Lags'); ylabel('Magnitude of Autocorrelation (dB)');
xlim([lags(1), -lags(1)]);
ylim([-40, 0]);
grid on;

% and zoomed dB version...

 143

no_lags_displ = 150;

figure; subplot(1,2,1)
plot(lags,10*log10(abs(autocorrel))); %'abs' gives envelope, i.e., sqrt(I^2+Q^2)
title('R_s');
xlabel('# of Lags'); ylabel('Normalized Magnitude of Autocorrelation (dB)');
xlim([lags(1), -lags(1)]);
ylim([-40, 0]);
set(gca,'YGrid','on');

subplot(1,2,2) %figure;
plot(lags,10*log10(abs(autocorrel))); %'abs' gives envelope, i.e., sqrt(I^2+Q^2)
title('R_s');
xlabel('# of Lags'); ylabel('Normalized Magnitude of Autocorrelation (dB)');
xlim([-no_lags_displ, no_lags_displ]);
ylim([-40, 0]);
%set(gca,'YGrid','on');
grid on

figure
%plot(abs(fft(autocorrel)))
plot(10*log10(abs(fft(autocorrel))))
title('|FFT(R_s)|_{dB}');
xlabel('FFT bin number'); ylabel('Magnitude (dB)');

O. MATLAB CODE: GEN_NOISE_VECTOR.M

 function Noise=gen_noise_vector(N, SNR, Tsym, fs)
% ***
% gen_noise_vector.m;
% gen_noise_vector generates vector containing noise samples.
%
% Written by: Joe Crnkovich, NRL
% Last modified: 3 April 2009
%
% ***

A = 1; % Amplitude of Signal
% % c = 2.997925e8; % Speed of light in m/s
Ps = (A^2)/2; % Power of Signal

% % sigma1 = sqrt(Ps*Tsym/Es_No1) % Calculate Noise Amplification fac
% % sigma2= sqrt(Ps*Tsym/Es_No2) % tors using Es/No = Ps*Tsym/sigma^2
% % Corrected formula below - JGC 2/12/09
% % From Johnson paper, sigma^2 = (Ps*Tsym*B/Es_No): However B is not equal
% % to 1 (as stated in the paper), the digital frequency bandwidth, but is
% % rather the true bandwidth, fs/2 (or 1/2Ts).
% % sigma1 = sqrt(Ps*Tsym/Es_No1) % Calculate Noise Amplification fac
% % sigma2= sqrt(Ps*Tsym/Es_No2) % tors using Es/No = Ps*Tsym/sigma^2
% % sigma1 = sqrt(0.5*Ps*(Tsym/Ts)/Es_No1) % Calculate Noise Amplification fac
% sigma2 = sqrt(0.5*Ps*(Tsym/Ts)/Es_No2) % tors using Es/No = Ps*Tsym*B/sigma^2

 144

sigma1 = sqrt(Ps*(Tsym*fs/2)/SNR); % Calculate Noise Amplification fac

Noise = sigma1.*randn(N, 1); % Random Noise values for Signal 1

P. MATLAB CODE: PERF_DEMOD_TEST.M

 function [BER, no_of_errors, no_of_bits]=perf_demod_test(Sa1, Sa2, fs, f0, Rsym, SNRdB,
verbose)

% ***
% PERF_DEMOD_TEST.m;
% This function is used to test validity of Sa1 signal by attempting to
% demodulate a BPSK modulated signal. Various diagnostic plots are
% produced, the user is asked to manually perform phase synchronization
% by identifying peak signal (assume no/low noise (high SNR), and BER is
% calculated by comparing demodulated bits to first bits loaded from
% mls65535a.mat.
%
%To use within main_simulate.m, set the following parameters:
% - verbose=1; %set to zero to stop sending debug info to MATLAB window
% - verbose_wf_gen=1; %enable plots and sending debug info to MATLAB window
% - enable_BER_test=1; %set to 1 to enable running of BER test function
% - process_detections=0; %process detections to get estimates of TOA and FOA
% - wf_type=1; % 1:const env, const psd; 2:gap in time; 3:gap in psd; 4:shortened pulse
% - Es_No_dB_min & Es_No_dB_max = 4.15 (dB) + no_chips_dB (to give BER .01 for BPSK)
% - no_noise_iterations = 1
% - pad_length = 0; %no. of zeros to add onto each side of S1
% - Rsym=2000 or 5000; %symbol rate
%--- SNR of 2.6 (4.15 dB) should give BER .01 for BPSK

%
% Written by: Joe Crnkovich, NRL
% Last modified: 15 May 2009
%
% ***

%%
% use the following to perform crosscorrelation

N=length(Sa1);
window = 1000;
hlfwndw = window/2;
for i = 1:window
 corrval(i) = Sa1(hlfwndw:N-hlfwndw)*Sa2(i:N-window+i)';
end

if verbose
 figure;
 subplot(4,1,1); plot(real(corrval))
 title('real(corrval) - Sa1 & Sa2');
 subplot(4,1,2); plot(imag(corrval))
 title('imag(corrval) - Sa1 & Sa2');

 145

 subplot(4,1,3); plot(abs(corrval))
 title('abs(corrval) - Sa1 & Sa2');
 subplot(4,1,4); plot(10*log10(abs(corrval)))
 title('abs(corrval) - Sa1 & Sa2');
end

%%
% Plot Sa1 & Sa2 (freq domain) to show old v. new calc of noise signal
mix=[1:length(Sa1)];
if verbose
 figure;
 subplot(1,2,1); plot((mix/length(mix) * fs)-fs/2, fftshift(abs(fft(real(Sa1)))));
 title(['FFT of RF Signal With Noise - SNR=',num2str(SNRdB),' dB']);
 xlabel('Frequency (Hz)');
 ylim([0,2000]);

 subplot(1,2,2); plot((mix/length(mix) * fs)-fs/2, fftshift(abs(fft(real(Sa2)))));
 title('FFT of RF Signal - No noise');
 xlabel('Frequency (Hz)');
 ylim([0,2000]);
end

%% Mix signal back down to baseband
mix=[1:length(Sa1)];

if verbose
 figure; plot(mix/length(mix) * fs, abs(fft(Sa1)));
 %figure; plot((mix/length(mix) * fs)-fs/2, fftshift(abs(fft(Sa1))));
 title('FFT of (analytic) RF Signal (Sa1)');
 xlabel('Frequency (Hz)');
 (1.319/6.554)*fs
end

% show baseband signal
% f0 = 20000;
SaBB = Sa1.*exp(-2*pi*(f0/100000)*1j.*mix);
SaBBref = Sa2.*exp(-2*pi*(f0/100000)*1j.*mix);

if verbose
 figure; plot(mix/length(mix) * fs, abs(fft(SaBB)));
 title('FFT of Baseband Signal (SaBB)');
 xlabel('Frequency (Hz)');

 figure;
 subplot(1,2,1); plot((mix/length(mix) * fs)-fs/2, fftshift(abs(fft(Sa1))));
 title('FFT of (analytic) RF Signal (Sa1)');
 xlabel('Frequency (Hz)');
 subplot(1,2,2); plot((mix/length(mix) * fs)-fs/2, fftshift(abs(fft(SaBB))));
 title('FFT of Baseband Signal (SaBB)');
 xlabel('Frequency (Hz)');
end

 146

%%
% figure out phase error
mix2=[0:0.01:2*pi]; SaBB2500=SaBBref(2500); %SaBB2500=SaBBref(2500);
SaBB2 = SaBB2500.*exp(1j*mix2);

default_phase_offset = 4.6; %4.83;

if verbose
 figure; plot(mix2,real(SaBB2));
 title('Amplitude (I) vs. Phase Offset of Baseband Sample #2500'); %Sample #2500');
 xlabel('Phase Offset (Radians)');
 fprintf('default phase offset is %d\n',default_phase_offset);
end

% ask user for phase offset (i.e., when is signal peak)
phase_offset = input('Enter Desired Phase Offset (radians) from Plot ("d" for default): ')
if (phase_offset=='d')
 phase_offset = default_phase_offset
end;

%%
% show phase corrected I&Q signals

SaBB = SaBB.*exp(1j*phase_offset); %add phase offset to bring signal to I channel
%SaBB = SaBBref.*exp(j*phase_offset); %add phase offset to bring signal to I channel

if verbose
 figure;
 subplot(3,1,1); plot(real(SaBB)); xlim([1,5000]); title('SaBB - Baseband I channel')
 subplot(3,1,2); plot(imag(SaBB)); xlim([1,5000]); title('SaBB - Baseband Q channel')
 subplot(3,1,3); plot(unwrap(angle(SaBB))); xlim([1,5000]); title('SaBB - Baseband Phase')
end

%%
if verbose
 figure;
 subplot(2,2,1); histfit(real(SaBB)); title('real(SaBB)');
 subplot(2,2,3); histfit(imag(SaBB)); title('imag(SaBB)');
 subplot(2,2,2); qqplot(real(SaBB)); title('real(SaBB)');
 subplot(2,2,4); qqplot(imag(SaBB)); title('imag(SaBB)');
 fprintf('mean(real(SaBB)=%f\n', mean(real(SaBB)));
 fprintf('variance(real(SaBB)=%f\n', (std(real(SaBB)))^2);
 fprintf('mean(imag(SaBB)=%f\n', mean(imag(SaBB)));
 fprintf('variance(imag(SaBB)=%f\n\n', (std(imag(SaBB)))^2);
 fprintf('skewness(real(SaBB)=%f\n', skewness(real(SaBB)));
 fprintf('kurtosis(real(SaBB)=%f\n', kurtosis(real(SaBB))-3);
 fprintf('skewness(imag(SaBB)=%f\n', skewness(imag(SaBB)));
 fprintf('kurtosis(imag(SaBB)=%f\n', kurtosis(imag(SaBB))-3);
end

%%
% apply matched filter for pulse of length p_length
p_length = fs/Rsym; %50;

 147

if verbose p_length; end
mf_pulse = ones(p_length,1); %column vector
mf_out = filter(mf_pulse,1,real(SaBB));
if verbose
 figure; plot(mf_out); xlim([1,5000]);
 title('Output of I-Channel Matched Filter')

 figure;
 subplot(2,2,1); histfit(real(mf_out)); title('real(mf out)');
 subplot(2,2,3); histfit(imag(mf_out)); title('imag(mf out)');
 subplot(2,2,2); qqplot(real(mf_out)); title('real(mf out)');
 subplot(2,2,4); qqplot(imag(mf_out)); title('imag(mf out)');
end

%%
sampled_decision_variable = downsample(mf_out,p_length);
load mls65535a;
ref_data = [0,mls65535a(1:length(sampled_decision_variable)-1)];
demodulated_bits = (sampled_decision_variable > 0);
errors=xor(demodulated_bits, ref_data);
no_of_errors = sum(errors);
no_of_bits = length(errors);
BER = no_of_errors/no_of_bits;
if verbose
 no_of_errors
 no_of_bits
 BER

 figure;
 subplot(3,1,1); plot(sampled_decision_variable); title('Sampled Decision Variable');
 xlim([1,75]); %ylim([-1.1,1.1]);
 subplot(3,1,2); plot(demodulated_bits); title('Demodulated Bits');
 xlim([1,75]); ylim([-0.1,1.1]);
 subplot(3,1,3); plot(ref_data); title('Transmitted Data (m-sequence)');
 xlim([1,75]); ylim([-0.1,1.1]);

 % Squaring the signal - should produce tone at twice the carrier freq
 figure; plot(mix/length(mix) * fs, abs(fft(Sa1.*Sa1)))
 %plot(mix/length(mix) * fs, 10*log10(abs(fft(Sa1.*Sa1))))
 title('FFT of Sa1^2 (i.e., Sa1 Squared');
 xlabel('Frequency (Hz)');

 figure;plot(mix/length(mix) * fs, 10*log10(abs(fft(Sa1.*Sa1))))
 title('FFT of Sa1^2 (i.e., Sa1 Squared');
 xlabel('Frequency (Hz)');
 ylabel('dB')
end

Q. MATLAB CODE: CAFV2.M

 function [TDOA, FDOA] = CAFv2(S1, S2, Max_f, fs, Max_t, display_CAF_peak);

% ***

 148

% CAF takes as inputs two sampled signal vectors (S1 & S2) in analytic
% signal format, the maximum expected FDOA in Hertz (Max_f), the
% sampling frequency used to generate S1 & S2 (fs), and the maximum
% expected TDOA in seconds (Max_t). The function then utilizes
% Stein's method in [1] to compute coarse estimations of TDOA and
% FDOA between S1 & S2. Finally, "fine mode" calcualtions are made
% to compute the final TDOA and FDOA, which are returned to the
% user via the output arguments.

% Written by: LCDR Joe J. Johnson, USN
% Last modified: 17 September 2001
%
% Modified by J. Crnkovich, NRL
% Last Modified: 5 March 2009
%
% ***

%clc;

%display_CAF_peak=1; %allows program to call CAF_peak.m which displays CAF peak

N = length(S1);
S1 = reshape(S1,N,1); % Ensures signals are column vectors due to
S2 = reshape(S2,N,1); % Matlab's better efficiency on columns

S1_orig = S1; % Want to preserve original input signals
S2_orig = S2; % for later use; S1 & S2 will be
 % manipulated in the fine mode below.
TDOAold=NaN;
FDOAold=NaN;

% The following while loop ensures that the sub-block size, N1, is
% large enough to ensure proper resolution. If Max_f/fs*N1 were
% less than 1, then the Freq calculated at the end would always be
% + or - 1/N1! 2^19 = 524288 is about the limit for efficient
% processing speed.
N1=1024;
while (Max_f/fs*N1 < 2) & (N1 < 2^19)
 N1 = 2*N1;
end

N2=N1/2;

if N1 > N % For cases where resolution calls for
 S1 = [S1;zeros(N1-N,1)]; % a sub-block size larger than the
 S2 = [S2;zeros(N1-N,1)]; % signal vectors, pad the vectors with
 N = N1; % zeros so that they have a total of
end % N1 elements.

% Want magnitude of Max_f, since +&- will be used below
Max_f = abs(Max_f);
Number_of_Blocks = length(S1)/N1; % Number of sub-blocks to break

 149

 % the signal into

Min_v = floor(-Max_f/fs*N1); % Smallest freq bin to search
Max_v = -Min_v; % Largest freq bin to search
v_values = Min_v : Max_v; % Vector of all bins to search

Max_samples = Max_t * fs; % Maximum number of samples to search

% Finds max number of block shifts (q) that must occur for each
% R and v below.
if Max_samples > N2
 q_max = min(ceil((Max_samples - N2)/N1),Number_of_Blocks-1);
else q_max = 0;
end

x=0;
divisors = Number_of_Blocks:-1:1; % Used to scale "temp" below...

% ***
% COARSE MODE computations.
% ***

for v = 1:length(v_values)
 temp(1:N1,1:q_max+1)=0; % Initializing -- saves time....
 for R = 0:Number_of_Blocks-1

 % temp1 is the FFT of the R'th block of S1, shifted by "v" bins.
 temp1 = fftshift(fft(S1(1+R*N1 : N1*(R+1))));
 temp1 = shiftud(temp1,v_values(v),0);
 for q = 0:q_max
 % R+q cannot exceed the number of sub-blocks
 if R + q > Number_of_Blocks-1 break
 end

 % FFT of the (R+q)'th block of S2
 temp2 = fftshift(fft([S2(1+(R+q)*N1 : N2 + N1*(R+q));...
 zeros(N2,1)]));

 % Multiplies temp1 & temp2, FFTs the product, then adds to
 % previous values for the same value of q (but different R)
 temp(:,q+1) = temp(:,q+1) + ...
 abs(fftshift(fft(temp1.*conj(temp2))));
 end
 end

 % Each value of q was used a different # of times, so they must be
 % scaled properly.
 for q_index = 1:q_max+1
 temp(:,q_index) = temp(:,q_index) / divisors(q_index);
 end

 150

 % If combination of current v and any q provides a greater value
 % than the previous max, then remember m, Q, & V.
 if max(max(temp))>x
 x = max(max(temp));
 [m Q] = find(temp == max(max(temp)));

 % Must do this since q starts at 0, but Matlab doesn't allow for
 % zero indexing.
 Q = Q - 1;
 V = v_values(v);
 end
end

% Coarse estimate of TDOA (in # of samples)
TDOA_Coarse = Q * N1 + (-N2+1 + m);

% Coarse estimate of FDOA (in Freq Bin #)
FDOA_Coarse = V/N1*N;

% The following 3 lines can be used to display the coarse estimates,
% if desired.

%disp(['The coarse TDOA estimate is: ', num2str(TDOA_Coarse),...
% ' samples.']);
%disp(['The coarse FDOA estimate is: ', num2str(FDOA_Coarse/N),...
% ' (digital frequency).']);

% ***
% FINE MODE computations.
% ***

S2 = conj(S2); % S2 is conjugated in basic CAF definition

% Vector of freq "bins" to use (DON'T have to be integers!!)
k_val = FDOA_Coarse-10 : FDOA_Coarse+10;

% Vectors of TDOAs to use (must be integers)
tau_val = TDOA_Coarse-10 : TDOA_Coarse+10;

done = 0;
multiple = 1;
decimal = 0;
while ~done % Fine mode iterations continue until user is done.

 % Initialize to make later computations faster
 amb(length(k_val),length(tau_val))=0;
 Ntemp = N * multiple;
 for k = 1:length(k_val) % Must loop through all values of k

 151

 % Vector of complex exponentials that will be used
 exponents = exp(-j*2*pi*k_val(k)/Ntemp*(0:Ntemp-1)');

 % Must loop through all potential TDOAs
 for t = 1:length(tau_val)

 % S2 is shifted "tau" samples
 S2temp = shiftud(S2,tau_val(t),0);

 % Definition of CAF summation
 temp = abs(sum(S1.*S2temp.*exponents));

 % Save CAF magnitude for the values of k & t
 amb(k,t)=temp;
 end
 end

 [k, t]=find(amb==max(max(amb))); % Find the peak of the CAF matrix

 TDOA = tau_val(t); % TDOA and FDOA associated with the peak of the
 FDOA = k_val(k); % CAF plane. These represent the final TDOA
 % & FDOA estimates.

 % The results are displayed.
 disp(' ');disp(' ');disp(' ');
 disp(['The TDOA is ', num2str(TDOA/multiple), ' samples']);
 disp([' or ', num2str(TDOA/(multiple*fs)), ' seconds.']);
 disp(' ');
 disp(['The resolution is ', num2str(0.5/...
 (multiple*fs)),' seconds.']);
 disp(' ');disp(' ');

 disp(['The FDOA is ', num2str(FDOA/N),...
 ' in digital frequency (k/N)']);
 disp([' or ', num2str(FDOA/N*fs), ' Hz.']); disp(' ');
 disp(['The resolution is ', num2str(0.5*...
 (10^decimal)/N*fs), ' Hz.']);
 disp(' ');disp(' ');disp(' ');

 % If the signal length exceeds 524288 elements, max processing
 % capability has been achieved, and the user will not be given
 % the option of refining TDOA any further.
 if Ntemp >= 2^19
 disp('Maximum TDOA processing capability has been achieved.')
 doneT = 1;
 else doneT = 0;
 end

% % User chooses whether to compute more accurate TDOA &/or

 152

% % FDOA, or to stop fine mode computations.
% disp('Do you desire a solution with finer resolution?');
% disp('Select one of the following:'); disp(' ');
%
% if ~doneT
% disp('1. Finer resolution for TDOA.');
% else disp(' ');
% end
%
% disp('2. Finer resolution for FDOA.');
%
% if ~doneT
% disp('3. Finer resolution for both TDOA and FDOA.');
% else disp(' ');
% end
%
% disp('4. The TDOA and FDOA resolutions are fine enough.');
% disp(' ');
% choice = input('What is your selection? ');

choice= ~(TDOAold==TDOA) + ~(FDOAold==FDOA)*2;

switch choice

 % TDOA is refined by resampling the signals at twice the
 % previous sampling rate. Increases resolution two-fold.
 case 1
 if ~doneT
 multiple = multiple*2;
 S1 = interp(S1, 2);
 S2 = interp(S2, 2);
 tau_val = TDOA*2 - 1 : TDOA*2 + 1;
 else done = 1;
 end
 %clc;

 % FDOA resolution is improved by a factor of 10.
 case 2
 decimal = decimal - 1;
 k_val = FDOA - 5*10^decimal : 10^decimal : FDOA + 5*10^decimal;
 %clc;

 % Both TDOA and FDOA resolutions are improved.
 case 3
 if ~doneT
 multiple = multiple*2;
 S1 = interp(S1, 2);
 S2 = interp(S2, 2);
 tau_val = TDOA*2 - 1 : TDOA*2 + 1;

 decimal = decimal - 1;
 k_val = FDOA - 5*10^decimal : 10^decimal : FDOA + ...
 5*10^decimal;

 153

 else done = 1;
 end
 %clc;
 otherwise
 done = 1;
 end

 if done
 disp(' ');disp(' '); disp('TDOA & FDOA estimation complete.');
 end
end

% % If user wants to see the CAF surface graphically, a call to
% % CAF_peak is made.
% disp(' ');%disp(' ');disp(' ');
% choice = input...
% ('Would you like to see the CAF peak graphically (Y or N)? ','s');
% choice = upper(choice);
%
% switch choice
% case 'Y'
% intp=4;
% caf_peak(S1_orig, S2_orig, floor(TDOA/multiple) - 50, ...
% floor(TDOA/multiple) + 50, (FDOA-20)/N, (FDOA+20)/N, fs,intp);
% end

if display_CAF_peak %display CAF surface graphically by calling CAF_peak.m
 intp=4;
 caf_peak(S1_orig, S2_orig, floor(TDOA/multiple) - 50, ...
 floor(TDOA/multiple) + 50, (FDOA-20)/N, (FDOA+20)/N, fs,intp);
end

TDOA = TDOA/(multiple*fs); % Returns TDOA in seconds.
FDOA = FDOA/N*fs; % Returns FDOA in Hertz.
%disp('Program Complete.');

 154

THIS PAGE INTENTIONALLY LEFT BLANK

 155

LIST OF REFERENCES

[1] David Adamy, EW101: A First Course in Electronic Warfare, Artech
House, 2001.

[2] Herschel H. Loomis, Jr., “Geolocation of Electromagnetic Emitters,”
Technical Report No. NPS-EC-00-003, Naval Postgraduate School,
Monterey, CA, November 1999 (last revised October 2007).

[3] Seymour Stein, “Algorithms for Ambiguity Function Processing,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-29,
no. 3, pp. 588-599, June 1981.

[4] Robert J. Ulman and Evaggelos Geraniotis, “Wideband TDOA/FDOA
Processing Using Summation of Short-Time CAF’s,” IEEE Transactions
On Signal Processing, vol. 47, No. 12, December 1999.

[5] Joe J. Johnson, “Implementing The Cross Ambiguity Function And
Generating Geometry-Specific Signals,” Master’s Thesis, Naval
Postgraduate School, Monterey, CA, September 2001.

[6] Glenn D. Hartwell, “Improved Geo-Spatial Resolution Using A Modified
Approach To The Complex Ambiguity Function (CAF),” Master’s Thesis,
Naval Postgraduate School, Monterey, CA, September 2005.

[7] B. Hofman-Wellenhof, H. Lichtenegger, and J. Collins, GPS: Theory and
Practice, 4th revised edition, Springer-Verlag Wien, New York, 1992, 1993,
1994, and 1997.

[8] Aeronautics and Space Engineering Board, National Research Council, L.
Adams (Chair), The Global Positioning System: A Shared National Asset:
Recommendations for Technical Improvements and Enhancements,
National Academy Press, Washington, DC, 1995.

[9] J. J. Spilker Jr., “Satellite Constellation and Geometric Dilution of
Precision,” American Institute of Aeronautics and Astronautics, 1994.)
(Reprinted in B. Parkinson and J. Spilker, Global Positioning System:
Theory and Applications, Volume I, American Institute of Aeronautics and
Astronautics, Inc., Washington, 1996.)

[10] B. Parkinson, “GPS Error Analysis,” American Institute of Aeronautics and
Astronautics, 1994. (Reprinted in B. Parkinson and J. Spilker, Global
Positioning System: Theory and Applications, Volume I, American Institute
of Aeronautics and Astronautics, Inc., Washington, 1996, pp. 469-483).

 156

[11] J. Farrell & M. Barth, The Global Positioning System & Inertial Navigation,
McGraw-Hill, New York, 1998.

[12] Wikipedia, http://en.wikipedia.org/wiki/Total_electron_content, accessed
April 28, 2009.

[13] Jet Propulsion Laboratory, Real-Time and Daily Ionospheric Maps,
http://iono.jpl.nasa.gov//latest_rti_global.html, accessed April 28, 2009.

[14] J. J. Spilker Jr., “GPS Signal Structure and Theoretical Performance,”
American Institute of Aeronautics and Astronautics, 1994. (Reprinted in B.
Parkinson and J. Spilker, Global Positioning System: Theory and
Applications, Volume I, American Institute of Aeronautics and
Astronautics, Inc., Washington, 1996, pp. 57-109).

[15] Robin A. Dillard and George M. Dillard, Detectability of Spread-Spectrum
Signals, Artech House, 1989.

[16] D. Streight, “Maximum Likelihood Estimators for the Time and Frequency
Differences of Arrival of Cyclostationary Digital Communications Signals,”
PhD Dissertation, Naval Postgraduate School, Monterey, CA, June 1999.

[17] Subbarayan Pasupathy, “Minimal Shift Keying: A Spectrally Efficient
Modulation,” IEEE Communications Magazine, July 1979.

[18] Greg Rawlins, David Sorrells, and Richard Harlan, “Using an IQ Data to
RF Power Transmitter to Realize a Highly-Efficient Transmit Chain for
Current and Next-Generation Mobile Handsets,” Proceedings of the 38th
European Microwave Conference, October 2008.

[19] S. Haykin and M. Moher, Introduction to Analog and Digital
Communications, 2nd Edition, John Wiley & Sons, Inc., 2007.

[20] Naval Postgraduate School EC3510 class notes.

[21] Tri Ha, Digital Communication, Principles and Practice, to be published.

[22] Charles W. Therrien and Murali Tummala, Probability for Electrical and
Computer Engineers, CRC Press, LLC, 2004.

[23] Peyton Z. Peebles, Jr., Probability, Random Variables and Random Signal
Principles, 4th Ed., McGraw-Hill, 2001.

[24] Bernard Sklar, Digital Communications, 2nd Ed., Prentice-Hall, 2001.

 157

[25] Anthony D. Whalen, Detection of Signals in Noise, Academic Press, Inc.,
1971.

[26] Roberto Cristi, Modern Digital Signal Processing, Thomson Brooks/Cole,
2004.

[27] Charles W. Therrien, Discrete Random Signals and Statistical Signal
Processing, Prentice-Hall, 1992.

[28] James Stewart, Calculus Early Transcendentals, 6e, Thomson
Brooks/Cole, 2008.

[29] MATLAB® Product Help function, xcorr, MATLAB version 7.7.0.471
(R2008b).

[30] Robert C. Dixon, Spread Spectrum Systems, 2nd Ed., John Wiley & Sons,
1984.

[31] Elle Zimmerman (Ed.), Mathematics Tables, Mathematics Department,
Naval Postgraduate School, 1998.

[32] Jeffrey H. Reed, Software Radio: A Modern Approach to Radio
Engineering, Prentice Hall PTR, 2002.

 158

THIS PAGE INTENTIONALLY LEFT BLANK

 159

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Ruth H. Hooker Library
Naval Research Laboratory
Washington, DC

