
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2009-12

Fast generation and covering radius of Reed-Muller Codes

Alexopoulos, Argyrios

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/4471

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

FAST GENERATION AND COVERING RADIUS OF REED-
MULLER CODES

by

Argyrios Alexopoulos

December 2009

 Thesis Co-Advisors: Pantelimon Stanica
 Jon T. Butler

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2009

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
Fast Generation and Covering Radius of Reed-Muller Codes

6. AUTHOR Argyrios Alexopoulos

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8.PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Reed-Muller codes are known to be some of the oldest, simplest and most elegant error correcting codes.

Reed-Muller codes were invented in 1954 by D. E. Muller and I. S. Reed, and were an important extension of the
Hamming and Golay codes because they gave more flexibility in the size of the codeword and the number of errors
that could be correct.

The covering radius of these codes, as well as the fast construction of covering codes, is the main subject
of this thesis. The covering radius problem is important because of the problem of constructing codes having a
specified length and dimension. Codes with a reasonably small covering radius are highly desired in digital
communication environments.

In addition, a new algorithm is presented that allows the use of a compact way to represent Reed-Muller
codes. Using this algorithm, a new method for fast, less complex, and memory efficient generation of 1st and 2nd
order Reed - Muller codes and their hardware implementation is possible. It is also allows the fast construction of a
new subcode class of 2nd order Reed-Muller codes with good properties. Finally, by reversing this algorithm, we
introduce a code compression method, and at the same time a fast, efficient, and promising error-correction
process.

15. NUMBER OF
PAGES

79

14. SUBJECT TERMS

Reed-Muller codes—RM codes, Error Correction Codes—ECC, Covering Radius—ρ, Linear
Codes/Subcodes, Hamming Distance—d, Fast Generation of codes, Compression, Hardware
Implementation. 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

FAST GENERATION AND COVERING RADIUS FOR REED-MULLER CODES

Argyrios Alexopoulos
Captain, Greek Army

B.S., Hellenic Military Academy, 1994

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
AND

MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL
December 2009

Author: Argyrios Alexopoulos

Approved by: Dr. Pantelimon Stanica
Thesis Co-Advisor

Dr. Jon T. Butler
Thesis Co-Advisor

Dr. Jeffrey B. Knorr
Chairman, Department of Electrical and Computer Engineering

Dr. Carlos Borges
Chairman, Department of Applied Mathematics

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Reed-Muller codes are known to be some of the oldest, simplest and most elegant

error correcting codes. Reed-Muller codes were invented in 1954 by D. E. Muller and I.

S. Reed, and were an important extension of the Hamming and Golay codes because they

gave more flexibility in the size of the codeword and the number of errors that could be

correct.

The covering radius of these codes, as well as the fast construction of covering

codes, is the main subject of this thesis. The covering radius problem is important because

of the problem of constructing codes having a specified length and dimension. Codes with

a reasonably small covering radius are highly desired in digital communication

environments.

 In addition, a new algorithm is presented that allows the use of a compact way to

represent Reed-Muller codes. Using this algorithm, a new method for fast, less complex,

and memory efficient generation of 1st and 2nd order Reed - Muller codes and their

hardware implementation is possible. It is also allows the fast construction of a new

subcode class of 2nd order Reed-Muller codes with good properties. Finally, by reversing

this algorithm, we introduce a code compression method, and at the same time a fast,

efficient, and promising error-correction process.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. THESIS OBJECTIVE...1
B. THESIS OUTLINE..2

II. BACKGROUND ..3
A. DEFINITIONS ...3

1. Groups...3
a. Closure...3
b. Associativity...3
c. Identity...3
d. Invertibility ..3
e. Commutativity ...3

2. Fields ...3
a. Group Under Addition ..4
b. Group Under Multiplication...4
c. Distributive Law ..4

3. Vector Space ...4
a. Addition ...6
b. Vector Intersection..6
c. Dot Product ...6

B. REVIEW OF BOOLEAN FUNCTIONS...6
C. AFFINE BOOLEAN FUNCTIONS ...9
D. NONLINEARITY AND BENT FUNCTIONS..10
E. HAMMING DISTANCE AND HAMMING WEIGHT.............................10

1. Definition ..10
2. Definition ..11

F. ERROR DETECTING AND CORRECTING CAPABILITIES OF
CODES..11
1. Definition ..11
2. Definition ..11

G. CHAPTER SUMMARY..12

III. REED-MULLER CODES...13
A. DEFINING REED-MULLER CODES..13
B. APPLICATIONS OF REED-MULLER CODES.......................................14
C. GENERATION/ENCODING METHODS..16

1. Generation Methods ..16
a. Using Boolean Polynomials..16
b. Example R(1,3)..16
c. Using Direct Sum Construction ...17
d. Using (u,u+v)-Construction..18

2. Encoding Methods ...18
a. Example R(1,3)..19

 viii

b. Example R(2,3)..19
c. Example R(3,3)..19
d. Example R(2,4)..19
e. Example Encoding with R(1,3) ..20
f. Example Encoding with R(2,4) ..20

3. Decoding Methods..21
a. Decoding Algorithm..21
b. Example of Decoding Using R(1,3)..22

D. CHAPTER SUMMARY..23

IV. COVERING RADIUS ...25
A. INTRODUCTION..25
B. METHODS OF COMPUTATIONS OF COVERING RADIUS...............27

1. 1st Method Using Translate ...27
2. 2nd Method of Using Direct Sum of Codes.......................................29

a. Definition of Norm of a Code C ...29
b. Definition of a Normal Code ..29
c. Example 1 2R R ..30

3. 3rd Method Using Bounds..30
4. 4th Method Using Norm ..31

C. COVERING RADIUS FOR 1ST ORDER REED-MULLER CODES32
D. COVERING RADIUS FOR 2ND ORDER REED-MULLER CODES......32
E. COVERING RADIUS FOR RTH ORDER REED-MULLER CODES ...33
F. CHAPTER SUMMARY..33

V. FAST ALGORITHM OF GENERATION OF 1ST—2ND ORDER REED-
MULLER CODES, LINEAR SUBCODES WITH GOOD PROPERTIES,
AND THE “REVERSE” ALGORITHM...35
A. FAST GENERATION OF 1ST ORDER REED-MULLER CODES.........35

1. New Algorithm for Fast Generating 1st Order RM Codes.............36
2. Example R(1,3)...36
3. Example R(1,4)...37

B. HARDWARE IMPLEMENTATION OF ALGORITHM.........................39
C. FAST GENERATION OF 2ND ORDER REED-MULLER CODES41
D. FAST GENERATION OF LINEAR SUBCODES WITH GOOD

PROPERTIES..42
1. Algorithm..43
2. Example R(2,3) Subcode ...43
3. Example R(2,5) Subcode ...44
4. Theorem..46

a. Example of Calculating the ANF of a Function46
b. Example of Calculating the Coefficient Vector47
c. Proof of Theorem..48

E. THE DECODING “REVERSE” ALGORITHM48
1. Conjecture ..49
2. Algorithm..49

 ix

a. Example 16 Bits ..50
b. Example 32 Bits ..50

F. CHAPTER SUMMARY..52

VI. CONCLUSIONS AND FUTURE WORK...53

LIST OF REFERENCES..57

INITIAL DISTRIBUTION LIST ...59

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. 3-bit binary cube for finding Hamming distance (From [2]).10
Figure 2. 4-bit binary hypercube for finding Hamming distance (From [2])..................11
Figure 3. Picture Elements. ...15
Figure 4. Sphere of radius ρ. ...25
Figure 5. Covering radius ρ. ..26
Figure 6. Hardware implementation of algorithm (n=3) ..40

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Addition in 2F ...4

Table 2. Multiplication in 2F ...4
Table 3. Truth Table of a Boolean Function..7
Table 4. Truth Table of an Affine Boolean Function ..9
Table 5. RM(1,3) codewords ...17
Table 6. 1st method of Covering Radius computation ...28
Table 7. 3rd method of Covering Radius computation ..31
Table 8. Fast Generation of R(1,3)...37
Table 9. Fast Generation of R(1,4)...38
Table 10. Fast Generation of R(2,3)...42
Table 11. Fast Generation of a R(2,3) subcode..44
Table 12. Fast Generation of R(2,5) subcode...45

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

 Error-Correcting codes play a vital role in every real digital communication

environment and storage process. Reed-Muller codes are among the oldest, simplest and

most elegant error-correcting codes. When information is sent through a network over

long distances or through a variety of channels, where errors might occur in the transition,

error-correcting codes, like Reed-Muller codes, can correct these errors. This correction

process provides our network with an improvement in throughput and efficiency.

Therefore, the efficient use of these codes is more than a critical issue.

 A contribution of this thesis is a new way of fast generation of 1st and 2nd order

Reed-Muller codes and a category of 2nd order subcodes. In addition, this new algorithm

allows a compact way to represent 1st and 2nd order Reed-Muller codes.

 This expansion algorithm is appropriate where the fast, real-time generation of low

order Reed-Muller codes needed. Using this highly compressed form of codewords, we

can quickly expand to any full codeword. In this thesis, we also demonstrate the hardware

implementation for this algorithm.

 It is also shown, that using just eight blocks of 4-bits, all 1st order Reed-Muller

codes can be quickly generated. In addition, for 2nd order Reed-Muller codes, a new

concatenation method using all sixteen possible 4-bit combinations is presented. Finally,

using eight 4-bits words, we can quickly construct, a new category of subcodes of 2nd

order Reed-Muller code with minimum distance d=8 and some other good properties.

 Additionally, it is proven in this thesis, that the format of the Algebraic Normal

Form of our fast construction of 2nd order Reed-Muller subcodes is 1n naffine x x .

Combining this property with the low distance of these subcodes, makes them worthy for

further investigation concerning their performance.

 In addition, by reversing the new algorithm, we demonstrate a new efficient way to

correct errors occurring in this word. This is equivalent to compressing the received word.

The “reverse” algorithm applies to cases of storage processes and to communication-

oriented applications where Automatic Response Request (ARQ) is used.

 xvi

 Furthermore, the state of the art of the covering radius problem for Reed-Muller

codes is presented in this thesis. This has been the subject of investigation for many

researchers in the area, and a complete resolution of the problem still eludes us. Some

recently found results of estimates of covering radius of Reed-Muller codes are

summarized and presented. Some of the methods of computations, even without using the

help of computers are also presented. In addition, the main properties of Reed-Muller

codes are analyzed.

The covering radius problem is very important since it gives insight into the

practical problem of constructing codes having a specified length and dimension.

Based on the analysis of this thesis, we conclude that the proposed methods of

fast and memory efficient low order Reed-Muller codes, as well as some category of

subcodes of 2nd order Reed-Muller codes, is quite challenging and promising.

 xvii

ACKNOWLEDGMENTS

I dedicate this work to my wife, Evgenia, and my children, Dimitrios and

Konstantina, for their continuous love and support.

In addition, I would like to thank Professor Pantelimon Stanica and Professor Jon

T. Butler for their guidance and patience during the work in performing this

investigation.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. THESIS OBJECTIVE

A binary code C of length n is a nonempty subset of the set of all binary n-tuples.

The (Hamming) distance between two codewords is the number of bits in which they

differ. The covering radius of a code C is the smallest integer R such that every binary

vector of length n is within distance R from at least one codeword. In other words, the

space of all binary n-tuples is completely covered by spheres of radii R having centers at

the codewords of our code C.

The covering radius is one of the most important properties of error correcting

codes. It will be clarified throughout this thesis. We seek codes having a specified length

and dimension with reasonably small covering radius; in this way, no vector of the space

is very far from a nearest codeword.

Ιt is worth mentioning that covering radius is a basic geometric parameter of a

code. Topics that are currently under research by the coding community are the

following:

1. Given the length and dimension of a linear code, it should be

determine what the covering radius is.

2. Construct efficient codes that have small covering radius.

3. Develop computational methods to determine the covering radius

of well-known error-correction codes.

Specifically, Reed-Muller codes are an extremely interesting class of error-

correction codes, and therefore, many researchers have studied Reed-Muller codes.

Nevertheless, due to the complexity of computations methods, overall knowledge is still

quite limited. We will focus on some of these methods and point out all published results

of covering radius of 1,st , 2,nd and k-th order Reed-Muller codes.

We survey the main properties of the Reed-Muller codes, investigate previous

methods for the computation of covering radius, and propose a fast, less complex, and

memory efficient algorithm to derive 1st and 2nd order Reed-Muller codes, as well as a

2

subcode of 2nd order Reed-Muller code with good properties. This new algorithm allows

the use of a compact way to represent Reed-Muller codes.

Reversing the new algorithm, in other words, compressing the codewords of low

order Reed-Muller codes and of a new subcode, we introduce an efficient way to correct

errors occurring in any codeword of these codes. The hardware implementation of

expansion algorithm is presented, and analyzed.

B. THESIS OUTLINE

This thesis is organized as follows: we start with the introduction, background

(Chapter II) and four additional chapters. Chapter III contains a detailed analysis of Reed-

Muller codes, some applications of these codes, and generation/encoding/decoding

methods. In Chapter IV, the covering radius is defined and its importance in error

correction is discussed. Some important methods of computations are discussed. Further,

in this chapter, some existing covering radius results concerning 1st, 2nd and k-th order

Reed-Muller codes are presented. In Chapter V, we develop a new algorithm for fast

generation of 1st – 2nd order Reed-Muller codes, and a new construction of a subcode is

analyzed. The hardware implementation of this algorithm is also presented and analyzed.

In addition, a “reverse” of this new algorithm is presented and evaluated. In Chapter VI,

the conclusions based on the observations obtained from the analysis in the previous

chapters are presented, as well as proposed future work.

3

II. BACKGROUND

In this chapter, some background knowledge and concepts for the analysis of

Reed-Muller codes and their subcodes are introduced.

A. DEFINITIONS

1. Groups

A group, denoted by    ,G G  is a set of elements G combined with a binary

operation  on G, satisfying the following conditions:

a. Closure

, ;a b G a b c G    

b. Associativity

   , , ;a b c G a b c a b c      

c. Identity

| ;e G a G e a a e a       

d. Invertibility

1 1 1, |a G a G a a a a e         

Groups that also satisfy the following commutative property are referred

to as commutative or Abelian groups.

e. Commutativity

, ;a b G a b b a    

2. Fields

A field, denoted by   , ,F F   , is a set of elements F combined with two

binary operations + and  on F, satisfying the following conditions:

4

a. Group Under Addition

 ,F  is an Abelian group with identity 0.

b. Group Under Multiplication

  0 ,F   is an Abelian group with identity 1.

c. Distributive Law

     , , ;a b c F a b c a b a c       

In this thesis, all manipulations will be on the two-element (binary) field,

2 {0,1}F  in which the usual operations of addition and multiplication modulo 2 hold:

Table 1. Addition in 2F

+ 0 1

0 0 1

1 1 0

Table 2. Multiplication in 2F

* 0 1

0 0 0

1 0 1

3. Vector Space

A vector space over a field F is a non-empty set V together with two binary

operations:

5

Addition, denoted by +.

Scalar multiplication, denoted by juxtaposition, is a function from F x V to V;

that is the scalar product of a F and x V is written as ax .

Furthermore, these two operations satisfy the following conditions:

Closure under vector addition,

, ;u v V u v w V    
Closure under scalar multiplication,

, ;u V a F au v V     
Associative law for vector addition,

, , ;u v w V     u v w u v w    

Commutative law for vector addition,

, ;u v V u v v u    
Identity element in addition,

0 | ; 0V u V u u     
Additive inverse,

, () ; () () 0u V u V u u u u          
Distributive law for scalar multiplication over vector addition,

 , , ;u v V a F a u v au av      

Distributive law for vector multiplication over scalar addition,

 , , ;u V a b F a b u au bv      

Associative law for scalar multiplication with a vector,

   , , ;u V a b F ab u a bu    

Identity element in vector multiplication,

 1 ; ,1V u V u u    

The vector spaces 2
mV F used in this thesis consist of binary strings of

length 2m , where m is a positive integer, with the usual bitwise operations, described

below. The codewords of the Reed-Muller codes and other linear subcodes are subspaces

of such a vectors space V.

Vectors in such spaces can be manipulated by three main operations.

6

a. Addition

For two vectors  1 2, , ... , nx x x x and  1 2, , ... , ny y y y , addition is

defined by,  1 1 2 2, ,..., n nx y x y x y x y     where each ix or iy is either 1 or 0. The

complement x of a vector x is the vector equal to (1 1 1... 1) x . An example of the

complement of a vector is: (0 0 0 1 1 1) (0 0 0 1 1 1) (1 1 1 1 1 1) (1 1 1 0 0 0)  

b. Vector Intersection

 1 1 2 2 , ,..., n nx y x y x y x y    
, where each ix and iy is either 1 or 0.

The multiplication of a vector x by a constant 2α F is defined

by  1 2, α ,...,α nx x x x     
. An example is    0 111001 000000 

.

c. Dot Product

The dot product of x and y is 1 1 2 2 * * ... * n nx y x y x y x y   � .

It is clear that addition, vector intersection and dot product require vectors

with the same number of coordinates.

B. REVIEW OF BOOLEAN FUNCTIONS

A Boolean function of m variables  1 2, ,..., mx x x is a function

 1 2, ,..., mf x x x from 2
mF to 2F , where 2 {0,1}F  . This kind of function can be

completely described by its truth table, which is simply the sequence of its outputs, where

the input is ordered lexicographically. Precisely, we order 2
mF as

1 2{ (0,0,...,0), (0,0,...,1),..., (1,1,...,1)}v v  ; the truth table of f is the sequence

1 2(), ()...f v f v Table 3 specifies a Boolean function of four variables.

7

Table 3. Truth Table of a Boolean Function

1x 2x 3x 4x f

0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1

From the right most column of this table (beginning from top), we get the binary

string (truth table) 1110100001110001 of length 16. For m-variable functions, this string

has length 2m .

The two constant Boolean functions are  1 2, ,..., (1,1,...,1)mx x x 

and  1 2, ,..., (0,0,...,0)mx x x  . In this thesis, two logical operations are used on Boolean

functions: conjunction (that corresponds to multiplication in 2F) and exclusive OR, or

xor (that corresponds to addition in 2F). Consequently, the string versions of these

operations are given by:

 1 2, ,..., mx x x conjunction  1 2,y ,..., ymy =    1 2 1 2, ,..., , ,..., m mx x x y y y and

 1 2, ,..., mx x x exclusive OR  1 2,y ,..., ymy =    1 2 1 2, ,..., , ,..., m mx x x y y y .

8

It is obvious that, under the exclusive OR operation, the set of Boolean functions

of m variables forms a vector space over 2F , of size 22
m

.

In addition, a Boolean monomial with variables 1 2, ,..., mx x x is an expression of

the form
1 2

...
zi i ip x x x . The reduced form of p is obtained using the rule: 2

x xi ix x until

the factors become distinct. The degree of p is the number of variables in the reduced

version of p.

An example of a Boolean polynomial in reduced form of degree three

is 1 2 3 1 2 2'p x x x x x x    .

On the other hand, a Boolean polynomial is a linear combination of Boolean

monomials, with coefficients in 2F . A reduced polynomial is obtained using the rule:

a+a=0, until all the monomials become distinct.

Since there are
m

k

 
 
 

distinct Boolean monomials of degree k on m variables, the

total number of distinct Boolean monomials is 2m , and, therefore, the total number of

distinct Boolean polynomials in m variables is 22
m

.

At this point, we need to associate a Boolean monomial in m variables to a vector

with 2m elements. The degree-zero monomial is 1, and the degree-one monomials

are 1 2, ,..., and mx x x . First, we define the vectors associated with these monomials. The

vector associated with the monomial 1 is simply a vector of length 2m , whose

components are all 1. So, in a space of size 42 , the vector associated with 1 is

(1111111111111111). The vector associated with the monomial 1x is 12m 1's, followed

by 12m 0's. The vector associated with the monomial 2x has 22m 1's, followed by 22m

0's, then another 22m 1's, followed by another 22m 0's.

In general, the vector associated with a monomial ix is a pattern of 2m i ones

followed by 2m i zeros, repeated until 2m values have been defined. For example, in a

space of size 42 , the vector associated with 4x is (1010101010101010).

9

C. AFFINE BOOLEAN FUNCTIONS

An affine Boolean function of m variables  1 2, ,..., mx x x is a function

 1 2 0
1

, ,..., m i i
x m

f x x x f f x
 

   from 2
mF to 2F , where the coefficients if belong to

2 {0,1}F  . The set of all n-variable affine functions is denoted by nA . As we mentioned

previously, in Table 4, the truth tables of every 3-variable affine function is shown.

Table 4. Truth Table of an Affine Boolean Function

Affine Function Truth Table

0 00000000

1x 00001111

2x 00110011

3x 01010101

1 2x x 00111100

1 3x x 01011010

2 3x x 01100110

1 2 3x x x  01101001

1 11111111

11 x 11110000

21 x 11001100

31 x 10101010

1 21 x x  11000011

1 31 x x  10100101

2 31 x x  10011001

1 2 31 x x x   10010110

10

In Chapter IV the importance of affine Boolean functions in conjunction with

Reed-Muller codes is clarified.

D. NONLINEARITY AND BENT FUNCTIONS

The nonlinearity of a Boolean function f is defined as

() min{ (,) | }nN f d f A   , where d (Hamming distance) is the number of different

coordinates of vectors in which f differs from β. It is known (see [1]) that the nonlinearity

is upper bounded by:
11 2() 2 2

n
nN f

  . The concept of nonlinearity is a very important

cryptographic property.

The Boolean functions on an even n number of variables, whose nonlinearity is

maximum, are called bent functions. The importance of bent functions is due to their

correspondence to the words of length 2n whose distance to the 1st order Reed-Muller

codes is equal to the covering radius of this code. Bent functions play a significant role in

cryptographic environments.

E. HAMMING DISTANCE AND HAMMING WEIGHT

1. Definition

Let  1 2, ,..., nx x x x and  1 2, ,..., ny y y y be two vectors in nF . The Hamming

distance d(x,y), between x and y is the number of coordinate places in which they differ.

For a fixed length n, the Hamming distance is a metric on the vector space of the words

of that length. For words of length 3 and 4, Figures 1 and 2 can be used for calculating

this Hamming distance.

Figure 1. 3-bit binary cube for finding Hamming distance (From [2]).

(110,001) 3d 

11

Figure 2. 4-bit binary hypercube for finding Hamming distance (From [2]).

In this thesis, we will refer to the Hamming distance as distance since it is

nonnegative, symmetric, and triangular:

(,) 0 and (,) 0d x y d x y  iff x=y

(,) (,)d x y d y x for all x,y in nF

(,) (,) (,)d x y d x z d z y  for all x,y,z in nF

2. Definition

Hamming weight of a binary word w is the number of "1" bits in w. For example

wt(11100101110)=7.

F. ERROR DETECTING AND CORRECTING CAPABILITIES OF CODES

Having defined the Hamming distance of two vectors, we can now clearly

describe the distance of a code C as the minimum distance between any two valid

codewords of this code.

1. Definition

Let C be a code. Then, d(C)=min{d(x,y) | x, yC}.

2. Definition

A code C is exactly t-error-detecting if and only if () 1d C t  and t-error-

correcting if and only if () 2 1d C t  or () 2 2d C t  .

(1100,0010) 3d 

12

G. CHAPTER SUMMARY

In this chapter, we discussed the basic principles and properties of the error

correction codes, and the background and important concepts necessary to understand

their performance. In Chapter III, Reed-Muller codes and their properties, as well as

encoding-decoding-generation methods will be introduced and analyzed.

13

III. REED-MULLER CODES

A. DEFINING REED-MULLER CODES

Let 0 r m  . The r-th order Reed-Muller code R(r,m) is the set p of all binary

strings of length 2mn  associated with the Boolean polynomials  1 2, ,..., mp x x x of

degree at most r.

Consequently, the 0-th order Reed-Muller code R(0,m) consists of the binary

strings associated with the constant polynomials 0 and 1. This code is the repetition code

of length 2m ,    0, 0 ,1 {0 0...0, 1 1...1} Rep(2)m m mR m    .

The other extreme situation is the m-th order Reed-Muller code R(m,m),

consisting of all binary strings of length 2m , that is, R(m,m)= 2
nF , where 2mn  .

The number of codewords can be found easily from the count of binary

monomials in R(r,m) of degree at most r. There are 1
1 2

m m m
k

r

     
         

     


such

monomials, and so there are k2 linear combinations of these. It is obvious that the closer

r is to m the more codewords there are. In conclusion, the r-th order Reed-Muller code

R(r,m) has the following properties:

Length of codewords: 2m

Number of codewords:
     1 ...1 22
m m m

r   

Minimum distance between codewords: 2m r [3]

Reed-Muller codes are among the most useful and interesting binary, linear, block

codes. As we will discuss in the next paragraph, first order Reed-Muller codes of length

32 were used in space missions. In order to achieve greater performance than these codes

offer, we have to extend their length. The limited bandwidth of communication channels

is one thing that we have to take into account. Therefore, the use of very large codes in

narrow channels is prohibited. On the other hand, Reed-Muller codes of higher order

require significantly less bandwidth than the first order ones.

14

Many researchers have investigated the weight distribution of Reed-Muller codes,

that is, the sequence of codeword weights. The weight spectrum for the first order Reed-

Muller codes is found easily, since, as we will see in the next chapter, all codewords in

R(1,m) codes have the same number of 0’s and 1’s (are balanced) except for the all 0’s

and all 1’s codewords. For example, in R(1,5), there are 1 5 62 2 64   codewords of

length 52 32 . Among them, there is a codeword of 32 1’s, a codeword of 32 0’s and 62

codewords of weight 16 (half 1’s, half 0’s).

Understanding the weight distribution for higher order Reed-Muller codes is

complicated, and very little is known about that. Much work has been done on 2nd and 3rd

order Reed-Muller codes [4].

B. APPLICATIONS OF REED-MULLER CODES

The first order Reed-Muller codes R(1,m), was used by Mariner 9 to transmit

black and white photographs of Mars in 1972 [5]. A simplified example giving a flavor of

code use in digitally transferred data is given below.

The main idea behind applying coding in digital technologies is to break up a

picture or a sound into small pieces and to use a binary sequence to represent each of

these small pieces, adding at the same time, some redundant bits. This redundancy is used

to correct errors that might be caused by noise when the information is sent over a noisy

channel.

For example, the pixels (picture elements) shown in Figure 3 could be sent via a

channel by coding a white pixel with 111111, a black pixel with 000000 and a gray pixel

with 111000. Assuming that the receiver knows the size of the image, in this example

6x6, and that the pixels are being sent row by row, then the picture can be accurately

decoded if no more than one error occurs during the transmission process. This happens

because the distance between any pair of codewords is at least 3.

15

Figure 3. Picture Elements.

In the case of Mariner 9, the actual scenario is more complicated and finally the

error-correcting code used is “heavier.” This means that the additional bits used

(redundant bits) are repeated information bits. In the case of Mariner 9, the codewords

were 32 bits long, consisting of 6 information bits and 26 additional bits.

Another significant application of error-correcting codes is in the compact disc

(CD) technology [5]. On CDs, the signal is encoded digitally. To protect from errors

because of scratches, cracks and similar damage, several kind of codes are used which

can correct up to 4,000 consecutive errors (about 2.5 mm of track). Similar error

correction techniques are also used on DVDs and Blue-Ray discs.

We cannot ignore the contribution of codes in compression. Compression is the

process of transforming information from one representation to another smaller

representation. In many cases, compression and decompression processes are often

referred to as encoding and decoding. It is obvious that data compression has application

to data storage and data transmission. Since using a process of reducing the amount of

data required to represent a given quantity of information, different amounts of data

might be used to communicate the same amount of information. If the exact information

can be represented with different amounts of data, it is reasonable to believe that the

representation that requires more data contains some kind of data redundancy. Image

16

compression and coding techniques use three types of redundancies: coding redundancy,

spatial redundancy, and psychovisual redundancy.

Another great concern of coding theory is synchronization. In many industrial and

military activities, such as navigation, mapping, positioning, power distribution,

telecommunication, weather station, and digital radio, one of the most important

exchanged information is the precise time of action taking place (time tag).

Synchronization between these tags is something that can be fixed and controlled by

codes. With the use of specific codes any “shift” in phase of a signal can be detected and

corrected, enabling the transmission of multiple signals through the same channel.

C. GENERATION/ENCODING METHODS

1. Generation Methods

a. Using Boolean Polynomials

An r-th order Reed-Muller code R(r,m) is the set of all binary strings of

length 2m associated with Boolean polynomials 1 2, ,..., mx x x of degree at most r.

Consequently, the first order Reed-Muller code of length 32n  is the set of all binary

strings associated with the Boolean polynomials 1 2 3, , and x x x of degree at most 1.

These polynomials have the form 0 1 1 2 2 3 3a a x a x a x   where ia =0 or 1. The binary

string corresponding to this polynomial is 0 1(11111111) (00001111)a a

2 3(00110011) (01010101)a a  .

b. Example R(1,3)

We can list the codewords in R(1,3) as follows:

17

Table 5. RM(1,3) codewords

Note that all codewords in R(1,m) except 0 and 1 have weight 12m . Thus,

in the previous example of R(1,3), the weight of all nontrivial codewords, except

00000000 and 11111111, is 3 12 4  .

c. Using Direct Sum Construction

If 1C is an R 1 1(,)r m code and 2C is an R 2 2(,)r m code, then the direct sum

3C is the code 3 1 2{ | , }C cd c C d C   with the following parameters:

Polynomial Codeword

0 00000000

1x 00001111

2x 00110011

3x 01010101

1 2x x 00111100

1 3x x 01011010

2 3x x 01100110

1 2 3x x x  01101001

1 11111111

11 x 11110000

21 x 11001100

31 x 10101010

1 21 x x  11000011

1 31 x x  10100101

2 31 x x  10011001

1 2 31 x x x   10010110

18

Length of codewords: 1 22 2m m

Number of codewords:
       1 21 1 2 2

1 2
1 ... 1 ...1 2 1 22 2

m mm m m m
r r
             
   

Minimum distance between codewords: 1 1 2 2min{2 ,2 }m r m r 

d. Using (u,u+v)-Construction

This construction, for many reasons, is more useful than the direct sum

construction. If 1C is an R 1, 1()r m code and 2C is an R 2, 2()r m code, both of which are over

the same alphabet (1C and 2C have the same length), then we can define a code

1 2C C by: 1 2 1 2{ () | , }C C c c d c C d C     with the following properties [5]:

Length of codewords: 1 21 12 2m m 

Number of codewords:
       1 21 1 2 2

1 2
1 ... 1 ...1 2 1 22 2

m mm m m m
r r
             
   

Minimum distance between codewords:

1 1 2 21
1 2() min{2 ,2 }m r m rd C C    

2. Encoding Methods

To define the encoding matrix of R(r,m), let the first row of the encoding matrix

be 11…1 (the vector with length 2m with all entries equal to 1). If r is equal to 0, then

this row is unique in the encoding matrix. On the other hand, if r is equal to 1, then we

add m rows corresponding to the vectors 1 2, , ... , and mx x x to the R(0,m) encoding

matrix.

Thus, in order to form an R(r,m) encoding matrix, where r is greater than 1, we

have to add m

r

 
 
 

 rows to the R(r-1,m) encoding matrix. These added rows consist of all

the possible reduced degree r monomials that can be formed using the rows 1 2, ,..., mx x x

19

a. Example R(1,3)

When m=3 we then have:

1

2

3

1 1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

x

x

x

 
 
 
 
 
 

b. Example R(2,3)

Thus, adding the rows

1 2 1 3 2 311000000, 10100000 and 10001000x x x x x x   we obtain:

1

2

3

1 2

1 3

2 3

1 1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 0 1 0 0 0

x

x

x

x x

x x

x x

 
 
 
 
 
 
 
 
 
 
 

c. Example R(3,3)

Note that, the row 1 2 3 10000000x x x  can be added to form: R(3,3)

d. Example R(2,4)

Using exactly the same steps, we can obtain:

20

1

2

3

4

1 2

1 3

1 4

2 3

2 4

3 4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0

1 0 1 0 0 0 0 0 1 0 1 0 0 0 0

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

x

x

x

x

x x

x x

x x

x x

x x

x x

0

0

0

0

0

0

0

0

0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

It is obvious that the number of rows of these encoding matrices is

1 ...
1 2

m m m
k

r

     
         

     
. So, the sent message must be in blocks of length k. Let

1 2(, ,...,)km m m m be such a block. Then the encoded message M is the sum
1

k

i i
i

m R

 ,

where iR indicates the rows of the encoding matrix of R(r,m).

e. Example Encoding with R(1,3)

Using R(1,3) to encode m=(0011) gives:

0(11111111) 0(11110000) 1(11001100) 1(10101010) (01100110)    as

the encoded word.

f. Example Encoding with R(2,4)

Similarly, using R(2,4) to encode m=(10101110010) gives:

1*(1111111111111111) 0*(1111111100000000) 1*(1111000011110000) 0*(1100110011001100)

1*(1010101010101010) 1*(1111000000000000) 1*(1100110000000000) 0*(1010101000000000)

0*(1100000011000000) 1*(10100000

  
   
  10100000) 0*(1000100010001000) (0011100100000101) 

21

3. Decoding Methods

There are few methods for decoding Reed-Muller codes. In this thesis, the most

widely used is analyzed. Decoding is more complex than encoding. The theory behind

both encoding and decoding is based on Hamming distance between vectors.

The decoding method checks which row iR of the encoding matrix was used to

form the encoded message. The implementation of this method requires the use of

characteristic vectors of the encoding matrix rows. In order to find the characteristic

vector, we work on the monomial r associated with the row of the matrix. After that, we

take the set of all ix that are not in r, but only in the encoding matrix. The characteristic

vectors are those vectors that correspond to monomials ,i ix x , such that exactly one of ix

or ix belongs to each monomial for all elements of the set of all ix . The dot product of

these characteristic vectors with all the rows of the used code matrix yields 0, except the

row to which the vector corresponds.

a. Decoding Algorithm

This method is precisely described in the following three steps of an

algorithm [3]:

Step 1

Choose a row of the given encoding matrix code and find

2m r characteristic vectors for that row. Then, form the dot product of these vectors with

the encoded message.

Step 2

Compute the majority value (either 1 or 0) of the dot products, and assign

it to each row.

Step 3

Executing steps 1, 2 from the bottom of the matrix to the top, multiply the

majority value assigned to each row by its corresponding row. Add the results altogether,

and then sum this up to the received encoded message. If there is a majority of 1‘s in the

22

resulting vector, then assign 1 to the top row. Otherwise, if there is a majority of 0’s, then

assign 0 to the top row. Adding the top row, multiplied by the assigned value, leads to the

original encoded message. Using this algorithm, it is obvious that we can identify the

errors occurred during the transmission of encoded message. The vector that is formed

using the assigned values of each row, from the top row all the way to the bottom row of

the encoding matrix, is the original message.

b. Example of Decoding Using R(1,3)

Assuming an original message m=(0110), using the R(1,3) encoded matrix

we get the encoded message M=(00111100). As it is already mentioned, the distance in

this code is 3 12 4  , and therefore, it can correct one error. Assuming that, during

message transmission, one error occurred at the first leftmost bit, the encoded message

after the error is M’=(10111100). The characteristic vectors of the last row of the encoded

matrix are 1 2 1 2 1 2 1 2, ,x and ,x x x x x x x .

The vector related to 1x is (11110000), thus 1x is (00001111). Similarly,

2x is (11001100), and thus 2x is (00110011). Therefore, 1 2x x is (11000000), 1 2x x is

(00110000), 1 2x x is (00001100) and 1 2,x x is (00000011). Computing the dot product of

these vectors with M’, we get the values 1,0,0,0 respectively, leading to majority value of

0 for 3x . Repeating the process for the second to last row of the matrix, we get the values

0,1,1,1 respectively, leading to majority value 1 for 2x . Working similarly, we conclude

that the coefficient of 1x is also 1. Adding 0*(10101010) and 1*(11001100) and

1*(11110000) we get M’’=(00111100). Then, we notice, that adding M’ and M’’ we get

(10000000), which has more 0’s than 1’s, leading to 0 for the coefficient of the first row

of the used matrix.

Putting together the four coefficients that correspond to four rows 0,1,1,0

we get the original message. Additionally, we can determine the position of the error at

the first leftmost bit.

23

D. CHAPTER SUMMARY

In this chapter, a detailed discussion of Reed-Muller codes was presented. Some

methods of generation, encoding and decoding are also analyzed. This will help us explain

later in the thesis the simplicity of a new method of fast construction of these codes. In

addition, some examples were examined to help understanding each method. In Chapter IV,

the concept of covering radius is presented, and several methods for its computation are

examined.

24

THIS PAGE INTENTIONALLY LEFT BLANK

25

IV. COVERING RADIUS

A. INTRODUCTION

We can trace the origin of error correcting codes in a paper from the 1940s by

Claude Shannon [6], who proposed some error detection/correction techniques, to

achieve error-free communication through a noisy channel. Data to be sent over a noisy

channel is first “encoded,” plaintext is turned into a codeword by adding extra data

(redundancy). This enlarged codeword is sent via the communication channel and the

received data is “decoded” by the receiver. The critical point of this last process is that

the decoded data has to be as close as possible to sent data. At this point, covering radius

takes its role, since the “quality” of the code, in relation to the channel, depends on how

small the code’s covering radius is.

In coding theory, the covering radius plays a critical role in every code. In

addition, good covering codes have a number of applications in various areas of

mathematics and electrical engineering. Though the minimum distance has a more central

role for error-correction codes, the covering radius is also related to the error correction

capability of the code, since if it is less than the distance, no vector in the space can be

added without worsening the code’s distance [7].

Since
2nF has a distance metric, it makes sense to use spheres that are centered at

a valid codeword x with a given radius ρ. One sample of these spheres is depicted in

Figure 4.

Figure 4. Sphere of radius ρ.

ρ

Valid codeword x

26

Let C be a subset of
2nF , in which all the distances are integers. The covering

radius of a code C is the smallest radius ρ (Figure 5) such that every word of the space

is contained in some (at least one) sphere of radius ρ centered at a codeword.

It is obvious that the covering radius problem is important since it helps in

investigating the constructing codes having a specified length and dimension such that

no vector of the space is very far from the nearest codeword.

Figure 5. Covering radius ρ.

Each codeword of a code
2nC F represents a message. When that message is

transmitted, errors may occur. However, if the used code C has the property that all the

spheres of radius ρ around codewords are completely disjoint, then any received message

x that has no more than ρ coordinates in error is within distance ρ from a unique

codeword c in C. Therefore, we conclude that the codeword that was originally sent is c.

Consequently, we say that C can correct up to ρ errors. It is obvious that the largest value

of ρ cannot be greater than d (the distance between any two codewords of C). The critical

point here is the ability of constructing error-correcting codes, having specified length

and dimension (number of codewords in linear cases) with large minimal d. This is

actually one of the central problems in theory of error-correction codes.

In addition, it is worth mentioning that covering radius is a basic geometric

parameter of a code. Topics that are currently under research by the coding community

are the following:

Codeword

Non-codeword

27

1. Given the length and dimension of a linear code, it should be

determined what the covering radius is.

2. Construct efficient codes that have small covering radius.

3. Develop computational methods to determine the covering radius

of well-known error-correction codes.

Specifically, Reed-Muller codes are an extremely interesting class of error-

correction codes, and therefore, many researchers have studied Reed-Muller codes [8],

[9], [10, [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25].

Nevertheless, due to the complexity of computations methods, overall knowledge is still

quite limited. We will focus on some of these methods and point out all published results

of covering radius of 1,st 2,nd and k-th order Reed-Muller codes later in the chapter.

B. METHODS OF COMPUTATIONS OF COVERING RADIUS

1. 1st Method Using Translate

 When we construct an error-correction code with large minimum distance d, our

focus is in the structure of the code. In addition, the corresponding codewords must be

chosen, so that no vector of 2
nF (since in this thesis we only work with binary spaces) has

its distance too large from any codeword.

 On the other hand, the design of a decoding scheme focuses on the exterior part of

the code. If we have a code 2
nC F , and we decide to send some data in the form of a

codeword, then, on the receiver we may get a vector x that is different from c.

 Thus, we can now introduce the concept of a translate x C of C. This is the set

of all codewords of the code C xoring with a specific received word x. The weight of the

translate x C is the minimal weight of any vector in C. Knowing the weights of

translates, is very critical in the decoding problem since the covering radius is the largest

among all weights of translates.

In the following example, we pick the code C={00000,11000,00111,11111}, and

we calculate the covering radius using the method we just introduced (see Table 6). Note,

that the code we use in this part is an arbitrary code with no specific properties. We use

this code for the sake of simplicity of our example.

28

Having the codewords of the code C and all vectors that can be received (received

words), we can calculate the translates of the code, and thus the weights of these

translates. Therefore, the maximum of these weights, 2 in our case, is the covering radius

of the code. In Table 6, we see this method in detail.

Table 6. 1st method of Covering Radius computation

Codewords of C
(transmitted words)

Vectors x
(received words)

Minimum wt(x+C)
(x+C translates)

{Max[min(wt(x+C)]}
(covering radius)

00001 1
00010 1
00011 1
00100 1
00101 1
00110 1
00111 0
01000 1
01001 2
01010 2
01011 1
01100 2
01101 2
01110 2
01111 1
10000 1
10001 2
10010 2
10011 2
10100 2
10101 2
10110 2
10111 1
11000 0
11001 1
11010 1
11011 1
11100 2
11101 1
11111 0

00000
11000
00111
11111

00000 0

2

Furthermore, applying the same method to the following code

C’={00000,11000,00111} we realize that even though we decrease the dimension of the

code from 4 to 3, the covering radius remains the same. This code is actually a trivial

sub-code of the given code. In reality, constructing a sub-code with “nice characteristics,”

and properties is not a triviality.

29

 In our case, the covering radius of the random code is 2. As we have already

mentioned above, the covering radius is also the smallest integer r such that any vector in

2
nF is within distance r from a codeword.

This method works well for codes with small length and dimension. When these

parameters become larger, the computation complexity of the method increases

exponentially, and the use of computers is necessary.

2. 2nd Method of Using Direct Sum of Codes

 Before we describe the 2nd method of covering radius computation [11], we give

several definitions.

a. Definition of Norm of a Code C

Let 2
nC F be a linear code of length r, dimension m and covering radius

R. Let j be one of the m coordinates, and 1C denote the set of codewords in which the j-

th coordinate is 0. Similarly, let 2C denote the set of codewords in which the j-th

coordinate is 1. In accordance with [22], if 2C is not empty, then both 1 2,C C contain

12m codewords. For any vector x in 2
nF , let 1d =d(x, 1C) and 2d =d(x, 2C). Also let

D=max(1d , 2d). Then, D is called the norm of C. Norm does not depend on the choice of

x or j.

b. Definition of a Normal Code

A code is normal when its norm satisfies 2 1D R  . In other words [22],

given a code with norm D, then there is a coordinate i such that, for any vector x, the sum

of the d’s from x to the nearest codeword having in i-th place 0 and to the nearest

codeword having in i-th place 1, cannot be greater than D.

Having defined the critical concepts of the norm of a code, and normal

codes, we can now proceed to the second method of computation of covering radius that

is combined with a code construction method.

30

Let 1C be an R 1 1(,)r n code with covering radius 1R , and 2C be an

R 2 2(,)r n code with covering radius 2R . The direct sum of these codes [11] is another

code of length 1 22 2n n vectors u|v, where u 1C and v 2C . Then, this direct sum is a

new code with covering radius 1 2R R . Additionally, if 1 2and C C are normal, we can

construct their amalgamated direct sum [11] that is a code with one less coordinate, one

less dimension, and 1 2R R covering radius.

c. Example 1 2R R

Consider the code C={00000,11000,00111,11111} that is the direct sum

of the following codes: 1C ={00,11} and 2C ={000,111}. Using the last method of direct

sum, we conclude that the covering radius is 1 2 2R R R   .

3. 3rd Method Using Bounds

 Let 1C be any code of length 12n and b any vector of the same length. If 1b C and

1 1()C C b C   and if we can find a vector 1y C such that 1(,)d y C r , then from [11]

the covering radius of C is at least [
3

r
].

Pick an arbitrary code, say 1C ={0000,1100,0011,1111}, we can calculate the

covering radius of code 1 1()C C b C   (Table 7) using the 3rd method we just

introduced. The code we use is a random code with no specific properties.

31

We picked a vector 1b C , and we construct the code 1 1()C C b C   . Choosing

a vector 1y C with 1(,) 1d y C  and using the 3rd method of computation, we conclude

that the covering radius of C is at least
1

1
3
    

. Thus, a lower bound of the covering

radius of C is 1.

It is very difficult to find the covering radius of a large code, or even to bound it

[18], [22]. Therefore, in the majority of the cases, the 3rd method for the computation of

the covering radius is very useful.

Table 7. 3rd method of Covering Radius computation

Codewords of 1C Vector 1b C

Codewords of

1 1()C C b C  
Vector 1y C

(1(,) 1d y C )

0000
1100
0011
1111

1010

0000
1100
0011
1111
1010
0110
1001
0101

1000

4. 4th Method Using Norm

 This method relies on Theorem 1 [11], which states that every code of norm N has

a covering radius
2

N     
. The equality holds for normal codes.

32

C. COVERING RADIUS FOR 1ST ORDER REED-MULLER CODES

Recall that, R(r,m) is an rth order Reed-Muller code of length 2m , and ρ(r,m) is its

covering radius. One of the challenging problems in coding theory is to find precisely the

covering radius of 1st order Reed-Muller codes.

The first expression for ρ(1,m) was published in 1978 [22] .

11 2(1,) 2 2
m

mm
  for even m,

1
11 12 22 2 (1,) 2 2

m m
m mm


     for odd m.

 For the first odd values of m, we have that ρ(1,1)=0, ρ(1,3)=2, ρ(1,5)=12 (also

proved in [8]) and ρ(1,7)=56 (also proved in [14]). An easy but unsafe conclusion [14]

was that with odd values ρ(1,2t+1) is equal to 22 2t t , thus to the lower bound of last

inequality .

 In 1983, the last conjecture was finally disproved [24], and it was shown that:

1
1 2

27
(1,) 2 2

32

m
mm


  for odd 5m  . In 1990, a correction of this proof is also provided

[26].

D. COVERING RADIUS FOR 2ND ORDER REED-MULLER CODES

One of the first detailed studies to find the covering radius for 2nd order Reed-

Muller codes was in [15], where it was proved that ρ(2,6)=18. In the same paper, some

bounds are also provided:

36 (2,7) 46, (2,8) 72and    .

Recently, in [27] a new upper bound of 2nd order Reed-Muller codes was

published:
11 2(2,) 2 152 (1)

m
mm

   .

33

E. COVERING RADIUS FOR RTH ORDER REED-MULLER CODES

Some known results for rth order Reed-Muller codes are shown below.

In the following trivial cases, we have: (,) 0, (1,) 1,m m m m   

and (2,) 2m m   .

In [13], it is proved that:

 (3,) 2,m m m    for m even and 3m  , and

 (3,) 1, m m m    for m odd and 3m  .

F. CHAPTER SUMMARY

In this chapter, the concept of covering radius of a code is introduced. In addition,

some methods of covering radius computation are presented and finally some known

results for Reed-Muller codes are reported. In the next chapter, a new simplified

algorithm of fast generation of all 1st order and some of 2nd order Reed-Muller codes is

analyzed and a fast construction of a linear subcode with good properties is presented and

analyzed. In addition, the “reverse” of this new algorithm is presented.

34

THIS PAGE INTENTIONALLY LEFT BLANK

35

V. FAST ALGORITHM OF GENERATION OF 1ST—2ND ORDER
REED-MULLER CODES, LINEAR SUBCODES WITH GOOD

PROPERTIES, AND THE “REVERSE” ALGORITHM

A. FAST GENERATION OF 1ST ORDER REED-MULLER CODES

Comparing Tables 4 and 5, and the constructing method of Reed-Muller codes,

we notice that all of the 1st order Reed-Muller codes are Affine Boolean Functions. Also,

all 1st order Reed-Muller codewords are balanced, except the all 0’s and all 1’s

codewords. The construction of these codewords using a conventional method is time and

memory consuming. Therefore, a new algorithm for fast generation is introduced in this

chapter. The algorithm is useful for hardware coding applications.

Using a Lemma in [28] which states: “An affine function in more than 2 variables

is a linear string made up of the 8 4-bit blocks: 1T ={ A =0000, A =1111, B =0011,

B =1100, C =1001, C =0110, D =0101, D =1010 } in a block sequence

21 2 2
, , . . . , nI I I  given as follows:

The first block 1I is one of A , A , B , B , C , C , D or D .

The second block 2I is either 1I or 1I .

The next two blocks 3 4,I I are 1 2,I I or 1 2,I I .

The next four blocks 5 6 7 8, , ,I I I I are 1 2 3 4, , ,I I I I or 1 2 3 4, , ,I I I I .

The last 32n blocks 3 22 1 2
, . . . ,n nI I  are 31 2

, ..., nI I  or

2
2 1| nF T

”,

 We can construct all 1st order Reed-Muller codes using the algorithm described

below. In our case when a 1 occurs, we complement and, when 0 occurs, we just copy the

block as it is.

36

1. New Algorithm for Fast Generating 1st Order RM Codes

Step 1

We begin with the codewords of R(1,2) that are identical to the 4-bit blocks used

in previous lemma: 1T ={ A =0000, A =1111, B =0011, B =1100, C =1001, C =0110,

D =0101, D =1010}.

Step 2

We construct the following concatenation for each R(1,2) codeword: 2
2 1| nF T in

order to construct the R(1,n) code. The first part of this structure will play the role of

“guide” word.

Step 3

Starting from the leftmost bit of “guide” word, we just complement the bits of

right part when we find 1 and just repeating these bits when we find 0, until we take the

last rightmost bit of “guide” word.

We repeat step 3 for every block of 1T using every “guide” word. In Table 8, we

generate R(1,3) using the new algorithm for fast generating 1st order RM codes.

Therefore, for this case, we repeat step 3 twice since there are two “guide” words for

every block of 1T . On the contrary, in Table 9, step 3 is repeated four times,

since 2 4 2 2
2 2 2 {00,11,01,10}nF F F    .

2. Example R(1,3)

Using the above algorithm we construct R(1,3).

37

Table 8. Fast Generation of R(1,3)

Step 1

(R(1,2))

Step 2 Step 3

(R(1,3))

0000 0|0000 00000000

 1|0000 00001111

1111 0|1111 11111111

 1|1111 11110000

1100 0|1100 11001100

 1|1100 11000011

0011 0|0011 00110011

 1|1100 00111100

1001 0|1001 10011001

 1|1001 10010110

0110 0|0110 01100110

 1|0110 01101001

1010 0|1010 10101010

 1|1010 10100101

0101 0|0101 01010101

 1|0101 01011010

3. Example R(1,4)

Using the same algorithm we construct R(1,4).

38

Table 9. Fast Generation of R(1,4)

Step 1

(R(1,2))

Step 2 Step 3

(R(1,4))

0000 00|0000 0000000000000000

 11|0000 0000111111110000

 01|0000 0000000011111111

 10|0000 0000111100001111

1111 00|1111 1111111111111111

 11|1111 1111000000001111

… … …

1100 00|1100 1100110011001100

 11|1100 1100001100111100

… … …

0011 00|0011 0011001100110011

… … …

1001 00|1001 1001100110011001

… … …

0110 00|0110 0110011001100110

… … …

1010 00|1010 1010101010101010

… … …

0101 00|0101 0101010101010101

… … …

The complexity of constructing the 1st order Reed-Muller codes using this

algorithm is significantly lower than the complexity of the method that is introduced in

Chapter III, by using Boolean polynomials.

39

In addition, it is obvious that this compact representation of 1st order Reed-Muller

codewords is highly memory efficient because it can actually store a great amount of

information in a small word. For example, using a “guide” word of 8 bits, we can

compress a codeword of 512 bits to a string of 12 bits. The compression ratio for each

codeword in this example is 43:1, and the memory saving is 97.65%. The compressed

string includes all the information of the expanded codeword, and moreover, as we

analyze below, using the “reverse” algorithm, we can reconstruct a damaged codeword,

correcting some errors occurred during the transmission.

B. HARDWARE IMPLEMENTATION OF ALGORITHM

In general, in our algorithm, in order to store a compact representation of 2n -bits

codeword, n+1 bits are needed. This implies that the storage ratio is

bits of complete codeword 2
:1 :1

bits of compact codeword 1

n

n



, and the storage saving is

bits of compact codeword 1
(1)% (1)%

bits of complete codeword 2n

n 
   . It is obvious that the storage ratio, and

the storage saving are very high. The critical point is that the fast generation of complete

codewords from compact form cannot be efficiently supported by a program running on a

conventional computer. On the other hand, the hardware implementation of this

expansion (see Figure 6, for the case of n=3) is faster and more compact.

The logic circuit of Figure 6 generates only one codeword at a time. In order to

obtain the whole code, we have to repeat this circuit for each word of either 1T or 2T and

for each “guide” word.

40

Figure 6. Hardware implementation of algorithm (n=3)

The exclusive OR gates implemented in Figure 6, either complements or leaves

uncomplemented the corresponding bits depending on the value of inputs 4s . If 4 1s  ,

the output of the gate is complemented, otherwise stays unchanged.

 The number of two-input exclusive OR gates that are needed for the

implementation of our algorithm is 2 4n  , where n is the number of variables used.

Although exponential in n, this is close to minimal mostly because 2n outputs are

needed, four of which are driven directly by their inputs and thus, require no gate. The

delay associated with this logic circuit is also small.

 From the above, we conclude that our conversion algorithm gives to any

communication user the ability to produce complete low order Reed-Muller codewords

on-the-fly from a compressed representation.

41

C. FAST GENERATION OF 2ND ORDER REED-MULLER CODES

On the other hand, fast generation of 2nd order Reed-Muller codes is more

complicated. This problem is comparable to the construction of all n-variable quadratic

functions:

1

2

1

2

n 
  

  . We just demonstrate the fast construction of R(2,3), since the

generation of RM(2,n) for n>3 is quite complicated, and we have not been able to achieve

it in its generality.

We define 2T ={ E =1000, E =0111, F =0001, F =1110, G =0100, G =1011,

H =0010, H =1101}.

Any codeword of R(2,3) has the structure 1 1|T T or 2 2|T T , as mentioned in [29].

Thus, in Table 10, we see this fast generation. This way of construction is less

complicated and less memory consuming that the normal way.

42

Table 10. Fast Generation of R(2,3)

1 1|T T 2 2|T T

00001111 10000111

00000011 10000001

00001100 10001110

00001001 10000100

00000110 10001011

00000101 10000010

00001010 10001101

11111111 01110111

11110011 01110001

11111100 01111110

11111001 01110100

11110110 01111011

11110101 01110010

11111010 01111101

0000

1111

0011

 1100 1T

1001

0110

 0101

 1010

1000

0111

0001

 1110

 0100 2T

1011

1011

0100

D. FAST GENERATION OF LINEAR SUBCODES WITH GOOD
PROPERTIES

Having fast constructed all 1st order Reed-Muller codes using the eight 4-bit

blocks: 1T ={ A =0000, A =1111, B =0011, B =1100, C =1001, C =0110, D =0101,

D =1010} and the given algorithm, we demonstrate a fast generation of R(2,3) using the

eight 4-bit blocks: 2T ={ E =1000, E =0111, F =0001, F =1110, G =0100, G =1011,

H =0010, H =1101}.

Again using the algorithm:

43

1. Algorithm

Step 1

We begin with the 4-bit blocks given above: 2T ={ E =1000, E =0111, F =0001,

F =1110, G =0100, G =1011, H =0010, H =1101}

Step 2

We construct the following concatenation for each of 2T blocks: 2
2 2| nF T in order

to construct a new category of error correction codes with good properties. The first part

of this structure plays the role of “guide” word.

Step 3

Starting from the leftmost bit of “guide” word, we complement the bits of right

part when we find 1 and repeat these bits when we find 0, until we reach the last

rightmost bit of “guide” word.

We repeat step 3 for every block of 2T using every “guide” word.

We prove that the properties for this construction hold for any n. Therefore, all

codewords of any such construction are of the form: 1n naffine x x . Consequently, the

sum of any two codewords is an affine function, and also the sum of any three codewords

belongs to the code.

2. Example R(2,3) Subcode

Using the above algorithm, we construct the new subcode as shown in the Table

11.

44

Table 11. Fast Generation of a R(2,3) subcode

Step 1 Step 2 Step 3

1000 0|1000 10001000

 1|1000 10000111

0111 0|0111 01110111

 1|0111 01111000

0001 0|0001 00010001

 1|0001 00011110

1110 0|1110 11101110

 1|1110 11100001

0100 0|0100 01000100

 1|0100 01001011

1011 0|1011 10111011

 1|1011 10110100

0010 0|0010 00100010

 1|0010 00101101

1101 0|1101 11011101

 1|1101 11010010

3. Example R(2,5) Subcode

Using the same algorithm, we generate another code that has 32 codewords and

some important properties, as described below. Table 12 shows the Truth Table and

Algebraic Normal Form of this construction:

45

Table 12. Fast Generation of R(2,5) subcode

Step 1 Step 2 Step 3 Algebraic Normal Form

1000 00|1000 1000100010001000
4 3 3 41 x x x x  

 11|1000 1000011101111000
4 3 3 4 2 11 x x x x x x    

 01|1000 1000100001110111
4 3 3 4 11 x x x x x   

 10|1000 1000011110000111
4 3 3 4 21 x x x x x   

0111 00|0111 0111011101110111
4 3 3 4x x x x 

 11|0111 0111100010000111
4 3 3 4 2 1x x x x x x   

… … … …

0001 00|0001 0001000100010001
3 4x x

 11|0001 0001111011100001
3 4 2 1x x x x 

… … … …

1110 00|1110 1110111011101110
3 4 1x x 

… … … …

0100 00|0100 0100010001000100
3 4 4x x x

… … … …

1011 00|1011 1011101110111011
4 3 4 1x x x 

… … … …

0010 00|0010 0010001000100010
3 3 4x x x

… … … …

1101 00|1101 1101110111011101
3 3 4 1x x x 

… … … …

46

All codewords in this construction are affine functions with the term 3 4x x . In

addition, there is an even number of 1’s in every codeword of this construction. The first

property implies that the sum of any two codewords is an affine function. An interesting

property of this error-correcting code is that xoring any three codewords gives another

codeword. In addition, the minimum distance d of this subcode is 8.

4. Theorem

 All codewords of any subcode generated by this algorithm, are of the form

1n naffine x x .

Before we prove the theorem we have to present an algorithm for calculating the

Algebraic Normal Form from the Truth Table of a function and vice versa [30]. Let

0 1 2 2 1
[. . .]nD d d d d


 be the coefficient vector of the polynomial representing

the Boolean function f (the theorem that helps us calculate the coefficient vector is

presented below). If 1id  , where 0 2 1ni   , then the monomial

0 11 2
0 1 2 1. . . ni ii i

nx x x x 
 appears in the Algebraic Normal Form of f. On the contrary,

when 0id  , no monomial appears, where 0 1 2 1(, , ,...,)ni i i i  is the binary representation of

pointer i .

a. Example of Calculating the ANF of a Function

[0 0 1 0 0 0 1 1]D  , means

0 1 2 3 4 5 6=0, =0, 1, 0, 0, 0, 1d d d d d d d     7 1d  . We conclude that:

 due to 2d (i=01000000 in binary representation), one of the

monomials that appears in the Algebraic Normal Form

is 0 1 0 0 0 0 0 0
0 1 2 3 4 5 6 7 1x x x x x x x x x .

 due to 5d (i=10100000 in binary representation), one of the

monomials that appears in the Algebraic Normal Form

is 1 0 1 0 0 0 0 0
0 1 2 3 4 5 6 7 0 2x x x x x x x x x x .

47

 due to 6d (i=01100000 in binary representation), one of the

monomials that appears in the Algebraic Normal Form

is 0 1 1 0 0 0 0 0
0 1 2 3 4 5 6 7 1 2x x x x x x x x x x .

 due to 7d (i=11100000 in binary representation), one of the

monomials that appears in the Algebraic Normal Form is

1 1 1 0 0 0 0 0
0 1 2 3 4 5 6 7 0 1 2x x x x x x x x x x x .

Finally, the Algebraic Normal Form of the given coefficient vector

is 1 1 2 0 2 0 1 2x x x x x x x x   . Now, we have to connect the coefficient vector with the Truth

Table of the function, using the theorem in [30]. This theorem states that if we have an n-

variable Boolean function f, and D the coefficient vector of this function,

then * nD f A , where

0 0
1

00

A A
A

A

 
  
 

and 0 [1]A  .

b. Example of Calculating the Coefficient Vector

Given a Truth Table of a 3-variable Boolean function f =01100101 and

working in accordance to the above theorem, we can obtain the coefficient vector. Since,

3

1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 1 0 0 0 1

0 0 0 0 1 1 1 1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

A

 
 
 
 
 
   
 
 
 
 
  

we obtain [0 1 1 0 0 0 1 0]D  .

Our previous theorem claims that all codewords of any such construction

are of the form: 1n naffine x x .

48

c. Proof of Theorem

Indeed, every function of our construction corresponds to coefficient

vectors of the form:
2

0 1 2 4 8[1 0 0 0 ...0... ...0...]
nxD d d d d d d , where:

1. 0d can be either 1 or 0 since the 1st bit of our codewords is either 1

or 0 and the 1st column of nA is 1 0 0 0
T .

2. 1d can be either 1 or 0 since the first 2 bits of our codewords are

00, 01, 10 or 11 and the 2nd column of nA is  1 1 0 0 0
T .

3. 2d can be either 1 or 0 since the first three bits of our codewords

are 000,001,111,110,100,011,010 or 101 and the 3rd column of nA is 1 0 1 0 0
T .

4. 3d can only be 1 since 2T consists of words of odd number of 1’s

and the 4th column of nA is  1 1 1 1 0 0 0 0
T .

5. 4d can be either 1 or 0 since the first bit and the 12n th bit of our

codewords are 00, 01, 10 or 11 and 5th column of nA is  1 0 0 0 1 0 0 0 1 0 0 0 1
T

For the other bits of D , except 2n th bits, it is obvious that they are all 0’s.

On the other hand, all 2n th bits of D can be either 1 or 0. That format of coefficient

vector confirms that the Algebraic Normal Form of our construction is 1n naffine x x .

QED

E. THE DECODING “REVERSE” ALGORITHM

Reversing the algorithm introduced at the very beginning of this chapter, we show

that not only we can highly compress any codeword of 1st order Reed-Muller codes, and

of new construction of subcodes of 2nd order Reed-Muller codes, but we can also

reconstruct a damaged codeword, correcting some errors that occurred during

transmission or storage.

49

1. Conjecture

This new correction method can correct n-2 errors, or similarly the number of

“guide” word bits.

The general compression ratio of this “reverse” algorithm, as it is already

mentioned, is
2

:1
1

n

n 
, and the memory saving is

1
1 %

2n

n   
 

. It is obvious that, for high

n, the compression ratio is extremely high. For example, we can imagine the memory

saving in a realistic case for n=15, where we can compress 152 32768 bits to only 16

bits, without losing any information of the codeword. The memory saving in this

particular case is 99.95%. These calculations highlight the importance of this algorithm in

environments where the memory efficiency is critical.

2. Algorithm

Step 1

We split the word in two halves, and both of these halves in halves and so on,

until we reach 4 bit chunks.

Step 2

We xor bitwise the first two halves, and using the majority value of either 0’s or

1’s, we obtain the rightmost bit of “guide” word. At the same time, the minority of either

1’s or 0’s indicates the probable positions of errors in both halves of our word. It is

obvious that on first xoring we either/both miss some errors due to double errors occurred

on two xored bits, or/and over count some of them due to the fact that error candidates

are in both halves.

In order to accurately locate and correct all of the errors, we xor the other halves,

and we work as described on the second step. The bit positions that take the majority of

candidate errors are the errors.

Our decision about the position of errors can be verified by our construction of the

Reed-Muller code used. It is known that using our algorithm, all 1st order Reed-Muller

codes can be generated by 1T set of words, and all subcodes of 2nd order Reed-Muller

50

codes that we quickly generated, by 2T set of words. Therefore, all 4-bits words, after the

very last split, should be either of 1T set, in our construction of 1st order Reed-Muller

codes, or 2T set, in our construction of subset of 2nd order Reed-Muller codes. Note, all

the 1T set of words has distance 1 or 3 from the 2T set of words.

Having corrected all n-2 errors, we finally obtain the complete compressed word.

It is obvious that the compression ratio is as high as the size of “guide” word.

a. Example 16 Bits

Suppose we transmit the codeword 1101001011010010, and we actually

receive the word 1111001010010010. This word has two errors on 3rd and 10th bits.

Splitting the received word in two halves, we obtain 11110010 | 10010010. Xoring these

halves bitwise, we take 01100000. This string gives us the information that the rightmost

bit of “guide” word is 0, and errors might occur in the 2nd bits of one of the halves (2nd

or 10th bit of the word), and in the 3rd bits of one of the halves (3rd or 11th bit of the

word).

In order to detect in which of the first halves the errors located, we xor the

subsequent halves bitwise. Thus, for the left halves we obtain 1101, and the information

we obtain is that the left most bit of our “guide” word is 1, and the probable errors are in

3rd or 7th bit of our word. Working identically for the right halves, we obtain 1011, and

the information we obtain is that the probable errors are in 2nd or 6th bit of right half

(10th or 14th bit of our word). Combining the information of three xorings, getting two

votes for 3rd and 10th positions, we conclude that the errors are in 3rd, and 10th bits.

Thus, the compressed word is 10|1101.

In all combinations of n-2=4-2=2 errors in the received word, the xoring

manipulation can inform us for their position. In case there are no errors in the received

word, the algorithm proceeds without the correction process.

b. Example 32 Bits

In this example, we use 32-bit codewords, and we correct three errors that

occurred in the same set of 4-bits. Suppose we transmit the codeword

51

10110100101101000100101101001011, and we actually receive the word

10111010101101000100101101001011. This word has three errors at the 5th, 6th, and

7th bits. Splitting the received word into two halves, we obtain 1011101010110100 |

0100101101001011. Xoring these halves bitwise, we obtain 11110001111111. This

string gives us the information that the rightmost bit of the “guide” word is 1, and errors

might occur in 5th bits of one of the halves (5th or 21st bit of the word), in 6th bits of

one of the halves (6th or 22nd bit of the word), and in the 7th bits of one of the halves

(7th or 23rd of the word).

In order to detect in which of the first halves the errors are located, we xor

the subsequent halves bitwise. Thus, for the left 16-bits half 1011101010110100 we

obtain 00001110, and the information we obtain is that the middle bit of our “guide”

word is 0, and the probable errors are in 5th or 13th bit of our word, 6th or 14th bit of our

word, and 7th or 15th bit of our word. Working identically on the right 16-bit half

0100101101001011, we obtain 00000000, and there is no useful information.

At this point, the information we have for the position of errors in our

word seems sufficient, but for the sake of the completion of our algorithm, we keep on

xoring until we get the 4-bits sets. Therefore, xoring the very first 8-bits set we obtain

0001, and the information we obtain is that the leftmost bit of “guide” word is 0, and the

probable errors are in the 4th or 8th bit. Xoring the next 8-bits set 10110100 we obtain

1111 and there is no usable information.

Combining the information of the xor processes, we obtain two votes for

5th , 6th and 7th positions, we conclude that the errors are in these bits. Thus, the

compressed word is 101|1011.

In all combinations of n-2=5-2=3 errors in the received word, the xor

manipulation can inform us of their position. It is obvious that there are many cases

where our “reverse” algorithm can correct more than n-2 errors, but we cannot generalize

based on these cases only. In case there are no errors in the received word, the algorithm

proceeds without the correction process.

52

F. CHAPTER SUMMARY

In this chapter, a new simplified algorithm of fast generation of all 1st order and

some of 2nd order Reed-Muller codes is analyzed and a fast construction of a linear

subcode of 2nd order Reed-Muller code with good properties is presented and analyzed. A

hardware implementation of this algorithm is also presented for n=3. In addition, the

“reverse” of the algorithm is introduced, showing at the same time, the process of

decoding. In Chapter VI, we summarize the conclusions of this thesis and future work is

proposed.

53

VI. CONCLUSIONS AND FUTURE WORK

This thesis points out the difficulty of completely estimating a critical property of

error-correcting codes, namely the covering radius of a code. This covering radius

problem plays a critical role, along with minimum Hamming distance and decoding

complexity, to our decision of choosing the most efficient error-correcting code.

Nevertheless, even though it is a well-defined property in coding theory, in the majority

of the codes, it can only be bounded and not exactly calculated.

Further, in this thesis, a new method of fast generation of 1st order R(1,n) Reed-

Muller codes was introduced. This method seems highly memory efficient and fast, since

we generate all 1st order Reed-Muller codes using just the 1T set of 4-bit words and

entire 2
2
nF  field. For example, to generate

7

1
1

82 2 256
 

 
    codewords of 72 128 bits

length, thus R(1,7) code, we just need the whole set of 1T (32 bits), as well as the

entire 2 7 2 5
2 2 2 32 bitsnF F F    . Furthermore, the fast construction of 2nd order Reed-

Muller codes using both 1 2,T T sets of 4-bits, is another method that can efficiently use

memory. In addition, this algorithm allows the use of a compact way to represent low

order Reed-Muller codes.

In this thesis, the hardware implementation of the “expansion” algorithm for each

codeword is presented (for n=3). The complexity of this logic circuit is analyzed and we

show that the number of two-input exclusive OR gates that are needed for the

implementation of our algorithm is 2 4n  , where n is the number of variables used.

Although exponential in n, this is close to minimal mostly because 2n outputs are

needed, four of which are driven directly by four inputs and thus, require no gate.

Without doubt, this implementation is faster than any common software running on

conventional computers.

In addition, it is obvious that this compact representation of 1st order Reed-Muller

codewords is highly memory efficient because it can actually stores a large amount of

information in a small word. For example, using a “guide” word of 8 bits, we can

54

expand, and thus compress a codeword of 1024 bits to a string of 12 bits. The

compression ratio in this example is 85:1, and the memory saving is 98.83%.

Reversing the algorithm, we show that not only can we highly compress any

codeword of 1st order Reed-Muller codes, and of a new construction of subcodes of 2nd

order Reed-Muller codes, but we can also reconstruct a damaged codeword, correcting

some errors occurring during the transmission or storage. This new correction method

can correct n-2 errors, or similarly the number of “guide” word bits. It is obvious that

there are many cases where our “reverse” algorithm can correct more than n-2 errors, but

we cannot generalize on these cases.

The compressed string includes all the information of expanded codeword. We

show that the general compression ratio of this “reverse” algorithm is
2

:1
1

n

n 
, and the

memory saving is
1

1 %
2n

n   
 

. It is obvious that, for high n, the compression ratio is

extremely high. For example, we can imagine the memory saving in a realistic case for

n=15, where we can compress 152 32768 bits to only 16 bits, without losing any

information of the codeword. The memory saving in this particular case is 99.94%. This

estimation highlights the importance of this algorithm in environments where memory

efficiency is critical.

One of the main contributions of this thesis is the fast generation of a new 2nd

order Reed-Muller subcodes of good properties. Even though, this is a non-linear category of

subcodes, their low distance d, and some other good properties make them worthy of

investigation. Their performance in communication-oriented environments can be simulated,

and further investigated in a future work. The coding gain of these subcodes must be

simulated. It is also recommended to implement these subcodes in devices used for data

storage. The usefulness of these 2nd order Reed-Muller subcodes, might be the

minimization of memory errors.

In this thesis, it is proven that the format of Algebraic Normal Form, for our fast

construction of subcodes of 2nd order Reed-Muller codes is 1n naffine x x . Therefore, the

sum of any two codewords is affine function, and the sum of any three codewords is

another codeword.

55

The applicability of both algorithms can be tested in a variety of environments.

For example in digital repeaters, where store and forward process takes place, and where

Automatic Response Request (ARQ) processes are needed, instead of Forward Error

Correction (FEC), codewords can be stored in compact form, and transmitted in full

representation. The storage of the compact form can last until the transmitter receives an

acknowledgement. On the other hand, in storage processes, both algorithms’ usefulness is

indisputable.

In addition, one communication-oriented application that can take advantage of

these algorithms, is when, through a process, signal conditions can be measured, and

automatically changes the error-correction coding to match current link quality.

In any case, logical extension of this thesis would include a computer simulation

on the performance of proposed algorithms, in various operational environments.

56

THIS PAGE INTENTIONALLY LEFT BLANK

57

LIST OF REFERENCES

[1] J. Seberry, X.-M. Zhang and Y. Zheng, “Nonlinearity and propagation characteristics
of balanced Boolean functions,” Inform. Comput., 119, 1995.

[2] Wikipedia, http://en.wikipedia.org/wiki/Hamming_distance. 06/2009, last accessed

June 2009.

[3] Ben Cooke, “Reed-Muller Error Correcting Codes,” MIT Undergraduate Journal of

Mathematics, vol. 1, 1999.

[4] T. Kasami, N. Tokura., “On the Weight Structure of Reed-Muller Codes,” IEEE

Trans. Inform. Theory IT-16, No. 6, pp 752–758, 1970.

[5] S. Roman, “Coding and Information Theory,” Springer, 1996.

[6] C. E. Shannon, “A mathematical theory of communication.” Bell System Tech. J.,

27:379–423, pp. 623–656, 1948.

[7] V. Guruswami, D. Micciancio, and O. Regev, “The complexity of the covering radius
problem” (unpublished).

[8] E. Berlekamp and L. R. Welch, “Weight distributions of the cosets of the (32,6)
Reed-Muller code,” IEEE Trans. Inform. Theory, vol. IT-18, pp. 203–207, January
1972.

[9] R. A. Brualdi, N. Cai, and V. S. Pless, “Orfans structure of the first order Reed-
Muller codes,” Discrete Math., vol. 102, pp. 239–247, 1992.

[10] G. D. Cohen, M. G Karpovsky, H. F. Mattson, Jr., and J. R. Schatz, “Covering
radius-Survey and recent results,” IEEE Trans. Inform Theory, vol. IT-31, pp. 328–
343, May 1985.

[11] R. L. Graham and N. J. A. Sloane, “On the covering radius of codes,” IEEE Trans.
Inform. Theory, vol. IT-31, pp. 385–401, May 1985.

[12] P. Langevin, “The covering radius of RM(1,9) into RM(3,9),” Eurocode 90, Berlin:
Springer, 1991, pp. 51–59

[13] A. McLoughlin, “The covering radius of the (m-3)rd-order Reed-Muller codes and a
lower bound on the (m-4)th-order Reed-Muller codes,” SIAM J. Appl. Math., vol. 37,
pp. 419–422, 1979.

[14] J. Mykkeltveit, “The covering radius of the (128,8) Reed-Muller code is 56,” IEEE
Trans, Inform. Theory, vol. IT-26, pp. 359–362, May 1980.

[15] J. R. Schatz, “The second order Reed-Muller code of length 64 has covering
radius 18,” IEEE Trans. Inform. Theory, vol IT-27, pp. 529–530, July 1981.

58

[16] A. McLoughlin, “The complexity of computing the covering radius of a code,”
IEEE Trans. on Inform. Theory 30, 800–804, 1984.

[17] N. J. A. Sloane, “A new approach to the covering radius of codes,” J. Combinat.
Theory Ser. A42, pp. 61–86, 1986.

[18] R. A. Brualdi and V. S Pless, “On the covering radius of a code and its subcodes,”
Discrete Math., vol. 83, pp. 188–199, 1990.

[19] G. D. Cohen, A. C. Lobstein, and N. J. A. Sloane, “Further results on the covering

radius of codes,” IEEE Trans. Inform. Theory, vol. IT-32, pp. 680–694, Sept.
1986.

[20] I. S. Honkala, “Modified bounds for covering codes,” IEEE Trans. Inform. Theory,

vol. 37, pp. 351–365, Mar. 1991.

[21] G. J. M. van Wee, “Improved sphere bounds on the covering radius of codes,” IEEE

Trans. Inform. Theory, vol. 34, pp. 237–245, Mar. 1988.

[22] T. Helleseth, T. Klove, and J. Mykkelveit, “On the covering radius of binary codes,”

IEEE Trans. Inform. Theory, vol. 24, pp. 627–628, 1978.

[23] X.-D. Hou, “Covering Radius of the Reed-Muller code R(1,7) – A Simpler Proof,”

Journal of Combinat. Theory, Series A 74, pp 337-341, 1996.

[24] N. J. Patterson and D. H. Wiedemann, “The covering Radius of the 15(2 ,16) Reed-

Muller code is at least 16276,” IEEE Trans. Inform. Theory IT-29, No. 3, pp 354-356,
1983.

[25] X.-D. Hou, “Further results on the covering radii of the Reed-Muller codes,” Des.

Codes Cryptogr 3, pp. 167–177, 1993.

[26] N. J. Patterson and D. H. Wiedemann, “Correction to the covering radius of the (215,

16) Reed-Muller code is at least 16276,” IEEE Trans. Inform. Theory, IT-36(2), p.
443, 1990.

[27] C. Carlet, S. Mesnager, “Improving the Upper Bounds on the Covering Radii of

Binary Reed-Muller Codes,” IEEE Trans. Inform. Theory IT-53, No. 1, pp. 162–173,
2007.

[28] P. Stanica, “Bent functions and a new point of view on nonlinearity,” MGO

Conference, Syracuse University, April 4–5, 1997.

[29] P. Stanica, “Fast Evaluation of Quadratic Boolean Functions,” unpublished.

[30] University of Bergen in Norway,
http://www.ii.uib.no/~mohamedaa/odbf/help/ttanf.pdf, 05/2009, last accessed May
2009.

59

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. Professor Jeffrey B. Knorr, Chairman
 Department of Electrical and Computer Engineering
 Naval Postgraduate School
 Monterey, California

4. Professor Dan C. Boger, Chairman
 Department of Applied Mathematics
 Naval Postgraduate School

Monterey, California

5. Professor Pantelimon Stanica
 Department of Applied Mathematics
 Naval Postgraduate School

Monterey, California

6. Professor Jon T. Butler
 Department of Electrical and Computer Engineering
 Naval Postgraduate School
 Monterey, California

7. Embassy of Greece
 Office of Army Attaché
 Washington, District of Columbia

8. Cpt Alexopoulos Argyrios
 Hellenic Army General Staff
 Athens, Greece

