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ABSTRACT                

Reed-Muller codes are known to be some of the oldest, simplest and most elegant 

error correcting codes. Reed-Muller codes were invented in 1954 by D. E. Muller and I. 

S. Reed, and were an important extension of the Hamming and Golay codes because they 

gave more flexibility in the size of the codeword and the number of errors that could be 

correct.  

The covering radius of these codes, as well as the fast construction of covering 

codes, is the main subject of this thesis. The covering radius problem is important because 

of the problem of constructing codes having a specified length and dimension. Codes with 

a reasonably small covering radius are highly desired in digital communication 

environments. 

 In addition, a new algorithm is presented that allows the use of a compact way to 

represent Reed-Muller codes.  Using this algorithm, a new method for fast, less complex, 

and memory efficient generation of 1st and 2nd order Reed - Muller codes and their 

hardware implementation is possible. It is also allows the fast construction of a new 

subcode class of 2nd order Reed-Muller codes with good properties. Finally, by reversing 

this algorithm, we introduce a code compression method, and at the same time a fast, 

efficient, and promising error-correction process.    
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EXECUTIVE SUMMARY 

 Error-Correcting codes play a vital role in every real digital communication 

environment and storage process. Reed-Muller codes are among the oldest, simplest and 

most elegant error-correcting codes. When information is sent through a network over 

long distances or through a variety of channels, where errors might occur in the transition, 

error-correcting codes, like Reed-Muller codes, can correct these errors. This correction 

process provides our network with an improvement in throughput and efficiency. 

Therefore, the efficient use of these codes is more than a critical issue.  

 A contribution of this thesis is a new way of fast generation of 1st and 2nd order 

Reed-Muller codes and a category of 2nd order subcodes. In addition, this new algorithm 

allows a compact way to represent 1st and 2nd order Reed-Muller codes.  

 This expansion algorithm is appropriate where the fast, real-time generation of low 

order Reed-Muller codes needed.  Using this highly compressed form of codewords, we 

can quickly expand to any full codeword. In this thesis, we also demonstrate the hardware 

implementation for this algorithm.   

 It is also shown, that using just eight blocks of 4-bits, all 1st order Reed-Muller 

codes can be quickly generated. In addition, for 2nd order Reed-Muller codes, a new 

concatenation method using all sixteen possible 4-bit combinations is presented. Finally, 

using eight 4-bits words, we can quickly construct, a new category of subcodes of 2nd 

order Reed-Muller code with minimum distance d=8 and some other good properties. 

 Additionally, it is proven in this thesis, that the format of the Algebraic Normal 

Form of our fast construction of 2nd order Reed-Muller subcodes is 1n naffine x x . 

Combining this property with the low distance of these subcodes, makes them worthy for 

further investigation concerning their performance. 

 In addition, by reversing the new algorithm, we demonstrate a new efficient way to 

correct errors occurring in this word. This is equivalent to compressing the received word. 

The “reverse” algorithm applies to cases of storage processes and to communication-

oriented applications where Automatic Response Request (ARQ) is used. 



 xvi

 Furthermore, the state of the art of the covering radius problem for Reed-Muller 

codes is presented in this thesis. This has been the subject of investigation for many 

researchers in the area, and a complete resolution of the problem still eludes us. Some 

recently found results of estimates of covering radius of Reed-Muller codes are 

summarized and presented. Some of the methods of computations, even without using the 

help of computers are also presented. In addition, the main properties of Reed-Muller 

codes are analyzed.  

The covering radius problem is very important since it gives insight into the 

practical problem of constructing codes having a specified length and dimension. 

Based on the analysis of this thesis, we conclude that the proposed methods of 

fast and memory efficient low order Reed-Muller codes, as well as some category of 

subcodes of 2nd order Reed-Muller codes, is quite challenging and promising.  
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I. INTRODUCTION 

A. THESIS OBJECTIVE  

A binary code C of length n is a nonempty subset of the set of all binary n-tuples. 

The (Hamming) distance between two codewords is the number of bits in which they 

differ. The covering radius of a code C is the smallest integer R such that every binary 

vector of length n is within distance R from at least one codeword. In other words, the 

space of all binary n-tuples is completely covered by spheres of radii R having centers at 

the codewords of our code C.  

The covering radius is one of the most important properties of error correcting 

codes.  It will be clarified throughout this thesis. We seek codes having a specified length 

and dimension with reasonably small covering radius; in this way, no vector of the space 

is very far from a nearest codeword.   

Ιt is worth mentioning that covering radius is a basic geometric parameter of a 

code. Topics that are currently under research by the coding community are the 

following: 

1. Given the length and dimension of a linear code, it should be 

determine what the covering radius is. 

2. Construct efficient codes that have small covering radius. 

3. Develop computational methods to determine the covering radius 

of well-known error-correction codes. 

Specifically, Reed-Muller codes are an extremely interesting class of error-

correction codes, and therefore, many researchers have studied Reed-Muller codes. 

Nevertheless, due to the complexity of computations methods, overall knowledge is still 

quite limited.  We will focus on some of these methods and point out all published results 

of covering radius of 1,st , 2,nd and k-th order Reed-Muller codes. 

We survey the main properties of the Reed-Muller codes, investigate previous 

methods for the computation of covering radius, and propose a fast, less complex, and 

memory efficient algorithm to derive 1st and 2nd order Reed-Muller codes, as well as a 
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subcode of 2nd order Reed-Muller code with good properties. This new algorithm allows 

the use of a compact way to represent Reed-Muller codes.  

Reversing the new algorithm, in other words, compressing the codewords of low 

order Reed-Muller codes and of a new subcode, we introduce an efficient way to correct 

errors occurring in any codeword of these codes. The hardware implementation of 

expansion algorithm is presented, and analyzed.  

B. THESIS OUTLINE 

This thesis is organized as follows: we start with the introduction, background 

(Chapter II) and four additional chapters. Chapter III contains a detailed analysis of Reed-

Muller codes, some applications of these codes, and generation/encoding/decoding 

methods. In Chapter IV, the covering radius is defined and its importance in error 

correction is discussed. Some important methods of computations are discussed. Further, 

in this chapter, some existing covering radius results concerning 1st, 2nd and k-th order 

Reed-Muller codes are presented. In Chapter V, we develop a new algorithm for fast 

generation of 1st – 2nd order Reed-Muller codes, and a new construction of a subcode is 

analyzed. The hardware implementation of this algorithm is also presented and analyzed. 

In addition, a “reverse” of this new algorithm is presented and evaluated. In Chapter VI, 

the conclusions based on the observations obtained from the analysis in the previous 

chapters are presented, as well as proposed future work.  
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II. BACKGROUND 

In this chapter, some background knowledge and concepts for the analysis of 

Reed-Muller codes and their subcodes are introduced. 

A. DEFINITIONS 

1. Groups 

A group, denoted by    ,G G   is a set of elements G combined with a binary 

operation   on G, satisfying the following conditions: 

a. Closure  

, ;a b G a b c G      

b. Associativity  

   , , ;a b c G a b c a b c      
 

c. Identity 

| ;e G a G e a a e a         

d. Invertibility  

1 1 1, |a G a G a a a a e           

Groups that also satisfy the following commutative property are referred 

to as commutative or Abelian groups. 

e. Commutativity  

, ;a b G a b b a      

2. Fields 

A field, denoted by   , ,F F   , is a set of elements F combined with two 

binary operations + and   on F, satisfying the following conditions: 
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a. Group Under Addition  

 ,F   is an Abelian group with identity 0. 

b. Group Under Multiplication  

  0 ,F    is an Abelian group with identity 1. 

c. Distributive Law  

     , , ;a b c F a b c a b a c       
 

In this thesis, all manipulations will be on the two-element (binary) field, 

2 {0,1}F  in which the usual operations of addition and multiplication modulo 2 hold: 

Table 1.   Addition in 2F  

+ 0 1 

0 0 1 

1 1 0 

 

Table 2.   Multiplication in 2F  

* 0 1 

0 0 0 

1 0 1 

 

3. Vector Space 

A vector space over a field F is a non-empty set V together with two binary 

operations: 
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Addition, denoted by +. 

Scalar multiplication, denoted by juxtaposition, is a function from F x V to V; 

that is the scalar product of a F and x V  is written as ax .  

Furthermore, these two operations satisfy the following conditions: 

Closure under vector addition,  

, ;u v V u v w V      
Closure under scalar multiplication,  

, ;u V a F au v V       
Associative law for vector addition,  

, , ;u v w V      u v w u v w      

Commutative law  for vector addition, 

, ;u v V u v v u       
Identity element in addition,  

0 | ; 0V u V u u       
Additive inverse, 

, ( ) ; ( ) ( ) 0u V u V u u u u             
Distributive law for scalar multiplication over vector addition,  

 , , ;u v V a F a u v au av        

Distributive law for vector multiplication over scalar addition,  

 , , ;u V a b F a b u au bv         

Associative law for scalar multiplication with a vector,  

   , , ;u V a b F ab u a bu       

Identity element in vector multiplication, 

 1 ; ,1V u V u u       
 

The vector spaces 2
mV F  used in this thesis consist of binary strings of 

length 2m , where m is a positive integer, with the usual bitwise operations, described 

below. The codewords of the Reed-Muller codes and other linear subcodes are subspaces 

of such a vectors space V.   

Vectors in such spaces can be manipulated by three main operations. 
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a. Addition  

For two vectors  1 2, , ... , nx x x x  and  1 2, , ... , ny y y y , addition is 

defined by,  1 1 2 2, ,..., n nx y x y x y x y      where each ix  or iy  is either 1 or 0. The 

complement  x of a vector x is the vector equal to (1 1 1... 1) x . An example of the 

complement of a vector is: (0 0 0 1 1 1) (0 0 0 1 1 1) (1 1 1 1 1 1) (1 1 1 0 0 0)    

b. Vector Intersection  

 1 1 2 2 , ,..., n nx y x y x y x y    
, where each ix and iy  is either 1 or 0. 

The multiplication of a vector x by a constant 2α F  is defined 

by  1 2, α ,...,α nx x x x     
. An example is    0 111001 000000 

.  

c. Dot Product  

The dot product of x and y is 1 1 2 2 * * ... *  n nx y x y x y x y   � . 

It is clear that addition, vector intersection and dot product require vectors 

with the same number of coordinates.  

B. REVIEW OF BOOLEAN FUNCTIONS 

A Boolean function of m variables  1 2, ,..., mx x x  is a function 

 1 2, ,..., mf x x x from 2
mF  to 2F , where 2 {0,1}F  .  This kind of function can be 

completely described by its truth table, which is simply the sequence of its outputs, where 

the input is ordered lexicographically. Precisely, we order 2
mF  as 

1 2{ (0,0,...,0),  (0,0,...,1),..., (1,1,...,1)}v v  ; the truth table of f is the sequence 

1 2( ),  ( )...f v f v  Table 3 specifies a Boolean function of four variables. 

 

 

 



7 

Table 3.   Truth Table of a Boolean Function 

1x  2x  3x  4x  f  

0 0 0 0 1 

0 0 0 1 1 

0 0 1 0 1 

0 0 1 1 0 

0 1 0 0 1 

0 1 0 1 0 

0 1 1 0 0 

0 1 1 1 0 

1 0 0 0 0 

1 0 0 1 1 

1 0 1 0 1 

1 0 1 1 1 

1 1 0 0 0 

1 1 0 1 0 

1 1 1 0 0 

1 1 1 1 1 

From the right most column of this table (beginning from top), we get the binary 

string (truth table) 1110100001110001 of length 16. For m-variable functions, this string 

has length 2m . 

The two constant Boolean functions are  1 2, ,..., (1,1,...,1)mx x x   

and  1 2, ,..., (0,0,...,0)mx x x  . In this thesis, two logical operations are used on Boolean 

functions: conjunction (that corresponds to multiplication in 2F ) and exclusive OR, or 

xor (that corresponds to addition in 2F ). Consequently, the string versions of these 

operations are given by:  

 1 2, ,..., mx x x conjunction  1 2,y ,..., ymy =    1 2 1 2, ,..., , ,..., m mx x x y y y and 

 1 2, ,..., mx x x exclusive OR  1 2,y ,..., ymy =    1 2 1 2, ,..., , ,..., m mx x x y y y . 
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It is obvious that, under the exclusive OR operation, the set of Boolean functions 

of m variables forms a vector space over 2F , of size 22
m

. 

In addition, a Boolean monomial with variables  1 2, ,..., mx x x  is an expression of 

the form
1 2

...
zi i ip x x x . The reduced form of p is obtained using the rule: 2

x xi ix x until 

the factors become distinct. The degree of p is the number of variables in the reduced 

version of p. 

An example of a Boolean polynomial in reduced form of degree three 

is 1 2 3 1 2 2'p x x x x x x    . 

On the other hand, a Boolean polynomial is a linear combination of Boolean 

monomials, with coefficients in 2F . A reduced polynomial is obtained using the rule:  

a+a=0, until all the monomials become distinct. 

Since there are 
m

k

 
 
 

distinct Boolean monomials of degree k on m variables, the 

total number of distinct Boolean monomials is 2m , and, therefore, the total number of 

distinct Boolean polynomials in m variables is 22
m

. 

At this point, we need to associate a Boolean monomial in m variables to a vector 

with 2m  elements. The degree-zero monomial is 1, and the degree-one monomials 

are 1 2, ,..., and mx x x . First, we define the vectors associated with these monomials. The 

vector associated with the monomial 1 is simply a vector of length 2m , whose 

components are all 1. So, in a space of size 42 , the vector associated with 1 is 

(1111111111111111). The vector associated with the monomial 1x  is 12m  1's, followed 

by 12m  0's. The vector associated with the monomial 2x  has 22m  1's, followed by 22m  

0's, then another 22m 1's, followed by another 22m  0's.  

In general, the vector associated with a monomial ix  is a pattern of 2m i  ones 

followed by 2m i  zeros, repeated until 2m  values have been defined. For example, in a 

space of size 42 , the vector associated with 4x  is (1010101010101010). 
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C. AFFINE BOOLEAN FUNCTIONS 

An affine Boolean function of m variables  1 2, ,..., mx x x  is a function 

 1 2 0
1

, ,..., m i i
x m

f x x x f f x
 

   from 2
mF  to 2F , where the coefficients if  belong to 

2 {0,1}F  . The set of all n-variable affine functions is denoted by nA . As we mentioned 

previously, in Table 4, the truth tables of every 3-variable affine function is shown. 

 

Table 4.   Truth Table of an Affine Boolean Function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Affine Function Truth Table 

0 00000000 

1x  00001111 

2x  00110011 

3x  01010101 

1 2x x  00111100 

1 3x x  01011010 

2 3x x  01100110 

1 2 3x x x   01101001 

1 11111111 

11 x  11110000 

21 x  11001100 

31 x  10101010 

1 21 x x   11000011 

1 31 x x   10100101 

2 31 x x   10011001 

1 2 31 x x x    10010110 
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In Chapter IV the importance of affine Boolean functions in conjunction with 

Reed-Muller codes is clarified.  

D. NONLINEARITY AND BENT FUNCTIONS 

The nonlinearity of a Boolean function f  is defined as 

( ) min{ ( , ) | }nN f d f A   , where d (Hamming distance) is the number of different 

coordinates of vectors in which f differs from β. It is known (see [1]) that the nonlinearity 

is upper bounded by: 
11 2( ) 2 2

n
nN f

  . The concept of nonlinearity is a very important 

cryptographic property. 

The Boolean functions on an even n number of variables, whose nonlinearity is 

maximum, are called bent functions. The importance of bent functions is due to their 

correspondence to the words of length 2n whose distance to the 1st order Reed-Muller 

codes is equal to the covering radius of this code. Bent functions play a significant role in 

cryptographic environments. 

E. HAMMING DISTANCE AND HAMMING WEIGHT 

1. Definition  

Let  1 2, ,..., nx x x x and  1 2, ,..., ny y y y  be two vectors in nF . The Hamming 

distance d(x,y), between x and y is the number of coordinate places in which they differ. 

For a fixed length n, the Hamming distance is a metric on the vector space of the words 

of that length. For words of length 3 and 4, Figures 1 and 2 can be used for calculating 

this Hamming distance. 

 

 

 

 

 

Figure 1. 3-bit binary cube for finding Hamming distance (From [2]). 

(110,001) 3d 
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Figure 2. 4-bit binary hypercube for finding Hamming distance (From [2]).  

In this thesis, we will refer to the Hamming distance as distance since it is 

nonnegative, symmetric, and triangular: 

( , ) 0 and ( , ) 0d x y d x y   iff x=y 

( , ) ( , )d x y d y x  for all x,y in nF  

( , ) ( , ) ( , )d x y d x z d z y   for all x,y,z in nF  

2. Definition 

Hamming weight of a binary word w is the number of "1" bits in w. For example 

wt(11100101110)=7. 

F. ERROR DETECTING AND CORRECTING CAPABILITIES OF CODES 

Having defined the Hamming distance of two vectors, we can now clearly 

describe the distance of a code C as the minimum distance between any two valid 

codewords of this code. 

1. Definition 

Let C be a code. Then, d(C)=min{d(x,y) | x, yC}. 

2. Definition  

A code C is exactly t-error-detecting if and only if ( ) 1d C t   and t-error-

correcting if and only if ( ) 2 1d C t   or ( ) 2 2d C t  . 

(1100,0010) 3d   



12 

G. CHAPTER SUMMARY  

In this chapter, we discussed the basic principles and properties of the error 

correction codes, and the background and important concepts necessary to understand 

their performance. In Chapter III, Reed-Muller codes and their properties, as well as 

encoding-decoding-generation methods will be introduced and analyzed. 
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III. REED-MULLER CODES 

A. DEFINING REED-MULLER CODES 

Let 0 r m  . The r-th order Reed-Muller code R(r,m) is the set p of all binary 

strings of length 2mn   associated with the Boolean polynomials  1 2, ,..., mp x x x of 

degree at most r.  

Consequently, the 0-th order Reed-Muller code R(0,m) consists of the binary 

strings associated with the constant polynomials 0 and 1. This code is the repetition code 

of length 2m ,    0, 0 ,1 {0 0...0, 1 1...1} Rep(2 )m m mR m    . 

The other extreme situation is the m-th order Reed-Muller code R(m,m), 

consisting of all binary strings of length 2m , that is, R(m,m)= 2
nF , where 2mn  . 

The number of codewords can be found easily from the count of binary 

monomials in R(r,m) of degree at most r.  There are 1
1 2

m m m
k

r

     
         

     


 
such 

monomials, and so there are k2  linear combinations of these. It is obvious that the closer 

r is to m the more codewords there are. In conclusion, the r-th order Reed-Muller code 

R(r,m) has the following properties: 

Length of codewords: 2m  

Number of codewords: 
     1 ...1 22
m m m

r   
 

Minimum distance between codewords: 2m r [3] 

Reed-Muller codes are among the most useful and interesting binary, linear, block 

codes. As we will discuss in the next paragraph, first order Reed-Muller codes of length 

32 were used in space missions. In order to achieve greater performance than these codes 

offer, we have to extend their length. The limited bandwidth of communication channels 

is one thing that we have to take into account. Therefore, the use of very large codes in 

narrow channels is prohibited. On the other hand, Reed-Muller codes of higher order 

require significantly less bandwidth than the first order ones. 
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Many researchers have investigated the weight distribution of Reed-Muller codes, 

that is, the sequence of codeword weights. The weight spectrum for the first order Reed-

Muller codes is found easily, since, as we will see in the next chapter, all codewords in 

R(1,m) codes have the same number of 0’s and 1’s (are balanced) except for the all 0’s 

and all 1’s codewords. For example, in R(1,5), there are  1 5 62 2 64    codewords of 

length  52 32 . Among them, there is a codeword of 32 1’s, a codeword of 32 0’s and 62 

codewords of weight 16 (half 1’s, half 0’s). 

Understanding the weight distribution for higher order Reed-Muller codes is 

complicated, and very little is known about that. Much work has been done on 2nd and 3rd 

order Reed-Muller codes [4]. 

B. APPLICATIONS OF REED-MULLER CODES 

The first order Reed-Muller codes R(1,m), was used by Mariner 9 to transmit 

black and white photographs of Mars in 1972 [5]. A simplified example giving a flavor of 

code use in digitally transferred data is given below. 

The main idea behind applying coding in digital technologies is to break up a 

picture or a sound into small pieces and to use a binary sequence to represent each of 

these small pieces, adding at the same time, some redundant bits. This redundancy is used 

to correct errors that might be caused by noise when the information is sent over a noisy 

channel.  

For example, the pixels (picture elements) shown in Figure 3 could be sent via a 

channel by coding a white pixel with 111111, a black pixel with 000000 and a gray pixel 

with 111000. Assuming that the receiver knows the size of the image, in this example 

6x6, and that the pixels are being sent row by row, then the picture can be accurately 

decoded if no more than one error occurs during the transmission process. This happens 

because the distance between any pair of codewords is at least 3.  
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Figure 3. Picture Elements.  

In the case of Mariner 9, the actual scenario is more complicated and finally the 

error-correcting code used is “heavier.” This means that the additional bits used 

(redundant bits) are repeated information bits. In the case of Mariner 9, the codewords 

were 32 bits long, consisting of 6 information bits and 26 additional bits.  

Another significant application of error-correcting codes is in the compact disc 

(CD) technology [5]. On CDs, the signal is encoded digitally. To protect from errors 

because of scratches, cracks and similar damage, several kind of codes are used which 

can correct up to 4,000 consecutive errors (about 2.5 mm of track). Similar error 

correction techniques are also used on DVDs and Blue-Ray discs. 

We cannot ignore the contribution of codes in compression. Compression is the 

process of transforming information from one representation to another smaller 

representation. In many cases, compression and decompression processes are often 

referred to as encoding and decoding. It is obvious that data compression has application 

to data storage and data transmission. Since using a process of reducing the amount of 

data required to represent a given quantity of information, different amounts of data 

might be used to communicate the same amount of information. If the exact information 

can be represented with different amounts of data, it is reasonable to believe that the 

representation that requires more data contains some kind of data redundancy. Image 
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compression and coding techniques use three types of redundancies: coding redundancy, 

spatial redundancy, and psychovisual redundancy. 

Another great concern of coding theory is synchronization. In many industrial and 

military activities, such as navigation, mapping, positioning, power distribution, 

telecommunication, weather station, and digital radio, one of the most important 

exchanged information is the precise time of action taking place (time tag). 

Synchronization between these tags is something that can be fixed and controlled by 

codes. With the use of specific codes any “shift” in phase of a signal can be detected and 

corrected, enabling the transmission of multiple signals through the same channel.  

C. GENERATION/ENCODING METHODS 

1. Generation Methods 

a. Using Boolean Polynomials 

An r-th order Reed-Muller code R(r,m) is the set of all binary strings of 

length 2m  associated with Boolean polynomials 1 2, ,..., mx x x of degree at most r. 

Consequently, the first order Reed-Muller code of length 32n   is the set of all binary 

strings associated with the Boolean polynomials 1 2 3,  ,   and  x x x  of degree at most 1. 

These polynomials have the form 0 1 1 2 2 3 3a a x a x a x    where ia =0 or 1. The binary 

string corresponding to this polynomial is 0 1(11111111) (00001111)a a  

2 3(00110011) (01010101)a a  . 

b. Example R(1,3) 

We can list the codewords in R(1,3) as follows: 
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Table 5.   RM(1,3) codewords 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that all codewords in R(1,m) except 0 and 1 have weight 12m . Thus, 

in the previous example of R(1,3), the weight of all nontrivial codewords, except 

00000000 and 11111111, is 3 12 4  . 

c. Using Direct Sum Construction 

If 1C is an R 1 1( , )r m code and 2C  is an R 2 2( , )r m  code, then the direct sum 

3C is the code 3 1 2{ | , }C cd c C d C   with the following parameters: 

Polynomial Codeword

0 00000000 

1x  00001111 

2x  00110011 

3x  01010101 

1 2x x  00111100 

1 3x x  01011010 

2 3x x  01100110 

1 2 3x x x   01101001 

1 11111111 

11 x  11110000 

21 x  11001100 

31 x  10101010 

1 21 x x   11000011 

1 31 x x   10100101 

2 31 x x   10011001 

1 2 31 x x x   10010110 
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Length of codewords: 1 22 2m m  

Number of codewords: 
       1 21 1 2 2

1 2
1 ... 1 ...1 2 1 22 2

m mm m m m
r r
             
     

Minimum distance between codewords: 1 1 2 2min{2 ,2 }m r m r   

d. Using (u,u+v)-Construction 

This construction, for many reasons, is more useful than the direct sum 

construction. If 1C is an R 1, 1( )r m code and 2C  is an R 2, 2( )r m  code, both of which are over 

the same alphabet ( 1C  and 2C  have the same length), then we can define a code 

1 2C C by: 1 2 1 2{ ( ) | , }C C c c d c C d C     with the following properties [5]: 

Length of codewords: 1 21 12 2m m   

Number of codewords: 
       1 21 1 2 2

1 2
1 ... 1 ...1 2 1 22 2

m mm m m m
r r
             
     

Minimum distance between codewords: 

1 1 2 21
1 2( ) min{2 ,2 }m r m rd C C      

2. Encoding Methods 

To define the encoding matrix of R(r,m), let the first row of the encoding matrix 

be 11…1 (the vector with length 2m  with all entries equal to 1). If r is equal to 0, then 

this row is unique in the encoding matrix. On the other hand, if r is equal to 1, then we 

add m rows corresponding to the vectors 1 2,  ,  ... ,  and  mx x x to the R(0,m) encoding 

matrix. 

Thus, in order to form an R(r,m) encoding matrix, where r is greater than 1, we 

have to add m

r

 
 
 

 rows to the R(r-1,m) encoding matrix. These added rows consist of all 

the possible reduced degree r monomials that can be formed using the rows 1 2, ,..., mx x x  
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a. Example R(1,3) 

When m=3 we then have: 

1

2

3

1 1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

x

x

x

 
 
 
 
 
    

b. Example R(2,3) 

Thus, adding the rows 

1 2 1 3 2 311000000,  10100000 and 10001000x x x x x x   we obtain:

 

1

2

3

1 2

1 3

2 3

1 1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 0 1 0 0 0

x

x

x

x x

x x

x x

 
 
 
 
 
 
 
 
 
 
 

 

c. Example R(3,3) 

Note that, the row 1 2 3 10000000x x x  can be added to form: R(3,3)  

d. Example R(2,4) 

Using exactly the same steps, we can obtain: 
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1

2

3

4

1 2

1 3

1 4

2 3

2 4

3 4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0

1 0 1 0 0 0 0 0 1 0 1 0 0 0 0

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

x

x

x

x

x x

x x

x x

x x

x x

x x

0

0

0

0

0

0

0

0

0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

It is obvious that the number of rows of these encoding matrices is 

1 ...
1 2

m m m
k

r

     
         

     
. So, the sent message must be in blocks of length k. Let 

1 2( , ,..., )km m m m be such a block. Then the encoded message M is the sum
1

k

i i
i

m R

 , 

where iR indicates the rows of the encoding matrix of R(r,m). 

e. Example Encoding with R(1,3) 

Using R(1,3) to encode m=(0011) gives: 

0(11111111) 0(11110000) 1(11001100) 1(10101010) (01100110)     as 

the encoded word. 

f. Example Encoding with R(2,4) 

Similarly, using R(2,4) to encode m=(10101110010) gives: 

1*(1111111111111111) 0*(1111111100000000) 1*(1111000011110000) 0*(1100110011001100)

1*(1010101010101010) 1*(1111000000000000) 1*(1100110000000000) 0*(1010101000000000)

0*(1100000011000000) 1*(10100000

  
   
  10100000) 0*(1000100010001000) (0011100100000101) 
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3. Decoding Methods 

There are few methods for decoding Reed-Muller codes. In this thesis, the most 

widely used is analyzed. Decoding is more complex than encoding. The theory behind 

both encoding and decoding is based on Hamming distance between vectors.  

The decoding method checks which row iR  of the encoding matrix was used to 

form the encoded message. The implementation of this method requires the use of 

characteristic vectors of the encoding matrix rows. In order to find the characteristic 

vector, we work on the monomial r associated with the row of the matrix. After that, we 

take the set of all ix that are not in r, but only in the encoding matrix. The characteristic 

vectors are those vectors that correspond to monomials ,i ix x , such that exactly one of ix   

or ix belongs to each monomial for all elements of the set of all ix . The dot product of 

these characteristic vectors with all the rows of the used code matrix yields 0, except the 

row to which the vector corresponds.  

a. Decoding Algorithm 

This method is precisely described in the following three steps of an 

algorithm [3]: 

Step 1 

Choose a row of the given encoding matrix code and find 

2m r characteristic vectors for that row. Then, form the dot product of these vectors with 

the encoded message. 

Step 2 

Compute the majority value (either 1 or 0) of the dot products, and assign 

it to each row. 

Step 3 

Executing steps 1, 2 from the bottom of the matrix to the top, multiply the 

majority value assigned to each row by its corresponding row. Add the results altogether, 

and then sum this up to the received encoded message. If there is a majority of 1‘s in the 
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resulting vector, then assign 1 to the top row. Otherwise, if there is a majority of 0’s, then 

assign 0 to the top row. Adding the top row, multiplied by the assigned value, leads to the 

original encoded message. Using this algorithm, it is obvious that we can identify the 

errors occurred during the transmission of encoded message. The vector that is formed 

using the assigned values of each row, from the top row all the way to the bottom row of 

the encoding matrix, is the original message. 

b. Example of Decoding Using R(1,3) 

Assuming an original message m=(0110), using the R(1,3) encoded matrix 

we get the encoded message M=(00111100). As it is already mentioned, the distance in 

this code is 3 12 4  , and therefore, it can correct one error. Assuming that, during 

message transmission, one error occurred at the first leftmost bit, the encoded message 

after the error is M’=(10111100). The characteristic vectors of the last row of the encoded 

matrix are 1 2 1 2 1 2 1 2, ,x  and ,x x x x x x x . 

The vector related to 1x  is (11110000), thus 1x  is (00001111). Similarly, 

2x  is (11001100), and thus 2x  is (00110011). Therefore, 1 2x x  is (11000000), 1 2x x  is 

(00110000), 1 2x x  is (00001100) and 1 2,x x  is (00000011). Computing the dot product of 

these vectors with M’, we get the values 1,0,0,0 respectively, leading to majority value of 

0 for 3x . Repeating the process for the second to last row of the matrix, we get the values 

0,1,1,1 respectively, leading to majority value 1 for 2x . Working similarly, we conclude 

that the coefficient of 1x  is also 1. Adding 0*(10101010) and 1*(11001100) and 

1*(11110000) we get M’’=(00111100). Then, we notice, that adding M’ and M’’ we get 

(10000000), which has more 0’s than 1’s, leading to 0 for the coefficient of the first row 

of the used matrix.  

Putting together the four coefficients that correspond to four rows 0,1,1,0 

we get the original message. Additionally, we can determine the position of the error at 

the first leftmost bit. 
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D. CHAPTER SUMMARY 

In this chapter, a detailed discussion of Reed-Muller codes was presented. Some 

methods of generation, encoding and decoding are also analyzed. This will help us explain 

later in the thesis the simplicity of a new method of fast construction of these codes. In 

addition, some examples were examined to help understanding each method. In Chapter IV, 

the concept of covering radius is presented, and several methods for its computation are 

examined.  
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IV. COVERING RADIUS 

A. INTRODUCTION 

We can trace the origin of error correcting codes in a paper from the 1940s by 

Claude Shannon [6], who proposed some error detection/correction techniques, to 

achieve error-free communication through a noisy channel. Data to be sent over a noisy 

channel is first “encoded,” plaintext is turned into a codeword by adding extra data 

(redundancy). This enlarged codeword is sent via the communication channel and the 

received data is “decoded” by the receiver. The critical point of this last process is that 

the decoded data has to be as close as possible to sent data. At this point, covering radius 

takes its role, since the “quality” of the code, in relation to the channel, depends on how 

small the code’s covering radius is.   

In coding theory, the covering radius plays a critical role in every code. In 

addition, good covering codes have a number of applications in various areas of 

mathematics and electrical engineering. Though the minimum distance has a more central 

role for error-correction codes, the covering radius is also related to the error correction 

capability of the code, since if it is less than the distance, no vector in the space can be 

added without worsening the code’s distance [7]. 

Since 
2nF  has a distance metric, it makes sense to use spheres that are centered at 

a valid codeword x with a given radius ρ. One sample of these spheres is depicted in 

Figure 4.  

 

Figure 4. Sphere of radius ρ.  

ρ

Valid codeword x 
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Let C be a subset of
2nF , in which all the distances are integers. The covering 

radius of a code C is the smallest radius ρ (Figure 5) such that every word of the space 

is contained in some (at least one) sphere of radius ρ centered at a codeword.  

It is obvious that the covering radius problem is important since it helps in 

investigating the constructing codes having a specified length and dimension such that 

no vector of the space is very far from the nearest codeword.  

 

Figure 5. Covering radius ρ.  

Each codeword of a code 
2nC F represents a message. When that message is 

transmitted, errors may occur. However, if the used code C has the property that all the 

spheres of radius ρ around codewords are completely disjoint, then any received message 

x that has no more than ρ coordinates in error is within distance ρ from a unique 

codeword c in C. Therefore, we conclude that the codeword that was originally sent is c. 

Consequently, we say that C can correct up to ρ errors. It is obvious that the largest value 

of ρ cannot be greater than d (the distance between any two codewords of C). The critical 

point here is the ability of constructing error-correcting codes, having specified length 

and dimension (number of codewords in linear cases) with large minimal d. This is 

actually one of the central problems in theory of error-correction codes.  

In addition, it is worth mentioning that covering radius is a basic geometric 

parameter of a code. Topics that are currently under research by the coding community 

are the following: 

Codeword 

Non-codeword 
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1. Given the length and dimension of a linear code, it should be 

determined what the covering radius is. 

2. Construct efficient codes that have small covering radius. 

3. Develop computational methods to determine the covering radius 

of well-known error-correction codes. 

Specifically, Reed-Muller codes are an extremely interesting class of error-

correction codes, and therefore, many researchers have studied Reed-Muller codes [8], 

[9], [10, [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25]. 

Nevertheless, due to the complexity of computations methods, overall knowledge is still 

quite limited.  We will focus on some of these methods and point out all published results 

of covering radius of 1,st  2,nd  and k-th order Reed-Muller codes later in the chapter. 

B. METHODS OF COMPUTATIONS OF COVERING RADIUS 

1. 1st Method Using Translate 

  When we construct an error-correction code with large minimum distance d, our 

focus is in the structure of the code. In addition, the corresponding codewords must be 

chosen, so that no vector of 2
nF  (since in this thesis we only work with binary spaces) has 

its distance too large from any codeword. 

  On the other hand, the design of a decoding scheme focuses on the exterior part of 

the code. If we have a code 2
nC F , and we decide to send some data in the form of a 

codeword, then, on the receiver we may get a vector x that is different from c.  

  Thus, we can now introduce the concept of a translate x C of C. This is the set 

of all codewords of the code C xoring with a specific received word x. The weight of the 

translate x C  is the minimal weight of any vector in C. Knowing the weights of 

translates, is very critical in the decoding problem since the covering radius is the largest 

among all weights of translates.  

In the following example, we pick the code C={00000,11000,00111,11111}, and 

we calculate the covering radius using the method we just introduced (see Table 6). Note, 

that the code we use in this part is an arbitrary code with no specific properties. We use 

this code for the sake of simplicity of our example. 
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Having the codewords of the code C and all vectors that can be received (received 

words), we can calculate the translates of the code, and thus the weights of these 

translates. Therefore, the maximum of these weights, 2 in our case, is the covering radius 

of the code. In Table 6, we see this method in detail.  

Table 6.   1st method of Covering Radius computation 

Codewords of C 
(transmitted words) 

Vectors x 
(received words) 

Minimum wt(x+C) 
(x+C translates) 

{Max[min(wt(x+C)]} 
(covering radius) 

00001 1 
00010 1 
00011 1 
00100 1 
00101 1 
00110 1 
00111 0 
01000 1 
01001 2 
01010 2 
01011 1 
01100 2 
01101 2 
01110 2 
01111 1 
10000 1 
10001 2 
10010 2 
10011 2 
10100 2 
10101 2 
10110 2 
10111 1 
11000 0 
11001 1 
11010 1 
11011 1 
11100 2 
11101 1 
11111 0 

 
 
 
 
 
 
 
 
 
 
 
 

00000 
11000 
00111 
11111 

00000 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 

 

Furthermore, applying the same method to the following code 

C’={00000,11000,00111} we realize that even though we decrease the dimension of the 

code from 4 to 3, the covering radius remains the same. This code is actually a trivial 

sub-code of the given code. In reality, constructing a sub-code with “nice characteristics,” 

and properties is not a triviality.  
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  In our case, the covering radius of the random code is 2. As we have already 

mentioned above, the covering radius is also the smallest integer r such that any vector in 

2
nF is within distance r from a codeword. 

This method works well for codes with small length and dimension. When these 

parameters become larger, the computation complexity of the method increases 

exponentially, and the use of computers is necessary. 

2. 2nd Method of Using Direct Sum of Codes 

  Before we describe the 2nd method of covering radius computation [11], we give 

several definitions. 

a. Definition of Norm of a Code C 

Let 2
nC F be a linear code of length r, dimension m and covering radius 

R. Let j  be one of the m coordinates, and 1C denote the set of codewords in which the j-

th coordinate is 0. Similarly, let 2C denote the set of codewords in which the j-th 

coordinate is 1. In accordance with [22], if 2C is not empty, then both 1 2,C C contain 

12m codewords. For any vector x in 2
nF , let 1d =d(x, 1C ) and 2d =d(x, 2C ). Also let 

D=max( 1d , 2d ). Then, D is called the norm of C. Norm does not depend on the choice of 

x or j.  

b. Definition of a Normal Code 

A code is normal when its norm satisfies 2 1D R  . In other words [22], 

given a code with norm D, then there is a coordinate i such that, for any vector x, the sum 

of the d’s from x to the nearest codeword having in i-th place 0 and to the nearest 

codeword having in i-th place 1, cannot be greater than D. 

Having defined the critical concepts of the norm of a code, and normal 

codes, we can now proceed to the second method of computation of covering radius that 

is combined with a code construction method. 
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Let 1C  be an R 1 1( , )r n code with covering radius 1R , and 2C  be an 

R 2 2( , )r n code with covering radius 2R . The direct sum of these codes [11] is another 

code of length 1 22 2n n  vectors u|v, where u 1C  and v 2C . Then, this direct sum is a 

new code with covering radius 1 2R R . Additionally, if 1 2and C C  are normal, we can 

construct their amalgamated direct sum [11] that is a code with one less coordinate, one 

less dimension, and  1 2R R  covering radius. 

c. Example 1 2R R  

Consider the code C={00000,11000,00111,11111} that is the direct sum 

of the following codes: 1C ={00,11} and 2C ={000,111}. Using the last method of direct 

sum, we conclude that the covering radius is 1 2 2R R R   . 

3. 3rd Method Using Bounds 

  Let 1C be any code of length 12n and b any vector of the same length. If 1b C and 

1 1( )C C b C   and if we can find a vector  1y C such that 1( , )d y C r , then from [11] 

the covering radius of C is at least [
3

r
]. 

Pick an arbitrary code, say 1C ={0000,1100,0011,1111}, we can calculate the 

covering radius of code 1 1( )C C b C    (Table 7) using the 3rd method we just 

introduced. The code we use is a random code with no specific properties. 
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We picked a vector 1b C , and we construct the code 1 1( )C C b C   . Choosing 

a vector 1y C with 1( , ) 1d y C  and using the 3rd method of computation, we conclude 

that the covering radius of C is at least
1

1
3
    

. Thus, a lower bound of the covering 

radius of C is 1. 

It is very difficult to find the covering radius of a large code, or even to bound it 

[18], [22]. Therefore, in the majority of the cases, the 3rd method for the computation of 

the covering radius is very useful. 

 

Table 7.   3rd  method of Covering Radius computation 

Codewords of 1C  Vector 1b C  

 

Codewords of 

1 1( )C C b C    
Vector 1y C  

( 1( , ) 1d y C  ) 

 
 

0000 
1100 
0011 
1111 

 

 
 
 
 

1010 
 
 
 
 
 

 

 
0000 
1100 
0011 
1111 
1010 
0110 
1001 
0101 

 
 

 
 

1000 
 

 

4. 4th  Method Using Norm 

  This method relies on Theorem 1 [11], which states that every code of norm N has 

a covering radius
2

N     
. The equality holds for normal codes.  
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C. COVERING RADIUS FOR 1ST ORDER REED-MULLER CODES 

Recall that, R(r,m) is an rth order Reed-Muller code of length 2m , and ρ(r,m) is its 

covering radius. One of the challenging problems in coding theory is to find precisely the 

covering radius of 1st order Reed-Muller codes.  

The first expression for ρ(1,m) was published in 1978 [22] . 

11 2(1, ) 2 2
m

mm
   for even m, 

1
11 12 22 2 (1, ) 2 2

m m
m mm


     for odd m. 

 For the first odd values of m, we have that ρ(1,1)=0, ρ(1,3)=2, ρ(1,5)=12 (also 

proved in [8]) and ρ(1,7)=56 (also proved in [14]). An easy but unsafe conclusion [14] 

was that with odd values ρ(1,2t+1) is equal to 22 2t t , thus to the lower bound of last 

inequality .  

 In 1983, the last conjecture was finally disproved [24], and it was shown that:   

1
1 2

27
(1, ) 2 2

32

m
mm


   for odd 5m  . In 1990, a correction of this proof is also provided 

[26]. 

D. COVERING RADIUS FOR 2ND ORDER REED-MULLER CODES 

One of the first detailed studies to find the covering radius for 2nd order Reed-

Muller codes was in [15], where it was proved that ρ(2,6)=18. In the same paper, some 

bounds are also provided: 

36 (2,7) 46,  (2,8) 72and    . 

Recently, in [27] a new upper bound of 2nd order Reed-Muller codes was 

published:
11 2(2, ) 2 152 (1)

m
mm

   .  
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E. COVERING RADIUS FOR RTH ORDER REED-MULLER CODES 

Some known results for rth order Reed-Muller codes are shown below.  

In the following trivial cases, we have: ( , ) 0,  ( 1, ) 1,m m m m     

and ( 2, ) 2m m   . 

In [13], it is proved that: 

 ( 3, ) 2,m m m     for m even and 3m  , and 

  ( 3, ) 1,  m m m    for m odd and 3m  . 

F. CHAPTER SUMMARY  

In this chapter, the concept of covering radius of a code is introduced. In addition, 

some methods of covering radius computation are presented and finally some known 

results for Reed-Muller codes are reported. In the next chapter, a new simplified 

algorithm of fast generation of all 1st order and some of 2nd order Reed-Muller codes is 

analyzed and a fast construction of a linear subcode with good properties is presented and 

analyzed. In addition, the “reverse” of this new algorithm is presented. 
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V. FAST ALGORITHM OF GENERATION OF 1ST—2ND  ORDER 
REED-MULLER CODES, LINEAR SUBCODES WITH GOOD 

PROPERTIES, AND THE “REVERSE” ALGORITHM 

A. FAST GENERATION OF 1ST ORDER REED-MULLER CODES 

Comparing Tables 4 and 5, and the constructing method of Reed-Muller codes, 

we notice that all of the 1st order Reed-Muller codes are Affine Boolean Functions. Also, 

all 1st order Reed-Muller codewords are balanced, except the all 0’s and all 1’s 

codewords. The construction of these codewords using a conventional method is time and 

memory consuming. Therefore, a new algorithm for fast generation is introduced in this 

chapter. The algorithm is useful for hardware coding applications. 

Using a Lemma in [28] which states: “An affine function in more than 2 variables 

is a linear string made up of the 8 4-bit blocks: 1T ={ A =0000, A =1111, B =0011, 

B =1100, C =1001, C =0110, D =0101, D =1010 } in a block sequence 

21 2 2
, , . . . , nI I I  given as follows: 

The first block 1I is one of A , A , B , B , C , C , D  or D . 

The second block 2I is either 1I or 1I . 

The next two blocks 3 4,I I are 1 2,I I or 1 2,I I . 

The next four blocks 5 6 7 8, , ,I I I I are 1 2 3 4, , ,I I I I or 1 2 3 4, , ,I I I I . 

The last 32n blocks 3 22 1 2
, . . . ,n nI I  are 31 2

, ..., nI I  or 

2
2 1|  nF T

”, 

  We can construct all 1st order Reed-Muller codes using the algorithm described 

below. In our case when a 1 occurs, we complement and, when 0 occurs, we just copy the 

block as it is. 
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1. New Algorithm for Fast Generating 1st Order RM Codes 

Step 1  

We begin with the codewords of R(1,2) that are identical to the 4-bit blocks used 

in previous lemma: 1T ={ A =0000, A =1111, B =0011, B =1100, C =1001, C =0110, 

D =0101, D =1010}. 

Step 2 

We construct the following concatenation for each R(1,2) codeword: 2
2 1|  nF T  in 

order to construct the R(1,n) code. The first part of this structure will play the role of 

“guide” word. 

Step 3 

Starting from the leftmost bit of “guide” word, we just complement the bits of 

right part when we find 1 and just repeating these bits when we find 0, until we take the 

last rightmost bit of “guide” word.  

We repeat step 3 for every block of 1T  using every “guide” word. In Table 8, we 

generate R(1,3) using the new algorithm for fast generating 1st order RM codes. 

Therefore, for this case, we repeat step 3 twice since there are two “guide” words for 

every block of 1T  . On the contrary, in Table 9, step 3 is repeated four times, 

since 2 4 2 2
2 2 2 {00,11,01,10}nF F F    . 

2. Example R(1,3) 

Using the above algorithm we construct R(1,3). 
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Table 8.   Fast Generation of R(1,3) 

Step 1 

(R(1,2)) 

Step 2 Step 3 

(R(1,3)) 

0000 0|0000 00000000 

 1|0000 00001111 

1111 0|1111 11111111 

 1|1111 11110000 

1100 0|1100 11001100 

 1|1100 11000011 

0011 0|0011 00110011 

 1|1100 00111100 

1001 0|1001 10011001 

 1|1001 10010110 

0110 0|0110 01100110 

 1|0110 01101001 

1010 0|1010 10101010 

 1|1010 10100101 

0101 0|0101 01010101 

 1|0101 01011010 

 

3. Example R(1,4) 

Using the same algorithm we construct R(1,4). 
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Table 9.   Fast Generation of R(1,4) 

Step 1 

(R(1,2)) 

Step 2 Step 3 

(R(1,4)) 

0000 00|0000 0000000000000000 

 11|0000 0000111111110000 

 01|0000 0000000011111111 

 10|0000 0000111100001111 

1111 00|1111 1111111111111111 

 11|1111 1111000000001111 

… … … 

1100 00|1100 1100110011001100 

 11|1100 1100001100111100 

… … … 

0011 00|0011 0011001100110011 

… … … 

1001 00|1001 1001100110011001 

… … … 

0110 00|0110 0110011001100110 

… … … 

1010 00|1010 1010101010101010 

… … … 

0101 00|0101 0101010101010101 

… … … 

 

The complexity of constructing the 1st order Reed-Muller codes using this 

algorithm is significantly lower than the complexity of the method that is introduced in 

Chapter III, by using Boolean polynomials.  
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In addition, it is obvious that this compact representation of 1st order Reed-Muller 

codewords is highly memory efficient because it can actually store a great amount of 

information in a small word.  For example, using a “guide” word of 8 bits, we can 

compress a codeword of 512 bits to a string of 12 bits. The compression ratio for each 

codeword in this example is 43:1, and the memory saving is 97.65%. The compressed 

string includes all the information of the expanded codeword, and moreover, as we 

analyze below, using the “reverse” algorithm, we can reconstruct a damaged codeword, 

correcting some errors occurred during the transmission. 

B. HARDWARE IMPLEMENTATION OF ALGORITHM 

In general, in our algorithm, in order to store a compact representation of 2n -bits 

codeword, n+1 bits are needed. This implies that the storage ratio is 

bits of complete codeword 2
:1 :1

bits of compact codeword 1

n

n



, and the storage saving is 

bits of compact codeword 1
(1 )% (1 )%

bits of complete codeword 2n

n 
   . It is obvious that the storage ratio, and 

the storage saving are very high. The critical point is that the fast generation of complete 

codewords from compact form cannot be efficiently supported by a program running on a 

conventional computer. On the other hand, the hardware implementation of this 

expansion (see Figure 6, for the case of n=3) is faster and more compact.  

The logic circuit of Figure 6 generates only one codeword at a time. In order to 

obtain the whole code, we have to repeat this circuit for each word of either 1T  or 2T  and 

for each “guide” word.  
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Figure 6. Hardware implementation of algorithm (n=3) 

The exclusive OR gates implemented in Figure 6, either complements or leaves 

uncomplemented the corresponding bits depending on the value of inputs 4s . If 4 1s  , 

the output of the gate is complemented, otherwise stays unchanged. 

 The number of two-input exclusive OR gates that are needed for the 

implementation of our algorithm is 2 4n  , where n is the number of variables used. 

Although exponential in n, this is close to minimal mostly because 2n  outputs are 

needed, four of which are driven directly by their inputs and thus, require no gate.  The 

delay associated with this logic circuit is also small. 

 From the above, we conclude that our conversion algorithm gives to any 

communication user the ability to produce complete low order Reed-Muller codewords 

on-the-fly from a compressed representation. 
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C. FAST GENERATION OF 2ND ORDER REED-MULLER CODES 

On the other hand, fast generation of 2nd order Reed-Muller codes is more 

complicated. This problem is comparable to the construction of all n-variable quadratic 

functions: 

1

2

1

2

n 
  

  . We just demonstrate the fast construction of R(2,3), since the 

generation of RM(2,n) for n>3 is quite complicated, and we have not been able to achieve 

it in its generality. 

We define 2T ={ E =1000, E =0111, F =0001, F =1110, G =0100, G =1011, 

H =0010, H =1101}. 

Any codeword of R(2,3) has the structure 1 1|T T or  2 2|T T , as mentioned in [29]. 

Thus, in Table 10, we see this fast generation. This way of construction is less 

complicated and less memory consuming that the normal way. 
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Table 10.   Fast Generation of R(2,3) 

1 1|T T  2 2|T T  

00001111 10000111 

00000011 10000001 

00001100 10001110 

00001001 10000100 

00000110 10001011 

00000101 10000010 

00001010 10001101 

11111111 01110111 

11110011 01110001 

11111100 01111110 

11111001 01110100 

11110110 01111011 

11110101 01110010 

11111010 01111101 

0000 

1111 

0011 

            1100 1T  

1001 

0110 

 0101  

 1010  

1000      

0111 

0001 

                1110  

 0100 2T  

1011 

1011 

0100 ... ... 

 
 

D. FAST GENERATION OF LINEAR SUBCODES WITH GOOD 
PROPERTIES 

Having fast constructed all 1st order Reed-Muller codes using  the eight 4-bit 

blocks: 1T ={ A =0000, A =1111, B =0011, B =1100, C =1001, C =0110, D =0101, 

D =1010}  and the given algorithm, we demonstrate a fast generation of R(2,3) using the 

eight 4-bit blocks: 2T ={ E =1000, E =0111, F =0001, F =1110, G =0100, G =1011, 

H =0010, H =1101}. 

Again using the algorithm: 
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1. Algorithm 

Step 1  

We begin with the 4-bit blocks given above: 2T ={ E =1000, E =0111, F =0001, 

F =1110, G =0100, G =1011, H =0010, H =1101} 

Step 2 

We construct the following concatenation for each of 2T blocks: 2
2 2|  nF T in order 

to construct a new category of error correction codes with good properties. The first part 

of this structure plays the role of “guide” word. 

Step 3 

Starting from the leftmost bit of “guide” word, we complement the bits of right 

part when we find 1 and repeat these bits when we find 0, until we reach the last 

rightmost bit of “guide” word.  

We repeat step 3 for every block of 2T using every “guide” word.  

We prove that the properties for this construction hold for any n. Therefore, all 

codewords of any such construction are of the form: 1n naffine x x  . Consequently, the 

sum of any two codewords is an affine function, and also the sum of any three codewords 

belongs to the code. 

2. Example R(2,3) Subcode 

Using the above algorithm, we construct the new subcode as shown in the Table 

11. 
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Table 11.   Fast Generation of a R(2,3) subcode 

Step 1 Step 2 Step 3 

1000 0|1000 10001000 

 1|1000 10000111 

0111 0|0111 01110111 

 1|0111 01111000 

0001 0|0001 00010001 

 1|0001 00011110 

1110 0|1110 11101110 

 1|1110 11100001 

0100 0|0100 01000100 

 1|0100 01001011 

1011 0|1011 10111011 

 1|1011 10110100 

0010 0|0010 00100010 

 1|0010 00101101 

1101 0|1101 11011101 

 1|1101 11010010 

 

3. Example R(2,5) Subcode 

Using the same algorithm, we generate another code that has 32 codewords and 

some important properties, as described below. Table 12 shows the Truth Table and 

Algebraic Normal Form of this construction: 

 

 

 

 



45 

Table 12.   Fast Generation of R(2,5) subcode 

Step 1 Step 2 Step 3 Algebraic Normal Form 

1000 00|1000 1000100010001000 
4 3 3 41 x x x x    

 11|1000 1000011101111000 
4 3 3 4 2 11 x x x x x x      

 01|1000 1000100001110111 
4 3 3 4 11 x x x x x     

 10|1000 1000011110000111 
4 3 3 4 21 x x x x x     

0111 00|0111 0111011101110111 
4 3 3 4x x x x   

 11|0111 0111100010000111 
4 3 3 4 2 1x x x x x x     

… … … … 

0001 00|0001 0001000100010001 
3 4x x  

 11|0001 0001111011100001 
3 4 2 1x x x x   

… … … … 

1110 00|1110 1110111011101110 
3 4 1x x   

… … … … 

0100 00|0100 0100010001000100 
3 4 4x x x  

… … … … 

1011 00|1011 1011101110111011 
4 3 4 1x x x   

… … … … 

0010 00|0010 0010001000100010 
3 3 4x x x  

… … … … 

1101 00|1101 1101110111011101 
3 3 4 1x x x   

… … … … 
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All codewords in this construction are affine functions with the term 3 4x x . In 

addition, there is an even number of 1’s in every codeword of this construction. The first 

property implies that the sum of any two codewords is an affine function. An interesting 

property of this error-correcting code is that xoring any three codewords gives another 

codeword. In addition, the minimum distance d of this subcode is 8. 

4. Theorem 

 All codewords of any subcode generated by this algorithm, are of the form 

1n naffine x x . 

Before we prove the theorem we have to present an algorithm for calculating the 

Algebraic Normal Form from the Truth Table of a function and vice versa [30]. Let 

0 1 2 2 1
[   . . . ]nD d d d d


 be the coefficient vector of the polynomial representing 

the Boolean function f (the theorem that helps us calculate the coefficient vector is 

presented below). If 1id  , where 0 2 1ni   , then the monomial 

0 11 2
0 1 2 1. . . ni ii i

nx x x x 
 appears in the Algebraic Normal Form of f. On the contrary, 

when 0id  , no monomial appears, where 0 1 2 1( , , ,..., )ni i i i   is the binary representation of 

pointer i .  

a. Example of Calculating the ANF of a Function 

[0 0 1 0 0 0 1 1]D  , means 

0 1 2 3 4 5 6=0, =0, 1,  0,  0,  0,  1d d d d d d d      7 1d  . We conclude that: 

 due to 2d (i=01000000 in binary representation), one of the 

monomials that appears in the Algebraic Normal Form 

is 0 1 0 0 0 0 0 0
0 1 2 3 4 5 6 7 1x x x x x x x x x . 

 due to 5d (i=10100000 in binary representation), one of the 

monomials that appears in the Algebraic Normal Form 

is 1 0 1 0 0 0 0 0
0 1 2 3 4 5 6 7 0 2x x x x x x x x x x . 
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 due to 6d (i=01100000 in binary representation), one of the 

monomials that appears in the Algebraic Normal Form 

is 0 1 1 0 0 0 0 0
0 1 2 3 4 5 6 7 1 2x x x x x x x x x x . 

 due to 7d (i=11100000 in binary representation), one of the 

monomials that appears in the Algebraic Normal Form is 

1 1 1 0 0 0 0 0
0 1 2 3 4 5 6 7 0 1 2x x x x x x x x x x x . 

Finally, the Algebraic Normal Form of the given coefficient vector 

is 1 1 2 0 2 0 1 2x x x x x x x x   . Now, we have to connect the coefficient vector with the Truth 

Table of the function, using the theorem in [30]. This theorem states that if we have an n-

variable Boolean function f, and D  the coefficient vector of this function, 

then * nD f A , where  

0 0
1

00

A A
A

A

 
  
 

and 0 [1]A  . 

 

b. Example of Calculating the Coefficient Vector 

Given a Truth Table of a 3-variable Boolean function f =01100101 and 

working in accordance to the above theorem, we can obtain the coefficient vector. Since, 

3

1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 1 0 0 0 1

0 0 0 0 1 1 1 1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

A

 
 
 
 
 
   
 
 
 
 
  

 

we obtain [0 1 1 0 0 0 1 0]D  . 

Our previous theorem claims that all codewords of any such construction 

are of the form: 1n naffine x x  .  
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c. Proof of Theorem 

Indeed, every function of our construction corresponds to coefficient 

vectors of the form:  
2

0 1 2 4 8[       1     0   0   0   ...0... ...0...]
nxD d d d d d d  , where: 

1. 0d  can be either 1 or 0 since the 1st bit of our codewords is either 1 

or 0 and the 1st column of nA  is 1  0  0  0
T . 

2. 1d  can be either 1 or 0 since the first 2 bits of our codewords are 

00, 01, 10 or 11 and the 2nd column of nA is  1 1 0 0 0
T . 

3. 2d  can be either 1 or 0 since the first three bits of our codewords 

are 000,001,111,110,100,011,010 or 101 and the 3rd column of nA is 1 0 1 0 0
T . 

4. 3d  can only be 1 since 2T consists of words of odd number of 1’s 

and the 4th column of nA is  1 1 1 1 0  0  0  0
T . 

5. 4d  can be either 1 or 0 since the first bit and the 12n th bit of our 

codewords are 00, 01, 10 or 11 and 5th column of nA is  1 0 0 0 1 0 0 0 1 0 0 0 1
T  

For the other bits of D , except 2n th bits, it is obvious that they are all 0’s. 

On the other hand, all 2n th bits of D can be either 1 or 0. That format of coefficient 

vector confirms that the Algebraic Normal Form of our construction is 1n naffine x x . 

QED 

E. THE DECODING “REVERSE” ALGORITHM  

Reversing the algorithm introduced at the very beginning of this chapter, we show 

that not only we can highly compress any codeword of 1st order Reed-Muller codes, and 

of new construction of subcodes of 2nd order Reed-Muller codes, but we can also 

reconstruct a damaged codeword, correcting some errors that occurred during 

transmission or storage.  
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1. Conjecture  

This new correction method can correct n-2 errors, or similarly the number of 

“guide” word bits.   

The general compression ratio of this “reverse” algorithm, as it is already 

mentioned, is
2

:1
1

n

n 
, and the memory saving is

1
1 %

2n

n   
 

. It is obvious that, for high 

n, the compression ratio is extremely high. For example, we can imagine the memory 

saving in a realistic case for n=15, where we can compress 152 32768 bits to only 16 

bits, without losing any information of the codeword. The memory saving in this 

particular case is 99.95%. These calculations highlight the importance of this algorithm in 

environments where the memory efficiency is critical. 

2. Algorithm 

Step 1  

We split the word in two halves, and both of these halves in halves and so on, 

until we reach 4 bit chunks. 

Step 2  

We xor bitwise the first two halves, and using the majority value of either 0’s or 

1’s, we obtain the rightmost bit of “guide” word. At the same time, the minority of either 

1’s or 0’s indicates the probable positions of errors in both halves of our word. It is 

obvious that on first xoring we either/both miss some errors due to double errors occurred 

on two xored bits, or/and over count some of them due to the fact that error candidates 

are in both halves. 

In order to accurately locate and correct all of the errors, we xor the other halves, 

and we work as described on the second step. The bit positions that take the majority of 

candidate errors are the errors. 

Our decision about the position of errors can be verified by our construction of the 

Reed-Muller code used. It is known that using our algorithm, all 1st order Reed-Muller 

codes can be generated by 1T  set of words, and all subcodes of 2nd order Reed-Muller 



50 

codes that we quickly generated, by 2T  set of words. Therefore, all 4-bits words, after the 

very last split, should be either of 1T  set, in our construction of 1st order Reed-Muller 

codes, or 2T set, in our construction of subset of 2nd order Reed-Muller codes. Note, all 

the 1T   set of words has distance 1 or 3  from the 2T  set of words. 

Having corrected all n-2 errors, we finally obtain the complete compressed word.    

It is obvious that the compression ratio is as high as the size of “guide” word.  

a. Example 16 Bits 

Suppose we transmit the codeword 1101001011010010, and we actually 

receive the word 1111001010010010. This word has two errors on 3rd and 10th bits. 

Splitting the received word in two halves, we obtain 11110010  |  10010010. Xoring these 

halves bitwise, we take 01100000. This string gives us the information that the rightmost 

bit of “guide” word is 0, and errors might occur in the 2nd bits of one of the halves (2nd 

or 10th bit of the word), and in the 3rd bits of one of the halves (3rd or 11th bit of the 

word). 

In order to detect in which of the first halves the errors located, we xor the 

subsequent halves bitwise. Thus, for the left halves we obtain 1101, and the information 

we obtain is that the left most bit of our “guide” word is 1, and the probable errors are in 

3rd or 7th bit of our word. Working identically for the right halves, we obtain 1011, and 

the information we obtain is that the probable errors are in 2nd or 6th bit of right half 

(10th or 14th bit of our word). Combining the information of three xorings, getting two 

votes for 3rd and 10th positions, we conclude that the errors are in 3rd, and 10th bits. 

Thus, the compressed word is 10|1101. 

In all combinations of n-2=4-2=2 errors in the received word, the xoring 

manipulation can inform us for their position.  In case there are no errors in the received 

word, the algorithm proceeds without the correction process.  

b. Example 32 Bits 

In this example, we use 32-bit codewords, and we correct three errors that 

occurred in the same set of 4-bits. Suppose we transmit the codeword 
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10110100101101000100101101001011, and we actually receive the word 

10111010101101000100101101001011. This word has three errors at the  5th, 6th,  and 

7th bits. Splitting the received word into two halves, we obtain 1011101010110100 | 

0100101101001011. Xoring these halves bitwise, we obtain 11110001111111. This 

string gives us the information that the rightmost bit of the “guide” word is 1, and errors  

might occur in 5th bits of one of the halves (5th or 21st  bit of the word), in 6th bits of 

one of the halves (6th or 22nd bit of the word), and in the 7th bits of one of the halves 

(7th or 23rd of the word). 

In order to detect in which of the first halves the errors are located, we xor 

the subsequent halves bitwise. Thus, for the left 16-bits half 1011101010110100 we 

obtain 00001110, and the information we obtain is that the middle bit of our “guide” 

word is 0, and the probable errors are in 5th  or 13th bit of our word, 6th or 14th bit of our 

word, and 7th or 15th bit of our word. Working identically on the right 16-bit half 

0100101101001011, we obtain 00000000, and there is no useful information.  

At this point, the information we have for the position of errors in our 

word seems sufficient, but for the sake of the completion of our algorithm, we keep on 

xoring until we get the 4-bits sets. Therefore, xoring the very first 8-bits set we obtain 

0001, and the information we obtain is that the leftmost bit of “guide” word is 0, and the 

probable errors are in the 4th or 8th bit. Xoring the next 8-bits set 10110100 we obtain 

1111 and there is no usable information. 

Combining the information of the xor processes, we obtain two votes for 

5th , 6th  and 7th positions, we conclude that the errors are in these bits. Thus, the 

compressed word is 101|1011. 

In all combinations of n-2=5-2=3 errors in the received word, the xor 

manipulation can inform us of their position.  It is obvious that there are many cases 

where our “reverse” algorithm can correct more than n-2 errors, but we cannot generalize 

based on these cases only. In case there are no errors in the received word, the algorithm 

proceeds without the correction process.  
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F. CHAPTER SUMMARY  

In this chapter, a new simplified algorithm of fast generation of all 1st order and 

some of 2nd order Reed-Muller codes is analyzed and a fast construction of a linear 

subcode of 2nd order Reed-Muller code with good properties is presented and analyzed. A 

hardware implementation of this algorithm is also presented for n=3. In addition, the 

“reverse” of the algorithm is introduced, showing at the same time, the process of 

decoding. In Chapter VI, we summarize the conclusions of this thesis and future work is 

proposed.  

 

 

 
 
 
 
 
 
 
 
 
 



53 

VI. CONCLUSIONS AND FUTURE WORK 

This thesis points out the difficulty of completely estimating a critical property of 

error-correcting codes, namely the covering radius of a code. This covering radius 

problem plays a critical role, along with minimum Hamming distance and decoding 

complexity, to our decision of choosing the most efficient error-correcting code. 

Nevertheless, even though it is a well-defined property in coding theory, in the majority 

of the codes, it can only be bounded and not exactly calculated. 

Further, in this thesis, a new method of fast generation of 1st order R(1,n) Reed-

Muller codes was introduced. This method seems highly memory efficient and fast, since 

we generate all 1st order Reed-Muller codes using just the 1T  set of 4-bit words and 

entire 2
2
nF  field. For example, to generate 

7

1
1

82 2 256
 

 
    codewords of 72 128  bits 

length, thus R(1,7) code, we just need the whole set of 1T  (32 bits), as well as the 

entire 2 7 2 5
2 2 2 32 bitsnF F F    . Furthermore, the fast construction of 2nd order Reed-

Muller codes using both 1 2,T T sets of 4-bits, is another method that can efficiently use 

memory. In addition, this algorithm allows the use of a compact way to represent low 

order Reed-Muller codes.   

In this thesis, the hardware implementation of the “expansion” algorithm for each 

codeword is presented (for n=3). The complexity of this logic circuit is analyzed and we 

show that the number of two-input exclusive OR gates that are needed for the 

implementation of our algorithm is 2 4n  , where n is the number of variables used. 

Although exponential in n, this is close to minimal mostly because 2n  outputs are 

needed, four of which are driven directly by four inputs and thus, require no gate.  

Without doubt, this implementation is faster than any common software running on 

conventional computers. 

In addition, it is obvious that this compact representation of 1st order Reed-Muller 

codewords is highly memory efficient because it can actually stores a large amount of 

information in a small word.  For example, using a “guide” word of 8 bits, we can 
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expand, and thus compress a codeword of 1024 bits to a string of 12 bits. The 

compression ratio in this example is 85:1, and the memory saving is 98.83%.  

Reversing the algorithm, we show that not only can we highly compress any 

codeword of 1st order Reed-Muller codes, and of a new construction of subcodes of 2nd 

order Reed-Muller codes, but we can also reconstruct a damaged codeword, correcting 

some errors occurring during the transmission or storage. This new correction method 

can correct n-2 errors, or similarly the number of “guide” word bits. It is obvious that 

there are many cases where our “reverse” algorithm can correct more than n-2 errors, but 

we cannot generalize on these cases.   

The compressed string includes all the information of expanded codeword. We 

show that the general compression ratio of this “reverse” algorithm is
2

:1
1

n

n 
, and the 

memory saving is
1

1 %
2n

n   
 

. It is obvious that, for high n, the compression ratio is 

extremely high. For example, we can imagine the memory saving in a realistic case for 

n=15, where we can compress 152 32768 bits to only 16 bits, without losing any 

information of the codeword. The memory saving in this particular case is 99.94%. This 

estimation highlights the importance of this algorithm in environments where memory 

efficiency is critical. 

One of the main contributions of this thesis is the fast generation of a new 2nd 

order Reed-Muller subcodes of good properties. Even though, this is a non-linear category of 

subcodes, their low distance d, and some other good properties make them worthy of 

investigation. Their performance in communication-oriented environments can be simulated, 

and further investigated in a future work. The coding gain of these subcodes must be 

simulated. It is also recommended to implement these subcodes in devices used for data 

storage.  The usefulness of these 2nd order Reed-Muller subcodes, might be the 

minimization of memory errors. 

In this thesis, it is proven that the format of Algebraic Normal Form, for our fast 

construction of subcodes of 2nd order Reed-Muller codes is 1n naffine x x . Therefore, the 

sum of any two codewords is affine function, and the sum of any three codewords is 

another codeword. 
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The applicability of both algorithms can be tested in a variety of environments. 

For example in digital repeaters, where store and forward process takes place, and where 

Automatic Response Request (ARQ) processes are needed, instead of Forward Error 

Correction (FEC), codewords can be stored in compact form, and transmitted in full 

representation. The storage of the compact form can last until the transmitter receives an 

acknowledgement. On the other hand, in storage processes, both algorithms’ usefulness is 

indisputable. 

In addition, one communication-oriented application that can take advantage of 

these algorithms, is when, through a process, signal conditions can be measured, and 

automatically changes the error-correction coding to match current link quality. 

In any case, logical extension of this thesis would include a computer simulation 

on the performance of proposed algorithms, in various operational environments. 
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