
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2008-03

University course timetabling with probability collectives

Autry, Brian M.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/4289

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36698009?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

UNIVERSITY COURSE TIMETABLING WITH
PROBABILITY COLLECTIVES

by

Brian Autry

March 2008

 Thesis Advisor: Kevin Squire
 Second Reader: Craig Martell

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2008

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE University Course Timetabling with Probability
Collectives
6. AUTHOR Brian Autry

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200words)
The Naval Postgraduate School currently uses a time consuming manual process to generate course

schedules for students and professors. Each quarter, the process of timetabling approximately 2000 students into
nearly 500 courses takes up to 8 weeks. This thesis introduces an automated timetabling algorithm using Probability
Collectives (PC) theory. PC Theory is an agent based approach that utilizes Collective Intelligence (COIN) to solve
optimization problems by using a collection of agents attempting to achieve a single goal. The algorithm was tested
on a set of data provided by the organizers of the 2007 International Timetabling Competition. The algorithm
provided valid timetables for every problem instance and successfully scheduled between 70% and 91.6% of all
student course requests.

15. NUMBER OF
PAGES

55

14. SUBJECT TERMS Timetabling, Collective Intelligence, Probability Collective, Scheduling,
Optimization

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

UNIVERSITY COURSE TIMETABLING WITH PROBABILITY
COLLECTIVES

Brian M. Autry

Lieutenant, United States Navy
B.S. Computer Science, Texas A&M University, 2003

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2008

Author: Brian M. Autry

Approved by: Kevin M. Squire
Thesis Advisor

Craig Martell
Second Reader

Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The Naval Postgraduate School currently uses a time consuming manual process

to generate course schedules for students and professors. Each quarter, the process of

timetabling approximately 2000 students into nearly 500 courses takes up to 8 weeks.

This thesis introduces an automated timetabling algorithm using Probability Collectives

(PC) theory. PC Theory is an agent based approach that utilizes Collective Intelligence

(COIN) to solve optimization problems by using a collection of agents attempting to

achieve a single goal. The algorithm was tested on a set of data provided by the

organizers of the 2007 International Timetabling Competition. The algorithm provided

valid timetables for every problem instance and successfully scheduled between 70% and

91.6% of all student course requests.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. INTERNATIONAL TIMETABLING COMPETITION.............................2
C. OUTLINE OF THIS WORK..4

II. BACKGROUND AND RELATED WORK ..5
A. INTRODUCTION..5
B. TIMETABLING ..6
C. PROBABILITY COLLECTIVE THEORY..9

1. Optimization Approach...10
2. Solution Algorithm...12

D. CONCLUSION ..13

III. METHODOLOGY ..15
A. APPLICATION OF PC THEORY TO TIMETABLING15

1. Initialization..16
2. The Optimization ...17
3. Final Evaluation...17

IV. RESULTS ...19
A. RESULTS FOR TIMETABLING COMPETITION INSTANCE

FILES..19
B. ANALYSIS OF THE ALGORITHM ..21

1. Sensitivity Analysis ..24
C. FINAL DATA RUN ...28

V. CONCLUSIONS AND FUTURE WORK...31
A. CONCLUSIONS ..31
B. FUTURE WORK...31

LIST OF REFERENCES..33

INITIAL DISTRIBUTION LIST ...37

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. Change in average localized global utility by iteration.22
Figure 2. Evolution of the probability collective for event 5 of problem instance 3.23
Figure 3. Evolution of the probability collective for event 21 of problem instance 3. ...23
Figure 4. Change in Average Localized Global Utility over time with different

values of number of Monte-Carlo samples(m). ...25
Figure 5. Comparison of number of Monte-Carlo samples to time required..................25
Figure 6. Change in Average Localized Global Utility over time with different

values of ∆T. ..26
Figure 7. Change in Average Localized Global Utility over time with different

values of α. ...27
Figure 8. Change in Average Localized Global Utility over time with different

values of γ. ...28

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Description of problem instances...19
Table 2. Competition results. ...21
Table 3. Data run results with m = 1000 and ∆T = 0.95..29

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABRREVIATIONS

COIN Collective Intelligence

NPS Naval Postgraduate School

PATAT Practice and Theory of Automated Timetabling

PC Probability Collective

WATT Working Group on Automated Timetabling

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to thank my thesis advisor Kevin Squire for providing the idea and

motivation for this thesis. He demonstrated patience and a successful teaching style while

assisting me in learning the underlying theory.

I would also like to thank the organizers of the 2007 International Timetabling

Competition. The resources provided by this competition proved invaluable during my

research and served as a basis on which to test my algorithm.

Finally I would like to thank my mother, Carol Autry, and my children, Connor

Autry and Samuel Autry, for their unwavering love and support.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. MOTIVATION

This research was prompted by the current course scheduling problem at the

Naval Postgraduate School (NPS). Currently there are approximately 2000 students

enrolled at NPS and nearly 500 courses offered each quarter. Scheduling is done

manually by two people and the process takes up to 8 weeks to complete the schedule for

one quarter. Clearly a better system is needed.

Most students at NPS are members of the military and are given a fixed number

of months to complete their degree. A demand based scheduling approach is used to

ensure that each student’s needs are met. In the past, some of the complexity of

developing schedules was reduced by assigning students a template of courses for each

quarter. This allowed the scheduler to assign students in large blocks but reduced the

flexibility each student had in customizing their education. The current system allows

students to tailor their schedule placing additional burden on the scheduler.

NPS has tested several commercial scheduling applications but has yet to find an

acceptable solution that meets all of its needs. Several NPS students have also conducted

research relating to the problem. One student thesis involved the use of integer linear

programming to create course schedules [1]. The research was moderately successful on

small subsets of data but required significant run times and never found an optimal

solution.

Another paper examined potential solutions to the problem by converting the

scheduling system from a demand based system to a supply based system [2]. Although

the proposed solution would allow for faster schedule generation, the flexibility desired

by NPS would not be achieved and the requirement that every student would get the

classes that they need when they need them could not be satisfied.

The same demand based scheduling concepts used in the timetabling of university

courses are used in a broad array of applications. Timetabling algorithms have been used

 2

to schedule personnel in laboratories [3] and for scheduling clinical rounds in hospitals

[4]. The theory has also been applied to the scheduling of sports teams in tournament

brackets [5] and in the delivery of goods in time-critical applications [6]. One of the goals

of this thesis is to provide a generic algorithm that can be modified to help solve a wide

range of problems.

B. INTERNATIONAL TIMETABLING COMPETITION

The 2nd International Timetabling Competition sponsored by Practice and Theory

of Automated Timetabling (PATAT) and the Working Group on Automated Timetabling

(WATT) was held in 2007 and consisted of three tracks: examination timetabling, post

enrollment based course timetabling, and curriculum based course timetabling [7]. The

post enrollment and curriculum based course timetabling tracks are both subsets of the

course timetabling problem. The post enrollment course timetabling track closely models

the system used at NPS and was used as a simplified example to test and evaluate the

effectiveness of PC theory in solving this type of problem.

The post enrollment based timetabling problem consists of scheduling a set of n

events (courses) into 45 timeslots (5 days, 9 hours per day). A set of r rooms exists each

with a set of f room-features. A set s of students who attend a varying combination of

events is provided. Each of the n events has a set of available timeslots. A set of

requirements is also provided that determine which events should occur before other

events. The goal is to schedule each event n into one of the r rooms and one of the

timeslots while satisfying the following hard constraints:

• No student should be scheduled for two events at the same time.

• The room assigned to an event should be large enough for all of the students

assigned to that event and should satisfy all of the room-features required by that

event.

• Only one event is scheduled into each room in any timeslot.

• Events should only be scheduled in available timeslots.

 3

• Events should be scheduled in the proper order as specified by any precedence
requirements.

In addition to the hard constraints, three soft constraints were also specified:

• Students should not be scheduled for an event occurring at the end of the day.

• Students should not have to attend three or more events in a row.

• Students should not be required to attend only one event on a particular day.

No hard constraints can be violated or the solution is rejected. Since for some

problem instances it may not be possible to schedule each event and maintain all of the

hard constraints, certain events may need to be left out to ensure all hard constraints are

satisfied. A timetable which does not have any hard constraint violations but leaves out

some events is considered valid. A feasible timetable is one in which there are no

occurrences of any hard constraint violations and all events are scheduled.

Solutions submitted for the competition are evaluated by first ensuring that they

are valid. Next, a Distance to Feasibility is calculated by summing up the number of

students in each unscheduled event. Finally a Soft Cost is calculated by summing the

total number of occurrences of soft constraint violations listed above. The solution with

the lowest Distance to Feasibility is winner. If two valid solutions have the same Distance

to Feasibility, the solution with the lowest Soft Cost is judged the winner.

This problem description greatly simplifies the real world timetabling problem

that exists at NPS. Some of the constraints and considerations not addresses by this

problem formulation include:

• Multiple sections of the same course. This actually adds flexibility to the

timetabling process by allowing the student’s course requirement to be

fulfilled in different timeslots.

• Multiple professors for the same course. This problem description considers

professors linked to individual courses. At NPS, some courses are taught by

multiple professors, particularly when considering labs associated with a

course.

 4

• Courses that are taught via online methods. These courses still have students

assigned, but do not require a room.

• Room availability. Often rooms are prescheduled for events that are not

related to a course.

• Professor preferences. Some professors are only available on certain days of

the week and at specific hours. Also, there are some classrooms that

professors prefer to not teach in.

• Departmental ownership of rooms. The problem formulation does not address

assigning courses to rooms owned by the associated departments.

C. OUTLINE OF THIS WORK

The research presenting in this paper is intended to provide a basis for a solution

that will allow NPS to automate the scheduling system while maintaining the flexibility

desired by the faculty and students. The remainder of this thesis is organized as follows:

• Chapter II discusses background information and related work in the fields of

timetabling and probability collective theory.

• Chapter III describes the specific implementation of probability collective

theory to solve the university course timetabling problem.

• Chapter IV displays the results of the implementation.

• Chapter V provides an overall summary and potential future work.

 5

II. BACKGROUND AND RELATED WORK

A. INTRODUCTION

Timetabling is generally set up as an optimization problem. In this chapter,

general approaches to optimization, existing timetabling techniques, and probability

collective theory are introduced. An introduction to several optimization algorithms can

be found in [8].

Optimization is a term describing methods used for minimizing or maximizing an

objective function. The objective function is a function which describes the quality of a

system for a given set of parameters, and the goal is to find the state of the system

(usually a set of parameters) which give the “best” quality, i.e., which minimize or

maximize this function. One common approach is called hill-climbing. Hill-climbing

picks a starting state and calculates the value of the objective function for this state. Then

the algorithm methodologically changes the state in an attempt to increase the objective

function. Once a state change no longer increases the objective function, the algorithm

halts. The problems with this technique are that it is possible to stop on local maxima and

never find the global optimal solution. Several methods such as using random restarts can

help overcome this obstacle.

Another improvement over hill-climbing is simulated annealing. Simulate

annealing uses hill climbing with a random walk that allows the algorithm to jump to

different states. The amount of randomness in the jumps is controlled by a variable called

temperature. Temperature begins at a high value allowing for larger distance jumps and

ensuring a high degree of exploration early on. As the algorithm progresses, temperature

is slowly decreased allowing for more time to be spent analyzing better choices.

Other common optimization methodologies rely on genetic algorithms. Genetic

algorithms draw on the theory of evolution by combining “parent states” and mutating to

create new single states in an attempt to improve the objective function. The algorithm

begins by generating a set of states called the population that are represented by a string

 6

over a finite alphabet. Offspring strings are generated by combining two parent strings at

a randomly chosen crossover point. Additionally, a random mutation of the string can

also occur. The offspring is then evaluated and if an improvement is achieved, the state is

saved. Similar to simulated annealing, genetic algorithms allow for a large amount of

exploration early on since the initial population is so diverse. It also allows for

optimization in problems without smooth objective functions.

Another variant of hill-climbing is tabu search. Tabu search is based on short term

memory. A list of previously visited states that cannot be visited again is maintained

allowing this algorithm to escape from local maxima. This approach is effective for some

domains but problems can exist when potentially good solutions are added to the tabu list

and never explored. By setting criteria that exclude solutions with certain criteria from

the list, this problem can be minimized.

Linear programming is a completely different approach to optimization than the

previous methods. Linear programming is used when optimizing subject to constraints

[9]. The objective function and constraints are defined as linear functions and the

combination of these functions defines a feasible region that encompasses all possible

solutions to the objective function. Several algorithms such as the Simplex method are

then used to determine the best solution in the feasible region. Integer linear

programming is a variation of linear programming that forces all variables to be integers.

B. TIMETABLING

Timetabling can be defined as the assignment of events to a limited number of

time periods and locations subject to constraints such that goal objectives are achieved to

the maximum extent possible. Several approaches to solving timetabling problems have

been researched over the last couple of decades. General solutions have been developed

as well as solutions that address specific areas such as employee timetabling, examination

timetabling, school timetabling, and sports timetabling. In this section, several algorithms

dealing with university timetabling are explored.

A good overview of solutions involving annealing techniques is provided in [10].

The authors note that one of the major drawbacks of applying simulated annealing to the

 7

timetabling problem is that it can take an unacceptably long time to develop a good

solution. The authors propose a deterministic approximation to simulated annealing

called mean-field annealing that attempts to achieve the same quality solution as

simulated annealing in a much shorter amount of time. A rule based preprocessor is used

to provide a good starting point. The paper also describes three cooling techniques:

geometric cooling, adaptive cooling, and adaptive cooling with reheating as a function of

cost. These cooling methods attempt to provide a good balance between early exploration

and fine-tuning of the timetable later.

The authors of [11] used a three phase approach that was very successful in the

2003 International Timetabling Competition. Phase 1 consisted of first constructing a

feasible timetable using graph coloring and maximum matching algorithms. In this phase,

events were placed in timeslots ensuring only that no hard constraints were violated. In

phase 2, the algorithm attempts to sequence the events in a way that minimized the soft

constraints. A solution space is created that includes all possible permutations of the

timeslots and then swaps two entries of the permutation at a time to determine the best

combination. Phase 3 uses simulated annealing to optimize the schedule. This algorithm

has been very successful and after some modification was shown to be superior to the

winner of the 2003 competition.

Chirandini et al. describe a hybrid algorithm in [12] and [13] that was also very

successful. The authors tested about 1185 configurations of different combinations of

algorithms to determine the best approach. Their best combination included the use of

local search, tabu search, and simulated annealing. In the first phase, all hard constraints

are attempted to be satisfied by using a local search algorithm. If this search results in

local optima, a tabu search is used to exit the local optima and continue with the local

search. Next, local search and simulated annealing are used to minimize the number of

soft constraints. The algorithm was tested against the problem instances of the 2003

International Timetabling Competition and scored better than the contest winner for all

20 problem instances.

A tabu search hyperheuristic approach is outlined in [14]. The hyperheuristic

algorithm takes several low-level heuristics as inputs and based on the evaluation

 8

function determines the best heuristic to use for the given optimization problem. The

method involves running each heuristic and assigning a rank based on the effectiveness

of that heuristic. The heuristics are then added to a tabu list in order of rank and the

optimization is run again using heuristics in order of rank from best performing to worst

performing. Ranks are recalculated and the order of the tabu list is adjusted. The process

continues until a satisfactory solution is found. The algorithm has proven to be successful

in university course timetabling as well as other problems such as scheduling hospital

shifts for nurses.

The authors of [15] detail the use of a memetic algorithm. A memetic uses local

search to reduce the space of possible solutions to a subspace of local optima. Genetic

algorithms and hill-climbing searches are then used to find the optimal solution from the

local optima. The algorithm was tested on actual scheduling data from Nottingham

University and was found to be promising but somewhat time intensive.

Integer linear programming was used in the approaches described in [16]. This

optimization approach involves partitioning the classes into subsets of classes called

blocks. These blocks are then scheduled in parallel. The paper deals with the creation of

these partitions and also the assignment of students to the blocks. Integer linear

programming is used for the optimization and results from tests done on real world high

school data show that solutions can be developed in a very short period of time.

A basic agent based approach is provided in [17]. Agents are assigned to each

hard and soft constraint in the problem set. In the first phase, each agent develops a

feasible schedule based only on its assigned constraint. The solutions are sent to the other

agents who then evaluate each solution based on its own constraint and a penalty is

assigned according to the number of constraint violations. Next each agent creates a small

change to the schedule ensuring that feasibility is not violated. These new schedules are

again distributed and scored. Feedback is provided to the agents based on whether the

change provided a positive of negative change on the penalty score. The generating agent

then decides whether to keep or discard the change. The process is repeated until all

constraint violations are eliminated and a final course timetable is developed or until the

violations cannot be reduced any further.

 9

Each of the approaches detailed above attempt to solve the university course

timetabling problem in a different way with varying degrees of success. The problem

remains very difficult and to date no one has found an optimal solution that is general

enough to be applied to any timetabling problem without significant modification. The

majority of these approaches also do not include the additional constraints placed by

considering student demand for courses.

C. PROBABILITY COLLECTIVE THEORY

Probability Collective (PC) theory is a relatively new approach to solving

optimizations problems. It has been successfully used in areas including flight control

[18], airline flight scheduling [19], and internet traffic routing [20]. PC theory is

described thoroughly in [21], [22], [23], [24], [25], [26].

PC theory allows for a distribution of the optimization among agents that

represent variables in the system. Collective Intelligence (COIN) is utilized to develop a

collective of these agents. Each agent selects actions from a predefined set and evaluates

the utility of this choice both for itself and for the collective as a whole. The agent makes

subsequent choices based on the determined utility until the system reaches an

equilibrium state where no improvements can be made by altering agent actions. PC

theory draws on ideas from genetic algorithms, simulated annealing, and statistical

physics.

In PC theory, each agent has a probability distribution across the actions available

to it and these probabilities are updated based on the utility calculation. This extends the

traditional COIN approach in the method in which it updates these probabilities. PC

theory assumes that each agent is bounded rational and independent and will make

choices based only on its own probability distribution. Bounded rational agents balance

their choice of best move with a need to explore the system. Independent agents make

their decisions without considering the moves of other agents in the system.

One benefit of using PC theory is that since each agent chooses actions

independently, the problem can easily be parallelized. Due to the competition

 10

requirements that the program run on only one processor, the full benefits of this

parallelization have not yet been realized in our work.

In the next two sections, the optimization approach and solution algorithm

presented in [22] are summarized.

1. Optimization Approach

Assuming that each agent is bounded rational and operates in an environment

with world utility G, the system equilibrium will be the optimizer of G subject to any

constraints imposed. This equilibrium can be found by minimizing the Lagrangian for

each agent as a function of the probability distribution associated with the agents’

possible actions. The Lagrangian ()i iqL is given by

() () ()E (,)i i i iiq G x x TS q⎡ ⎤= −⎣ ⎦L

where G is the system objective which depends on the agent i’s action xi and the actions

of all other agents, x(i). The probability distribution of agent i is represented by qi. S is the

entropy of this distribution and is given by:

() () ()ln
j

i i j i j
x

S q q x q x= −∑

T is the temperature of the system and determines the amount of exploration the agent

engages in. Each agent attempts to minimize the Lagrangian function ()i iqL , subject to

() ()1, 0,

i

i i i i i
x

q x q x x= ≥ ∀∑

This ensures that the sum of the probabilities in the probability distribution sum to 1 and

that there are no negative probabilities.

When temperature T is high, much weight is given to the entropy component of

the equation, which minimizes the Lagrangian by encouraging a uniform distribution and

therefore encourages more exploration of the space by the agent. As the temperature

 11

decreases, exploration becomes less important and the agent begins to exploit action

choices which are “better” (lower cost/higher utility) than others.

After each iteration, the probabilities are update using Newton updating, with the

update equation

() () () [] [] () ()E E
lni

i i i i i i i i i

G x G
q x q x q x S q q x

T
α

⎧ ⎫−
→ − × + +⎨ ⎬

⎩ ⎭

|

 (1)

where α is a step size determining how much the existing probability is modified by this

iteration’s results. The probability distribution is then renormalized ensuring that there

are no negative probabilities and that the sum all of the probabilities is 1.

To calculate the expected utility for each agent, we use

()
()

()E
k

ij
i i k

ij

N
g x j

D
= = =|

() () ()

() ()

1

1

(,)1

1

k
i i i iji

m
k

i ij
m

g x j x x j N

x j D

γ

γ

−

−

= = +

= +

∑
∑

 (2)

where ()1 ix j= equals 1 when ix j= and 0 otherwise. The agent’s private utility is

represented by gi. D tracks the number of times an agent i chooses a particular choice j

and N tracks the private utility when then choice is made. Data aging is controlled by γ.

Although not yet used in our system, constraints can be added to the system by

the addition of Lagrange multipliers, λ j , to the global utility along with constraint

functions, ()jc x
v

, as

() () ()λ j j
j

G x G x c x→ + ∑
v v v

.

The update rule for the Lagrange multipliers is

()λ λ Ej j jc xη ⎡ ⎤→ + ⎣ ⎦
v

 (3)

where η is separate step size.

 12

Expected utilities for each agent are computed by Monte-Carlo simulation. This is

accomplished by all agents repeatedly identically and independently sampling their

distributions to generate moves, and then calculating utilities based on these moves. The

private utility calculation should be chosen to ensure low bias and low variance. Low bias

ensures that the private utility closely resembles the global utility. Low variance ensures

that each agent’s contribution to global utility is distinguishable.

2. Solution Algorithm

The basic algorithm to solve problems with PC theory is as follows:

a. Initialize the system

a. Initialize the parameters {T, α, γ}. Set the convergence criteria δ.

b. Select the number of Monte Carlo Samples.

c. Initialize the probability collectives

b. While
1 1

λ λ
k k k k

i i
i

q qδ
− −

≥ − + −∑
v v v v

1. For each Monte-Carlo sample,

i. Jointly IID the sample

ii. Evaluate the objective function

iii. Compute each agent’s private utility

2. Compute the expected utility for each agent using Eq. (2).

3. Update the probability distributions using Eq. (1).

4. Update the Lagrangian multipliers using Eq. (3).

c. Final Evaluation

1. Determine the highest probability value for each variable

2. Evaluate the objective function with this set of values.

 13

D. CONCLUSION

In this chapter, the topics of optimization, timetabling, and probability collective

theory were discussed. This material formed the basis for that approach used in this

thesis. The timetabling section defined and constrained the optimization problem while

the probability collective section provided the background for the approach used.

 14

THIS PAGE INTENTIONALLY LEFT BLANK

 15

III. METHODOLOGY

In this chapter we discuss the methodology used in our experiments. In

particular, we applied PC theory to attempt to solve the university course timetabling

problem. Several modifications to the general probability collective algorithm were made

to map the theory to this specific problem.

A. APPLICATION OF PC THEORY TO TIMETABLING

In this section, the details of how the post enrollment course timetabling problem

was approached using PC theory are described. The basic algorithm was modified

slightly for the purposes of this implementation due to the relative size of the given

problem set compared to prior problems implemented with PC theory. In this application,

each event is represented by an agent. The available moves are determined individually

based on the specific requirements of each event.

In our system, an agent’s private utility is calculated by counting the number of

collisions that exist given a certain choice. Collisions can occur in two ways. First, if an

event is scheduled in the same timeslot and room as another event, the number collisions

are equal to the size of the union of the two sets of students. The second form of a

collision is when two events are scheduled in the same timeslot but in different rooms

and the intersection of the two sets of students is non-zero. The size of the intersection is

the number of collisions in this case.

Due to the size of the problem set, global utility is never actually calculated.

Instead, an average of the localized global utility is used to estimate actual global utility.

Localized global utility is calculated by summing the products of the probability of an

event choosing a certain timeslot-room combination and the expected utility associated

with that choice.

 16

1. Initialization

During the system initialization data structures are generated representing the

events, rooms, and students using data provided by the International Timetabling

Competition. We map students to events, rooms to available features, required features to

events, events to available time slots, and evaluate event precedence. Initial parameters,

including the rate of cooling (or rate of change of temperature) (∆T), the number of

Monte-Carlo samples (m) per iteration, and initial temperature, are set according to user

input. Initial temperature is carefully selected to ensure a good amount of exploration

occurs early on. The rate of cooling controls how rapidly the system moves from

exploration to trade off exploitation.

Next, each event is initialized. The probability distribution is set to only include

rooms of the appropriate size, rooms that have the features required by that event, and

timeslots that are available to that event. The distribution is initialized by assigning an

equal probability to each available choice. Data structures to track utilities for individual

choices and the number of times each choice is made (N and D respectively) are created

and initialized to zero.

Instead of setting the step size α and data aging factor γ to a preset value, each

event sets its own values based on the number of students assigned to that event. Smaller

classes are assigned a lower value for α and γ to allow for more movement for a given

iteration while larger classes are given higher values to prevent large jumps between

iterations. The theory behind this is based on how particles react in the real world. For a

given energy imparted on a system, smaller particles will move faster and farther than

larger ones. The end result is that events with larger class sizes tend to be placed earlier

while the smaller events are allowed more freedom to move and find an optimum slot.

The final phase of event initialization consists of pre-calculating the number of

collisions that can occur between two distinct events, by calculating the student set

intersection between every pair of events.

 17

2. The Optimization

For every iteration of the optimization, the m Monte-Carlo samples for each event

(representing room and time slot choices for the next m iterations) are first generated. We

used stochastic low variance sampling [27, p. 108] to generate all m samples up front in

O(m) time. These samples are initially ordered and must be randomly permuted.

Next, we iterate m times. For each iteration, each agent computes its private

utility (number of student/course collisions) for its chosen room and time slot, and tracks

the number of times each particular choice is made. After all iterations, each event

updates its N and D data structures and calculates expected utility using Eq. [2]. They

also calculate their localized global utility and entropy.

If the change in average localized global utility δ≥ , temperature is decreased by

∆T and next set of Monte-Carlo samples is calculated. If the change in average localized

global utility is minimal, then the algorithm moves to the final evaluation phase.

3. Final Evaluation

At this point each event should have a probability distribution that reflects the

best choice or choices of timeslot-room combinations that allow it to minimize the total

number of system collisions. The next step is to assign events to the timeslot-room

combination that best suits the event while ensuring that none of the hard constraints are

violated. Since it is likely that in a very dense schedule there may still be constraint

violations, events are scheduled in descending order of number of students associated

with that event.

For each event, the algorithm attempts to schedule the event in the timeslot-room

combination with the highest probability. This choice must be compared with already

scheduled events to ensure that there are no student collisions, no two events are

scheduled in the same room at the same time, and that all events are scheduled in the

order established by any precedence requirements. Lower probability choices are tried if

the first choice is not successful. If no acceptable timeslot-room combination is found,

the event is unscheduled.

 18

In this chapter, the application of probability collective theory to solving the

university course timetabling problem was discussed. The modifications to the generic

algorithm were outlined.

 19

IV. RESULTS

In this chapter, the results of running the algorithm described in chapter III to

solve the university course timetabling problem are described. Additionally, an analysis

of the algorithm including sensitivity analysis of the individual variables is provided.

A. RESULTS FOR TIMETABLING COMPETITION INSTANCE FILES

Sixteen problem instance data sets were provided by the International Timetabling

Competition for testing purposes. Table 1 lists the number of events, rooms, possible

room features, and number of students associated with each instance.

Instance Events Rooms Features Students
1 400 10 10 500
2 400 10 10 500
3 200 20 10 1000
4 200 20 10 1000
5 400 20 20 300
6 400 20 20 300
7 200 20 20 500
8 200 20 20 500
9 400 10 20 500
10 400 10 20 500
11 200 10 10 1000
12 200 10 10 1000
13 400 20 10 300
14 400 20 10 300
15 200 10 20 500
16 200 10 20 500

Table 1. Description of problem instances.

For the competition, a time limit was imposed based on the number of computer

cycles. A benchmark tool was provided on the competition website. The test machine

was a virtual machine running Windows XP and allocated 1024 MB of RAM. The base

machine was a Macintosh iMac running at 2.8GHz. Based on the benchmark tool, the

maximum allowable run time was approximately 600 seconds.

 20

The following parameters were used for the competition: ∆T = 0.90, 500 Monte-

Carlo samples per iteration, and an initial temperature factor of 2.0. The determination of

α and γ was made based on the actual minimum event student size of 1 and a maximum

of 98. The formula to calculate both variables ensured that the values for the largest event

were fixed at 0.9 and the variables for the smallest event were fixed at 0.1. The resulting

formula is:

0.00825 0.0964xα γ= = +

where x is the number of students requesting the event.

Table 2 displays the results of the competition runs. The worst case possible

column indicates the Distance to Feasibility if no events were placed. A baseline set of

data was generated by running the scheduling program with all of the probabilities in the

events’ collectives distributed uniformly. The program generated valid timetables but was

unable to find a feasible solution for any of the problem instances. Each instance is

known to have at least one feasible solution though the competition organizers feel that

these solutions will most likely not be found in the give time. At the time of writing this

thesis, the results from the competition were not available and therefore a comparison

with the other competition entries is not yet possible.

 21

Instance Baseline
Distance to
Feasibility

Distance
to

Feasibility

Soft
Cost

Run
Time
(sec)

Worst
Case

Possible

Baseline
Percent

Scheduled

Percent
Scheduled

1 4735 3076 1798 597 10515 55.0 70.7
2 4982 3170 1725 586 10515 52.6 70.0
3 4483 1997 3010 145 13383 66.5 85.1
4 4987 2040 2711 145 13396 62.8 84.8
5 2525 1239 1157 539 6275 59.8 80.3
6 1814 971 1322 529 6218 70.8 84.4
7 1965 687 1449 133 6733 70.8 89.8
8 1999 756 1496 138 6916 71.1 89.1
9 4962 2814 2076 593 10714 53.7 73.7

10 5235 3035 1685 581 10492 50.1 71.1
11 4116 2804 2937 159 13608 69.8 79.4
12 3967 2930 3123 155 13607 70.8 78.5
13 2967 1424 1175 535 6358 53.3 77.6
14 2772 1362 1154 538 6257 55.7 78.2
15 2122 808 1362 142 6527 67.5 87.1
16 1943 576 1366 145 6819 71.5 91.6

Table 2. Competition results.

B. ANALYSIS OF THE ALGORITHM

Figure 1 shows the progression of average localized global utility over time.

Three different problem instances of varying size are shown. In this implementation,

utility is actually a cost and lower average costs are desired. The initial high temperature

allows for greater exploration in the beginning of the optimization which explains the

initial rise in average localized global utility followed by a rapid drop to nearly zero as

the events find their optimal timeslot-room combination.

 22

Figure 1. Change in average localized global utility by iteration.

Figures 2 and 3 show the progression of the probability collectives through the

optimization process for events 5 and 21 of problem instance 3. Each line represents the

change in the probability for one timeslot-room combination over time. Student sizes for

the events were 65 and 15 respectively. By iteration 37, event 5 narrowed the number of

possible timeslot room combinations to one. At the end of the optimization, event 21 had

3 timeslot-room combination choices of about equal quality.

 23

Figure 2. Evolution of the probability collective for event 5 of problem instance 3.

Figure 3. Evolution of the probability collective for event 21 of problem instance 3.

 24

1. Sensitivity Analysis

A sensitivity analysis was conducted on several of the algorithm variables to

determine the effect of changing a single variable. The variables chosen were α, γ, ∆T,

and the number of Monte-Carlo samples. The baselines were the same as the competition

data runs with ∆T = 0.90 and the number of Monte-Carlo samples = 500. For this

analysis, α and γ were fixed to values of 0.5 each instead of using the calculation above to

set the values based on class size. All calculations were conducted using the data from

problem instance 3.

The number of Monte-Carlo samples (m) determines how many times each event

samples its distribution per iteration. A higher number of samples ensure that the system

is thoroughly sampled but the trade-off is that this higher number significantly increases

run time. Values of 250, 500, 1000, and 2000 were chosen for the analysis. With the

number of samples below 250, the algorithm was unable to lower average localized

global utility. Figure 4 shows the change in average localized global utility for the

various values of m. For all values of m other than 250, the curve is very smooth and

reacts as predicted. At m=250, average localized global utility is very unstable through

the entire run. For both m=250 and m=500, the peak of the curve is above the graph with

the peak for m=250 nearly 10,000,000 and the peak for m=500 nearly 9,000. After

iteration 15, the results for m=500, 1000, 2000, and 4000 are nearly identical showing

that the additional time for the calculation does not provide a significant return on

investment. Figure 5 shows the amount of time required for each value of m. The overlaid

trend line indicates that and increase in m causes a linear increase in the run time of the

program.

 25

Figure 4. Change in Average Localized Global Utility over time with different values of
number of Monte-Carlo samples(m).

Figure 5. Comparison of number of Monte-Carlo samples to time required

The value of ∆T determines the cooling down length for temperature. A higher

value allows less time for exploration and more time for analyzing “good” choices. The

downside to reducing temperature to rapidly is that less exploration can lead the

 26

algorithm to get stuck optimizing inside a local minimum and never finding the best

solution. Figure 6 shows the results on average localized global utility for the various

values of ∆T. For ∆T = 0.1 and 0.5, the program actually got stuck in local minima and

was not able to lower average localized global utility below values of 3 and 2,

respectively. The resulting timetables had 10 fewer events than the competition result for

the same file (163 versus 173 out of 200 possible). Values of ∆T = 0.8 and 0.9 appear to

allow sufficient exploration while still providing time to evaluate the “good” decisions.

For ∆T = 0.95, average localized global utility dropped at a much slower rate though in

the end a greater number of courses were scheduled than the competition result (183 in

this case).

Figure 6. Change in Average Localized Global Utility over time with different values of
∆T.

The magnitude of the previous iteration’s values stored in the probability

collectives included in the current iteration’s calculation of probability is controlled by α.

Values of α can range from 0.0 to 1.0 with lower values allowing for less “memory” of

old values to be retained. A value of zero means that the new probability collective values

are entirely determined by the new data while a value of one gives the past data an equal

 27

weighting with new data. For the analysis, values of 0.1, 0.25, 0.5, 0.75, and 0.9 were

chosen. Figure show the change in average localized global utility over time for each of

the values of α. Average localized global utility lowered faster with higher values of α,

although in each case the values were extremely close by the end.

Figure 7. Change in Average Localized Global Utility over time with different values of
α.

The data aging factor for the number of collisions stored in each event is

controlled by γ. Similar to α, γ can vary from 0.0 to 1.0. A value of zero means that the

stored number of collisions is based entirely on the current iteration while a value of one

means that the old data has equal weight to the new data. For the analysis, values of 0.1,

0.25, 0.5, 0.75, and 0.9 were chosen. Figure 7 shows that for all values of gamma, the

drop in average localized global utility is very similar, though lower values of γ did result

in slightly faster drops.

 28

Figure 8. Change in Average Localized Global Utility over time with different values of
γ.

C. FINAL DATA RUN

For the competition, a limit was imposed on the amount of time the program was

allowed to run (approximately 10 minutes on the test platform used). This limitation was

for judging purposes only and in a real world scheduling scenario much more time would

be allocated to the optimization. Additionally, the random seed was required to be fixed

for reproducibility. An additional data runs was made in an attempt to improve upon the

competition results.

For the final run, all parameters were the same as in the competition except that

the number of Monte-Carlo samples was increased to 1000 and ∆T was increased to 0.95.

Table 3 summarizes the results of this data run. The percent change column compares the

Distance to Feasibility change between this run and the completion run. Although the

majority of the runs showed improvements, a few runs were actually worse. The best

improvement was problem instance 13 showing a gain of 134.6% of scheduled student

event requests. Problem instance 7 showed a significant decrease in schedule quality. The

 29

expectation was that by increased the number of Monte-Carlo samples and slowing down

the cooling rate that the results would improve. For the majority of the instance problems

this improvement was observed. For the other instance problems, it is possible that the

algorithm is still getting stuck in local optima or possibly just that the instance is so

densely populated that the algorithm is not effective.

Instance Distance
to

Feasibility

Soft
Cost

Run
Time
(sec)

Worst
Case

Possible

Previous
Percent

Scheduled

Final Percent
Scheduled

Percent
Change

1 2823 1810 2656 10515 70.7 73.2 109.0
2 3223 1617 2561 10515 70.0 69.3 98.4
3 1606 2608 637 13383 85.1 88.0 124.3
4 1906 2925 631 13396 84.8 85.8 107.0
5 1031 1246 2350 6275 80.3 83.6 120.2
6 769 1313 2332 6218 84.4 87.6 126.3
7 980 1394 606 6733 89.8 85.4 70.1
8 765 1499 621 6916 89.1 88.9 98.8
9 2525 2070 2620 10714 73.7 76.4 111.4

10 2990 1759 2602 10492 71.1 71.5 101.5
11 2657 3018 701 13608 79.4 80.5 105.5
12 3084 3113 709 13607 78.5 77.3 95.0
13 1058 1180 2344 6358 77.6 83.4 134.6
14 1113 1197 2343 6257 78.2 82.2 122.4
15 788 1406 659 6527 87.1 87.9 102.5
16 523 1496 666 6819 91.6 92.3 110.1

Table 3. Data run results with m = 1000 and ∆T = 0.95

 30

THIS PAGE INTENTIONALLY LEFT BLANK

 31

V. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

We have implemented a solution to the post enrollment course timetabling

problem based on Probability Collectives theory. The algorithm produced valid

timetables for every instance, though 100% student placement was not achieved for any

instance. The algorithm was able to successfully schedule between 70.0% and 91.6% of

the student event requests in the time allowed by the competition rules. Though the

algorithm was not as effective as desired, compared to the baseline data the results were

considerably better. The algorithm scheduled between 9.6% and 24.3% more student

event requests than the algorithm with uniformly distributed probability distributions.

Additional gains were made by relaxing the time requirements, increasing the number of

Monte-Carlo samples, and lowering the cool down rate.

B. FUTURE WORK

The research presented in this thesis provides a basis for solving timetabling

optimization problems. Several modifications need to be made prior to being able to

apply the algorithm to the specific NPS timetabling problem. Several additional

constraints must be added to allow the algorithm to deal with all of the requirements that

the current schedulers must handle. Examples of these constraints include multiple

sections for courses and courses that also have labs associated with them. Additional hard

and soft constraints may better push the optimization in a particular direction, so a study

of the effect of these additional constraints on the optimization should be conducted.

Alternate cooling schemes might improve the search optimization. The current

scheme incrementally reduces temperature from a base value. A more sophisticated

method of cooling might help escape local minima more efficiently providing the events

a more accurate probability distribution.

 32

The current algorithm uses a localized global utility calculated by each agent to

estimate the individual agent’s contribution to the overall quality of the timetable. This

method was chosen because of the significant time required to calculate the true global

utility. A more accurate calculation of world utility may improve the effectiveness of the

algorithm. Additionally, a fairly naive method was used to calculate private utility. The

current method simply counts the number of “collisions” between events scheduled in the

same timeslot. A collision occurs when a student is scheduled for two events in the same

timeslot. Two examples of slightly more sophisticated methods to calculate private

utility, Team Game (TG) and Wonderful Life Utility (WLU), are discussed in [20]. Team

Game sets the local utility equal to the global utility while WLU clamps each agent’s

action, normally to the one with the lowest probability, and calculates a modified global

utility based on these actions. Both calculations result in utilities with low bias and

variance.

One of the major benefits of PC theory is the inherent parallelism. A modification

of algorithm so that the individual agents can be distributed across several processors

may provide significant improvements in program run times. Also, the current

implementation was written in Java. It is possible that implementing the algorithm in a

more efficient language could lower run times and more easily facilitate the use of

parallel processing.

 33

LIST OF REFERENCES

[1] F. J. Hederra, "Timetabling Courses at the Naval Postgraduate School," 1994.

[2] I. Dikmen, D. Stewart and M. Verett, "Business process re-engineering," 2005.

[3] P. Franses and G. Post, "Personnel scheduling in laboratories." in PATAT; Lecture

Notes in Computer Science, 2002, pp. 113-119.

[4] C. A. White and G. M. White, "Scheduling doctors for clinical training unit

rounds using tabu optimization." in PATAT; Lecture Notes in Computer Science,
2002, pp. 120-128.

[5] M. A. Trick, "Integer and constraint programming approaches for round-robin

tournament scheduling." in PATAT; Lecture Notes in Computer Science, 2002,
pp. 63-77.

[6] C. Barnhart and S. Shen, "Logistics service network design for time-critical

delivery." in PATAT; Lecture Notes in Computer Science, 2004, pp. 86-105.

[7] R. Lewis, B. Paechter and B. McCollum, "Post enrolment based course

timetabling: A description of the problem model used for track two of the second
international timetabling competition," Cardiff University, Cardiff Business
School, Accounting and Finance Section, Jul 2007.

[8] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. ,2nd

international ed. ed.Upper Saddle River: Prentice Hall, 2003.

[9] R. L. Rardin, Optimization in Operations Research. Upper Saddle River, NJ:

Prentice Hall, 2003.

[10] M. A. S. Elmohamed, P. D. Coddington and G. Fox, "A comparison of annealing

techniques for academic course scheduling," in PATAT '97: Selected Papers from
the Second International Conference on Practice and Theory of Automated
Timetabling II, 1998, pp. 92-114.

 34

[11] P. Kostuch, "The University Course Timetabling Problem With a Three-Phase
Approach," The Practice and Theory of Automated Timetabling V (PATAT'04,
Selected Papers). Lecture Notes in Computer Science, vol. 3616, pp. 109-125,
2004.

[12] M. Chiarandini, M. Birattari, K. Socha and O. Rossi-Doria, "An Effective Hybrid

Algorithm for University Course Timetabling," Journal of Scheduling, vol. 9, pp.
403, 2006.

[13] M. Chiarandini, K. Socha, M. Birattari and R. O. Doria, "International timetabling

competition. A hybrid approach," FG Intellektik, FB Informatik, TU Darmstadt,
Germany, 2003.

[14] E. K. Burke, G. Kendall and E. Soubeiga, "A Tabu-Search Hyperheuristic for

Timetabling and Rostering," J. Heuristics, vol. 9, pp. 451-470, 2003.

[15] E. K. Burke, J. P. Newall and R. F. Weare, "A memetic algorithm for university

exam timetabling," in Selected Papers from the First International Conference on
Practice and Theory of Automated Timetabling, 1996, pp. 241-250.

[16] N. Boland, B. D. Hughes, L. T. G. Merlot and P. J. Stuckey, "New integer linear

programming approaches for course timetabling," Comput. Oper. Res., vol. 35,
pp. 2209-2233, 2008.

[17] Y. Yang, R. Paranjape and L. Benedicenti, "An agent based general solution

model for the course timetabling problem," in AAMAS '06: Proceedings of the
Fifth International Joint Conference on Autonomous Agents and Multiagent
Systems, 2006, pp. 1430-1432.

[18] S. Bieniawski, "Distributed Optimization and Flight Control Using Collectives,"

2005.

[19] N. E. Antoine, S. Bieniawski, D. H. Wolpert and I. Kroo, "Fleet Assignement

Using Collective Intelligence," Proceedings of. 42nd Aerospace Sciences
Meeting, vol. 0622, 2004.

 35

[20] C. Huang, S. Bieniawski, D. H. Wolpert and C. E. M. Strauss, "A comparative
study of probability collectives based multi-agent systems and genetic
algorithms," in GECCO '05: Proceedings of the 2005 Conference on Genetic and
Evolutionary Computation, 2005, pp. 751-752.

[21] S. R. Bieniawski and D. H. Wolpert, "Product Distributions for Distributed

Optimization," International Conference on Complex Systems 2004, 2004.

[22] S. R. Bieniawski, I. M. Kroo and D. H. Wolpert, "Discrete, Continuous, and

Constrained Optimization Using Collectives," 10th AIAA/ISSMO Multi-
Disciplinary Analysis and Optimization Conference, 2004.

[23] S. Bieniawski and D. H. Wolpert, "Adaptive, distributed control of constrained

multi-agent systems," in AAMAS '04: Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems, 2004, pp. 1230-1231.

[24] C. F. Lee and D. H. Wolpert, "Product distribution theory for control of multi-

agent systems," in AAMAS '04: Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems, 2004, pp. 522-529.

[25] K. Tumer and D. Wolpert, "A survey of collectives," in Collectives and the

Design of Complex Systems ,1st ed.K. Tumer and D. Wolpert, Eds. New York:
Springer, 2004, p. 1.

[26] K. Tumer and D. Wolpert, "The theory of collectives," in Collectives and the

Design of Complex Systems ,1st ed.K. Tumer and D. Wolpert, Eds. New York:
Springer, 2004, p. 1.

[27] S. Thrun, W. Burgard and D. Fox, Probabilistic Robotics. Cambridge,

Massachusetts: The MIT Press, 2005.

 36

THIS PAGE INTENTIONALLY LEFT BLANK

 37

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

