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ABSTRACT 

The Internet Protocol (IP) has emerged as the dominant technology for 

determining how data is routed across the Internet. Because IP flows are defined 

essentially in terms of origin-destination (O-D) pairs, we represent IP traffic 

engineering as a multi-commodity flow problem in which each O-D pair is treated 

as a separate commodity. We account for the diversity in IP routing by modeling 

opposite extremes of traffic engineering: “naive” traffic engineering where the IP 

routes data between any two users using only the shortest path between them, 

and “best case” traffic engineering where IP has the flexibility to route data using 

multiple paths in the network regardless of their length. We develop linear 

programming formulations that identify the maximum data flow for an IP network 

that satisfies proportionality constraints for traffic demand for each case of traffic 

engineering, and we also determine the optimal interdiction of those flows that 

reduces that maximum flow in the worst possible way.   
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EXECUTIVE SUMMARY 

The objective of this thesis is to provide a quantitative means to assess 

the carrying capacity of an Internet Protocol (IP) based network under a general 

model for traffic demands, as well as identify the node and/or arc attacks that 

interrupt traffic flows in the worst possible manner. 

Over the last decade the Internet has become a critical infrastructure to 

our way of life. Internet Service Providers are the owners and operators of the 

computer networks that collectively afford the general public, schools, 

businesses, government, and military organizations, access to the Internet and 

its evolving applications. Network operators have developed explicit and implicit 

mechanisms for influencing the way in which IP traffic travels across their 

networks. This process is known as traffic engineering.  

We formulate a model representing “naive” traffic engineering where IP 

routes data for each origin-destination pair using only a single shortest path in 

the network. We desire to maximize this total amount of data flow by raising flow 

along every path in a proportional manner until one of the internal nodes and/or 

connecting arcs reaches capacity. Next we formulate a model representing  “best 

case” traffic engineering where IP has the flexibility to route data using multiple 

paths in the network regardless of length. We maximize the sum of the flows on 

artificial return arcs by increasing flow along all of them in proportion to each 

other until one of the arcs in the network reaches its capacity. 

ISPs are susceptible to many types of attacks, both physical and cyber, to 

their key components. The models developed here identity locations of attacks 

that have the most negative impact on the performance of the ISP. 

The analysis here focuses on Abilene, the high-speed backbone of the 

Internet2 educational network, a not-for-profit advanced networking consortium of 

universities, laboratories, and government agencies. We perform our analysis on 

a network representation of Abilene with node and/or arc capacities. We compute 



 xiv

the total amount of traffic routed between customers, the overall flow through the 

network, and the utilization of Abilene’s transshipment routers using both the 

naive and the best case traffic engineering formulations. We also identify the 

optimal node and arc attacks that affect the total amount of traffic routed between 

customers and the flow through the network in the worst possible way. We find 

that Abilene is well-provisioned in the sense that it tends to be the arcs, in 

particular the customer access links, that saturates data flow in the network, a 

generalization that is consistent with our results. 

The models and analysis in this thesis are applicable to any ISP network. 

The general public, businesses, civilian and military organizations rely heavily on 

these networks. As the reliance grows, so will the need for understanding an 

ISP’s limitations and vulnerability to attacks. 
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I. INTRODUCTION  

A. BACKGROUND 

Over the last decade the Internet has become an infrastructure that is 

critical to supporting our way of life. People throughout the world rely on the 

Internet as a means for personal communication through the use of email, instant 

messaging, or chat rooms. Students have access to limitless amounts of 

information stored on the Internet on any topic imaginable. Co-workers are able 

to share information and conduct business in unprecedented manners. The Navy 

Marine Corps Intranet and the Army’s LandWarNet provide service members on 

all command levels with secure platforms for information sharing amongst 

military installations and forward-deployed forces throughout the world. 

Internet Service Providers (ISPs) are the owners and operators of the 

computer networks that collectively provide the general public, schools, 

businesses, government, and military organizations, access to the Internet and 

its evolving applications.  

The operation of the Internet is determined by protocols which specify the 

roles, rules, and responsibilities for individual technologies. Among these, the 

Internet Protocol (IP) has emerged as the dominant technology for determining 

how an ISP routes traffic across its part of the Internet from one customer to 

another.  

Network operators have developed explicit and implicit mechanisms for 

influencing the way in which IP traffic travels across their networks. This process, 

known as “traffic engineering,” allows the network operator to tune the 

performance of their network in response to changing traffic levels or 

environmental conditions. The two main protocols used to for traffic engineering 

of IP within a single ISP are Open Shortest Path First (OSPF) and Intermediate 
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System-Intermediate System (IS-IS), both of which compute shortest paths 

based on configurable link weights (see Rexford, 2006 and references therein). 

B. RESEARCH OBJECTIVES AND MODELING APPROACH 

The objective of this thesis is to provide a quantitative means to assess 

the carrying capacity of an IP-based network under general traffic demands, and 

then to identify the node and/or arc attacks that interrupt traffic flows in the worst 

possible manner. Such tools will lead to a better understanding of the system-

wide vulnerabilities of real IP networks, as well as provide guidelines for network 

protection. We measure the performance of a given network in terms of the 

maximum traffic levels that it can support. We identify network vulnerabilities by 

determining the attack(s) to network components that reduce its maximum 

carrying capacity in the worst possible way.  

We  represent IP traffic flow using a  “gravity model” for traffic demand, 

which states that the amount of traffic exchanged between two users is 

proportional to the total amount of traffic entering and exiting each of those users 

(Alderson et al., 2006). Thus, the gravity model assumes that demand for traffic 

is proportional to the product of the “size” of the two users. In practice, the actual 

traffic levels (i.e., data flow between users) need not be proportional, even when 

the demands follow the gravity model. However, we assume that traffic levels 

occur in proportion to demand, which is an extreme type of “fairness” that we 

impose. The idea is to provide a share of network resources (e.g., transshipment 

router bandwidth throughput capacity) to each user based on their size. 

IP traffic engineering varies from ISP to ISP and depends on the 

technologies and polices in use. For example, it may be the intent of the ISP to 

minimize end-to-end traffic delay, or maximize utilization of network resources, or 

maximize “customer satisfaction.” Some ISP users may receive preferential 

access to network resources, with the other users sharing what remains. So we 

model two opposite extremes of traffic engineering alternatives. We first 

formulate a model representing “naive” traffic engineering where IP routes data 
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for each origin-destination pair using only a single shortest path in the network. 

This policy is easy to implement but tends to underutilize network resources. The 

second formulation represents “best case” traffic engineering where IP has the 

flexibility to route data using multiple paths in the network regardless of length. 

This policy yields a higher utilization of resources but is more complicated to 

implement and manage, and is an upper bound on achievable performance.  

We represent a particular ISP as a network by considering its router-level 

map. Nodes in the network correspond to routing devices, and arcs between 

routers correspond to direct connectivity as seen by IP. For simplicity, we 

assume that connections between nodes correspond to physical connectivity, 

although this may not be the case. We also consider the network capacities in 

the form of connection speeds for arcs, and router throughput bandwidth 

capacities (Alderson et al., 2005).  

We develop linear programming (LP) models that allow us to analyze the 

maximum carrying capacity of an ISP under a gravity model of user traffic 

demand. The models also examine the utilization of the ISP’s components (i.e., 

routers and their arcs), as well as identify the bandwidth limitations on those 

components. ISPs are susceptible to many types of attacks, both physical and 

cyber, to their key components (Doyle et al., 2005). The models developed here 

identify the attacks that have the biggest impact on the performance of the ISP. 

C. LITERATURE REVIEW OF PREVIOUS WORK 

The study of network vulnerability problems is not new. For 

telecommunications, considerable effort has been directed at the analysis of the 

physical infrastructure, in particular the design of fiber optic networks 

(Henningsson et al., 2006). Grotschel et al. (1995) present a general framework 

for the design of “survivable” communication networks, including the study of 

minimum spanning trees, Steiner trees, and minimum cost k-connected network 

design problems.  An updated treatment of the problem can be found in Kerivin 

and Mahjoub (2005). 
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Much of the work in network vulnerability and survivability has its roots in 

graph theory, in which the network is represented solely in terms of its 

connections (without any annotations or domain-specific data), and considerable 

effort is devoted to assessing various measures of global connectivity. These 

include network diameter (i.e., average length of shortest path between any two 

nodes), characteristic path length (i.e., the average distance along any path 

between any two nodes), or the size and distribution of connected clusters. 

Recently, these graph theoretic measures have been applied to the Internet, and 

many studies have focused on how these connectivity patterns change in the 

presence of accidental or intentional graph losses (Albert et al., 2000, Cohen et 

al., 2000, Cohen at al., 2001, Bollobas and Riordan 2003, Crucitti et al., 2004). 

As discussed in Alderson (2008), a general problem with this approach is that 

any notion of network “function” is being approximated (often poorly) by these 

simple graph theoretic measures. 

The vulnerability of router-level Internet networks was discussed by Doyle 

et al. (2005), who showed that previous results by Albert et al. (2000), which 

focused on connectivity patterns and focused on critical high-degree hubs, were 

not relevant to the real Internet. In contrast, they considered the need to 

maximize flow on the part of the ISP and formulated a simple path-based model 

of network throughput, described here as the “single-path” model. However, their 

consideration of “worst case” attacks on network routers was myopic and 

heuristic, in that it simply ranked nodes in a prioritized list in terms of the effect 

their removal would have on overall network throughput.  They did not consider 

attacks that were formally optimal, nor did they consider more sophisticated 

models of traffic engineering that underlie real IP networks. 

Recent effort has been devoted to the application of optimal network 

interdiction to critical infrastructure protection (Brown at al., 2006). This thesis 

continues that effort and formalizes the notion of an optimal attack for a 

maximum proportional flow problem and provides analysis and computational 

implementation to solve it efficiently. 
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D. STRUCTURE OF THESIS AND CHAPTER OUTLINE 

The reminder of this thesis is organized as follows: In Chapter II we 

formulate two LP models, representing alternative approaches to traffic 

engineering discussed above. In Chapter III we use these models to perform a 

detailed analysis of Abilene, the backbone for the Internet2 academic network. 

Finally in Chapter IV we summarize the contributions of the thesis and offer 

suggestions for future research. 
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II. MODEL FORMULATION 

Because IP flows are defined essentially in terms of Source (node s) and 

Terminal (node t) node pairs, we represent IP traffic engineering as a multi-

commodity flow problem in which each s-t pair is treated as a separate 

commodity. In our network, the “edge” nodes (i.e., the nodes the provide network 

access to the users and connect to the internal nodes) represent the users. We 

will assume that all users communicate with one another, and that the demand 

for flow between user pairs is proportional to the product of their capacities, an 

assumption consistent with the aforementioned gravity model of traffic demand. 

The “internal” nodes (i.e., nodes that provide connectivity to the other network 

devices) represent intra-network routing devices (i.e., “routers”), and arcs 

connecting them represent one-hop IP connectivity between routers (i.e., routers 

directly “see” one another according to IP).  

The primary problem is to identify the maximum flow (and corresponding 

optimal routing) for a multi-commodity network that satisfies the proportionality 

constraints for flow demand as well as capacity constraints on nodes and arcs.   

The secondary problem is to identify the optimal interdiction of those flows 

that reduces that maximum flow in the worst possible way.  

We consider two approaches to traffic engineering. First, we consider a 

strict approach where each commodity follows a single shortest path. Second, 

we will look at best case traffic engineering in which it is possible to route traffic 

through the network by taking multiple, possibly longer, paths.  

A. SINGLE PATH MULTI-COMMODITY MAXIMUM FLOW  

1.  Solving for Maximum Flow 

This model represents the simplest form of traffic engineering. Traffic from 

user s to user t follows a single path in the network. That path is the computed 



 8

shortest path, in terms of the number of internal nodes visited (or arcs traversed), 

from user s, to user t. The total amount of data flow through the network is the 

sum of the traffic routed along all of the shortest s-t paths. There exist flow 

throughput capacities on the network’s “internal” nodes and/or the arcs 

connecting them. We desire to maximize this total amount of data flow by raising 

flow along every path in a proportional manner until one of the internal nodes 

and/or connecting arcs reaches capacity. We refer to the network components 

that reach capacity as "bottlenecks." 

Formulation 1: MAX SP (Maximizing Single-Path Flow) 

Index Use 

 , ,i j k N∈   Nodes  

( , )i j A∈   Directed arc from node i to node j  

 ,s t E N∈ ⊆          Source and terminal nodes in the set of “edge”   

                                            nodes  E  

Data 

 sD    Traffic demand by edge node s ∈ E [flow] 

 kB    Throughput capacity of node k∈N [flow] 

 ,i ju    Upper bound on flow from node i to node j       

                                 for each arc (i, j) ∈ A [flow] 

,s tr   Shortest path route from node s to node t for  

                                 each s, t ∈ E [flow] 
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Calculated Data 

,s t
kr               Binary indicator whether node k is on the   

                                 shortest path from node s to node t for s, t ∈ E   

                                 [binary]           

       
,

,
,

1 if node k is on  

0 if node k is not on  

s t
s t

k s t

r
r

r

⎛
= ⎜⎜
⎝

 

   ,
,
s t
i jq    Binary indicator whether arc (i, j) is on the  

                                           shortest path from node s to node t  for s, t ∈ E    

                                           [binary] 

    
,

,
, ,

1 if arc( , ) is on 
0 if arc( , ) is not on 

s t
s t
i j s t

i j r
q

i j r

⎛
=⎜⎜
⎝

 

Decision Variable 

,s tX      Flow along route ,s tr  from node s to node t  

                                 [flow]  

,s t
s tX B Bρ=  where ρ is a constant of  

proportionality 
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Formulation 

( )

,

,

, ,

,

, ,
, ,

,

,

max (C1.0)

s.t. (C1.1)

( , ) (C1.2)

, (C1.3)

s t

s t E

s t s t
k k

s t E

s t s t
i j i j

s t E

s t
s t

X

X r B k N

X q u i j A

X B B s t E E

ρ

ρ

∈

∈

∈

≤ ∀ ∈

≤ ∀ ∈

= ∀ ∈ ×

∑

∑

∑
 

(NOTE: Throughout the thesis, n denotes the number of nodes, e denotes the 

number of edge nodes, and m denotes the number of arcs.) 

Discussion 

Equation (C1.0) is the objective function which represents total amount of 

data flow through the network. It is the sum of the traffic routed along all of the 

shortest s-t paths. We maximize the objective function value by increasing the 

proportionality constant ρ. Equations (C1.1) and (C1.2) limit the amount of flow 

through each node and arc respectively. Equation (C1.3) ensures that flow is 

routed between each s-t pair, and that those flows are raised in proportion to 

each other. 

There is considerable preprocessing involved in solving for single-path 

maximum flow. We compute the ,s tr  values using the Floyd-Warshall algorithm 

(Appendix A). Floyd-Warshall determines the shortest paths between all node 

pairs, but we are only interested the shortest paths between each s-t node pair. 

Once the shortest path routes are determined, we use it to build a matrix      

(size: e2 × n) of ,s t
kr  values ,( , ) s t

k

k N

s t r

⎯⎯→∈

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (Appendix B)   
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and a matrix (size : e2 × m) of ,
,
s t
i jq  values ,

,

( , )

( , ) s t
i j

i j A

s t q

⎯⎯→∈

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (Appendix C).  

Each of the three tasks mentioned above runs in O(n3). 

Our formulation allows us to study networks in which only the nodes are  

capacitated ( kB < ∞ , ,i ju = ∞ ), or when just the arcs are capacitated ( kB = ∞ , 

,i ju < ∞ ), or when both nodes and arcs are capacitated ( kB < ∞ , ,i ju < ∞ ). 

The special structure associated with the constant of proportionality ρ 

affords a direct analytic solution to the maximum flow under single-path routing. 

For a network with capacitated nodes and un-capacitated arcs, consider 

equations (C1.1) and (C1.3). 

( )

, ,

,

,

(C1.1)

, (C1.3)

s t s t
k k

s t E

s t
s t

X r B k N

X B B s t E Eρ

∈

≤ ∀ ∈

= ∀ ∈ ×

∑
 

Equation (C1.1) can be rewritten as 

,

,

s t
s t k k

s t

B B r B k Nρ ≤ ∀ ∈∑  

or 

,

,

k
s t

k s t
s t

B
k N

r B B
ρ ≤ ∀ ∈

∑  

Now we can solve for ρ directly. 

  ,

,

0 (1)min k
s tk k s t

s t

B
k N

r B B
ρ

⎛ ⎞
⎜ ⎟= > ∀ ∈⎜ ⎟
⎜ ⎟
⎝ ⎠
∑
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For a network with capacitated arcs and un-capacitated nodes, we solve for ρ 

using equations (C1.2) and (C1.3) and performing the same substitution. Solving 

for ρ in this type of network yields the following result 

,
,

( , ) ,
,

0 ( , ) (2)min i j
s t

i j A i j s t
s t

u
i j A

q B B
ρ

∈

⎛ ⎞
⎜ ⎟= > ∀ ∈⎜ ⎟
⎜ ⎟
⎝ ⎠
∑

 

For networks where both the nodes and arcs have capacity, the correct ρ is the 

minimum ρ between equations (1) and (2). This type of solution is easily 

implemented in a spreadsheet program such as EXCEL. 

2. Minimizing the Maximum Flow  

Suppose an opponent (an attacker) wants to incur the greatest amount of 

“damage” on the network. Assume that the attacker has the capability to destroy 

a limited number of nodes and/or arcs, thus reducing to zero the capacity for 

each of the destroyed nodes and/or arcs ( kB =0 and/or ,i ju =0). The attacker must 

decide which nodes and/or arcs in the network to destroy so that the maximum 

flow is minimized, perhaps to zero.  

The previous formulation is the same, with the addition of the following 

data and decision variables.  

Formulation 2: MIN-MAX SP (Minimizing the maximizing Single-Path 

Flow) 

Data 

attacks    Number of nodes and/or arcs that the attacker  

                                 can destroy [cardinality]  
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Decision Variable 

kY    Binary indicator for attacker destruction of node  

                                 k ∈ N [binary] 

   
1 if is destroyed
0 otherwisek

node k
Y ⎧

=⎨
⎩

 

,i jY    Binary indicator for attacker destruction of    

                                 arc (i, j) ∈  A  [binary] 

   ,

1 if ( , ) is destroyed
0 otherwisei j

arc i j
Y ⎧

=⎨
⎩

 

Min-Max optimization of flow 

( )

,

,

, ,

,

, ,
, , ,

,

,

max (C2.0)

. . (1 ) (C2.1)

min
(1 ) ( , ) (C2.2)

(1 ) (1 ) , (C2.3)

s t

s t E

s t s t
k k k

s t E

Y
s t s t

i j i j i j
s t E

s t
s s t t

X

s t X r B Y k N

X q u Y i j A

X B Y B Y s t E E

ρ

ρ

∈

∈

∈ϒ

∈

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪≤ − ∀ ∈
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪≤ − ∀ ∈⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪

= − − ∀ ∈ ×⎪ ⎪
⎩ ⎭

∑

∑

∑
 

{ }

,
( , )

, ,

,

1 (C2.4)
2

where = (C2.5)

, 0,1 , ,

k i j
k N i j A

i j j i

k i j

Y Y attacks

Y Y Y

Y Y i j k N

∈ ∈

⎧ ⎫+ ≤⎪ ⎪
⎪ ⎪⎪ ⎪∈ϒ= ⎨ ⎬
⎪ ⎪∈ ∀ ∈⎪ ⎪
⎪ ⎪⎩ ⎭

∑ ∑
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Discussion 

Equation (C2.0), the objective function, reflects that the attacker desires to 

minimize the previously maximized sum of traffic routed along all of the shortest 

s-t paths in the network. The attacker will seek to destroy nodes, or arcs, or both 

depending on the network’s structure (i.e., which components are capacitated). 

Equations (C2.1) and (C2.2) limit the amount of flow through each node and arc 

respectively. Equation (C2.3) ensures that flow is routed between each s-t pair, 

and that those flows are raised in proportion to each other. Equation (C2.4) 

places a limit of the number of attacks that the attacker can prosecute. 

Destroying a node or arc drops its capacity to zero. Equation (C2.5) states that 

destroying arc (i, j) also destroys arc (j, i). 

Solving by Total Enumeration 

There are a finite number of kY  and ,i jY  variables for the model. Thus, the 

optimal “interdiction” solution can be determined by checking all possible choices 

for kY  and ,i jY  for a given value of attacks , and then keeping the “best” solution 

(i.e., the solution that minimizes the maximum flow through the network the most, 

as in Rardin et al., 1998).  

This type of total enumeration works for problems with limited size. For the 

network operator (the defender), there are e(e-1) decision variables, one for each 

s-t pair. There are n+m decision variables for the attacker.  

Discussion 

When a node or arc is attacked, it is removed from the network. We then 

use the Floyd-Warshall algorithm to re-compute the shortest paths for the 

remaining s-t pairs so that the new ,s t
kr  and ,

,
s t
i jq  values can be can calculated.  

Changing the ,s t
kr  and ,

,
s t
i jq  values directly impacts flow through the 

network, as measured by ρ. In some instances ρ will decease, as expected. 

However, in other instances ρ may actually increase. This is the converse of 
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Braess’s paradox, which states that adding additional capacity to a network can 

reduce the network’s total flow  (see Florian and Hearn 1995). In our case it is 

possible that, by attacking certain nodes or arcs, bottlenecks are removed from 

the network resulting in a net increase in flow through the remaining network.  

B.   MULTIPLE PATH MULTI-COMMODITY MAXIMUM FLOW MODEL 

1.  Solving for the Maximum Flow 

This model represents best-case traffic engineering in that the network is 

able to route traffic along multiple, possibly longer, paths, and makes better 

overall use of network resources. Here, we modify the standard LP formulation of 

the Maximum s-t Flow problem (Appendix D) to accommodate multi-commodity 

flows while also adding a proportionality constraint for each s-t pair. We use the 

technique of “node splitting” to replace the capacity of a node with a capacitated 

arc connecting the two split nodes. In this manner, all capacities are represented 

as arc capacities.  Like the single-path model, the goal is to maximize that total 

amount of data flow through the network. We introduce an artificial return arc for 

every s-t pair. The return arcs are unbounded ( ,s tu = ∞ ), but must adhere to the 

constant of proportionality. We maximize the sum of the flows on the return arcs, 

again, by increasing flow along all of them in proportion to each other until one of 

the arcs in the network reaches its capacity.  

Formulation 3: MAX MP (Maximizing Multiple-Path Flow) 

  Index Use  

 , ,i j k N∈   Nodes  

( , )i j A∈   Directed arc from node i to node j 

,s t E N∈ ⊆       Source and terminal nodes in the set of “edge”                    

                                 nodes E  
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Preprocessing 

 Each “internal” node k ∈  E is split into two nodes {k, k’} with     

 directed arc (k, k’) connecting them.  

k k k’

kB
, 'k k ku B=

 

Data 

kB    Throughput capacity at node k ∈  N  [flow] 

sD    Demand for edge node s ∈ E  [flow] 

 

 ,i ju    Upper bound on flow from node i to node j   

                                  on arc (i, j) ∈ A [flow] 

     ,

f , '
otherwise

k
i j

B i i k j k
u

= =⎧
=⎨∞⎩

 

Decision Variables 

 ,
,
s t
i jX             “Internal” flow of commodity s-t on arc (i, j) ∈ A [flow] 

 ,s tZ   “Return” flow of commodity s-t on artificial arc  

                                 (t ,s)∈A [flow] 

   ,s t
s tZ D Dρ=  where ρ is a constant of proportionality. 

 

 



 17

Formulation [dual variables] 

,

,

, ,

,

, , ,
, ,

( , ) ( , ) ,

,
, , ,

,

,

max max (C3.0)

if
s.t 0 if , , ( , ) [ ] (C3.1)

if

( , )   [ ] (C3.2)

0 ( , ) [
s t

s t
s t

s t E s t E

s t

s t s t s t
k j i k k

k j A i k A s t

s t
i j i j i j

s t E

s t
s t

Z D D

Z k s
X X k s t k N s t E E

Z k t

X u i j A

Z D D s t E E

ρ ρ
ρ

α

β

ρ µ

∈ ∈

∈ ∈

∈

=

⎧ =
⎪

− = ≠ ∀ ∈ ∀ ∈ ×⎨
⎪− =⎩

≤ ∀ ∈

− = ∀ ∈ ×

∑ ∑

∑ ∑

∑

, ,
,

] (C3.4)

0,  0,   . . .s t s t
i jX Z U R Sρ≥ ≥

 

Discussion 

Equation (C3.0), the objective function, represents the sum of the flows 

along the return arcs (t, s). We maximize the objective function value by 

increasing the proportionality constant ρ. Equation (C3.2) is a balance of flow 

constraint. Equation (C3.2) limits the amount of flow on each arc. Equation (C3.4) 

ensures that flow is routed along each return arc (t, s), and that those flows are 

raised in proportion to each other. 

The following table shows the number of decision variables and 

constraints contained in multiple-path model: 

  Decision Variables   Constraints     
 Flow from s to t e·(e-1) Flow Balance n·e·(e-1)  
 Arc Flow m·e·(e-1) Arc Capacity m  
      Demand e·(e-1)   

 

The multiple-path model is a linear programming formulation that we solve 

using General Algebraic Modeling System (GAMS) software and the Solver 

CPLEX.  The effort GAMS requires to solve the multiple-path model grows 

significantly with the number of s-t pairs, e(e-1), in a given network. 
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2. Minimizing the Maximum Flow 

Consider again the case of an attacker who can disable a finite number of 

network components and seeks to damage the total network flow in the worst 

possible manner. A natural choice to represent the effect of an arc attack is to set 

the capacity of the attacked arc to zero (as was done in the single-path model). 

However, an equivalent and computationally attractive approach is to assign a 

penalty cost, ,i jv , to attacked arcs. This discourages the defender from sending 

flow across an arc that’s been destroyed. To avoid attacked arcs, the penalty 

cost must be greater the one, because, if ,i jv =1 the defender is completely 

indifferent to sending flow across the interdicted arc, and the resulting problem 

may have many equivalent optimal solutions. Thus we set ,i jv =2 if arc (i, j) is 

susceptible to being attacked. We can similarly designate an arc as invulnerable 

by setting ,i jv =0. In this model, artificial return arcs are all invulnerable. 

The previous formulation is the same, with the addition of the following 

data and decision variables. 

Formulation 4: MIN-MAX MP (Minimizing the Maximizing Multiple-Path 

Flow) 

Data 

,i jv    Penalty cost for arc (i, j) ∈ A [cost/flow] 

attacks      Number of arcs the attacker can destroy  

                           [cardinality] 

Decision Variables 

( , )i jY    Attacker destruction of arc (i, j) ∈ A [binary] 

,

1 if ( , ) is destroyed
0 otherwisei j

arc i j
Y ⎧

=⎨
⎩
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Min-Max optimization of flow[dual variables] 

( ), ,
, , ,

, ( , )

,

, , ,
, ,

( , ) ( , ) ,

,
, , ,

,

,

max C4.0

if
s.t 0 if , , ( , ) [ ] (C4.1)

if

min ( , ) [ ] (C4.2)

s t s t
i j i j i j

s t E i j A

s t

s t s t s t
k j i k k

k j A i k A s t

s t
i j i j i jY s t E
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Z v X Y
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X X k s t k N s t E E
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1 (C4.4)  
2

where = (C4.5)

, 0,1 ( , )

i j k k
i j A k N

i j j i

i j k k

Y Y attacks

Y Y Y

Y Y i j A
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Taking the dual of the min-max formulation yields the following 

formulation. 

Formulation 5: MAX MP Dual (Minimizing the Maximizing Multiple-Path 

Flow) 

Min-Max optimization of flow 

, ,, , , ( , )

, , ,
, , , ,

, , , ,

,

,

, ,

,

min (C5.0)

. . 0 ( , ) , , (C5.1)

1 , (C5.2)

0 (C5.3)

 U.R.S.,  U.R.S. ( , )

0 ( ,

i j i jY i j A

s t s t s t
i j i j i j i j i j

s t s t s t s t
t s

s t
s t

s t E

s t s t
i

i j

u

s t v Y i j A s t N X

s t N Z

D D

s t E E

i j

α β µ
β

α α β

α α µ

µ

α µ

β

∈

∈

⎡ ⎤− + + ≥ ∀ ∈ ∀ ∈ ⎣ ⎦

⎡ ⎤− + ≥ ∀ ∈ ⎣ ⎦

=

∀ ∈ ×

≥ ∀

∑

∑

,
( , )

,

)

(C5.4)

{0,1} ( , )

i j
i j A

i j

A

Y attacks

Y i j A

∈

∈

≤

∈ ∀ ∈

∑

  

Discussion 

This formulation is the dual of the maximizing multiple-path flow 

formulation. The formulation consists of dual variables for flow balance: equation 

(C5.1), arc capacity: equation (C5.2), and demand: equation (C5.3) for each s-t 

pair. Like the single-path model, the attacker desires to minimize the previously 

maximized sum of traffic routed along all return arcs (t, s) in the network.  
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The following table shows the number of decision variables and 

constraints contained in multiple-path MIP model (dual): 

  
Dual Decision 

Variables   Dual Constraints     
 Node Flow n·e·(e-1) Flow Balance m·e·(e-1)  
 Upper bound m Arc Capacity e·(e-1)  
  Commodity Flow e·(e-1) Demand e·(e-1)   

  

 The multiple-path dual model is a mixed integer program that we also 

solve using GAMS and the CPLEX Solver.  Again, the time GAMS requires to 

solve this problem grows significantly with the number of s-t pairs in the network. 

Working with Proportional Flow 

If a user is disconnected from the network as a result of an attack, flow to 

or from that user is no longer possible. Thus, that user cannot send or receive 

traffic, so ,s tZ =0. Just like in the single-path formulation, flows are constrained to 

be proportional to each other ( , 0s t
s tZ D Dρ− = ), so the disconnection of a single 

edge node from the network effectively sets ρ=0 and all flows disappear. In 

practice, the disconnection of a user does not preclude other users from sending 

and/or receiving traffic. In this sense, the proportionality constraint used here is 

unrealistic. In order to facilitate the computation of a more reasonable traffic 

response to an attacked network, we consider the following model re-formulation: 

Let ,s tρ be the proportionality constant for a single s-t pair. We modify the 

equation (C3.4) 

, , 0 ( , )s t s t
s tZ D D s t Nρ− = ∀ ∈  

And add an additional constraint 

, , ( , )s t s tR s t Nρ ρ= ∀ ∈   
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Where ,s tR =1 if there exists a path connecting node s to node t, or ,s tR =0  if no 

such path exists. Thus ,s tR is a binary value that indicates whether an individual 

s-t path is available in the network.  

There are two approaches for determining the ,s tR values. The first is to 

let them be binary variables and have the model determine the best choices. 

(This makes the primal problem a MIP.) A drawback with this approach is that 

while the model will never allow , 1s tR =  if s and t are not connected, s-t pairs that 

are connected might also be shut off proactively in order to provide a better 

solution for maximizing flow through the remaining network (again the Braess 

Paradox). Such a solution is contrary to the “fairness” assumption underlying our 

use of proportional flows. 

An alternative approach is to pre-compute the ,s tR values using a 

reachability algorithm (Appendix E). The multiple-path model (Figure 3) remains 

the same, with the addition of the following data. 

Formulation 6: R-MAX MP (Revised Maximizing Multiple-Path Flow) 

Calculated Data  

             ,s tR            Connection between node s and node t [binary]           

                    , 1 if node is "reachable" from node  
0 if node is not "reachable" from node 

s t t s
R

t s
⎛

= ⎜
⎝
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Formulation 
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i j
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ρ

∀ ∈ ×

≥ ≥ ∈ ∀ ∈ ×

 

Discussion 

In summary, MAX MP calculates total flow through the network under 

best-case traffic engineering. MAX MP Dual determines the optimal arc(s) to 

attack in order to reduce flow through the network the most. And finally, R-MAX 

MP calculates total flow on a “damaged” network. Just like for the single-path 

model, this model allows us to study networks in which only the nodes are  

capacitated ( ,i ju = ∞ ), or when just the arcs are capacitated ( kB = ∞ ), or when 

both nodes and arcs are capacitated.  
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III.  ANALYZING THE ABILENE NETWORK 

Abilene is the high-speed backbone of the Internet2 educational network, 

a not-for-profit advanced networking consortium of universities, laboratories, and 

government agencies. (Detailed information is available at 

http://www.internet2.edu/) Figure 1 represents Abilene’s network topology (as of 

2004). We use the models developed in the previous chapter to examine how 

different methods of traffic engineering affect the carrying capacity of the 

network, as defined by its multi-commodity maximum flow.   
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Figure 1.   The Abilene Network 
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• The clouds in the figure are customers, either campus networks 

(white) or other network providers (grey).  

• Abilene has a total of 58 customers and/or peers. CENIC, ESnet, 

GEANT, NYSERNet, and Oregon GigaPoP all use Abilene at more 

the one location. We treat each of those connections as multiple 

customers, bringing the total number to 65. 

• There are 4,160 customer-to-customer pairs (e·(e-1)= 65 · 64= 

4160). 

• Each of the eleven circles represents a transshipment node, 

specifically a Juniper T640 Router, located in a major U.S. city.  

• The arcs are undirected with line colors and thickness indicating 

traffic capacity (i.e., bandwidth), which we use as a proxy for 

customer demand for traffic (i.e., the demand for customer s to 

route traffic to customer t is equivalent to the product of their 

bandwidth capacity). 

• There exist fourteen, two-way connections amongst the 

transshipment routers.  

As detailed in the previous chapter, we seek to maximize the  amount of 

traffic carried among the 4,160 customer-to-customer pairs. The MAX SP 

represents the simplest form of traffic engineering in which data is routed 

between customers via the single “shortest” path as seen by IP. The MAX MP 

represents the best-case scenario for traffic engineering, in which data sent from 

customer to customer can be split into multiple streams, each following its own 

path. Sometimes the optimal multiple paths are longer than the shortest path, 

sometimes they are the same. Both formulations raise all 4,160 flows in the 

network in proportion to one another (via the constant of proportionality ρ) until at 

least one of the network components reaches capacity and becomes saturated.  
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A. OPTIMAL FLOWS WITH NODE CAPACITIES 

In practice, both nodes and arcs are capacitated, but here we will focus on 

the throughput capacity of transshipment routers in the network. Here the 

transshipment routers (the nodes) each have a maximum capacity of 320,000 

megabits per second (Mbps), which represents the highest combination of line 

cards supported by the T640 Router at the time the data was collected.  

1. Maximum Flow through Abilene 

The total amount of traffic routed between customers using MAX SP and 

MAX MP is 630,941 Mbps (C1.0) and 738,442 Mbps (C3.0) respectively. Those 

results, along with the transshipment node utilizations are displayed in the table 

below.  

Utilization of an internal node (router) is simply the percentage of that 

router’s maximum capacity used by the 4,160 customer-to-customer pairs (MAX 

SP:

,
,

,

i j
s t

s t

k

q

B

∑
, MAX MP:

,
,

,

,

s t
i j

s t

i j

X

u

∑
). 

NOTE: The units on the “flow” values in the tables and figures throughout this 

chapter are in Mbps. 

Table 1.   Utilization of Abilene Transshipment Routers Under Maximum 
Flows 

    MAX SP   MAX MP   Increase    
 Total-Flow   630,941 738,442  15%  
  ρ 0.000035  0.000041   15%   
 ATLANTA 0.742 1  26%  
 CHICAGO 0.652 0.940  29%  
 DENVER 0.578 0.887  31%  
 HOUSTON 0.608 0.963  36%  
 INDIANAPOLIS 0.528 0.927  40%  
 KANSAS CITY 0.595 1  41%  
 LOS ANGELES 0.439 0.469  3%  
 NEW YORK 0.901 0.939  4%  
 SEATTLE 0.541 0.633  9%  
 SUNNYVALE 0.335 0.395  6%  
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  WASHINGTON DC 1  1   0%   

The less restrictive MAX MP achieves a 15% increase of flow through the 

network. Also, every transshipment router is utilized more than it is in MAX SP, 

and the increases vary by router.  

In both models, the Washington D.C. router is the first to reach its capacity 

(MAX SP:

,
,

,

s t
i j

s t

k

q

B

∑
=1, MAX MP:

,
,

,

,

s t
i j

s t

i j

X

u

∑
=1) and thus is the “bottleneck.” It is 

preventing a further increase in flow (ρ). In the multiple-path model, the Atlanta 

and Kansas City routers are also saturated.  

Increasing the throughput capacity of the bottleneck router(s) in the 

network would enable an increase in flow through the network. For example, if 

we could double the capacity of Washington D.C. ( Washington DCB =640,000 Mbps, 

perhaps by operating two Juniper T640 routers in parallel) we would increase 

flow 10% (ρ=.000039) for single-path routing. Doing the same to Sunnyvale 

instead produces a 0% flow increase. 

In practice, it may not be feasible, or necessary, to increase the capacity 

of every transshipment router in order to improve total throughput, thus 

identifying the bottleneck(s) is significant.   

The next two figures demonstrate the actual data flows between the 

transshipment routers. The bold italicized number adjacent to the router is the 

sum of the demands of the customers located at that particular router. The 

number in each node is its utilization (expressed as a fraction of its capacity) 

under maximum flow conditions. These numbers correspond to the values in 

Table 1. Not shown is the data flow between customers who use Abilene at the 

same transshipment router. 
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Figure 2.   Abilene Single-Path Flow through Nodes 
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Figure 3.   Abilene Multiple-Path Flow through Nodes 

As expected, the flow levels in MAX SP (Figure 2) are symmetric since the 

shortest paths between the transshipment routers are also symmetric. 

In Figure 3, the flow levels on each arc are no longer symmetric since 

multiple-path model uses all available capacity, even if not on the shortest path. 

The difference in the flow values between the two figures on the 

transshipment connections can be explained by the MAX MP’s ability use longer 

and/or multiple routes for sending traffic between customers. 

The next two figures show the paths for data destined to the New York 

(dashed green arrows) and Sunnyvale (solid blue arrows) routers from the other 

routers in the network (MAX SP: ,
,
s t
i jq , MAX MP: ,

,
s t
i jX  where t=New York and 

Sunnyvale).  
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Figure 4.   Single-Path Flow to New York & Sunnyvale Routers 
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Figure 5.   Multiple-Path Flow to New York & Sunnyvale Routers 
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The total amounts of traffic traveling to New York and Sunnyvale are 

shown in Table 2 (MAX SP: ,s t

s
X∑ , MAX MP: ,s t

s
Z∑  where t=New York and 

Sunnyvale). The numbers shown simply reflect the differences in ρ values 

between the single-path and multiple-path solutions. 

Table 2.   Traffic Flow to New York & Sunnyvale Routers 

    Single-Path   Multiple-Path   
  To To  To To  
    NEW YORK SUNNYVALE   NEW YORK SUNNYVALE   

From ATLANTA 7,357 2,271  8,610 2,658  
 CHICAGO 15,438 4,765  18,068 5,577  
 DENVER 2,171 670  2,541 784  
 HOUSTON 2,338 722  2,737 845  
 INDIANAPOLIS 4,850 1,497  5,676 1,752  
 KANSAS CITY 1,671 516  1,956 604  
 LOS ANGELES 13,598 4,197  15,915 4,912  
 NEW YORK ------ 10,201  ------ 11,939  
 SEATTLE 21,677 6,691  25,370 7,831  
 SUNNYVALE 10,201 ------  11,939 ------  
  WASHINGTON DC 35,725 11,027   41,812 12,906   

 
Abilene data reduction 
 

Both the single-path (EXCEL) and multiple-path (GAMS) models take a 

considerable amount of time to the execute Abilene data. 4,160 customer-to-

customer paths translates into a large number of decision variables and 

constraints. An example of this is shown in the table below. 

 

             
 Single-Path (Figure 1)    TOTAL   
 Decision Variables Customer-to-Customer Pairs 4,160 Variables 4,160 
 Constraints Router Capacity 11 Constraints 4,329 
 Arc Capacity 158   
 Flow Proportionality 4,160   
 Multiple-Path (Figure 3)     
 Decision Variables Flow on Return Arcs 4,160 Variables 4,329 
 Flow through Nodes 169   
 Constraints Balance of Flow 361,920 Constraints 366,249 
 Arc Capacity 169    
   Flow Proportionality 4,160        
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We can significantly reduce the number of customer-to-customer paths if 

we only consider paths between the eleven transshipment routers. The demand 

( kB ) at each router can be aggregated from the sum of the demands of that 

router’s customers (same values in Figure 2 and Figure 3). However, this 

reduction does not account for the traffic routed between customers who use the 

same router. So we leave those paths in our data reduction (i.e., for example, 

keep the paths from University of Hawaii to Pacific Northwest GigaPoP and to 

Pacific Wave, but get rid of the paths to sixty-two paths).  

We reduce the number of customer-to-customer paths to 462 (110 router-

to-router paths plus 362 total “local” customer paths). 

 

 Single-Path (Figure 1)    TOTAL   
 Decision Variables Customer-to-Customer Pairs 462 Variables 4,160 
 Constraints Router Capacity 11 Constraints 631 
 Arc Capacity 158   
 Flow Proportionality 462   
 Multiple-Path (Figure 3)     
 Decision Variables Flow on Return Arcs 462 Variables 631 
 Flow through Nodes 169   
 Constraints Balance of Flow 40,194 Constraints 40,825 
 Arc Capacity 169    
   Flow Proportionality 462        

 

This reduction dramatically improves the model run times, from minutes to 

seconds. 

2. Single Node Attack 

Now we consider the impact of losing one of the transshipment routers. 

Causes for a losing a router range from equipment failure to a deliberate attack. 

When a router is lost, its throughput capacity goes to zero ( kB =0) making it 

unavailable to the network. Thus customers connected to that router are no 

longer able to send and receive traffic from the other customers. 
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The top five “optimal” router attacks obtained via enumeration ( here, 
11
1

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

combinations ) for single-path routing are calculated using MIN-MAX SP and 

appear in the table below. Also shown are the percentage changes to total of 

flow between customer-to-customer pairs (C2.0) and flow through the network (ρ) 

after a particular router attack ( kY =1).  

Recall from Chapter II that after attack has occurred, the amount of flow 

through the network (ρ) adjusts to accommodate the “new” capacity and demand 

constraints.  

Table 3.   Top 5 Single-Node Attacks Under Single-Path Routing 

    Router Total Flow    ρ     
 1 INDIANAPOLIS 431,804 -32% 0.000026 -26%  
 2 CHICAGO 438,168 -31% 0.000030 -14%  
 3 ATLANTA 458,729 -27% 0.000028 -20%  
 4 KANSAS CITY 512,749 -19% 0.000029 -17%  
  5 WASHINGTON DC 516,005 -18% 0.000051 31%   

 
 

The top five optimal router attacks to multiple-path routing are obtained by 

solving MAX MP DUAL. The values from equation (C5.0), the minimized 

maximum flow, are shown in the next table.  

Table 4.   Minimized Total Flow 

    Router Minimized Total Flow   
 1 WASHINGTON DC 98,442  
 2 NEW YORK 142,047  
 3 CHICAGO 300,106  
 4 SEATTLE 333,428  
  5 INDIANAPOLIS 391,222   

 
 

We compute attacks 2 through 5 by making the previous router(s) that were 

attacked invulnerable (i.e., for example, , 'WashingtonDC WashingtonDCv =0 allows use to 

determine the second best router attack plan).  
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 After the flow through the network adjusts to accommodate the new 

capacity and demand constraints after a particular router attack ( , 'k kY =1), we use 

R-MAX MP to compute total of flow between customer-to-customer pairs (C6.0) 

and flow through the network (ρ). Those results are shown in the next table. 

Table 5.   Top 5 Single-Node Attacks Under Multiple-Path Routing 

    Router Total Flow   ρ     
 1 INDIANAPOLIS 431,804 -42% 0.000026 -37%  
 2 CHICAGO 438,168 -41% 0.000030 -27%  
 3 ATLANTA 458,729 -38% 0.000028 -32%  
 4 WASHINGTON DC 516,005 -30% 0.000051 19%  
  5 NEW YORK 588,184 -20% 0.000055 25%   

 

After flow through the network is adjusted, Indianapolis becomes the 

worst. Notice, in both models, the changes in total of flow differ from the from the 

changes in flow through the network, as measured by ρ. 

Attacks to Indianapolis, Chicago, and Atlanta are the most devastating. 

The loss of those routers reduces (but not eliminates, see figure 13) the 

network’s “path diversity” such that the R-MAX MP now only uses single paths 

when routing traffic.  

Notice in the tables above that after a loss of the Washington D.C. router 

in MIN-MAX SP, and a loss of the Washington D.C. and New York routers in R-

MAX MP, flow through the remaining network actually increases. This is again an 

example of Braess’s paradox (discussed in Chapter II). By removing the large 

demand associated with Washington D.C. customers, Washington DCD =0 instead of 

33,217 Mbps, and it becomes possible to raise flow in the network from 

.000035(single-path) and .000041(multiple-path) to .000051. 

The next table that shows the benefits of R-MAX MP over MIN-MAX SP in 

terms of total flow in the presence of a router attack. 
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Table 6.   Single-Path vs. Multiple-Path Flow Following a Router Attack 

    Single-Path Multiple-Path Multiple-Path Increase   
  Pre-Attack Flows: 630,941 738,442 15% 
 Post-Attack Flows    
 Router Loss:    
 ATLANTA 458,729 458,729 0% 
 CHICAGO 438,168 438,168 0% 
 DENVER 516,354 642,818 20% 
 HOUSTON 606,461 619,689 2% 
 INDIANAPOLIS 431,804 431,804 0% 
 KANSAS CITY 512,749 592,952 14% 
 LOS ANGELES 629,785 679,827 7% 
 NEW YORK 536,860 588,184 9% 
 SEATTLE 536,483 649,799 17% 
 SUNNYVALE 583,707 691,886 16% 
  WASHINGTON DC 516,005 516,005 0% 

 

From the previous example, the next two figures show how data flowing to 

New York and Sunnyvale is re-routed following the Indianapolis attack. 
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Figure 6.   Single-Path Flow to New York & Sunnyvale after Indianapolis Attack 
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Figure 7.   Multiple-Path Flow to New York & Sunnyvale after Indianapolis Attack 

 
We observe that R-MAX MP still uses multiple routes when sending traffic 

to Sunnyvale. However the total flow calculation (C2.0=C6.0=431,804 Mbps) in 

both models remains the same.  

The total amount of traffic traveling to New York and Sunnyvale following 

the Indianapolis attack is also the same in both models, shown in the table 

below. By comparing the values to values in Table 2, we observe 27% flow 

decease in MIN-MAX SP, and a 37% decrease in R-MAX MP. 
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Table 7.   Traffic Flow to New York & Sunnyvale Routers after Indianapolis 
Attack 

    Single-Path & Multiple-Path   
  To   
    NEW YORK SUNNYVALE   

From ATLANTA 5,398 1,666  
 CHICAGO 11,328 3,497  
 DENVER 1,593 492  
 HOUSTON 1,716 530  
 INDIANAPOLIS ------ ------  
 KANSAS CITY 1,226 379  
 LOS ANGELES 9,978 3,080  
 NEW YORK ------ 7,486  
 SEATTLE 15,906 4,910  
 SUNNYVALE 7,486 ------  
  WASHINGTON DC 26,215 8,092   

 

The Washington D.C. transshipment router is the bottleneck in both 

models. 

3. Multiple Node Attacks 

Here we extend the previous analysis to the case where the number of 

router attacks is greater than one (attacks>1). 

According to MAX MP DUAL, any node attack that splits that network into 

more than one piece produces an objective value of zero (i.e., 

(C5.0)= , ,i j i ju β∑ =0).  Thus, a solution formulation is uninformative because we 

are unable to observe flow through the remaining network (ρ). As a result, we 

compute attacks to the multiple-path network using the R-MAX MP, and we 

determine which the optimal attacks by total enumeration (just as we do for MIN-

MAX MP). 

An inspection of figure 1 might lead one to suspect that the optimal two-

router attack would split the network in half (i.e., Atlanta and Indianapolis, Kansas 

City and Houston, etc), or that the optimal two attacks would include Indianapolis, 
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the optimal one-router attack. However, the optimal two-router attack (out of 
11
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

combinations) for both models is Chicago and Seattle. 

The resulting network from the Chicago and Seattle attack consists of nine 

routers and ten arcs. Thus, the only routes that exist between the transshipment 

routers are the single shortest paths. 

The optimal three-router attack (out of 
11
3

⎛ ⎞
⎜ ⎟
⎝ ⎠

 combinations ) for both 

models is Chicago, Seattle and Los Angeles. 

The next table below shows the total amount of traffic routed between 

customers, (C2.0) and (C6.0), the flow through the network (ρ), and the 

transshipment router utilizations (MAX SP:

,
,

,

i j
s t

s t

k

q

B

∑
, MAX MP:

,
,

,

,

s t
i j

s t

i j

X

u

∑
) in the event 

of one, two, and three attacks. 

Table 8.   Optimal Router Attacks 

  Single-Path Multiple-Path Both Models  
  number of Attacks 0 0 1 2 3   

 Total-Flow   630,941 738,442 431,804 404,454 389,298  
  ρ 0.000035 0.000041 0.000026 0.00004 0.000051   
  Router Utilization  
 ATLANTA 0.742 1 0.745 0.710 0.590 
 CHICAGO 0.652 0.940 0.282 0 0 
 DENVER 0.578 0.887 0.333 0.066 0.295 
 HOUSTON 0.608 0.963 0.676 0.534 0.354 
 INDIANAPOLIS 0.528 0.927 0 0.114 0.125 
 KANSAS CITY 0.595 1 0.344 0.903 0.326 
 LOS ANGELES 0.439 0.469 0.382 0.470 0 
 NEW YORK 0.901 0.939 0.765 0.651 0.294 
 SEATTLE 0.541 0.633 0.382 0 0 
 SUNNYVALE 0.335 0.395 0.239 0.239 0.254 
  WASHINGTON DC 1 1 1 1 1  

 
1 router attack: There is a 32% decrease (i.e., from (C1.0)=630,941 to 

(C2.0)=431,804 Mbps) and 42% decrease in total amount of traffic routed 
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between customers, and 26% and 37% decrease in flow through the network in 

the single-path and multiple-path models, respectively. 

1 router attack vs. 2 router attack: In both models, the total amount of 

traffic routed between customers deceases 6%, while flow through the network 

increases 35% (Braess’s paradox). 

2 router attack vs. 3 router attack: In both models, the total amount of 

traffic routed between customers deceases 4%. Here flow through the network 

increases 22% (again, Braess’s paradox). 

The Washington D.C. transshipment router is the bottleneck in both 

models in all three attacks. Thus, the optimal attacks in all cases do not include 

the bottleneck. Rather, the attacks seem to redirect flow toward the bottleneck. 

The bottlenecks restrict flow through the network and thus the attacker does not 

want to eliminate that restriction.  

B. FLOW ON CAPACITATED ARCS 

In this section of the analysis, we remove the capacity constraint on the 

transshipment routers ( kB =∞ ). Now only the fourteen arcs are capacitated. In 

reality, the connections are single “duplex” connections, meaning that they 

support traffic flowing in both directions. Here, we treat each connection as a pair 

of directed arcs (i.e., Atlanta-to-Houston and Houston-to-Atlanta as different 

connections), each with a speed of 10 gigabits per second (Gbps) ( ,i ju =10,000 

Mbps). The arcs connecting customers to their transshipment router remain un-

capacitated.  
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1. Maximum Flow through Abilene 

The tables below show the utilization of twenty-eight transshipment node 

connections for the single-path (

,
,

,

,

s t
i j

s t

i j

q

u

∑
) and multiple-path (

,
,

,

,

s t
i j

s t

i j

X

u

∑
) models, as 

well as the total amount of flow between customer-to-customer pairs, (C2.0) and 

(C6.0), and flow through the network (ρ). 

Table 9.   Utilization of Abilene Arcs Under Maximum Flows 

           
  Single-Path Multiple-Path Multiple-Path Increase  
 Total-Flow   67,802 76,467 11% 
  ρ 0.0000038 0.0000042 10%  
 ATL-HOUSTON 1 1 0%  
 ATL-INDY 0.210 0.805 74%  
 ATL-DC 0.992 1 1%  
 CHICAGO-INDY 0.757 0.972 22%  
 CHICAGO-NY 0.781 1 22%  
 DNVR-KC 0.961 1 4%  
 DNVR-SEATTLE 0.723 1 28%  
 DNVR-SUNNY 0.199 0.766 74%  
 HOUSTON-ATL 1 0.972 -3%  
 HOUSTON-KC 0.384 0.962 60%  
 HOUSTON-LA 0.595 0.987 40%  
 INDY-ATL 0.210 0.834 75%  
 INDY-CHICAGO 0.757 0.972 22%  
 INDY-KC 0.620 0.827 25%  
 KC-DNVR 0.961 1 4%  
 KC-HOUSTON 0.384 0.934 59%  
 KC-INDY 0.620 0.855 27%  
 LA-HOUSTON 0.595 0.987 40%  
 LA-SUNNY 0.301 0.461 35%  
 NY-CHICAGO 0.781 1 22%  
 NY-DC 0.814 0.862 6%  
 SEATTLE-DNVR 0.723 0.924 22%  
 SEATTLE-SUNNY 0.168 0.081 -52%  
 SUNNY-DNVR 0.199 0.843 76%  
 SUNNY-LA 0.301 0.461 35%  
 SUNNY-SEATTLE 0.168 0.005 -97%  
 DC-ATL 0.992 1 1%  
  DC-NY 0.814 0.862 6%   
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The next table compares flow through the capacitated-arc network to flow 

through the capacitated-router network. 

Table 10.   Arc Capacity vs. Router Capacity 

        
  Single-Path 
Capacity Arcs Routers Decrease 
ρ 0.0000038 0.000035 89% 
  Multiple-Path 
Capacity Arcs Routers Decrease 
ρ 0.0000042 0.000041 90% 

 

The difference in network flow between the capacitated-arc and 

capacitated-router networks is over 89% for both the MAX SP and MAX MP. 

Thus arcs are the “severe” constraints on these max flow problems.  

Flow levels for the arcs for MAX SP are symmetric, as expected. 

There is a 11% increase in total amount of flow between customer-to-

customer pairs for MAX MP, and a 10%  increase in flow through the network 

again illustrating the limitations of the single-path traffic routing. 

There are only three out of twenty-four instances where an arc is utilized 

more in the MAX SP than it is in MAX MP: Houston-Atlanta, Seattle-Sunnyvale, 

and Sunnyvale-Seattle. 

The bottlenecks in MAX SP are the Atlanta-Houston and Houston-Atlanta 

arcs. 

There are eight bottlenecks in MAX MP. They are the Atlanta-Houston, 

Chicago-New York, Denver-Kansas City, Denver-Seattle, Kansas City-Denver, 

New York-Chicago, Washington D.C.-Atlanta arcs.  
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2. Single Arc Attack 

We examine the impact that losing one of the arcs ( , 1i jY = ) has on the 

total amount of flow between customer-to-customer pairs in both models. 

Remember, destroying arc (i, j) also destroys arc (j, i) ( , ,=i j j iY Y ). 

Table 11.   Single-Path vs. Multiple-Path Flow Following an Arc Attack 

              
  Single-Path Multiple-Path  
  Connection Lost Total Flow Net Chg Total Flow Net Chg   
 ATL-HOUSTON 41,866 -38% 41,866 -45% 
 ATL-INDY 69,701 3% 76,142 -0.4% 
 ATL-DC 38,234 -44% 38,234 -50% 
 CHICAGO-INDY 38,773 -43% 38,773 -49% 
 CHICAGO-NY 38,234 -44% 38,234 -50% 
 DNVR-KC 42,629 -37% 43,577 -43% 
 DNVR-SEATTLE 67,802 0% 76,104 -0.5% 
 DNVR-SUNNY 57,610 -15% 76,467 0% 
 HOUSTON-KC 68,338 1% 76,467 0% 
 HOUSTON-LA 43,577 -36% 43,577 -43% 
 INDY-KC 41,866 -38% 41,866 -45% 
 LA-SUNNY 53,707 -21% 53,707 -30% 
 NY-DC 43,183 -36% 43,183 -44% 
  SEATTLE-SUNNY 67,802 0% 76,104 -0.5%  

 

The optimal attack plan for both models is to attack either the arcs 

between Atlanta and Washington D.C., or between  Chicago and New York. 

For MIN-MAX SP, eliminating Atlanta-Indianapolis or Houston-Kansas City 

slightly increases total flow through the network by 3% and 1% respectively 

(Braess’s paradox).  

For R-MAX MP, losing either the Atlanta-Indianapolis arcs (decrease < 

.4%), Denver-Seattle arcs (decrease < .5%), Denver-Sunnyvale arcs, Houston-

Kansas City arcs, or Seattle-Sunnyvale arcs (decrease < .5%) do not have a 

noticeable impact on total flow through the network. Thus, R-MAX MP is more 

robust to attacks. 
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C. FLOW ON CAPACITATED NODES AND ARCS 

Now we look at Abilene when both the transshipment routers and their 

twenty-eight arcs are capacitated.  

The routers again have a throughput capacity of 320,000 Mbps. Arc 

speeds of 10 Gbps produce the same results listed in tables 8 and 9 which 

implies that the arc capacities are the “real” constraints in the network. Among 

the eleven transshipment routers, Washington D.C. is utilized the most in both 

the single-path and multiple-path models with a utilization level of .107 and .115 

respectively. To determine the number of arcs in parallel (or bandwidth increase) 

required to saturate a transshipment router, we uniformly increase the arc 

capacities until one of the routers saturates.  

The results are displayed in the next two figures. The connection speeds 

are in Mbps. 
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Figure 8.   Single-Path Utilization vs. Connection Speed 



 45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ATLA
NTA

CHIC
AGO

DENVER

HOUSTON

IN
DIA

NAPOLIS

KANSAS C
ITY

LO
S A

NGELE
S

NEW Y
ORK

SEATTLE

SUNNYVALE

W
ASHIN

GTON D
C

10,000
20,000
40,000
60,000
80,000
100,000

Connection
Speed 

 

Figure 9.   Multiple-Path Utilization vs. Connection Speed 

 
In both models, we can increase arc capacity to 100 Gbps before we 

saturate a transshipment router. Thus the connection speed required to saturate 

a router is between 80 and 100 Gbps. Washington D.C. is the router that is 

saturated in both the single-path and multiple-path models.  

D. CHAPTER SUMMARY 

We applied the two models representing naive traffic engineering (single-

path routing) and best-case traffic engineering (multiple-path routing) to analyze 

the maximum throughput of Abilene. We performed our analysis with node and/or 

arc capacities. We found that Abilene is well-provisioned in the sense that it 

tends to be the arcs, in particular the customer connections, that saturate data 

flow in the network, a generalization that is consistent with our results.  

For both the single-path and multiple-path optimal solutions, the 

Washington D.C. transshipment router is the bottleneck. Increasing the line  

 



 46

speeds of its connections would consequently increase the total amount of flow 

between customer-to-customer (single-path: ,

,

s t

s t

X∑ , multiple-path: ,

,

s t

s t

Z∑ ) and 

flow through the network (ρ). 

Our interdiction analysis shows that the optimal transshipment router 

attack is to remove Indianapolis. The second worst single router attack is 

Chicago, which is involved in both the optimal two-router (Chicago, Seattle) and 

three-router (Chicago, Los Angeles, Seattle) attacks. The optimal single arc 

attack is either the Atlanta-Washington D.C. or Chicago-New York arc. These 

results suggest the importance of the Indianapolis and Chicago routers to 

Abilene. Perhaps this is where redundancy should be built into the network. 

We conclude that Abilene is “over provisioned” in terms of its routers and 

can handle increasing connection speeds (i.e., multiple connections in parallel). 

Line speeds of 40 Gbps (OC-768) could be implemented without needing to 

upgrade the routers. 
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IV. SUMMARY AND CONCLUSIONS 

The models and analysis in this thesis are applicable to any ISP network. 

The general public, businesses, civilian and military organizations rely heavily on 

these networks. As the reliance grows, so will the need for understanding an 

ISP’s limitations and vulnerability to attacks. 

The interdiction models used in this thesis MIN-MAX SP and MAX MP 

Dual, identify the attack plan that reduces the maximum amount of traffic carried 

among users in the worst possible way. One could take our analysis a step 

further by conducting defender-attacker-defender analysis where the defender 

(network operator) first decides which network components to protect, and study 

how those decisions effect the attacker’s plan (Brown et al. 2006). 

Future work will need to study alternatives to the gravity model because of 

the difficulties that arise when using it. For any multi-commodity gravity model 

network, flow through the network goes to zero if a single node cannot meet its 

demand. So interdicting a  multi-commodity gravity model network is simple, just 

“disconnect” any node from the network. We avoid this in the single-path model 

by solving for the ρ for each node k algebraically where kB >0. Our revised 

multiple-path formulation (figure 6) allows us to get around that for the multiple-

path models. However, as demonstrated in Chapter III, there are often cases 

where Braess’s paradox occurs. It is unsettling that flow through the network 

could rise after an attack.  



 48

THIS PAGE INTENTIONALLY LEFT BLANK 



 49

APPENDIX A: FLOYD-WARSHALL ALGORITHM 

The Floyd-Warshall algorithm computes the shortest path between each 

pair of nodes in a network (R. Ahuja et al. 1993). The algorithm builds an n × n 

matrix of shortest path distances, d(i, j),  for each node pair, as well as an n × n 

matrix of predecessor nodes, pred(i, j), for each node in a particular path. If no 

path exists, the distance is reported as ∞ , and the predecessor is null. Floyd-

Warshall runs in O(n3)operations. 

 

algorithm Floyd-Warshall;  

begin 

for all node pairs (i, j) ∈ N x N do 

  d(i, j): = ∞  and pred(i, j): = 0; 

     for all nodes i ∈ N do d(i, i): = 0; 

 for each arc(i, j) ∈ A do d(i, j): = nC and pred(i, j): = i; 

 for each node k: 1 to n do 

  for each (i, j) ∈ N x N do 

  if d(i, j) > d(i, k) + d(k, j) then 

  begin 

   d(i, j): = d(i, k) + d(k, j); 

       pred(i, j): = pred(k, j); 

  end; 

end; 

 



 50

THIS PAGE INTENTIONALLY LEFT BLANK 



 51

APPENDIX B: COMPUTING ,
k
s tR  

The following is the algorithm builds a matrix (e(e-1) rows × n columns) of 

,
k

s tr  values (binary) for use in the single-path formulations. It uses as input the 

pred(i, j) matrix obtain from Floyd-Warshall. The  algorithm runs in e(e-1) · n 

operations. 

 

algorithm Compute ,
k

s tr  ; 

begin 

for all (s, t) ∈ E x E do 

 for all k ∈ N do  

,
k
s tR =0; 

end; 

begin 

for s ∈ {1, 2,…, E} do 

  for t ∈ {1, 2,…, E} do 

k = t; 

do { 

,
k

s tr  = 1; 

  k = pred(s, k); 

} while (k ≠ s) 

end;  
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APPENDIX C: COMPUTING ,
,
s t
i jq  

The following is the algorithm builds a matrix (e(e-1) rows x m columns) of 
,

,
s t
i jq  values (binary) for use in the single-path formulations. The algorithm uses as 

input the pred(i, j) matrix obtained from Floyd-Warshall. The  algorithm runs in 

s(s-1) · m operations. 

 

algorithm Compute ,
,
s t
i jq  ; 

begin 

for all (s, t) ∈ E x E do 

 for each arc (i, j) ∈ A do 

  ,
,
s t
i jq =0; 

end; 

begin   

k = t; 

do { 

if pred(s, k) = j then; 

  if pred(s, j) = i then; 

   ,
,
s t
i jq  = 1; 

   k = pred(s, i); 

} while (k ≠ s) 

end; 
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APPENDIX D: STANDARD LP MAX FLOW 

The standard LP maximum flow formulation adds a unbounded return arc, 

arc (t, s), to a network and then maximums flow on that arc. The rest of the 

formulation consist of balance of flow and arc capacity constraints. 

 

Index Use  

 ,i j N∈   Nodes  

( , )i j A∈   Directed arc from node i to node j 

,s t        Source and terminal nodes  

Data 

,i ju    Upper bound on flow from node i to node j   

                                  on arc (i, j) ∈ A [flow] 

Decision Variables 

  ,i jX    Flow on directed arc (i, j) ∈ A [flow] 

 Formulation 

  

,

, ,
( , ) ( , )

, ,

max

. . 0

0 ( , )

t s

j i i j
j i A i j A

i j i j

X

s t X X i N

X u i j A

∈ ∈

− = ∀ ∈

≤ ≤ ∀ ∈

∑ ∑    
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APPENDIX E: REACHABILITY FORMULATION / ALGORITHM 

We determine if source node s is able to reach terminal node t after an 

attack has occurred for all s-t pairs in the network. Since we solve the multiple-

path formulations in GAMS, we also use GAMS to determine node reachabilty by 

solving another LP formulation (as opposed to a standard reachability algorithm 

which GAMS would execute very slowly).  

Index Use  

 , ,i j k N∈   Nodes  

( , )i j A∈   Directed arc from node i to node j 

,s t E N∈ ⊆       Source and terminal nodes in the set of “edge”                    

                                 nodes E  

Data 

 *
,i jY    Binary indicator whether the attacker destroyed  

                                           of arc (i, j) ∈ A   

    *
,

1 if ( , ) wasdestroyed
0 otherwisei j

arc i j
Y ⎧

=⎨
⎩

 

Decision Variable 

,s tW     Flow from node s to node t [Flow] 

,
s
i jQ    Flow from node s on arc (i, j) ∈ A [Flow]   
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Formulation 

* *
, ,

,
,

,

, ,
( , ) | 0 ( , ) | 0

,

max

if

. . 0 ,
ifi j i j

s t
s t E

i j
j

s s
i j j i

i j A Y i j A Y
s j

W

W s i

s t Q Q s E i N
W s i

∈

∈ = ∈ =

⎧ =
⎪
⎪− = ∀ ∈ ∈⎨
⎪− ≠⎪
⎩

∑

∑

∑ ∑

 

 

Discussion 

By maximizing ,s tW  for all s and t, we simultaneously determine whether 

we can send flow from s to t along the “surviving” arcs in the network ( ,
s
i jQ ). The 

dual of the multiple-path maximum flow model (figure 5) determines the *
,i jY  

values. *
,i jY =1 implies arc (i, j) is attacked and thus has zero capacity for flow, and 

*
,i jY =0 implies arc (i, j)  survived the attack.  

Once we have established which nodes t are reachable from which nodes 

s (i.e., if a path from s to t exist), we are able to compute the ,s tR  values used in 

the revised multiple-path max flow model (figure 6) with a simple algorithm. 

algorithm Compute ,s tR  ; 

begin 

for all (s, t) ∈ E do 

 if *
,s tW >0 then; 

  ,s tR =1; 

 else ,s tR =0; 

end; 
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