
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2008-03

Optimizing systems of threshold

detection sensors

Banschbach, David C.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/4268



 

 
NAVAL 

POSTGRADUATE 
SCHOOL 

 
MONTEREY, CALIFORNIA 

 

 
 

THESIS 
 

Approved for public release; distribution is unlimited 
 

OPTIMIZING SYSTEMS OF THRESHOLD DETECTION 
SENSORS 

 
by 
 

David C. Banschbach 
 

March 2008 
 

 Thesis Advisor:   Ronald D. Fricker, Jr. 
 Second Reader: W. Matthew Carlyle 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
March 2008 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE Optimizing Systems of Threshold Detection Sensors 
 
6. AUTHOR(S)  David C. Banschbach 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official policy 
or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 
 A 

13. ABSTRACT (maximum 200 words) 
When implementing a system of sensors, one of the biggest challenges is to establish a threshold at which a 

signal is generated. All signals that exceed this detection threshold are then investigated to determine whether the 
signal was due to an “event of interest,” or whether the signal is due simply to noise. Below the threshold all signals 
are ignored.  

We develop a mathematical model for setting individual sensor thresholds to obtain optimal probability of 
detecting a significant event, given a limit on the total number of false positives allowed in any given time period.  

A large number of false signals can consume an excessive amount of resources and could undermine 
confidence in the system’s credibility. One motivation for this problem is that it allows decision makers to explicitly 
optimize system detection performance while ensuring it meets organizational resource constraints.  

Our simulations demonstrate the methodology’s performance for various sizes of sensor networks, from ten 
up to thousands of sensors. Such systems apply to a wide variety of homeland security and national defense problems, 
from biosurveillance to more classical military sensor applications.  

 
 

15. NUMBER OF 
PAGES  

86 

14. SUBJECT TERMS Threshold Detection, Shewhart Chart, Statistical Process Control, 
Epidemiologic Surveillance, Syndromic Surveillance.  

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

THIS PAGE INTENTIONALLY LEFT BLANK 

 
 
 



 iii

Approved for public release; distribution is unlimited 
 
 

OPTIMIZING SYSTEMS OF THRESHOLD DETECTION SENSORS 
 

David C. Banschbach 
Lieutenant, United States Navy 
B.A., Seattle University, 2001 

 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER’S OF SCIENCE IN OPERATIONS RESEARCH 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
March 2008 

 
 
 

Author:  David C. Banschbach 
 
 
 

Approved by:  Ronald D. Fricker, Jr. 
Thesis Advisor 

 
 
 

W. Matthew Carlyle 
Second Reader 

 
 
 

James N. Eagle 
Chairman, Department of Operations Research 



 iv

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 

When implementing a system of sensors, one of the biggest challenges is to 

establish a threshold at which a signal is generated. All signals that exceed this detection 

threshold are then investigated to determine whether the signal was due to an “event of 

interest,” or whether the signal is due simply to noise. Below the threshold all signals are 

ignored.  

We develop a mathematical model for setting individual sensor thresholds to 

obtain optimal probability of detecting a significant event, given a limit on the total 

number of false positives allowed in any given time period.  

A large number of false signals can consume an excessive amount of resources 

and could undermine confidence in the system’s credibility. One motivation for this 

problem is that it allows decision makers to explicitly optimize system detection 

performance while ensuring it meets organizational resource constraints.  

Our simulations demonstrate the methodology’s performance for various sizes of 

sensor networks, from ten up to thousands of sensors. Such systems apply to a wide 

variety of homeland security and national defense problems, from biosurveillance to 

more classical military sensor applications.  
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EXECUTIVE SUMMARY 

Statistical process control (SPC) has been used for monitoring and quality control 

in manufacturing since its pioneer Walter Shewhart first implemented the control chart 

that bears his name. Throughout the last eighty-plus years SPC has evolved greatly 

through the development of other monitoring tools such as cumulative sum (CUSUM) 

and exponentially weighted moving average (EWMA) charts that take past data into 

account. Importantly, the use of SPC techniques has spread to non-manufacturing 

disciplines, which recognize the benefits of SPC practices for monitoring processes in 

various fields.  

A constant theme throughout the literature of SPC and detection theory is the 

balancing of the probabilities of detection and false alarm. Because the impact of each of 

these events is very disparate, and varies with each application, there is no consensus on 

exactly how this should be done.  

It would be easy to maximize the probability of detection when there are 

unlimited resources to investigate signals for validity. In reality, however, there are 

always constraints on resources. As such, we must find a good balance between our 

chances of detection and false alarms. Thus, we learn that we can set our detection 

threshold low enough so that we have a good opportunity of detecting a true signal from 

the underlying noise, without exceeding the constraints on our investigative capability. 

How to find this point is challenging, however, when we have many sensors working 

simultaneously to sift through potentially massive amounts of data.  

The motivation for this study is the proliferation of biological surveillance 

systems that have been implemented since the terrorist attacks of September 11, 2001, 

and the anthrax-laced letters received in government offices in the months that followed. 

Such systems, which monitor health care data for early indications of man-made or 

naturally occurring disease epidemics, must constantly balance the inherent trade-off that 

arises between sensitivity, signal timeliness, and rate of false alarms (specificity), when 

setting detection thresholds.  
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Our methodology assigns probabilities of experiencing some “event of interest” to 

individual sensor coverage areas. In practice these probabilities can be derived from any 

data that is available, including actual expected probability based on intelligence, or some 

feature of the area such as population, volume of traffic or commerce, or land or sea area.  

Given these prior probabilities of an event of interest, manifesting itself as a shift 

in the mean of the "no event" distribution, we use mathematical nonlinear programming 

techniques to determine appropriate individual thresholds to maximize the probability of 

detecting an event of given magnitude, subject to a constraint on the expected number of 

false alarms per time period. In fact, this methodology can be applied to any multi-sensor 

data-monitoring problem where we are interested in assessing if a shift in the underlying 

distribution has occurred in one or more of the sensors, without exceeding investigative 

resources. 

In the biosurveillance context, it has often been assumed by policymakers, that 

adding more sensors provides a better chance of detecting a manmade or naturally 

occurring epidemic. Using this technique for models of various numbers of sensors, we 

examine the performance implications of policy alternatives. All of this work was done 

with Microsoft Excel, one of the most widely available analytical tools in use today.  

One lesson we demonstrate is that adding marginal sensors to an existing system 

of sensors, while keeping the expected rate of false alarms constant, lowers the system-

wide probability of detection and detracts from the probabilities of detection for each of 

the existing sensors. The only way to add sensors without diminishing overall detection 

performance is to allow for more false alarms.  

We first apply our method to the two hundred most-populous counties in the 

United States, using population as a proxy for probability of experiencing a major 

biological event of interest, which would manifest itself in data as an increased number of 

patients seeking treatment. We provide an analysis of our method’s false alarm-

constrained detection performance, showing that the most-populous counties (or those 

assigned the largest probability weight, in the general sense) receive the lowest 

thresholds. We assume that this result is desirable, as those areas with the highest 
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probability of event will also have the highest probability of detecting it, although with 

the highest probability of false alarm as well. We then compare the results of similar 

models using the same population data and resource constraints to evaluate the 

performance of systems consisting of various numbers of county-based sensors. We find 

that while holding the acceptable number of false alarms at a constant, individual sensor 

and system-wide detection performance improves for systems with less sensor coverage, 

as investigative resources are not spread so thin.  

We perform several excursions meant to simulate implementation of various 

policies. The first is a mandate to shift all detection thresholds down by the same given 

percentage. This approach might be done in an effort to improve detection performance 

system-wide. As the thresholds are lowered, the detection performance rises although at a 

decreasing rate, and the number of false alarms rises at an increasing rate. We find that 

small percentage decreases in all thresholds (less than five to ten percent) result in modest 

nonlinear percentage increases in detection performance (again, less than ten percent). 

However, we also find that caution is warranted in following such an approach because 

the cost of false alarms can quickly outstrip the benefits of improved detection.  

We also explore the possibility of allowing each sensor to vary its threshold 

according to local policy. This could be due to the availability of (or lack of) local 

investigative resources. Through a simulation of random perturbations about each 

sensor’s optimal threshold, we find that there is negligible benefit from this policy in 

terms of detection probability, and a major cost in terms of false alarms. As the amount of 

allowed variability at each sensor increases, the number of false alarms increases at a 

rapid rate. We conclude that dispersal of control over detection thresholds is not a good 

policy unless very tight controls on the bounds of such movement are implemented.  

Next, we adapt a tool of health care surveillance implemented several times in the 

last few years. Drop-in surveillance has been used to monitor populations near major 

events such as the Super Bowl and major political conventions. Looking at Denver 

County, Colorado, host of this year’s Democratic National Convention, we examine what 

happens when we force a particular sensor’s detection threshold to be lower than its 

optimal value in order to improve detection performance in a given area. Performing a 
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sensitivity analysis, we demonstrate that it is possible to dramatically improve detection 

performance in a single sensor area without significantly degrading overall system 

performance. We note that although it is possible to tailor constraints to achieve certain 

collateral goals (those that are separate from the overall goal of maximizing system-wide 

probability of detection), we must be careful not to over-constrain the optimization 

system. Doing so will severely degrade the optimal solution and defeats the purpose of 

using these techniques. 

Finally, taking advantage of some properties derived from our statistical 

assumptions, we derive a single-variable analytical solution that allows us to solve 

problems of virtually unlimited size. We use this solution to present results from a system 

of sensors covering all 3,141 counties in the United States (see Figure E1 below). We 

find that scaling up from 200 to 3,141 counties results in a small decrease in overall 

probability of detection, lower detection thresholds (with correspondingly higher 

probabilities of detection) for a small handful of the largest counties, and higher 

thresholds (resulting in lower probabilities of detection) for the remaining smaller 

counties. In a system of this size, we realize that the very large number of small counties, 

in relation to the handful of largest counties, results in well over one thousand sensors 

with no probability of detection of the given distributional shift. This large-scale model 

should provide some insight to biosurveillance policymakers as to the reasonable limits 

of system expansion.  
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Figure E1: Output from optimizing 3,141 counties 
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I. SURVEILLANCE AND STATISTICAL PROCESS CONTROL 

A.  INTRODUCTION  

Following the terrorist attacks of September 11, 2001, and the anthrax-laced 

letters received in government offices in the months that followed, the federal 

government, along with state and local public health departments nationwide, has 

installed biological surveillance systems across the country to provide the earliest 

possible indication that a bio-terror attack is underway. Such systems, which monitor 

health care data for signs of man-made or naturally occurring disease epidemics, must 

constantly balance the inherent trade-off that arises between sensitivity, reporting 

timeliness, and rate of false alarms (specificity), when setting detection thresholds. These 

detection thresholds are simply the signal intensity or magnitude above which an alarm is 

generated to notify of an abnormal condition.  

The problem of optimizing a system consisting of multiple threshold detection 

sensors, in terms of setting individual sensor thresholds to maximize the probability of 

detecting an event of interest, in the form of a shift in the underlying distribution, has not 

been solved. We turn to the industrial engineering field for tools to help us maximize the 

probability of detection of an event of a given magnitude, while limiting the false alarm 

rate to some manageable level. In this thesis, we develop a model using nonlinear 

mathematical programming techniques to determine appropriate individual thresholds at 

each location in a distributed set of sensors, taking into account the likelihood of some 

event of interest in each sensor’s coverage area, and accounting explicitly for constraints 

on resources available for investigation of false positives.  

B. STATISTICAL PROCESS CONTROL 

With the expanding use of mass machine production in the early twentieth 

century, techniques were needed to ensure the quality of the items produced without 

conducting inspections on every single item. In the 1920’s, Dr. Walter A. Shewhart of 

Bell Telephone Laboratories pioneered statistical process control (SPC) through his 
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development of the control chart that bears his name. In effect, these control charts are 

sensors that provide a signal when the monitored parameter exceeds a particular threshold 

value.  

In recent years, the use of statistical process control techniques has expanded to 

other, non-manufacturing applications. MacCarthy and Wasusri (2001) and Montgomery 

(2001) each cite an extensive list of SPC applications outside the manufacturing industry, 

from monitoring and evaluating to planning and forecasting. Some areas of study include 

water quality and chemical monitoring, predictive and preventative maintenance, 

customer service and satisfaction, trends in patient mortality, crime rates, and food 

industry hygiene.  

In the manufacturing sector, the monitored process has a desired state, for 

example achieving components with particular measurements. In contrast, many non-

manufacturing processes have objectives and measurements that must be defined by the 

user. The sensors might also be tasked to monitor similar processes in many locations at 

once. In this case, using the same detection threshold in all locations might not be a good 

solution because the data in each location may come from distributions with different 

statistical properties, or have different performance or levels of importance.  

In manufacturing, there is always some amount of natural variability that cannot 

be avoided. Each item that comes off an automated assembly line must be within some 

tolerance of a target value, even if it is that value is not exactly satisfied. With only these 

“chance” causes of variation present, a process is said to be in statistical control. When 

some factor external to the process is introduced, such as a defect in material, operator 

error, or an inadvertent or incorrect adjustment to a machine, these “assignable causes” 

place the system in a state known as out of control. (Montgomery, 2000) Once the 

process goes out of control, manufacturing must be stopped and the cause investigated 

and corrected. SPC aims to detect as early as possible any assignable causes in order to 

minimize the costs of producing defective items.  

The Shewhart chart is a relatively simple tool used for monitoring a process. An 

example is shown in Figure 1. The observations that are plotted are the measurements of 
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individual samples taken from the production line. The desired value of the process in 

this chart, e.g. the diameter of a circular object such as a washer, or the length of a bolt, is 

5.00 units. The lines at 3.00 and 7.00 are the lower control limit (LCL) and the upper 

control limit (UCL), respectively; these are the extreme values of the distributional 

parameter being monitored (often the meanµ ) that are permissible. While the process is 

in control, nearly all samples taken will have measured values within the control limits; 

these limits are specified so that the items produced in the process are highly likely to be 

within specification limits so long as the process is in control. Beyond these specification 

limit values, the items are not acceptable because they are either too big or too small. 

Warning limits are often added as well, placed between the target value and the control 

limits, to indicate that the process might be drifting toward one of its control limits, and 

that some action should be taken to prevent production of defective material. If the 

process is in control, a random pattern should appear on the control chart.  

 
Figure 1: In-control Shewhart chart.  

Process meanµ = 5 ,σ = 1 ; control limits set at + −2σ . 

 

The upper and lower control limits can be chosen to be particular values, such as 

+ −  0.1 millimeters from the target value, or they can be given in terms of a number k of 

standard deviations, + − kσ .  
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The most common Shewhart chart is the x  (x-bar) chart, which is used to monitor 

the mean of the in-control distribution.  This form of the Shewhart chart assumes that 

samples are taken at some regular interval, and that the sample mean x  is normally 

distributed by the central limit theorem. (Montgomery, 2000) However, the Shewhart 

chart is not restricted to monitoring production statistics that are normally distributed. 

Rather, the main idea of the Shewhart chart is to monitor when observations fall far out in 

the tail of the statistic’s distribution. This idea can be applied to any distribution so long 

as the distribution can be specified and the control limits can be calculated as the 

appropriate quantiles of the distribution. Stoumbos and Reynolds (2000) provide analysis 

of the performance of Shewhart control charts against several heavy-tailed symmetric and 

asymmetric distributions. They demonstrate that a Shewhart chart with control limits 

+ − kσ  based on the normal distribution will detect shifts of other distributions, although 

with higher false alarm rates as evidenced by shorter average times to signal (ATS), due 

to the higher densities in the tail regions of non-normal distributions.  

The Shewhart control chart in Figure 1 represents a normally distributed process 

with 100 observations drawn from a normal distribution. The process has a mean 

µ = 5.00  and standard deviation σ = 1 , with 2σ  control limits. All observations fall 

between these control limits, so this process is in-control. Figure 2 is another Shewhart 

control chart using exactly the same observations, but with an upward shift in the 

distribution mean by 0.5σ  for all observations starting at observation #40. As it turns 

out, this observation’s value of 7.33 exceeds the control limit value (“threshold”) of 7.00. 

At this point, the process should be stopped and investigated to find out whether there has 

been a change in the underlying distribution.  
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Figure 2: Out-of-control Shewhart chart. 

+0.5σ  shift in process mean occurs at observation #40. 

 
It should be noted that in the industrial quality control literature there is a great 

amount of discussion on efficient means of sampling an industrial process. While larger 

samples and those taken at more frequent intervals are generally more representative of 

the product being produced, the process of sampling itself, as well as the possibly 

destructive testing, each has its costs. There are, however, individuals control charts that 

directly plot individual measurements of every item produced instead of taking samples. 

These are used when it is not feasible to have a sample size larger than n = 1 . Individual 

measurements are discussed in Montgomery (2001) and Smith (1998). For our purposes, 

and motivated by the biosurveillance problem we will discuss in Chapter III, we will 

assume that each item of data is being plotted on an individuals Shewhart chart, and not a 

sample mean from a multi-unit sample.  

Statistical process control methods have evolved greatly since the introduction of 

the Shewhart chart.  The cumulative sum chart (CUSUM) uses accumulated deviance 

from the target value over time to indicate departure from the in-control condition. In a 

similar manner, the exponentially weighted moving average chart (EWMA) accumulates 

evidence from historical observations, assigning greater weight to more recent 

observations. Because our study will rely on a method based on the Shewhart control 
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chart, details on the CUSUM and EWMA are not included here. See Box and Luceño 

(1997), Montgomery (2001), and Stoumbos and Reynolds (2000) for more details.  

C. PREVIOUS STUDIES OF SPC IN NON-INDUSTRIAL SETTINGS 

There have been several studies in recent years that attempt to use SPC techniques 

to monitor data in settings outside of the manufacturing industry. Montgomery (2001) 

points out that once we get past the idea of not having precise specification limits, we can 

apply SPC techniques to any process where we can take measurements that demonstrate 

quality or performance. A brief summary of several of these non-industrial applications 

of SPC follows.  

Montgomery (2001) cites the use of sampling and testing using control charts by 

the finance division of a company to reduce the flow time of checks through the division, 

thereby reducing the percentage of invoices paid late and resulting in substantial savings 

to the company. Bamford and Greatbanks (2005) examine the use of basic quality tools 

for data collection, display, and statistical analysis for several routine processes that occur 

regularly in everyday life, such as time spent waiting for and receiving services or 

completing various tasks.  

Gordon and Pollack (1994) developed a non-parametric statistical system using 

individual observations to detect departures from a symmetric distribution centered on 

zero, similar to the conditions in our study. They set a constraint on the false alarm rate 

for the single sensor by fixing the same average run length for each simulation. The 

model achieves performance comparable to a standard CUSUM for relatively longer runs 

from simulation start to the shift.  

Most uses of SPC in health care surveillance have used variations on CUSUM 

control charts because of this tool’s ability to detect small deviations over time. Statistical 

process control is well suited to use in manufacturing because while a system is in 

control, variability is caused only by random sources. In comparison, even in-control 

processes in health care monitoring experience non-random sources of variation known 

as overdispersion. Overdispersion occurs when the variability in the data exceeds that 

predicted by using an implicit relationship between the mean and the variance. (Hinde 
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and Dimétrio, 1998) This could be due to a multitude of factors that often cannot be 

controlled and may be difficult to account for in statistical models. This additional 

variability must be either modeled and removed or taken into consideration when setting 

detection thresholds in order to prevent excessive false alarm rates.  

There have been many studies that have imposed simulated disease outbreaks 

overlaid on top of actual in-control health care data to test various detection algorithms. 

Mohtashemi, et al. (2006) used a Shewhart method to detect simulated outbreaks of 

influenza using the mean disease incidence level and a 2σ  detection threshold, with a 

false-alarm rate constrained to be 3.3 percent annually. Fricker (2007a) converts existing 

multivariate methods into directionally sensitive univariate Shewhart and modified 

CUSUM methods, and successfully tests them against multivariate data. Olson, et al. 

(2005) considered the spatial distribution of emergency room patients with respiratory 

symptoms to detect clusters of disease outbreak.  

Woodall (2006) weighs the advantages and disadvantages of the use of control 

charts in health care surveillance, and discusses some specific issues and techniques 

found by public health officials in their implementations that can be adapted by 

traditional SPC users in industry. Woodall concedes that the problem of overdispersion 

might only be solved by increasing control limit widths to reduce false alarm rates.  

Aylin et al. (2003) apply a CUSUM control chart model to monitor deaths of 

patients under the care of primary care physicians in England. They attempt to estimate 

overdispersion in the healthcare practices they examined by using data from other 

practices that were assumed to be in-control. They point out a general lack of models that 

monitor multiple data sources over time. Marshall et al. (2004) uses a CUSUM for 

prospective monitoring of deaths of all types in England in district general hospitals. 

They also handle the issue of overdispersion, as well as attempting to handle multiple 

testing over time by controlling false alarm rate. Both studies use the framework of a shift 

of k standard deviations from a standard normal in-control distribution similar to the 

models in this thesis.  
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The Marshall model differs, however, from the models presented in this thesis in 

that all “sensors” in the system have their thresholds h set at an equal number of standard 

deviations from the in-control distribution, with h ∈{2σ , 3σ , 4σ} . Marshall examines 

the percentages of sensors that signal true detections and false alarms for all 

combinations of distributional shifts kσ  (a CUSUM parameter) and h and for various 

numbers of sensors that have experienced actual shifts in the mean. In contrast, our model 

determines appropriate individual thresholds hi for each sensor i to achieve a maximum 

overall probability of detection of an actual distributional shift, while limiting the 

probability of false alarm to a specified overall rate.  

In their discussion of issues related to statistical epidemiologic surveillance, 

Wilson et al. (2006) weigh in on a specific trade-off that is inherent in any type of 

statistical monitoring, that of limiting type I and type II errors. (A type I error is a false 

alarm, or saying a distributional shift has occurred when none has; a type II error is a 

missed detection, or saying that no shift in the underlying distribution has occurred when 

in fact it has.) They conclude that while excessive false alarms may reduce readiness in 

the health community, the general method of setting limits on false alarms is 

inappropriate in this context because it increases the probability of missing an actual 

event (type II error) where lives would be lost and time wasted. Similarly, Washburn 

(2002) points out that in many sensor applications, the costs associated with false alarms 

and missed detections are so disparate that it is impractical to quantify both on the same 

scale.  

D. ISSUES INVOLVED IN USE OF SPC TECHNIQUES IN NON-
INDUSTRIAL APPLICATIONS 

Because SPC techniques are concerned with identifying increases in the incidence 

of events in the presence of underlying noise, as well as for making an explicit trade-off 

between false signals and missed detections, they have broad applicability in many 

surveillance applications.  

In a threshold detection sensor system, we are interested in sifting through the 

background noise of naturally-occurring incidents to identify a relatively small increase 
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in the number of cases above the background noise, which indicates a shift in the 

underlying distribution, while limiting type I and type II errors.  

A major issue with statistical monitoring is systematic effects. The parameter 

being monitored can change over time, often due to factors that are not of interest to the 

model. Reis et al. (2003), Fricker et al. (2007a), and Fricker et al. (2007b) discuss 

statistical models that eliminate systematic components of the data, such as day-of-week 

and seasonal effects. This idea will be discussed further in Chapter II as we develop our 

model.  

The design of control charts has evolved to include economic factors, since 

reducing the cost of manufacturing is a key objective of SPC. Some of these factors in the 

industrial sector are sampling costs, losses from producing sub-standard product, and the 

costs incurred from investigating false alarms. (Montgomery, 2000) In non-industrial 

applications of SPC, these factors are often not an issue because all data points must be 

examined in order to have sufficient coverage. Determining the sample size and 

frequency at which we sample is therefore not a concern. Because we are looking for an 

event of small magnitude, with the goal of quick detection, and because data in many 

applications are collected automatically from an electronic source, every data point and 

every interval of time is considered. These are then analyzed using individuals control 

charts, discussed in Montgomery (2001).  

Finally, we should consider the type of control chart that is appropriate for the 

particular surveillance application. In some applications of SPC, any deviation—whether 

positive or negative—from the desired target level is considered an event of interest. In 

such a case, both directions should be monitored, using either a two-sided control chart or 

two one-sided control charts.  In other applications, such as the biosurveillance problem 

discussed in Chapter III, only changes in one direction are of interest and thus the 

application of a single one-sided control chart will provide greater statistical power. For 

example, assume a Shewhart chart with an in-control distribution that is a standard 

normal ~ (0,1)X N  distribution, and a constraint on probability of false alarm set at five 

percent. For a two-sided test, the right- and left-hand tail areas will each have an area of 
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2.5 percent, resulting in z values of + − 1.96. Following a shift in the distribution mean 

of magnitude δ = 1, the area to the left of +1.96 on the resulting normal distribution 

~ (1,1)X N  will be 0.831. The area to the right of this threshold corresponds to the 

probability of detection, Pd = 1− 0.831= 0.169 . If the test is one-sided, the right-hand tail 

will have an area of five percent and a z value of +1.64; the area to the right of +1.64 is 

0.739. With the same shift in the distribution mean, the probability of detection will be 

Pd = 1− 0.739 = 0.261. Table 1 demonstrates probabilities of detection for shifts of 

magnitude δ ∈{1σ , 2σ , 3σ}  for both one- and two-sided hypothesis tests. Clearly when 

we are only interested in detecting an increase in the mean, the one-sided hypothesis test 

performs better.  

Magnitude of Shift Two-Sided Test (Pd) One-Sided Test (Pd) 

δ = 1 0.169 0.261 

δ = 2  0.516 0.641 

δ = 3 0.851 0.913 

Table 1: Comparison of performance for one- and two-sided hypothesis tests. 
Assumes a standard normal ~ (0,1)X N  in-control distribution. 
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II. SURVEILLANCE THROUGH A SYSTEM OF CONTROL 
CHARTS 

A. DESIGNING A SYSTEM OF CONTROL CHARTS 

In industrial SPC, individual univariate control chart applications are designed 

and implemented using one of three approaches. Each of these design approaches is 

concerned not only with setting the detection threshold(s), but also with determining 

sampling frequency and sample size, both of which involve real production costs that 

reduce a commercial organization’s profit. As discussed previously, our use of 

individuals control charts (i.e., control charts that plot every observation individually) 

allows us to ignore that portion of the SPC literature concerned with sampling and issues 

related to minimizing sampling costs.  

The first approach for developing control charts is the statistically designed 

control chart, where the width of the control limit and the power of the test are pre-

selected based on the average time between false signals (referred to as the in-control 

average run length or ARL). For a two-sided Shewhart chart with 3σ  limits, where the 

statistic is normally distributed, there is a 0.0027 probability of committing a type I error 

(signaling that the process is out-of-control when in fact it is in-control). This means that 

99.73 percent of observations taken while the process is in-control will fall between the 

upper and lower control limits and that a false signal will only be generated on average 

once every 370 observations. (Montgomery, 2000) 

A second approach is the economic design of control charts, where thresholds 

along with sampling criteria are chosen in order to minimize the costs associated with 

quality control. These include the costs associated with monitoring production, the cost of 

false alarms, and investigation costs to find the assignable causes when production 

standards are not met.  

A third approach is an economic-statistical design which seeks to minimize lost 

economic costs, while setting an upper limit on the probability of type I error and a lower 
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limit on the power, or probability of detection. Saniga (1989) also sets an upper limit on 

the average time to signal (ATS) for a given shift in the mean.  

Unlike these approaches, here we seek not to design a single control chart, but a 

system of control charts. In so doing we use an essentially statistical approach, both for 

its simplicity, and because determining the costs of type I and type II errors in a 

surveillance setting is non-trivial. However, we note that if such costs are available, the 

optimization model could be modified to account for economic considerations as well. 

The model seeks to explore how to optimally set detection thresholds at each location to 

maximize overall probability of detection of a distributional shift of a specified 

magnitude, subject to constraints on the expected number of false alarms per time period. 

We note that this constraint is an implicit economic constraint, in the sense that false 

alarms must be investigated and such investigations consume resources.  

B. MODELING ASSUMPTIONS  

There are several major assumptions that we rely upon for the development of the 

model in this study. We first lay out the assumptions that abstract the system we are 

looking at, and then relate the mathematical and statistical assumptions used in the 

development and testing of our model.  

The first simplifying assumption we make is that our system of sensors is 

designed, or at least has set its threshold levels, in order to detect increases in the 

background levels of the measure of interest. Several examples were cited in the previous 

chapter where SPC was used to detect deviations from an in-control state, each of which 

was interested in an increase in the distributional mean level of the statistic of interest. 

The previous chapter also discussed the statistical benefit of increased sensitivity that 

results from use of a one-sided control chart.  

Because in this problem we assume that each observation is being monitored, we 

have designed the model around individuals Shewhart charts. Essentially, we are 

assuming that monitoring timeliness is so important that each observation will be 

monitored individually as it arrives.  That is, instead of taking samples from a population, 

or waiting to aggregate a series of individual observations into a combined measurement, 
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we are examining every data point and comparing it to our threshold. Montgomery 

(2001) discusses the use of individuals control charts.  

Another assumption that simplifies the problem for our purposes is that each 

sensor provides complete coverage of its assigned area, without any overlap with 

adjacent sensors. This allows for each sensor to be independent of all other sensors. In the 

real world, however, it will be difficult and perhaps even undesirable to implement a 

system of sensors where there is no overlap in coverage; it is better to have two sensors 

detect an event than to have a possibility that the one sensor where the event occurs will 

miss the event.  

The final simplifying assumption we make is that at most one event (distributional 

shift) occurs per time period within our sensor network. Using Yi as a binary variable to 

indicate the presence or absence of an event in sub-region i, we can express this 

assumption as:  

  
Yi

i
∑ ≤ 1 ; Yi ∈[0,1]      (1) 

Allowing for more than one event per time period complicates study of the central 

problem. The problem as we have laid it out, however, is conservative in its estimate of 

the probability of detection: it will be easier to detect two independent events than just 

one. Looking at the problem of Yi ≤ 1
i
∑  then is a lower bound on the probability of 

detection for one or more events in the region per unit of time.  

Using the law of total probability we briefly consider the mathematics of studying 

multiple events in a single time period. If we have n sub-regions, each with a particular 

probability of experiencing the event in a given time period, the sums of their individual 

probabilities must be one. If we randomly select one sub-region for the first event to 

occur, we must remove that sub-region from consideration for all other events in that 

time period. This gives us a new problem with n −1  sub-regions; all of the probabilities 

of event for these n −1  sub-regions must then be re-normalized to sum to one. This 

process can be repeated for any number of events for any time period. It is easy to see 

that this would best be modeled using simulation to examine the effects of different 
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numbers of expected events on our detection and false alarm performance. However, by 

assuming that at most one event occurs per time period, we can look at the probabilities 

of event and the probability of detection as a snapshot rather than as a sequential 

probability game. This greatly simplifies our analysis and its presentation in this thesis. 

The first of the statistical assumptions we make is that the observations we are 

monitoring are independent and identically normally distributed. We justify this 

assumption by assuming that we are monitoring the standardized residuals from a model 

used to account for and remove systematic trends in the data. See Fricker et al. (2007a) 

and Fricker et al. (2007b) for discussion on the use of adaptive regression models to 

remove systematic trends from biosurveillance data, such as day-of-week or seasonal 

effects.  

In addition, we assume that the event of interest will be manifested as a jump 

increase in the mean of the in-control distribution. While this may seem a broadly 

simplifying assumption, in statistical process control the control limits are established at 

values that are the minimum shift that is of interest to the production process. Shifts of 

smaller magnitude are presumably not interesting; conversely, much larger shifts in the 

mean are trivial to detect with a threshold set below the expected shift. For example, 

assume an in-control distribution X ~ N(0,1) , and our control limits set at h = µ + 2σ . 

This will result in a relatively easy detection of a 3σ  increase in the mean, and a 

relatively low probability of detecting a much smaller single standard deviation shift in 

the distribution. These scenarios are depicted in Table 1 in the previous chapter. 

Thus we can represent the out-of-control state as a shift in the mean of the in-

control distribution. In particular, if an observation from the in-control distribution is 

denoted as 2~ (0, )X N σ , then an observation from the out-of-control distribution can be 

denoted as 2' ~ ( , )X N δ σ  where kδ σ=  for some 0k > . Thus, if the in-control 

observations come from a standard normal distribution, an event of magnitude 2σ  results 

in subsequent observations coming from ' ~ (2,1)X N . (Montgomery et al., 2006)  

The Shewhart methodology assumes that samples are independent of one another. 

However, the independence assumption is unrealistic in many applications, where 
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processes generate data that is autocorrelated over time. (Stoumbos and Reynolds, 2000) 

Such temporal change will significantly affect the performance of a Shewhart x  chart; as 

previously described, we have assumed that temporal effects can be accounted for and 

removed from the data using an approach such as adaptive regression prior to 

implementing our model. Adapting our model for temporal methods such as CUSUM and 

EWMA, whose statistics are autocorrelated, is an area for future research.  

C. MODEL OBJECTIVE  

The objective of the model developed in this thesis is to maximize the probability 

of detecting a distributional shift (event) of a certain magnitude within a region, subject 

to a constraint on the expected number of false alarms per unit of time. The region is 

divided into multiple, disjoint sub-regions, each of which is being monitored for an event, 

and each of which has some probability of having the event occur within that sub-region. 

Recall from the previous section our assumptions of independence and full sensor 

coverage.  

While the goal is to “tune” the sensor detection thresholds in each sub-region, 

such that the probability of detecting an event of particular magnitude somewhere in the 

region is maximized, there is a trade-off inherent in setting the detection thresholds, both 

in industrial SPC and in threshold detection applications. As a threshold is lowered 

toward the background noise of the data, the sensor becomes more sensitive to the natural 

variation in the data and is more likely to generate false alarms. As a result, detection 

thresholds must be set as low as possible in order to maximize the probability of 

detection, but not so low that the rate of resulting false positive signals is intolerable. 

Hence, the goal is to develop an optimization framework to determine individual 

thresholds for each sub-region that will maximize the overall probability of detecting an 

event, subject to an upper limit on the expected false alarm rate over the entire region.  

To determine the optimal set of thresholds, we first need to determine the 

probability of an event occurring in each of the sub-regions. These probabilities can be 

determined or estimated in a variety of ways.  The algorithm we use to estimate this 

probability of event is as follows. First, we assign each sub-region a numerical weight. 
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The weights can be any number on any scale, with larger weights indicating a higher 

likelihood of experiencing the event. These individual weights are then normalized by 

dividing each individual weight by the sum of all weights assigned across the region. 

This gives us each sub-region’s proportion of the total weight, and thus its estimated 

probability of experiencing the event. This model is described mathematically in the 

following section.  

D. MODEL FORMULATION 

Assume a region has been divided up into N non-overlapping sub-regions, with 

each sub-region containing one sensor. The output from each sensor i, i = 1,…, n, is 

expressed as Xi. When there is no event of interest, the system is in control, with the Xi’s 

being independent and identically distributed. We express this as 0~itX F  for all i and for 

t = 1, 2, 3, …. If an event of interest occurs at time τ, then for one i 1~itX F  for t τ≥ . 

We are interested in determining a detection threshold hi for each sub-region i to detect 

this distributional shift. A signal is generated at any time t when any sensor output 

itX exceeds its threshold hi.  

Recall that in Chapter I we discussed the rationale for limiting the number of 

events per unit of time to no more than one. Equation (1) expressed this constraint using a 

binary variable Yi . Thus, given some information about each sub-region and each sensor, 

we calculate or estimate the: 

• Probability of an event in sub-region i: Pr(event in sub-region )i ;  

• Probability of detecting an event should one occur in sub-region i: 
Pr(detect | event in sub-region )i ; and 

• Expected number of false alarms in sub-region i per 
period: (false alarms for sub-region )E i . 

Given Pr(detect | event in subregion )i  and Pr(event in subregion )i for each sub-

region, the probability the system detects an event in the whole region is 

  
Pr(detect event on region)= Pr(detect |event in sub-region i) Pr(event in sub-region i)

i=1

n

∑  (2) 
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As previously described, we use the weight of a particular sub-region mi as a 

fraction of the total regional weight M = mi
i=1

n

∑  as a proxy for the probability of an event 

in that sub-region, with Pr(event in region ) imi
M

= .  

The probability of a false signal in sub-region i for a given threshold hi is thus  

 
  
pi (hi ) = f0(x)dx

x=hi

∞

∫ = 1− F0 (hi ) ,  (3)  

where f(x) is the pdf of the distribution of the statistic being monitored, under the 

assumption of no event, evaluated at x.  

Using this same notation, the expected number of false alarms in sub-region i per 

time period is (false alarms for sub-region ) 1 ( ) 0 [1 ( )] ( ).i i i i i iE i p h p h p h= × + × − =  

Assuming that the regions are independent, the expected number of false alarms for the 

region per time period is thus 
  
 pi (hi )

i=1

n

∑ . 

Assuming that the event of interest manifests itself as a shift in the mean of the 

no-event distribution, so that f1(x) = f0 (x) + δ , δ > 0 , the probability of a true signal can 

be denoted as 

p
i
(hi − δ ) = f1(x) dx

x=hi

∞

∫ = f0 (x)
x=hi −δ

∞

∫ dx = 1− F0 (hi − δ )   (4) 

Given the preceding, we can then express the problem of maximizing the region-wide 

probability of detection subject to a constraint κ( ) on the expected number of false 

signals as a non-linear programming model (NLP), which we will refer to as STOPT 

(Sensor Threshold Optimization) later in the thesis.  
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Indices 
i  Sub-region within area of interest 
 
Data 
mi  Relative weight assigned to sub-region i 
κ   Max allowed false alarms in region 
δ   Magnitude of shift in mean incidence level 
 
Variables                (5) 
hi  Detection threshold in sub-region i 
 
Formulation 

  

maximize
h

pd ≡
mi

Mi
∑ 1− F0(hi − δ )⎡⎣ ⎤⎦

subject to 1− F0(hi )⎡⎣ ⎤⎦
i=1

N

∑ ≤κ ,
      

Due to the potential for high false alarm rates in sub-regions that have a higher 

probability of detecting an event, one possible variation would be to add a second 

constraint to limit the probability that a given sub-region will experience false alarms. 

Alternatively, we could specify a minimum acceptable probability of detection for a 

particular sensor, by setting a lower bound on the probability of detection. These 

respective constraints take the form of Equations (6) and (7). 

  1− F0(hi ) ≤ αu ; 0 ≤αu ≤ 1    (6) 

   1− F1(hi ) ≥ ρl ; 0 ≤ ρl ≤ 1     (7) 

The inequality in (6) places an upper limit αu  on the probability of signaling a false 

alarm for a particular location, and (7) places a lower limit ρl  on probability of detection 

by a particular sensor. The effect of (6) is to force the thresholds for the constrained sub-

regions to move higher, forcing them away from the underlying noise to lessen the 

probability of false alarm. While this is desirable in terms of reducing resources spent on 

investigating false alarms, the constraint also decreases the probability of detection for 

those sub-regions. Equation (7) does the opposite, pulling thresholds down to increase 

sensitivity, with the trade-off that the probability of false alarm increases.  
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The STOPT model in (5) is designed so that we can control the probability of 

detection and the number of region-wide false alarms by changing the value on the right 

hand side of the constraint. This model has the potential for enhancement by tailoring the 

constraints in (5), (6), and (7) to meet the objectives of the system. Expressed as a 

nonlinear program, and assuming that the in-control distribution at each sensor is 

~ (0,1)iX N  with a shift of magnitude δ  in the mean incidence level, our model 

becomes: 

Indices 
i  Sub-region within area of interest 
 
Data 
mi  Relative weight assigned to sub-region i 
κ   Max allowed false alarms in region 
δ   Magnitude of shift in mean incidence level 
 
Variables 
hi  Detection threshold in sub-region i 
 
Formulation 

  

maximize
h

mi

mi∑i
∑ [1− Φ(hi − δ )]

subject to [1− Φ(hi )]
i
∑ ≤κ

 

( )ihΦ  is the standard normal cumulative distribution function (CDF) evaluated at 

the threshold ih . So the term 1 ( )ih−Φ  in the constraint is the area to the right of the 

detection threshold hi, representing the probability of committing a type I error.  

( )ih δΦ −  is the standard normal CDF evaluated on the out-of-control 

distribution, which in the case of our models is simply the in-control distribution 

  Xi ~ N (0,1)  shifted rightward by some number of sample standard deviations kσ = δ , 

with a resulting distribution of   Xi ' ~ N (δ ,1) . So the term 1 ( )ih δ−Φ −  is the area to the 

right of the detection threshold hi, representing the probability of detecting an actual 

event.  
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Because both our objective function and constraint are nonlinear, we need to 

determine whether a globally optimal solution exists. It is possible in nonlinear 

programming problems for solver algorithms to converge to a point that is locally 

optimal, despite the fact that at other areas on the function or space of interest there are 

areas where we can do much better.  

It is relatively easy to demonstrate that the objective function in (5) is strongly 

quasiconvex over the constraint regions, which in a minimization problem would give a 

globally optimal solution. Unfortunately, because this is a maximization problem, a 

globally optimal solution is not guaranteed on the basis of quasiconvexity of the objective 

function alone. (Bazaraa et al., 1993) However, under the previously specified 

assumptions, and as described in Fricker and Banschbach (2008), a globally optimal 

solution does exist.  

Overall the results from testing of the model in (5) show us that areas assigned a 

higher probability of event will have thresholds set closer to the mean incidence level to 

achieve higher probabilities of detection, with accompanying higher probabilities of false 

alarm; areas with lower assigned probabilities of event will have higher thresholds to 

keep false alarm rates low, with lower probabilities of detection. The overall expected 

number of false alarms system-wide must still be no greater than some level κ  that is 

specified as reasonable. We discuss detailed results in the following chapter. 
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III. SETTING OPTIMAL THRESHOLDS 

A. TOOLS FOR DESIGNING, TESTING, AND IMPLEMENTING MODELS 

The models in this thesis were implemented in Microsoft Excel, using Frontline’s 

Premium Solver (student version) to solve the nonlinear optimization problems. The main 

advantages of Excel are its familiarity to many users, and the ease with which model 

inputs can be changed and the effects of the change recognized immediately. The 

Premium Solver uses the Generalized Reduced Gradient (GRG2) nonlinear optimization 

algorithm, described in Lasdon, et al. (1978)  

Excel’s solver, however, limited the size of problem that could be examined. 

Because our problem is nonlinear, there is a limit of 200 variables over which this 

nonlinear solver can optimize. Problems with more variables can be solved using more 

advanced versions of Frontline’s Premium Solver or a more powerful optimization 

package such as the General Algebraic Modeling System (GAMS). Appendix A contains 

GAMS code for a small sample problem that can be expanded to larger models.  

The remaining sections of this chapter seek to apply our algorithm to the intended 

problem of biosurveillance through the use of various examples and excursions. We 

conclude with Section E, which describes a model that takes advantage of the normality 

assumption to reduce the n-variable optimization problem to a one-variable optimization. 

The model is derived in Appendix B and described in Fricker and Banschbach (2008), 

and is limited only by the dimensions of the Excel spreadsheet. 

B. A PRACTICAL APPLICATION OF A THRESHOLD-BASED 
DETECTION SYSTEM TO EPIDEMIOLOGICAL SURVEILLANCE 

The problem that motivated this thesis is that of improving the performance of 

epidemiological surveillance systems, sometimes also called syndromic surveillance. (A 

syndrome is a grouping of diseases, each of which presents similar symptoms. See 

Fricker (2007b) for a detailed overview of syndromic surveillance.) Such public health 

monitoring systems have operated at the federal, state, and local levels for several years. 
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Fricker (2007b), Fricker and Rolka (2006), Stoto et al. (2004), and Pavlin et al. (2003) 

each describe epidemiological or syndromic surveillance, and discuss the issues of 

sensitivity and specificity in the area of health care surveillance. Bravata et al. (2004), 

Sebastiani and Mandl (2004), Heffernan et al. (2004a and 2004b), Loonsk (2004), and 

Wagner et al. (2004), each describe several implementations of syndromic surveillance, 

and Lober et al. (2002) compares several systems that have been used in recent years.  

In epidemiological surveillance, three factors are crucial to success: reporting 

timeliness; analysis of public health data; and high sensitivity and specificity, where high 

specificity is analogous to a low rate of type I errors and therefore an ability to 

distinguish between noise and actual events. Bravata et al. (2004) point to the lack of 

study on sensitivity and specificity in routine health care surveillance, a major 

shortcoming that we will address explicitly in the implementation of our model. 

Additionally, many implementations of epidemiologic surveillance systems are 

seemingly “ad-hoc,” with the common belief that adding more sensors will improve 

detection performance. It is often soon realized following implementation that having 

more sensors leads to higher false alarm rates and no improvement in detection of even 

significant naturally occurring health events.  

To avoid complications from applying our model to an existing system, we will 

apply it to an abstract system that captures the essence of national epidemiological 

surveillance, so as to not get overly specific with the details of any particular system. We 

will assume a centrally monitored system of geographically distributed statistical sensors 

examining health care data on hospital admissions for a single syndrome. We will also 

assume that our system is using a simple Shewhart-type control chart of individual 

observations (say patient admission counts, for example) to examine data in a single 

period of time with systematic effects already removed. As previously discussed, 

temporal effects generally cause some autocorrelation between time periods, but which 

we assume can be removed via appropriate modeling. Future research is needed to apply 

our optimization techniques to other temporal methods such as the CUSUM and EWMA, 

whose statistics are autocorrelated. All other assumptions about independent sensors with 
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non-overlapping coverage still apply. Finally we assume that our control charts are one-

sided to detect only increases in the number of cases.  

The sub-regions we will consider are individual counties; it is assumed that a 

single sensor provides coverage for each county. To determine the regional event 

probability assigned to each county, and in the absence of other information, we use the 

fraction of the population in a particular county (out of the total population of all counties 

present in the model) as a proxy for probability of an outbreak or biological terror attack 

in that county. While likely overly simplistic, in an actual implementation of this method 

these probabilities of attack can be determined by any method desired. That said, using 

population as a surrogate is not necessarily unreasonable. For example, areas such as 

cities that have large, dense populations are more likely than sparsely populated areas to 

experience severe outbreaks of naturally occurring contagious diseases. In terms of 

bioterrorism, it is also not unreasonable to assume the objective of an attack would be to 

kill or sicken as many people as possible and consequently larger cities have greater 

appeal as bioterrorist targets.   

We will now present some models using population to estimate the probability of 

detecting a biological event of interest, such as a bioterrorist attack or natural outbreak, 

which manifests itself as an increase in the distribution underlying the number of cases of 

a particular syndrome in one sensor location. As we develop from simple models of only 

ten to twenty counties to the use of population figures for the two hundred most populous 

counties in the U.S., we examine the policy implications that come along with the 

decision to add more sensors. Often it is assumed that having more sensors will lead to 

improved probability of detection by additional coverage area, but our model reveals that 

there are both costs and benefits of such system expansions.  

Note that throughout our example problems we hold constant the parameters of 

the models we directly compare to each other. These include the magnitude of expected 

distribution shift kσ = 2  and the constraint on expected number of false alarms κ  per 

time period (κ = 1 for the first two small hypothetical models; κ = 4  for the remaining 

models using actual population values). Despite setting these parameters somewhat 
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arbitrarily in our examples, they can easily be changed to explore different scenarios as 

well as the sensitivity of any system to different modeling assumptions.  

C. POPULATION-BASED MODELS  

1. Model Using Ten Counties (STOPT10) 

The model described in Equation (5) is first implemented using fictional 

population data for a set of ten counties (STOPT10). The population of each county is the 

term mi, which we use as the relative weight for each county. Using this relative 

weighting system, each county is then assigned a probability of experiencing an event, 

given that an event occurs, which is its proportion mi M  of the total population M.  

The sensor in each county is assumed to be independent of those in all other 

counties. The populations and the resulting individual thresholds, probabilities of 

detection (pi), and false alarm (α i ), for each sensor, are shown in Table 2 below. The in-

control model assumes the sensor readings are Xi ~ N (0,1)  and the out-of-control 

condition manifests as a 2σ  shift in the mean of the in-control state, resulting in 

  Xi ~ N (2,1)  for one county.  

i  mi  mi M  hi  pi = Φ(hi −δ ) α i = Φ(hi ) 
1 1,000,000 0.169 1.009 0.839 0.156 
2 800,000 0.136 1.121 0.810 0.131 
3 700,000 0.119 1.187 0.792 0.118 
4 600,000 0.102 1.264 0.769 0.103 
5 600,000 0.102 1.264 0.769 0.103 
6 500,000 0.085 1.356 0.740 0.088 
7 500,000 0.085 1.356 0.740 0.088 
8 400,000 0.068 1.467 0.703 0.071 
9 400,000 0.068 1.467 0.703 0.071 

10 400,000 0.068 1.467 0.703 0.071 
Table 2: Model results from ten counties (STOPT10). 
Pd = 0.771 . Assumes an Xi ~ N (0,1)  in-control distribution,  

shift in mean level of 2σ , and false alarm rate limited to κ = 1. 
 

The overall probability of detecting an event of magnitude 2σ  somewhere in the 

region, given that we are willing to accept one false alarm, is 0.771. When we allow for 
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two false alarms, all individual thresholds are lowered and the overall probability 

increases to 0.881. The two rightmost columns ( pi  and α i ) are the individual 

probabilities of detection and false alarm, respectively, for each individual county i, for 

the case of one false alarm per time period. As we lower individual thresholds to improve 

pi , the individual false alarm probabilities α i  increase.  

One factor to keep in mind throughout the discussion of population-based models 

is the fact that the distribution of the total population is skewed rather heavily toward a 

relatively small number of areas. It is likely to be the case in other implementations that 

large percentages of population will be concentrated in a few areas such as major cities, 

with the remainder spread over a large number of smaller rural areas.  

2. Model Using Twenty Counties (STOPT20): Effects of Adding More 
Sensors to the System 

Expanding the population-based model STOPT10 depicted in Table 2 to twenty 

counties provides the model output STOPT20 in Table 3. Counties #1 through #10 are 

the same as in STOPT10. Allowing for one false alarm per time period, the overall 

probability of detection of a 2σ event for STOPT20 is 0.662. As before, allowing for 

more false alarms allows all thresholds hi to be lowered, resulting in higher probabilities 

of detection pi. Allowing for two false alarms the probability of detection of the same 2σ  

event is 0.782. The detection thresholds hi for each of the ten largest counties are higher 

in STOPT20 than for the same scenario in STOPT10, resulting in lower individual 

probabilities of detection pi but also lower probabilities of false alarm α i .  

The effect of scaling-up the problem from ten to twenty counties is clearly 

negative for the ten largest counties due to lower individual probabilities of detection pi; 

yet the benefit to counties #11 through #20 is obvious because in the second model they 

each have some level of sensor coverage, where previously they had none.  

A key area for statistical and policy analysis is as follows. Adding additional 

sensors to cover less-populous areas detracts from the more-populous areas and from the 

overall probability of detecting an event of a given magnitude (given the event occurs in 
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one of the more-populous areas), but there is significant individual benefit to the counties 

that are added. Does the additional benefit gained by providing coverage to more of the 

population outweigh the lower probability of detection for the most populous counties?  

i  mi  mi M  hi  pi = Φ(hi −δ ) α i = Φ(hi ) 
1 1,000,000 0.119 1.200 0.788 0.115 
2 800,000 0.095 1.311 0.755 0.095 
3 700,000 0.083 1.377 0.733 0.084 
4 600,000 0.071 1.456 0.707 0.073 
5 600,000 0.071 1.456 0.707 0.073 
6 500,000 0.060 1.546 0.675 0.061 
7 500,000 0.060 1.546 0.675 0.061 
8 400,000 0.048 1.657 0.634 0.049 
9 400,000 0.048 1.657 0.634 0.049 

10 400,000 0.048 1.657 0.634 0.049 
11 300,000 0.036 1.801 0.579 0.036 
12 300,000 0.036 1.801 0.579 0.036 
13 300,000 0.036 1.801 0.579 0.036 
14 300,000 0.036 1.801 0.579 0.036 
15 250,000 0.030 1.893 0.543 0.029 
16 250,000 0.030 1.893 0.543 0.029 
17 250,000 0.030 1.893 0.543 0.029 
18 200,000 0.024 2.003 0.499 0.023 
19 200,000 0.024 2.003 0.499 0.023 
20 150,000 0.018 2.147 0.441 0.016 
Table 3: Model results from twenty counties (STOPT20). 

Pd = 0.662 . Assumes an Xi ~ N (0,1)  in-control distribution,  
shift in mean level of 2σ , and false alarm rate limited to κ = 1. 

 

3. Model Using 200 Counties (STOPT200): A Practical Application of 
the Model to the U.S. 

The models in the preceding two sub-sections are now expanded to a 

representative system of sensors to monitor the populations of the two hundred largest 

counties in the United States (STOPT200). This is the largest single model that can be 

tested using the standard Excel solver applied to an n-variable optimization problem. For 

STOPT200, the in-control situation is assumed to be a standard normal distribution 

  Xi ~ N (0,1) . Assuming a limit on false alarms to an arbitrarily chosen rate of four per 

time period, the probabilities of detecting an event with a given shift from the in-control 
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mean are given in Table 4. A table showing complete results and individual counties’ 

probabilities of detection for a 2σ  shift is shown in Appendix C; the following sections 

will expand analysis upon this model to explore different assumptions and inputs to the 

model. 

Magnitude of Shift Probability of Detection

σ = 1  0.230 

σ = 2  0.537 

σ = 3 0.851 

Table 4: Comparison of probabilities of detection for various magnitudes of shift      
using STOPT200. 

Assumes an   Xi ~ N (0,1)  in-control mean, with an expected value of κ = 4   
false alarms per time period. 

 

Expanding upon this analysis, we now compare the results of our approach with 

the results achieved from naively setting equal thresholds for all sensors to achieve the 

same probabilities of detection. These results are summarized in Table 5 for various 

magnitudes of distributional shift in the background incidence levels. For each magnitude 

of shift, we set performance as a constant in terms of probability of detection, with our 

optimization model maintaining a false alarm rate of four per time period as before. For 

each magnitude of shift in the mean, we solve for the set of equal thresholds hi that will 

give us the desired probability of detection. Note that in order to achieve comparable 

detection performance against each shift, the false alarm rates incurred by the naïve 

method increase dramatically. This is a result of setting thresholds too high for a 

relatively small number of large counties and too low for the large number of small 

counties. For a 2σ  shift, the optimized thresholds for Los Angeles County (#1) and 

Lorain County, OH (#200), were 0.812 and 2.560, respectively. In a practical sense, the 

naïve system of equal thresholds is a misallocation of resources, where the locations with 

more population (“weight” in a generic sense) receive too little sensitivity and those with 

less population receive too much.  
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Magnitude 
of Shift 

Probability 
of Detection 

Thresholds 
(Naïve) 

# False 
Alarms 

(Optimized) 

# False 
Alarms 
(Naïve) 

Percentage 
Increase in 

False Alarm 
Rate 

σ = 1  0.230 1.739 4 8.206 105.2% 

σ = 2  0.537 1.907 4 5.651 41.3% 

σ = 3 0.851 1.959 4 5.008 25.2% 
Table 5: Comparison of false alarm rates between naïve and optimized methods        

using STOPT200. 
 

4. Comparison of the Performance of the U.S. Counties Models for 10, 
20, 40, 100, and 200 Counties 

A key issue that must be discussed by policymakers is that of how many sensors 

to employ. As mentioned previously when we looked at ten- and twenty-county models, 

the overall probability of detection of an event decreased when we increased the number 

of counties. However, the additional counties that previously had no coverage benefited a 

great deal by adding sensors.  

In the national epidemiologic surveillance context, there likely will be conflict 

between the local and national public health authorities on this issue. Those in heavily-

populated cities and counties will advocate having fewer sensors located in only the 

most-populous areas in order to provide the highest probabilities of detection in those 

localities, which because of their large populations present themselves as obvious targets 

to bioterrorists. National authorities may argue either way. One argument is similar to 

that just discussed, that of concentrating national surveillance efforts in the most-

populous areas; they would use the higher probability of detection as an argument to 

prevent expansion of the system. The other argument is that by leaving large numbers of 

counties and therefore a large proportion of the population uncovered—possibly many 

smaller counties whose total populations are larger than that of the handful of largest 

counties—that other populous areas are left unprotected and are therefore attractive 

targets. Table 6 and Figure 3 demonstrate that the overall probability of detection for 

events of given magnitudes decrease as more sensors are added to the system.  
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# Counties: 10 20 40 100 200 

σ = 1  0.791 0.614 0.459 0.305 0.230

σ = 2  0.964 0.890 0.790 0.641 0.537

σ = 3 0.997 0.986 0.962 0.907 0.851

Table 6: Overall detection performance (Pd) for various numbers of sensors              
versus a 2σ  shift. 

Assumes false alarm rate of κ = 4  per time period. 
 

 
Figure 3: Overall detection performance (Pd) for various numbers of sensors             

versus a 2σ  shift. 
Assumes false alarm rate of κ = 4  per time period. 

 

This thesis has already demonstrated that adding more sensors to a system has 

both costs and benefits. The marginal sensor adds detection capability for the county 

where it is installed, increasing the probability of detection from zero to some appreciable 

level. But this addition detracts from counties with sensors already installed, particularly 

those with larger populations, and decreases the probability of detection for the entire 

system. 
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D. EXCURSIONS FROM STOPT200 

1. Effect of Placing Additional Constraints on Individual Thresholds  

In implementing a model like STOPT200, we may want to add additional 

constraints to tailor the model to specific needs. Using constraints similar to those in 

Equations (6) and (7), we will examine two cases. The first is the case where we desire to 

artificially set a threshold higher than the optimal hi
*  from STOPT200 to drive down 

false alarm probability at that location; in the second case we want to set the threshold 

lower to improve detection probability in a certain location.  

The first case is that of setting an upper limit on the probability of false alarm for 

a particular sensor. In the output of STOPT200 (two hundred counties) shown in 

Appendix C, we notice that in Los Angeles County (#1), if no event occurs, there will be 

a 0.209 probability of experiencing a false alarm. If this is felt to be excessive, we can 

force this probability (or any other α i ) to be lower by setting a constraint on the 

maximum allowed probability of false alarm. Adding the constraint α1 ≤ 0.15  results in a 

higher threshold h1 and lower probability of detection in the county, down from 0.883 to 

0.832. Solving STOPT200 with the additional constraint results in an overall probability 

of detection of 0.537, unchanged from the previous optimal solution. The impact on other 

counties is minimal, with only very minor changes in probabilities of detection and false 

alarm (all less than about six percent, and most less than one percent).  

The other case is that of ensuring that the probability of detection at a particular 

sensor meets a specified minimum probability of detection. This could be due to a high-

profile event such as a major political or trade convention or sporting event where large 

crowds could be targeted. This situation of tuning sensors already in-place is a variation 

on the use of drop-in surveillance discussed in Fricker (2007b), Hutwagner (2003), 

Toprani et al. (2005), and Sebastiani and Mandl (2004). Alternatively this method could 

be used to compensate an area that has a lower assigned probability of attack than its 

importance or perception as a potential target. For example, Washington, D.C., is the 

23rd–most populous city in the U.S., yet because of the concentration of federal 
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government facilities and workers, it should be given a “weight” comparable to that of 

the most-populous city, New York. For our example, we will look at Denver County, 

Colorado. With approximately 567,000 people in 2006, it was the 105th-most populous 

county, and will be the site of the 2008 Democratic National Convention.  

In this second case, we add a constraint of the form in Equation (7) to establish a 

minimum probability of detection in that location. Again referring back to the optimized 

output of STOPT200 in Appendix C, we see that the probability of detection in Denver 

County is only about forty percent (0.404). Our new constraint on STOPT200 to require a 

minimum probability of detection in Denver County takes the form ρ105 ≥ ρmin . Table 7 

shows the results of several minimum probabilities of detection for Denver, with ρmin  

ranging from 0.500 to 0.900. As the requirement for detection probability becomes more 

stringent, we notice the thresholds h105 going down which also results in higher false 

alarm rates α105 . 

Solution  pmin  h105  α105  Pd  

1 0.404 2.244 0.012 0.537 
2 0.500 2.000 0.023 0.537 
3 0.600 1.747 0.040 0.537 
4 0.700 1.476 0.070 0.536 
5 0.800 1.158 0.123 0.534 
6 0.900 0.718 0.236 0.530 

Table 7: Effects of various threshold constraints for Denver County, CO.  
Solution 1 denotes previous optimal solution. 

 

This scenario of the national political convention motivated us to change the 

requirements of the STOPT200 model. Denver County’s threshold h105 was lowered to 

increase its probability of detecting an event of magnitude 2σ . If we desire a probability 

of detection in this county as high as ninety percent, we will have to lower Denver’s 

threshold to 0.718, roughly the same as the fifth-largest county (h5 = 0.714). The system-

wide effect of changing the threshold in just one county by this large amount, however, is 

minimal, with the overall probability of detection falling by just 0.7 percentage points. In 

contrast to the uniform downward shift of all thresholds hi as discussed earlier in this 

section, we are only shifting one threshold to improve detection performance in that 

location. It is possible to set constraints on multiple sensors, but care must be given not to 
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over-constrain the model; doing so could severely degrade overall performance by 

moving the system too far from the optimal combination.  

Note that it is necessary to re-solve the optimization after setting these additional 

constraints. If instead we only adjust the desired threshold h105 without re-solving, the 

false alarm constraint would be exceeded; for h1 the expected number of false alarms 

would be less than the constraint, and we would have an artificially low probability of 

detection. 

2. Effect of a Uniform Downward Shift in Individual Thresholds hi by 
All Sensors 

Given the optimal solutions generated in the previous chapter, one scenario that 

comes to mind is that of implementing a uniform shift of all thresholds hi. The motivation 

for this could be an increased likelihood of an event somewhere in the region, and a 

willingness to handle additional false alarms during a particular, although limited, time 

frame. Thus, after optimizing STOPT200 as before, we lower all hi’s by the same 

percentage to increase the probability of detection until the number of expected false 

alarms reaches an upper limit deemed acceptable. The converse situation of raising all 

hi’s seems less likely to occur. Note that a one hundred percent decrease in all hi’s results 

in all thresholds becoming equal to zero. A threshold of hi = 0 results in a probability of 

detection equal to 0.977 for a shift of magnitude 2σ , but there will be a very high 

number of false alarms as each piece of random noise results in a false alarm.  

The effect that we expect from gradually lowering all hi’s is to see an increasing 

probability of detection and an increasing number of false alarms. Figure 4 demonstrates 

that the rate of increase of false alarms outstrips the rate of increase in probability of 

detection. We notice that on the left-hand side of the graph the “P(Detection)” curve is 

relatively steep and the “# False Alarms” curve is relatively flat; the converse is true on 

the right-hand side of the graph where the probability of detection is asymptotic to 1.00 

and the number of false alarms is increasing rapidly. The effect is that of diminishing 

marginal returns from decreasing the set of hi’s. We conclude that a small system-wide 

percentage decrease in hi’s is appropriate to increase overall probability of detection, 
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keeping in mind that the percentage increase in false alarms will be much greater than the 

percentage increase in probability of detection, particularly for larger percentage shifts in 

hi.  
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Figure 4: Effects on performance (Pd) from uniform percentage decrease in all 
thresholds. 

Assumes a 2σ  shift in mean disease incidence level from Xi ~ N(0,1)  in-control mean. 

 

3. Effect of Independent Shifts in Thresholds hi by All Sensors 

Given an optimal solution for appropriate detection thresholds from STOPT200, 

one policy possibility is to give each locality some amount of autonomy to adjust its 

sensor’s threshold hi up or down. The threshold decision by each sensor would be arrived 

at by examining a variety of factors for its area, including scarcity of resources to 

investigate additional false alarms (forces a higher hi), or a desire to increase probability 

of detection even at risk of higher false alarms (forces a lower hi). It may be decided to 

allow each locality to raise or lower its threshold by up to a certain percentage.  
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We simulate these perturbations of each sensor’s detection threshold about the 

optimal hi found in STOPT200 to generate a new set of hi’s. Each new threshold is a 

normal random variable with its mean equal to the original hi and standard deviation of 

p·hi where p is the percentage of fluctuation that we allow for the sensor. Thus, the new hi 

is a random variable ~ ( , )i i iY N h p h• . This vector of new random variables results in 

more variability, and therefore more freedom, to areas with smaller populations or 

weights and less variability to areas with larger populations, which have a larger effect on 

the overall system performance.  

For the simulation, samples of one hundred sets of random hi’s were generated for 

each allowed percentage of fluctuation. Again, there are two measures that are of interest 

to us as we examine this possibility: the average probability of detection and number of 

false alarms at each level. Figures 4 and 5 show a typical results for probability of 

detection and number of false alarms for percentages ranging from five to two hundred 

percent of the hi values. As the percentage of fluctuation increases, the mean probability 

of detection stays relatively constant (Figure 5). This indicates that even as we increase 

the amount of shift in hi, the probability of detection does not change noticeably.  

 
Figure 5: Effect on overall performance (Pd) of STOPT200 by random shifts in  

individual thresholds. 
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However, as the percentage of fluctuation in hi increases, the number of false 

alarms increases significantly (Figure 6). Despite causing very little change in probability 

of detection, an increase in the percentage of allowable change in hi by two hundred 

percent raises the average number of false alarms by nearly sixteen hundred percent, from 

four false alarms to sixty-two per period. Even a thirty percent change in hi causes a 

doubling of the rate of false alarms.  

 
Figure 6: Effect on overall false alarms of STOPT200 by random shifts in          

individual thresholds. 
 

Clearly when individual sub-regions are allowed to vary their thresholds widely, 

Figure 5 shows there is no additional benefit to the system overall, while Figure 6 shows 

the false alarms rise dramatically. But if the percentage of fluctuation allowed is kept 

under twenty percent or so, the false alarm rate stays relatively constant at or below five 

per time period. 

E. ANALYTICAL SOLUTIONS 

The assumption of normality leads us to a simplified optimization solution that 

reduces the n-variable problem of Equation (5) to a one-variable optimization problem. 

Appendix B and Fricker and Banschbach (2008) discuss the derivation, which takes 

advantage of some useful properties of the normal distribution. The result is a log-linear 

relationship between the individual county’s probability of a biologic event of interest 

somewhere in the country, and the set of optimal thresholds hi.  
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We apply this new, reduced model to more easily solve the problem of setting 

thresholds for two hundred counties with the same outcome as presented in Section C.3 

of this chapter. Because the single-variable nonlinear optimization problem solves much 

faster than the n-dimensional problems we have already shown, we are able to quickly 

solve problems of practically unlimited size, without experiencing problems due to 

number of variables. Below we discuss the impact of placing one threshold sensor in each 

of the 3,141 counties in the United States, and compare the results with that of the model 

for only two hundred counties.  

For these examples we keep the same parameters as in previous sections of this 

chapter, with the limit on expected number of false alarms maintained at four per time 

period (κ = 4 ). The overall probability of detection falls from 0.537 in STOPT200 to 

0.518 for 3,141 counties (STOPT3141). Table 8 shows an excerpt from the output of 

STOPT3141. (A larger excerpt showing more counties is included in Appendix D.) The 

ten largest counties are included, with other selected counties representing every ten 

percent decrease in individual probability of detection. There is a positive effect for the 

largest counties in terms of probability of detection, but clearly a negligible benefit for 

smaller counties as the thresholds set for counties #1325 (in rank by population) and 

smaller are more than double the magnitude of the shift for which we are monitoring. In 

fact, 4σ  and higher thresholds are assigned beginning at county #884. Even following a 

2σ  shift, Jackson County, Ohio (#1325), will be in the right-hand tail region of the out-

of-control distribution, 2.34σ  beyond the new mean µ1 = 2 .  

Figure 7 is a map showing all 3,141 counties, with shading to indicate their 

relative probabilities of event (here, “probability of attack” in the bioterrorism context) 

and their assigned optimal thresholds hi. An example of a system of distributed statistical 

sensors on the same magnitude as this large model is the BioSense system operated by 

the Centers for Disease Control. This implementation of national biological surveillance 

has over 1600 sensors distributed throughout the United States. Figure 8 shows sensor 

locations for BioSense-equipped civilian hospitals and Department of Defense and 

Veterans Administration medical facilities superimposed on a population density map of 

the United States. (CDC)  
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However, the smaller counties receive very little coverage because of their small 

populations. We see from STOPT3141 that there is less than a one percent probability of 

detection of an event of magnitude 2σ  from county #1325 through #3141. For county 

#368 and smaller we see less than a ten percent probability of detection of a 2σ  event. 

All other counties between #1 and #200 that are presented can be compared directly to 

the results from the two hundred counties model using Table 9.   

i  County, State mi  mi M  hi  p(di )  p(α i )  

1 Los Angeles County, CA 9,948,081 0.0332 0.45 0.939 0.326 
2 Cook County, IL 5,288,655 0.0177 0.88 0.868 0.188 
3 Harris County, TX 3,886,207 0.0130 1.09 0.817 0.137 
4 Maricopa County, AZ 3,768,123 0.0126 1.12 0.812 0.132 
5 Orange County, CA 3,002,048 0.0100 1.27 0.767 0.102 
6 San Diego County, CA 2,941,454 0.0098 1.28 0.763 0.099 
7 Kings County, NY 2,508,820 0.0084 1.39 0.728 0.082 
8 Miami-Dade County, FL 2,402,208 0.0080 1.42 0.718 0.077 
9 Dallas County, TX 2,345,815 0.0078 1.44 0.712 0.075 

10 Queens County, NY 2,255,175 0.0075 1.47 0.703 0.071 
21 Suffolk County, NY 1,469,715 0.0049 1.76 0.595 0.039 
36 Contra Costa Co., CA 1,024,319 0.0034 2.01 0.498 0.022 
77 Lake County, IL 713,076 0.0024 2.25 0.400 0.012 

132 Chester County, PA 482,112 0.0016 2.52 0.301 0.006 
200 Lorain County, OH 301,993 0.0010 2.84 0.200 0.002 
368 Brazos County, TX 159,006 0.0005 3.28 0.100 0.001 

1325 Jackson County, OH 33,543 0.0001 4.34 0.010 0.000 
Table 8: Excerpt from model setting thresholds for 3,141 counties (STOPT3141). 
Overall probability of detection 0.515. Assumes a 2σ  shift and false alarm limit κ = 4 . 

 

Because we have previously shown that adding more sensors reduces detection 

performance of the most populous counties, we now explore what happens if we shrink 

this system back down to the point where all sensors have at least a ten percent 

probability of detection. If we remove all counties below #368 and re-solve the problem  

(STOPT368) to keep within our false alarm constraint, the probability of detection 

increases slightly from 0.518 to 0.523 for κ = 4.000  false alarms. The overall probability 

of detection increases by 0.5 percentage points and the individual probabilities of 

detection for the largest counties increase, while we can presume that there are significant 

cost savings by not installing or operating these 2,700-plus sensors.  
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Thus far in this section we have treated each county’s share mi M  of the total 

population M as a probability of experiencing a biological event of interest, either a 

terrorist attack or a natural disease outbreak. By optimizing using the model STOPT in 

Equation (5) we achieve a set of optimal thresholds hi that achieve a relatively high 

probability of detection (more than half) for the magnitude shift we have assumed 

throughout the use of population models in this thesis. However, some might insist on 

using the same detection threshold in each county, in order to give each county an equal 

probability of detection of the expected shift.  

  Threshold hi  p(di )  p(α i )  

i  County, State 3,141 200  3,141 200  3,141 200  
1 Los Angeles County, CA 0.45 0.81 0.939 0.883 0.326 0.209 
2 Cook County, IL 0.88 1.13 0.868 0.809 0.188 0.130 
3 Harris County, TX 1.09 1.28 0.817 0.764 0.137 0.100 
4 Maricopa County, AZ 1.12 1.30 0.812 0.759 0.132 0.097 
5 Orange County, CA 1.27 1.41 0.767 0.722 0.102 0.079 
6 San Diego County, CA 1.28 1.42 0.763 0.719 0.099 0.078 
7 Kings County, NY 1.39 1.50 0.728 0.691 0.082 0.067 
8 Miami-Dade County, FL 1.42 1.52 0.718 0.684 0.077 0.064 
9 Dallas County, TX 1.44 1.53 0.712 0.679 0.075 0.063 

10 Queens County, NY 1.47 1.55 0.703 0.672 0.071 0.060 
21 Suffolk County, NY 1.76 1.77 0.595 0.592 0.039 0.039 
36 Contra Costa Co., CA 2.01 1.95 0.498 0.521 0.022 0.026 
77 Lake County, IL 2.25 2.13 0.400 0.449 0.012 0.017 

132 Chester County, PA 2.52 2.33 0.301 0.373 0.006 0.010 
200 Lorain County, OH 2.84 2.56 0.200 0.288 0.002 0.005 

Table 9: Comparison of results for 3,141 counties vs. 200 counties 
(Selected counties). Assumes a 2σ  shift and limit on false alarms κ = 4.000 . 

 

If we take this approach of setting equal thresholds for all 3,141 counties in an 

attempt to detect a 2σ  shift somewhere in the country, the performance of our system 

suffers greatly. All thresholds will be set at h = 3.02 to achieve a false alarm rate of four 

per time period. Note that this threshold is fifty percent above the expected magnitude of 

the shift. The false alarm rate will be less than one percent (0.001) in all locations. The 

system-side probability of detection will only be 0.154, equal to the probabilities of each 

of the counties.  
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Figure 7: Output from optimizing 3,141 counties (STOPT3141). 
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Figure 8: Centers for Disease Control (CDC) map of BioSense sensor locations superimposed on county population density. 
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IV. CONCLUSIONS AND FUTURE RESEARCH 

A. CONCLUSIONS 

In this thesis we have presented a model using mathematical optimization tools 

and software to improve the performance of a system of threshold sensors, given an 

existing set of sensors, an expected minimum expected magnitude of shift in the 

distributional mean at a single location, and some constraint on the acceptable number or 

rate of false alarms. We have formally presented an example that demonstrates that a 

system is not necessarily improved by adding more sensors. In fact, doing so will cause 

negative effects on the overall system’s probability of detection, holding all else constant, 

as well as on the detection performance in those locations that already have sensor 

coverage.  

The implications for policymakers are clear. It is not sufficient to simply add 

sensors to an existing sensor network in an informal fashion and expect improved 

performance. While additional coverage may be gained, to the benefit of those areas 

receiving new sensors, the overall detection performance of the system may be degraded. 

Additionally, to meet the defined limit on the expected number of false alarms, the 

individual thresholds of all sensors must be adjusted. Adding one new sensor without 

adjusting thresholds will cause an increase in the system-wide false alarm rate; adding 

many sensors will cause significant increases in the system-wide false alarm rate.  

B. AREAS FOR FUTURE RESEARCH 

This research has focused on the problem of simultaneously setting detection 

thresholds in multiple locations. We have assumed away the problem of adjusting 

thresholds for temporal factors such as day-of-week and seasonal effects, which have 

been studied extensively in other applications of SPC to detection problems involving 

single sensors. Future work should develop optimization models for detection systems 

based on the CUSUM and EWMA techniques, which can be more sensitive to detecting 

small shifts.  
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There are many areas where our models can be applied. Any system of distributed 

sensors that monitors for an increase in a statistic over a network with a large number of 

sensors should benefit from this work. These include many of the previous non-industrial 

applications of statistical process control discussed in Chapter I, including service 

performance, finance, health care monitoring, outbreak detection, water quality 

monitoring, and maintenance. There may even be applications for industry—despite 

having production quality measurements based on engineering requirements, it may be 

desirable to set optimal warning or control limits on machines and processes that are 

based on criticality, likelihood to drift to an out-of-control state, or to experience other 

types of failures.  

In our discussion, we have made the assumption of one independent sensor per 

sub-region. There are practical issues that arise from such an assumption, namely the 

adequacy of coverage for a large sub-region. It is unlikely to be the case that areas farther 

away from the sensor will receive equal coverage as those near the sensor itself. For 

example, a sensor covering a single county may provide good coverage to the city in 

which it is located, but rural areas far away from that city are not likely to receive equal 

coverage. This has a practical application to epidemiologic surveillance, in that it is 

possible for an outbreak to start in a rural area and spread to the city. If the increase in 

cases can be detected before the spread to the city occurs, steps can be taken to mitigate 

the effects of the outbreak.  

This suggests that regions are likely to employ multiple sensors and an area for 

future study is how to integrate multiple sensors providing coverage for a single area. 

How should data from multiple sensors in a sub-region be compiled and analyzed? We 

suggest two options for future consideration. The first uses sensor fusion to compile data 

received at multiple sensors within a sub-region; the data from these sensors are then 

treated in aggregate as though received at a single sensor, with a threshold assigned by 

the solution to the optimization problem for the entire region. The second option is to 

solve the large regional problem first using our optimization model; subsequently we 

apply this model to solve a subordinate optimization problem for the multiple sensors 
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within a given sub-region to set thresholds and allocate the expected number of false 

positives according to the weights assigned or populations covered by each sensor.  

A final statement should be made as to the adoption of optimization techniques to 

improve the performance of a system. As in previous efforts to use statistical process 

control for monitoring non-industrial processes, it is important to systematically 

implement such a system and to trust the results that the model provides. Training must 

be provided throughout the organization to ensure that the process itself and the benefits 

derived from it are understood and appreciated by all members. We previously referred to 

the “ad-hoc” nature of sensor implementation in the biosurveillance context; such lack of 

strategy often leads to piecemeal implementation, which can result in sub-optimal system 

performance and even complete failure due to loss of confidence in the system resulting 

from problems such as rampant false signaling.  
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APPENDIX A. GAMS CODE FOR SAMPLE PROBLEM 

10 fictional sub-regions, based on an ~ (0,1)X N  in-control distribution, a 2σ  
shift in the mean incidence level, and false alarm limit κ = 1. 

 
OPTIONS 
  NLP=MINOS 
  optca = 0 
  optcr = 0; 
 
SET 
  i        Sub-region index/County01*County10/; 
 
SCALARS 
  K        Max allowed false alarms in region /1/ 
  delta    Magnitude of shift in mean level  /2/ 
  total    Total weight of region; 
 
PARAMETERS 
  m(i)     Relative weight of sub-region i 
 
/ 
County01   1000000 
County02   800000 
County03   700000 
County04   600000 
County05   600000 
County06   500000 
County07   500000 
County08   400000 
County09   400000 
County10   400000 
/ 
; 
 
PARAMETER totalWeight; 
     totalWeight=sum(i,m(i)); 
 
PARAMETER pa(i); 
     pa(i) = m(i)/totalWeight; 
 
VARIABLE h(i)  Detection threshold in sub-region i; 
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VARIABLE PD    Overall probability of detection given event 
occurs in region; 
 
EQUATIONS 
  OBJ          Overall probability of detection given event 
occurs in region 
  FA           Overall number of false alarms must be less 
than K 
; 
 
  OBJ..    PD=E=sum(i,pa(i)*(1-errorf(h(i)-delta))); 
  FA..     sum(i,1-errorf(h(i)))=L=K; 
 
MODEL Regions/ALL/; 
 
SOLVE Regions USING NLP MAXIMIZING PD 
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APPENDIX B. DERIVATION OF ONE-DIMENSIONAL 
OPTIMIZATION MODEL 

We have assumed that our in-control distribution F0  is a standard normal 

distribution, F0 ~ N(0,1) , and that the signal manifests itself as a shift in the mean to a 

new distribution F1 ~ N(δ ,1) , δ > 0 . Using the log-linear relationship derived in this 

section, the model of Equation (5) can be expressed as a one-dimensional optimization 

problem, which is much easier and faster to solve than the n-dimensional problems 

solved previously.  

By observing that maximizing the area to the right of hi on a normal distribution is 

equivalent to minimizing the area to the left of hi, and that our optimal solution is located 

on the constraint boundary (see Fricker and Banschbach, 2008), we can re-express the 

maximization problem in (5) in the following way:  

minimize
h

Φ(hi − δ )pi
i=1

n

∑

subject to Φ(hi ) = n −κ
i=1

n

∑
     (8) 

Working on the constraint first, we separate the first term of the summation and re-

express this constraint as 

Φ(h1) + Φ(hi ) = n −κ
i=2

n

∑      (9) 

Solving (9) for h1 we get 

h1 = Φ
−1 n −κ − Φ(hi )

i=2

n

∑⎛
⎝⎜

⎞
⎠⎟

     (10) 

Following a similar pattern for the objective function we can separate the first 

term of the summation h1 and express (8) as 

min
h

f = Φ[h1 − δ ]p1 + Φ(hi − δ )pi
i=2

n

∑    (11) 
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Substituting the expression for h1 (10) into the objective function (11) gives us an 

unconstrained optimization problem: 

min
h

f = Φ Φ−1 n −κ − Φ(hi )
i=2

n

∑⎛
⎝⎜

⎞
⎠⎟
− δ

⎡

⎣
⎢

⎤

⎦
⎥ + Φ(hi − δ )pi

i=2

n

∑   (12) 

To find the set of hi’s at which f is minimized, we first differentiate (12) with 

respect to each threshold hi and set each equation equal to zero. We then simultaneously 

solve the set of equations for each hi. The solution for n = 2 is as follows. After solving 

for h1 in the constraint and substituting into the now-unconstrained objective function, the 

partial derivative with respect to h2 is 

∂f
∂h2

=

exp −
h2

2 + δ 2

2
⎛
⎝⎜

⎞
⎠⎟

p2 exp[h2δ ]− p1 exp 2δErf −1 2 − 2κ − Erf h2

2
⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝⎜
⎞

⎠⎟

2π
 (13) 

We can easily see that (13) will equal zero only if  

p2 exp[h2δ ] = p1 exp 2δErf −1 2 − 2κ − Erf
h2

2
⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢

⎤

⎦
⎥   (14) 

Taking the natural log of both sides of (14) and simplifying yields 

Erf
h2 +

1
δ

ln p2( )− ln(p1)( )
2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= 2 − 2κ − Erf

h2

2
⎛
⎝⎜

⎞
⎠⎟

   (15) 

We know that  Erf z / 2( )= 2Φ z( )−1, so we can further simplify (15) to  

Φ h2 +
1
δ

ln p2( )− 1
δ

ln p1( )⎛
⎝⎜

⎞
⎠⎟
+ Φ h2( )= 2 −κ    (16) 

Making the substitution  µ = h2 +
1
δ

ln p2( ), we get 

Φ µ −
1
δ

ln pi( )⎡
⎣⎢

⎤
⎦⎥i=1

2

∑ = 2 −κ      (17) 
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The expression in (17) is equivalent to 

2

1

1Pr ln( ) 2i
i

Z pµ κ
δ=

⎛ ⎞≤ − = −⎜ ⎟
⎝ ⎠

∑     (18) 

Here Z is a standard normal random variate. Using the expression in (18), we see that the 

constrained minimization problem in (8) reduces to finding µ  such that the sum of the 

left tails of n normal distributions is equal to n −κ , where 0 ≤ n −κ ≤ n .  
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APPENDIX C. EXCEL RESULTS FOR STOPT200 

Terms: mi, Population in county i; mi/M, county share mi of total population M; hi, 
threshold level set in county i; p(di), probability of detection in county i; p(α i ) , 

probability of detection in county i. 

Based on an   Xi ~ N (0,1)  in-control distribution and a 2σ  shift in the mean incidence 
level. Overall Pd = 0.537, E(false alarms) = 4. 

 
i  County, State mi  mi M  hi  p(di )  p(α i )  

1 Los Angeles County, CA 9,948,081 0.0587 0.812 0.883 0.209 
2 Cook County, IL 5,288,655 0.0312 1.127 0.809 0.130 
3 Harris County, TX 3,886,207 0.0229 1.282 0.764 0.100 
4 Maricopa County, AZ 3,768,123 0.0222 1.297 0.759 0.097 
5 Orange County, CA 3,002,048 0.0177 1.411 0.722 0.079 
6 San Diego County, CA 2,941,454 0.0174 1.421 0.719 0.078 
7 Kings County, NY 2,508,820 0.0148 1.500 0.691 0.067 
8 Miami-Dade County, FL 2,402,208 0.0142 1.522 0.684 0.064 
9 Dallas County, TX 2,345,815 0.0138 1.534 0.679 0.063 

10 Queens County, NY 2,255,175 0.0133 1.553 0.672 0.060 
11 Riverside County, CA 2,026,803 0.0120 1.607 0.653 0.054 
12 San Bernardino County, CA 1,999,332 0.0118 1.614 0.650 0.053 
13 Wayne County, MI 1,971,853 0.0116 1.621 0.648 0.052 
14 King County, WA 1,826,732 0.0108 1.659 0.633 0.049 
15 Broward County, FL 1,787,636 0.0105 1.670 0.629 0.047 
16 Clark County, NV 1,777,539 0.0105 1.673 0.628 0.047 
17 Santa Clara County, CA 1,731,281 0.0102 1.686 0.623 0.046 
18 Tarrant County, TX 1,671,295 0.0099 1.703 0.617 0.044 
19 New York County, NY 1,611,581 0.0095 1.721 0.610 0.043 
20 Bexar County, TX 1,555,592 0.0092 1.739 0.603 0.041 
21 Suffolk County, NY 1,469,715 0.0087 1.767 0.592 0.039 
22 Middlesex County, MA 1,467,016 0.0087 1.768 0.592 0.039 
23 Alameda County, CA 1,457,426 0.0086 1.771 0.590 0.038 
24 Philadelphia County, PA 1,448,394 0.0085 1.775 0.589 0.038 
25 Sacramento County, CA 1,374,724 0.0081 1.801 0.579 0.036 
26 Bronx County, NY 1,361,473 0.0080 1.806 0.577 0.035 
27 Nassau County, NY 1,325,662 0.0078 1.819 0.572 0.034 
28 Cuyahoga County, OH 1,314,241 0.0078 1.824 0.570 0.034 
29 Palm Beach County, FL 1,274,013 0.0075 1.839 0.564 0.033 
30 Allegheny County, PA 1,223,411 0.0072 1.860 0.556 0.031 
31 Oakland County, MI 1,214,255 0.0072 1.864 0.554 0.031 
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i  County, State mi  mi M  hi  p(di )  p(α i )  

32 Hillsborough County, FL 1,157,738 0.0068 1.888 0.545 0.030 
33 Hennepin County, MN 1,122,093 0.0066 1.903 0.539 0.029 
34 Franklin County, OH 1,095,662 0.0065 1.915 0.534 0.028 
35 Orange County, FL 1,043,500 0.0062 1.939 0.524 0.026 
36 Contra Costa County, CA 1,024,319 0.0060 1.948 0.521 0.026 
37 Fairfax County, VA 1,010,443 0.0060 1.955 0.518 0.025 
38 St. Louis County, MO 1,000,510 0.0059 1.960 0.516 0.025 
39 Salt Lake County, UT 978,701 0.0058 1.971 0.512 0.024 
40 Fulton County, GA 960,009 0.0057 1.980 0.508 0.024 
41 Westchester County, NY 949,355 0.0056 1.986 0.506 0.024 
42 Pima County, AZ 946,362 0.0056 1.988 0.505 0.023 
43 DuPage County, IL 932,670 0.0055 1.995 0.502 0.023 
44 Montgomery County, MD 932,131 0.0055 1.995 0.502 0.023 
45 Pinellas County, FL 924,413 0.0055 1.999 0.500 0.023 
46 Erie County, NY 921,390 0.0054 2.001 0.500 0.023 
47 Travis County, TX 921,006 0.0054 2.001 0.500 0.023 
48 Milwaukee County, WI 915,097 0.0054 2.004 0.498 0.023 
49 Shelby County, TN 911,438 0.0054 2.006 0.497 0.022 
50 Honolulu County, HI 909,863 0.0054 2.007 0.497 0.022 
51 Bergen County, NJ 904,037 0.0053 2.010 0.496 0.022 
52 Fairfield County, CT 900,440 0.0053 2.012 0.495 0.022 
53 Fresno County, CA 891,756 0.0053 2.017 0.493 0.022 
54 Hartford County, CT 876,927 0.0052 2.026 0.490 0.021 
55 Marion County, IN 865,504 0.0051 2.032 0.487 0.021 
56 New Haven County, CT 845,244 0.0050 2.044 0.482 0.020 
57 Prince George's County, MD 841,315 0.0050 2.046 0.482 0.020 
58 Duval County, FL 837,964 0.0049 2.048 0.481 0.020 
59 Macomb County, MI 832,861 0.0049 2.051 0.479 0.020 
60 Mecklenburg County, NC 827,445 0.0049 2.055 0.478 0.020 
61 Hamilton County, OH 822,596 0.0049 2.058 0.477 0.020 
62 Ventura County, CA 799,720 0.0047 2.072 0.471 0.019 
63 Baltimore County, MD 787,384 0.0046 2.080 0.468 0.019 
64 Middlesex County, NJ 786,971 0.0046 2.080 0.468 0.019 
65 Wake County, NC 786,522 0.0046 2.080 0.468 0.019 
66 Essex County, NJ 786,147 0.0046 2.080 0.468 0.019 
67 Worcester County, MA 784,992 0.0046 2.081 0.468 0.019 
68 Kern County, CA 780,117 0.0046 2.084 0.466 0.019 
69 Montgomery County, PA 775,688 0.0046 2.087 0.465 0.018 
70 Pierce County, WA 766,878 0.0045 2.093 0.463 0.018 
71 Gwinnett County, GA 757,104 0.0045 2.099 0.460 0.018 
72 San Francisco County, CA 744,041 0.0044 2.108 0.457 0.018 
73 El Paso County, TX 736,310 0.0043 2.113 0.455 0.017 
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i  County, State mi  mi M  hi  p(di )  p(α i )  

74 Essex County, MA 735,958 0.0043 2.114 0.455 0.017 
75 Monroe County, NY 730,807 0.0043 2.117 0.453 0.017 
76 DeKalb County, GA 723,602 0.0043 2.122 0.451 0.017 
77 Lake County, IL 713,076 0.0042 2.129 0.449 0.017 
78 San Mateo County, CA 705,499 0.0042 2.135 0.446 0.016 
79 Jefferson County, KY 701,500 0.0041 2.138 0.445 0.016 
80 Hidalgo County, TX 700,634 0.0041 2.138 0.445 0.016 
81 Collin County, TX 698,851 0.0041 2.140 0.445 0.016 
82 Oklahoma County, OK 691,266 0.0041 2.145 0.442 0.016 
83 Suffolk County, MA 687,610 0.0041 2.148 0.441 0.016 
84 Multnomah County, OR 681,454 0.0040 2.152 0.440 0.016 
85 Cobb County, GA 679,325 0.0040 2.154 0.439 0.016 
86 San Joaquin County, CA 673,170 0.0040 2.158 0.437 0.015 
87 Snohomish County, WA 669,887 0.0040 2.161 0.436 0.015 
88 Will County, IL 668,217 0.0039 2.162 0.436 0.015 
89 Jackson County, MO 664,078 0.0039 2.165 0.434 0.015 
90 Jefferson County, AL 656,700 0.0039 2.171 0.432 0.015 
91 Norfolk County, MA 654,753 0.0039 2.172 0.432 0.015 
92 Providence County, RI 635,596 0.0037 2.187 0.426 0.014 
93 Monmouth County, NJ 635,285 0.0037 2.187 0.426 0.014 
94 Baltimore city, MD 631,366 0.0037 2.190 0.425 0.014 
95 Bucks County, PA 623,205 0.0037 2.197 0.422 0.014 
96 Bernalillo County, NM 615,099 0.0036 2.203 0.419 0.014 
97 Hudson County, NJ 601,146 0.0035 2.215 0.415 0.013 
98 Kent County, MI 599,524 0.0035 2.216 0.414 0.013 
99 Denton County, TX 584,238 0.0034 2.229 0.409 0.013 

100 District of Columbia, DC 581,530 0.0034 2.231 0.409 0.013 
101 Davidson County, TN 578,698 0.0034 2.234 0.408 0.013 
102 Tulsa County, OK 577,795 0.0034 2.234 0.407 0.013 
103 El Paso County, CO 576,884 0.0034 2.235 0.407 0.013 
104 Lee County, FL 571,344 0.0034 2.240 0.405 0.013 
105 Denver County, CO 566,974 0.0033 2.244 0.404 0.012 
106 Ocean County, NJ 562,335 0.0033 2.248 0.402 0.012 
107 Polk County, FL 561,606 0.0033 2.249 0.402 0.012 
108 Delaware County, PA 555,996 0.0033 2.254 0.400 0.012 
109 Summit County, OH 545,931 0.0032 2.263 0.396 0.012 
110 Bristol County, MA 545,379 0.0032 2.263 0.396 0.012 
111 Montgomery County, OH 542,237 0.0032 2.266 0.395 0.012 
112 Arapahoe County, CO 537,197 0.0032 2.271 0.393 0.012 
113 Brevard County, FL 534,359 0.0032 2.273 0.392 0.012 
114 Union County, NJ 531,088 0.0031 2.276 0.391 0.011 
115 Jefferson County, CO 526,994 0.0031 2.280 0.390 0.011 
116 New Castle County, DE 525,587 0.0031 2.282 0.389 0.011 
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i  County, State mi  mi M  hi  p(di )  p(α i )  

117 Camden County, NJ 517,001 0.0030 2.290 0.386 0.011 
118 Johnson County, KS 516,731 0.0030 2.290 0.386 0.011 
119 Washington County, OR 514,269 0.0030 2.292 0.385 0.011 
120 Stanislaus County, CA 512,138 0.0030 2.294 0.384 0.011 
121 Anne Arundel County, MD 509,300 0.0030 2.297 0.383 0.011 
122 Passaic County, NJ 497,093 0.0029 2.309 0.379 0.010 
123 Volusia County, FL 496,575 0.0029 2.310 0.378 0.010 
124 Lancaster County, PA 494,486 0.0029 2.312 0.378 0.010 
125 Lake County, IN 494,202 0.0029 2.312 0.377 0.010 
126 Kane County, IL 493,735 0.0029 2.313 0.377 0.010 
127 Plymouth County, MA 493,623 0.0029 2.313 0.377 0.010 
128 Ramsey County, MN 493,215 0.0029 2.313 0.377 0.010 
129 Fort Bend County, TX 493,187 0.0029 2.313 0.377 0.010 
130 Morris County, NJ 493,160 0.0029 2.313 0.377 0.010 
131 Douglas County, NE 492,003 0.0029 2.314 0.377 0.010 
132 Chester County, PA 482,112 0.0028 2.325 0.373 0.010 
133 Richmond County, NY 477,377 0.0028 2.330 0.371 0.010 
134 Sedgwick County, KS 470,895 0.0028 2.336 0.368 0.010 
135 Sonoma County, CA 466,891 0.0028 2.341 0.367 0.010 
136 Utah County, UT 464,760 0.0027 2.343 0.366 0.010 
137 Dane County, WI 463,826 0.0027 2.344 0.365 0.010 
138 Hampden County, MA 460,520 0.0027 2.348 0.364 0.009 
139 Onondaga County, NY 456,777 0.0027 2.352 0.363 0.009 
140 Guilford County, NC 451,905 0.0027 2.357 0.361 0.009 
141 Burlington County, NJ 450,627 0.0027 2.358 0.360 0.009 
142 Pasco County, FL 450,171 0.0027 2.359 0.360 0.009 
143 Spokane County, WA 446,706 0.0026 2.363 0.358 0.009 
144 Lucas County, OH 445,281 0.0026 2.364 0.358 0.009 
145 Genesee County, MI 441,966 0.0026 2.368 0.356 0.009 
146 Virginia Beach city, VA 435,619 0.0026 2.376 0.354 0.009 
147 Jefferson Parish, LA 431,361 0.0025 2.380 0.352 0.009 
148 East Baton Rouge Parish, LA 429,073 0.0025 2.383 0.351 0.009 
149 Tulare County, CA 419,909 0.0025 2.394 0.347 0.008 
150 Greenville County, SC 417,166 0.0025 2.397 0.346 0.008 
151 York County, PA 416,322 0.0025 2.398 0.345 0.008 
152 Adams County, CO 414,338 0.0024 2.401 0.344 0.008 
153 Clark County, WA 412,938 0.0024 2.403 0.344 0.008 
154 Knox County, TN 411,967 0.0024 2.404 0.343 0.008 
155 Solano County, CA 411,680 0.0024 2.404 0.343 0.008 
156 Monterey County, CA 410,206 0.0024 2.406 0.342 0.008 
157 Polk County, IA 408,888 0.0024 2.407 0.342 0.008 
158 Seminole County, FL 406,875 0.0024 2.410 0.341 0.008 
159 Mobile County, AL 404,157 0.0024 2.413 0.340 0.008 
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i  County, State mi  mi M  hi  p(di )  p(α i )  

160 Hillsborough County, NH 402,789 0.0024 2.415 0.339 0.008 
161 Berks County, PA 401,149 0.0024 2.417 0.338 0.008 
162 Santa Barbara County, CA 400,335 0.0024 2.418 0.338 0.008 
163 Montgomery County, TX 398,290 0.0023 2.421 0.337 0.008 
164 Washoe County, NV 396,428 0.0023 2.423 0.336 0.008 
165 Dakota County, MN 388,001 0.0023 2.434 0.332 0.007 
166 Cameron County, TX 387,717 0.0023 2.434 0.332 0.007 
167 Waukesha County, WI 380,985 0.0022 2.443 0.329 0.007 
168 Stark County, OH 380,575 0.0022 2.444 0.329 0.007 
169 Orange County, NY 376,392 0.0022 2.449 0.327 0.007 
170 Clackamas County, OR 374,230 0.0022 2.452 0.326 0.007 
171 Sarasota County, FL 369,535 0.0022 2.459 0.323 0.007 
172 Mercer County, NJ 367,605 0.0022 2.461 0.322 0.007 
173 Pulaski County, AR 367,319 0.0022 2.462 0.322 0.007 
174 Westmoreland County, PA 366,440 0.0022 2.463 0.322 0.007 
175 Ada County, ID 359,035 0.0021 2.473 0.318 0.007 
176 Prince William County, VA 357,503 0.0021 2.475 0.317 0.007 
177 Butler County, OH 354,992 0.0021 2.479 0.316 0.007 
178 Williamson County, TX 353,830 0.0021 2.481 0.315 0.007 
179 Richland County, SC 348,226 0.0021 2.489 0.313 0.006 
180 Allen County, IN 347,316 0.0020 2.490 0.312 0.006 
181 St. Louis city, MO 347,181 0.0020 2.490 0.312 0.006 
182 Washtenaw County, MI 344,047 0.0020 2.495 0.310 0.006 
183 St. Charles County, MO 338,719 0.0020 2.503 0.308 0.006 
184 Lane County, OR 337,870 0.0020 2.504 0.307 0.006 
185 Lehigh County, PA 335,544 0.0020 2.507 0.306 0.006 
186 Forsyth County, NC 332,355 0.0020 2.512 0.304 0.006 
187 Charleston County, SC 331,917 0.0020 2.513 0.304 0.006 
188 Anoka County, MN 327,005 0.0019 2.520 0.301 0.006 
189 Placer County, CA 326,242 0.0019 2.521 0.301 0.006 
190 Somerset County, NJ 324,186 0.0019 2.524 0.300 0.006 
191 Nueces County, TX 321,457 0.0019 2.529 0.299 0.006 
192 Marion County, FL 316,183 0.0019 2.537 0.296 0.006 
193 Collier County, FL 314,649 0.0019 2.539 0.295 0.006 
194 Manatee County, FL 313,298 0.0018 2.542 0.294 0.006 
195 Luzerne County, PA 313,020 0.0018 2.542 0.294 0.006 
196 Hamilton County, TN 312,905 0.0018 2.542 0.294 0.006 
197 McHenry County, IL 312,373 0.0018 2.543 0.294 0.005 
198 Marion County, OR 311,304 0.0018 2.545 0.293 0.005 
199 Madison County, AL 304,307 0.0018 2.556 0.289 0.005 
200 Lorain County, OH 301,993 0.0018 2.560 0.288 0.005 
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APPENDIX D. SELECTED EXCEL RESULTS FOR STOPT3141 

Terms: mi, Population in county i; mi/M, county share mi of total population M; hi, 
threshold level set in county i; p(di), probability of detection in county i; p(α i ) , 

probability of detection in county i. 

Based on an   Xi ~ N (0,1)  in-control distribution and a 2σ  shift in the mean incidence 
level. Overall Pd = 0.515, E(false alarms) = 4. 

 

i  County, State mi  mi M  hi  p(di ) p(α i )  

1 Los Angeles County, CA 9,948,081 0.0587 0.452 0.939 0.326 
2 Cook County, IL 5,288,655 0.0312 0.884 0.868 0.188 
3 Harris County, TX 3,886,207 0.0130 1.094 0.817 0.137 
4 Maricopa County, AZ 3,768,123 0.0126 1.115 0.812 0.132 
5 Orange County, CA 3,002,048 0.0100 1.271 0.767 0.102 
6 San Diego County, CA 2,941,454 0.0098 1.285 0.763 0.099 
7 Kings County, NY 2,508,820 0.0084 1.394 0.728 0.082 
8 Miami-Dade County, FL 2,402,208 0.0080 1.423 0.718 0.077 
9 Dallas County, TX 2,345,815 0.0078 1.440 0.712 0.075 

10 Queens County, NY 2,255,175 0.0075 1.466 0.703 0.071 
11 Riverside County, CA 2,026,803 0.0068 1.540 0.677 0.062 
12 San Bernardino County, CA 1,999,332 0.0067 1.549 0.674 0.061 
13 Wayne County, MI 1,971,853 0.0066 1.558 0.671 0.060 
14 King County, WA 1,826,732 0.0061 1.611 0.652 0.054 
15 Broward County, FL 1,787,636 0.0060 1.625 0.646 0.052 
16 Clark County, NV 1,777,539 0.0059 1.629 0.645 0.052 
17 Santa Clara County, CA 1,731,281 0.0058 1.647 0.638 0.050 
18 Tarrant County, TX 1,671,295 0.0056 1.671 0.629 0.047 
19 New York County, NY 1,611,581 0.0054 1.696 0.619 0.045 
20 Bexar County, TX 1,555,592 0.0052 1.720 0.610 0.043 
21 Suffolk County, NY 1,469,715 0.0049 1.759 0.595 0.039 
22 Middlesex County, MA 1,467,016 0.0049 1.761 0.595 0.039 
23 Alameda County, CA 1,457,426 0.0049 1.765 0.593 0.039 
24 Philadelphia County, PA 1,448,394 0.0048 1.769 0.591 0.038 
25 Sacramento County, CA 1,374,724 0.0046 1.805 0.577 0.036 
26 Bronx County, NY 1,361,473 0.0045 1.812 0.575 0.035 
27 Nassau County, NY 1,325,662 0.0044 1.830 0.568 0.034 
28 Cuyahoga County, OH 1,314,241 0.0044 1.836 0.565 0.033 
29 Palm Beach County, FL 1,274,013 0.0043 1.857 0.557 0.032 
30 Allegheny County, PA 1,223,411 0.0041 1.885 0.546 0.030 
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i  County, State mi  mi M  hi  p(di ) p(α i )  

31 Oakland County, MI 1,214,255 0.0041 1.890 0.544 0.029 
32 Hillsborough County, FL 1,157,738 0.0039 1.922 0.531 0.027 
33 Hennepin County, MN 1,122,093 0.0037 1.944 0.522 0.026 
34 Franklin County, OH 1,095,662 0.0037 1.960 0.516 0.025 
35 Orange County, FL 1,043,500 0.0035 1.993 0.503 0.023 
36 Contra Costa County, CA 1,024,319 0.0034 2.006 0.498 0.022 
37 Fairfax County, VA 1,010,443 0.0034 2.015 0.494 0.022 
38 St. Louis County, MO 1,000,510 0.0033 2.022 0.491 0.022 
39 Salt Lake County, UT 978,701 0.0033 2.037 0.485 0.021 
40 Fulton County, GA 960,009 0.0032 2.050 0.480 0.020 

          ••••••       
55 Marion County, IN 865,504 0.0029 2.121 0.452 0.017 
77 Lake County, IL 713,076 0.0024 2.254 0.400 0.012 
99 Denton County, TX 584,238 0.0020 2.390 0.348 0.008 

105 Denver County, CO 566,974 0.0019 2.411 0.341 0.008 
132 Chester County, PA 482,112 0.0016 2.521 0.301 0.006 
165 Dakota County, MN 388,001 0.0013 2.670 0.251 0.004 
185 Lehigh County, PA 335,544 0.0011 2.769 0.221 0.003 
200 Lorain County, OH 301,993 0.0010 2.841 0.200 0.002 
270 Alachua County, FL 227,120 0.0008 3.036 0.150 0.001 
368 Brazos County, TX 159,006 0.0005 3.280 0.100 0.001 
592 Cabell County, WV 93,904 0.0003 3.640 0.050 0.000 

1325 Jackson County, OH 33,543 0.0001 4.344 0.010 0.000 
2209 Amite County, MS 13,466 0.0000 4.968 0.001 0.000 
2568 Conejos County, CO 8,406 0.0000 5.290 0.001 0.000 
2569 Woods County, OK 8,385 0.0000 5.292 0.000 0.000 
2800 Cameron County, PA 5,489 0.0000 5.582 0.000 0.000 
3000 Graham County, KS 2,677 0.0000 6.073 0.000 0.000 
3141 Loving County, TX 60 0.0000 8.670 0.000 0.000 
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