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ABSTRACT 

The uncertainty of weather forecasts contributes to mission risk. Ensemble data 

can improve combat capability by incorporating forecast uncertainty into the warfighter 

decision process. The study transforms raw ensemble data into optimized decision inputs 

for upper level turbulence using ORM principles and decision science. It demonstrates 

the methodology and importance of incorporating ambiguity, the uncertainty in forecast 

uncertainty, into the decision making process using the Taijitu method to estimate 

ambiguity. Comparing ambiguity and risk tolerance uncertainty intervals produces a 

more appropriate decision input compared to currently existing methods. Significant 

differences between the current and research derived decision input products demonstrate 

potential value added to decision making by incorporating ambiguity information. An 

effective visualization is devised for varying levels of risk tolerance and mission 

thresholds that is educational and practical for users. Research procedures and results can 

serve as an example to further education and development of stochastic methods in the 

Air Force and Department of Defense. 
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 1

I. INTRODUCTION  

Air Force Smart Operations 21 (AFSO21) initiated a movement to improve 

combat capability to include improve decision making. The uncertainty of weather 

forecasts contributes to mission risk. Combined with ORM principles, ensemble data can 

improve combat capability through better decision making (Eckel et al., 2007). The focus 

of this study is not to prove the value of ensemble data. Rather, the focus is to transform 

ensemble data into optimized decision input and communicate it an effective manner so it 

can be incorporated into the decision making process. ‘Optimized’ describes decision 

input that incorporates a complete picture of uncertainty by estimating the uncertainty of 

forecast probability (ambiguity) and risk tolerance information.  Upper level turbulence 

data will serve as the example weather parameter.  

The three main objectives are to: 1) Furnish a process to account for uncertainty 

in both the ensemble data and user risk tolerance for the decision input, 2) create an 

effective visualization to for varying levels of risk intolerance, mission thresholds for 

turbulence, flight levels, and forecast hours that is educational and practical for the user 

3) demonstrate potential value added to the user when using the research derived decision 

input product through a comparison of current decision input products.  

The thesis organized into three main chapters: Introduction (Chapter I), 

Background (Chapter II), Methodology (Chapter III), Results (Chapter IV), and 

Conclusions (Chapter V). Chapter III fulfills objective one through a description of a 

newly fashioned ambiguity calculation method, called “Taijitu” (Eckel, 2008). Chapter 

III also fulfills objective two by characterizing the process to create the visualizations and 

display it using a graphical using interface. Chapter IV fulfills objective three with two 

cases which compare the different decision input products using scenarios of different 

risk tolerances and forecast hours.  

The main benefit to this study will be to demonstrate the capability of stochastic 

model data incorporation into the decision making process.  It will serve as an example 

for further education and development of stochastic methods in the Air Force and 

Department of Defense to improve combat capability. 
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II. BACKGROUND 

A basic understanding of meteorology (with emphasis in numerical weather 

prediction), decision theory, statistics, and military weapon systems is important to 

understand the complex problem of applying ensemble forecast application products to 

DoD operations.  In this chapter, background will be explicitly given on ensemble 

forecasting, weather risk management, and visualizations.  It is assumed the reader will 

have some basic understanding of statistics and military weapon systems. 

A. ATMOSPHERIC PREDICTION 

1. Atmospheric Uncertainty  

  Prediction of the atmosphere is inherently uncertain.  Prediction of a future state 

of a dynamical system, such as the atmosphere, is possible using the system’s rules and 

current state (Eckel, 2007).  From the atmospheric modeling perspective, the system’s 

rules are the set of equations that govern atmospheric motion and the current state is the 

set of initial conditions that estimate the atmosphere’s current state.  Prediction is limited 

when knowledge of one or both is erred or incomplete, which results in exponentially 

growing forecast errors (Eckel, 2007).  This uncertainty of prediction stems from the 

chaotic nature of the atmosphere.  The mathematical definition of chaos is “a dynamical 

system that has a sensitive dependence on its initial conditions” (American Heritage 

Dictionary, 2004).  Edward Lorenz (1963 a, b) described “dynamical chaos” as the time 

evolution of “a nonlinear, deterministic dynamical system, which is extremely sensitive 

to the initial conditions of the system” (Wilks, 2006).  Error in this initial description of 

the atmosphere is the primary contributor to the lack of atmospheric predictability 

(Lorenz, 1963 a, b).   
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Initial conditions (ICs) are a set of values for the dependant variables that describe 

the state of atmosphere at certain point in time.  There exists two sets of ICs. The first set 

of ICs describes the true state of the atmosphere.  The second set of ICs is analyzed from 

observation of the atmosphere.  The state variables measured include temperature, dew 

point, relative humidity, three dimensional wind speed components, and pressure.  The 

second set of   ICs are inherently erred because the atmosphere is never completely and 

accurately observed.  The data network is incomplete with course temporal and spatial 

resolution and the observations are imprecise and/or erred.  Hence, the observed/analyzed 

ICs will never be the same as the true ICs (Wilks, 2006).  

Forecast error arises when the observed (incomplete/erred) ICs are fed into an 

imperfect numerical weather prediction (NWP) model.  A NWP model is composed of a 

set of differential equations, with time as an independent variable, which govern the 

atmosphere’s motion.  It integrates these atmospheric equations using complex 

algorithms to simulate the atmospheric behavior over time, generating a forecast with 

varying degrees of accuracy (Eckel, 2007).  The model is unable to simulate the true 

behavior of the atmosphere because of inexact numerical and computational methods, 

boundary conditions, and physics within the model.  Errors in the ICs and model may be 

small (even undetectable), but over a typical forecast period, they lead to a cascade of 

error that makes the forecast diverge exponentially from the truth. 

Predictions made by the deficient NWP model, which is initialized using the erred 

ICs, are reasonably accurate in the short-term, but the solutions eventually diverges from 

truth and the ability to forecast accurately is lost (Eckel, 2007).  Kalnay (2003) states 

even though two ICs may be almost identical initially, an unstable dynamical system, 

such as the atmosphere, will cause the trajectories to drift apart (Figure 1a).  Conversely, 

a stable dynamical system with “stationary or periodic orbits” will cause two ICs initially 

on different trajectories to converge together (Figure 1b).  On the synoptic scale, the 

solutions may start at similar point and be close for two to three days, but further in time, 

the two solutions diverge (Kalnay, 2003).  
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Figure 1. a)  Dynamical System with instabilities b)  Stable Dynamical System with 
stationary or periodic orbits [From Kalnay, 2003]. 

 

Lorenz proved this concept when he performed an “identical twin” experiment, 

where he compared two runs of the same model but with slightly different ICs.  He found 

that the two runs’ solutions diverged dramatically and exhibited totally different 

trajectories (Kalnay, 2003).  The initial round-off errors were amplified until they 

dominated the solution (Lorenz, 1993).  Lorenz (1963 a, b) ascertained the atmosphere, 

similar to any dynamical system with instabilities, has a ‘finite limit of predictability’. 

Atmospheric predictability is the degree to which a phenomenon can be foretold 

with an average accuracy greater than that of an unskilled reference forecast (Eckel, 

2007).  Generally, prediction decreases with increasing lead-time.  When predictability is 

high, the theoretical limit for forecasting is two weeks (Kalnay, 2003).  The long term 

average (climatology) can be viewed as a reference forecast, but like any other forecast, 

it’s predictability deteriorates with time (years to decades).  In the near term, weather 
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forecasters focus on specific atmospheric phenomena that are generally anomalies from 

the average. It is then logical to use the climatology as a baseline for predictability.  

Errors become “saturated” (predictability is lost) when the error equals the average error 

of a climatology forecast (Eckel, 2007).  

2. Methods for Prediction  

The common approach to atmospheric prediction uses a deterministic, single 

solution.  Deterministic forecasts have greatly improved with the development of NWP 

and since then, but the inherent uncertainty remains (Kalnay, 2003).  A consistently 

perfect deterministic forecast is impossible to produce (Lorenz, 1963).   Eric Eady was 

the first meteorologist to formally voice concern over the strict deterministic (one 

solution) method, in which the future is determined by the initial state without an account 

of error in the state (Lewis, 2005).  

The graphics product in Figure 2 is a deterministic forecast of upper level 

turbulence (10,000 feet and above) for the region of interest applied in this research.  The 

valid time (VT) of the graphics product is forecast hour 24 of case two.  The term 

“Category II aircraft” refers to an instrument landing system capable of approaches to the 

runway > 30 meters above ground and a Runway Visual Range (RVR) of > 360 meters.  

The product implies complete confidence in the forecast.  Although it offers a 

straightforward application, it neglects the importance and value of forecast uncertainty. 

Users may apply their own subjective measure of uncertainty to this product, which 

results in sub-optimal decisions (Wilks, 2006).  Wilks (2006) asserts, “Deterministic 

forecasts of future atmospheric behavior will always be uncertain, and probabilistic 

methods will always be needed to adequately describe that behavior.”  

 

 

 

 

 
 



 
 

 7

 

Figure 2.  Current deterministic format for USAFE Upper Level Turbulence Chart; 
Intensities of turbulence (TURBC): MDT=moderate, SVR=severe, EXTRM=extreme; 

FL=Flight Level; CAT II ACFT=Category II aircraft [From USAFE OWS, 2007]. 

 
 

An alternative is the stochastic, multi-solution approach, which conveys the 

uncertainty of the forecast solution objectively.  “No weather forecast is complete 

without a description of this uncertainty” (National Research Council, 2006).  An 

objective description of the uncertainty (potential forecast error) is necessary to avoid 

unnecessary vulnerabilities, possible costly mistakes, and resource waste.  Quantifying 

uncertainty can improve a weather forecast user’s ability to make more economically 

effective decisions based on their own utility function (Zhu et al. 2002).  Stochastic 

forecasting does not aim to correct the forecast error but uses it to estimate error growth 

and describe the day-to-day, flow-dependant forecast uncertainty (Eckel, 2007).  
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B. ENSEMBLE FORECASTING (EF) 

1. General Description 

One method to produce a stochastic forecast is to run an ‘ensemble’ of model 

solutions. An ensemble forecast (EF) system uses “different but concurrent NWP model 

runs with perturbations to the ICs and the model to make a spectrum of possible 

solutions, or a distribution of likely future states of the atmosphere” (Eckel, 2007). A 

typical operational ensemble model runs 20 or more members (individual model runs), 

each time with a different modification (perturbations within the bounds of the suspect 

error) of ICs and/or the model itself to formulate different possible outcomes (Eckel, 

2007).  Ideally, each member has an equal chance of verifying. The greater the number of 

members in the ensemble gives a greater chance for the ensemble model to consistently 

capture the truth (Eckel, 2007). The aim of EF is to express the range of possibilities and 

define potential error in the deterministic forecast (Eckel, 2007).  

The graphics product displayed in Figure 3, generated from the Joint Ensemble 

Forecast System (JEFS), is a typical output from an ensemble model.  JEFS is a multi-

year pilot project directed by the Air Force Weather Agency (AFWA) and the Fleet 

Numerical Meteorology and Oceanography Center (FNMOC) to prove the value and 

operational ability of EF for enhancing DoD operations and to investigate application to 

war-fighter decision making. This prototype graphics product displays the probability of 

turbulence occurrence and is one of the foundations of this research.  The upper left hand 

image gives the ensemble consensus (mean of all the members) of geopotential heights 

and winds speeds.  Using the ensemble data and a turbulence algorithm,  JEFS produced 

probabilities for light, moderate, and severe turbulence thresholds in the following 

images.  Higher probabilities are denoted by the warmer colors. Using decision science 

(discussed in section C) an educated user can objectively make decisions based upon the 

probabilities associated with each turbulence category.    
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Figure 3. JEFS Non-Operational Turbulence Chart with varying probability to 
turbulence occurrence in southeast Asia [From JEFS, 2007]. 

 
 

2. Range of Possibilities 

Eady emphasized consideration an ensemble of all possible atmospheric solutions, 

and these solutions must be expressed in terms of probabilities (Lewis, 2005).  The 

atmosphere can be described as a range of possibilities in a probability density function 

(PDF), contrary to the singular deterministic solution (Eckel, 2007).  

Like deterministic methods, stochastic methods employs analyses, forecasts, and 

climate data to ascertain the future state of the atmosphere, but do so using PDFs.  The 

analysis PDF is a frequency distribution of potential analyses, all of which are random 

samples from the PDF trying to estimate the true PDF (Eckel, 2007).  The size and shape 

of the analysis PDF is a description of the uncertainty in the analysis error. The forecast 

PDF works the same way, but it is a frequency distribution of potential forecast states, 

rather than potential analyses (Eckel, 2007).  As a general principle, the more narrow the 
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PDF, the more certain the solutions and the more wide the PDF, the less certain the 

solutions (Eckel, 2007).  Wider PDFs occur with the elapse of forecast lead time as the 

ensemble members spread to represent the growing error.  As described in section 1, 

analysis and model errors contribute to the forecast error and inherent uncertainty.  

Ensembles produce forecast probability for a particular event (i.e, turbulence > 

MDT) that attempt to estimate the true probability from a hypothetical true PDF that is 

relative to the model system (Eckel, 2008).  No one ‘true PDF’ exists for all models.  A 

deterministic forecast is a guess at the unknown, true state of the atmosphere at a 

particular moment found by taking one sample from the forecast PDF.  A perfect 

ensemble models all sources of uncertainty and takes infinite samples from the forecast 

PDF to produce the “true PDF” for that particular model.  Real world ensemble models 

attempt to model many sources of uncertainty by taking limited samples from the forecast 

PDF.  The goal of ensemble forecasting (EF) is to produce a forecast PDF of all possible 

future states of the atmosphere from which the true state is consistently a random sample 

(Eckel, 2007).   

3. Ambiguity 

Ambiguity is defined as the uncertainty of the uncertainty prediction, which can 

be conceptualized as errors bars about a probability forecast.  Alternatively, ambiguity 

can be considered as the potential error in the ensemble’s forecast PDF (Eckel, 2008). 

Ambiguity arises when any contribution to forecast uncertainty is not sufficiently 

accounted for in the ensemble.  

Several factors contribute to the ambiguity of ensemble data, the first of which is 

limited sampling.  Due to computational constraints, only so many members can be 

processed at one time.  Choosing only a few random samples from a forecast PDF fails to 

consistently reflect the breadth of uncertainty within the true PDF, therefore creating 

ambiguity (Eckel, 2007).  Another contribution to ambiguity is a coarse resolution model. 

The smallest atmospheric motion wavelength that a model can resolve is seven to eight  
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grid points in length (Kalnay, 2003).  The ensemble cannot quantify the uncertainty from 

atmospheric motions not represented in the model, hence creating ambiguity (Eckel, 

2007).   

Additionally, poorly simulated aspects of the IC and model uncertainty by the 

ensemble add to the ambiguity.  A well-designed EF system attempts to models all 

possible sources of uncertainty (Eckel, 2007). The desire is to have at least different 20 

members (perturbations) in order to ensure the ensemble disperses enough to encompass 

the truth and sufficiently account for analysis and model design uncertainty. The term 

‘encompass the truth’ describes the ability of the ensemble to bound the verification 

value with the span of the members (Eckel, 2007). Three methods exist to create model 

perturbations: 1) IC/boundary condition perturbations 2) ensemble members that have 

different numerical schemes from the model 3) a combination of methods one and two 

(Cunningham, 2006). Using only one of first two methods contributes to ambiguity. For 

example, if an ensemble fails to account for the uncertainty within the cumulus scheme 

by only perturbing IC/boundary conditions, then the members will evolve cumulus clouds 

in the same manner (Eckel, 2007).  The members remain too similar to one another as 

time elapses. The insufficient internal model perturbations lead to underdispersion and a 

false indication of certainty. The unsimulated variability of dispersion over time and 

space creates ambiguity. 

Other possible contributors of ambiguity include post-processed diagnostics and 

decision threshold determination, all of which will be discussed in Chapter III.  The 

challenge is to estimate this ambiguity and incorporate it into the decision making 

process so it does not hinder the utility of the ensemble data (Eckel, 2007).  

As described previous section, the ensemble mean and spread ( )ee σµ , are 

estimates of the true PDF mean and spread ( )TT σµ , .  In this research, the term “spread” 

is used interchangeably with “ensemble standard deviation”.  Finite sampling hampers 

the ability of an ideal ensemble to represent the true PDF. The random nature of sampling 

causes the error to be variable and non-systematic, generating ambiguity.  The variability  
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of eµ  and eσ  about the true values (potential error) is described using sampling 

distributions which are standardized with respect to a normal PDF where 0=µ and 1=σ  

(Eckel, 2008).  

 
                                                                                                   

           (1)                               
          

 

         (2)                               

         

Hence, '
eµ and '

eσ  are standardized potential errors in the EF mean and variance 

respectively. Standardizing the error allows the error to be proportional across the subsets 

of data, making for easier analyzation and implementation. Figure 4 shows the sampling 

distributions from the ensemble mean (a) and spread (b).   
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Figure 4. Sampling distributions of the (a) ensemble mean and (b) ensemble spread 
(i.e., standard deviation), labeled by the number of ensemble members [From Eckel, 

2008]. 

 

J. L. Devore determined the '
eµ distribution is Gaussian, has no bias with a standard 

deviation equaling n/σ , and is independent of the (sampled) true PDF (Eckel, 2008).  

The '
eσ distribution is gamma with a spread dependent on shape of the sampled PDF 

(Eckel, 2008).  The minimum error variance is linked to finite sampling (ensemble size), 

but the error variance is likely to increase due to model deficiencies (Eckel, 2008). 
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C. WEATHER RISK MANAGEMENT  

1. Value and Cost-Loss Analysis 

a. Measure of Value  

Weather forecasts give value to the user’s decision-making process when 

the forecasts give the user the ability to take some action that reduces the average long-

term expense due to an adverse weather event.  Stochastic forecasts are difficult to apply 

since people often do not think in terms of probability (National Research Council, 

2006).  Since most decisions to take action are binary decisions (either “go/no-go” or 

“protect/don’t protect), the forecast probability must be converted to a binary decision.  

Such a decision can be arrived at by choosing a “probability decision threshold” or just 

decision threshold for short.  For example, an aggressive decision maker may use a 

decision threshold of 80% so that he will only decide the mission is a no-go when the risk 

of hazardous weather is greater than 80%.  A key concept within this research is that 

there is an optimal decision threshold, which is a particular to a user.  

The value score (V) helps illustrates the concept of the optimum decision 

threshold by measuring the utility of the forecast in the context of the cost-loss decision 

model (Wilks, 2006).  To explain, each user has a unique sensitivity to an event -- an 

adverse weather occurrence defined by a specific threshold (e.g. 50 knots of wind or 

greater).  Cost (C) is the amount of resources it takes to take protective action for the 

event, while loss (L) is the amount of resources lost when the event occurs without 

protection.  Cost and loss are not necessarily limited to monetary value but may include 

other resources such as people, morale, and mission priority.  As discussed previously, 

most decisions are binary so there are four possible outcomes (Table 1).  A ‘yes’ forecast 

that verifies is hit (a). A ‘yes’ forecast that does not verify is a false alarm (b). A ‘no’ 

forecast that doe not verify is a miss (c). A ‘no’ forecast that does verify is a correct 

rejection (d). After many forecasts have been complete, two quantities can be calculated: 

the hit rate (H) and false alarm rate (F), (Jolliffe, 2003):  
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(3) 

 

           (4) 
 

Applying a cost-loss decision model, a decision maker can either take protective action or 

do nothing at all with the weather forecast, incurring an associated expense.  Hence, from 

these four possible outcomes come four possible expenses, which are summarized in 

Table 1.  

 

 

EVENT OCCURS  

ACTION 

TAKEN Yes No 

Yes 
C  

(a) 

C  

(b) 

No 
L  

(c) 

Zero Expense 

(d) 

Table 1. Expense Matrix: Costs (C) and Losses (L) for different outcomes in C/L 
decision model [From Table 8.1, Jolliffe, 2003]. 

 

The value score (V) of the forecast is a function of the quality of the 

forecast system (H and F), the user’s C/L (α ), and the climatology rate (s).  The 

climatology rate is simply the average rate of occurrence of the weather event derived 

from past records of the event, independent of forecaster input.  Jolliffe (2003) gives the 

value score equation:  
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A value of V = 1 signifies a perfect forecast, while V < 0 signifies that climatology 

forecasts give better decision input.  The highest possible V for a particular user is 

achieved when the decision threshold is equal to the C/L (Figure 5), thus indicating the 

optimal decision threshold.     

 

 

Figure 5. Variation of value V with decision threshold (pt) for ECMWF EPS 
probability forecasts for users with C/L = 0.2 (solid line) and C/L = 0.8 (dashed line)       

[From Jolliffe, 2003]. 

 
 

To demonstrate this concept, consider the following example.  Two 

different users have the same expenses for the event of surface winds greater than 50 

knots:  C = $150K, L = $1,000K; hence the user’s C/L=0.15.  User A is hesitant and 

takes action to protect anytime the FP is greater than 0%.  User B is daring and will only 

take action when the FP is 100%.  Both users are assumed to know nothing about 

decision science. The forecasting system is perfectly reliable, so the number of event 

occurrences on average (observed rate of the event) is equal to the product of the forecast 

probability (FP) and number of forecast cases.  The following expenses (E) are calculated 

for three different sets of 100 forecast cases where > 50 knots of wind was possible. 
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FP for ≥  50 knots = .20 
------------------------------------------------------------------------------------------------------------ 
User A (always protect):               User B (never protect): 

E = (100 cases) *  ($150K cost)          E =  0.20 *(100 cases) * ($1,000K loss) 

   =  $15,000K                           =  $20,000K 

   WINNER 

 

FP for ≥  50 knots = .10 
------------------------------------------------------------------------------------------------------------ 
User A (always protect):             User B (never protect): 

E = (100 cases) *  ($150K cost)                             E =  0.10 *(100 cases) * ($1,000K loss)    

   =  $15,000K                                         =  $10,000K 

                                            WINNER 

 

FP for ≥  50 knots = .15 
------------------------------------------------------------------------------------------------------------ 
User A (always protect):            User B (never protect): 

E = (100 cases) *  ($150K cost)                            E =  0.15 *(100 cases) * ($1,000K loss) 

   =  $15,000K                           =  $15,000K 

          TIE  

 

In this last scenario, the total expense is equal for both users when the FP 

= C/L = 0.15.  User B expense is less than user A expense only when FP < C/L. 

Therefore, an astute user would act like User B (take no protective action) when FP < 

C/L and would act like User A (take protective action) when FP > C/L.   Over the long 

term, a user can minimize expense and yield the greatest value by noting that a decision 

threshold = C/L is the optimal decision threshold. 

Realistically, some users may find it difficult to define their C/L when 

their expenses are too complex or difficult to quantify.  A user can still attain value from 

the forecast by using a decision threshold within the “ballpark” of their actual C/L ratio. 

As seen in Figure 5, a decision threshold approximately between 0.02 and 0.45 still yields 

value for the C/L=0.2 user.  This concept is important to the integration of stochastic 
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forecasting into DoD operations. Users can still attain value from an ensemble forecast 

without having to invest resources for an in-depth analysis to determine their actual C/L 

ratio. 

It is important to note that no single decision threshold is optimal for a 

range of users with different measures of risk.   For example, if the C/L=0.8 user, who 

has a high tolerance to risk, acts on C/L=0.2 user’s optimal decision threshold, he will 

attain negative value from the forecast and miss opportunities to act by protecting 

unnecessarily.  The optimum decision threshold = C/L concept only applies to properly 

calibrated forecast probabilities; the user cannot simply optimize his/her decision 

threshold otherwise.   

When the FP exceeds the decision threshold, protective action should be 

taken. In this way, the probability forecast is converted to a binary decision input 

(Jolliffe, 2003).   

b. Risk Tolerance and Cost-Loss Ratio 

A cost-loss analysis (C/L ratio) is a way to quantify the user’s tolerance to 

Risk, or ‘risk tolerance’.  The risk tolerance is a measure of the amount the risk the user is 

willing to accept.  For example, a user with a small C/L has relatively large potential 

losses and benefits by taking action at relatively low forecast probabilities.  Users with 

small C/L are highly sensitive to adverse weather events; hence, their risk tolerance (RT) 

is lower.  Conversely, a user with a high C/L needs a higher probability to justify taking 

protective action for an event since the cost of protection is not much less than the 

potential loss. Users with high C/L are more tolerant to adverse weather events; hence, 

their RT is higher.  In this research, the term ‘RT threshold’ is interchangeable with the 

term ‘decision threshold’.  The term ‘mission threshold’ describes those weather event 

criteria that restrict mission accomplishment and may pose a threat to safety.  The best 

approach is to combine knowledge of mission thresholds and RT with a skilled stochastic 

forecast to give an optimum decision input that minimizes loss and/or maximizes gains 

(Eckel, 2007). 
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2. Operational Risk Management  

In addition to economic benefit, military decision makers are also concerned with 

risks such as loss of life and benefits such as mission success (Cunningham, 2006).  The 

ability of stochastic forecasting to quantify uncertainty serves to strengthen the 

operational Risk Management (ORM) system.  The foundation of ORM is to accept risk 

when the potential benefits are greater than the cost and avoid risk when potential losses 

are unaffordable in order to maximize gain/minimize loss in the long run (AFI 90-901; 

Zhu et al. 2002).  Two types of ORM exist: offensive ORM acts to maximize gains 

(benefits) and defensive ORM acts to minimize loss (risk).  From the cost-loss analysis 

perspective, the C and L are defined in terms of benefits and risks respectively.  In order 

for the concept of stochastic forecasting to be accepted and implemented by the DoD, 

then it has to be part of the ORM decision-making process (Eckel et al, 2008). 

The Air Force (AF) defined risk management guidelines in AF Instruction 90-901 

and elaborated the guideline in AF Pamphlet 90-902.  “The USAF aim is to increase 

mission success while reducing the risk to personnel and resources to the lowest practical 

level in both on- and off-duty environments” (AFPAM 90-902).  ORM has become a 

mode of thinking in the AF with yearly training, safety days, and in everyday mission 

checklists (Cunningham, 2006).  The entire set of AF risk management goals are listed in 

Figure 6.  Along with these goals, are also 4 guidelines  1) accept no unnecessary risk, 2) 

make decisions at the appropriate level, 3) accept risk when benefits outweigh the cost, 4) 

integrate ORM into Air Force doctrine at all levels (AFI 90-901).  Other DoD service 

components follow similar ORM principles.  
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Figure 6.  U.S. Air Force Risk Management Goals [From AFPAM 90-902]. 

 

The ability of a stochastic forecast to quantify uncertainty is key to giving the 

DoD decision-maker a complete understanding of the weather situation.  Deterministic 

forecasts omit uncertainty, while stochastic forecasting objectively measures uncertainty.  

This objective measure allows the user to apply their own set of risk tolerances to make 

an optimized, unbiased decision to minimize risk and/or maximize benefits. Ensemble-

based probabilistic forecasts have a place in DoD operations by incorporating vital 

information into the decision-making process.   

D. CALCULATING AND COMMUNICATING FORECAST TURBULENCE 
AND ITS UNCERTAINTY 

1. Today’s Deterministic Methods  

High altitude clear-air turbulence (CAT) can be an extremely detrimental weather 

event for aviation.  The number of fatal accidents involving CAT encounters are 

relatively low (McLean, 1986), but serious injury and structural damage have occurred 

with severe (SVR) to extreme CAT.  Rerouting and loitering due to CAT and flying 

through CAT increases fuel expense and mission times (Ellrod and Knapp, 1992).  
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Significant CAT is prevalent in areas of vertical wind shear, horizontal shear, 

convergence, horizontal deformation, lapse rate discontinuities, and strong horizontal 

thermal gradients (Ellrod and Knapp, 1992).  NWP models cannot practically predict 

turbulence because the resolution required for aircraft scale turbulence remains too high. 

Diagnostics and rules of thumb (ROT) have been developed to produce turbulence 

forecasts by correlating synoptic and mesoscale patterns to CAT occurrences 

(Cunningham, 2006).  The current mainstream practice of forecasting turbulence is 

largely deterministic.  Operational forecasters use a combination of tools like raw model 

data, model-derived turbulence diagnostics, and forecast ROT with their skill and 

experience to produce turbulence forecasts like the one illustrated in Figure 2, which is an 

example of the most basic decision input in which objective uncertainty is ignored.  

 The Integrated Weather Effects Decision Aid (IWEDA) is a baseline decision 

input tool that compares mission limiting weather criteria with deterministic forecasts to  

produce decision inputs.  IWEDA has marginal and unfavorable thresholds established 

for different assets (resources such as people or equipment) depending on the assets’ 

vulnerability to the weather parameter.  IWEDA defines the mission threshold as “the 

point where the occurrence of a meteorological element causes a significant (moderate or 

severe) impact on a military operation, system, subsystem, or personnel” (Shirkey and 

Gouveia, 2002).  IWEDA determined the mission thresholds by “doctrine, safety, or 

engineering factors (people, modeling, or testing)” (Shirkey and Gouveia, 2002).   

Decision inputs are color coded. Red indicates conditions in which operations 

“are severely impacted: There is either a total or severe degradation or the operational 

limits or safety criteria have been exceeded” (Shirkey and Gouveia, 2002).  Amber 

indicate conditions in which operations “are marginal and the operational capability is 

degraded, or there is a marginal degradation” (Shirkey and Gouveia, 2002).   Personnel 

can still proceed with operations, but need to proceed with caution. Green indicates that 

no operational restrictions exist (Shirkey and Gouveia, 2002).  To give an example of an 

unfavorable (red) mission threshold: personnel cannot safely perform a static line 

parachute jump in greater than 13 knots of surface wind.  The marginal (amber) threshold 

is 9 knots.  
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IWEDA in a sense is giving a hint of uncertainty information with this marginal 

(amber) mission thresholds by inferring an average forecast error of 4 knots.  IWEDA 

includes no objective uncertainty information.  Other limitations of IWEDA include no 

consideration of the user’s risk tolerance and complete ignores ambiguity.  

2. WRAP 

Methods to incorporate objective uncertainty into the decision making process are 

in development.  One approach to produce and visualize stochastic weather-based 

decision input is the prototype Weather Risk Analysis and Portrayal (WRAP) tool.  The 

Army Research Laboratory funded Next Century Corporation to develop the WRAP tool 

to address the need of military users to correctly and efficiently interpret ensemble 

forecasts (Next Century, 2007).  WRAP processes ensemble data, users’ RT, and 

IWEDA’s mission thresholds to create a decision input which is superior to IWEDA. 

WRAP uses objective uncertainty information to formulate unique decision inputs that 

vary with different risk tolerances whereas IWEDA uses subjective uncertainty 

information to generate generic decision inputs.  WRAP defines the user’s RT as the 

level of risk the user is willing to accept (Next Century, 2007).  WRAP uses the familiar 

stop-light (red, amber, green) format in their graphics product to easily convey the     

user-specific decision input.  A user with a high risk tolerance is going to have different 

decision input that a user with a low risk tolerance (Figure 7). 
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         (a)       (b) 

Figure 7. Examples of decision input visualizations from (a) medium risk tolerant 
user and (b) from low risk tolerant user. Adapted from the Weather Risk Analysis and 

Portrayal Phase II Prototype Risk Tolerance Chart. [From Next Century, 2007]. 

 

The example below illustrates WRAPs methodology for determining the red (no-

go), amber (marginal), or green (go) colored decision inputs. From the previous IWEDA 

example, the weather parameter of concern is surface wind for a static line parachute 

jump into a drop zone.  The user has a medium tolerance to risk with a RT of 40%.  The 

PDFs displayed in Figure 8 represent the range of possible outcomes for surface wind 

speed as defined by an ensemble forecast.  The risk of exceeding the marginal or 

unfavorable thresholds is the area under the PDF to the right of the threshold.   

In Figure 8a, nearly all of the PDF lies below the marginal threshold.  The risk of 

> marginal and > unfavorable thresholds is one and zero percent respectively.  Since the 

RT exceeds the risk for either threshold, the user is given a “green” decision input.  In 

Figure 8b, the majority of the PDF lies above the marginal threshold (99%).  Since the 

risk of > unfavorable threshold (the worse condition) is 68% and exceeds the RT, the user 

is given a “red” decision input.   In Figure 8c, the majority of the PDF lies above 

marginal threshold.  The risk of > unfavorable conditions is 11 percent.  The risk of > 

marginal threshold is 63 percent.  Since this risk exceeds the RT, the user is given a 

“amber” decision input. 
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Decision Input 
 

a) 

 
b) 

 
c) 

 

Figure 8. PDF representation of the risk of exceeding marginal and unfavorable 
thresholds using a RT = 40%.  a) Green decision input.  b) Red decision input.  c) Amber 

decision input. [After Eckel, 2006]. 

 
 

WRAP is limited by its use of the deterministic IWEDA marginal thresholds in a  

stochastic context to derive ambiguity.  Using the example from the static line parachute 

jump, WRAP is giving a hint of ambiguity information using two thresholds.  The 

marginal threshold (> 9) infers there is an average forecast error of four knots for the 

unfavorable mission threshold (>13 knots).  WRAP makes no formal calculations to 

determine the ambiguity, rather it uses the marginal threshold as a proxy.  The concept of 

Decision Input 
 

Decision Input 
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marginal threshold only makes sense in a deterministic context.  The amber regions on 

stochastic weather-based decision input graphic should denote regions of “too close to 

call” not regions of “proceed with caution.”  Only one threshold, the mission 

(unfavorable) threshold, should be applied to the stochastic context.   

3. Conclusion 

Today’s method to give decision input is deterministic with no uncertainty 

information or consideration of RT included.  IWEDA is a more advanced deterministic 

tool with its application of marginal and mission thresholds to give decision inputs. 

WRAP, the prototype stochastic weather decision aid improves upon IWEDA, by 

incorporating both forecast probability uncertainty and RT but poorly estimates 

ambiguity and does not consider the uncertainty in RT.  This research demonstrates the 

same capabilities of WRAP, but objectively estimates ambiguity and subjectively 

estimates RT uncertainty to incorporate the possibly vital information into the decision 

making process.  
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III. METHODOLOGY 

Using the previous background research as a foundation, this study demonstrates 

capabilities that will serve to further education, development, and utilization of stochastic 

methods in the Air Force and Department of Defense.  Generating products 

communicating flight level turbulence risk to the user for optimal decision making 

requires a three part process, outlined in Figure 9.  Specifically, part one generated non-

calibrated forecast probabilities of varying levels of turbulence intensities using the 

uniform ranks method.  Part two generated calibrated forecast probability, ambiguity 

(using the Taijitu method), and decision input data by comparing the risk and the risk 

tolerance. Part three introduced a user-friendly graphical user interface (GUI) to visualize 

the information from Part two.   

The researcher used Matlab, version 7.0 or later, as the computer programming 

platform.  The study’s methods can be applied to other computer programming platforms 

as well, especially in the visualization realm.  Matlab has limited graphics capability. A 

more sophisticated programming platform can produce a more advanced visualization to 

communicate flight level uncertainty.  
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Figure 9. Three part process of generating products communicating flight level 
turbulence risk 

 
 

A. PART ONE 

1. Model Description and Ingest 

The Global Ensemble Forecasting System (GEFS), used in this study, is a 

worldwide (360 x 181) model grid generated by the National Centers for Environmental 

Prediction (NCEP). The GEFS dataset has 21 members, one degree grid spacing, 50 

millibar (mb) pressure increments, six hour forecast intervals, and a 384 hour forecast 

length. In this research, the maximum forecast length is 84 hours. The 50 mb pressure 

increment essential for calculating the turbulence index is only available up to forecast 
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hour (FH) 84. The GEFS uses an ensemble transform to create initial condition 

perturbations; no internal model perturbations are applied.  

GEFS is available in gridded binary version two (GRIB2) format on the  

GEFS ftp website. For the purposes of the study, three variables (3 GRIB2 files)  for each 

member were downloaded and “de-gribbed” into a usable format: u and v components of 

the wind (meters/second), and the geopotential heights (meters).  The latitude, longitude, 

and variable spatial grids were reoriented so the coordinate 90°N and 0°E is positioned at 

the upper left hand corner of the grid. In order to explore risk analysis for different 

amounts of turbulent areas, the researcher downloaded two GEFS model runs:  one taken 

from the fall season (02 OCT 07, 00Z) and one taken from the winter season (30 JAN 08, 

00Z).  A single sample forecast hour, flight level, forecast probability, and risk tolerance 

from the winter case will be used throughout this chapter to exhibit the methodology.  

2. Turbulence Index (TI) Calculation 

The Ellrod and Knapp (1992) turbulence index (TI) calculation is the diagnostic 

of choice in this study because of its skill and operational history with NCEP’s and 

AFWA’s model derived turbulence forecasts.  The Ellrod TI was developed from 

concepts derived from 30 years of turbulence studies starting in the 1950s (Ellrod and 

Knapp, 1992). The physical foundation uses the concept of frontogenic intensity. 

Frontogenesis increases vertical wind shear (VWS) and therefore increases the threat of 

clear air turbulence (CAT) (Ellrod and Knapp, 1992). The product of VWS with the 

combination of horizontal deformation (DEF) and convergence (CVG) forms the basis 

the Ellrod TI equation (Ellrod and Knapp, 1992):  

 

                   (6) 
                                                                                       

The VWS term describes a rapid change in wind speed and/or direction with 

height (Ellrod and Knapp, 1992). The equation for VWS is:   
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where u∆ and v∆  are the differences of wind speeds between grid points, and z∆  is the 

difference in geopotential heights (layer thickness).   

 The DEF term is characterized by a “property of a fluid that transforms a circular-

shaped area of fluid to an elliptical shape” (Ellrod and Knapp, 1992). The equation for 

DEF is:  

                                                                                                                                    (8) 
                                                                                                                       

where DST is the stretching deformation and DSH is the shearing deformation, given by 

the following equations:   

 

(9) 
  

                                                                                                                                    (10)  
 

              Ellrod and Knapp (1992) describe CVG as “a compaction of a fluid caused by 

the confluence of streamlines and/or deceleration of air parcels.”  CVG is the negative of 

divergence and is given by the following equation:  

                                                                                 

                                                                                                                                    (11) 
 

AFWA uses the Ellrod index operationally in an algorithm to automatically compute 

turbulence forecasts from the Mesoscale Model (MM5) (G. Brooks, 2008, personal 

communication). 

The researcher acquired and manipulated AFWA’s turbulence algorithm to 

construct the algorithm used in this research.  The researcher used a three pressure level 

center differencing approach where z∆  is computed at one pressure level (p2) using the 

data from the pressure level above (p3) and below (p1) and divided by the total depth 

(Figure 10). The TI for the top pressure level was computed using one side differencing. 
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The TI for the bottom pressure level (850 mb) was negated because it was of little 

consequence to the interpolation scheme, discussed in the next section.  

 

 

 

-----------------------------------------p3 

 
∆z ------------------------------------p2 

 
 

-----------------------------------------p1 
 

                               ∆x 

Figure 10. Three pressure level computation method. Red line indicates location of 
pressure level computation.  Circled points of data used in calculation of TI at square 

point. Note ∆y is not shown, but perpendicular to the page. 

 
 
 

The horizontal distance between the grid points was computed for the one 

degree global grid using the equations: 

 

                        
(12)                               

 

                                                                                                                                        (13)
 

 

where eR  is the average earth radius = 6,372,797 meters.  The end TI result was 

multiplied by the scaling factor 7101×  (Ellrod and Knapp, 1992). 

The Ellrod index thresholds for turbulence intensity are dependant on the model 

used. The study’s TI thresholds were taken from the JEFS Joint Global Ensemble (JGE) 

upper level turbulence algorithm which is also applied to the GFS ensemble. The 
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intensity thresholds for light (LGT), moderate (MDT), and SVR (SVR) turbulence are 2, 

5, 10 (unitless) respectively (G. Brooks, 2008, personal communication).  

3. Interpolation 

After the TI was calculated, the researcher interpolated from pressure level data to 

constant flight levels. Interpolation is a necessary step to convert the turbulence data to 

standard flight levels so the data can easily be applied to DoD operations. The 

interpolated heights were chosen with consideration of the logarithmic pressure spacing 

of the atmosphere. Since the GEFS data levels are incremented every 50 millibars, the 

researcher chose a logical height level scheme to minimize over interpolation and still 

yield useful flight level products. The flight levels above 20 thousand feet are 

incremented every five thousand feet and flight levels between 10 and 20 thousand feet 

are incremented every two thousand feet (MSL) (Figure 11).  

Matlab has routines to automatically interpolate data from one height to another. 

The Matlab one-dimensional interpolation routine (interp1) has several options to include 

‘linear’ and ‘spline.’ The linear method, as it states, interpolates data linearly from the 

original level to the desired level. The spline method interpolates data using a cubic 

spline (Figure 12), which is constructed using third order piecewise polynomials 

(Weisstein, 2008).  

To compare the performance of the methods, the researcher took a group of cross 

sections lying within a strong TI gradient in WRN CONUS from the same model day, 

time, and forecast hour pictured in Figure 14. The two methods were interpolated to the 

research height levels (Figure 13). Interpolated TI results for both methods were similar 

below 25,000 feet. Larger differences occur above 25,000 feet because of larger distances 

exist between the original data points and the interpolate points due to logarithmic 

spacing.  Since the upper level winds generally do not decrease and increase with height 

linearly, the spline method interpolated the TI in between the large gaps (separating the 

original data points) more realistically. For this reason, the researcher implemented the 

spline method.   
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Figure 11. Skew-T Log-P diagram showing 50 mb increment pressure level data 
locations (red text and lines) and interpolated levels (blue text and lines). For reference, 

standard atmospheric heights are displayed (green text). 

 
 

 

Figure 12. Piecewise cubic spline (black) and piecewise linear segments (red) [From 
Weisstein, 2008] 
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After the GEFS model ingest, TI calculation, and interpolation of height levels, 

the resultant output was TI (no units) data for all 21 members. Member number two from 

the January 31, 2008 00Z run is shown in Figure 14. 

Because of the extremely large amount of data, the researcher cut the global grid 

(181° x 360°) down to a specific area of responsibility (AOR), the European Command 

(EUCOM), which measures (41° x 71°). The EUCOM AOR serves a primary location for 

refueling and transport missions supporting Middle East Operations, which are particular 

vulnerable to upper level turbulence. 
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                                a)  

b)  

c)  

     

Figure 13. Interpolated TI data using “linear” and “spline” methods versus the 
original TI data, Latitude/Longitude: a) 35°N/245°W  b) 36°N/243°W  c) 33°N/239°W.  
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Figure 14. Example of raw TI output on a global grid. FH: 024 = Forecast Hour 24 , 
FL350 (MSL) = Flight Level 35,000 feet (Mean Sea Level) 

   

4. Forecast Probability Calculations  

To calculate forecast probability (FP), the most straightforward method is the 

counting method, which biases FP toward the extreme probabilities (Eckel, 2007). To 

convert the 21 member TI output to forecast probability, the researcher employed a more 

advance method called uniform ranks. The ensemble members’ output of TI at one grid 

point is assumed to be equally likely and ranked ordered (sorted from least to greatest). 

Uniform rank’s total probability is divided into n+1 bins (n=total number of members) 

which equal the number of possible ranked positions of the threshold when combined 

with the members (Hamill and Colucci, 1997). The rank-probability bins that exceed the 

threshold value are summed to produce the probability of the turbulence exceeding the 

threshold.   
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The uniform ranks method considers the probability existing partially in adjacent 

bins by linearly interpolating the distance between the threshold value and value in the 

adjacent bin. Eckel (1998; 2003) gives the probability of the partial bin: 

           

                                                                                                                                    (14) 
 

 

In the preceding equation, T is the threshold value, V is the verification value, xi is the 

value of the ensemble member with rank i, xi+1 is the value of the ensemble member of 

i+1, and RPi+1 is the amount of the probability of the verification rank i+1 (that is 

RPi+1=1/(n+1)).  Using the uniform ranks method, the following equation calculates 

forecast probability. Eckel (1998, 2003) adapted the uniform ranks method from Hamill 

and Colucci (1997).  
   

                                                                                                                                    (15)                               
 

In the following example (Figure 15), a ten-member ensemble is used. The output 

parameter is a turbulence index (TI). The threshold is moderate (MDT) turbulence, 

measured by TI equal to or greater than five. The resultant forecast probability is 77%. 

 

 

Figure 15. Uniform Ranks Method: calculating turbulence FP > MDT (TI>5) using 
10-member ensemble. 

When T is ranked n+1, the fraction of probability is computed by assuming the 

total probability falls into the upper (right) tail of a Gumbel distribution (Eckel 1998, 
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2003).  The Gumbel cumulative density function (CDF) gives the ability to characterize 

extreme probability events (Wilks 2006), which is given in the following equation:  

 

  

                                                                                                                                    (16) 
 

 

The Gumbel distribution parameters are estimated using the statistical method of 

moments, which employs the sample mean and standard deviation (Wilks, 2006):  

 

                                                                                                                                    (17) 
                              

                                                                                                                                    (18) 
 

                                                                                                                             (19) 
 

With extreme low probability situations (where T falls in the highest bin), the forecast 

probability is calculated using the following equation adapted from Eckel (1998, 2003):  

 

                                                                                                                                    (20) 
 

The opposite case of extremely high probability events, where T falls in the first 

bin is handled by a simpler function to ensure FP drops to zero by TI=0:  
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where  

 

(22) 
 

After combining all the members and using the uniform ranks method to calculate the FP, 

the resultant output was an uncalibrated turbulence FP product for the EUCOM AOR.  

Figure 16 shows the uncalibrated FP for FH 24 of the January 31, 2008 00Z run.  

 

 

 
Figure 16. Example of uncalibrated FP output for EUCOM grid. 

 
 

5. Validation  

To validate of the study’s TI and FP algorithm, the output of FP of LGT, MDT, 

SVR turbulence was visually compared against the JGE’s upper level turbulence forecast  
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for the same forecast hour and for similar flight levels. The following comparisons made 

from Figure 17 are typical results found when the researcher compared other forecast 

hours and turbulence intensities.  

 

 

 

 

Figure 17.  FH 24 of the January 30, 2008, 00Z run; valid January 31, 2008, 00Z. 

a) CONUS FP (uncalibrated) of MDT turbulence b) JEFS CONUS FP of MDT 
turbulence  

 

In area 1, the study’s derived FPs are larger in coverage compared to JGE FP. In 

area 2, the derived FP is higher than JGE FP by 60 to 80%.  This difference of FP in 

spatial coverage and intensity can be attributed to several factors. JEFS combines two 

1 

1 

2 

2 

a)  

b)  
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cycles per day to derive the forecast, whereas the research only employs one cycle. 

Additionally, the study used three levels of data to calculate the TI whereas JEFS uses 

only two. Furthermore, the researcher interpolated the data whereas JGE estimated the 

flight levels using the standard atmospheric heights. Although, the differences in FP 

spatial coverage and intensity noted are not of high concern, because the overall 

similarities generally validate the processing in the research. Regardless, the actual TI 

and FP output is not of critical importance. The processes behind FP and decision input 

calculations are the main focus.  

B. PART TWO 

This part of the process involves generating calibrated forecast probabilities, 

ambiguity, and decision input (DI) data. The researcher used a newly fashioned 

ambiguity and calibration calculation method called the “Taijitu” method (pronounced 

“ti-chee-tu”). Founded by F.A. Eckel (2008), it estimates the calibration and ambiguity 

(i.e., systematic and random error) in the ensemble FP caused by limited sampling and 

ensemble deficiencies. The method concentrates on the errors found in the first and 

second moments (mean and variance) of the ensemble PDF since they have the greatest 

affect on FP error (Eckel, 2008).   

 The GFS ensemble, used in this research, is non-ideal (no internal model 

perturbations) with finite sampling (only 21 members).  GEFS forecasts are likely 

underdispersive and highly ambiguous. Dispersion is the ensembles representation of 

error growth (Eckel, 2007).  The overall (average) underdispersion is the systematic 

(predictable) FP error that can be corrected for through calibration (Eckel, 2008).  The 

unknown aspect of FP error (ambiguity) arises from the random variability of the quality 

of ensemble dispersion (Eckel, 2008).  

Transforming from a PDF error to a FP error is a matter of comparing the 

probability of the ensemble and true PDF for the chosen threshold. For example, an 

ensemble forecast for 2-m temperature at one location is fit by a Gaussian PDF of  N(µe = 

1.4°C, σe = 0.9°C).  If the true PDF is N(1.1°C, 1.3°C), the unknown PDF errors are 
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0.3°C in µe and −0.4°C in σ e. Example is taken from Eckel (2008). Figure 18 shows how 

to find the error in FP for the event of 2-m temperature < 0 °C. 

 

True Forecast PDF
Ensemble’s Forecast PDF
pT

pf

 

Figure 18. Example comparison of a true and an ensemble forecast PDF (upper plot) 
and CDF (lower plot).  An error of  −13.9% in forecast probability for the chance of 

temperature ≤ 0°C is the difference in the PDF’s shaded areas, or the difference in the 
two CDFs indicated by the double arrow [From Eckel, 2008]. 

 

The Taijitu method calculates ambiguity and calibration data using error in the 

first and second moments of the ensemble PDF:  

1) the mean of the error in the ensemble mean ( emµ ),  

2) the standard deviation of the error in the ensemble mean ( emσ ),  

3) the mean of the error in ensemble spread ( esµ ), and  

4) the standard deviation of the error in the ensemble spread ( esσ ).  

True FP
Ensemble FP
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Each ensemble PDF moment has its own error distribution determined by verifying the 

ensemble (Figure 19), which is standardized with respect to the average spread of the true 

PDF (Eckel, 2008).  The standardized error distribution of the ensemble mean is assumed 

to be  Guassian, positioned on the long-term bias of the ensemble mean, emµ , with a 

standard deviation, emσ  (Eckel, 2008).   The fractional error distribution for ensemble 

spread is assumed gamma.  

 

  
Figure 19. Sample standardized error distributions for FH 84.  

 

In this research, ensemble mean bias ( emµ ) was set to zero following the 

assumption that the TI thresholds were calibrated to account for any TI bias. The 

standardized emσ  was determined using a simplified process. Rather than computing the 

variance of error in ensemble mean from all the data subsets, the researcher used the ′
eσ   

distribution whose variance is dependant on ensemble size (Eckel, 2008).  Standardized 

to a normal PDF where N(0,1), nem /1=σ  (where n=21 members) 218.0≈  (Eckel, 

2008) .  

To find the distribution of fractional error in ensemble spread, the researcher 

acquired a long-term verification dataset of GEFS for turbulence related parameters from 

AFWA.  Ideally, the error distribution would be for TI itself, but this is not practical since 

TI observations are not available. The researcher used the GEFS geopotential height 
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output at the 500 hPa height level (H5) to estimate the ensemble TI error since 1) winds 

are generally geostrophic at this level in the middle to high latitudes and 2) the spacing of 

the geopotential heights indicate the speed of the wind with their inversely proportional 

relationship (Wallace and Hobbs, 1977). Since the TI calculation is based on vertical and 

horizontal wind shear, one can assume the tighter (looser) the geopotential height 

gradient (vertically and horizontally) is, the greater (lesser) the wind shear is. Hence, the 

ensemble error in the geopotential heights will reflect in the ensemble error in TI.  

The long-term H5 spread variance data contains total variance and total mean 

squared error of the ensemble mean (MSE) information for the 30-60°N global latitude 

band (10,800 total grid points).  The data spans from August 25 to September 29 (37 days 

total) for the 00Z model run.  The researcher trimmed the data set to 20 days (by taking 

every other two days) to limit correlation among results. Twenty days worth of data was 

deemed sufficient to estimate error variability.  From this 20 day set, approximately five 

percent of the data is missing since many days have one or more forecast hours (tau) 

missing.  The researcher sorted the 20-day dataset by tau and calculated the fractional 

error in the spread (FES) for each day:  

 

   (23)                               

where eσ  is the average ensemble spread and eRMSE is the root mean square error of the 

ensemble mean. The following table shows the daily FES values for forecast hour 84. 
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DATE FES (FH 84) 
2007082500 0.719 
2007082800 0.866 
2007082900 0.792 
2007090200 0.821 
2007090300 0.799 
2007090500 0.716 
2007090600 0.799 
2007090900 0.841 
2007091000 0.877 
2007091200 0.793 
2007091300 0.774 
2007091400 0.632 
2007091600 0.899 
2007091800 0.673 
2007092000 0.784 
2007092300 0.737 
2007092500 0.803 
2007092600 0.709 
2007092800 0.812 
2007092900 1.02 

esµ  0.793 

esσ  0.0859 
 

Table 2. All Fractional Error Spread (FES) values for forecast hour (FH) 84. 

 

To find the mean of the error in ensemble spread ( esµ ), all the daily FES 

computations were averaged for one tau. Averaging all the FES for FH 84 yields esµ = 

0.793.  The esµ  is the systematic aspect of the spread error which can be corrected for 

through calibration (Eckel, 2008). To calculate the random aspect of spread error ( esσ ), 

the standard deviation of the 20 FES values was computed.  The esσ  represents the 

random aspect of the ensemble spread error (Eckel, 2008), which creates ambiguity. The 

standard deviation for FH 84 FES data yielded esσ = 0.0859.  

Figure 20a illustrates the effect on FP error for 10 random draws from the 

ensemble mean and spread error distributions. The standardized error distribution of the 
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ensemble mean represents the ensemble PDF location error, while the fractional error 

distribution for ensemble spread represents the ensemble PDF width error (with respect to 

the true PDF).  Sample 1 (Figure 20a) is driven by primarily location error. Sample 2 is 

driven by primarily width error.  Variation of samples 1 and 2 are driven by a 

combination of location and width errors.  

Taking many random samples (1000) yields a distribution of potential error in 

FPor ambiguity (Figure 20b). The results for 1000 trials produced a skewed distribution 

which can be fitted by a beta PDF. Figure 21 displays example histograms of FP errors 

resulting from the FH 84 ensemble PDF error distributions (shown in Figure 19). The 

distribution of possible FP error skew away from the worst error; the direction of the 

skew is dependant on the FP.  Using Figure 21 as an example, the beta distribution for 

FP=25% skewed to left (Figure 21a) and FP=75% skewed to right (Figure 21b).  

The 5th, 50th, 95th percentiles of the beta PDFs for all FP values are plotted in 

Figure 22. The 50th percentile the beta PDF (Figure 21) equates to the mean of the 

ensemble error. Because the mean of the ensemble error represents a systematic error, 

calibration can be accomplished by adding the 50th percentile values to the raw FP. Thus 

‘calibration’ is the reverse of the 50th percentile curve.  In a 90 percent confidence 

interval (CI), the 5th and 95th percentile of the beta PDF equate to the spread of the 

ensemble error (Eckel, 2008) and represent the variability of the FP error (random error).  

The non-calibrated 50th percentile is subtracted from 95th percentile and the 5th percentile 

is subtracted from the non-calibrated 50th percentile to achieve the upper and lower 

ambiguity bounds respectively. The ambiguity bounds are added to the calibrated 50th 

percentile curve to compose the “Taijitu” curve pictured in Figure 23. The method takes 

it name from the resemblance it has to the Chinese taijitu symbol (Eckel, 2008).  
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a) 

 
b) 

 
Figure 20. Error (%) in FP for a) 10 and b) 1000 random errors in the ensemble mean 

and spread for FH 84. 

 

(1) 

(2) 
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a) 

 
b) 

 

Figure 21. Histogram of 1000 sample FP errors, with fitted beta distribution, resulting 
from the ensemble PDF error distributions in Figure 19 for FP of (a) 25.0%, (b) 75.0% 
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Figure 22.  Uncalibrated 5th, 50th, 95th percentiles of the beta PDFs of possible FP 
error for FH 84.  

 
 

Taijitu

 

Figure 23. Ambiguity and Calibration Curve for FH 84, 90% CI: The FP calibration 
(thick line) is simply the opposite of the 50th percentile of the ensemble error distribution 

(beta PDF).  The upper and lower bounds of ambiguity (thin lines) are the 90% 
confidence interval of the true forecast probability, found by taking the difference of the 

5th and 95th percentiles from the 50th percentile. Displayed is calibration factor for 
FP=10%, upper and lower ambiguity bounds for calibrated FP (16%)[After Eckel, 2008]. 

Calibration 
Factor: +6%  

Upper Bound: 
+12% 

Lower Bound: 
-8% 
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To formulate the error bars, the calibration factor is added to the uncalibrated FP. 

The ambiguity intervals are computed from the uncalibrated FP. For example in Figure 

23, the upper bound of the ambiguity interval is +12% and the lower bound is -8% for 

FP=10%. The calibration factor for FP=10% is +6%, which makes the calibrated 

FP=16%. Hence, ambiguity interval for FP=16% is 8-28%. Note, because of the “s” 

shaped curved, most upper and lower bounds of the ambiguity intervals are not equal.  

In order to communicate optimized decision input, the proper confidence interval 

(for the beta PDF described above) for the ambiguity intervals must be chosen. The 

amber regions in the research decision input products are influenced by the extent of the 

ambiguity intervals. If the ambiguity intervals are too small, the amber regions will be 

smaller, giving the user a false sense of high certainty in the decision input. Conversely, 

if the ambiguity intervals are too large, the amber regions might be too large, which 

removes the ability of the product to give decisive recommendations.  

The researcher tested CIs (70%, 80%, 90%, 95%, and 99%) to determine the 

affect on the DIs. The higher (lower) CI conveyed more (less) of the ambiguity. Figure 

24 illustrates the maximum ambiguity bounds for each CI at FH 84.  The CI with average 

maximum bound (approximately ± 15 %) is the 90% CI. This CI is a balance between the 

70% and 99% CI.  It reveals a large degree of the calculated ambiguity, but still yields a 

reasonable decision aid. For these reasons, the 90% CI is the chosen CI for this study. See 

Appendix A for three forecast hour comparisons of varying CI.  

To subjectively approximate uncertainty (error bars) for RT, the researcher 

assumed a + 5 % confidence interval to represent the user’s inability to specify a precise 

RT.  Using this confidence interval for all RT is not realistic. A user with a RT <0.05 

would have a negative RT interval bound. A user with a RT >0.95 will have a RT interval 

bound >100%. The researcher used a second order polynomial curve to avoid this 

problem achieving the RT uncertainty intervals (Figure 25). As with FP, users with 

extreme high and low RT (i.e. RT=0.00 or 1.0) have the most confidence of their 

tolerance to risk (i.e. absolute tolerance to no or all risk). The RT=0.5 user may be unsure 

of his/her tolerance to risk. Hence, RT=0.5 has the most uncertainty with interval bounds 

of + 0.05. 
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To incorporate the ambiguity and calibration data into the graphical products, the 

data cycled through a DI algorithm to compare FP and RT, and produce stop-light DI 

data.  Using look-up tables, the researcher added the calibrated factor to each of the grid’s 

FP.  The ambiguity bounds were added to the calibrated FP to formulate the ambiguity 

interval about FP. To formulate the stoplight DI product, the algorithm compared the 

confidence intervals of FP and RT.  If the lower bound of the FP error bar is above the 

upper bound of the RT error bar, then the risk is deemed unacceptable (no-go 

recommendation) and the grid point is colored red (Figure 26a).  If lower bound of the 

RT error bar is above the upper bound of the FP error bar, then risk is deemed acceptable 

(go recommendation) and the grid point is colored green (Figure 26b). Otherwise, the FP 

and RT error bars overlap, so there is no clear decision (inconclusive) and the grid point 

is colored amber (Figure 26c). The minimum confidence interval in the green and red DI 

(the FP and RT probability are independent of one another) is (CI + (100-CI)/2)2.  The 

minimum CI occurs when the FP and RT error bars are stacked atop one another (the end 

bounds just meet one another). With the research CI=90%, the minimum confidence is 

952% =90.25%.  

As stated previous, using CIs with different significance alters the length of the 

FP error bars (ambiguity intervals), therefore increasing or decreasing the amount of 

ambiguity conveyed. Inconclusive DI is risk that is too close to call; either a go or no-go 

DI may be acceptable. In addition to the calibrated FP and stoplight DI graphical product, 

an additional product displays the maximum or “worst-case” potential error (ambiguity) 

in the FP. In order to generate this product, lower and upper bounds of the FP ambiguity 

intervals are compared with each other at each grid point.  Which ever bound is greater is 

deemed as the worst-case potential error (PE).  
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Figure 24. Ambiguity Curves for FH 84, CIs a) 70%  b) 80%  c)  90% d)95%  e) 99%  

 

Maximum bounds: ≈  ± 9.5 % Maximum bounds: ≈  ± 12 % 

Maximum bounds: ≈  ± 15 % Maximum bounds: ≈  ± 18 % 

Maximum bounds: ≈  ± 23 % 

a) CI: 0.7 b) CI: 0.8

c) CI: 0.9 d) CI: 0.95

e) CI: 0.99 
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Figure 25. Risk Tolerance Uncertainty Curve. 

 
 

C. PART THREE 

In order to visualize DIs from Part two, the researcher devised a graphical user 

interface (GUI). If all the possible graphical products were generated for one risk 

tolerance (13 flight levels, 14 forecast hours, and 3 turbulence intensities), the total 

number of products would be 546. Using a simple GUI, a user can generate one set of 

graphical products for his/her specific risk tolerance, mission threshold turbulence 

intensity, forecast hour, and flight level (Figure 27) and eliminate unnecessary product 

generation. 
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 a) 

 

                        
  b) 

 

           

   c)  
 

 

 
 

Figure 26. (a-c) Calibrated FP and user RT (center of error bar) and associated 
confidence intervals showing different DIs 
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Figure 27. Prototype GUI. 

 
 
 

In the first block, the user has the option of either using the drop down menu or 

inputting a specific risk tolerance. The first option is geared toward those users that have 

not conducted a thorough study of their risk tolerance and/or are not educated in 

stochastic methods and decision science (a beginner user).  The drop down menu includes 

generic risk tolerances and a description/example for the specific risk tolerance. In 

parenthesis, the relative frequency is displayed for the number of times out of ten the user 

requires no weather (WX) impact (Figure 28a). Research has shown using natural 

frequencies helps users make better statistical inferences and interpret the data more 

correctly than probabilities (Hoffrage et al, 2000). It is important to note, the users 

requirement to have no weather impact is only valid within potential areas of turbulence, 

not outside. In the second through fourth blocks, the user chooses his/her mission limiting 

turbulence intensity level (Figure 28), forecast hour (Figure 29a), and flight level (MSL) 

(Figure 29b).  
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After submitting all the inputs, the end result is the generation of three types of 

graphical products: calibrated  FP, maximum PE in FP and, a stop-light DI product. 

Ideally, the FP and the PE data should be overlaid, but Matlab is too limited. Showing all 

these products together furthers education and gives validity to the DI product. It helps 

the uneducated user understand the process behind the final DI product. The examples in  

Figure 30 thru Figure 32 uses mission threshold turbulence intensity of MDT, forecast 

hour of 24, flight level of 35,000 feet (MSL), and a RT=0.3 or 30%.  Instead of 

displaying FP for the chance of turbulence, the scale was reversed to show mission 

success chance due to turbulence for more operational relevance (i.e. probability of no 

impact from MDT turbulence), shown in Figure 30. 

To illustrate, points A, B, C in Figure 30-Figure 32 represent three different 

decision inputs. Point A represents 10% chance of mission success (90% FP) in Figure 

30. The worst case PE at this point is approximately 8% (Figure 31), so the maximum 

ambiguity interval is from 82-98%. The uncertainty interval for RT=30% (according to 

Figure 25) is + 4%. With RT interval of 26-34% < FP=82-98%, the DI for point A is 

unacceptable risk (red) shown in Figure 32. Point B represents an approximately 60% 

chance of mission success (40% FP). The worst case PE at this point is approximately 

12%, so the maximum ambiguity interval is from 28-52%. Since this interval overlaps the 

RT interval of 26-34% by 6%, point B is deemed inconclusive (amber). Point C 

represents a 90% chance of mission success (10% FP). The worst case PE at this point is 

approximately 7%, so the maximum ambiguity interval is 3-17%. With RT interval of 26-

34% > FP=3-17%, the DI for point C is acceptable risk (green) shown in Figure 32. 
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a)  

 
 

b)  

    

Figure 28. Prototype GUI: Drop down menu of a) generic risk tolerances b) mission 
limiting turbulence intensities 
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a)       

          
   b) 

      

Figure 29. Prototype GUI: a) Drop down menu of forecast hours b) Drop down menu 
of flight levels 
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Figure 30. EUCOM Mission Success Chance (FP calibrated) due to MDT turbulence 

for FH 24 of the January 30, 2008, 00Z run; valid January 31, 2008, 00Z 

 
 

 

 
Figure 31. EUCOM Worst Case Potential FP Error of MDT turbulence for FH 24 of 

the January 30, 2008, 00Z run; valid January 31, 2008, 00Z 
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Figure 32. EUCOM DI for RT: 0.3 of MDT turbulence for FH 24 of the January 30, 

2008, 00Z run; valid January 31, 2008, 00Z 
 
 

A
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IV. RESULTS 

A. EVOLUTION OF TAIJITU CURVES THROUGH TIME WITH 
INCREASING LEAD TIME 

Table 3 shows the mean and standard deviation results for all forecast hours for 

the distribution of the EF spread fractional error. The general reduction of mean in the EF 

spread is due to dispersion deficiencies in the GEFS. Early in the forecast period,          

FH 00 – 18, the magnitude of esµ was greater than one. At FH 24, the magnitude was 

approximately equal to one. Beyond FH 24, the magnitude of esµ  dropped below one.  

This trend is due to the ensemble compensating for its underdispersion. As stated in the 

previous chapter, GEFS is underdispersive because of limited sampling and lack internal 

model perturbations. To somewhat compensate for the underdispersion, GEFS over 

perturbs its initial conditions. The actual error growth exceeded the ensemble dispersion, 

so by FH 24, the magnitude of esµ  < 1. When compared to the true PDF, the ensemble 

PDF was too wide early in the forecast period, turning too narrow later in the forecast 

period. This reverse in of the calibration curve through the forecast period (Figure 33) 

was in response to the change in average ensemble error from >1 to <1 (driven by the 

downward trend of the ensemble spread errors). The calibration curve corrected the 

average error as explained in Chapter II. 

Note the additional downward trend of the values for the standard deviation of 

error in EF spread, esσ  (Table 3). As forecast lead-time increased, the ensemble members 

diverged toward the climatological or climatic variance, the maximum limit of the 

ensemble spread. The climatic variance is the variance of all naturally occurring states 

(Eckel, 2007). As the ensemble spread reached this maximum spread, all the members 

asymptoted to this limit. Hence, the standard deviation of the error in EF spread 

decreased. 
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Even though the standard deviation of the ensemble spread error esσ  generally 

decreased, the ambiguity intervals remained almost constant. Recall that emσ  is 

dependant only on ensemble size and is fixed at n/1  (where n=21 members) 

218.0≈ (Eckel, 2008). The nearly constant ambiguity bounds for each CI reveal that emσ  

dominated the random FP error in comparison to the contribution from decreasing esσ .  

 

Forecast Hour Mean of                  

Error in EF spread, esµ  

Standard Deviation of 

Error in EF Spread, esσ  

00 1.19 0.154 
06 1.28 0.179 
12 1.14 0.147 
18 1.12 0.131 
24 1.0077 0.125 
30 0.985 0.115 
36 0.921 0.112 
42 0.9102 0.0998 
48 0.862 0.1046 
54 0.857 0.098 
60 0.845 0.0755 
66 0.838 0.0788 
72 0.821 0.0774 
78 0.816 0.0818 
84 0.793 0.0859 

Table 3. Mean and standard deviation values for the EF spread fractional error 
distribution 
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Figure 33. a-o) Calibration and Ambiguity Curves through all forecast lead times, CI: 

90% 
 

a)  FH: 00 b)  FH: 06 

c)  FH: 12 d)  FH: 18 

e)  FH: 24 f)  FH: 30 
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Figure 33 continued. 
 
 
 

h)  FH: 42 

i)  FH: 48 

g)  FH: 36 

j)  FH: 54 

k)  FH: 60 l)  FH: 66 
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Figure 33 continued. 
 
 

B. ANALYSIS OF DECISION INPUT (DI) WITH ADDED UNCERTAINTY 
INFORMATION 

1. Simulated DI Product and Analysis Construction  

In order to show potential value added and highlight differences between current 

decision input (DI) products and research results (RSCH), the researcher constructed 

products focused only on the risk of MDT turbulence to simulate IWEDA and WRAP to 

compare with RSCH. The unfavorable (mission) threshold of MDT turbulence used for  

 

 

m)  FH: 72 n)  FH: 78 

o)  FH: 84 
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WRAP and IWEDA was TI > 5. The marginal threshold for IWEDA and WRAP was 

assumed to be half the magnitude between the MDT TI threshold and LGT TI threshold 

(=2), which equates to TI > 3.5.   

 To create a baseline deterministic product, all TI values in the control member > 5 

equated to a forecast of MDT turbulence. The product implies either zero or one hundred 

percent probability of turbulence (Figure 34). 

 
 

 
Figure 34. Deterministic MDT turbulence forecast using control member for the fall 

run, FH: 84, FL: 350 

 
 

To simulate IWEDA, the researcher applied the marginal and mission MDT 

turbulence thresholds to the control member’s TI. The researcher designated these 

specific values to each result in order to link them to the stop-light colors on the Matlab 

colorbar.  If the TI for the grid point exceeded the marginal or mission threshold, then the 

grid point was set to the value of 1.5 (colored amber) or 3.0 (colored red) respectively.  If 

neither of the thresholds are exceeded, the grid point was set to a value of zero (colored 

green). The green, amber, and red colors represent the decision inputs of acceptable risk, 

inconclusive, and unacceptable risk respectively (Table 4).  
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TI threshold  Color Value Color Assignment Decision Input 

< 3.5 0.0 Green   Acceptable Risk 

> 3.5 (marginal) 1.5 Amber Inconclusive 

> 5.0 (mission) 3.0 Red Unacceptable Risk 

 

Table 4. IWEDA Simulation: TI Thresholds and corresponding color values, color 
assignments, and DI 

 
 

To simulate WRAP, the researcher compared the FP of exceeding the IWEDA 

marginal and mission thresholds to a fixed RT to assign the color values. If the FP for 

exceeding the mission threshold is greater than the RT, then the grid point was set to 3.0 

(red). Otherwise, if the FP for exceeding the marginal threshold is greater than the RT, 

then the grid point was set to 1.5 (amber). Otherwise, the grid point was set to 0.0 (green) 

since neither FP exceeds the RT. See Table 5. 

 

 
FP vs RT  Color Value Color Assignment Decision Input 

FP ( of either threshold) 
< RT 

0.0 Green   Acceptable Risk 

Marginal FP > RT 1.5 Amber Inconclusive 

Mission FP > RT 3.0 Red Unacceptable Risk 

 

Table 5. WRAP Simulation: FP vs RT and corresponding color values, color 
assignments, and DI. 

 
 

To show differences between the IWEDA-like, WRAP-like, and RSCH derived 

DI products, these color values were subtracted in the following manner: IWEDA minus 

WRAP; WRAP minus RSCH. To illustrate, when the subtraction of WRAP from 

IWEDA yielded positive three, IWEDA forecasted red conditions and WRAP forecasted 

green conditions, translating to a high (pessimistic) decision input bias of IWEDA 

relative to WRAP. Conversely, when the subtraction yielded negative -1.5, this means 
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IWEDA forecasted green or amber conditions, and WRAP forecasted either yellow or red 

conditions respectively, which translated to IWEDA having a low (optimistic) decision 

input bias.  Grey shading means equal decision inputs. Table 6 displays the DI bias 

colorbar key for IWEDA minus WRAP DI and WRAP minus RSCH DI products. 

 

 

DECISION INPUT (DI) DIFFERENCE (BIAS) COLORBAR KEY:  

OPTIMISTIC BIAS ZERO BIAS PESSIMISTIC BIAS 

Dark Green 

(color value 

difference: -3) 

Green 

(color value 

difference: -1.5)

Gray 

(color value 

difference: 0) 

Red 

(color value 

difference: 1.5) 

Dark Red 

(color value 

difference: 3) 

IWEDA-WRAP 

OUTPUT: 

 

 

  

             - 

 

IWEDA-WRAP 

or 

WRAP-RSCH 

OUTPUT: 

 

- 

 

- 

 

IWEDA-WRAP 

or 

WRAP-RSCH 

OUTPUT: 

 

- 

 

- 

 

- 

IWEDA-WRAP 

or 

WRAP-RSCH 

OUTPUT: 

 

- 

 

- 

IWEDA-WRAP 

OUTPUT: 

 

 

 

- 

Table 6. DI Bias Colorbar Key. Note: WRAP and RSCH never differ by more than 
one DI category. 

 
Using the two cases of 0000 UTC, 2 October 2007 (fall) run and the 0000 UTC 

30 January 2008 (winter) run, the researcher examined MDT turbulence decision input 

differences using FH: 06 and 84 and RT: 0.1, 0.5, 0.9. The fall case results are discussed 

in this chapter; the winter case resultant plots are in Appendix B and C. 
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2. Simulated IWEDA versus Simulated WRAP 

IWEDA and WRAP use the same marginal and mission thresholds, but employ 

the thresholds through different methods to assume a DI.  IWEDA depends on a single 

forecast whereas WRAP incorporates 21 forecast and user’s risk tolerance information.  

The decision inputs are sometimes vastly different. 

a. Fall Case: FH 06 

To give a general comparison, the FP (stochastic) product conveys 

uncertainty information, while the deterministic product gives no uncertainty 

information. The deterministic chart implies one hundred percent chance of MDT 

turbulence inside the forecasted areas and zero percent chance outside the forecasted 

areas (Figure 35a). The FP product shows the spread amongst the ensemble’s members 

with respect to the event (Figure 35b).  

Area 1 (Figure 35) on the FP chart exhibited 40-60% probability of MDT 

turbulence, since some the members forecast TI > 5. The same region of area 1 in the 

deterministic forecast gave no hint to turbulence since the TI was below five in the 

control member. A user with a low risk tolerance needed the probability information to 

incorporate this into their mission planning. The potential loss for encountering moderate 

turbulence was much too high for a low risk tolerant user, so it is more beneficial if the 

user did not proceed with the mission.   

Conversely, when the deterministic product gives a 100% chance of 

moderate turbulence (as in area 2 of Figure 35), no user with a mission threshold of MDT 

turbulence can operate.  Using the FP product, the user can see the FP was not 100% but 

only 50-80%. Users with high risk tolerances are able to operate because they can afford 

the potential loss.   
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Figure 35.  Fall run, FH 06, FL 350 MSL. a) Deterministic MDT turbulence forecast 
b) Stochastic MDT turbulence forecast using FP 

 

The differences between the IWEDA and WRAP, with RT=0.5, are 

minimal (Figure 36). The forecast evolution is only six hours. The members of the 

a) 

b) 

1 

1 
2

2
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ensemble have not begun to spread widely at this point, so for the majority of the region, 

high certainty exist (many areas with zero or 100 percent probability). So, in a way, the 

stochastic forecast is acting like the deterministic forecast. Note, the same areas marking 

100% probability of turbulence in the deterministic product (Figure 35a) are the same 

areas deemed as unacceptable risk (red) in the IWEDA product (Figure 37). Similarly, 

the areas marking >50% probability of turbulence in stochastic product (Figure 35b) are 

the same areas deemed as red in the WRAP product (Figure 38).   

The IWEDA-WRAP DI difference plot is a mixture of optimistic and 

pessimistic biases (Figure 36).  The mixture is due to WRAP’s RT=0.5, designed to 

emulate a deterministic decision maker. The RT=0.5 forces the stochastic DI to act like a 

deterministic forecast where the recommendation is binary (go or no-go). As stated in the 

previous section, the risk is inconclusive (amber) for any FP for exceeding the marginal 

threshold > RT and unacceptable (red) for any FP exceeding the mission threshold > RT.  

 

 

 
Figure 36. Fall run, FH 06, FL 350 MSL. DI Bias: IWEDA minus WRAP chart. 

WRAP RT=0.5 

 

1
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In regions of area 1 (Figure 37), IWEDA forecasted green because the 

single TI solution < 3.5.  WRAP forecasted amber for the majority of area 1 because the 

FP for exceeding the marginal threshold > 0.5 (Figure 38).  

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 37. Fall run, FH 06, FL 350 MSL. Simulated IWEDA MDT turbulence DI 

 

Lowering the RT to 0.1 for WRAP changed the DI dramatically (Figure 

39). Because the user can not withstand much risk, (FP) > 0.1, many of the areas 

previously deemed acceptable or inconclusive were deemed unacceptable. Users with 

low risk tolerances can not afford to take large risks because potential losses are 

relatively too large, and the cost to protect is proportionally smaller. IWEDA DI 

remained the same.  With predominantly more red and amber regions in WRAP DI, the 

IWEDA DI bias was all optimistic (Figure 40).  Using IWEDA DI, a low risk tolerant 

user flying into area 1 was given a false sense of confidence that the mission will likely 

not be overcome by moderate turbulence in area 2 (Figure 37). WRAP revealed the 

mission can not afford to take the risk operating in area 2 in Figure 39. 

1 

2 3 
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Figure 38. Fall run, FH 06, FL 350 MSL. Simulated WRAP MDT turbulence DI with 
RT=0.5 

 
 

Increasing the RT to 0.9 for WRAP again changed the DI dramatically 

(Figure 41).  A user with a risk tolerance of 0.9 can withstand the large risk; their 

potential losses are relatively small, almost equal to their cost to protect. Many of the 

areas previously deemed risk unacceptable/inconclusive were deemed risk acceptable. 

With the predominantly more green regions forecasted for WRAP, the IWEDA DI bias 

was all pessimistic (Figure 42). Using the IWEDA DI, a high risk tolerant user expected 

major impacts in parts of the area 3 (Figure 37). Using the WRAP DI, most of area 3 

(Figure 41) is instead deemed inconclusive (amber) because of WRAP’s inclusion of FP 

and RT. 
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Figure 39. Fall run, FH 06, FL 350 MSL. Simulated WRAP MDT turbulence DI with 
RT=0.1 

 

 

Figure 40. Fall run, FH 06, FL 350 MSL. DI Bias: IWEDA minus WRAP chart. 
WRAP RT=0.1 
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Figure 41. Fall run, FH 06, FL 350 MSL. Simulated WRAP MDT turbulence DI with 
RT=0.9 

 

Figure 42. Fall run, FH 06, FL 350 MSL. DI Bias: IWEDA minus WRAP chart. 
WRAP RT=0.9 
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b. Fall Case: FH 84 

By 84 hours into the forecast period, the ensemble members spread out 

considerably, revealing considerably more uncertainty. The forecast conveyed by the 

stochastic product (Figure 43b) is vastly different from the deterministic (Figure 43a).  

 

 

 

 

Figure 43. Fall run, FH 84, FL 350 MSL. a) Deterministic MDT turbulence forecast 
b) Stochastic MDT turbulence forecast using FP 

a) 

b) 
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As time evolved in the forecast period, the differences between IWEDA 

and WRAP became larger (Figure 44). A two decision input bias exists in area 1 (Figure 

44). IWEDA DI deemed unacceptable risk (Figure 45) whereas WRAP DI deemed 

acceptable risk (Figure 46). Hence, a medium risk tolerant user was given a no-go 

recommendation from IWEDA, but using the stochastic tool WRAP, the user could still 

operate in area 1.     

In area 2, IWEDA forecasted green, but WRAP forecasted amber, a one 

decision input bias, shown by the optimistic bias (Figure 44). Using IWEDA, the medium 

risk tolerant user would be given a false sense of confidence that he/she can afford any 

possible impacts from MDT turbulence as opposed to using WRAP, which would 

communicate the possibility of intolerable impacts.  

 

 

 

Figure 44. Fall run, FH 84, FL 350 MSL. DI Bias: IWEDA minus WRAP chart. 
WRAP RT=0.5 
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Figure 45.  Fall run, FH 84, FL 350 MSL. Simulated IWEDA MDT turbulence DI 

 
 

 

 
 

Figure 46. Fall run, FH 84, FL 350 MSL. Simulated WRAP MDT turbulence DI with 
RT=0.5 

1

1

2

2

3 



 
 

 79

Similarly to FH 06, the IWEDA DI bias was all optimistic with WRAP’s 

RT=0.1, but the differences are more stark (Figure 48). IWEDA was green in area 3 

(Figure 45), while WRAP communicated unacceptable risk (red) according to the user’s 

RT for the same area (Figure 47). 

Using a stochastic stop-light DI tool in combination with the FP product 

can help the education process. To an uneducated user, the extent of unacceptable risk in  

Figure 47) infers an abundance of MDT or greater turbulence. This user 

can look at the FP and discover many areas of the FP are highly uncertain. Using the 

simple concept FP>RT, the user can understand the unacceptable risk areas.  

 
 
 

 

 

Figure 47. Fall run, FH 84, FL 350 MSL. Simulated WRAP MDT turbulence DI with 

RT=0.1 
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Figure 48.  Fall run, FH 84, FL 350 MSL. DI Bias: IWEDA minus WRAP chart. 

WRAP RT=0.1. 

 

Again, the DI for WRAP changes vastly when the RT=0.9.  According to 

the WRAP product, all users can operate across the entire AOR (Figure 49) while 

IWEDA communicates unacceptable risk across the northern portions of the AOR 

(Figure 45). IWEDA pessimistic bias is evident in these regions (Figure 50). Similar 

arguments from the preceding IWEDA-WRAP comparison apply to the winter case 

(Appendix B). 
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Figure 49. Fall run, FH 84, FL 350 MSL. Simulated WRAP MDT turbulence DI with 
RT=0.9 

 
 
 

 

Figure 50. Fall run, FH 84, FL 350 MSL. DI Bias: IWEDA minus WRAP chart. 
WRAP RT=0.9. 
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3. Simulated WRAP versus RSCH Results 

Since WRAP and the RSCH use the same RT and FP values, the maximum 

difference is only one decision input level. It is not possible for WRAP to forecast green 

and RSCH to forecast red and visa-versa.  Differences in DI stem from the handling of 

inconclusive (amber) regions, as described in the methodology. WRAP compares just the 

FP for exceeding the marginal threshold with the RT while the RSCH method considers 

the uncertainty of FP (ambiguity) and RT by comparing FP and RT confidence intervals 

to determine the decision input. To aid in comparing WRAP and RSCH results, the worst 

case potential error in FP is plotted, which is a way to communicate ambiguity. The 

default CI is 90%.   

a. Fall Case: FH 06 

The forecast evolution is only six hours; low uncertainty still exists. When 

compared to the FP product (Figure 51a), worst case potential error (PE) areas (Figure 

51b) are restricted to the sharp gradients separating the zero and 100% probability. Recall 

that PE decreases toward zero and as FP nears extremes (zero and 100 percent), so there 

is little to no ambiguity over much of the AOR. The most PE (%) is found in the 40-60 

where uncertainty is at its maximum. For example, point A has FP of 50% where the PE 

is 14%.  Hence, the CI for FP at this point can range 36-64%.   
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Figure 51. Fall run, FH 06, FL 350 MSL. a) FP of MDT turbulence  b) Maximum 
(Worst Case) Potential Error for FP of MDT turbulence 
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The case in Figure 52 displays how the ambiguity and RT intervals used in 

RSCH can alter the decision input to the user.  In area 1, WRAP forecasted green (Figure 

53a), but RSCH forecasted amber (Figure 53b).  Using WRAP DI, a user would appear to 

have affordable impacts from MDT turbulence in area 2, but using the RSCH, the DI is 

inconclusive.  

 
 
 
 
 

 

Figure 52. Fall, FH 06, FL 350 MSL, RT=0.1. DI Bias: WRAP minus RSCH chart.  
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Figure 53. Fall run, FH 06, FL 350 MSL, RT=0.1 a) Simulated WRAP MDT 
turbulence DI b) RSCH derived MDT turbulence DI 
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In the case displayed in Figure 54, many of the differences (i.e. areas 1 

and 2) occur because WRAP deemed areas inconclusive (Figure 55a) while RSCH 

deemed the same areas acceptable risk (Figure 55b). The RT=0.5, so areas greater than 

50% risk of exceeding the marginal thresholds for the WRAP product are deemed 

inconclusive.  

 

 

Figure 54.  Fall, FH 06, FL 350 MSL, RT=0.5. DI Bias: WRAP minus RSCH chart. 

 

1 
2 



 
 

 87

 

 

 

Figure 55.  Fall run, FH 06, FL 350 MSL, RT=0.5 a) Simulated WRAP MDT 
turbulence DI  b) RSCH derived MDT turbulence DI 
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If RSCH RT uncertainty interval and/or the ambiguity CI was higher, then 

areas 1-3 may be deemed inconclusive as well. The differences described may be a direct 

consequence of the assumed RT uncertainty interval and ambiguity CI.  Further research 

is needed in the realm of decision science to objectively determined and test the RT 

interval. To explore the extent of the affect of higher ambiguity CIs on the WRAP bias, 

the researcher plotted the RSCH DI and DI Bias plots using CI=0.95 and 0.99 (Figure 

56). The extent of amber regions in areas 1-3 increased slightly by incorporating the 

higher CI (Figure 56a,c), but the majority of pessimistic bias still exists (Figure 56b,d).  

 

 

  
     

 
      

Figure 56. Fall, FH 06, FL 350 MSL, RT=0.5. CI=0.95: a) RSCH DI b) DI Bias: 
WRAP minus RSCH chart; CI=0.99: c) RSCH DI d) DI Bias: WRAP minus RSCH chart. 

1 
2 

1 2 1 2 

1 
2 

a) CI=0-.95 b) CI=0-.95 

c) CI=0-.99 d) CI=0-.99 
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In the past three cases, WRAP DI has consistently shown a pessimistic 

bias trend toward the RSCH DI. To explain, only three combinations of DI can constitute 

WRAP-RSCH biases (since WRAP and RSCH can only differ by one DI). The first two 

combinations comprise the “type-one differences,” which arise from the inclusion of 

ambiguity and RT uncertainty intervals in the RSCH DI.  WRAP forecasted red (or 

green), but RSCH forecasted amber.  The last combination of DI comprises the “type-two 

difference,” which arise from the use of WRAP marginal threshold. WRAP forecasted 

amber, but RSCH forecasted green. Biases such as area 1 in Figure 57 and areas 1 and 2 

highlighted in Figure 54 are examples of the type-two difference.  

The DI combination, WRAP =amber and RSCH = red, for the type-two 

difference is not possible. For example, if the RT=0.3, the FP of TI=3.5 (marginal 

threshold) must exceed 30% in order for WRAP to forecast amber. If the FP for 

exceeding the marginal threshold is greater than 30%, then the FP for exceeding the 

mission threshold must be less than 30%.  Since, the RSCH DI uses the same mission 

threshold, the worst possible decision input is amber, not red.  

The type-one difference has both an optimistic and pessimistic bias 

combination. Since it is not possible for WRAP=amber and RSCH=red, the type-two 

difference only has a pessimistic bias combination. Hence, the WRAP DI has an overall 

pessimistic bias towards the RSCH DI. If the marginal threshold was slighter higher, say 

4.0 instead of 3.5, the probability of exceeding the marginal threshold would decrease 

and pessimistic bias would not be so prevalent.  Consequently, if WRAP used no 

marginal threshold, the amount of optimistic and pessimistic biases should be almost 

equal, because the differences would be driven purely by the type-one differences. 

Therefore, by not considering the uncertainty of the FP and RT and using a marginal 

threshold, WRAP may have shifted the DI to a degree worse than it might actually be. 

Users may be unnecessarily protecting and/or hesitating when only portion of uncertainty 

information is included into the DI. 
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Figure 57. Fall, FH 06, FL 350 MSL, RT=0.9. DI Bias: WRAP minus RSCH chart. 

 
 

b. Fall Case: FH 84 

Much uncertainty evolved as time progressed to FH 84, reflected by the 

larger areas of FP 40-60% (Figure 58a) and the dense areas of high PE (Figure 58b). In 

response, the RSCH DI calculated more areas of amber and larger areas of difference 

between WRAP and RSCH DI exist. 

The RT=0.1 case in Figure 59 is an example to WRAP’s type-one 

difference. In area 1, the FP is 10-20%. According to WRAP, the DI is unacceptable risk 

Figure 60a). The maximum PE in area 1 is 8% which makes the ambiguity interval 2-

18%. The RT uncertainty interval is 8.3-11.7%. Since these two intervals overlap, the 

RSCH DI deemed the area inconclusive (Figure 60b).  
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Figure 58. Fall run, FH 84, FL 350 MSL. a) FP of MDT turbulence b) Maximum 
(Worst Case) Potential Error for FP of MDT turbulence 
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Figure 59. Fall, FH 84, FL 350 MSL, RT=0.1. DI Bias: WRAP minus RSCH chart. 

 

 

 
Figure 60. Fall run, FH 84, FL 350 MSL, RT=0.1 a) Simulated WRAP MDT 

turbulence DI  b) RSCH derived MDT turbulence DI 
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Figure 60 continued. 

 
 

The case in Figure 61 is a rare balance of optimistic and pessimistic biases 

because the majority of the differences are type-one differences. In area 1, the maximum 

FP for MDT turbulence in area 1 is 60%, which WRAP deemed as unacceptable risk. The 

overlap of the ambiguity intervals (48-72%) the RT uncertainty intervals (45-55%) make 

the RSCH DI inconclusive. In this instance, WRAP may have shut down operations 

unnecessarily.  In area 2, the maximum FP for MDT is just below 50%, hence WRAP 

deemed the area acceptable risk. The overlap of the ambiguity intervals (35-63) with the 

RT uncertainty intervals make the RSCH DI inconclusive once again. In this instance, 

WRAP may have left the user vulnerable to a possible threat because the DI is too close 

to call.  
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Figure 61. Fall, FH 84, FL 350 MSL, RT=0.5. DI Bias: WRAP minus RSCH chart. 

 
 

Minimal differences exists between the WRAP and RSCH DI products in 

the case displayed in Figure 64. The shape of positive definite PDF drives this difference. 

In this highly uncertain situation, the positive definite TI PDF is spread out (for example, 

Figure 62). From Figure 62, with RT=0.9 and FP for exceeding the marginal 

threshold=90.5%, WRAP forecasts amber. RSCH, with its overlapping ambiguity and RT 

uncertainty intervals, also forecasts amber.  

 

 

 

 

 

 

Figure 62. Positive Definite TI PDF with high probability of high TI 
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So the majority of the DI for both WRAP and RSCH are equal. Little 

value is added by incorporating ambiguity and RT uncertainty information when the 

forecast has high uncertainty and the RT is also high. In the case associated with Figure 

59, the majority of the biases are in areas of FP ranging from 10-30%.  The FP for 

mission threshold > RT, so WRAP forecasted red. The overlapping intervals for RSCH 

cause the DI=amber (Figure 63). The differences are much more prevalent at the low RT. 

Hence, in highly uncertainty weather situations, users with low RT such as those 

accomplishing training would benefit more using the RSCH DI than users with a high 

RT, such as those accomplishing mission critical operations. Similar arguments from the 

preceding WRAP-RSCH comparison apply to the winter case (Appendix C). 

 

 

 

 

 

 

 

 

Figure 63. Positive Definite TI PDF with high probability of low TI 
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Figure 64. Fall, FH 84, FL 350 MSL, RT=0.9. DI Bias: WRAP minus RSCH chart. 
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V. CONCLUSIONS  

A. FINAL REMARKS 

The three main objectives of the thesis were to: 1) furnish a process to account for 

uncertainty in both the ensemble data and user risk tolerance for the decision input, 2) 

create an effective visualization to for varying levels of risk intolerance, mission 

thresholds for turbulence, flight levels, and forecast hours that is educational and practical 

for the user 3) demonstrate potential value added to the user when using the research 

derived decision input product through a comparison of current decision input products.  

Chapter II described the background to atmospheric prediction, ensemble 

forecasting (including the ambiguity), weather risk management, and the 

calculation/communication of forecast uncertainty (from today’s decision input tools). 

Using the background as a foundation, Chapter III laid out a three part process to 

calculate and produce visualization products for calibrated forecast probability, worst 

case potential error, and the optimized decision input. Through the Taijitu method, the 

forecast probability was calibrated and the worst case potential error was calculated. The 

decision input used objective estimates of the ambiguity intervals and subjective 

estimates of the risk tolerance uncertainty intervals. A prototype GUI was constructed so 

a non-educated user can easily access these products according to his/her unique RT, 

mission threshold of turbulence, flight level, and forecast hour. Chapter IV fulfilled the 

last objective with two cases which compared current decision input products with the 

research results using scenarios of different risk tolerances and forecast hours. 

Using the ninety percent confidence interval for ambiguity communicated a large 

amount of inconclusiveness but still yielded definitive decision inputs.  The maximum 

bounds for the ambiguity increased with increased CIs, but remained nearly constant 

through the forecast period, since the constant error variance of the ensemble mean 

appears to have dominated the ambiguity. As forecast period evolved, the average error 

in the ensemble spread varied due to weak ensemble dispersion and excessive initial 
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conditions perturbations. In response, the calibration curve reversed due to the change in 

average ensemble spread error from >1 to <1. Incorporating uncertainty of FP and RT 

into the DI process can often alter the decision input. The differences between of the 

different decision tools show potential value added to the user when FP and RT 

uncertainty information is incorporated.  

The differences shown in the comparisons of the current decision tools showed 

potential value added to the decision making process when increasing degrees of 

uncertainty information is included into the DI. IWEDA is a generic decision aid made to 

give DI to all users with one product but is limited by using only one forecast solution 

and does not consider RT. WRAP’s inclusion of stochastic weather information and RT 

generates a unique DI which can benefit user in the long term by minimizing their 

expenses. The results confirmed the IWEDA DI bias is highly dependant on RT and 

degree of uncertainty. WRAP DI changes with different RT inputs. Increasing the RT 

gave more acceptable risk DIs because of the users ability to afford potential loss (high 

C/L) and decreasing the RT gave more unacceptable risk because of the user inability to 

afford the potential loss (low C/L). Compared with WRAP using a low (high) RT, 

IWEDA (the deterministic DI), had an optimistic (pessimistic) bias. As the forecast 

evolution progresses, the uncertainty increased and the areas of bias grew.  

By comparing the error bars of FP and RT to create the DI, the RSCH product 

sometimes shifted the DI from WRAP.  Overall, WRAP had a pessimistic bias relative to 

the RSCH DI. Only three combinations of DI can constitute WRAP-RSCH differences 

(since WRAP and RSCH can only differ by one DI). The first two combinations 

comprise the “type-one differences,” which arise from the inclusion of ambiguity and RT 

uncertainty intervals in the RSCH DI.  Type-one differences consist of both pessimistic 

and optimistic differences. The last combination of DI comprises the “type-two 

difference,” which arise from the use of WRAP marginal threshold. Type-two difference 

consists of only a pessimistic difference. The DI combination, WRAP = amber and 

RSCH = red, for the type-two difference is not possible due to WRAP’s marginal 

threshold. Therefore, an imbalance of pessimistic bias occurred. Increasing the CI for the 

ambiguity intervals only decreased WRAPs pessimistic bias slightly. Therefore, by not 
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considering the uncertainty of the FP and RT and using a marginal threshold, WRAP may 

have shifted the DI to a degree worse than it might actually be, preventing users from 

taking action.  If the differences between WRAP and RSCH were only due to type-one 

differences, then there would be no overall bias. 

WRAP-RSCH differences were few early in the forecast period because of the 

low uncertainty. As uncertainty increased, so did the ambiguity. The DI differences grew 

in spatial coverage because of the differences in calculating the inconclusive (amber) 

regions. In high uncertainty situations, the RSCH methods are potentially valuable in the 

low to middle RT range (i.e. training and some operational mission) but not high RT 

range (i.e. mission critical operations) due to the shape of the TI PDF.  

The study explored an evolution of forecast honesty: from a deterministic DI that 

communicates no forecast uncertainty to a stochastic DI that considers forecast 

uncertainty (FP) and RT to another stochastic DI that considers uncertainty of both FP 

and RT. The differences in DI can affect the users’ actions. The optimized decision input 

derived from this research incorporates a complete portrait of uncertainty so that the war-

fighter can make the most cost effective decision. The inconclusive (amber) DI gives the 

decision maker the option to go/not-go based on other decision factors that may not be 

quantifiable like morale, importance of mission, and personnel safety. The research has 

demonstrated effective communication and integration of optimized decision input into 

the decision making process. Procedures and results of research can serve as an example 

to further education and development of stochastic methods in the Air Force and 

Department of Defense to help improve combat capability. 

B. FURTHER RESEARCH AND RECOMMENDATIONS 

1. Further Research 

Although the Taijitu method introduced in this research uses sound mathematical 

and statistical methods, a study to verify and validate the method is needed.  

Additionally, decision science research needs to be accomplished to determine an 

objective RT uncertainty interval for military operations. Verification of the ensemble 

data was done for one season, but needs to be done for all four seasons in order to 
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accurately reflect the breadth of error in the ensemble mean and. To ascertain how the 

level of understanding of DI product attributes enhance or diminish the usability of the 

visualization, an objective process should be devised to solicit feedback from various 

operational users such as pilots. To quantify combat capability improvement, a robust 

case study using an operational units’ data should be accomplished.   

2. Recommendations 

 
Results show potential value added if current DoD decision aid products include 

ambiguity and RT uncertainty. In order to help the transition to the stochastic mindset, 

user-friendly products need to made available so that user can easily integrate the 

information into the decision making process.  A possible method is an online GUI 

capability made available at the strategic level, so regional weather centers (Operational 

Weather Squadrons) and individual weather units (Combat Weather Teams) can access 

the stochastic weather information and calculate DI for their user. The resultant GUI 

product could be a three panel plot showing the calibrated FP, worst-case potential error, 

and stop-light decision input for one weather parameter. To show multiple parameters, a 

decision input matrix could be constructed according to the unit’s requirements. The 

matrix would include the mission thresholds, RT for each threshold, FP of exceeding the 

threshold, and the DI. The highest (worst-case) recommendation will be the single input, 

overall recommendation for the mission (Table 7). The mission DI matrix could easily be 

formulated automatically from machine-to-machine inputs. 
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Mission Decision Input (DI) Matrix  

Mission Threshold SVR 
Turbulence 

MDT 
Rime 
Icing 

15 knots 
Crosswinds 

1 Statue Mile 
Visibility 

Risk Tolerance/ 
Uncertainty Interval 

10%   
+ 1.7% 

 
30%   
+ 4% 

 

 
20%   
+ 3% 

 

 
40%  

+ 4.5% 
 

Risk (FP)/ 
Ambiguity Interval 

 

0%  
+ 0% 

5%  
+ 0.5% 

28%  
+ 3% 

35%  
+ 4% 

DI Acceptable 
Risk 

Acceptable 
Risk 

Unacceptable 
Risk Inconclusive 

Overall Mission DI/ 
Recommendation    Unacceptable 

Risk / No-go 

Table 7.  Prototype Mission Decision Input Matrix 
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APPENDIX A:  RESEARCH DI WITH DIFFERENT CI OF 
AMBIGUITY 

 
 

 

 

Figure 65.   (a-e) RSCH DI for MDT turbulence using a range of CIs; fall run, FH 24, 
FL 350 (MSL), RT=0.5 

e) 99% CI 

c) 90% CI d) 95% CI 

a) 70% CI b) 80% CI 



 
 

 104

 

 

 

Figure 66. (a-e) RSCH DI for MDT turbulence using a range of CIs; fall run, FH 48, 
FL 350 (MSL), RT=0.5 

 

 

 

 

a) 70% CI b) 80% CI 

c) 90% CI d) 95% CI 

e) 99% CI 
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Figure 67. (a-e) RSCH DI for MDT turbulence using a range of CIs; fall run, FH 84, 
FL 350 (MSL), RT=0.5 

 

 

 

 

a) 70% CI b) 80% CI 

c) 90% CI d) 95% CI 

e) 99% CI 



 
 

 106

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 



 
 

 107

APPENDIX B:  WINTER CASE: SIMULATED IWEDA VERSUS 
SIMULATED WRAP 

The following are figures from the simulated IWEDA and WRAP comparisons of 

January 30, 2008, 00Z (winter) run. For reasoning, see similar cases in Chapter III, 

section B.2. 

A. FORECAST HOUR: 06 

 

 

Figure 68.  Winter run, FH 06, FL 350 MSL. a) Deterministic MDT turbulence 
forecast b) Stochastic MDT turbulence forecast using FP 

a) 

b) 



 
 

 108

 

 

 

Figure 69. Winter run, FH 06, FL 350 MSL. a) Simulated IWEDA MDT turbulence 
DI b) Simulated WRAP MDT turbulence DI with RT=0.5 

 
 

a) 

b) 
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Figure 70. Winter run, FH 06, FL 350 MSL. DI Bias: IWEDA minus WRAP chart. 
WRAP RT=0.5. 
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Figure 71. Winter run, FH 06, FL 350 MSL. a) Simulated IWEDA MDT turbulence 
DI b) Simulated WRAP MDT turbulence DI with RT=0.1 

 
 
 

a) 

b) 
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Figure 72. Winter run, FH 06, FL 350 MSL. DI Bias: IWEDA minus WRAP chart. 
WRAP RT=0.1. 
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\Figure 73. Winter run, FH 06, FL 350 MSL. a) Simulated IWEDA MDT turbulence 
DI b) Simulated WRAP MDT turbulence DI with RT=0.9 

a) 

b) 
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Figure 74. Winter run, FH 06, FL 350 MSL. DI Bias: IWEDA minus WRAP chart. 
WRAP RT=0.9. 
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B. FORECAST HOUR: 84 

 

 

Figure 75. Winter run, FH 84, FL 350 MSL. a) Deterministic MDT turbulence 
forecast b) Stochastic MDT turbulence forecast using FP 

 

a) 

b) 
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Figure 76. Winter run, FH 84, FL 350 MSL. a) Simulated IWEDA MDT turbulence 
DI b) Simulated WRAP MDT turbulence DI with RT=0.5 

 
 
 
 
 
 

a) 

b) 
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Figure 77. Winter run, FH 84, FL 350 MSL. DI Bias: IWEDA minus WRAP chart. 
WRAP RT=0.5. 
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Figure 78. Winter run, FH 84, FL 350 MSL. a) Simulated IWEDA MDT turbulence 
DI b) Simulated WRAP MDT turbulence DI with RT=0.1 

 

 

a) 

b) 
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Figure 79. Winter run, FH 84, FL 350 MSL. DI Bias: IWEDA minus WRAP chart. 
WRAP RT=0.1. 
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Figure 80. Winter run, FH 84, FL 350 MSL. a) Simulated IWEDA MDT turbulence 
DI b) Simulated WRAP MDT turbulence DI with RT=0.9 

 

 

a) 

b) 
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Figure 81. Winter run, FH 84, FL 350 MSL. DI Bias: IWEDA minus WRAP chart. 
WRAP RT=0.9. 
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APPENDIX C:  WINTER CASE: SIMULATED WRAP VERSUS 
RSCH RESULTS 

The following are figures from the simulated WRAP and research results (RSCH) 

comparisons of January 30, 2008, 00Z (winter) run. For reasoning, see similar cases in 

Chapter III, section B.3. 

A. FORECAST HOUR: 06 

 

 
Figure 82. Winter run, FH 06, FL 350 MSL. a) FP of MDT turbulence b) Maximum 

(Worst Case) Potential Error for FP of MDT turbulence 

a) 

b) 
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Figure 83. Winter run, FH 06, FL 350 MSL, RT=0.1 a) Simulated WRAP MDT 

turbulence DI  b) RSCH derived MDT turbulence DI 

 
 
 

a) 

b) 
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Figure 84. Winter run, FH 06, FL 350 MSL, RT=0.1. DI Bias: WRAP minus RSCH 
chart. 
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Figure 85. Winter run, FH 06, FL 350 MSL, RT=0.5 a) Simulated WRAP MDT 
turbulence DI  b) RSCH derived MDT turbulence DI 

a) 

b) 
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Figure 86. Winter run, FH 06, FL 350 MSL, RT=0.5. DI Bias: WRAP minus RSCH 
chart. 
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Figure 87. Winter run, FH 06, FL 350 MSL, RT=0.9 a) Simulated WRAP MDT 
turbulence DI  b) RSCH derived MDT turbulence DI 

a) 

b) 
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Figure 88. Winter run, FH 06, FL 350 MSL, RT=0.9. DI Bias: WRAP minus RSCH 

chart. 
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B. FORECAST HOUR: 84 

 

 
Figure 89. Winter run, FH 84, FL 350 MSL. a) FP of MDT turbulence b) Maximum 

(Worst Case) Potential Error for FP of MDT turbulence 

 

b) 

a) 
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Figure 90. Winter run, FH 84, FL 350 MSL, RT=0.1 a) Simulated WRAP MDT 
turbulence DI  b) RSCH derived MDT turbulence DI 

 
 

a) 

b) 
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Figure 91.  Winter run, FH 84, FL 350 MSL, RT=0.1. DI Bias: WRAP minus RSCH 
chart. 
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Figure 92. Winter run, FH 84, FL 350 MSL, RT=0.5 a) Simulated WRAP MDT 
turbulence DI  b) RSCH derived MDT turbulence DI 

 

a) 

b) 
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Figure 93. Winter run, FH 84, FL 350 MSL, RT=0.5. DI Bias: WRAP minus RSCH 

chart. 
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Figure 94. Winter run, FH 84, FL 350 MSL, RT=0.9 a) Simulated WRAP MDT 
turbulence DI  b) RSCH derived MDT turbulence DI 

 
 
 
 

a) 

b) 
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Figure 95. Winter run, FH 84, FL 350 MSL, RT=0.9. DI Bias: WRAP minus RSCH 

chart. 
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