
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2008-12

Efficient implementation of filtering and resampling

operations on Field Programmable Gate Arrays

(FPGAs) for Software Defined Radio (SDR)

Giannoulis, Georgios

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/3847

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36697571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 
NAVAL 

POSTGRADUATE 
SCHOOL 

 
MONTEREY, CALIFORNIA 

 

 
 

THESIS 
 

Approved for public release; distribution is unlimited 

EFFICIENT IMPLEMENTATION OF FILTERING AND 
RESAMPLING OPERATIONS ON FIELD 

PROGRAMMABLE GATE ARRAYS (FPGAs) FOR 
SOFTWARE DEFINED RADIO (SDR) 

 
by 
 

Georgios Giannoulis 
 

December 2008 
 

 Thesis Advisor:   Roberto Cristi 
 Thesis Co-advisor: Craig W. Rasmussen 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
December 2008 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE  Efficient Implementation of Filtering and Resampling 
Operations on Field Programmable Gate Arrays (FPGAs) for Software Defined 
Radio (SDR). 
6. AUTHOR(S)  Georgios Giannoulis 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official policy 
or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words)  
In Software Defined Radios a good portion (or even the entirety) of the modulation and demodulation 

processes is performed in the digital domain. The data rate of the transmitted information is very important, since 
efficiency is a key requirement in real time implementations and cost increases considerably with the number of 
samples per second to be processed. In this thesis, we address the problem of efficient design of the resampling 
operations, so that they can be implemented on Field Programmable Gate Arrays (FPGAs).  

A set of filtering and resampling operations is developed in the Simulink environment through 
Xilinx/Simulink blocksets, where all the included subsystems of the design are fully accessible by the designer in any 
stage of operation. The key ingredient is the use of a Multiplier and Accumulator (MAC) architecture, which can be 
either time multiplexed for maximum hardware efficiency, or run on a parallel structure for maximum time efficiency. 
 

15. NUMBER OF 
PAGES  

79 

14. SUBJECT TERMS Digital Signal Processing, Software Defined Radio, Field Programmable Gate 
Array, Resampling, Filtering, Xilinx, System Generator. 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98) 
 Prescribed by ANSI Std. Z39.18 



 ii

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release; distribution is unlimited 
 
 

EFFICIENT IMPLEMENTATION OF FILTERING AND RESAMPLING 
OPERATIONS ON FIELD PROGRAMMABLE GATE ARRAYS (FPGAs) FOR 

SOFTWARE DEFINED RADIO (SDR) 
  

Georgios Giannoulis 
Lieutenant, Hellenic Navy 

B.S., Hellenic Naval Academy, 1997 
 

Submitted in partial fulfillment of the 
requirements for the degrees of 

 
 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING  
and 

MASTER OF SCIENCE IN APPLIED MATHEMATICS 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
December 2008 

 
 

Author:  Georgios Giannoulis 
 
 

Approved by:  Roberto Cristi 
Thesis Advisor 

 
 

Craig W. Rasmussen 
Thesis Co-Advisor  

 
 

Jeffrey Knorr 
Chairman, Department of Electrical and Computer Engineering 

 
 

Carlos F. Borges 
Chairman, Department of Applied Mathematics 



 iv

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 

In Software Defined Radios a good portion (or even the entirety) of the 

modulation and demodulation processes is performed in the digital domain. The data rate 

of the transmitted information is very important, since efficiency is a key requirement in 

real time implementations and cost increases considerably with the number of samples 

per second to be processed. In this thesis, we address the problem of efficient design of 

the resampling operations, so that they can be implemented on Field Programmable Gate 

Arrays (FPGAs).  

A set of filtering and resampling operations is developed in the Simulink 

environment through Xilinx/Simulink blocksets, where all the included subsystems of the 

design are fully accessible by the designer in any stage of operation. The key ingredient is 

the use of a Multiplier and Accumulator (MAC) architecture, which can be either time 

multiplexed for maximum hardware efficiency, or run on a parallel structure for 

maximum time efficiency.  



 vi

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii

TABLE OF CONTENTS 

I. INTRODUCTION........................................................................................................1 
A. BACKROUND .................................................................................................1 

1. FPGA for Digital Signal Processing ...................................................1 
2. Design Enviroment...............................................................................3 

B. OBJECTIVE ....................................................................................................4 
1. Efficient Use of the Dual Port Ram and DSP48 Xilinx Blocks ........5 

C. RELATED WORK ..........................................................................................8 

II. FINITE IMPULSE RESPONSE FILTER WITH ONE MAC (MULTIPLIER 
ACCUMULATOR)......................................................................................................9 
A. THEORETICAL PERSPECTIVE.................................................................9 
B. SOFTWARE IMPLEMENTATION ...........................................................10 

1. Control Logic for Data and Filter Coefficients ...............................11 
2. Alignment of Data and Filter Coefficients in the Dual Port 

Ram .....................................................................................................14 
3. Sequential Multiplication and Accumulation (MAC) of Data 

and Filter Coefficients using DSP48.................................................15 
C. RESULTS .......................................................................................................17 

III. DECIMATION BY AN INTEGER FACTOR........................................................21 
A. THEORETICAL PERSPECTIVE...............................................................21 

1 Sampling Continuous Time Signals .................................................21 
2. Analysis of Downsampling (Decimation) .........................................22 
3. Efficient Implementation of Decimation Operation using Noble 

Identities and Filter’s Polyphase Decomposition............................25 
B. DECIMATION BY TWO WITH FIR MAC AND POLYPHASE 

DECOMPOSITION.......................................................................................26 
1. Software Implementation..................................................................27 

a. Control Logic for Data and Filter Coefficients .....................29 
b. Sequential Multiplication and Accumulation (MAC) of 

Data and Filter Coefficients using the DSP48 ......................32 
c. Results......................................................................................34 

C. DECIMATION BY AN INTEGER FACTOR ‘D’ WITH FIR MAC 
AND POLYPHASE DECOMPOSITION....................................................36 

IV. INTERPOLATION BY AN INTEGER FACTOR.................................................41 
A. THEORETICAL PERSPECTIVE...............................................................41 

1. Analysis of Upsampling (Interpolation)...........................................41 
2. Efficient Implementation of Interpolation Operation using 

Noble Identities and Filter’s Polyphase Decomposition.................43 
B. INTERPOLATION BY TWO WITH FIR MAC AND POLYPHASE 

DECOMPOSITION.......................................................................................45 
1. Software Implementation..................................................................45 

a. Control Logic for Data and Filter Coefficients .....................47 



 viii

b. Sequential Multiplication and Accumulation (MAC) of 
Data and Filter Coefficients using DSP48.............................50 

c. Results......................................................................................52 
C. INTERPOLATION BY AN INTEGER FACTOR ‘D’ WITH FIR 

MAC AND POLYPHASE DECOMPOSITION.........................................53 

V. CONCLUSIONS ........................................................................................................59 
A. SUMMARY OF THE WORK ......................................................................59 
B. SUGGESTION FOR FUTURE WORK ......................................................60 

LIST OF REFERENCES......................................................................................................61 

INITIAL DISTRIBUTION LIST .........................................................................................63 

 
  



 ix

LIST OF FIGURES 

Figure 1. Actual view of FPGA VIRTEX 4 (From: [4])...................................................2 
Figure 2. Physical view of FPGA VIRTEX-4 (From: [2])................................................2 
Figure 3. Simulink environment using Xilinx...................................................................3 
Figure 4. Basic Structure of Simulation. ...........................................................................4 
Figure 5. Dual Port Ram Xilinx Block..............................................................................5 
Figure 6. DSP48 Slice (From: [6]). ...................................................................................7 
Figure 7. DSP48 Xilinx Block. .........................................................................................7 
Figure 8. Discrete Convolution. ........................................................................................9 
Figure 9. Finite Impulse Response Filter with One MAC. .............................................11 
Figure 10. Controller. ........................................................................................................13 
Figure 11. Time Representation of Simulation. ................................................................14 
Figure 12. Outcome of Dual Port Ram..............................................................................15 
Figure 13. Outcome of DSP48. .........................................................................................16 
Figure 14. Frequency Spectrum of the Original and Filtered Signal (Sinusoidal Case). ..18 
Figure 15. Frequency Spectrum of the Original and Filtered Signal (Gaussian White 

Noise Case). .....................................................................................................19 
Figure 16. Sampling Continuous Time Signals.................................................................22 
Figure 17. Downsampling Operation. ...............................................................................23 
Figure 18. Aliasing Effect in Frequency Spectrum...........................................................24 
Figure 19. Filtering and Downsampling a Discrete Signal. ..............................................25 
Figure 20. Efficient Implementation of Decimation. ........................................................26 
Figure 21. Downsampling by Two....................................................................................28 
Figure 22. Controller. ........................................................................................................30 
Figure 23. Time Representation of Simulation. ................................................................31 
Figure 24. Outcome of Dual Port Ram..............................................................................32 
Figure 25. Outcome of DSP48. .........................................................................................33 
Figure 26. Frequency Spectrum of the Original and Downsampled by Two Signal 

without Aliasing Effect. ...................................................................................35 
Figure 27. Frequency Spectrum of the Original and Downsampled by Two Signal 

with Aliasing Effect. ........................................................................................36 
Figure 28. Timing Diagram for Decimation by D.............................................................38 
Figure 29. Frequency Spectrum of the Original and Downsampled by 4D =  Signal. ....40 
Figure 30. Upsampling Operation. ....................................................................................41 
Figure 31. ‘Ghost’ Frequencies in Interpolation Operation. .............................................42 
Figure 32. Upsampling and Filtering with LPF. ...............................................................43 
Figure 33. Efficient Implementation of Interpolation. ......................................................44 
Figure 34. Upsampling by Two.........................................................................................46 
Figure 35. Controller. ........................................................................................................48 
Figure 36. Time Representation of Simulation. ................................................................49 
Figure 37. Outcome of Dual Port Ram..............................................................................50 
Figure 38. Outcome of DSP48. .........................................................................................51 
Figure 39. Frequency Spectrum of the Original and Upsampled by Two Signal. ............53 



 x

Figure 40. Timing Diagram for Interpolation by D...........................................................55 
Figure 41. Frequency Spectrum of the Original and Upsampled by 4D =  Signal. .........57 

 
 



 xi

EXECUTIVE SUMMARY 

In Software Defined Radios (SDR) a good portion (or even the entirety) of the 

modulation and demodulation process is performed in the digital domain. The 

reconfigurability and the versatility of the SDR can be efficiently supported by the Field 

Programmable Gate Arrays (FPGAs) for hardware implementations. 

FPGAs are high performance integrated circuits suitable for many Digital Signal 

Processing (DSP) applications with the feature of being reprogrammable by the designer. 

In this way, the system can be easily reconfigured to a number of different applications. 

The proper software needed to program an FPGA is provided by System 

Generator (Sysgen), which is an FPGA design program responsible for driving the FPGA 

through the high-level design environment of Simulink. A combination of common and 

synthesized Simulink/Xilinx blocks from the Simulink library along with MATLAB 

codes have been used in order to construct a configurable scheme capable of 

implementing the following three operations: 

a) Finite Impulse Response (FIR) filter 

b) Decimation by an integer factor 

c) Interpolation by an integer factor 

The key ingredient is the use of the Multiplier and Accumulator (MAC) 

architecture, which can be either time multiplexed for maximum hardware efficiency, or 

embedded on a parallel structure for maximum time efficiency. 

The main components of the implementation are the Dual Port Ram Xilinx block, 

which is a random access memory containing both data and the FIR filter coefficients, 

together with the DSP48 Xilinx block, which performs the multiplication and addition on 

a sequential basis. The DSP48 block is specifically designed for high-speed arithmetic 

operations and it is part of the standard Xilinx Virtex family architecture. The objective is 

to perform the proper arrangement of the input data and FIR filter coefficients so that the 

resulting multiplication and accumulation will perform the three examined operations 



 xii

according to the theoretical formulations. Since the operations are performed serially, the 

data need to be upsampled in order to handle the increased clock rate provided by System 

Generator (Sysgen) and then properly downsampled.  

In this research we have shown that for all three cases (FIR filter, Decimation, 

Interpolation) the overall structure is the same. What defines each operation is the control 

logic (Controller) and the storing of the filter parameters. 

The controller consists of logic blocks from the Xilinx blockset and it is 

responsible for updating the Dual Port Ram’s memory vectors (according to Sysgen clock 

rate) in order to provide the proper dual sequential output. The dual output of the memory 

block is multiplied and accumulated by DSP48 math slice. The outcome of the DSP48 is 

a bitstream in which the desired coefficient of the three examined operations are 

embedded accordingly in multiple of the Sysgen rate. Therefore, the final output can be 

obtained by downsampling the output of DSP48 with the proper factor. 

MATLAB was used to verify the consistency of the simulation with the theory. 



 xiii

ACKNOWLEDGMENTS 

Θα ήθελα να ευχαριστήσω και να εκφράσω την βαθιά μου αγάπη στη σύζυγο μου 

Ελένη και στα παιδιά μου Δημοσθένη και Παναγιώτη που μου συμπαραστάθηκαν 

καθ’όλη τη διάρκεια των σπουδών και της προσπάθειας ολοκλήρωσης της πτυχιακής, 

επιδεικνύοντας ιδιαίτερη υπομονή και κατανόηση. 

Ringrazio il mio insegnante e relatore Professor Roberto Cristi per la sua 

disponibilità e il suo sostegno nella preparazione della mia tesi. 

I would also like to thank my co-advisor Professor Craig W. Rasmussen for his 

contribution to accomplish my thesis and the mathematical knowledge he imparted to me. 

 



 xiv

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1

I. INTRODUCTION 

A. BACKROUND  

In Software Defined Radio, the modulation and demodulation processes are 

performed in the digital domain. The data rate of the transmitted signal is usually several 

orders of magnitudes smaller than the data rate necessary to drive the Digital to Analog 

Converters (DACs) at the radio frequency (RF). In real time implementations, since the 

cost increases according to the number of samples per second, we need to adapt the 

sampling rate to the frequency content of the transmitted signal. Therefore, signals at 

radio frequency (RF) are sampled at a rate comparable to the RF frequency, while the 

signals at baseband are sampled at the information rate [1]. The reconfigurability and the 

versatility of the SDR can be efficiently supported by the Field Programmable Gate 

Arrays (FPGAs) for hardware implementations. 

1. FPGA for Digital Signal Processing 

The Field Programmable Gate Array (FPGA) is a high performance integrated 

circuit suitable for Digital Signal Processing (DSP) applications. An FPGA has the 

feature of being programmable by the designer and it can be easily reprogrammed. 

Physically, an FPGA is a two-dimensional array of gates consisting of various logic DSP 

blocks and interconnections between them in order to perform DSP operations [2].  

Figure 1 shows a Virtex-4 FPGA embedded in a processing board. Figure 2 shows 

a number of important features such as the array of ‘slices’ disposed in columns of 

macroblocks. The latter are blocks, constituted of memory and arithmetic units that are 

programmed to perform suitable operations. The entire interconnected mesh can be 

programmed into highly parallel algorithms [2]. 



 2

 

Figure 1.   Actual view of FPGA VIRTEX 4 (From: [4]). 

 

Figure 2.   Physical view of FPGA VIRTEX-4 (From: [2]). 

 

 



 3

2. Design Enviroment 

The Xilinx DSP blockset is a suitable tool for designing FPGA algorithms in the 

Mathworks Simulink design environment. This is supported by the System Generator 

(Sysgen), which is a FPGA design program responsible for driving the FPGA through the 

high-level design environment of Simulink. A sufficient number of common and complex 

blocks, which are provided from several blocksets (including the Xilinx blockset) of the 

Simulink Library, are properly synthesized in order to design various DSP applications 

[5]. Figure 3 shows on the left the Simulink Library Browser with various basic elements 

of the Xilinx blockset, and, on the right of the same figure, a simple application in 

Simulink using Sysgen. Specifically, an input data sequence is loaded from MATLAB’s 

workspace and upsampled by a factor of two. The output is shown on the ‘Scope’ by 

double clicking the corresponding icon. Both ‘in’ and ‘out’ blocks are the interfaces of 

common Simulink blocks with the Xilinx blockset. The entire system is controlled by the 

Sysgen block. The specified parameters of all blocks can be modified by the user when 

the respective icon is selected. 

 

Figure 3.   Simulink environment using Xilinx. 



 4

B. OBJECTIVE 

In this thesis, we address the problem of efficient design of resampling operations 

so they can be implemented on Field Programmable Gate Arrays (FPGAs). The key 

ingredient is the use of a Multiplier and Accumulator (MAC) architecture, which will 

allow us to perform the following operations: 

1) Finite Impulse Response (FIR) filters 

2) Decimation by an integer factor 

3) Interpolation by an integer factor 

The outcome of these three schemes is the development of a set of filtering and 

resampling operations performed in Xilinx/Simulink. All the subsystems in the designs 

are fully accessible by the designer. 

In order to perform the three operations (FIR filtering, Decimation and 

Interpolation by an integer factor), a basic design scheme in the Simulink environment is 

used and is modified accordingly to fit the three cases. Since the objective is to develop 

software suitable to programming FPGAs, a combination of Xilinx and Simulink blocks 

as well as MATLAB codes is used. Figure 4 illustrates the basic structure of the 

Simulation.  

 

Figure 4.   Basic Structure of Simulation. 



 5

In each of the three designs, the proper arrangement of the input data points and 

Finite Impulse Response (FIR) filter coefficients is achieved in the Dual Port Ram Xilinx 

block, which is a random access memory. The dual output of the memory block is 

multiplied and accumulated by the DSP48 Xilinx block, which is an efficient block for 

DSP operations implementing a Multiplier and Accumulator (MAC) operation. From the 

resulting output, we selectively extract the data points of interest according to the 

theoretical formulas of the three desired operations. Although several Xilinx/Simulink 

blocks are used and are explained in the next chapters, the principal blocks are the Dual 

Port Ram and the DSP48. 

1. Efficient Use of the Dual Port Ram and DSP48 Xilinx Blocks 

The Dual Port Ram Xilinx block is a dual memory device that allows the user to 

specify the width and the values of each memory part. This specific block uses two sets 

of ports dedicated to reading and writing of data. Each port has three inputs: (a) the 

address line ‘addr’, (b) the input data ‘din’ and (c) the write enable ‘we’. In addition, each 

port has one output. There is also an option of additional enable and synchronous reset 

inputs for both ports that were not necessary for the purpose of this design. The Dual Port 

Ram Xilinx block, along with its specified parameter window, is shown in Figure 5. 

 

Figure 5.   Dual Port Ram Xilinx Block. 



 6

Both memories are accessible for reading and writing by providing the right 

address from the address ports ‘addra’ and ’addrb’. The initial value vector, as it is 

indicated in the parameter window of Figure 5, is the concatenation of the two initial 

vectors (initial data vector 0x  and initial FIR filter coefficients h  ). The ‘wea’ and ‘web’ 

are the write enable ports for each memory feeding the Dual Port Ram with a Boolean 

signal ‘0’ or ‘1’.When the ‘we’ port is set to 1 then the memory writes the value of the 

‘din’ port to the location specified by the corresponding address line. Each of the two 

outputs depend on the write mode, which in our case is ‘read after write’, and it takes 

exactly the same value indicted by the address line when the write cycle is completed [5]. 

For the purposes of this thesis, the second part of the memory remains unchanged 

(no input data) and keeps the initial value. Specifically, input b  takes the values of 

properly ordered (according to the case of interest) finite impulse response (FIR) filter 

coefficients, which are generated in the initialization of the simulation through any 

MATLAB function such as ‘firpm’. Therefore ports ‘dinb’ and ‘web’ are fed with a 

signed and a boolean zero respectively. On the other hand, the first part of the memory 

changes according to ‘address’ and ‘write enable’ ports. 

The outputs of ports A  and B  are two signed bit streams: one for the input data 

points and one for coefficients of the FIR filter, aligned in such a way so that their 

multiplication and accumulation will provide us the desired result for the three examined 

cases. 

The DSP48 Xilinx block (also referred as an extreme DSP slice or DSP48 math 

slice) is an efficient tool for many DSP applications, which can handle dynamically many 

operations as well as be cascaded with other DSP48 blocks. It consists of an 18-bit-by-

18-bit signed multiplier with a 48-bit adder and a programmable multiplexer that can be 

driven as required to perform specific operations [3]. The logic circuit of the slice is 

depicted in Figure 6, while the corresponding Xilinx block along with some capable 

operations is shown in Figure 7. 

 



 7

 

Figure 6.   DSP48 Slice (From: [6]).  

 

Figure 7.   DSP48 Xilinx Block. 



 8

In this thesis the DSP48 is used as a multiplier and accumulator (MAC) block and 

its operation is defined as P P A B= + ⋅ . With this block the product of two inputs A  and 

B  (derived from the Dual Port Ram) is accumulated each time with the previous product 

P . A reset port is available to the slice in order to reset the output every clock cycle to 

produce the desired for each examined case operation.  

C. RELATED WORK 

Although a number of approaches to FIR filtering and resampling operations 

design exist in literature ([10], [11]), to the best knowledge of the author there has been 

no systematic way of designing these filters in a general fashion. 

The main contribution of this resurch is an architecture, which is fully scalable to 

any implementation in terms of filter coefficients and resampling factor. 

 



 9

II. FINITE IMPULSE RESPONSE FILTER WITH ONE MAC 
(MULTIPLIER ACCUMULATOR) 

A. THEORETICAL PERSPECTIVE 

In the digital domain, the output sequence [ ]y n  of a Finite Impulse Response 

(FIR) filter is given by the following expression:  

 [ ] [ ] [ ]
0

N

k
y n h k x n k

=

= ⋅ −∑ , (2.1) 

where [ ]h n  is the impulse response of the filter, [ ]x n  is the input sequence and N  being 
the degree of the transfer function of the FIR filter. 

Both [ ]x n  and [ ]y n  are at the same clock rate x y sF F F= =  as [ ] ( )sx n x nT=  and 

[ ] ( )sy n y nT= , where 1
s

s

T
F

=  is the sampling interval [7]. The discrete convolution, 

along with its graphical representation, is depicted in Figure 8. 

 

Figure 8.   Discrete Convolution. 



 10

We can verify from Figure 8 that the convolution operation can be graphically 

implemented as a sliding window over a data sequence. In particular, at any time n we 

need to save 1N +  data points [ ] [ ] [ ], 1 ,...,x n x n x n N− −  together with the 

coefficients [ ] [ ] [ ]0 , 1 ,...,h h h N . 

In this chapter, we address the problem of implementing the filtering operation 

using one Multiplier and Accumulator (MAC). In this way, the convolution sum is 

computed in about N  clock pulses (where N  denotes the degree of the transfer function 

of the FIR filter), thus requiring a higher clock rate to be provided by the System 

Generator, which controls the operation and its parameters. The objective is to perform 

the proper arrangement of the input data points and the filter’s coefficients so that the 

multiplication and accumulation procedure as well as the selective extraction of outcomes 

will give us the desired convolution result in the most efficient way.  

B. SOFTWARE IMPLEMENTATION 

The Simulink/Xilinx implementation needed to perform the FIR filtering is shown 

in Figure 9. The main components of the implementation are the Dual Port Ram, which 

contains both data and the FIR filter coefficients and the DSP48, which performs the 

multiplication and addition on a sequential basis. Since the operations are performed 

serially, the data need to be upsampled in order to handle the increase of the clock rate 

provided by System Generator. The controller consists of a set of counters (one for the 

coefficients and one for the data points) along with logic blocks (implemented in Xilinx 

blockset), and controls  the flow of the data at the output of the dual Port Ram as well as 

the timing of the operations. 

 

 

 

 

     



 11

 

Figure 9.   Finite Impulse Response Filter with One MAC.  

In order to test the performance of the filter, a Gaussian white noise and a 

sinusoidal signal are selectively available (by a manual switch) as inputs. The input signal 

is sampled at rate sF , while System Generator (Sysgen) works at a higher sampling rate 

equal to ( )1 sN F+ . Since the new system rate provided by Sysgen is higher, the input 

data is upsampled by the integer factor of 1N +  with the corresponding Xilinx block. 

The objective is to achieve a proper alignment of the data and filter’s coefficients, 

so that they can be applied to a MAC resulting in the convolution operation. Towards this 

goal, we need two memory vectors x  and h  containing the data and the filter coefficients 

respectively provided by the Dual Port Ram and a MAC provided by the DSP48. 

1. Control Logic for Data and Filter Coefficients    

The vector h  of the filter coefficients is defined as 

[ ] [ ] [ ] [ ]0 , 1 , 2 ..., 1 ,0h h h h h N⎡ ⎤= −⎣ ⎦ . It has length 1N +  and it remains unchanged during 



 12

the operation of the filter. Therefore, the ports ‘dinb’ (data input b) and ‘web’ (write 

enable b) are set to false. The first N  coefficients of the vector h  are generated in 

MATLAB as an FIR filter using function ‘firpm’, while the additional ( )1 thN +  

coefficient is intentionally set to zero in order to serve computational issues derived from 

the use of the DSP48, which works as a MAC and will be explained in the MAC 

procedure.  

The input data vector stored in the first part of the memory of the Dual Port Ram 

is a circular shift register of length N , updated at times st nT=  by 

( ) [ ], sN
X n x n t nT⎡ ⎤ ← =⎣ ⎦ , with ( ) 0,1,..., 1

N
n N= −  denoting modulo operation. In the 

implementation, ( )N
n  is a periodic counter with update rate ( )1ac sF N F= + . The initial 

value of the memory vector x  is set to the initial conditions (say zero for example) and 

updates its value according to the corresponding ‘address’ and ‘write enable’ ports 

provided from the controller. Figure 10 illustrates the controller of this design. 

 

 

 

 

 

 

 

 

 

 

 



 13

 

Figure 10.   Controller. 

The time representation of ‘data address’ and ‘coefficients address’ sequences of 

Figure 10 is shown in Figure 11. In particular, at time ( )1 sn T−  the accumulator is 

initialized by ( )( )1 0sa n T− =  (where ‘ a ’ denotes the content of the accumulation). At 

every subsequent clock cycle 1
ac

ac

T
F

= the accumulation will be updated as 

( )( ) ( ) ( )( ) ( ) ( )( )1 1 1 _ _s ac s aca n T T a n T T data addr coeff addrλ λ λ λ− + = − + − + i , 

where 1,..., Nλ = . The output [ ]y n  at time snT  is shown in the timing diagram of Figure 

11. 

 

 

 



 14

 

Figure 11.   Time Representation of Simulation. 

In what follows we demonstrate the functionality of the design according to the 

timing diagram illustrated in Figure 11. 

2. Alignment of Data and Filter Coefficients in the Dual Port Ram  

The length of the vector x  is chosen to be one less than the length of h  so that 

the writing procedure will introduce a shift by a factor of one in the content of memory 

x . It can be inferred that the outcome of the Dual Port Ram is a set of bitstreams, where 

the output at port A  is a recurrent window of length 1N +  (in every sT ) in which the 

input data is progressively shifted by one position from left to right, while the bitstream 

of port B  is a repetition of the vector h . Figure 12 illustrates the outcome of the Dual 

Port Ram with time running from right to left. 

 



 15

 

Figure 12.   Outcome of Dual Port Ram. 

3. Sequential Multiplication and Accumulation (MAC) of Data and 
Filter Coefficients using DSP48 

The output bitstream from the Dual Port Ram, as shown in Figure 12, is being 

processed by the DSP48 Xilinx block, which works as a MAC. Its operation mode is 

defined as P P A B= + ⋅  (referring to Figure 7) where the product of two pairs of the Dual 

Port Ram output ports A  and B is being accumulated each time with the previous 

product. A reset signal (selected from the DSP48 options) for the outcome P  is 

introduced at clock rate 1N +  provided from the properly delayed ‘write enable’ signal 

of the controller of the Dual Port Ram (referring to Figure 9). The adjustment of the delay 

is set so that the reset of the outcome P  occurs every 1N +  times, where a data 

coefficient is multiplied with the zero coefficient of vector h . 



 16

Consequently, considering the length ( 1N + ) of block pairs in Figure 12, 

whenever a product [ ] [ ]0x k h⋅  (with k arbitrarily chosen) is accumulated to the previous 

N  sums of products of each block pairs, a data point of the convolution [ ]y n  is 

produced as shown in the timing diagram (Figure 11). For illustration, Figure 13 shows 

the first two points [ ]0y , [ ]1y  computed at times ( )1 acN T+  and ( )2 1 acN T+ , 

respectively, by the first two sets of blocks.  

 

Figure 13.   Outcome of DSP48. 

Referring to figure, the bitstream outcome P  of the DSP48 can be considered as a 

set of blocks of length 1N +  in which the desired convolution coefficients are embedded 

in every ( )1 thN +  element of each block as it shown in the timing diagram in Figure 11. 

Therefore, by downsampling the data P  by the factor of 1N +  (same factor that was 

used when the input data was upsampled) the desired convolution result is provided. 

 

 

 



 17

C. RESULTS  

In order to test the performance, an FIR filter was designed and tested with two 

classes of input signals. In particular the FIR filter has been designed as an Equiripple 

Filter with the following characteristics: 

Passband: 0-0.2 (in terms of Digital Frequency f ) 

Stopband: 0.3-0.5 (in terms of Digital Frequency f ) 

Order: 60  

The signals tested are a sinusoid and a white noise. The sinusoid has frequency 

0.1 sF F= ⋅  (Hz) with sampling frequency 10000sF =  (Hz) and / sf F F= , while the 

white noise is sampled at the same rate. 

The frequency spectrum of the original signal and the resulting filtered signal for 

the sinusoidal case is shown in Figure 14. We can verify that the frequency spectrum of 

the original signal remains the same as long as its frequency is within the passband of the 

FIR filter. 



 18

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

200

400

600
Frequency Spectrum of Original Signal

Digital Frequency

A
m

pl
itu

de

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

200

400

600
Frequency Spectrum of Filtered Signal

Digital Frequency

A
m

pl
itu

de

 

Figure 14.   Frequency Spectrum of the Original and Filtered Signal (Sinusoidal Case). 

For the Gaussian white noise case the corresponding frequency spectrum, along 

with the frequency spectrum of the filtered signal, is depicted in Figure 15. We can 

observe that the frequencies of the Gaussian white noise are spread all over the frequency 

spectrum while the frequency spectrum of the corresponding filtered signal maintains the 

frequencies that are within the passband of the FIR filter and eliminates all the others. 

 

 

 

 

 

 



 19

 

 

 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

50

100
Frequency Spectrum of Original Signal

Digital Frequency

A
m

pl
itu

de

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

50

100
Frequency Spectrum of Filtered Signal

Digital Frequency

A
m

pl
itu

de

 

Figure 15.   Frequency Spectrum of the Original and Filtered Signal (Gaussian White 
Noise Case). 



 20

THIS PAGE INTENTIONALLY LEFT BLANK 



 21

III. DECIMATION BY AN INTEGER FACTOR  

A. THEORETICAL PERSPECTIVE 

1 Sampling Continuous Time Signals 

It is well known that by the sampling theorem, the sampling frequency sF  has to 

be at least twice the signal bandwidth B  [7]. The Discrete Time Fourier Transform of a 

sampled signal [ ]x n  with actual frequency content F , which is sampled at rate sF , is 

given by the following expression:  

 ( ) { } 2j fn

i
X f DTFT x n x n e π

+∞
−

=−∞
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= = ∑ , (3.1) 

where f  is a dimensionless quantity denoting the digital frequency 
s

Ff
F

= . From 

equation (3.1) we can verify that ( )X f  is periodic with period one since 

( ) [ ] ( ) [ ] ( )2 1 21 j f n j fn

n n
X f x n e x n e X fπ π

+∞ +∞
− + −

=−∞ =−∞

+ = = =∑ ∑ . 

Therefore, the information is contained in one period (within the interval 

1/ 2 1/ 2f− ≤ ≤ ) of the periodic repetition of the frequency spectrum. Figure 16 

illustrates the frequency spectrum of a continuous time and sampled signal respectively. 

 

 

 

 

 

 

 

 



 22

 

Figure 16.   Sampling Continuous Time Signals. 

2. Analysis of Downsampling (Decimation) 

In digital communications such as Software Defined Radio, the exchange of 

information needs to be done in the most efficient way, in order to reduce complexity and 

improve efficiency while preserving the content of the information. The Downsampling 

operation (Decimation) decreases the number of samples per second of a given signal by 

an integer factor of D . An example of decimation by integer factor of 3D =  is shown in 

Figure 17. 



 23

 

Figure 17.   Downsampling Operation. 

Consequently, the decimation procedure introduces a loss of information due to 

the elimination of some data points, so we need to be careful in order to preserve the 

necessary information of the signal. Distortion of a signal caused by the downsampling 

operation is in terms of additional frequency components in the frequency spectrum of 

the resampled signal. This phenomenon is called aliasing and it is avoided by properly 

filtering the signal before downsampling [8]. 

When a signal sampled at rate 
1sF  with frequency spectrum ( )1X f  (in terms of 

digital frequency) is resampled at a lower sampling rate 1
2

s
s D

F
F =  (where D  is an 

integer), the resulting frequency spectrum of the resampling signal is given by the 

following expression [8]. 

 ( )
1

2
2

1

1 N

k

f kY f X
N N N

−

=

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑  (3.2) 



 24

From equation (3.2) it is easy to show that no aliasing occurs if the signal has no 

frequencies above 1
2

f
D

> , in which case equation (3.2) becomes ( ) 2
2

1 fY f X
N N

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

[9]. Figure 18 illustrates this concept. 

 

Figure 18.   Aliasing Effect in Frequency Spectrum. 

Generally, in order to efficiently downsample a noisy signal by an integer factor 

of D , with information frequency content within the interval 1 1,
2 2D D

⎛ ⎞−⎜ ⎟
⎝ ⎠

 and without 

introducing aliasing, it is necessary to filter the signal first by the appropriate Low Pass 

Filter (LPF). Therefore, the useful part of the frequency spectrum will be preserved from 

aliased frequencies caused by noise. Figure 19 illustrates this, along with the 

specifications of the appropriate Low Pass Filter (LPF). 



 25

 

Figure 19.   Filtering and Downsampling a Discrete Signal. 

3. Efficient Implementation of Decimation Operation using Noble 
Identities and Filter’s Polyphase Decomposition 

An efficient way of implementing filtering and downsampling operations is by 

using the Noble identities and the filter’s polyphase decomposition. Since the filter in 

Figure 19 is operated at a higher sampling rate 
1sF , it will be desirable for the filter to be 

placed after the downsampling operation, resulting in a significant decrease of the 

number of operations since 
2 1s sF F< . It is well known that by the polyphase 

decomposition of the filter and the Noble Identities the downsampling operation can be 

implemented as in Figure 20. In particular, the signal is buffered into D  components at 

the lower sampling rate and each component is filtered by the polyphased decomposition 

of the Low Pass Filter [8]. 

 



 26

 

Figure 20.   Efficient Implementation of Decimation.  

B. DECIMATION BY TWO WITH FIR MAC AND POLYPHASE 
DECOMPOSITION 

In case of decimation by an integer factor 2D =  we can relate the input and 

output signal as 

 [ ] [ ] [ ]
2 1

0

2
N

k
y n h k x n k

−

=

= −∑ , (3.3)  

where [ ] ( )sx n x nT= , and sT  is the sampling interval. Consequently, the output is 

sampled at half the input rate. 

The FIR filter polyphase decomposition provides two components, one for the 

even samples [ ] [ ]0 2h k h k=  and one for the odd samples [ ] [ ]1 2 1h k h k= + . Therefore, 

equation (3.3) can be rewritten as 



 27

 [ ] [ ] ( ) [ ] ( )
1 1

0 1
0 0

2 2 1
N N

k k
y n h k x n k h k x n k

− −

= =

= − + − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑ ∑ , (3.4) 

which breaks down the computation into two phases associated to the even and odd 

samples, respectively. Equation (3.4) can be rewritten as 

[ ] [ ] [ ] [ ] ( ) [ ] [ ] [ ] ( )
1 1

0 0 1 1
1 1

0 2 2 0 2 1 2 1 .
N N

k k

y n h x n h k x n k h x n h k x n k
− −

= =

= + − + − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑ ∑  (3.5) 

 Equation (3.5) highlights the fact that, during the time computational interval 

( ) ( )2 2 2s sn T t n T− < ≤  the data vector needs to be updated with samples [ ]2 1x n −  and 

[ ]2x n , while the data in the two summations are available before time ( )2 2 sn T− . 

1. Software Implementation 

The Simulink/Xilinx implementation needed to perform the decimation-by-two 

has the same structure as the model presented in Figure 4 with modified parameters to 

match this case. Specifically, the initial values of the vectors of the Dual Port Ram along 

with the controller (logic circuit responsible for arranging data points and FIR filter’s 

coefficients) are changed in order to implement equation (3.5). Furthermore, the input 

data is upsampled at a rate equal to the System Generator’s clock rate and the outcome is 

downsampled twice the Sysgen rate, implementing the decimation-by-two operation. 

Figure 21 illustrates the structure of this specific design.  



 28

 

Figure 21.   Downsampling by Two. 

In order to test the performance of the simulation a sinusoidal signal is provided 

as an input. The input signal is sampled at rate sF  while System Generator (Sysgen) 

works at a higher sampling rate equal to sNF , with 2 2N −  being the degree of the 

transfer function of the FIR filter which is decomposed into its polyphase components. 

The generation of the polyphase filter is accomplished in the initialization of the 

simulation. Since the new system rate provided by Sysgen is higher, the input data is 

upsambled by the integer factor of N  with the corresponding Xilinx block. 

The objective is to achieve a proper alignment of the data and filter’s coefficients 

so that they can be applied to a MAC resulting in the decimation-by-two operation. 

Towards this goal, we need two memory vectors x  and h , containing the data and the 

filter coefficients provided by the Dual Port Ram, and a MAC provided by the DSP48. 

 



 29

a. Control Logic for Data and Filter Coefficients  

The vector h  of the filter coefficients is defined as 

[ ] [ ] [ ] [ ] [ ] [ ]0 , 2 ,..., 2 2 , 1 , 3 ,..., 2 3 ,0h h h h N h h h N⎡ ⎤= − −⎣ ⎦  and it is the concatenation of 

the two polyphase components (one for the even and one for the odd samples) of a 

2 1N −  length FIR filter (which is generated in MATLAB) with an additional zero at the 

end. The vector h  has total length 2N  and remains unchanged during the operation of 

downsampling-by-two. Therefore the ports ‘dinb’ (data input b) and ‘web’ (write enable 

b) are set to false. The last zero coefficient of vector h  is added in order to serve 

computational issues derived from the use of DSP48, which works as a MAC and it will 

be explained in the MAC procedure.  

The input data vector stored in the first part of the memory of the Dual 

Port Ram is a vector x  of length 2N  and updated at times st nT=  as 

( ) [ ]2 1
2

N
X n x n

−
⎡ ⎤ ←⎣ ⎦  for the even samples and ( ) [ ]2 1

2 1
N

X n N x n
−

⎡ ⎤− ← −⎣ ⎦  for the odd 

samples, with ( )2 1
0,1,..., 2 2

N
n N

−
= −  denoting modulo operation. In the implementation, 

( )2 1N
n

−
 is a periodic counter with update rate ac sF NF= . The initial value of the memory 

vector x  is set to the initial conditions (say zero, for example) and updates its value 

according to the corresponding ‘address’ and ‘write enable’ ports provided from the 

controller. Figure 22 illustrates the structure of the controller. 



 30

 

Figure 22.   Controller. 

The time representation of ‘data address’ and ‘coefficients address’ 

sequences of Figure 22 is shown in Figure 23. In particular, at time ( )2 2 sn T−  the 

accumulator is initialized by ( )( )2 2 0sa n T− =  (where ‘ a ’ denotes accumulation 

function). At every subsequent clock cycle 1
ac

ac

T
F

=  the accumulation will be updated by 

( )( ) ( ) ( )( ) ( ) ( )( )2 2 2 2 1 _ _s ac s aca n T T a n T T data addr coeff addrλ λ λ λ− + = − + − + i , 

where 1,..., 2Nλ = . At time ( ) ( )2 1 2 2s s acn T n T NT− = − +  the input data is updated. The 

output [ ]y n  at time 2 snT  is shown in the timing diagram of Figure 23. 



 31

 

Figure 23.   Time Representation of Simulation. 

In order to demonstrate the functionality of the implementation, Figure 23 

illustrates the timing of the various signals involved. 

The outcome of the Dual Port Ram is a set of bitstreams, one from port A  

(data points) and one from port B  (filter coefficients). It can be inferred that the outcome 

of port A  is a recurrent window of length 2N , which is subdivided into two windows 

(one for the even samples and one for the odd samples of input signal) of length N . At 

every time acT  both the even and the odd samples are updated, introducing a shift by one 

position from left to right. The bitstream of port B is a repetition of the vector h . Figure 

24 illustrates the outcome of Dual Port Ram. 

 

 

 



 32

 

Figure 24.   Outcome of Dual Port Ram. 

b. Sequential Multiplication and Accumulation (MAC) of Data and 
Filter Coefficients using the DSP48 

The output bitstream from the Dual Port Ram as it is shown in Figure 24 is 

being processed by the DSP48 Xilinx block, which works as a MAC. Its operation mode 

is defined by P P A B= + ⋅  (referring to Figure 7) where the product of two output pairs 

A  and B  of the Dual Port Ram, is being accumulated each time with the previous 

product. A reset signal (selected from the DSP48 options) for the outcome P  is 

introduced at clock rate 2N  provided from the properly delayed ‘write enable 1’ signal 

of the controller of the Dual Port Ram (referring to Figure 22). The adjustment of the 

delay is set so that the reset of the outcome P  occurs every 2N  times, where a data 

coefficient is multiplied with the zero coefficient of vector h . 

Consequently, considering the length ( )2N  of block pairs in figure 24, 

after the last product [ ] [ ]0x k h⋅  is accumulated to the previous 2N  sums of products of 



 33

each block pair, a data point of decimation-by-two operation [ ]y n  is generated as shown 

also in the timing diagram (Figure 23). Figure 25 shows the first two points [ ]0y , [ ]1y  

computed at times ( )2 acN T  and ( )4 acN T . 

 

Figure 25.   Outcome of DSP48. 

Referring to Figure 7, the bitstream outcome P  of the DSP48 can be 

considered as a set of blocks of length 2N  in which the desired coefficients of the 

decimation-by-two operation are embedded in every ( )2 thN  element of each block as 

shown in the timing diagram in Figure 23. Therefore, by downsampling the data P  by 

the factor of 2N  (twice the factor that was used when the input data was upsampled) the 

desired decimation-by-two operation is performed. 

 

 



 34

c. Results  

In order to test the performance of the simulation a sinusoidal waveform 

with frequency 0.2 sF F= ⋅ (Hz) and sampling frequency 1sF =  (Hz) is applied as an 

input. 

The FIR filter has been designed as an Equiripple filter and decomposed 

into two polyphase components with the following characteristics: 

Passband: 0-0.3 (in terms of Digital Frequency f ) 

Stopband: 0.4-0.5 (in terms of Digital Frequency f ) 

Order: 65  

The frequency spectrum of the original and the downsampled-by-two 

signal is shown in Figure 26. We can verify that the frequency spectrum of the 

downsampled-by-two signal is stretched (in terms of the digital frequency) by the integer 

factor of two compared to the frequency spectrum of the original signal. Since the 

bandwidth of the signal is less than 1
4

 there is no aliasing effect. Therefore, the 

frequency of the original signal is 0.2f = while the frequency of the downsampled-by-

two signal is 2 0.2 0.4f = × =  (where f  is the dimensionless digital frequency).  



 35

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

200

400

600
Frequency Spectrum of Original Signal

Digital frequency

A
m

pl
itu

de

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

100

200

300
Frequency Spectrum of signal after Downsampling by 2

Digital Frequency

A
m

pl
itu

de

 

Figure 26.   Frequency Spectrum of the Original and Downsampled by Two Signal 
without Aliasing Effect. 

In order to demonstrate the aliasing effect in the frequency spectrum of a 

downsampled signal, a sinusoidal waveform with frequency 0.3 sF F= ⋅  (Hz) is applied 

as an input. Since the new bandwidth (0.3) exceeds the factor 1
2D

 (where 2D = ), the 

new frequency spectrum of the downsampled-by-two signal in the interval 1 1
2 2

f− ≤ ≤  

will contain aliased frequencies derived from the periodic repetition of one period of the 

frequency spectrum. Figure 27 illustrates this example. 



 36

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

200

400

600
Frequency Spectrum of Original Signal

Digital frequency

A
m

pl
itu

de

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

50

100

150
Frequency Spectrum of signal after Downsampling by 2

Digital Frequency

A
m

pl
itu

de

 

Figure 27.   Frequency Spectrum of the Original and Downsampled by Two Signal with 
Aliasing Effect. 

C. DECIMATION BY AN INTEGER FACTOR ‘D’ WITH FIR MAC AND 
POLYPHASE DECOMPOSITION 

The structure of the decimation-by-two operation can be easily extended to a 

more general decimation-by- D  operation for any 2D ≥ . The decimated signal obtained 

from an input signal [ ]x n , which is filtered by a FIR filter [ ]h n  (decomposed into its 

polyphase components) and then downsampled by an integer factor of D  is given by 

 [ ] [ ] [ ]
1

0

DN

k
y n h k x nD k

−

=

= −∑ , (3.6) 

with D  integer and [ ] ( )sx n x nT= , [ ] ( )sy n y nDT= the input and output sequences 

sampled at rates 1/s sF T=  and ( )/ 1/s sF D DT=  respectively. 

The D  polyphase components of the FIR filter are defined by 



 37

 [ ] [ ]h k h kD= +A A , (3.7) 

with 0,..., 1D= −A  and 0,..., 1k N= − . The decimated output is the superposition of the 

D  phases and it is given by the following expression: 

[ ] [ ] ( ) [ ] ( )
1 1

0 1
0 0

1 ...
N N

k k

y n h k x n k D h k x n k D
− −

= =

= − + − − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑ ∑  

 [ ] ( )
1

1
0

... 1
N

D
k

h k x n k D D
−

−
=

+ − − +⎡ ⎤⎣ ⎦∑ . (3.8) 

Equation (3.8) can be further decomposed as: 

 [ ] [ ] [ ] [ ] ( )
1

1
... 0 ...

N

k

y n h x nD h k x n k D
−

=

= + − + − − +⎡ ⎤⎣ ⎦∑A AA A  (3.9) 

During the time computational interval ( ) ( )s sDn D T t Dn T− < ≤  the data vector 

needs to be updated with samples [ ]( 1)x Dn D− −  up to [ ]x Dn , while the data in the D  

summations are available before time ( ) sDn D T− .  

The design needed to perform the decimation-by- D  operation is similar to the 

decimation-by-two case. The memory vector for the input data points in the Dual Port 

Ram has length 1DN −  and updates its value by 

        

( ) [ ]
( ) [ ]

( ) [ ]

( )( ) [ ]

1

1

1

1

,

1 ,

,

1 1 .

...

...

DN

DN

DN

DN

X n x nD

X n N x nD

X n N x nD

X n D N x nD D

−

−

−

−

⎡ ⎤ ←⎣ ⎦
⎡ ⎤− ← −⎣ ⎦

⎡ ⎤− ← −⎣ ⎦

⎡ ⎤− − ← − +⎣ ⎦

A A
 

The FIR filter coefficients vector, which is stored in the second memory of the 

Dual Port Ram is the concatenation of its polyphase components derived from expression 

(3.7) with total length 1DN − . 



 38

In the implementation, ( ) 1
0,..., 2

DN
n DN

−
= −  is a periodic counter with update 

rate ac sF NF= , which is the clock rate of the System Generator. Therefore the input data 

is upsampled by the integer factor of N .  

The time representation of ‘data address’ and ‘coefficients address’ sequences are 

shown in Figure 28. In particular, at time ( ) sDn D T−  the accumulator is initialized as 

( )( ) 0sa Dn D T− =  (where ‘ a ’ denotes the accumulation function). At every subsequent 

clock cycle 1
ac

ac

T
F

= the accumulation will be updated by 

( )( ) ( ) ( )( ) ( ) ( )( )1 _ _s ac s aca Dn D T T a Dn D T T data addr coeff addrλ λ λ λ− + = − + − + i , 

where 1,..., DNλ = . The input data is updated every thN  multiple of acT  with total 

multiples DN . In particular, ( ) ( )1 s s acDn D T Dn D T NT− + = − + . The output [ ]y n  at 

time sDnT  is shown in the timing diagram of Figure 28. 

 

Figure 28.   Timing Diagram for Decimation by D. 



 39

Apart from the new vectors that are stored in the Dual Port Ram, this design can 

be obtained by simple extension of the decimation-by-two case to the more general 

decimation-by-D. 

Referring to Figure 7, the bitstream outcome P  of the DSP48 can be considered 

as a set of blocks of length DN  in which the desired coefficients of the decimation-by- D  

operation are embedded in every ( )thDN  element of each block as shown in the timing 

diagram in Figure 28. Therefore by downsampling the data P  by the factor of DN  ( D  

times the factor which was used when the input data was upsampled) the desired 

decimation-by-D operation is performed. 

In order to test the performance of the simulation for the decimation factor 4D =  

a sinusoidal waveform with frequency 0.1 sF F= ⋅  (Hz) and sampling frequency 1sF =  

(Hz) is applied as an input. 

The FIR filter has been designed as an Equiripple filter and decomposed into four 

polyphase components with the following characteristics: 

Passband: 0-0.2 (in terms of Digital Frequency f ) 

Stopband: 0.25-0.5 (in terms of Digital Frequency f ) 

Order: 29  

The frequency spectrum of the original and the downsampled by 4D =  signal is 

shown in Figure 29. We can verify that the frequency spectrum of the downsampled 

signal is stretched (in terms of the digital frequency) by the integer factor of four 

compared to the frequency spectrum of the original signal. Since the initial bandwidth of 

the signal is less than 1
2D

 there is no aliasing effect. Therefore, the frequency of the 

original signal is 0.1f = , while the frequency of the decimation-by-four signal is 

4 0.1 0.4f = × = , where f  is the dimensionless digital frequency.  

 

 



 40

 

 

 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

200

400

600
Frequency Spectrum of Original Signal

Digital frequency

A
m

pl
itu

de

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

100

200

300
Frequency Spectrum of signal after Downsample by 4

Digital Frequency

A
m

pl
itu

de

 

Figure 29.   Frequency Spectrum of the Original and Downsampled by 4D =  Signal. 



 41

IV. INTERPOLATION BY AN INTEGER FACTOR 

A. THEORETICAL PERSPECTIVE 

1. Analysis of Upsampling (Interpolation) 

In Software Defined Radios (SDR), the modulation process is performed in the 

digital domain. The data rate of the transmitted information needs to be increased in order 

to match the rate of the modulation (carrier frequency). An upsample operation 

(interpolation) increases the number of samples per second of a given signal by an integer 

factor D . An example of interpolation by integer factor of 3D =  is shown in Figure 30. 

 

 

Figure 30.   Upsampling Operation. 



 42

When a signal sampled at a rate 
1sF  with frequency spectrum ( )1X f  (in terms of 

digital frequency) is resampled at a higher rate 
2 1s sDF F= , where D  is an integer, the 

resulting frequency spectrum of the resampled signal is given by the following 

expression:  

 ( ) ( )
1 2

2 1 f Df
Y f Y f

=
= . (4.1) 

It is obvious from equation (4.1) that the new frequency spectrum is ‘squeezed’ in 

terms of the digital frequency (horizontal axis) [8]. Consequently, since the frequency 

spectrum of the resampled signal is a periodic repetition of one period between the 

interval 1 1,
2 2

⎛ ⎞−⎜ ⎟
⎝ ⎠

, additional image frequency components (‘ghost’ frequencies) will 

appear in the spectrum of the upsampled signal. These frequencies are artifacts created by 

the upsampling operation. The frequency spectra of the original signal and after 

upsampling by D  is shown in Figure 31. 

 

Figure 31.   ‘Ghost’ Frequencies in Interpolation Operation. 



 43

In order to eliminate the ‘ghost’ frequencies a Low Pass Filter (LPF) is needed 

after the upsampling operation. The frequency response of the LPF along with its 

specifications is depicted in Figure 32. 

 

Figure 32.   Upsampling and Filtering with LPF. 

2. Efficient Implementation of Interpolation Operation using Noble 
Identities and Filter’s Polyphase Decomposition 

An efficient way of implementing upsampling and filtering operations is by using 

the Noble identities with the filter’s polyphase decomposition. Since the filter in Figure 

32 is operated at a higher sampling rate 
2sF  it would be desirable for the filter to be 

placed before the upsampling operation, thus minimizing the cost. It can be shown that 

the upsampling operation shown in Figure 32, with the LPF ( ) ( )
0

N
n

n
H z h n z−

=

=∑ , can be 



 44

implemented as shown in Figure 33, where the filters ( )kH z , for 0,..., 1k D= −  are the 

polyphase components of ( ) ( )
/

0

N D
n

k
n

H z h nD k z−

=

= +∑  [8]. 

The upsampling network on the right of Figure 33, after the filters, is an 

‘interlacer’ that interlaces the outputs of all D  filters, thus increasing the sampling rate. 

This implementation is particularly attractive, since it has the same complexity as the 

original but is implemented at the lowest sampling rate [8].  

 

Figure 33.   Efficient Implementation of Interpolation.  

 
 
 
 
 
 
 



 45

B. INTERPOLATION BY TWO WITH FIR MAC AND POLYPHASE 
DECOMPOSITION 

From the polyphase decomposition the upsampling by two is determined as 

 
[ ] [ ] [ ]

[ ] [ ] [ ]

1

0
0

1

1
0

2 ,

2 1 .

N

k
N

k

y n h k x n k

y n h k x n k

−

=

−

=

= −

+ = −

∑

∑
 (4.2) 

Here [ ] [ ]0 2h k h k=  and [ ] [ ]1 2 1h k h k= +  are the polyphase components (even and odd 

samples) of the filter [ ]h n  while [ ] ( )sx n x nT=  with sT  the sampling interval. 
Consequently, the output rate is twice the input rate. 

Equation (4.2) highlights the fact that the signal [ ]x n  is interpolated by 

interlacing two signals, [ ]2y n  and [ ]2 1y n + , which are computed independently. 

1. Software Implementation 

The Simulink/Xilinx implementation needed to perform the interpolation-by-two 

has the same structure as the model presented in Figure 4 with parameters properly 

chosen to match the new case. Specifically the initial values of the vectors of the Dual 

Port Ram along with the controller (logic circuit responsible for arranging data points and 

FIR filter’s coefficients) are changed in order to implement equation (4.2). Furthermore, 

the input data is upsampled at a rate equal to the System Generator’s clock rate and the 

outcome is downsampled at the half of the Sysgen rate, implementing the interpolation-

by-two operation. Figure 34 illustrates this design. 

 

 

 

 

 

 

 



 46

 

Figure 34.   Upsampling by Two. 

In order to test the performance of the simulation, a sinusoidal signal is provided 

as an input. The input signal is sampled at rate sF , while the System Generator (Sysgen) 

works at a higher sampling rate equal to ( )2 1 sN F+ , with 2 2N −  being the degree of the 

transfer function of the FIR filter which is decomposed into its polyphase components. 

The generation of the polyphase filter is accomplished in the initialization of the 

simulation. Since the new system rate provided by Sysgen is higher, the input data is 

upsambled by the integer factor of ( )2 1N +  with the corresponding Xilinx block. 

The objective is to achieve a proper alignment of the data and filter’s coefficients 

so that they can be applied to a MAC resulting in the interpolation-by-two operation. 

Towards this goal, we need two memory vectors x and h containing the data and the 

filter coefficients respectively provided by the Dual Port Ram and a MAC provided by 

the DSP48. 

 

 



 47

a. Control Logic for Data and Filter Coefficients    

The vector h  of the filter coefficients is defined as 

[ ] [ ] [ ] [ ] [ ] [ ]0 , 2 ,..., 2 2 ,0,0, 1 , 3 ,..., 2 3 ,0h h h h N h h h N⎡ ⎤= − −⎣ ⎦  and it is the concatenation 

of the two polyphase components (one for the even and one for the odd samples) of a 

2 1N −  length FIR filter (which is generated in MATLAB) with three properly placed 

additional zeros. The length of the vector h  is 2 2N +  and its value remains unchanged 

during the operation of upsampling-by-two. Therefore the ports ‘dinb’ (data input b) and 

‘web’ (write enable b) are set to false. The zero coefficients are required by 

computational issues derived from the controller and the use of the DSP48 block which 

works as a MAC and it will be explained in the MAC procedure.  

The input data vector stored in the first part of the memory of the Dual 

Port Ram is a vector x  of length N  and it is updated as ( ) [ ]N
X n x n⎡ ⎤ ←⎣ ⎦ . The data 

address counter is defined as ( ) 0,1,..., 1
N

n N= −  and it is repeated twice during the 

sampling interval sT . The initial value of the memory vector x  is set to the initial 

conditions (say zero, for example) and updates its value according to the corresponding 

‘address’ and ‘write enable’ ports provided from the controller. Figure 35 illustrates the 

controller of the simulation. 

 

 

 

 

 

 

 

 

 



 48

 

Figure 35.   Controller. 

The time representation of ‘data address’ and ‘coefficients address’ 

sequences of Figure 35 are shown in Figure 36. In particular, at time ( )2 2 sn T−  the 

accumulator is initialized as ( )( )2 2 0sa n T− =  (where a  denotes the content of the 

accumulation). At every subsequent clock cycle 1
ac

ac

T
F

= , the accumulation will be 

updated by 

( )( ) ( ) ( )( ) ( ) ( )( )2 2 2 2 1 _ _s ac s aca n T T a n T T data addr coeff addrλ λ λ λ− + = − + − + i , and 

( )( ) ( ) ( )( ) ( ) ( )( )2 1 2 1 1 _ _s ac s aca n T T a n T T data addr coeff addrλ λ λ λ− + = − + − + i , 



 49

with 1,..., Nλ = . The outputs [ ]2 1y n − , [ ]2y n  at times ( )2 1 sn T−  and 2 snT  respectively 

are shown in the timing diagram of Figure 36.  . 

 

Figure 36.   Time Representation of Simulation. 

In order to demonstrate the functionality of the implementation, Figure 36 

illustrates the timing of the various signals involved. 

The outcome of the Dual Port Ram is a set of bitstreams, one from port A  

(data points) and one for port B  (filter’s coefficients). The bitstream of port B  is a 

repetition of the vector h . It can be inferred that the outcome of port A  is a recurrent 

window of length 2 2N + , which is subdivided into two windows of length 1N + . At 

every time acT  both subwindows are updated with the same data, introducing a shift by 

one position from left to right, while the first subwindow starts updating from the second 

sample. Figure 37 illustrates the outcome of the Dual Port Ram.  

 



 50

 

Figure 37.   Outcome of Dual Port Ram. 

b. Sequential Multiplication and Accumulation (MAC) of Data and 
Filter Coefficients using DSP48 

The output bitstream from the Dual Port Ram, as it is shown in Figure 37, 

is being processed by the DSP48 Xilinx block, which implements the MAC. Its operation 

mode is defined by P P A B= + ⋅  (referring to Figure 7), where the product of two pairs 

of Dual Port Ram output ports A and B  is being accumulated each time with the previous 

product. A reset signal (selected from the DSP48 options) for the outcome P  is 

introduced at clock rate 1N +  provided from the properly delayed ‘write enable 1’ signal 

of the controller of the Dual Port Ram (referring to Figure 35). The adjustment of the 

delay is set so that the reset of the outcome P  occurs every 1N +  samples, where the 

coefficients of vector h  are zero, without affecting the accumulation procedure of the 

interpolation-by-two operation and therefore there is no loss of information. The third  

 

 



 51

zero coefficient of vector h  which is placed at the first odd sample is not affecting the 

accumulation process of the interpolation-by-two operation as well, since the first 

subwindow of the data vector is updated from the second sample. 

Consequently, considering the length ( )2 2N +  of block pairs in Figure 

37, whenever a product [ ] [ ]0x k h⋅  is accumulated to the previous 2 1N +  sums of 

products of each block pair, two data points of interpolation-by-two operation [ ]y n  are 

provided at every ( )1 acN T+  interval as it also shown in the timing diagram in Figure 36. 

Figure 38 shows the first three points [ ]0y , [ ]1y , [ ]2y  provided at time 

( )1 acN Tμ + ,where 1,2,3μ = . 

 

Figure 38.   Outcome of DSP48. 

 



 52

Referring to Figure 7, the bitstream outcome P  of the DSP48 can be 

considered as a set of blocks of length 2 2N +  in which the desired coefficients of the 

interpolation-by-two operation are embedded in every ( )1 thN +  and ( )2 2 thN +  element 

of each block as it shown in the timing diagram in Figure 36. Therefore by downsampling 

the data P  by the factor 1N +  (half the factor that was used when the input data was 

upsampled) the desired interpolation-by-two operation is performed. 

c. Results  

In order to test the performance of the simulation a sinusoidal waveform 

with frequency 0.4 sF F= ⋅  (Hz) and sampling frequency 1sF =  (Hz) is applied as an 

input. 

The FIR filter has been designed as an Equiripple filter and decomposed 

into two polyphase components with the following characteristics: 

Passband: 0-0.4 (in terms of Digital Frequency f ) 

Stopband: 0.45-0.5 (in terms of Digital Frequency f ) 

Order: 31  

The frequency spectrum of the original and the upsampled-by-two signal 

is shown in Figure 39. We can verify that the frequency spectrum of the upsampled-by-

two signal is squeezed (in terms of the digital frequency) by the integer factor of two 

compared to the frequency spectrum of the original signal. Therefore, the frequency of 

the original signal is 0.4f =  while the frequency of the upsampled-by-two signal is 

0.4 / 2 0.2f = =  (where f  is the dimensionless digital frequency).  



 53

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

400
Frequency Spectrum of Original Signal

Digital frequency

A
m

pl
itu

de

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

500

1000
Frequency Spectrum of signal after Upsample by 2

Digital Frequency

A
m

pl
itu

de

 

Figure 39.   Frequency Spectrum of the Original and Upsampled by Two Signal.  

C. INTERPOLATION BY AN INTEGER FACTOR ‘D’ WITH FIR MAC AND 
POLYPHASE DECOMPOSITION 

The structure introduced for the interpolation-by-two operation can be easily 

extended to a more general interpolation-by- D  operation for any 2D ≥ . The interpolated 

signal [ ]y n  obtained from an input signal [ ]x n , which is upsampled by an integer factor 

D  and then filtered by a FIR filter [ ]h n  (decomposed into its polyphase components) is 

given from the following expression: 

 

 

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

1

0
0

1

1
0

1

1
0

,

1 ,

1 ,

N

k
N

k

N

D
k

y Dn h k x n k

y Dn h k x n k

y Dn D h k x n k

−

=

−

=

−

−
=

= −

+ = −

+ − = −

∑

∑

∑

i i i
 (4.3) 



 54

with D  integer and [ ] ( )sx n x nT= , [ ] ( )/sy n y nT D=  the input and output sequences 

sampled at rates 1/s sF T=  and /s sDF D T=  respectively. 

The D  polyphase components of the FIR filter are defined as: 

 [ ] [ ]h k h kD= +A A  (4.4) 

with 0,..., 1D= −A  and 0,..., 1k N= − .  

The simulation needed to perform the interpolation-by- D  operation is similar to 

the interpolation-by-two case. The memory vector for the input data points in the Dual 

Port Ram has length DN  and it is updated as ( ) [ ]DN
X n x nD⎡ ⎤ ←⎣ ⎦ . The data address 

counter is defined as ( ) 0,..., 1
DN

n DN D= − −  and it is repeated D  times during the input 

interval sT . 

The FIR filter coefficients vector, which is stored in the second memory of the 

Dual Port Ram, is made of the polyphase components derived from expression (4.4) with 

total length ( )1D N + . 

The input signal is sampled at a rate sF , while System Generator (Sysgen) works 

at a higher sampling rate equal to ( )1 sD N F+ . Therefore the input data is upsampled by 

the integer factor of ( )1D N +  with the corresponding Xilinx block 

The time representation of ‘data address’ and ‘coefficients address’ sequences are 

shown in Figure 40. In particular, at time ( ) sDn D T−  the accumulator is initialized as 

( )( ) 0sa Dn D T− =  (where ‘ a ’ denotes the accumulation function). At every subsequent 

clock cycle 1
ac

ac

T
F

= the accumulation will be updated by 



 55

( )( ) ( ) ( )( ) ( ) ( )( )

( )( ) ( ) ( )( ) ( ) ( )( )

( )( ) ( ) ( )( ) ( ) ( )( )

1 _ _ ,

1 _ _ ,

1 1 1 _ _ ,

s ac s ac

s ac s ac

s ac s ac

a Dn D T T a Dn D T T data addr coeff addr

a Dn T T a Dn T T data addr coeff addr

a Dn T T a Dn T T data addr coeff addr

λ λ λ λ

λ λ λ λ

λ λ λ λ

− + = − + − +

− + = − + − +

− + = − + − +

i

i i i
A A i

i i i
i

 

where 1,..., Nλ = . The outputs [ ]y Dn D− ,…, [ ]y Dn  are shown in the timing diagram of 

Figure 40. 

 

Figure 40.   Timing Diagram for Interpolation by D. 

Apart from the new vectors that are stored in the Dual Port Ram, this design can 

be obtained by simple extension of the interpolation-by-two case to the more general 

interpolation-by-D. 

Referring to Figure 7, the bitstream outcome P  of the DSP48 can be considered 

as a set of blocks of length 1N +  in which the desired coefficients of the interpolation-

by- D  operation are embedded in every ( )1 thN +  element of each block as it shown in the 



 56

timing diagram in Figure 40. Therefore by downsampling the data P  by the factor of 

1N +  ( D  times less the factor which was used when the input data was upsampled) the 

desired interpolation-by- D  operation is performed. 

In order to test the performance of the simulation for interpolation factor , 4D =  a 

sinusoidal waveform with frequency 0.4 sF F= ⋅  (Hz) and sampling frequency 1sF =  

(Hz) is applied as an input. 

The FIR filter has been designed as an Equiripple filter and decomposed into four 

polyphase components with the following characteristics: 

Passband: 0-0.2 (in terms of Digital Frequency f ) 

Stopband: 0.25-0.5 (in terms of Digital Frequency f ) 

Order: 120  

The frequency spectrum of the original and the upsampled by 4D =  signal is 

shown in Figure 41. We can verify that the frequency spectrum of the upsampled by 

4D =  signal is squeezed (in terms of the digital frequency) by the integer factor of four 

compared to the frequency spectrum of the original signal. Therefore, the frequency of 

the original signal is 0.4f = , while the frequency of the upsampled-by-four signal is 

0.4 / 4 0.1f = =  (where f  is the dimensionless digital frequency).  

 

 

 

 

 

 

 

 



 57

 

 

 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40
Frequency Spectrum of Original Signal

Digital frequency

A
m

pl
itu

de

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200
Frequency Spectrum of signal after Upsample by 4

Digital Frequency

A
m

pl
itu

de

 

Figure 41.   Frequency Spectrum of the Original and Upsampled by 4D =  Signal. 

 
 
 
 
 
 
 



 58

THIS PAGE INTENTIONALLY LEFT BLANK 



 59

V. CONCLUSIONS 

A. SUMMARY OF THE WORK 

In this research, we presented an architecture for implementing resampling 

operations in FPGAs. The particularly interesting feature of this approach is the use of a 

specific functional block (the DSP48), which is optimized for DSP applications in real 

time. Although a number of applications are possible, this approach is particularly 

attractive in the implementation of Software Defined Radios (SDR). 

Three classes of DSP operations have been implemented software in the Simulink 

design environment: 

1) Finite Impulse Response filter 

2) Decimation by an integer factor  

3) Interpolation by an integer factor 

All subsystems of the design are fully accessible by the designer at every stage.  

The key ingredient was the use of a Multiplier and Accumulator (MAC) 

architecture carried out from the DSP48 slice, which is an efficient Xilinx block (from 

the Simulink library) for many DSP applications. The dual input fed to the DSP48 was 

provided from the Dual Port Ram Xilinx block, which is a memory device that allows the 

user to specify the width and the values for each memory part in order to perform the 

three above mentioned operations. 

The Xilinx System Generator was used to realize the software performance to a 

Virtex-4 FPGA, increasing the computation data rate according to each case.  

MATLAB code was used to generate the FIR filter and its polyphase 

decomposition in the design and also to verify the performance providing the desired 

results in terms of plots demonstrating the corresponding theoretical perspective. 

 

 



 60

B. SUGGESTION FOR FUTURE WORK 

The designs presented in this thesis will be part of a general Software Defined 

Radio (SDR) implementation. In particular it will be interlaced with both modulation and 

demodulation processes, so that the whole radio will be implemented in software. 

There are several issues to be addressed. The most important is whether this 

approach can be implemented in real time using a reasonable amount of chip “real 

estate”. In order to address this problem, higher-level language code needs to be used to 

implement the algorithm on the chip. 

This is part of an ongoing research project. 



 61

LIST OF REFERENCES 

[1] Jeffrey H. Reed, Software Radio: A modern approach to Radio Engineering, 
Prentice Hall, 2002. 

[2] Ruđer Bošković Institute, 
http://www.irb.hr/en/cir/education/courses/fpga/FPGA/fpga_sklopovi/ (Accessed 
August 12, 2008). 

[3] Xilinx online documentation, System Generator for DSP, User Guide, Release 
10.1.1, April 2008 
http://www.xilinx.com/support/documentation/sw_manuals/sysgen_user.pdf 
(Accessed August 12, 2008). 

[4] ARM webpage (photo of FPGA Virtex-4 embedded in processing board) 
http://www.arm.com/rximages/15515.jpg (Accessed November 7, 2008). 

[5] Xilinx online documentation, System Generator for DSP, Reference Guide, 
Release 10.1.1, April 2008, 
http://www.xilinx.com/support/documentation/sw_manuals/sysgen_ref.pdf  
(Accessed August 17, 2008). 

[6] Xilinx online documentation, System Generator for DSP, Getting Started Guide, 
Release 10.1.1, April 2008, 
http://www.xilinx.com/support/documentation/sw_manuals/sysgen_gs.pdf, 
(Accessed August 20, 2008). 

[7] Robert D. Strum, Donald E. Kirk, First Principles of Discrete Systems and Digital 
Signal Processing, 1988. 

[8] Roberto Cristi, Modern Digital Signal Processing. Thomson Brooks/Cole, 2004. 

[9] P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall, 1993. 

[10] Xilinx online documentation, Xtreme DSP for Virtex-4 FPGAs, User Guide, 
UG073(v2.7) May 15,2008 
http://www.xilinx.com/support/documentation/user_guides/ug073.pdf (Accessed 
July 18, 2008) 

[11] Ondřej Pirochta, “Hardware Implementations of Digital Filters in FPGA”, Brno 
University of Technology 
http://www.urel.feec.vutbr.cz/ra2008/archive/ra2005/papers/401.pdf (Accessed 
November 20, 2008) 

 



 62

THIS PAGE INTENTIONALLY LEFT BLANK 



 63

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 

3. Professor Roberto Cristi 
Naval Postgraduate School 
Monterey, California 
 

4. Associate Professor Craig W. Rasmussen 
Naval Postgraduate School 
Monterey, California 
 

5. Embassy of Greece 
Office of Naval Attaché 

 Washington DC 20008 


