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ABSTRACT 

A  Micro Electro Mechanical System (MEMS) based directional 

microphone consisting of two plates hinged at the center is modeled using finite 

element software. A new method is developed in which the sensor is acoustically 

coupled to an incoming sound wave. The method successfully reproduces results 

of previous non-acoustic coupled simulations for solid plates. The resonance 

frequencies match within 0.8% for the rocking mode and 2% for the bending 

mode. The displacement amplitudes match within 17% for the rocking mode and 

5% for the bending mode.  

After ensuring agreement with previous simulations, the model was 

extended to include more realistic boundary conditions. The sound pressure at 

the back of the plates is included along with the drag force on the plates due to 

the acoustic particle velocity flow. This new model reproduces the experimentally 

achieved resonance frequency values within 21% for the rocking mode and 2% 

for the bending mode.  The displacement amplitude obtained for the rocking 

mode is approximately 6 times lower than the experimental value while the 

bending mode amplitude is 47% higher.  Manufacturing tolerances for these 

MEMS devices likely contribute to the discrepancy between simulated and 

experimental values. 

A novel design is proposed for increasing the displacement amplitude for 

both solid and perforated plates through the use of a Helmholtz resonator.  
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I. INTRODUCTION  

A. MOTIVATION 

Hearing is one of the senses used by creatures in nature to locate and 

track other living organisms or objects. The ability to perform that action 

successfully depends upon the directional capabilities of their auditory systems. 

Possessing the capability to correctly determine the direction of incoming sound 

can help them, amongst other things, detect their prey, find a host for 

reproduction, or navigate in space.  

Civilian and military applications have used acoustic sensors for many 

years. Examples include sonar, which remains the primary method of detecting 

objects underwater, an early detection device of incoming airplanes in World War 

II, and many others. The directional capability of these sensors is one measure of 

their effectiveness. Most of the manmade devices used today to detect sound, 

such as microphones or hydrophones, sense the pressure of an acoustic wave 

and convert the pressure signal into a voltage output. The time difference Δt of 

arrival in the incoming pressure signal between the consecutive sensors in an 

array can be used to determine its direction. It turns out that the longer the array, 

the greater its directionality. The theory chapter of this thesis provides further 

details on the subject of directionality. 

An alternative to the pressure sensor, which has the potential to achieve 

good directionality with a smaller sensor, is the “particle velocity sensor.” These 

detect the acoustic particle velocity of an incoming sound wave. The particle 

velocity (unlike pressure) is a vector quantity.  

In an attempt to achieve greater directionality in a small sensor, insect 

hearing has also been examined. One particular insect studied is the fly known 

as “Ormia Ochracea.”  
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Because of its small size, if the fly relied solely on the time difference of 

arrival of the acoustic pressure between two ears, it would not be able to 

determine the direction of sound. As it turns out, however, the fly is able to 

determine the direction of its prey. The directional capability in this case is based 

on a mechanism that detects the difference in the amplitude of oscillation 

between two membranes present in its auditory system.  

In principle, constructing a sensor similar to the fly’s system would require 

only one device to determine the direction of sound given a high enough signal to 

noise ratio (SNR). Moreover, the dimensions of that device would be small 

compared to other sensors in use today. There are many possible applications 

for such a sensor. Application examples could be in underwater acoustics, as a 

passive receiver on sonar devices, and in air where it could be placed together 

with other micro devices to form a compact sensor system capable of sensing a 

wide variety of signals in the environment. 

B. CONTRIBUTIONS OF THIS THESIS 

This thesis focuses on the designs, modeling, and experimental results of 

Micro-Electro-Mechanical Systems (MEMS) built by a team headed by Professor 

Karunasiri of the Naval Postgraduate School (NPS). These devices were based 

on the principles governing the auditory system of the “Ormia Ochracea.” 

Previous students simulated the effect of the incoming pressure wave on the 

device by computing the force the free field acoustic wave would exert on the top 

of the device. In contrast, the simulations conducted for this thesis models the 

results of the incoming pressure wave by coupling the acoustic and MEMS 

domains. This is an important difference, because at frequencies where the 

wavelength is large compared to the dimensions of the device, the acoustic 

pressure on the back of the device is not expected to be negligible. A second 

contribution of this thesis involves the treatment of air damping. Previous 

simulations treated the air damping as proportional to the velocity of the device. 

This is perfectly reasonable for a device oscillating in still air. A sound wave, 
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however, produces movement of the air molecules. In this thesis, the force 

resulting from the movement of the device relative to air is calculated based on 

the difference between the device velocity and the particle velocity of the sound 

wave moving past it. Lastly, this thesis proposes a novel design that has the 

potential for increasing the amplitude of the sensor’s response by using a 

resonant cavity behind the device. 

C. THESIS ORGANIZATION 

Chapter II of this thesis is devoted to a brief background on the biomimicry 

efforts involving the fly’s ear. To show the motivation behind the design of an 

acoustics MEMS device, it includes a brief description of the auditory system of 

the fly. It also provides a glimpse of previous NPS successes in designing, 

constructing, and testing these devices.  

Chapter III focuses on the theory involved with these sensors. It discusses 

acoustic considerations, such as the relationship between pressure and particle 

velocity, the near and far field of a sound source, sensor directionality issues, 

and the quality factor of a microphone. This provides a physical basis for 

decisions made later in the simulation section. Following that, it presents the 

physics of the mechanical model of the fly’s ears created by Miles et al., [1995]. It 

discusses the air damping mechanisms that limit the amplitude of an acoustics 

MEMS device and concludes with some of the properties of Helmholtz 

resonators. These set the stage for understanding how the use of a resonant 

cavity might result in sound signal amplification. 

Chapter IV provides details on the designs of previous and current 

acoustic MEMS sensors. These include the construction material, dimensions, 

and some of the basic factors that determine their physical behavior. 

Chapter V on the modeling effort contains a summary of previous work as 

well as the changes and new ideas made in support of this thesis. Details are  
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provided to enable the reader to reproduce the simulation results, and 

comparisons are made with both previous simulations as well as the 

experimental results. 

The thesis concludes with several recommendations for future work. 

Based on the results obtained, it appears most likely that solid plates without a 

backing represent the best option for reproducing the ability of a fly to determine 

sound directionality. The ability of a resonant cavity to amplify the response while 

preserving directionality looks promising but needs further study to verify. 
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II. BACKGROUND  

The work upon which this thesis builds falls into two broad categories. 

First, it builds upon the work of Miles from the State University of New York at 

Binghampton. He and his collaborators analyzed the mechanism by which the fly 

(Ormia Ochracea) achieves sound directionality with its ear. They started 

publishing this work in the mid 1990’s and are currently involved in the design 

and testing of MEMS biomimetic devices. At about the same time that Miles’ 

group started fabricating MEMS devices, Karunasiri’s group at the Naval 

Postgraduate School began an independent program to design, fabricate, and 

test biomimetic MEMS sensors. To date, this work resulted in two theses. These 

two theses constitute the specific design, simulation, and experimental 

background for this thesis. A variety of research groups have also published 

studies on the damping mechanisms for MEMS sensors. The work of Zhang and 

Turner from the University of California Santa Barbara has been particularly 

useful. As it applies, however, to a very specific aspect of this thesis, Chapter III 

covers this in the theory portion. 

A. THE ORMIA OCHRACEA 

Ormia Ochracea is a parasitoid which, to reproduce itself, must lay its 

larvae on a cricket. The fly locates the cricket solely by using its hearing 

capabilities. Miles et al., [1995] analyzed the anatomy and physiology of this fly. 

Taking into consideration that the distance between the hearing organs of the fly 

is between 450 to 520 μm, the time difference Δt at which the incoming signal 

would be sensed would be about 1.4μs. This time difference, about a thousand 

times less than for humans, is extremely small. It cannot be translated into 

direction using a mechanism that depends solely on the time dependence of the 

incoming pressure wave at different points [Miles et al., 1995].  

Another way to view the problem of directionality is to consider the 

dimensions of the fly (1.5mm total length) and compare them to the incoming 
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signal wavelength, which, in the case of the cricket, is 7cm for a frequency of 

4.8kHz [Miles et al., 1995]. According to Kinsler [Kinsler et al., 2000], a “simple 

source” is one where kr << 1, where k = 2πf/c is the wavenumber, and r is the 

radius of the source. Furthermore, a “simple source” is omnidirectional. 

Approximating the fly to be a sphere of radius r = 1.5mm, the calculation is kr = 

0.09 << 1. Therefore, the fly is essentially a “simple source.” It can be shown 

that, when used as a receiver, the directionality of a source is the same. 

Therefore, the direction finding capabilities of a fly at the frequency of interest 

would have to be extremely limited if, again, the directionality were achieved 

solely based on the time difference of arrival of the pressure wave at the surface 

of the ear. 

Facing the fact that Ormia Ochracea does not comply with the calculations 

above and that it does find the direction of the cricket’s song, a mechanism other 

than simple time difference of arrival must be assumed. Indeed, research on the 

fly’s auditory system reveals that it relies on the relative amplitude of two different 

modes to determine the direction of incoming sound.  

To reveal the underlying mechanics, the main aspects of the fly’s auditory 

anatomy, as well as the simplified model proposed by Miles and his 

collaborators, are explained in the following paragraph. Chapter III provides 

additional details concerning Miles’ simplified model as they pertain to the MEMS 

devices designed and fabricated here at NPS. 

The auditory system of the fly is behind the head of the insect and below 

the neck as shown in Figure 1. Two membranes, the prosternal tympanal 

membranes (PTMs), act as the main sensing system. These two membranes 

connect through a rod called an “apodeme” [Miles et al., 1995]. The coupling of 

the PTMs makes the fly capable of distinguishing the direction of sound. When 

the membrane closer to the direction of sound (ipsilateral) is excited from an 

incoming wave, oscillation is forced. When the wave arrives at the other 

membrane (contralateral), which is already in motion because of its coupling to 

the apodeme, it exerts an additional driving force. The movement of the 
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contralateral membrane is, therefore, a combination of the direct drive – in this 

case the incoming wave – and the motion caused by the coupling to the 

ipsilateral membrane. This combination produces a difference in the amplitude of 

oscillation between the two membranes that translates into direction through the 

fly’s neural system. 

 

Figure 1.    Fly’s auditory system (From: Miles et al., 1995) 

 
As is always the case in physics, Miles constructed a simplified model to 

study the physics behind the coupling between the membranes. The model, 

shown in Figure 2, represents both the oscillating membranes and the coupling 

between them. At the ends, the two rods connect to a spring-dashpot system and 

are free to oscillate. The dashpot acts as an absorption mechanism, accounting 

for losses during the movement of the membranes. The side where the two rods 

are connected couples through a spring–dashpot system in such a way that they 

are free to pivot around the connection point. Up and down movement, however, 

is impossible. 
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Figure 2.    Simple model of the fly’s auditory system (From: Miles et al., 1995) 

 

B.  KARUNASIRI’S BIOMIMICRY WORK 

Two NPS thesis students working under the mentorship of Professor 

Gamani Karunasiri have previously worked on the design, simulation, fabrication, 

and testing of a biomimetic MEMS device designed to determine the direction of 

sound based on the principles of the Ormia Ochracea. The first of these was LT 

Timothy Shivok. For his thesis, he designed, constructed, and tested several 

“MEMS PolyMUMPs-based Miniature Microphone for Directional Sound Sensing” 

devices. To predict their frequency response prior to the actual lab testing, he 

modeled all designs with COMSOL Finite Element Modeling software [Shivok, 

2007]. Figure 3 shows a general diagram of one out of the 21 devices 

constructed. These devices all had small air gaps under the plates. 
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Figure 3.   General schematic of MEMS device (From: Karunasiri et al., 2005) 

 

To minimize an important damping mechanism known as “squeeze film 

damping,” the plates in these original designs were perforated. This damping 

mechanism appears in MEMS devices when a plate is vibrating very close to 

another surface. In squeeze-film damping, the thin film of air under the flaps of 

the device increases in pressure as the flaps move downward. In the absence of 

perforations, the air is forced to escape around the periphery of the plate 

resulting in additional damping. The addition of perforations minimizes the effect 

of squeeze-film damping with the hope of maximizing the displacement amplitude 

of the flap vibrations. Test results, however, from this initial work showed that the 

actual devices presented smaller amplitudes of oscillation than the modeled 

ones. The main reason for the discrepancy between the simulated and 

experimental results was assumed to be due to the way in which the affect of the 

pressure wave on the plates was simulated. Chapter IV will discuss this issue 

further.  Newer experimental results suggest that the low displacement 

amplitudes for perforated plates previously observed may have been due to 

manufacturing issues.  Future experimental work is being planned to resolve this 

issue.  
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As a continuation of Shivok’s work with perforated plates, LT Antonios 

Dritsas worked on MEMS designs with solid plates. The fabrication method for 

these new sensors was changed to Silicon on Insulator Multi-User MEMS 

Process (SOIMUMP). Fifteen sensors were fabricated. Two were identical solid 

plates with a thin slit in the middle. Simulation results matched the experimental 

measurements for the solid plates quite well. One of the devices with holes was 

also tested. In contrast to the response of the solid plates, it showed the same 

disappointingly small amplitudes of vibration as seen in Shivok’s work even 

though the holes were smaller. At this time, no further analysis was made on the 

devices with holes. Specific details concerning the physics, the construction 

procedure, the modeling, and other details of the devices is discussed later in 

this thesis. 

Dristas also showed experimentally that the incident angle of an incoming 

sound wave could be determined from the relative amplitudes of the rocking and 

bending modes. However, due to the very sharp frequency response and the 

large difference in resonance frequencies of the two modes, a chirp signal from 2 

– 14kHz was required to excite them both.  

Several important questions remained at the conclusion of Shivok and 

Dritsas’ work. First, how is the sound pressure to the MEMS device in COMSOL 

accurately coupled? The simulations run by Shivok and Dritsas applied a force 

directly onto the MEMS plates based on the pressure of the incoming wave as 

opposed to coupling the acoustic and MEMS modules. Second, the accuracy of 

the simulations for the plates with holes needed improvement to match the rather 

dismal experimental results. This might involve both the acoustic coupling as well 

as an improvement in the ability of the simulation to model the damping 

mechanisms. Finally, there is the question raised by Dritsas of how to obtain, in 

the absence of a known broadband signal, sufficient vibration amplitudes in the 

two modes to determine sound directionality. 
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III. THEORY 

A. OVERVIEW 

To design a MEMS microphone which can reproduce the directionality of 

Ormia Ochracea, it is necessary to understand both the basic acoustics of sound 

waves and microphones as well as the physics of the simplified model of the fly’s 

auditory system. This chapter starts, therefore, with an explanation of the basic 

acoustics of the problem including a discussion of the relationship between 

pressure and particle velocity in a plane wave, the meaning of the near field and 

far field of an acoustic sensor, and the factors that determine the directionality of 

a sensor. The general rule of thumb is that a large sensor is required to achieve 

good directionality. It considers the conditions under which this rule applies along 

with an explanation of the key difference in the fly’s ear that allows it to achieve a 

much greater directionality than expected for its size. The discussion of basic 

acoustics finishes with the role of the quality factor of a microphone in 

determining its frequency response. The chapter then provides a detailed 

explanation of the model of the fly’s ear proposed by Miles including the additions 

made by Shivok and Dritsas. Finally, it includes an analysis of the damping 

mechanisms involved in the MEMS structure.  

B.  ACOUSTIC CONSIDERATIONS 

1. Relationship between Pressure and Particle Velocity 

The relationship between the acoustic particle velocity and pressure can 

be derived using the linearized Euler equation 0
u p
t

ρ ∂
= −∇

∂

r

, where 0ρ  is the fluid 

density; p is the sound pressure; and u is the particle velocity. Proper 

manipulation of this relationship for a single plane wave propagating in the 
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positive direction results in the following relationship between the instantaneous 

amplitude of the acoustic pressure and the particle velocity: 

0p cuρ=  

The product 0cρ  is known as the “characteristic acoustic impedance” of 

the medium in which the sound wave propagates. Its value in air is 415 secPa
m
⋅  

at 20ºC [Kinsler et al., 2000].  

2. The Near Field and Far Field of a Source 

The pressure produced at any point in space from a radiating source is a 

function of the distance to the source. It turns out that the pressure from a source 

can fluctuate rapidly when close to the source while it falls off smoothly at larger 

distances. The point at which this transition happens specifies the near and far 

fields of a source.  

The reason for the large fluctuations in pressure amplitude in the near field 

of a source is the interference produced between waves coming from different 

points on that source to a specific position in space. Assuming a linear sound 

source of some length L, consider that any single point on it acts as a point 

source. The pressure at any position in space is the “summation” of the pressure 

produced by all the point sources along the length of the sound source.  

Consider, for example, positions on the perpendicular bisector of the line source.   

If the position is close to the source, waves transmitted from different locations 

on the line source arrive with larger time differences – and hence larger phase 

differences -  than they will to positions further away.  A physical representation 

of this appears in Figure 4. 
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Figure 4.    Difference in distance of signals arriving from the center and the end 
of a line source to two different spatial points. 

 

The phase difference of the two signals arriving at the point is given by: 

2 2f r r
c
π πφ

λ
Δ = Δ = Δ , 

where f is the frequency of the wave, c is the speed of sound, and Δr is the 

difference in distance. As the distance to the position increases, Δr becomes 

smaller and so does the phase difference φΔ . At a point “sufficiently” far from the 

source, the phase difference becomes negligible, and the pressure is estimated 

as the sum of the radiated pressures.  

Since it depends on where the phase difference is considered “negligible,” 

the transition distance from the near field to the far field is an approximation. A 

formula to calculate that distance can be found in Ziomek [1995] as:  

2 2L L fR
c

π π
λ

= = , 

where L is the maximum length of the source; λ is the wavelength; f is the 

frequency; and c the speed of sound. It is important to note that the “range to far 

field” is proportional to the length of the source and inversely proportional to the 

L 

Sound 
Sourc

Δr 
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wavelength. Therefore, the far field of a larger source is farther away than that of 

a smaller source at any given frequency. 

Because of acoustic reciprocity, this analysis is also valid in the case 

where the source and the receiver are interchanged [Kinsler et al., 2000]. In other 

words, the pressure is approximately constant along a line receiver for a point 

source placed sufficiently in its far field.  

3.  Directionality of an Acoustic Sensor 

Once in the far field, the radiated sound field of a source is described by 

its axial pressure ( )axP r , which is only a function of the distance, and a 

normalized unitless factor known as the “directional factor,” ( ),H θ φ , which is a 

function of the direction. Thus, the amplitude of the pressure is described as: 

( , , ) ( ) ( , )axP r P r Hθ φ θ φ=  

The exact form of the directional factor depends on the shape of the source, 

frequency, and the relative phase of each infinitesimal source element. Its 

maximum value is unity in the direction at which the pressure is a maximum. On 

the other hand, the zeroes, or nulls, of the directional factor provide the angles at 

which no pressure radiates [Kinsler, et al., 2000]. This variation of the amplitude 

of the source as a function of the angle is known as “directionality.” This is an 

important quantity because it specifies the ability of the source to project sound 

energy in a specific direction [Urick, 1983]. As an example, the directional factor 

of a line source can be computed as 1( ) sin sin
2

H c kLθ θ⎛ ⎞= ⎜ ⎟
⎝ ⎠

, where k = ω/c is 

the wavenumber and L is the length of the source. The quantity 

( , ) 20log ( , )b Hθ φ θ φ=  is known as the beampattern and is a measure of the 

directional factor in dB [Kinsler, et al., 2000]. The directional factor, and thus the 

beampattern, of a transducer that can operate both as a source and as a receiver 

is the same. 
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Between two successive zeroes of the directional factor, the pressure 

increases from a minimum to a maximum and back to a minimum. The zeroes 

about the acoustic axis describe the angular limits of the mainlobe of the 

beampattern. The solid angle of this mainlobe is a measure of the directionality of 

a source. This solid angle turns out to be proportional to wavelength and 

inversely proportional to the source aperture. Therefore, the larger the source, 

the more directional it is. Based on the principle of reciprocity, the whole analysis 

is valid for the receiver. 

4. Time Difference of Arrival 

As discussed above, the directionality of a sensor is calculated for a 

specific frequency, and yet all realistic sounds consist of multiple frequency 

components. One of the mechanisms by which most animals are thought to 

determine the direction of a sound lies in detecting the time difference of arrival 

of the sound as it reaches the two ears. Figure 5 shows a simplified model of the 

animal ears as two omnidirectional point receivers. The model shows how the 

time difference of arrival depends on the direction of the sound source. 

 

 
Figure 5.    Sound direction determination with the use of two omnidirectional 

point receivers. 

 

L=dsin

θ

θ 

Incoming 
Sound
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The receiver closer to the sound source receives the signal first. Assuming 

a plane wave arriving with angle θ relative to the horizontal, the time difference at 

which the sound arrives at the second receiver can be calculated as Δt=d 

sin(θ)/c, where d is the distance between the receivers, and c is the speed of 

sound in the medium. 

Animal ears are similar to the two receivers above in the sense that they 

sense the sound pressure independently from one another (they are not 

coupled). As the two separate signals process in the brain, the time difference Δt 

presented above translates into direction. Taking the dimensions of the head to 

be about 22cm, the time difference Δt for an incoming sound at an angle of 30º 

would be 0.32ms. The precision with which the brain can accurately determine a 

direction with this mechanism depends on how large the time difference is as 

well as the lower limit to the time differences the brain can detect.  

There are also other mechanisms involved in the ability of animals to 

detect sound direction. For example, at frequencies above 1500Hz, the human 

head essentially blocks an incoming pressure wave. In this case, the strength of 

the signal arriving at the ear closer to the source is greater than that arriving to 

the opposite side. Therefore, the direction of sound can be determined based on 

the relative amplitude of the signal [Smith, 1997].  

5. Achieving Greater Directionality with Smaller Sensors 

As discussed previously, the directionality of a receiver based on sensing 

the pressure of an acoustic wave increases with its size. A single receiver can be 

used to determine the direction of a sound source if it is rotated to different 

directions until the signal is maximized (If the receiver is stationary, it is not 

possible to distinguish between a strong source on a sidelobe and a weak source 

on the mainlobe.) The error in the source direction determined in this way is 

dependent on both the signal-to-noise ratio (SNR) as well as the width of the 

mainlobe of the beampattern. To the extent that the SNR is high and the 

mainlobe small, the error will be low. With two (or more) acoustic pressure 
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sensors, the time difference of arrival can be used to determine directionality as 

mentioned above. By using two independent receivers in the sensor, the need for 

moving the sensor to determine direction is eliminated. However, once again, the 

smaller the sensor the higher the SNR needs to be to achieve the same accuracy 

in terms of source directionality. 

In the case of the fly, the coupling between the two acoustic membranes, 

achieved through the apodeme, provides a physical mechanism that “artificially” 

amplifies the time difference of the signal arrival by a factor of 20 [Miles et al., 

1995]. An amplification of the time difference of arrival certainly improves the 

ability of two receivers to determine directionality. 

Another method for determining directionality is based on sensing the 

acoustic particle velocity instead of the pressure of an acoustic wave. Since 

velocity is a vector quantity as opposed to a scalar quantity, knowledge of the 

particle velocity for a single source yields direction without the need for a second 

receiver. Again, however, SNR is expected to be a determining factor in the 

accuracy of the method. 

6. Quality Factor of a Microphone   

The quality factor Q of an oscillating device is defined as the ratio between 

the resonance frequency divided by the frequency difference of the half power 

points or:  

resQ ω
ω ω+ −

=
−

                                        (3.1)                            

where resω  is the angular frequency at the maximum power and ω+ , ω−  are the 

angular frequencies above and below resω , respectfully, at which the power 

amplitude is half of its maximum value. If the value of Q is large, the frequency 

response curve falls off rapidly and it is considered a “sharp resonance.” When it 

is small, the curve falls off more slowly and it is considered a “broad resonance.” 
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It can be shown that the quality factor is inversely proportional to the damping 

coefficient of the oscillating system [Kinsler et al., 2000]: 

                        res
m

mQ
R

ω=                                               (3.2) 

where m is the mass of the oscillator and Rm is the damping coefficient.                                           

It is obvious from (3.2) that the frequency response curve becomes wider 

as the damping increases. 

 Not only can the quality factor provide an estimate of the damping 

coefficient of the system, but it also determines the maximum amplitude of the 

velocity. A mode of vibration with low damping (high Q) will have a higher 

amplitude at any given frequency than one with larger damping. 

 It must be noted that the resonance frequency corresponds to the 

maximum velocity amplitude -- not to the maximum displacement amplitude. The 

maximum displacement amplitude occurs at a frequency 2 2resω ω β= −  where 

mR
m

β = , mR  is the damping coefficient and m is the mass of the oscillator 

[Kinsler et al., 2000]. It turns out nevertheless that the resonance frequencies of 

the current MEMS design are so high and the damping coefficients so small that 

there is essentially no difference between the frequency of the maximum velocity 

amplitude and that of the maximum displacement amplitude. In this work, 

therefore, the maximum displacement amplitude is used to determine the 

resonance frequency. This simplifies the comparisons with previous work.  

C. THE SIMPLIFIED MECHANICAL MODEL 

The model, as created and studied by Miles and then interpreted by 

Shivok, appears in Figure 6. 
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Figure 6.    Simplified model of the fly’s auditory system (After: Shivok, 2007). 

 

It consists of two solid bars coupled in the middle with a torsional spring-

dashpot mechanism. At this connection point, the model is clamped in such a 

way that there cannot be motion in the vertical direction (x-direction). The other 

two ends of the system are free to move vertically. There is another spring-

dashpot system at the end of each bar. The parameter Ks represents the 

mechanical stiffness and Cs is the damping coefficient at the end of each rigid 

bar. These parameters are the same for both sides. On the other hand, Kt and Ct 

are the mechanical stiffness and damping coefficient of the torsional coupling 

mechanism. 

When a force is applied on the bars, its vertical component results in the 

bar movement. The total displacement of the bars depends on the magnitude 

and phase of the applied force along each bar as well as on the spring and 

damping coefficients. The physical importance of the coupling mechanism is 

made clear by the following observation: If a force is applied on only one of the 

bars, the other bar will move in a direction opposite to that force due to the 

coupling provided by the spring – dashpot system. The exact amplitude and 

phase of that second movement is controlled by the spring and damping 

x

y 
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coefficients mentioned above. Experiments conducted directly on the fly’s ears 

[Robert et al., 1998] proved this observation. They showed that the excitation of 

only one of the membranes resulted in the movement of the other. 

 There are two degrees of freedom in this mechanical model. This means 

that the calculation of two parameters is required to describe its behavior. These 

two parameters can be either the displacement of the two free edges, x1 and x2, 

or the angle between the moving bars and the horizontal, θ1 and θ2. An important 

consequence of having a mechanical model with two degrees of freedom is that 

there will be two natural frequencies or normal modes of oscillation (resonance 

frequencies) when the system is forced into oscillatory motion. 

 The equations of motion, as they appear in Miles et al., [1995], are as 

follows: 

 
1 1 1 11 3 3 1 3 3

3 2 3 3 2 32 2 2 2

( ) ( ) ( ) ( )0
( ) ( ) 0 ( ) ( )

x t x t x t f tk k k c c c m
k k k c c cx t x t m x t f t

⎡ ⎤ ⎡ ⎤+ + ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟+ + ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦

& &&

& &&
 (3.3)  

 

where m is the mass of each bar, 1k and 2k  are the mechanical stiffnesses; 1c , 2c  

are the damping coefficients of the bars; 3k , 3c  the mechanical stiffness and 

damping coefficient of the coupling mechanism; 1( )f t , 2( )f t  are the forces applied 

on the left and the right bar; and 1( )x t , 2( )x t  are resultant amplitudes of 

oscillation. The objective of the problem is to calculate the amplitude of oscillation 

from the other parameters. Assuming that the two bars are geometrically and 

materially the same, = =1 2 sk k k  and = =1 2 sc c c are substituted. To be consistent 

with Shivok’s treatment, this research set =3 tc c  and =3 tk k . Thus, the equation 

(3.3) becomes: 

 

⎡ ⎤ ⎡ ⎤+ + ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟+ + ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦

& &&

& &&
1 1 1 1

2 2 2 2

( ) ( ) ( ) ( )0
( ) ( ) 0 ( ) ( )

s t t s t t

t s t t s t

x t x t x t f tk k k c c c m
k k k c c cx t x t m x t f t

 (3.4) 

 



 21

A similar equation could have been obtained from solving for the angles θ1 and 

θ2 generated between the moving bars and the horizontal. 

Solution of the above equations for the resonance frequencies can be 

achieved by solving for the eigenvalues of the system assuming periodic 

excitation. Specific details of the method can be found in Taylor [2005]. The 

resultant eigenvalues, which can also be referred to as normal modes of 

oscillation or resonance frequencies, are, as expected, two. They were 

calculated by Miles to be: 

 

                             s
r

k
m

ω =  (3.5)     and      
+

ω =
2s t

b
k k

m
(3.6) 

 These two normal modes correspond to two different motions of the 

model. The movement of the two bars that corresponds to the first normal mode 

is one where the two bars move exactly out-of-phase (180º phase difference). In 

other words, one of the bars moves upwards while the other moves downwards 

with approximately the same amplitude of oscillation. This movement is known as 

the “rocking mode,” and the resonance frequency is rω . On the other hand, the 

second normal mode results in the two plates moving in the same direction 

(upwards or downwards) with approximately the same amplitude and is referred 

to as the “bending mode” (Figure 7). The angular frequency of the bending mode 

is bω . All movement of the model can be described as a combination of the 

rocking mode and the bending mode [Miles et al., 1995]. 
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Figure 7.    Rocking and bending modes of the mechanical model (From: Robert 
et al., 1996). 

 

 In the case of a MEMS device, the only change that has to be made to the 

described physical model is to substitute the two bars with either solid or 

perforated plates. Because of its small size, when the sound from a distant 

source is incident on the device, the pressure amplitude at both sides of the 

device is essentially the same. Therefore, if the source is sufficiently far away, 

the amplitude of the incident pressure on the surface of the receiver is 

approximately constant - just as it would be in the case of a plane wave. More 

details on the approximation required will be provided in the modeling chapter of 

the thesis. 

Figure 8 shows a diagram of a plane wave incident on the device at an 

angle of θ  relative to a plane normal to the device through its midsection. 

Because it is a plane wave, the pressure on both sides will be very close. There 

will be a small difference in the time of arrival.  
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Figure 8.    Incident pressure wave on the MEMS device. (From: Dritsas, 2008). 

 

Assuming a pressure wave of the form ( ) sin( )P t P tω= , the corresponding 

pressure on the ipsilateral (closer) plate can be expressed as:  

1( ) sin( / 2)P t P tω ωτ= +  

while the pressure on the contralateral (farther) plate is:  

2( ) sin( / 2)P t P tω ωτ= − , 

where τ  is the time delay in the arrival time between the two plates; ω is the 

angular frequency of the sound; φ is the angle of incidence; and x is the distance 

from the center of the device. For a source sufficiently far away, the time delay 

can be approximated as sin( ) /x cτ φ= . 

The resulting amplitudes of oscillation were calculated by Miles et al., 

[1995] and then modified by Shivok [2007] using the damping coefficients ,r bγ γ : 

1

2

( ) sin( ) cos( )
( ) sin( ) cos( )

b b r r

b b r r

x t A t A t
x t A t A t

ω φ ω φ
ω φ ω φ

= + + +

= + − +
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for the ipsilateral and the contralateral plate respectfully, where 

 

2 2 2 2

sin( / 2)
( ) ( )

r

r r

PsA
m

ωτ

ω ω γ ω

⎛ ⎞
⎜ ⎟=
⎜ ⎟− +⎝ ⎠

          (3.7) 

 
is the rocking mode response amplitude and 
 

2 2 2 2

cos( / 2)
( ) ( )

b

b b

PsA
m

ωτ

ω ω γ ω

⎛ ⎞
⎜ ⎟=
⎜ ⎟− +⎝ ⎠

         (3.8) 

 
is the bending mode response amplitude. The phase constants, rφ  and bφ , are 

given by 2 2arctan
( )

r
r

r

γ ωφ
ω ω

⎛ ⎞
= − ⎜ ⎟−⎝ ⎠

 and 2 2arctan
( )

b
b

b

γ ω
φ

ω ω
⎛ ⎞

= − ⎜ ⎟−⎝ ⎠
; the damping 

coefficients, rγ  and bγ . are given by 2 2( 2 ),s s t
r b

c c c
m m

γ γ
+

= = . As before, ωr  and 

ωb are the rocking and bending mode resonance frequencies. Likewise, m and s 

are the mass and area of the plate and P is the amplitude of the incident 

pressure wave. 

 If the frequency of the incident wave is equal to the resonance frequency 

of either the rocking or bending mode, Equations (3.7) and (3.8) above become: 
 

sin( / 2)
r

r

PsA
m

ωτ
γ ω

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
          (3.9) 

cos( / 2)
b

b

PsA
m

ωτ
γ ω

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
.       (3.10) 

 
To calculate the angle of incidence in the case of a MEMS sensor 

implementing those principles, Dritsas experimentally measured the amplitude 

response of the device at both the resonance frequencies simultaneously. Proper 

manipulation of equations (3.9) and (3.10) provided the following formula for 

direction determination: 
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1sin( ) 2 b r r

r b b b

P Ac
P x A

γθ
γ ω

=        (3.11) 

 

where ,b rP P  are the pressure amplitudes at the bending and rocking modes 

respectively; c is the speed of sound; x is the distance between the stress 

application points that, as was proved by Dritsas [2008], are the midpoints of the 

two plates; and ,r bA A  are the measured amplitudes. The experimentally 

measured values resulted in the correct determination of the incidence angle 

within experimental error [Dritsas, 2008]. 

D. AIR DAMPING 

One particularly important factor that must be considered in the 

construction of a MEMS device is air damping. Air has a low viscosity. It 

contributes very little to the damping of oscillatory devices that are large -- as 

long as the velocity of oscillation is small. However, when the dimensions are 

decreased to that of the MEMS device described above, air damping can have a 

substantial effect on the displacement amplitudes. 

In a study on the effect of air damping on the “miniaturization” of 

oscillatory devices, Newell [1968] divided the pressure of the incident sound field 

into three regions: 

In the first region, the air pressure is so low that there is essentially no 

interaction between the air molecules and the device. Therefore, the air damping 

in that region in negligible and the only damping mechanism of importance is the 

damping due to the construction material. 

In the second region of increased pressure, the air molecules interact with 

the device. They exchange momentum and energy with it, but they do not 

interact with each other. In this region, air damping becomes very important and 

is proportional to the velocity of the device with respect to the air as well as the 

ambient air pressure. 
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The third region is where the pressure has increased so much that the 

molecules interact with both the device and themselves. This interaction causes 

the air to act as a viscous fluid. Nevertheless, viscosity does not depend on 

pressure. Therefore, the air damping in this region is independent of the 

pressure. Newell calculated the quality factor of a cantilever vibrating in the third 

region to be: 

1
22( )

24
Y w dQ

L
ρ
μ

⎡ ⎤
⎛ ⎞⎢ ⎥= ⎜ ⎟⎢ ⎥ ⎝ ⎠

⎢ ⎥⎣ ⎦

, where ρ is the fluid density; Y is the Young’s 

modulus; μ is the fluid viscosity; and L, d, w are the length, the thickness, and the 

width of the cantilever respectfully. By comparing the expression for the expected 

quality factor in regions 2 and 3, Newell calculates that cantilevers narrower than 

0.4μm fall in the third region of air damping at atmospheric pressure. An 

additional damping mechanism exists when an inflexible surface is placed close 

to the resonator. In this case, air must escape through the sides as the resonator 

moves downwards. If there is a plate located at distance h from the cantilever, 

the expression for Q becomes: 

1
2 22( )

24
Y w d hQ

L w
ρ

μ

⎡ ⎤
⎛ ⎞ ⎛ ⎞⎢ ⎥= ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎝ ⎠ ⎝ ⎠

⎢ ⎥⎣ ⎦

. The smaller the 

distance between the resonator and the surface, the more damping [Newell, 

1968]. 

The three regions of damping described above depend on both the 

pressure and the ratio of length versus thickness of the device in question. The 

quality factor in Figure 9 identifies these figures. Taking into account the 

dimensions described above for this work’s device, the following ratio results: 

3

6

2 10 200
10 10

L x m
d x m

−

−= = . 

This result, together with the fact that the devices operate at atmospheric 

pressure, suggests that the MEMS designs of the Karunasiri group operate in the 

third damping region.  
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Figure 9.   Variation of quality factor with air pressure for resonators having 
various length to thickness ratios for both free space and squeeze-film 

damping (From: Newell, 1968). 

 

Following Newell’s work, Zhang and Turner [2006] proposed a model for 

calculating the damping coefficient for “beam type resonators” as shown in 

Figure 10.  

 A linear damping force is opposite to the direction of movement and 

proportional to the velocity. For an extended object, such as the resonator, 

Zhang and Turner use the damping force per unit length, i.e.,: 

 

                                                                 dampingF c u=                                                        (3.12) 
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where F is the force per unit length; u is the velocity of the motion; and dampingc  is 

the damping coefficient per unit length that must be determined for the each 

specific case examined. 

 

Figure 10.   Silicon cantilevers with different dimensions used by Zhang to 
determine air damping (From: Zhang et al., 2006). 

 

Since the damping coefficient is observed to depend on both the 

resonance frequency and on the width of the device, the damping force was 

assumed to be of the form: 

                                          F ufπμ=                                                 (3.13) 

where μ is the viscosity of the fluid; u is the velocity; and f is a dimensionless 

parameter that depends on the resonance frequency ω, the width of the 

cantilever, the fluid density ρ, and the viscosity μ.  

Equation (3.12) can be rewritten as: 

                                               damping
Fc
u

=                                                       (3.14) 

Combining this with equation (3.13) and using dimensionless fluid analysis, 

Zhang concluded that the damping coefficient can be written in the form: 
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( )dampingc bπμ α λ= +                                              (3.15) 

where λ is the dimensionless parameter widthλ
δ

= ; δ is a characteristic length 

used in the dimensional analysis procedure defined as 2μδ
ρω

= ; and α, b are 

unknown dimensionless parameters that were  determined using both 

experimental measurements and simulation results from COMSOL software 

(Figure 11). 

 

Figure 11.   Experimental and numerical results justifying the linear model for the 
damping coefficient in equation (3.15) (From: Zhang et al., 2006). 

 

 For high resonance frequencies the parameter bλ>>α in equation (3.15). 

This is because 1δ
ω

∝  and, thus, λ ω∝ . Therefore, as the frequency 

increases, bλ gets larger and so ( )b bα λ λ+ ≈ . The damping coefficient then 

becomes: 

                                               dampingc bλπμ≈                                                  (3.16)        
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The b parameter was calculated using numerical analysis (COMSOL) to 

be 2b ≈ . It was also found to be independent both of the shape of the cross 

section of the cantilever (Figure 12) and the thickness of the cantilever -- as long 

as the width-to-thickness ratio was greater than 5 [Zhang et al., 2006]. A direct 

comparison of that formula for the damping coefficient and that given by Newell, 

( 24dampingc μ≈ ), shows that both are directly proportional to the viscosity of the 

fluid μ. Furthermore, (3.16) extends the previous concept to include the excitation 

frequency. Using that formula in conjunction with (3.14) and the values for λ and 

δ, the damping force per unit area can be expressed as: 

2F uπ ρωμ=                 (3.17) 

 

Figure 12.   Damping coefficient for various cross sections (From: Zhang et. al., 
2006). 

 

The above equation for the damping force per unit length can be applied 

to the design of the solid plate Karunasiri MEMS devices with no backing. This is 

because both the vibration mode and the physical dimensions correspond to the 

assumptions made by Zhang. Furthermore, the lowest resonance frequency 

calculated corresponds to the rocking mode and is on the order of Khz. Thus, the 
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assumption that bλ>>α is also valid. Therefore, using (3.17) in this thesis model 

should provide a reasonable approximation of the damping force on the device. 

In applying this equation, however, for a device that is oscillating as a result of an 

incoming acoustic wave, it is important to note that the velocity, u, must be 

calculated as the difference between the acoustical particle velocity and the 
plate velocity. In other words, the relative velocity between the plate and the 

surrounding air determines force. This is an important point because it predicts 

that the acoustic particle velocity will exert a force on the plate in the direction of 

air movement until the plate velocity exceeds the velocity of the surrounding air 

molecules.  Thus the force on the plate is more properly described as a drag 

force as opposed to a damping force to the extent that the plate velocity is less 

than the velocity of air moving past it. 

E.  RESONATOR CAVITIES 

A Helmoltz resonator is an acoustic system that consists of a cavity of 

volume V surrounded by rigid walls. The cavity communicates with the 

environment through a circular neck of radius α, length L, and area S. The 

importance of a Helmholtz resonator is that if it is driven at its resonance 

frequency it essentially acts as a pressure amplifier. In other words, the pressure 

inside the cavity is higher than the driving pressure [Kinsler et al., 2000]. 

The resonance frequency of a Helmholtz resonator is given by: 

1
2

0
Sc

L V
ω ⎛ ⎞= ⎜ ⎟′⎝ ⎠

                                          (3.18) 

where c is the speed of sound in the medium, L′  is effective length of the 

resonators neck, V is the volume of the cavity, and S is the cross-sectional area 

of the neck. The effective length has various edge corrections depending on how 

it is terminated. It is given by: 

1.7L L α′ = +  when the neck edge is flanged. 

1.4L L α′ = +  when the neck edge is unflanged. 
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1.6L L α′ = +  when the neck edge is a circular hole. 

It turns out that the shape of the resonator is not important as long as the 

dimensions of the cavity are much smaller than a wavelength. The resonance 

frequency, however, is sensitive to the geometry of the neck. Therefore, the 

resonance frequency provided above is only an approximation for geometries 

where the neck does not have a uniform circular cross-section. The pressure 

amplification ratio of a Helmholtz resonator is given by: 

1
3 2

2cP LQ V
P S

π
⎡ ⎤′⎛ ⎞= = ⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
                            (3.19) 

where cP  is the pressure amplitude inside the resonator; P  is the ambient 

pressure amplitude; and Q is the quality factor of the resonator [Kinsler et al., 

2000]. 

 Because of the ability of a Helmholtz resonator to amplify sound 

pressures, it can be considered as a candidate for increasing the amplitude of 

oscillation for a MEMS device mounted on its opening.  
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IV. DESIGN DETAILS OF PREVIOUS NPS MEMS SENSORS 

A. MEMS DESIGN AND CONSIDERATIONS 

 As mentioned previously in the “Background” chapter, NPS Professor 

Karunasiri and students, LT’s Shivok and Dritsas, designed, built, modeled, and 

tested MEMS devices to mimic the membranes of the fly’s ear.  

Initial designs were based on the PolyMUMPs procedure and their main 

characteristic was that the two plates of the device were perforated. The primary 

construction material for the plates was silicon (Si). These plates were mounted 

on a silicon substrate. The details of the construction procedure appear in 

Shivok’s 2007 thesis while an example of a device structure is shown in Figure 

13. A number of devices were constructed. They differed in size, dimensions of 

the holes, and shape. All devices were placed together on a single chip for ease 

in testing. Although the resonance frequencies agreed fairly well, the 

experimental amplitude of oscillation for the perforated devices turned out to be 

much smaller than expected. Shivok attributed the discrepancy between the 

simulated and experimental amplitudes to the communication of the acoustic 

pressure to the back side of the plates through the holes [Shivok, 2007]. 
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Figure 13.   Initial design of a perforated MEMS device based on the PolyMUMPs’ 
construction procedure (From: Shivok, 2007). 

 

To increase the amplitude of oscillation and further explore the reason for 

the discrepancy between simulation and experiment, the next design focused on 

plates with solid plates. The construction procedure was based on the 

SOIMUMPs fabrication process that is described by Dritsas [2008]. An important 

difference from the previous design was that the substrate behind the plate was 

completely removed to reduce air damping. Again, the main material used for the 

device was silicon. Fifteen devices were again placed upon a single chip (Figure 

14) to be tested in a sound field. Two identical devices, which had solid plates 

and a slit in the middle, exhibited resonance frequencies for the bending and 

rocking modes which were within 10% of the predicted values. The vibration 
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amplitudes were on the same order of magnitude as the values predicted by 

COMSOL and, as hoped, substantially higher than seen for the previous 

perforated plates. A large discrepancy (slightly more than a factor of two) in the 

amplitude of the rocking mode between the two sensors was noted. The cause, 

however, of this discrepancy was not clear and may have been due to small 

differences in the devices. 

Despite the fact that squeeze-film damping was not an issue due to the 

lack of a backing, other sensors were constructed with holes of various sizes 

etched into the plates. In an attempt to increase the vibration amplitude, these 

holes were made smaller than in previous designs. Simulations were conducted 

in COMSOL using the same basic technique as Shivok, i.e. using the analytically 

calculated force of the sound on the sensor plates. To account for the damping in 

the unbacked plates, Dritsas used damping equations published by Zhang and 

Turner [2006]. 

 

Figure 14.   Latest chip layout composed of 15 sensors of different design. (From: 
Dritsas, 2008) 
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Since this thesis focuses on these solid plate devices, their physical 

characteristics will be discussed in greater detail. A graphical representation of 

Device #8, the primary design with solid plates to be tested, appears in Figure 

15. Device #11 is identical to Device #8. As previously stated, the device has 

solid plates with dimensions 1mm x 1mm and a thickness of 10μm each and they 

are made of silicon. The type of construction material provides the physical 

property of the wing’s stiffness, sk . This physical property, together with the 

physical dimensions of the plates that account for the total mass, is the 

determining factor for the frequency of the rocking mode as given by equation 

(3.5). 

 

Figure 15.   Device #8 - Solid plate design with slit in center (From: Dritsas, 2008). 

 

 The two solid plates connect to each other through a beam that is 

contiguous at both ends with 400 μm support blocks that are also made of silicon 

(Figure 16). The torsional stiffness of the beam, which depends on the 

construction material and the beam’s dimensions, accounts for the coupling 

stiffness, tk . This stiffness, together with the wing stiffness sk discussed 
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previously and the total mass, account for the bending mode resonance as 

derived in equation (3.6). As shown in Figure 15, there is a slit in the cantilever 

beam. This controls the torsional stiffness and, therefore, the bending mode 

resonance frequency as given by equation (3.6). The dimensions of the slit for 

Device #8 were 370μm x 20μm. 

 

Figure 16.   Device with removed substrate and the support structure (From: 
Dritsas, 2008). 

 
 The behavior of the device in the rocking and bending mode frequencies 

appear in Figures 17 and 18 (from COMSOL simulation program). As expected, 

in the rocking mode frequency, the two plates move with approximately the same 

amplitude, but they are 180º out-of-phase. On the other hand, when in the 

bending mode frequency, the two plates have approximately the same amplitude 

and are in-phase. Experimental measurements conducted by Dritsas [2008] on 

the device in question showed reasonably good agreement with both theory and 

simulation both in the resonance frequencies and displacement amplitudes. 
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Figure 17.   Rocking mode of oscillation. 

 
 

 

Figure 18.   Bending mode of oscillation. 

 

 
 



 39

V. MODELING - SIMULATION 

A. OVERVIEW 

The physical behavior of a MEMS device mimicking the principles of 

Ormia Ochracea can be investigated using simulations. The results of the 

simulation can provide verification concerning the validity of the physical 

assumptions made in defining the model. Furthermore, simulations can be used 

to help determine the design parameters that will optimize the device 

performance thus minimizing the time, effort, and expense required to construct 

and test an actual device. As in the previous theses of LT’s Shivok and Dritsas, 

the software selected to perform these simulations is “COMSOL Multiphysics.”  

The initial aim of the simulations was to reproduce the results achieved by 

Dritsas [2008] using an acoustics coupled model. Two different approaches were 

used to achieve this. In the first approach, the acoustic domain is defined as a 

rectangular box. One of the sides is defined as a radiating source. This technique 

should simulate a plane wave incident upon the device. It seemed impossible, 

however, to eliminate reflections from the boxes sides and/or bottoms. Following 

that unsuccessful attempt, a sphere was used for the acoustics domain in 

conjunction with a radiating point source. The calculated sound pressure was 

applied only on the top of the device, while the same damping term as Dritsas is 

used was applied to the bottom. This spherical model eliminated boundary 

reflections better than the former approach and managed to reproduce 

successfully the simulation results of the non-acoustic coupled simulation.  

The next step was to implement a more realistic set of boundary 

conditions i.e., apply the calculated pressure incident upon the device, both at 

the top and the bottom of the plate. In addition to that, the damping term was 

modified to be proportional to the difference between the velocity of the device 

plates and the sound wave particle velocity. This model produced results 

reasonably close to those produced by Dritsas. Using this same approach, the 
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acoustic coupled simulation was conducted for a perforated plate to show that 

the oscillation amplitude is significantly reduced. The reduction is more than 

would be expected from the smaller effective solid area of the plates due to 

perforation. Finally, in an attempt to maximize the oscillation amplitude, a design 

where the device is mounted on the top of a resonant cavity was simulated. The 

results present a significant increase in the oscillation amplitudes when tested 

under the same boundary conditions mentioned above. 

B. COMSOL SOFTWARE 

1.  Basic Simulation Procedure and Parameters 

To achieve a better understanding of the simulation results and the 

underlying physics, it is important to describe the basics of COMSOL Finite 

Element Modeling software version 3.4.  

COMSOL is available in various “modules”, each one covering a specific 

area of physics. The modules used in this work were: 

1. Acoustics Module 

2. MEMS Module 

The basic process required to perform a simulation is the same for both modules. 

It is performed in Windows where the various parameters are set: 

1. The first step is to select the modeling geometry (either 2-D or 3-D) and 

the “application modes” for the field of physics required to solve the problem. 

Figure 19 shows this. 
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Figure 19.   Application mode selection used in COMSOL simulations. 

 
 

The parameters selected are both 2-D and 3-D geometry, Acoustic 

Module->Pressure Acoustics -> Frequency Response and MEMS Module -> 

Structural Mechanics -> Solid Stress-Strain.  

2. The next step is to draw the object that needs to be modeled, i.e., the 

MEMS device. In the beginning, because it is both easier and more precise, the 

model is drawn in 2-D. Then, because the physical behavior of this device in 

space is required, the model is “extruded” in a 3-D geometry. Having finished 

with the MEMS model, the “Acoustics Domain,” within which the model resides, 

must be drawn. As previously discussed, the Acoustics Domain was either a 

sphere or a box. The size and the shape of the Acoustics Domain affects both 

the time required to solve the problem as well as the type of sound waves used. 

  3. Following the design of a model, the physical conditions for each 

“subdomain” must be established. This includes the determination of the 
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construction materials for the MEMS device, silicon (Si) and the substance filling 

the acoustics domain -- in this case, air (Figure 20). These general choices 

remained unchanged in all the acoustic coupled simulations. 

 

 

Figure 20.   Subdomain settings for solid stress-strain and pressure acoustics 
application modes. 

 

Moreover, the boundary conditions for every surface drawn must be 

established. This would include which boundaries are fixed, which are free, what 

is the condition of the acoustic domain at the boundary, and what is the load on 

each boundary, etc. The determination of each specific boundary condition must 

be carefully examined to represent the real conditions as closely as possible. 

4. It is the meshing of the model that comes next. Meshing is the 

procedure of splitting the drawn space into small finite elements (Figure 21). The 

specific equations that apply in each domain are determined by the selections 

made in the previous step. They are solved individually for each of the small 

elements of the mesh, and the results are used as inputs for the following 

element. Meshing is a “give and take” procedure. The smaller the mesh size 

(more elements used), the more precise the numerical calculations. On the other 

hand, increasing the mesh size increases the time required for the software to 

reach a solution. Thus, a compromise must be made between a mesh size that 

provides accurate enough results and a reasonable solving time. Care must be 
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taken to fulfill the minimum requirements of the software to produce a physically 

valid result. In the case of the Acoustic Domain, at least five mesh elements per 

wavelength must be used. Thus, the mesh size also depends on the frequencies 

involved. 

 

 

 

Figure 21.   Mesh mode and mesh statistics in COMSOL. 

 

5. The last step before starting the simulation is to set the solver 

parameters. Along with the type of solver, the range of frequencies, as well as 

the frequency step in the “parametric solver,” is set. Again, smaller frequency 

bins around resonance are used to obtain a precise resonance value. To reduce 

the solution time, larger frequency bins were used for the rest of the frequency 

range. 

The procedure described above expresses the basic steps to set up and 

start a simulation. The decisions made concerning the boundary conditions and 

the load on the device, together with other details, will be discussed in the 

description of each specific model tested. 
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2. System Requirements 

The number of numerical calculations that need to be performed, together 

with the fact that the two modules had to be coupled to perform the simulation, 

increased the need for computer processing power. All simulations were 

executed on an Intel based PC. The processor was a 4-core Xeon running at a 

frequency of 2GHz. The reason for having a multi-core processor is the ability to 

run more than one simulation simultaneously. The operating system was the 64-

bit Windows XP Professional, and the amount of memory used was 16GB. At the 

time of this writing, this is the maximum memory that can be placed on a 

commercial PC.  

Despite the fact that the computer used to run the simulations was quite 

powerful, the time required for the acoustic coupling simulations averaged about 

one hour per frequency. The average number of frequencies required to get a 

good representation of the resonance peak was about 100. This resulted in 

simulation times of 4 or more days for the whole frequency spectrum of interest. 

Furthermore, the maximum number of simulations running simultaneously was 

two. This resulted in the maximum allowable use of the available page file. 

Attempts to run simulations on poorer equipped computers resulted in “out-of-

memory” error messages.  

C. NON - ACOUSTIC COUPLED SIMULATIONS 

The simulations run both by Shivok and Dritsas did not use the Acoustics 

Module to couple the pressure with the device. Instead, they calculated the force 

on the plate due to the acoustic wave analytically by integrating the pressure 

over the surface of each plate of the device. Dritsas showed in his thesis that the 

resultant forces could be assumed to operate at the midpoint of each plate with a 

time delay equivalent to the time difference of arrival of the pressure wave to the 

two points. This force was only applied at the top of the plate. On the bottom of 

the plate, the damping force was simulated by Dritsas to be proportional to the 

velocity of the device. 
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The primary objective for simulations run by Shivok [2007] was to predict 

the resonance frequencies of the early, perforated devices. The resonance 

frequency of the rocking mode was calculated to be 26% higher than the 

experimental one, while the bending mode frequency was calculated to be 0.6% 

smaller than the experimental. In contrast, Dritsas [2008] modeled a solid plate 

(non-perforated) device where the silicon substrate at the back was assumed to 

have been removed. Since the back was removed, squeeze film damping was 

practically eliminated. The next section discusses these simulation settings and 

results. 

1. General Settings and Considerations 

Dritsas’s simulation focused in the regions of the resonance frequencies. 

These were 3-4 KHz for the rocking mode and 10-12 KHz for the bending mode. 

Assuming a plane wave incident on the device, the amplitude of the free field 

pressure wave is equal at both plates. As previously discussed, the resulting 

force is applied as a point force in the center of the two plates. Assuming an 

incidence angle other than zero, the applied forces differ slightly in-phase.  

Table 1 summarizes the parameters used in the simulation run by Dritsas. 

As discussed above, the incident pressure (P) applied on the upper part of the 

device plates was entered as a numerical value. The direction of the acoustic 

plane wave was defined as “theta” and measured from the normal to the plate. It 

was used to calculate the time delay between the arrival of the assumed plane 

wave to the center of each wing (tau) and from that the phase difference (phi). 

Figure 22 shows a physical representation of the polar angle “theta” (θ) and also 

the azimuthal angle “psi” (ψ), which is measured from the x-axis to the y-axis 

counterclockwise and is defined between the interval 0<ψ<2π. For the non-

coupled simulations presented by Dritsas the angle ψ is 180 degrees while for 

the acoustic coupled simulations in this thesis, the angle was taken to be zero.   

Since the device is symmetrical, this difference does not affect the results. 
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Figure 22.   Definition of polar angle “θ” and azimuthal angle “ψ”. 

 

To define the driving force, the value of “phi” is entered in the same 

window as the pressure amplitude (P). This is the phase difference between the 

force on the ipsilateral and contralateral plates. The damping force (pda) is 

applied to the underside of the plate. The formula used for the damping force is 

the one provided by Zhang et al., where the parameter “w_t_smsld” is the vertical 

velocity of the plates. The rest of the parameters used are the damping 

parameter “b,” the viscosity of air “mu,” the density of air “ro,” and the angular 

frequency calculated by the software for the frequencies set “omega_smsld.” 
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Description Parameter Numerical Value or Formula Used Units 

Incidence Pressure 

(P) 

p Numerical value defined by user. A value of 1 was 

used for the results presented 

Pa 

Damping Stress pda 1
2b*π*(ro*mu*omega_smsld/2) *w_t_smsld  

Pa 

Damping Parameter 

defined by Zhang 

(Zhang et. al., 2006) 

b 2 -- 

Air Density (ρ) ro 1.025  

Angular Frequency  

(ω) 

omega_smsld Calculated by program for every frequency 

defined by user in the “parametric solver” 

rad/sec 

Vertical Velocity (uz) w_t_smsld Calculated by program m/sec 

Incidence Angle  theta Numerical value defined by user  Degrees 

Time Difference (τ) tau -x*sin(theta*pi/180)/344 Sec 

Phase Difference (φ) phi omega_smsld*tau*180/π rad 

Table 1.   Parameters used in the model presented by Dritsas [After: Dritsas, 
2008]. 

 

Figure 23 shows the parameters set for the upper plate. The pressure, 

referred to as “Face Load” by the software, has an amplitude of 1 [Pa] in the 

negative z-direction, while its phase is “phi.” The damping force exerted on the 

bottom of the plate is in the opposite direction of the plate velocity. Figure 24 

shows this. 
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]  

Figure 23.   Set parameters for incident pressure at the upper plate. 

 

Figure 24.   Set parameters for air damping under the plate. 
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2. Results 

The results, as presented by Dritsas, appear on Table 2. In this table, the 

amplitudes of the contralateral and the ipsilateral plates of the MEMS device are 

recorded with respect to various angles of incidence at the two resonance 

frequencies. The incident pressure is 1 Pa. It must be noted that during the 

simulation a value of ρ=1.025 3/kg m  was used for air density. If that value is 

changed to the correct ρ=1.25 3/kg m  (which is the density of air at 1 atm, 20ºC 

[Kinsler et al., 2000]), the effect on the amplitude of oscillation is small (about 60 

nm less, or 9% error, for the rocking resonance and 300 nm less, or 7% error, for 

the bending resonance at an incident angle of 45º). This, together with the fact 

that the precision of the simulation is affected by the meshing size, supports the 

conclusion that the values in Table 2 can be used to compare with the results of 

the acoustic coupled simulations presented later. 

 

Table 2.   COMSOL simulation results for solid plate Device #8. value for air 
density is ρ=1.025 kg/m3 [From: Dritsas, 2008]. 
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In Table 2, the displacement of the ipsilateral wing is slightly larger than 

that of the contralateral. This is for all angles of incidence in both rocking and 

bending modes. The frequency response appears in Figure 25 where the vertical 

displacement of the device is plotted against frequency for an angle of 45º and 

sound incident pressure of 1 Pa. 

 

 
 

Figure 25.   Simulated frequency response of Device #8 in the vertical direction. 

 

The simulation results show that the amplitude of oscillation of the rocking 

mode increases as the angle of incidence increases. On the other hand, the 

amplitude of the bending mode remains almost constant [Dritsas, 2008]. Figure 

26 plots this behavior. 

 



 51

  

Figure 26.    Displacement of rocking and bending mode versus angle of incidence 
(After: Dritsas, 2008). 

 

D. ACOUSTIC COUPLED SIMULATIONS 

Although Dritsas’s simulation matched the experimental results for a solid 

plate device fairly well, the simplifying assumptions underlying the simulation are 

not realistic. The main problem lies in the lack of acoustic pressure at the 

backside of the plate. For an object, which is small in comparison to the 

wavelength, one expects the acoustic pressure to be almost uniform on all sides. 

The other issue of concern in his simulation is the fact that the damping was 

considered proportional only to the plate movement. Since an acoustic wave 

consists of air movement as well as pressure, one would expect the air particle 

velocity to provide an additional drag force on the plates in the direction of motion 

to the extent that it exceeds the plate velocity. Therefore, the drag force per unit 

length was changed to be proportional to the difference between the air particle 

velocity and the plate velocity, instead of just the plate velocity. 

A simulation in which a sound wave is incident upon the device should 

provide more realistic results than one whose force is estimated analytically. The 

“Pressure Acoustics” mode in COMSOL solves the inhomogeneous Helmholtz 

equation to calculate the pressure at each point of the acoustic domain 

[COMSOL Users Guide, 2007]. Therefore, instead of requiring a known force 
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acting on the device, it calculates the net force based on the solution to the wave 

equation and the area of the plate. This allows for the investigation of problems 

where an analytical solution is unknown. The solution based on the Helmholtz 

equation can also include the pressure difference between the front and back of 

the device. Thus, coupling the MEMS device to the acoustic field has the 

potential for more accurate predictions of the device behavior. 

1. Main Considerations 

The main concern in creating a coupled simulation is in how to accurately 

couple the different “modules” in COMSOL, i.e., the Acoustics Module and the 

MEMS Module. The software requires that a parameter calculated by one of the 

modules acts as an input to the other and vice versa. One of the “Tutorial 

Models” in the COMSOL Acoustics Module documentation, the “Hollow Cylinder,” 

provided the steps to couple the modules together [COMSOL Acoustics Module 

Model Library, 2007]. The acoustic pressure (p2), calculated by the “Acoustics 

Module,” is used as boundary load on the device. The MEMS device couples 

back into the Acoustics Module by setting the acceleration of the surface of the 

device equal to the acceleration of the air in its surface ( nα ). Figures 27 and 28 

show this implementation into COMSOL where nx, ny, nz are the normal to the 

surface vectors in the outward direction. 
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Figure 27.   Coupling of the acoustic pressure in the MEMS solid stress-strain 
module (upper side of plate). 

 

Figure 28.   Coupling of the normal acceleration in the Acoustics Module. 
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As previously discussed, the device is so small that almost any incoming 

sound wave is essentially a plane wave. Therefore, the pressure acting on the 

two plates is uniform. In an attempt to produce a plane wave, two different 

acoustic domains were used, the box and the spherical domains. Since the 

sound wave in the spherical model is emitted by a point source, the wavefront is 

spherical. Therefore, the device has to be positioned far enough from the source 

for the incident wavefront curvature to be negligible. The following paragraphs 

provide specific details about both approaches.  

2. Box Domain Model Simulation 

a. Simulation Settings 

The initial idea for the box domain model came from COMSOL 

Branch Manager, John Dunec Ph.D. He provided a rough model demonstrating 

the idea to LT Shivok to help predict more accurate displacement amplitudes for 

the perforated plate devices. This acted as a baseline for the simulations 

conducted, but various modifications were made with respect to meshing, 

boundary conditions, and the test device. Figure 29 shows the basic concept of 

the model where a box is drawn around the device. The initial dimensions of the 

box were selected to be 25mm x 25mm x 40μm. 
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Figure 29.   Schematic of the “Box Model”. 

 

The main reason for choosing a very small height was to minimize 

the time required to achieve a solution. The need to concentrate only on the 

deformation of the MEMS device led to the assumption that the dimensions of 

the acoustic domain would not make any difference -- whether larger or smaller -- 

as long as they produced a plane wave of the required pressure amplitude 

incident upon the device. COMSOL provides the capability of defining one of the 

sides of the box as a radiating source with a user specified pressure value. 

To simulate the response of the device in the presence of the direct 

sound field only, the boundary conditions in the Acoustics Module were defined 

in such a way that there would be no reflections inside the box. Amongst the 

various choices provided by COMSOL, the simplest way to eliminate reflections 

is to choose the “Radiation Condition.” This condition is defined in the software 

documentation as one that “allows an outgoing wave to leave the modeling 

domain with no or minimal reflections” [COMSOL User Guide, 2007]. After 

selecting this boundary condition, selecting the wave type is next, which in this 

work’s case was, for obvious reasons, “Plane Wave.” This condition was applied 

on the lower side of the box. The rest of the sides were initially left as “Sound 
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Hard” as they were given in the original model. Finally, the settings for the upper 

side, which would be the sound source, appear in Figure 30. The use of direction 

cosines defines the direction of the sound wave (“Wave Direction” field in Figure 

30). 

 

Figure 30.   Boundary settings on the upper side of the box. 

 

The actual MEMS boundary conditions remain the same as the 

ones presented in paragraph C.1. i.e., the pressure is only applied on the top 

plate while the damping force is only proportional to the plate velocity. The only 

difference is that, instead of a user defined pressure value applied directly upon 

the device, the software calculated value of the sound wave, as shown in Figure 

27, is used.  
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b. Results 

The simulation concentrated around the rocking and bending mode. 

The pressure of the sound field incident on the devise was 0.1 Pa. The angle of 

incidence was initially set to 45º. The use of the above value for sound pressure 

would appear to make the results difficult to compare with the ones presented in 

Table 2. Nevertheless, the relation between the pressure applied and the 

deformation caused on the device for a range of pressure values between 0.1 Pa 

and 1Pa can be approximated as linear. Rerunning both the acoustic coupled 

and the non-acoustic coupled simulations for different incident pressure values 

proves this. Therefore, if the pressure upon the device reduces by a factor of 10, 

the oscillation amplitude would also reduce by an equal amount compared to that 

presented in Table 2. 

The physical behavior of the device in the presence of the sound 

field appears in Figures 31 (rocking mode) and 32 (bending mode). It is obvious 

that the behavior is expected: both plates have approximately the same 

amplitude of oscillation, are out-of-phase in the rocking mode, and in-phase in 

the bending mode. 
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Figure 31.    “Box Model” rocking mode. 

 

 

 

Figure 32.    “Box Model” bending mode. 
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Table 3 provides numerical results for the simulation. After 

performing the linear interpolation to account for the reduced incidence pressure 

amplitude, Tables 2 and 3 show good agreement in both rocking mode frequency 

and amplitude. On the other hand, although the difference in the bending mode 

frequency is small (≈200Hz) and certainly within the construction limits of the 

actual device, there is a significant decrease in the oscillation amplitude. 

 
Incident 
Angle 

Frequency Displacement Amplitude 
Ipsilateral Wing 

Displacement Amplitude 
Contralateral Wing 

 Rocking 

Mode 

(Hz) 

Bending 

Mode 

(Hz) 

Rocking 

Mode 

(nm) 

Bending 

Mode 

(nm) 

Rocking 

Mode 

(nm) 

Bending 

Mode 

(nm) 

45º 3,468 10,960 66.8 16.1 64.5 16.1 

Table 3.   COMSOL simulation results for a solid plate device in a Box 
Acoustic Domain. 

 

In Figure 33, the deformation of the device in the vertical direction 

is plotted against frequency near the two resonance frequencies. A comparison 

with the one obtained for the non-acoustic coupling simulation in Figure 25 again 

yields two distinct resonance peaks.  

 
 

Figure 33.   Simulated frequency response for the “Box Model”. 

Frequency [Hz] Frequency [Hz] 
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An important observation - apart from those concerning the 

amplitudes of oscillation and resonance frequencies discussed above - is the 

width of the frequency response curves. The quality factor around the bending 

mode resonance in the graph is obviously much lower (wider curve) than it was 

in the non-acoustic coupled simulation. This suggests a larger damping 

coefficient in the coupled case, but it is difficult to explain why. In investigating 

the results further, the pressure shows an anomalous behavior as well. For 

example, a plot of the pressure amplitude on the edge of the device versus 

frequency appears in Figure 34. 

 

 

Figure 34.   Simulated pressure response for the “Box Model”. 

 

Notice that the pressure on the plate of the MEMS device is very 

close to the one expected around the rocking resonance. In the bending 

resonance, there is a huge drop, and the pressure is almost zero.  

 To investigate the pressure drop, both the dimensions and the 

acoustic domain boundary conditions were revised and another set of 

simulations were conducted. The results for various simulations run for the 

resonance frequencies of the rocking and bending modes (as contrasted to a 

range of frequencies) appear in Table 4. 

Frequency [Hz] Frequency [Hz] 
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Incident 
Angle 

Frequency Displacement Amplitude 
Ipsilateral Wing 

Dimensions of Acoustic 
Domain (Box) 

 Rocking 

Mode 

(Hz) 

Bending 

Mode 

(Hz) 

Rocking

Mode

(nm)

Bending

Mode

(nm)

45º 3,468 10,960 51.7 67.3 5mm x 5mm x 50μm

45º 3,468 10,960 51.4 825 9mm x 9mm x 90μm

45º 3,468 10,960 35.1 6 50mm x 50mm x 90μm

Table 4.   COMSOL simulation results for a solid plate device in Box Acoustic 
Domains of varying sizes. 

 

The oscillation amplitude in both modes presents abnormal 

fluctuation -- especially noticeable in the bending mode resonance. These results 

are attributed to the failure of the bottom radiation condition to totally eliminate 

reflections. An attempt to change all boundaries to “Radiation Condition” again 

failed to reproduce the results of the non-coupled simulations. In all simulations 

run, the wavefront exhibited clear departures from planar. This indicated that 

reflections from the sides of the box continued to be an issue. COMSOL 

Technical Support suggested the use of a Perfectly Matched Layer (PML) around 

the box. A PML is essentially a tool provided by the software to absorb unwanted 

reflections. This approach also failed to eliminate reflections inside the box. 

Therefore, because of the inability to simulate a perfect plane wave in the box, 

the method was abandoned. 

3. Sphere Domain Model Simulation 

a.  Simulation Settings 

To couple the sound field incident upon a MEMS device in this new 

approach, a spherical acoustic domain was drawn around it. Figure 35 shows 

this. The sound source was defined as a point source in the outer boundaries of 

the acoustic domain. An initial value of 8mm was used for the sphere radius. This 

placed the source in the far field of the device.  
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Figure 35.   Schematic of the “Sphere Domain” model, 8mm radius. 

 

 

The strength of the radiating point source was defined in terms of 

its power. For spherical wave propagation, the power required to achieve a given 

intensity as a function of the radial distance is given by: 

 
24 rπΠ = Ι                      (5.1) 

 

where Π is the power of the source; r is the distance from the device; and Ι  is the 

intensity of the sound at the device. The instantaneous intensity is given by 
2p
cρ

Ι = . Therefore, using r=8mm and ρc = 415 *
sec

kg m , the power of a point 

source required to produce a peak pressure of P = 1 Pa incident upon the device  
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is calculated to be 61.938 10x W−Π = . The point source settings appear in Figure 

36. As previously defined in Figure 22, the source was located at a 45º polar 

angle and a 0º azimuthal angle. 

 

 

Figure 36.   Point sound source settings and position. 

 

The coupling of the Acoustic Module and the MEMS Module was 

achieved as discussed in paragraph D.1. of this chapter. Again, the boundary 

conditions in the acoustics domain were selected to eliminate reflections coming 

from the sides of the sphere. The “Radiation Condition” was chosen as in the 

“Box Model,” but, in this case, the wave type was set to “spherical wave.” 

Point Sound source 

Device 



 64

Although in this simulation the sound source has a 0º azimuthal angle (ψ), this 

could easily be varied. A single sound source, or even multiple sources, with 

varying polar and azimuthal angles with respect to the device can be simulated 

with this method.  

The “Solid Stress - Strain” boundary settings remained the same as 

in previous simulations. The calculated sound pressure (p2) was only applied to 

the top plate of the device and damping, as calculated by Zhang’s formula, is 

applied under the device. The damping formula used in this simulation was only 

proportional to the plate velocity in an attempt to reproduce the results obtained 

by Dritsas. 

b. Results  

To reduce the solving time, the simulation focused on frequencies 

around the two resonance frequencies. In contrast to the box model, there were 

no obvious reflections from the sphere boundary. The results for an incident 

pressure of 1 Pa and an angle of 45º are tabulated in Table 5. Figure 37 plots the 

frequency response of the device. 

 
Incident 
Angle 

Frequency Displacement Amplitude 
Ipsilateral Wing 

Displacement Amplitude 
Contralateral Wing 

 Rocking 

Mode 

(Hz) 

Bending 

Mode 

(Hz) 

Rocking 

Mode

(nm)

Bending 

Mode

(nm)

Rocking  

Mode 

(nm) 

Bending 

Mode

(nm)

45º 3,450 10,900 1,703 4,570 1,685 4,566

Table 5.   COMSOL simulation results for a solid plate device in a sphere 
Acoustic Domain, radius 8 mm. 
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Figure 37.   Simulated frequency response for the 8mm radius “Sphere Model”. 

Figures 25 and 37 show that the frequency responses are in good 

agreement. Both of them present two distinct, sharp, resonance peaks with 

similar quality factors Q. In addition, the results presented in Table 2 from Dritsas 

show a very good agreement with the results in Table 5 in both bending and 

rocking mode resonance frequencies. On the other hand, the displacement 

amplitudes at resonance show an increase of about 130% for the rocking mode 

and 8% for the bending mode when compared to Dritsas’s results.  

To understand the large deviation in the resonance amplitudes -- 

especially that of the rocking mode -- it is essential to consider the effect of 

source distance on the pressure amplitude of the two plates. Although the source 

was placed in the far field of the device, there is still a small pressure difference 

between the ipsilateral and the contralateral plates. This pressure difference can 

be calculated using the geometry in Figure 38. 
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Figure 38.   Pressure difference at the two edges of the MEMS device. 

The pressure of a propagating spherical wave is inversely 

proportional to the distance from the source [Kinsler et al., 2000]. Therefore,  

                                                          AP
r

=                                                      (5.2)

where A is a proportionality factor, which depends on the amplitude of the source 

and r is the distance from the source. Therefore, the pressures P1 and P2 at the 

two opposite edges of the device are: 

1
1

AP
r

=     and    2
2

AP
r

= . 

The fractional pressure difference between these two points can be expressed 

as: 

                                     

⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟

−Δ ⎝ ⎠ ⎝ ⎠= = =2 1 2 12 1

1 1 1 1

1 1

A
r r r rP PP

P P A
r r

                          (5.3)

The distances 1 2,r r  can be calculated from the figure as: 

r1

r r2 
h

w
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2 2
1 ( cos ) ( sin )r r r wθ θ= + +    and 2 2

2 ( cos ) ( sin )r r r wθ θ= + −  

A simple Matlab program was written to calculate the expected 

pressure difference based on the calculations above. For the initial spherical 

radius, the result was an 18% difference in the incident pressure between the two 

edges. This pressure difference mainly affects the rocking mode amplitude since 

this mode is driven by the pressure difference between the plates. On the other 

hand, the bending mode is not as sensitive to the pressure difference since it is 

driven by the sum of the pressures on the two plates [Miles et al., 1995].  

The pressure difference between the edges of the device, as was 

calculated by COMSOL, appears in Figure 39. The pressure of the ipsilateral 

edge (green line) and the contralateral edge (blue line) are plotted against 

frequency. As expected, the percentage pressure difference between the two 

edges is about 18%.  

 

Figure 39.   Simulated pressure difference at the two edges of the MEMS device. 

An interesting phenomenon observed in the previous figures is the 

small disturbance in pressure. This disturbance exists exactly at the resonance 

frequencies but is more noticeable in the bending mode resonance. The reasons 

for this behavior are not precisely understood and need further investigation. 
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c. Results for Revised Sphere Radius 

To reduce the pressure difference between the two edges of the 

MEMS device, the radius of the sphere was increased to 3cm. At the same time, 

the power of the source was revised to correspond to the new distance. The 

expected percentage difference for that radius was estimated to be about 5%. 

The calculated Sound Pressure Level (SPL) at the resonance frequency of the 

rocking mode appears in Figure 40. The reference pressure is the standard for 

air (20 μPa).  

 

Figure 40.   Sound Pressure Level of the “Sphere Model” at f = 3,450 Hz. 

The image shows a spherical wave incident at a 45º angle upon the 

device. There are no obvious reflections coming from the sides of the spherical 

domain. This is an indication that the “Radiation” boundary condition works as 

Source 
Location 
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expected. To verify that the propagation is indeed spherical, a plot of the SPL 

versus distance from the source to the device at 3 cm was produced (Figure 41). 

The plot is linear with the expected slope for a spherical wave. 

 

Figure 41.   Sound Pressure Level over a diagonal at f = 3450 Hz. 

In Figure 42, the pressure difference between the two opposite 

edges of the device is plotted against frequency. As was expected, the 

percentage pressure difference is 5%.  Again, as described above, there is a 

small disturbance at the resonance frequency. 

 

Figure 42.   Pressure difference at the two edges of the MEMS Device with 
Acoustic Domain radius of 3 cm. 

 
3x10^ (-2)

Device 
Position 
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The physical behavior of the device at the two resonance 

frequencies appears in Figures 43 and 44. As expected, in the rocking mode the 

two plates move with the same amplitude and are 180º out-of-phase. In the 

bending mode, they move again with the same amplitude and are in-phase.  

 

Figure 43.   Device deformation in the rocking mode frequency – Sphere Model. 

 

Figure 44.   Device deformation in the bending mode frequency – Sphere Model. 
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Simulation results for various angles of incidence appear in Table 

6. A comparison with those presented in Table 2 shows that the rocking mode 

resonance is almost identical. There is a small difference of 200 Hz in the 

bending mode resonance. Furthermore, there is good agreement in the 

displacement amplitudes between the acoustic coupled simulations presented in 

Table 6 and the non-acoustic coupled simulations presented in Table 2. 

Specifically, there is an increase of 10% in the rocking mode amplitude and a 

decrease of 6% in the bending mode amplitude. The small increase in the 

rocking mode oscillation amplitude values, appearing in the current simulation, 

can be attributed to the small 5% pressure difference between the two plates.  

 
Incident 
Angle 

Frequency Displacement Amplitude 
Ipsilateral Wing 

Displacement Amplitude 
Contralateral Wing 

 Rocking 

Mode 

(Hz) 

Bending 

Mode 

(Hz) 

Rocking 

Mode 

(nm) 

Bending 

Mode 

(nm) 

Rocking 

Mode 

(nm) 

Bending 

Mode 

(nm) 

30 3,450 10,906 562 4,025 535 4,022 

45 3,450 10,906 777 4,025 759 4,022 

60 3,450 10,906 951 4,028 924 4,024 

80 3,450 10,906 1,082 4,026 1,055 4,018 

Table 6.   COMSOL simulation results for a solid plate device in a spherical 
Acoustic Domain for various angles of incidence, radius R=3 cm. 

A comparison between the frequency response of the non-acoustic 

coupled simulation conducted by Dritsas (red line) and the acoustic coupled 

simulation using the sphere model (blue line) appears in Figure 45. Both 

simulations were run for an incident pressure of 1 Pa, and the air density is 

corrected in both to ρ = 1.25 kg/m3. The angle of incidence is 45º. Just as in the 

comparison of the tabulated results, there is good agreement between the two. In 

the rocking mode, the resonance frequency value for the acoustic coupled 

simulation is 0.7% smaller than of the non-acoustic coupled. The amplitude is  
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16% larger. In the bending mode, the resonance frequency value for the acoustic 

coupled simulation is 2% smaller than of the non-acoustic coupled. The 

amplitude is 4% larger.  

 

Figure 45.   Comparison plot between the non-acoustic coupled and acoustic 
coupled simulation run using the Sphere Model. 

 

To compare the two models further, Figure 46 depicts the 

displacement amplitude of the two plates as a function of the incidence angle for 

the sphere model -- both for the rocking and bending mode resonance 

frequencies. The behavior of the device is similar to the one in Figure 26. In the 

rocking mode, the amplitude increases as the angle of incidence increases. In 

the bending mode, it essentially remains constant. 

 

Acoustic 
Coupled 

Non-
Acoustic 
Coupled 
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Figure 46.   Displacement versus angle of incidence for the rocking and bending 
mode – Sphere Model. 

Experimental results, as presented by Dritsas, appear in Figure 47. 

Although the exact incident pressure used to obtain this data is unknown, judging 

from the displacement amplitudes, the pressure was not the 1 Pa used for the 

simulation. Therefore, no direct comparison can be made between the 

displacement amplitudes. The graph shows the resonance frequencies and 

displacement amplitudes of two identical devices, i.e., Device #8 and Device #11. 

A difference of about 300 Hz is obvious in the figure between the bending mode 

resonances of the two presumably identical devices. There is also a noticeable 

difference in the rocking mode oscillation amplitude between the two. 
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Figure 47.   Frequency response of two identical sensors (After: Dritsas, 2008). 

Comparing the above presented experimental results with those 

achieved in this work, there are small but noticeable deviations in the resonance 

frequencies of the two modes. The simulated value for the rocking mode 

resonance is around 550Hz greater than the experimental value. This is a 

discrepancy of about 19%. Dritsas attributed this difference to variations in 

device thickness due to the construction procedure [Dritsas, 2008]. The 

discrepancy in the bending mode resonance was slightly smaller. The 

experimental value is smaller compared to the simulated by about 90 Hz for 

device #11 (i.e., 0.8% difference) and about 300 Hz for device #8 (i.e., 3% 

difference). This discrepancy can also be attributed to limitations in the precision 

with which the plate thicknesses can be controlled in the construction process. 

Apart from the plate and beam thickness, the size of the slit must also be 

considered. In simulations, increasing the size of the slit by 0.2 mm reduced the 

bending mode resonance by 1,000 Hz.  

Other experimental results provided by Professor Karunasiri for 

solid plate devices tested with an incident sound pressure of 0.1Pa were within 

an order of magnitude of the displacement amplitudes produced by the 

simulation. For an incident angle of 45º, the corresponding experimental 

amplitudes are 120 nm for the rocking mode and 200 nm for the bending mode. If 
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linear interpolation is conducted on the simulation results presented in Table 6 for 

an incident pressure of 0.1 Pa, the equivalent values are 76 nm – 36% lower -- 

and 402 nm – 50% higher --, respectively. 

4. Revised Damping Simulations 

Simulations conducted up to this point assumed that the acoustic pressure 

acted only on the top of the plate and that the acoustic pressure on the back was 

equal to zero. In addition, the air damping, implemented using Zhang’s formula, 

was made proportional to the plate velocity alone. Since the back is open and the 

distance to it small, the acoustic pressure on the bottom of the device should be 

fairly close to the pressure at the top. This pressure difference can be 

approximated by the expected free field pressure difference in the acoustic wave 

which is given by: 

  2sin sino o
fp p k x p x

c
π

Δ ≅ Δ = Δ , 

where po is the peak acoustic pressure, k is the wavenumber, f is the frequency, 

c is the free field sound speed, and xΔ is the distance between two points along 

the pressure wave. Referring back to the device dimensions shown in Figure 15, 

if the pressure difference between the top and bottom were simply given by the 

plate thickness alone, it would be extremely small. Given a plate thickness of 

10μm, the maximum pressure difference expressed as a fraction of the peak 

pressure would be approximately:  

  5 42 3500sin 1 10 6.4 10
343o

p Hz mmp s

π − −Δ ⋅
≅ × = ×  or 0.06% 

Even assuming that the acoustic pressure is transmitted to the back of the 

plate by traveling around the 500μm thick substrate, the fractional difference in 

the pressure would only be about 6%. Although this back of the envelope 

calculation fails to consider details on how the acoustic wave interacts with the 
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device, it is expected to give a reasonable upper limit to the pressure difference 

in this extremely low Reynold’s number regime. 

If the pressure difference between the top and bottom of the device is so 

small, the question then arises as to why the displacement amplitudes are not 

considerably smaller. To answer this question, this research proposes that the 

particle velocity of the air molecules moving past the plate provides an additional 

force on the plates in the direction of the air movement. Zhang’s formula for air 

damping was developed for a cantilever oscillating in still air – not for a cantilever 

vibrating from a sound wave incident. Therefore, the relevant parameter for 

calculating the drag is the difference between the air particle velocity and the 

plate velocity. This concept also appeared in the damping theory proposed by 

Newell. He stated that the rate at which momentum is exchanged between the 

molecules and the device is proportional to the difference in velocity between 

them.  

The drag force on one of the plates in the bending mode can be estimated 

using the above modification in Zhang’s formula. This is accomplished by 

assuming that the plate velocity varies linearly from the hinge of the device to the 

edge of the plate. This back of the envelope calculation appears in Appendix 1. It 

turns out that the force from the air particle velocity is about 1/20 of the force on 

the top plates due to the incident acoustic pressure for a pressure of  1 Pa. 

COMSOL calculates the velocity of the plates as w_t_smsld and the 

particle velocity as vz_acpr. Therefore, to implement the modified damping force, 

the formula for pda as presented in Table 1 was changed to: 

=
1
2mod b*π*(ro*mu*omega_smsld/2) *(w_t_smsld - vz_acpr)pda .  

In the new set of simulations, the “Sphere Model” was again used as the 

acoustics domain. The new boundary conditions, applied at the back of the  
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device, incorporate both the acoustic pressure as calculated by COMSOL and 

the modified damping formula. They appear in Figure 48. All other settings were 

unchanged. 

 

Figure 48.   Revised back boundary settings. 

 

The results for the revised simulation for an incident pressure of 1 Pa and 

angle of 45º appear in Table 7. The frequency response appears in Figure 49. 

 
Incident 
Angle 

Frequency Displacement Amplitude 
Ipsilateral Wing 

 Rocking 

Mode 

(Hz) 

Bending 

Mode 

(Hz) 

Rocking 

Mode 

(nm) 

Bending 

Mode 

(nm) 

45º 3,432 10,846 189 2,957 

Table 7.   COMSOL simulation results for a solid plate device in a sphere 
Acoustic Domain with revised boundary conditions. 
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Figure 49.   Frequency response for revised boundary settings. 

Compared with the results obtained from the original boundary conditions 

used by Dritsas, there is a small deviation in the resonance frequencies. The 

rocking mode resonance frequency decreased by 0.5% and the bending mode 

resonance frequency decreased by 0.3%. The displacement amplitudes were 

both lower – 75% lower for the rocking mode and 26% for the bending mode. 

The above amplitude results can be compared to the experimental ones 

presented in Dritsas’ thesis. These were achieved for a chip where the backing 

was removed. These results appear in Table 8 and Figure 50. The simulated 

values of the resonance frequencies appear to be larger – 22% for the rocking 

mode and 2% for the bending mode. Again, the deviation in the rocking mode 

resonance can be attributed to limitations in the precision with which the plate 

thicknesses can be controlled in the construction process, as previously 

discussed. 

 



 79

 

Table 8.   Experimental values as presented by Dritsas (From: Dritsas, 2008). 

 

Figure 50.   Experimental response for the rocking and bending mode (From: 
Dritsas, 2008). 

 

The displacement amplitude results were not included because of 

concerns about the accuracy of the calibration procedure used in the experiment. 

Table 9 is a comparison table for the results of simulations conducted with the 

different boundary conditions analyzed up to that point and the most accurate 

experimental results, provided by Professor Karunasiri. The incident pressure is 

1 Pa and the polar angle is 450. 
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  Non acoustic 
coupled 

simulation –
pressure applied 
only on the top 

of plate – 
damping 

proportional to 
plate velocity  

(Dritsas Model) 

Acoustic 
coupled 

simulation – 
sphere acoustic 

domain -
pressure applied 
only on the top 

of plate - 
damping 

proportional to 
plate velocity 

Acoustic 
coupled 

simulation - 
sphere acoustic 

domain -
pressure applied 
on the top plate 
AND the back of 

plate - plate 
velocity AND 

particle velocity  
used to calculate 
“damping” force 

Experimental 
results for a solid 

plate device  

(Extrapolated to 
an incident 

pressure of  1Pa) 

Resonance 
Frequency Value 

[Hz] 

Rocking 

Mode 

3,480 3,450 3,432 2,800 

 Bending 

Mode 

11,100 10,906 10,846 10,630 

Amplitude Value 

[nm] 

(Ipsilateral wing) 

Rocking 

Mode 

705 777 189 1,200 

 Bending 

Mode 

4,254 4,028 2,957 2,000 

Table 9.   Comparison of simulation and experimental results for the solid, 
non-backed MEMS device. 

  

5. Perforated Plate Simulation 

As mentioned previously, Shivok and Dritsas both tested devices with 

perforated plates. The main reason to consider such a design was to increase 

the displacement amplitude and control squeeze-film damping for devices 

without trenched substrate. The simulation methods developed in this thesis 

were also applied to the perforated plate design. This was an attempt to 

determine if it would be more successful than previous simulation methods in 

predicting the displacement amplitudes. 
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A design of one of the perforated devices (Device #10) appears in Figure 

51.  

 

 

Figure 51.   2-D representation of Device #10. 

 

The device consisted of 8,000 square holes per wing. The dimensions of 

each hole were 7μm x 7μm. The thickness was 10 μm. Unfortunately, COMSOL 

could not handle the requirements of such a dense perforation in the 

configuration used. During the initial step of extruding the design in 3-D, there 

were difficulties and error messages. 

To overcome the design problem and achieve a simulation of a perforated 

plate, an alternative design was used. The idea was to create a design with the 
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same percentage of area removed from each plate with only four large holes. 

The total area of holes in the initial design was 67 10x − m x 67 10x − m x 8000 = 
7 23.92 10x m− . Therefore, to achieve the same area with four holes, each hole 

was given an area of 8 29.8 10x m− . This design appears in Figure 52. 

 

Figure 52.   4-Hole equivalent of Device #10. 

To achieve a rough estimate of the rocking mode resonance frequency 

with the mass removed requires estimating the percent of silicon removed from 

the device. The mass is calculated as: 

m Adρ=  

where ρ is the density of the plate; A is the area of the plate; and d is the 

thickness. Therefore, the ratio of the initial mass of the plates, 1m , to the 

remaining mass of the plate, 2m , after perforation is: 

1 1 1

2 2 2

m A d A
m A d A

ρ
ρ

= =  
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Since the area of one of the solid plates is 6 2
1 1 10A x m−= and the total area 

of the holes per plate is 8 2 7 24 9.8 10 3.92 10holesA x x m m− −= = × , the remaining 

mass is: 

6 7
1

2 1 1 16
1

1 10 3.92 10 0.6
1 10

holesA A x xm m m m
A x

− −

−

− −
= = ≈  

The rocking mode resonance is proportional to the inverse square root of 

the mass, i.e.,: 

1
2r

r r
kf f m
m

−
∝ ⇒ ∝  

Therefore, the resonance frequency of the rocking mode is expected to increase 

to:  

−
= ⇒ = ⇒ =

1
2

2 _ 2 2(0.60) 1.291 3,450 4,453r r init r rf f f x Hz f Hz .  

The same calculation for the bending mode gives =2 13,900bf Hz . 

The simulation was conducted using the sphere model acoustics’ domain. 

The sound pressure calculated by COMSOL was applied to both the top and the 

bottom of the plate. To incorporate both the plate velocity and the particle 

velocity, drag was calculated using the modified Zhang formula.  

Table 10 shows the results of the simulation for an incidence pressure of 1 

Pa and an angle of 45º. Figure 53 presents the frequency response of the device. 

As expected, the resonance frequencies increased. The error between the 

analytical estimations based on the change in mass and the simulated values 

was 5% for the rocking mode and 10% for the bending mode. Considering the 

accuracy of the meshing used in this research’s model, these discrepancies are 

within reasonable limits. On the other hand, using denser meshing would vastly 

increase a solution time that  was already large. 
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Incident 
Angle 

Frequency Displacement Amplitude 
Ipsilateral Wing 

 Rocking

Mode

(Hz)

Bending

Mode

(Hz)

Rocking

Mode

(nm)

Bending 

Mode 

(nm) 

45º 4,684 12,511 17 282 

Table 10.   Simulated results for a 4-hole equivalent of Device #10 in a 
spherical Acoustic Domain. 

 

Figure 53.   Frequency response for a 4-hole equivalent of Device #10. 

Compared with those of a solid plate, the displacement amplitudes were 

reduced by 91% for both the rocking and bending modes. Note that both 

simulations were conducted under the same boundary conditions as those 

presented in paragraph D.4., i.e., the pressure is applied to both the top and the 

bottom of the plates. Drag is calculated using the modified Zhang’s formula to 

include the air particle velocity. This reduction, which was exhibited by Shivok’s 

experimental results, cannot be solely attributed to the reduction in the effective 

area of the plate. If this were the case, the reduction would be expected to be 

proportional to the percentage of the area removed, i.e., around 40%. It must 

nevertheless be noted that, the experimental results achieved by Shivok [2007], 

did not use sound excitation. 
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Running the above simulation with the boundary conditions defined by 

Dritsas, i.e., taking into account the pressure only on the top of the plate and 

calculating the damping using only the plate velocity, results in displacement 

amplitudes that are too high for the perforated plates. This suggests that the 

model used by Dritsas is not physically realistic. 

More recent experimental data on devices with perforated plates show 

significantly higher amplitude values than those presented by Shivok and Dritsas. 

This suggests that the plates in previous devices might not have been properly 

released from the substrate. Further investigation is thus required to determine 

the actual physical behavior of perforated designs.  

6. Device with Resonant Cavity 

As discussed in the theory chapter, a resonant cavity (Helmholtz 

resonator) acts as an amplifier for an incident sound wave. Therefore, it is 

conceivable that a resonant cavity might be capable of increasing the 

displacement amplitude of a MEMS device placed either inside it or at its 

opening. To test this hypothesis, a square cavity was designed as shown in 

Figure 54. The goal was to create a cavity with a resonance frequency close to a 

natural frequency of the device. 

In this work, the existing slit in the center of the plates and around the 

edges is used as the opening to the resonant cavity. To use the theory presented 

in Chapter III, the total open area is equated to a circular shape. 
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Figure 54.   Resonator cavity and MEMS device. 

The gap between the plates of the device and the supporting substrate 

was designed to be 75μm. Using this and the area of the center slit gives a total 

opening area, S, of −× 7 24.725 10 m . The equivalent radius, α, of a circular area S 

can be calculated using πα −= ×2 7 24.725 10 m  to yield α −≈ × 43.88 10 m . 

Assuming that the neck length is negligible, the effective length is 
41.6 6.2 10L L mα −′ = + = × . Applying these results to equation (3.18) and solving 

for the required volume of the cavity to achieve a resonance frequency of the 

rocking mode, 3.4kHz, gives 7 31.96 10V m−= × . A square cavity with this volume 

requires the dimensions of each side to be 6mm≈ . 

The Acoustic Domain was again chosen to be spherical, but to include the 

resonant cavity, the sphere radius was increased to 8.5 cm. The sound power 

was increased to produce an incident pressure of 1 Pa. As before, the calculated 

sound pressure was applied to both the top and the bottom of the plate. To 

incorporate both the plate velocity and the particle velocity, drag was calculated 

using the modified Zhang formula.  

6mm 

6mm 

6mm 
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The results of the simulation appear in Table 11 for three different angles 

of incidence. The frequency response at an incidence angle of 45º appears on 

Figure 55. 
Incident 
Angle 

Frequency Displacement Amplitude  
Ipsilateral Wing 

 Rocking 

Mode 

(Hz) 

Cavity 

Res. 

(Hz) 

Bending 

Mode 

(Hz) 

Rocking 

Mode

(nm)

Cavity 

Resonance 

(nm) 

Bending 

Mode 

(nm)

30º 3,440 -- 10,840 1,312 -- 8,418

45º 3,440 4,340 10,840 1,835 660 8,945

60º 3,440 -- 10,840 2,082 -- 9,845

Table 11.   Simulated results for a MEMS device backed by a resonator cavity. 

Comparing these results with those in Table 7, obtained with the same 

boundary conditions, it was observed that the resonance frequencies for both the 

rocking and bending modes remained almost the same. On the other hand, the 

displacement amplitude in both modes was amplified significantly. To be more 

precise, the amplitude of the rocking mode increased by a factor of 10 while that 

of the bending mode increased by a factor of 3. Another important observation is 

that there exists a third resonance peak at 4,340 Hz. This peak probably 

corresponds to the resonance frequency of the cavity. The displacement 

amplitude of the plate at that frequency is much lower than that at either of the 

two resonance frequencies of the device.  
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Figure 55.   Frequency response of a MEMS device mounted on a resonant 
cavity. 

Figure 56 presents the pressure amplitude value on the ipsilateral and the 

contralateral edges of the device versus frequency around the “cavity” resonance 

frequency. It is obvious that there is a large increase of the pressure on the 

plates of the device compared to the expected value -- around 1 Pa. More work 

is required to determine whether this result is due to pressure amplification by the 

device or by the faster air particle velocity streaming past the plates. 
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Figure 56.   Pressure amplitude on the device plates around the cavity resonance. 

The increase in the displacement amplitude of the plates could have been 

greater if the resonance frequency of the cavity matched that of either the rocking 

or the bending mode. In that case, however, the dimensions of the cavity for 

each mode would need to be changed. It may be preferable to have a resonance 

frequency for the cavity between the rocking and bending mode frequencies. 

One of the questions that arose in the above implementation is whether 

the direction finding capabilities of the device would be affected by the presence 

of the resonant cavity. The results presented in Table 10 indicate that the 

behavior of the rocking mode amplitude is as expected, i.e., as the angle of 

incidence increases, the amplitude also increases. On the other hand, the same 

behavior also appears in the bending mode, i.e., the amplitude remained almost 

constant in previous simulations and experiments. This might be an indication 

that the directionality of the device is adversely affected by the resonant cavity or 

that the theory needs to be adjusted for this new design. Further research is 

required to investigate this behavior.    
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VI. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 
WORK 

To improve upon previous simulations of directional acoustic MEMS 

devices, a new, more realistic approach was developed. The sound pressure 

radiated by an acoustic point source was directly coupled with the device. The 

choice of the acoustics domain posed an important challenge. The pressure 

amplitude had to be uniform over the surface of the device. Reflections from the 

simulated boundary of the acoustics domain had to be minimized. A spherical 

domain large enough to reduce the pressure difference between the two plates of 

the device to about 5% proved satisfactory. 

The new approach managed to couple the sound field to the device and to 

reproduce the satisfactory simulation results presented previously by Dritsas 

[2008]. In the rocking mode, the resonance frequency of the acoustic coupled 

simulation calculated to be 0.7% smaller than of the non-acoustic coupled. The 

displacement amplitude was calculated to be 16% larger. In the bending mode, 

the resonance frequency for the acoustic coupled simulation was 2% smaller 

than of the non-acoustic coupled. The amplitude was 4% larger.  

After demonstrating that the new acoustic coupled simulation reproduced 

previous simulation results when using identical boundary conditions, the 

boundary settings were revised in an attempt to make the model more realistic. 

This research made two changes. The first was to couple the acoustic pressure 

at the back of the plates as well as at the top. Since the device is not closed, the 

pressure at the back of the plate tends to equilibrate with the incidence sound 

pressure. In addition, the drag force was modified to include the effect of the 

sound particle velocity. The simulation results obtained with these new boundary 

settings were reasonably close to the previous results. The resonance 

frequencies were only slightly decreased – 0.5% for the rocking mode and 0.3% 

for the bending mode. The displacement amplitudes decreased by 75% and 

26%, respectfully. A comparison with experimental results reported by Dritsas 
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showed an increase in the simulated resonance frequencies – 22% for the 

rocking mode and 2% for the bending mode. The simulated amplitude of the 

rocking mode was approximately  6 times lower than the experimental value. The 

bending mode was about 47%  higher. 

Using the revised boundary conditions, an attempt was made to simulate 

the small displacement amplitudes that had been observed experimentally in 

devices with perforated plates. Indeed, when the device was perforated, 

simulation showed a significant decrease of the oscillation amplitude. The 

reduction in the displacement amplitude calculated to be about 91% for both 

modes. This exceeded the percentage decrease expected by the reduction of the 

effective surface area of the plates due to the holes. Therefore, this cannot be 

explained as a simple percentage reduction in the force applied upon them. 

Nevertheless, the recent experimental results that showed amplitude values 

significantly higher that those observed previously might lead to a revision of the 

boundary conditions that have to be applied on simulation of perforated plates. 

An important observation from both simulation and experiment is that 

these acoustic MEMS devices present sharp resonance peaks, i.e., large quality 

factors for both the rocking and the bending modes. Dritsas [2008] proposed 

obtaining a small quality factor through increased damping. This would achieve 

overlap of the resonance curves of the two modes. The assumption was that this 

would make the device effective in a larger frequency range. Since a reduced Q 

also results in reduced amplitude of oscillation, it might not be the most effective 

technique for attaining a large enough displacement amplitude for both modes 

simultaneously. 

As an alternative, this thesis proposes a design capable of increasing the 

displacement amplitude of the solid plate MEMS device based on the ability of a 

Helmholtz resonator to act as a pressure amplifier. Simulation results show that 

the pressure on the plates is amplified, and the displacement amplitude is 

significantly increased. The rocking mode amplitude was increased by a factor of 

ten and the bending mode by a factor of three. Further research on the behavior 
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of such a design is required, both through simulations and experiment, in order to 

verify the validity of these results and, more importantly, to investigate whether 

the directional capabilities of the device are adversely affected. 

One of the difficulties of these simulations is to find the most accurate 

expressions for the drag force on the plates due to the acoustic particle velocity. 

Zhang and Turner used COMSOL to calculate the expression for the drag force 

for a variety of cantilevers. Their method might be used for the MEMS 

microphone to obtain a solution of the full Navier-Stokes equations through 

COMSOL software to predict the drag force both in cases of solid plate and 

perforated devices. In this way, simulations would achieve better accuracy. 

Furthermore, the spherical domain constructed to couple the sound field to 

the device makes it easier to explore the directional capabilities of the device 

through simulation. Up to now, a single source has been assumed with an 

azimuthal angle of either zero or 180º. In the spherical Acoustic Domain, several 

sources with variance of power, distance to the source, and angles both polar 

and azimuthal with respect to the device, can be designed and simulated.  

In addition, more devices can be designed side by side in order to form an 

array of sensors. This array could be excited under the same sound field in order 

to investigate the feasibility of beamforming. 

Another important aspect that needs further investigation is the 

determination of the angle of incidence based on the displacement amplitudes of 

the ipsilateral and the contralateral plates. Dritsas calculated the angle of 

incidence with the use of formula (3.11) that requires a measurement of the 

incidence pressure for both the rocking and the bending modes. Assuming that 

the incident sound succeeded in exciting both modes, a separate pressure-

measuring device is needed to collect all the data necessary for determining the 

incident angle. Using the solution to the equations of motion described in the 

theory chapter, it would be preferable to determine how to find the angle from the 

amplitude difference between the two plates. 
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Finally, as mentioned in the modeling chapter, placing the device on the 

top of a resonant cavity shows potential for a significant increase in displacement 

amplitudes based on simulations. These results remain to be verified 

experimentally along with the directional capabilities of such a design. In addition, 

the resonant cavity design, if proven viable, can also act as a solution for the 

support of the device as it provides a rigid base with reasonably small 

dimensions. 
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APPENDIX 

BACK OF THE ENVELOPE CALCULATION FOR THE DAMPING FORCE 
BASED ON THE MODIFIED ZHANG FORMULA 

For a plane wave in air with a pressure of 1 Pa, the particle velocity is 
1 2.4

415ρ
= = =

⋅

p Pa mmu sc sPa
m

, 

the device speed would be 2 11,400 500 35.8π= ⋅ ⋅ =o
mmu Hz nm
s

. 

 
The relevant velocity for drag is the difference between the air particle 

velocity and the plate velocity. Thus, the force on a plate is proportional to 

( )plate airu u u− − = −Δ . 

 
Drag force using Turner’s equation: 

 
The force per unit length is given by F: 

 

2FC width
u

π ρωμ= =  

 
Thus, the net force on a plate could be estimated as: 

 

6 2 2 3 5 7
3

2
2

10 3.58 10 1.2 11.4 10 1.87 10 1 10

π ρωμ
π πρ μ

π π

−

− − − −

= ⋅ = ⋅ ⋅

= × × ⋅ × = ×
⋅

plate bend
widthF length u S u f

m kg kgm Hz N
s m m s

 

In terms of average pressure, this is 
7

6 2

1 10 0.1
10

−

−

×
= = =

F Np Pa
A m

. 

This damping force is 1/10 of the acoustic pressure. Because the velocity 

closer to the hinge will be smaller, this is an upper limit. The force on one of the 

plates in the bending mode could be estimated more accurately by assuming that 

the velocity varies linearly from the hinge to the end. This is the case as long as 

the plate is rigid (which is expected at these frequencies). 
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Then: 
/ 2

/ 2

3 2
3 3 5 3 8

3

2 2
2 2 2 42

10 3.58 1010 4 1.2 11.4 10 1.87 10 2.4 10 4.36 10
2 2

π ρωμ π ρωμ

π π

−

− −
− − − −

⎛ ⎞ ⎛ ⎞⎜ ⎟= − = − =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
⎛ ⎞×

⋅ × ⋅ × × − = − ×⎜ ⎟⋅ ⎝ ⎠

∫
L

L
plate bend air air plate

o

width widthu L LF u x dx u uL

kg kg m mm Hz m N
m m s

 

This is equivalent to an average pressure of 
8

6 2

4.36 10 0.05
10

−

−

×
= = ≈

F Np Pa
A m

. 
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