
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2007-09

TwiddleNet metadata tagging and data

dissemination in mobile device networks

Clotfelter, Christopher T.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/3333



 

 
NAVAL 

POSTGRADUATE 
SCHOOL 

 
MONTEREY, CALIFORNIA 

 

 
 

THESIS 
 

Approved for public release; distribution is unlimited. 

TWIDDLENET: METADATA TAGGING AND DATA 
DISSEMINATION IN MOBILE DEVICE NETWORKS 

 
by 
 

Christopher T. Clotfelter 
Jonathon E. Towle 

 
September 2007 

 
 

 Thesis Advisor:   Gurminder Singh 
 Co-Advisor: Arijit Das 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection 
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction 
Project (0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
September 2007 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE  
Twiddlenet: Metadata Tagging and Data Dissemination in Mobile Device 
Networks 
6. AUTHOR(S)   
Clotfelter, Christopher T. 
Towle, Jonathon E. 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the 
official policy or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release, distribution is unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words)  

Current mobile devices are much more than the limited modality communication tools or digital 
assistants they were only a few years ago; instead they offer a range of content capture capabilities, 
including high resolution photos, videos and sound recordings.  Their communication modalities and 
processing power have also evolved significantly.  Modern mobile devices are very capable platforms, 
many surpassing their desktop cousins only a few years removed.  TwiddleNet is a distributed architecture 
of personal servers that harnesses the power of these mobile devices, enabling real time information 
dissemination and file sharing of multiple data types from commercial-off-the-shelf platforms. 

This thesis focuses on two specific issues of the TwiddleNet design; metadata tagging and data 
dissemination.  Through a combination of automatically generated and user input metadata tag values, 
TwiddleNet users can locate files across participating devices.  Metaphor appropriate custom tags can be 
added as needed to insure efficient, rich and successful file searches.  Intelligent data dissemination 
algorithms provide context sensitive governance to the file transfer scheme.  Smart dissemination 
reconciles device and operational states with the amount of requested data and content to send, enabling 
providers to meet their most pressing needs, whether that is continuing to generate content or servicing 
requests. 

15. NUMBER OF 
PAGES 

87 

14. SUBJECT TERMS  
Mobile file sharing, Distributed computing, Peer-to-peer networking, Tagging, Metadata, Data 
dissemination 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release; distribution is unlimited 
 
 

TWIDDLENET: METADATA TAGGING AND DATA DISSEMINATION IN 
MOBILE DEVICE NETWORKS 

 
Jonathan E. Towle 

Captain, United States Maine Corps 
B.S., California State University Humboldt  

 
Christopher T. Clotfelter 

Lieutenant, United States Navy 
B.S., University of Tennessee at Knoxville 

 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN COMPUTER SCIENCE 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
September 2007 

 
 
 

Authors:  Jonathan E. Towle 
 
   Christopher T. Clotfelter 

 
 

Approved by:  Dr. Gurminder Singh 
   Thesis Advisor 
 
 
   Arijit Das 
    Co-Advisor 

 
 

    Dr. Peter J. Denning 
    Chairman, Department of Computer Science 



 iv

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 

Current mobile devices are much more than the limited modality 

communication tools or digital assistants they were only a few years ago; instead 

they offer a range of content capture capabilities, including high resolution 

photos, videos and sound recordings.  Their communication modalities and 

processing power have also evolved significantly.  Modern mobile devices are 

very capable platforms, many surpassing their desktop cousins only a few years 

removed.  TwiddleNet is a distributed architecture of personal servers that 

harnesses the power of these mobile devices, enabling real time information 

dissemination and file sharing of multiple data types from commercial-off-the-

shelf platforms. 

This thesis focuses on two specific issues of the TwiddleNet design; 

metadata tagging and data dissemination.  Through a combination of 

automatically generated and user input metadata tag values, TwiddleNet users 

can locate files across participating devices.  Metaphor appropriate custom tags 

can be added as needed to insure efficient, rich and successful file searches.  

Intelligent data dissemination algorithms provide context sensitive governance to 

the file transfer scheme.  Smart dissemination reconciles device and operational 

states with the amount of requested data and content to send, enabling providers 

to meet their most pressing needs, whether that is continuing to generate content 

or servicing requests. 



 vi

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii

TABLE OF CONTENTS 

I. INTRODUCTION............................................................................................. 1 
A. OBJECTIVES....................................................................................... 3 
B. SCENARIOS ........................................................................................ 4 

1. Disaster Response .................................................................. 4 
2. Military Applications................................................................ 6 

C. RESEARCH QUESTIONS ................................................................... 7 
D. SCOPE AND METHODOLOGY........................................................... 8 
E. ORGANIZATION.................................................................................. 8 

II. BACKGROUND............................................................................................ 11 
A. METADATA, TAGGING AND SYNDICATION .................................. 11 

1. General Metadata Issues....................................................... 12 
2. Syndication and TwiddleNet ................................................. 14 
3. Tagging Issues Specific to the TwiddleNet Context........... 15 

B. DATA DISSEMINATION.................................................................... 17 
1. Data Dissemination Models .................................................. 17 
2. Peer-To-Peer Architectures .................................................. 20 
3. Issues Facing Data Dissemination in a Mobile 

Environment........................................................................... 21 
4. Data Dissemination Issues Specific to TwiddleNet ............ 23 

III. TWIDDLENET OVERVIEW .......................................................................... 25 
A. CONCEPT.......................................................................................... 25 
B. CONTENT TAGGING AND MOBILE DEVICES ................................ 26 
C. PROTOCOL AND LANGUAGE......................................................... 27 
D. ARCHITECTURE ............................................................................... 28 

1. Device Specifications............................................................ 28 
2. Infrastructure ......................................................................... 28 

E. CLIENT AND TWIDDLENET CONTENT PRODUCER...................... 29 
F. TWIDDLENET PORTAL .................................................................... 32 

1. Mobile Device Implementation ............................................. 33 
G. MODALITIES ..................................................................................... 33 

1. TwiddleNet Operability Obstacles........................................ 33 
2. Modality Interoperability ....................................................... 35 

IV.  TAGGING ..................................................................................................... 39 
A. PROVISIONING ................................................................................. 39 
B. METADATA COHERENCE ............................................................... 41 
C. METADATA LIFECYCLE PHASES (WHEN) .................................... 42 
D. METADATA MANDATE (AUTHORITY) ............................................ 44 
E. METADATA GENERATION METHODOLOGY (HOW) ..................... 46 
F. SYNDICATION................................................................................... 47 
G. ADD, DELETE, MODIFY.................................................................... 48 
H. METADATA GENERATION PROCESS FLOW ................................ 49 



 viii

1. Step One: Provisioning Document Setup............................ 49 
2. Step Two: Content Generation ............................................. 49 
3. Step Three: OnGeneration Tagging and Metadata 

Evolution ................................................................................ 50 
4. Step Four: Metadata Finalization and Transmission .......... 51 

V.  DATA DISTRIBUTION.................................................................................. 53 
A. DISTRIBUTION TECHNIQUES.......................................................... 53 

1. Posting Content ..................................................................... 53 
2. Viewing Shared Documents.................................................. 54 

B. RESOURCE MANAGEMENT TECHNIQUES.................................... 57 
C. SENDING OCCASION OPTIONS...................................................... 58 

VI.  SUMMARY AND CONCLUSIONS ............................................................... 61 
A. FUTURE WORK................................................................................. 61 

1. Portal Caching and Intelligent File Servicing ...................... 62 
2. Syndication ............................................................................ 63 
3. Subnets and Handoff............................................................. 63 
4. File Transfer ........................................................................... 64 
5. System Log In ........................................................................ 64 
6. Security .................................................................................. 65 
7. Single Point of Failure........................................................... 65 

APPENDIX .............................................................................................................. 67 

LIST OF REFERENCES.......................................................................................... 69 

INITIAL DISTRIBUTION LIST ................................................................................. 71 
 
 
 
 
 
 
 
 



 ix

LIST OF FIGURES 

Figure 1. Power breakdown for a mobile device. From [1] ................................ 22 
Figure 2. TwiddleNet Architecture Block Diagram ............................................. 26 
Figure 3. Generalized TwiddleNet infrastructure ............................................... 29 
Figure 4. Main TwiddleNet User Interface ......................................................... 32 
Figure 5. Accessibility obstacles to TwiddleNet ................................................. 34 
Figure 6. Addressability obstacles to TwiddleNet .............................................. 35 
Figure 7. Peer-to-peer connection on same subnet........................................... 36 
Figure 8. Sample Tags ...................................................................................... 41 
Figure 9. Provisioning Document and Generated Metadata.............................. 41 
Figure 10. Regular expression controlling inputs of type email ........................... 42 
Figure 11. Predefined, on generation, and modify interfaces .............................. 43 
Figure 12. Automatic tag selection interface........................................................ 45 
Figure 13. Mandatory contextual tags (predefined) ............................................. 45 
Figure 14. Sample Atom entry resulting from contained photo capture. .............. 47 
Figure 15. Provisioning document set up ............................................................ 49 
Figure 16. Metadata file creation based on shared photo.................................... 50 
Figure 17. OnGeneration tag population and ongoing modification..................... 50 
Figure 18. Metadata finalization and transmission............................................... 51 
Figure 19. Posting process state diagram. .......................................................... 54 
Figure 20. Sample result from a TwiddleNet search request. .............................. 55 
Figure 21. Pulling data from the portal and mobile server. .................................. 55 
Figure 22. Automatic update from portal. ............................................................ 56 
Figure 23. Alert push and data pull sequence ..................................................... 57 
 
 
 
 
 
 
 



 x

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xi

LIST OF TABLES 

Table 1. TwiddleNet Test Devices.................................................................... 28 
Table 2. TwiddleNet operability table ............................................................... 37 
 



 xii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xiii

ACKNOWLEDGMENTS 

I (Jonathan E. Towle) would like to thank Rich Betancourt and Rob Myers 

for their tremendous amount of effort devoted to the TwiddleNet project, without 

your help TwiddleNet would not be where it is today.  More importantly, I would 

like to thank my wife, Sarah, for her continued support and patience during the 

late nights and short weekends. 

I (Chris Clotfelter) would like to thank my wife and son for being so tolerant 

of the time I spent at school studying and writing.  I would like to thank Richard 

Betancourt and Rob Myers as well; they were key in the development of the 

project, and I appreciate their help. 

Finally, both of us would like to thank Professor Gurminder Singh and Arijit 

Das for their guidance, insight and inspiration. 

 



 xiv

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
  



1 

I. INTRODUCTION  

Possession of a mobile device, whether it is a cell phone, smart phone, or 

personal digital assistant (PDA), has become the norm in many societies.  The 

use of mobile devices has grown so much that not owning a mobile device is 

considered unusual.  Yet, what is not so readily apparent is the ever increasing 

flexibility these devices offer to their users.  The current mobile devices are much 

more than the limited modality communication tools or digital assistants they 

were a few years ago; instead they offer a range of content capture capabilities, 

including high resolution photos, videos and sound recordings.  Their 

communication modalities have also evolved significantly.  Mobile devices may 

frequently offer multiple communication modalities including Bluetooth, Wi-Fi, or 

digital data link.  Further, the processing capabilities of these platforms continue 

to improve, surpassing desktop processors only a few years removed.  Complex 

tasks not traditionally thought of as within the forte of mobility are now attainable 

and modern mobility is poised to offer true distributed computing  

Media file sharing (photographs, movies, etc.) is a burgeoning social 

phenomenon in which participants can upload their content to third party servers 

to be shared via their websites.  FlickR and YouTube are examples of this trend; 

proprietary media is uploaded to the respective server with accompanying 

descriptive tags, and that media is then made available to the public at large.  

While this model provides great data dissemination, it also has several 

drawbacks.  First, providing media to these services often deprives the creator of 

ownership as part of the host agreement.  So while their content might be widely 

consumed, there is no benefit conferred to the generator.  Second, dealing with 

hosted services requires users to capture content and then upload it. This takes 

time and effort and leads to delay in dissemination of content/information. 

Given the direction of these trends, it is reasonable to assume that content 

generated exclusively by mobile devices will increasingly appear in these shared 

forums.  Nevertheless, the web-service model for content sharing is out of sync 



2 

with the distributed nature of modern mobility.  The computational power of most 

mobile devices and their broad communication modalities can allow them to host 

their own shared content on resident personal servers, without the need for 

content upload to a third party service.  This model allows content creators to 

share content without relinquishing ownership and can also provide subscribers 

with instant content alert.   

The concept of mobile device file sharing is not without its own set of 

difficulties stemming from resource limitations inherent to the platform and the 

transmission medium.  The most limiting factors in this area are power and 

bandwidth; mobile devices must always be cognizant of power consumption, and 

available bandwidth strictly governs the amount of traffic that a device can send 

and receive.  Any mobile file sharing system must observe these limitations and 

employ some means of conserving these resources.  One method to conserve 

bandwidth is to minimize the number and size of necessary transmissions to 

locate and acquire content; power can be managed by choosing when and how 

to conduct these transmissions. 

In the context of a file sharing infrastructure, these goals may be achieved 

by using metadata to represent generated content.  This metadata can include 

sufficient detail to describe the shared file, its size, residence, and other 

information pertinent to requesting clients.  Content represented in this manner 

may be searched for with the same effectiveness as the actual file, but bandwidth 

demands to send and receive metadata are substantially less.  So exchanges 

between personal servers and requesting clients can provide fully detailed 

information prior to providing the actual content, while minimizing bandwidth 

needs. 

An intelligent data dissemination scheme can effectively manage power 

demands of this type of architecture.  The nature of mobility presents special 

challenges in this regard.  Depending on the device state, its remaining power 

and available bandwidth, providers may sometimes have to choose between 

providing content, providing metadata, or simply being able to remain operative.  



3 

Smart dissemination reconciles device and operational states with the amount of 

requested data and content to send, enabling providers to meet their most 

pressing needs, whether that is continuing to generate content or servicing 

requests. 

 

A. OBJECTIVES 
 

The objective of this thesis is to develop tagging and data dissemination 

parts of a distributed mobile server network, called TwiddleNet.  TwiddleNet is 

designed to incorporate the abilities of mobile devices to perform real-time 

content capture and publishing, maintain full owner control of the content and 

allow users to subscribe, search, view and download content from other 

members in a peer-to-peer (P2P) fashion.  The name was chosen to reflect the 

observance that the computational power of most mobile devices spends its time 

“twiddling” away in your pocket. 

A key consideration in the development of the TwiddleNet architecture 

was the context in which it would be employed.  Mobility presents special 

concerns that are not present in traditional computing; for instance, 

communication modalities are more varied in the mobile world.  Devices 

commonly have Bluetooth, Wi-Fi or datalink access, or some combination 

thereof.  Power is also a concern; a file sharing architecture designed for mobile 

use must address these issues.  The TwiddleNet concept approaches these 

constraints from two distinct directions. 

One design feature addressing the TwiddleNet mobile context is the 

implementation of shared file metadata.  In traditional file sharing architectures, 

shared content in its entirety is uploaded to a third party server.  Conversely, 

TwiddleNet provides only metadata to a central portal.  This minimizes bandwidth 

demands by providing thorough descriptive information without the need for 

uploading content in its entirety.  Once reaching the portal these metadata tags 

can form a networked file architecture.  File information can then be searched in 



4 

a non-hierarchical fashion, enabling faster and more directed search and 

consequently improving network bandwidth efficiency.  The tagging scheme will 

allow the user to share the maximum amount of information about a document 

while using the minimal amount of both bandwidth and power. 

A second design feature is the development of algorithms that allow the 

user to maximize the device’s power assets without limiting the user’s freedom to 

use the application as he or she wishes.  This scheme should take into 

consideration the current state of the device; is the battery fully charged or is it 

almost dead? Is there a connection available and if so, what signal strength is 

available?  The algorithm should also be adjustable to the users’ preferences 

given there current situation; does the user wish to share a photo as soon as he 

takes it or does he want to wait until he has taken several and send them all at 

once?   

 

B. SCENARIOS 
 

The TwiddleNet application can be used in many different scenarios such 

as social networking, law enforcement and military applications, emergency and 

disaster response and business applications.  We designed TwiddleNet with two 

primary scenarios in mind.  These two scenarios are disaster response and small 

unit military applications. 

 

1. Disaster Response 
Jon is the head of a disaster response team that is responding to a small 

town that has just been hit by a hurricane.  The team of first responders includes 

local law enforcement agencies, fire departments, emergency medical personnel, 

utility workers and engineering experts, each of whom are equipped with a WiFi 

enabled smart phone.  Jon and his team have deployed a system of portable, 

battery operated WiFi access points throughout the effected area.  The team of 

first responders is dispersed throughout the disaster area assessing damage.  



5 

Bob is a utility worker assessing the damage to the power lines on the west side 

of town.  As he is traveling to an area without power he spots a washed out road.  

Bob takes several pictures of the road damage, labels them and shares them on 

TwiddleNet.  The TwiddleNet application automatically tags the images with 

date/time, location and author information.  Jon is heading up the command post 

and gets a notification that new pictures are available of road damage.  Sarah, 

head of the infrastructure assessment team, also gets a notification and can 

make an initial assessment of the damage and dispatch a repair team to the 

location or place it lower on a prioritized list, all in real time based on several 

digital photos.   

As a first responder to a natural disaster such as a hurricane, tornado or 

earthquake, you need current, real time information in order to asses the damage 

and properly allocate assets.  With TwiddleNet in place and all field 

representatives members of the network armed with a smart phone/PDA, 

information would be able to flow freely from member to member and from 

members to command post.  Given the hurricane response scenario above, there 

will be extensive damage spread over a large area.  This damage would possibly 

include human casualties, structural damage to residential and commercial 

buildings, infrastructure damage to roads, utilities and levees, and 

communications system damage to telephone and cellular structures.  Using 

TwiddleNet, the responding agencies can deploy portable, battery powered 

wireless access points using 802.11 to establish the network.  Once the 

TwiddleNet network is in place, field representatives from the different 

responding agencies can begin to take and share pictures of damage from their 

area of responsibility.  Since TwiddleNet allows the user to label the images with 

summaries and key words any other user could search the TwiddleNet data base 

via keywords such as flooding, and immediately see the images from the field.  

TwiddleNet can also be used to send notices to subscribing clients when new 

pictures of interest become available.  If a user were to subscribe to images that 

pertain to flooding then they would automatically receive a notification on their 

smart phone that new images were available and would be able to view them 



6 

immediately.  Now multiply this ability by the number of personnel in the field 

(there could be hundreds).  A command post would receive real-time information 

on damage assessments throughout the entire area of interest.  This real time 

data would allow the decision makers to prioritize and allocate emergency and 

recovery assets to the proper areas with minimal delay.   

 

2. Military Applications 
Alpha Company is tasked with patrolling a five block urban battle zone.  

They have subdivided the area in to two areas with day and night patrols, each 

consisting of a squad size element.  Each squad is equipped with several smart 

phones and a vehicle mounted wireless access point.  Prior to the mornings 

patrol, the squad leaders review previous patrols imagery of the area.  During the 

patrol the squad takes photos of the current situation, to include several 

suspicious men.  Alpha Companies command post and intelligence shop receive 

instant notifications of the new images and can now compare the photos of the 

suspects against a database of known and suspected insurgents.  As the patrol 

continues to take photos at pre-designated check points the command post is 

able to track their progress and monitor the larger situation by observing 

numerous patrols at once.   For instance, they would be observing the behavior 

of the crowds or lack there of. 

Distributed operations call for greater dispersion, smaller teams, and 

flexible communications packages. In spite of this, most units do not have the 

equipment or enough trained radio operators to provide reliable communications 

if the dispersion is over too great an area. For example, the table of equipment 

and the table of organization for an infantry platoon do not provide enough radios 

and trained radio operators to allow proper command and control (C2) if the unit 

operates as elements smaller than a squad beyond a certain range. This 

capability gap can be filled with an Internet Protocol (IP) based wireless data 

architecture hosting a distributed data dissemination application. Stated simply, 

there are a multitude of handheld devices on the market that can communicate in 

three or more frequency bands. It would take only a few vehicle mounted base 



7 

stations to create a wireless IP based architecture to support these multi-band 

mobile devices. With the appropriate encryption, standing up this network would 

be no different than establishing any other radio net, but in this case the radios 

are WiFi or WiMax capable mobile devices.  

This “net” could be used to augment intra-team/platoon communications 

as well as be used to transmit what every Combat Operations Center (COC) 

wants and cannot get fast enough; real-time imagery. Additionally, since the 

network is IP based, the right dispersion of base stations can allow a mobile 

device to reach any other device in range of a base station even if the devices 

are not in range of each other. This is far more flexible than any doctrinal VHF 

radio net that requires a dedicated re-transmission site to accomplish the same 

thing. However, this flexibility alone does not accomplish anything for a unit 

unless there are applications running on this “net” that facilitate C2. The 

TwiddleNet application, which can run on any wireless IP based network, is such 

an application. Comparable to the various chat applications that exploit IP 

network infrastructures, TwiddleNet can enable another type of rapid data 

dissemination over such a network. 

 

C. RESEARCH QUESTIONS 
 

1. How can an automated tagging scheme be implemented such that it 

minimizes interference with ongoing user generated data creation? 

2. What syndication formats are currently in use?  Identify the formats that 

are most suitable to the TwiddleNet concept and allow for standardized 

syndication and tagging. 

3. With respect to the TwiddleNet architecture, what are the best techniques 

for achieving information distribution?  



8 

4. Given the limitations of mobile devices, when is the ideal time to transfer 

data from the device in regards to signal strength, power level and file 

size? 

5. How does the current context of the device affect the devices ability to 

send and receive data? I.e., is there a connection? Is the device’s 

connection currently being used? 

 
D. SCOPE AND METHODOLOGY 

 

The TwiddleNet system is designed to allow real-time file sharing between 

mobile devices.  Interface methodology was tailored to that end, within the 

governance of these qualitative principals:  1) Generated content should be 

quickly and easily tagged.  2) Tagging should not interfere with ongoing content 

generation.  3) Offered metadata sets must be readily expandable; related device 

provisioning should be minimized.  Device sensitive methodology was also 

employed, with the goal of optimizing resources within the context of a potentially 

aggressive sharing environment.  Data dissemination algorithms must maximize 

device resources while not severely curtailing file servicing. 

The scope of this thesis will include an investigation of mobile servers, 

metadata generation and file sharing models. 

 

E. ORGANIZATION 
 

The chapters in this thesis are arranged according to the following topics.  

Chapter II is a review of previous work related to mobile servers, metadata 

generation, and file sharing models.  Chapter III is an overview of the TwiddleNet 

system.  This chapter will describe the TwiddleNet concept, detail the system 

architecture and discuss aspects of the application software development.  

Chapter IV will detail the metadata collection process.  This chapter will discuss 

general issues associated with metadata generation and tagging, and how those 



9 

issues were addressed in the TwiddleNet application.  Chapter V deals with the 

data distribution process.  This chapter will discuss device limitations and how 

those limitations were approached in the context of metadata and content 

distribution.  Chapter VI completes this thesis with overarching conclusions and 

recommendations for future work. 



10 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



11 

II. BACKGROUND 

This section provides an introduction to metadata, tagging and mobile 

data dissemination and issues related to these topics.  Additional considerations 

specific to the TwiddleNet architecture and its leveraging of these concepts will 

also be addressed, as will strategies applied to mitigate these concerns.  

 
A. METADATA, TAGGING AND SYNDICATION 

 

Metadata is data that describes data.  Consider a human being as a type 

of data, for instance.  Certain characteristics of that person are simple facts, such 

as their height, weight, hair color, fingerprint pattern or eye color.  These 

characteristics can be described for all human beings and may be regarded as 

fundamental metadata.  Nevertheless, other descriptors that may be accurately 

applied to that person are not so easily classified.  Where is that person currently 

located?  How hungry are they?  What is their current emotional state?  Data 

such as these may be considered as contextual; that is, these data vary 

depending on the context in which that human is currently found.  Low level data 

is referred to as syntactic data and is often easily automated.  Higher level 

contextual data is referred to as semantic data, and is frequently provided via 

manual user input [2]. 

Tagging is the process of assigning metadata to an object.  Again 

consider a human being as the data object of interest.  Recording the data 

previously enumerated onto an id card is a similar process to logical object 

tagging; descriptive metadata has been assembled and recorded on a single 

medium that is assigned to that person.  This metadata can either be manually or 

automatically generated, and may follow a well defined vocabulary or tag 

provider group.  In other instances, such as social websites, tags may not follow 

a defined vocabulary or may be provided by visitors to the site.  The latter type of 

scheme is called collaborative tagging [3] and may lead to meta noise, a situation 



12 

in which content searches become less efficient due to irrelevant or incorrect 

tagging.  Collaborative tagging is beyond the scope of this thesis; our tags will 

either be automatically generated or will follow a predefined set of input rules, if 

not a specific vocabulary. 

Syndication refers to the creation and offering of metadata feeds on 

websites.  Feeds are collections of individually grouped metadata, each of which 

describes a specific piece of content hosted by the site.  These feeds interact 

with many browsers and other software applications to provide automatic content 

download to subscribing clients.  So if a feed were offered on a particular 

website, then updated content would be periodically sent to subscribers 

automatically as part of browser interaction with the site.  The two most widely 

accepted syndication formats are RSS (Really Simple Syndication or alternatively 

RDF Site Survey) and the Atom Publishing Format, or Atom for short [4, 5]. 

 

1. General Metadata Issues 
One of the key strengths of using metadata with distributed information 

systems is its searchability.  Metadata can readily be parsed into individual 

content descriptors and placed within a database, allowing content to be easily 

located.  A collection of files then becomes a networked structure, in which data 

may be located based on some combination of descriptors.  Searches in this type 

of system generally return result sets that more closely match what the user 

wants than searches in traditional folder based, or hierarchical, data 

organizational schemes. 

Some methods of generating metadata can be problematic.  For instance, 

user defined semantic metadata can sometimes produce incoherent data leading 

to meta noise and reducing search effectiveness.  This problem can be manifest 

even in non-social, owner-driven tagging schemes.  Consider a tag intended to 

describe the height of a photographed mountain; owner-driven responses could 

reasonably be “very”, “10000ft”, “6000mtr” or “!@#$”.  But providing strict  

vocabularies can curtail metadata expressiveness.  So even in owner-driven 



13 

tagging schemes, some means of guaranteeing meaningful tags that still retain 

expressive power must be employed. 

Lack of metadata expressiveness is rooted in the difference between 

semantic and syntactic tags, a gulf referred to as the semantic gap [2].  Semantic 

data can be very naturally descriptive, but cannot easily provide numerous file 

specifics (size, resolution, and the like) without a great deal of effort.  Without this 

amplifying information, a document cannot be fully described; while the user may 

have a good understanding of the content, he does not have sufficient 

information to determine if the file should be downloaded in the context of his 

current device state.  Semantic data must also be useful; hair color, for instance, 

is not a useful tag heading when viewing an image of a vehicle.  Conversely, files 

described only by syntactic information lack meaning [6]; a user can determine if 

the file is downloadable, but not if the file actually provides the desired 

information.  Metadata must have elements of both syntactic and useful semantic 

tags to be relevant, meaningful and retain powerful expression [6, 7]. 

But user supplied metadata is often difficult to obtain.  Users have 

generally responded unfavorably to tagging when manual input was required, 

either due to time limitations or to simple unwillingness [6, 8].  However, only 

applying syntactic tags at generation time and allowing for amplifying notations 

later on has been shown to lead to data erosion [6, 8].  By providing durable user 

defined tags prior to a generation session this effect could be mitigated 

somewhat.  These contextual tags, manually entered and modifiable at any time, 

could be applied to all generated content.  In this fashion, each piece of outgoing 

metadata would have a mixture of contextual and syntactic tags, allowing even 

very lean transmissions a baseline level of expressiveness.  These durable tags 

also add relevance to the content, serving to minimize data erosion due to 

deferred tagging where the creator may need some hints as to the context in 

which the content was generated. 

The perception of when metadata should be assigned is another issue in 

the tagging process.  In terms of media content, automatic tags are most often 



14 

discussed as being provided at generation time; contextual tags are generally 

discussed in terms of generation time, or at some later time when tags for a 

batch of content might be populated in a single sitting.  Yet, it is useful to think of 

tagging as an ongoing process, both from the semantic and syntactic 

perspectives.  Content may then be described at appropriate times in its 

evolution, and descriptors can be changed or enhanced to reflect changes to the 

parent file.  Metadata then becomes a living document, itself describing evolving 

content. 

 

2. Syndication and TwiddleNet 
Syndication feeds contain a collection of eXtensible Markup Language 

(XML) structures referred to as Atom entries.  Each entry contains a set of 

prescribed XML tags.  Browsers that support the Atom standard interpret the 

information presented in each entry to determine the described file particulars (its 

residence, size, when it was last updated) and the actions the browser must take.  

A “pod” refers to the content described in the Atom entry, commonly media 

(hence the derived term “podcasting”).  Nevertheless, there is no restriction in the 

Atom standard as to the type of file that can be contained.  Files are fetched 

based on the Uniform Resource Locator (URL) mandated by the standard to be 

part of the entry.  Atom enabled browsers generally perform updates as 

prescribed by the feed to which they are subscribed; yet, updates can be sought 

manually at user demand. 

Atom has several desirable features: 1) It is fully extensible.  By applying a 

namespace to the metadata, administrators can freely apply non-Atom-standard 

tags.  2) It is based on Representational State Transfer (REST) [4, 5], e.g. its 

interfaces are defined using only XML and HyperText Transfer Protocol (HTTP).  

Metadata posting and retrieving can then be conducted using standard HTTP 

PUT, GET, POST and DELETE.  3) It supports podcasting of any file type.  This 

provides a means to share files of all types, instead of only a limited subset.  

Incorporating syndication into the TwiddleNet design could provide a ready 



15 

solution widespread data outreach, without the need for proprietary code.  Atom 

is the syndication standard to which TwiddleNet metadata is constructed. 

 

3. Tagging Issues Specific to the TwiddleNet Context 
Beyond metadata issues, content tagging within the TwiddleNet 

architecture presented additional concerns related to the mobile context and the 

design goals of rapid data dissemination and expressive flexibility. 

Usability and resource (power and bandwidth) preservation are two facets 

of the mobile context that can be affected by tagging.  Usability issues stem from 

device form factor and input modalities and their effect on content generation in 

the given environment.  This problem can be addressed in the following ways: 1) 

User defined tags can be entered at any time during the content generation 

process, so tags need not be applied immediately after content generation, and 

2) By combining a minimal interface with an administratively flexible number of 

mandated user defined tags.  Tag inputs can then be made on a simple-to-use 

interface and their number minimized according to mission needs.  Bandwidth 

conservation takes place primarily through the use of representative metadata, 

since these transmissions are much smaller than the content they represent.  

Metadata entries can be further minimized by stripping any empty fields prior to 

transmitting the data. 

Metadata timeliness is a key concept of the TwiddleNet development.  

Metadata is not frequently considered from the perspective of urgency.  

However, the TwiddleNet use cases are time sensitive and require that updated 

content be made available as quickly as possible.  Content timeliness is first 

achieved by only uploading metadata.  This saves time otherwise spent 

uploading data to a central repository.  Time is further conserved by providing 

alerts of new updates to TwiddleNet members.  This prevents lost time  



16 

corresponding to in-between periods of client browsing of the TwiddleNet portal; 

notification of new postings is instead pushed to the client as soon as the portal 

becomes aware of content availability. 

Another tagging issue specific to TwiddleNet is the need to deploy the 

system quickly across a variety of usage modes and produce metadata that is 

fitting for the particular use (e.g. first responder, disaster relief, military unit).  Two 

requirements are implicit in this design criterion: 1) required device provisioning 

to effect such a change must be minimized, and 2) the application code must be 

written such that changes to the code itself are not required.  Such a flexible 

tagging model immediately appears similar to a collaborative scheme in which 

tags are generally uncontrolled; nevertheless, the need for reliable searchability 

prevents such an approach.  Achieving the goals of a readily searchable 

networked data structure, minimized provisioning and unchanging code required 

an application that could produce proper tag offerings solely based on a single 

provisioning document. 

Finally, the TwiddleNet design requires a tagging system that allows 

metadata to be easily modifiable.  Note that this goes beyond simply populating 

empty tags at a later time.  Since constructed metadata would be transmitted at 

the first available opportunity, then future modifications must necessarily be 

reflected both in the device and in the portal offerings.  So changes to described 

content or simply manual amplifications would exact a cost in bandwidth and 

consequently in power.  Minimizing bandwidth costs, whether from changes to 

content or to the actual metadata, demanded an application that could manage 

outgoing metadata effectively, and could reconcile metadata changes based on 

what had already been transmitted from the device and what had not.  Such an 

approach would satisfy the need for readily growable metadata, while keeping 

bandwidth usage to a minimum. 



17 

B. DATA DISSEMINATION 
 

The trend towards ubiquitous computing, where users are able to access 

data in any location at any time, increases the challenges faced by mobile 

computing.  Data dissemination within today’s mobile environment requires 

actively accessing rapidly changing, dynamic information and therefore requires 

different techniques than the traditional client-server model.  The client server 

model, where users request specific data from a server when they need it, lacks 

the ability to efficiently provide timely and up-to-date information to consumers.  

Mobile Data dissemination is additionally made challenging by the inherent 

limitations of today’s mobile devices.  Mobile devices are limited in power and 

bandwidth, have limited coverage and are subject to inconsistent connection 

quality.   

Data dissemination in its basic form can be defined as the transfer of data 

from producers to interested consumers, and it has three objectives:  

• Make new content available 

• Update existing content   

• Remove out of date content [9].   

 

1. Data Dissemination Models  
Data Dissemination techniques can be broken into two major categories: 

push and pull methods.  Push methods require that communications initiate with 

the source while pull methods require that communications initiate with the 

consumer.  Furthermore, these methods can be broken down into two forms 

called periodic and aperiodic.  Periodic communication is defined as 

communications that occur on a regular basis such as a timed interval.  Aperiodic 

communication is defined as communications that have no predefined interval or  



18 

time for information transfer.  These methods can be combined to form four basic 

data dissemination techniques; aperiodic pull, periodic pull, periodic push and 

aperiodic push.   

The aperiodic pull model is the model that dominates information 

dissemination on the internet today and is better known as the client/server 

model.  Information is transferred if and only when a client requests data from a 

server.  The server then responds by sending only the requested information to 

the client.  This continues until the client has received all of the information that 

he needs.  In this model the server sits idle until it receives a request from a 

client.  These requests are sporadic and do not follow a regular interval.  The 

benefits of aperiodic pull are that it is a simple model and it does not require 

sophisticated programming or any upgrade to existing infrastructures.  On the 

other hand, aperiodic pull does not preserve the timeliness of data, and requires 

the user to repetitively request for information which does not spend the user’s 

time wisely.   

Periodic pull, also referred to as smart pull or polling, decreases the 

reliance on the user to request data and furthermore increases the timeliness of 

the data delivery to the user.   In periodic pull, clients are configured to 

automatically send requests to a client on a regular basis [10].  These requests 

are for specific information of interest such as sports scores, stock quotes or 

traffic updates.  Polling is an improvement over aperiodic pull in that the 

automated requests relieve the user from the burden of always requesting data 

from the server.  This in turn improves the timeliness of the delivery of the data 

and therefore provides more up-to-date information.  The benefits of polling are 

that it maintains the simple architecture of the client/server model, and it 

increases the timeliness of data transmissions.  In spite of this, data can still 

become stagnant if the request interval is too long.  Another disadvantage of 

polling is that it wastes resources such as bandwidth and device power.  For 

example, most data does not change very often but it is important to know when  

 



19 

it changes.  To receive up-to-date data, the client must request data from the 

server on a small time interval.  This results in many connections and requests 

that receive no new information. 

Push implementations, also called content-based publish/subscribe 

architectures, differ from pull methods.  In a publish/subscribe architecture, 

information is produced or collected by a publisher (server).  When new 

information is available the publisher will issue a notification to a client.  Clients 

are required to place standing orders or subscriptions for the specific information 

that they are interested in.  Subscriptions then act in a Boolean fashion to 

determine whether notifications match the consumer’s request.  If evaluated true, 

the publisher will forward the notification to the subscriber.  

Periodic push increases the efficiency of the dissemination model by 

completely relieving the user from the task of requesting data by broadcasting 

data of interest to users as soon as new information is available.  However, it still 

wastes a considerable amount of resources by potentially broadcasting data that 

the users already have.  The most efficient information dissemination model is 

aperiodic push.    This model makes the most out of the available resources by 

only having the publisher send a notification when new data is available.  

Furthermore, aperiodic push offers the following advantages for real time data 

dissemination:   

 
• The information source can initiate communications if and when 

data has been created or has changed.  

• A minimum of one message is required to complete the transaction. 

• Multicast communication can be implemented [9]. 

• Users are able to view previously downloaded information faster 

than data that is downloaded on demand. 

• This paradigm matches with the hands free interfaces required in 

today’s mobile device applications [10]. 



20 

Despite the benefits, push methods do have their weaknesses.  Typical push 

methods employ a one-to-many scheme where the publisher delivers content 

directly to each subscriber.  This leads to limitations in the scalability of the 

network.  Push methods also require more complexity in the form of content 

filters and “smarter” servers, to achieve an acceptable quality of service [11]. 

 

2. Peer-To-Peer Architectures 
Peer-to-peer (P2P) architectures have many benefits to offer mobile data 

dissemination.  By using a P2P architecture the limited bandwidth, power and 

device storage of one device can be massed together to create a more powerful 

resource.  P2P allows devices to conserve bandwidth by reducing the amount of 

data transferred over a network.  Reduced data transmissions in turn reduce 

power consumption.  Finally, since files can be shared between peers in P2P 

architectures, individual device storage capacity is conserved. 

There are many advantages that P2P architectures have over centralized 

client-server architectures such as reduced censorship, increased accessibility of 

popular content, less susceptibility to single point failures and increased privacy.  

Many of these issues can be witnessed in the Web today.  For example, popular 

content residing on a single server can actually become more difficult to access 

as demand increases and floods the server.  Similarly, censorship is difficult to 

prevent due to the centralized nature of a server.  Centralized architectures are 

also very susceptible to technical failures, if a server fails or goes off line data is 

no longer accessible to clients.  One of the most troubling weaknesses of the 

centralized model is lack of privacy.  Currently there are companies, such as 

DoubleClick, Inc., that gather large amounts of user information from multiple 

servers and data bases and cross reference the information to gain detailed 

information about customers.  This can all be done without customer knowledge 

or permission [12].  All of these issues can be addressed with P2P architectures. 

P2P is defined by R. Scholmeier as a network where “participants share a 

part of their own hardware resources.  These shared resources are necessary to 



21 

provide the service and content offered by the network.  They are accessible by 

other peers directly, without passing intermediary entities.”  There are two distinct 

forms of P2P networks: pure P2P and hybrid P2P.  In pure P2P all network 

entities are equal and if any randomly chosen entity were removed the network 

would not suffer any negative consequence.  Hybrid P2P requires there to be a 

central entity that uniquely provides part of the network functionality [13].   

Napster is an example of a hybrid P2P architecture where MP3 files are shared 

among peers who use a central server to locate the peer that owns the files of 

interest.  Once the peer is identified a direct connection would be made between 

peers. Likewise, Freenet is an example of a pure P2P architecture where client 

and server are identical with no centralization required [12]. 

 

3. Issues Facing Data Dissemination in a Mobile Environment 
Mobile device technology has grown exponentially in the past and 

continues to grow at a rapid rate.  Yet, applications and device functions are also 

becoming more complex and require more resources from the device and 

network.  Limitations that restrict mobile applications are power, bandwidth, 

latency, inconsistent connectivity, sparse coverage and cost. 

Power resources have always been an issue of concern for users of 

mobile devices.  Many of the applications and functions of mobile devices 

consume relatively large amounts of power.  This fact coupled with the limited 

amount of power that today’s mobile device batteries can provide makes power 

management a critical issue.  Some of the largest power consumers in mobile 

devices are the Wi-Fi and Bluetooth radios, screen back light, and processors.  

Pering et al. provide the following statistics for a mobile device that is connected 

and in idle mode with backlight and LCD off. 



22 

 

 

Figure 1.   Power breakdown for a mobile device. From [1] 
 

The bandwidth in mobile networks is very inconsistent.  Speeds can vary 

from network to network and are dependant on the protocol in use.  Bandwidth 

rates can vary from 9.6 Kbps in 2G networks to greater than 56 Kbps in 2.5G 

networks to even higher in 3G networks.  Another important variable within 

wireless networks is the latency that users experience.  Many times the delay 

that is experienced is blamed on poor bandwidth but in fact is caused by the 

network latency.  Latency can be responsible for an additional 30 seconds in 

overall connection time [14]. 

A further limitation faced by mobile computing is the lack of a consistent 

connection.  Mobility can cause frequent and unexpected breaks in network 

connections.  This break in connection can be caused by a loss of connection 

due to a bad handoff from one access point to another, or could be due to being 

out of range from an access point.  Lack of network coverage is also problematic 

for ubiquitous computing.  Typically, coverage is greater in highly-populated 

areas such as metropolitan cities.  However, this does not guarantee a 

connection as many physical barriers such as buildings and tunnels can block 

the signal.   

 

 



23 

4. Data Dissemination Issues Specific to TwiddleNet 
Data dissemination techniques can be used to maximize the power 

resources available to a mobile device.  This can be done by minimizing the time 

that the device spends sending and receiving updates and notifications over its 

wireless connection.  Data dissemination techniques can also improve power 

conservation by considering the context in which the user is generating content.  

The user may be generating urgent content and may want to make this content 

available as soon as possible.  This would require the application to send an 

update as soon as a document is generated.  On the other hand, the content 

might not be urgent and can wait for a more opportune time to be sent, such as 

when the user has generated numerous documents.  Now the application can 

make one connection and send all the updates at once, conserving power and 

bandwidth.  The flexibility to send updates either on document generation or 

collecting documents in order to send at a later time also gives the application 

the ability to adjust to inconsistent connections and limited network coverage.  If 

the user is in an area with poor connectivity, the application can monitor the 

connection status and send whenever a connection is detected.   

Receiving up-to-date information is also a high priority in the TwiddleNet 

architecture.  The publish-subscribe model fits well with the TwiddleNet 

architecture, allowing the subscriber to receive up-to-date notifications as soon 

as possible. The issue is to determine which push technique is ideal for 

TwiddleNet.  If the subscriber receives a notification and the document when new 

content becomes available, then the application is potentially wasting bandwidth 

and power if the user does not wish to view the content.  If however, only a 

notification that new content is available is sent, then the user can determine 

whether to download the entire content or not.  

   



24 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



25 

III. TWIDDLENET OVERVIEW 

This chapter will introduce the TwiddleNet system.  Coverage will include 

concept, developmental considerations, component specifications and 

generalized architecture.  Special issues related to device modality and 

reachability will also be addressed. 

 
A. CONCEPT 

 

Modern mobile devices have advanced remarkably in recent years.  A 

hallmark of modern mobility is the wide range of content capture capabilities now 

becoming commonplace on many cell phones and PDA’s.  Examples include 

high resolution photos, videos and sound recordings. Some of the devices also 

come pre-equipped with location sensors, primarily GPS (Global Positioning 

System).  Their communication modalities have also evolved significantly.  

Modern mobile devices frequently offer multiple communication modalities 

including GSM/CDMA, GPRS/EDGE, Bluetooth, and Wi-Fi.  Further, the 

processing capabilities of these platforms continue to improve, surpassing 

desktop processors only a few years removed. While the devices are quite 

powerful, their capabilities are not being exploited fully.  Much of the time these 

devices are sitting idle doing nothing.  TwiddleNet aims to exploit these 

capabilities to extend their use. 

TwiddleNet is a mobile personal server architecture that enables real time 

sharing of user generated content (UGC) across a network of distributed devices.  

This sharing is accomplished through the use of descriptive metadata tags that 

are assigned to a file once it has been shared.  These metadata files are 

uploaded to a centralized portal and arranged for efficient UGC location and 

searching across the TwiddleNet mobile server network.  UGC in this instance 

should not be construed simply as hardware driven media or sensor captures.  

TwiddleNet is capable of sharing UGC of any filetype within the capacity of the 



26 

device to produce.  Combined with the power of modern mobile devices, the 

result is a truly distributed network that can readily share a wide variety of 

information in real time. 

 

 

 

Figure 2.   TwiddleNet Architecture Block Diagram 
 

B. CONTENT TAGGING AND MOBILE DEVICES 
 

Mobile file sharing assisted by metadata generation is not a new concept.  

In [15], third party sensor nodes were combined with mobile device photo 

generation to assemble automated contextual metadata.  Associated metadata 

was strictly automated, no amplifying user input was affiliated with the file.  The 

Mobile Media Metadata (MMM) prototype detailed in [8] applied low level 

contextual metadata to generated photos and allowed natural language inputs.  

The system also employed metadata sharing by use of a photo identification 

algorithm at a centralized server.  In [16], automatic and manual entry metadata 

were combined under the notion of ontology to classify photos generated on 

mobile phones.  In all of these approaches, both metadata and accompanying 

photo were uploaded to a central repository.   



27 

The TwiddleNet system uses manual entry and automatic metadata to 

classify files; yet, it differs from the previous approaches in several ways.  First, 

TwiddleNet fully leverages the content capture capability of the device.  File 

sharing in TwiddleNet is not limited to any particular type of shared file.  Users 

may freely annotate and share any file of their choosing on the TwiddleNet 

network.  TwiddleNet also does not upload UGC to a centralized repository; 

instead it employs resident personal servers to accomplish file sharing.  Finally, 

TwiddleNet designs its metadata around the Atom syndication standard [5], 

expanding its reachabilty to an internet wide audience. 

 

C. PROTOCOL AND LANGUAGE 
 

A primary concern when developing the TwiddleNet system was the 

internet protocol that would be observed for file transfer.  One of the most 

important considerations when making this decision is wide distribution of 

content.  We want to be able to support a syndication technology as well as 

make content accessible to tertiary clients that may not be running the 

TwiddleNet application.  Based on these criteria, we selected HTTP.  HTTP is 

supported on most internet browsers, so it satisfies reachability concerns for 

devices outside of the TwiddleNet network; users can simply surf via their typical 

browser to access TwiddleNet content.  The Atom syndication standard is REST 

(as explained in Chapter II) based, so associated metadata requirements and 

operations can be met with standard HTTP PUT, GET, POST and DELETE 

commands. 

Another important decision is the system development language.  While 

the TwiddleNet application can generally support all types of file transfer, its 

genesis is in the type of spontaneous UGC typical to media, i.e., taking photos, 

or recording audio and video.  Preference was given to devices capable of 

generating these types of files; currently these are primarily smartphones or 

PDA’s.  Metadata handling also weighs in the decision; since Atom is the 



28 

syndication standard to which the application is designed, XML is the metadata 

vehicle.  C# lends itself to both needs; a wide variety of UGC capable devices 

run Windows based operating systems (OS), and the .NET framework has well 

established XML tools.  So, C# was selected to be the development language. 

 

D. ARCHITECTURE 
 

1. Device Specifications 
A prototype of TwiddleNet is implemented using a variety of iPaq and 

other PDA’s and smartphones.  The applications are written in C#, and generally 

designed to be run on devices supporting Windows Mobile 5.0.  However, the 

application was tested on devices running older Windows based operating 

systems without noticeable impact to the application’s performance.  The 

following table details devices on which the TwiddleNet application was deployed 

and tested. 

 

Table 1.   TwiddleNet Test Devices 
 
 

2. Infrastructure 
A key concept in developing the TwiddleNet system is the notion of a 

distributed architecture; to the largest extent possible, data operations are 

pushed outward to participating devices.  Consequently, TwiddleNet components 

must be capable of performing system functions on an individual device basis; 

Device Operating System Processor 

hw6945 Microsoft Windows Mobile V 5.0 Intel PXA270-416MHz 

h4155 Microsoft Pocket PC V 4.20.0 Intel PXA255-400MHz 

h5550 Microsoft Pocket PC V 4.20.1081 Intel PXA255-400MHz 

ppc6700 Microsoft Windows Mobile V 5.0 Intel PXA270-416MHz 

Dell X51 Microsoft Windows Mobile V 5.0 Intel PXA270 624MHz 



29 

this results in a system having light weight components.  There are only three 

roles in the design; the TwiddleNet portal, personal servers (PS, or content 

producers) and clients (C, or content consumers).  The portal is the only 

component that has a centralized role within the architecture; producers and 

consumers behave independently, although their functions overlap to some 

extent.  Personal servers are also functional consumers, but consumers may not 

have production capability, and in some cases may be external to the TwiddleNet 

system altogether.  The general infrastructure of the TwiddleNet system is shown 

in the following figure. 

 

              

 

Figure 3.   Generalized TwiddleNet infrastructure 
 

E. CLIENT AND TWIDDLENET CONTENT PRODUCER 
 

Mobile devices are key components within the TwiddleNet architecture, 

and have two fundamental roles; that of producer or personal server, and that of 



30 

consumer or client.  Since TwiddleNet file transfer is HTTP based, the task of 

locating and downloading a file can be accomplished using a typical web 

browser.  Users may access TwiddleNet content via the portal either using a 

separate web browser or from within the TwiddleNet application; the portal and 

participating devices draw no distinction.  In short, the client role within the 

TwiddleNet system differs little from a client role in a traditional HTTP session. 

The role as content producer is more complex.  Content producers have 

several functions within the overall architecture.  Fundamentally this includes 

creating UGC, creating and uploading associated file metadata to the portal and 

servicing requested files.  These functions are further complicated by the mobile 

context.  For instance, metadata upload and file servicing take place in a manner 

sensitive to the device’s current state, so power level and available bandwidth 

influence application behavior.  Content producers must also afford the user a 

convenient means to manage files; users should know what files are currently 

shared and should be able to change this state efficiently. 

From the UGC creator perspective, the application should allow the device 

to leverage its content collection and creation capabilities.  This includes software 

driven creation, as in spreadsheet or word processor generated files, as well as 

hardware driven collection capabilities.  The latter would include all content 

generated from hardware native to the device (photos, audio or video files, or 

other sensor modes).  There are many OS issues related to these hardware 

driven operations.  Simply stated, hardware affiliated native applications across 

different devices vary in their interaction with the OS.  This complicates the 

manner in which the shared directory is populated.  In general these issues may 

be handled through the use of a timer, thereby allowing the OS to complete its 

handling of the generated file before conducting TwiddleNet operations, or by 

implementing a buffer directory in which OS operations will be completed prior to 

moving the file into the TwiddleNet directory space. 

Metadata generation is another role of the content producer.  This can be 

broken down into three subcategories: creation, upload and modification.  



31 

Metadata creation is driven by a provisioning document provided by system 

administrators and designed to reflect the usage environment.  Tagging is 

accomplished with both automatic system input and manual entries provided by 

the user.  Upload is the process of providing this input to the TwiddleNet portal.  

Note that this operation is not simply “create-and-push”; upload takes place as a 

consequence of user specified application options and device context 

awareness.  Unless properly understood, this may sometimes be puzzling, as 

some users may incorrectly assume that the application is misbehaving when in 

truth some combination of states prevents transmission at that exact moment.  

Metadata modification refers to the application’s ability to persistently maintain 

and update metadata as UGC is altered or as associated metadata files are 

directly changed.  An instance of the latter would include the case of a 

“Summary” tag that the user is able to further detail after the initial metadata has 

already been forwarded. 

File servicing directly from the mobile device is a key aspect of TwiddleNet 

content producers.  The mobile device server application is intended to be 

running at all times in the background of the device.  The sole purpose of the 

server is to receive and respond to all legitimate file requests; both internally from 

other TwiddleNet devices, or from clients external to the TwiddleNet system.  File 

requests come in the form of HTTP GET commands listing the particular file of 

interest.  The server is capable of servicing more than one client at a time, 

increasing the robustness of the system. 

File management is the final role of the content producer.  Users need a 

simple mechanism to control the content they are currently sharing that is well 

integrated with the TwiddleNet system and the notion of ongoing content 

generation.  This role is manifest in the basic TwiddleNet application user 

interface (UI).  From this interface, users can control all file operations that 

influence actual content or associated metadata.  This provides users the means 

to efficiently control their content within the generation context.  The following 

figure displays the TwiddleNet UI. 



32 

 

     

 

Figure 4.   Main TwiddleNet User Interface 
 
 
F. TWIDDLENET PORTAL 

 

The TwiddleNet portal has three basic responsibilities within the 

TwiddleNet architecture.  First, it must handle metadata posts from content 

producers.  This involves accepting HTTP POST requests, parsing the metadata 

and populating a database with the received information.  Second it must service 

file requests from enquiring parties, either from within the TwiddleNet architecture 

or external to it.  This request would involve a database search producing a result 

set from which the user would select the desired file.  The user would then be 

forwarded only a link to the owner device of that information.  Finally the portal 

must alert subscribed users of newly posted content.  This final function is 

currently limited to TwiddleNet content producers, and is not specific to any 

single keyword or subscription definition.  When this function is activated, in our 

current implementation, all TwiddleNet content producers with active session 

receive pushed updates of new posts.  A more general implementation will allow 

select users, who may subscribe by choice, to receive alerts. 

 

 



33 

1. Mobile Device Implementation 
The TwiddleNet portal has been implemented both for traditional desktop 

computers as well as the same types of mobile devices as the TwiddleNet 

application.  The mobile device implementation adds a great deal of flexibility and 

scalability to the baseline architecture, since infrastructure requirements often 

attached to larger computers are no longer necessary.  Nevertheless, this does 

constrain this aspect of the architecture to the same resource limitations as on 

the application side; bandwidth, power, processing speed and memory all 

become considerations in this implementation. 

 

G. MODALITIES 
 

TwiddleNet is capable of operating on several separate network 

infrastructures, Wi-Fi on a Local or Wide Area Network (LAN or WAN), General 

Packet Radio Service (GPRS) on a Global System for Mobile communications 

(GSM) cellular phone network or Bluetooth on a Personal Area Network (PAN).  

This section discusses the operability of TwiddleNet within and between these 

environments.   

 

1. TwiddleNet Operability Obstacles 
There are many challenges to operating a web server on a mobile device.  

Currently since there is no significant demand for such services on mobile 

devices, network operators focus on optimizing network functionality and 

protecting network assets and customers.  This has lead to network 

infrastructures that do not allow autonomous downlink traffic and provide poor 

quality uplink traffic [17].  The roots of the mobile server access problems can be 

divided into two categories; accessibility and addressability.   

Accessibility refers to the issue of traffic reaching the mobile server.  This 

is a common obstacle to mobile servers due to network operators employing 



34 

firewalls to block incoming traffic unless it is in the form of a response.  This 

practice is widespread as it protects networks from malicious attacks.   

 

   

 

 

Figure 5.   Accessibility obstacles to TwiddleNet 
 

Addressability is a different issue that refers to the ability of a client to find 

the mobile server.  There are two problems facing addressability.  First, most 

mobile devices are assigned dynamic IP addresses, meaning a mobile server will 

constantly be assigned a different IP address.  Second, most network operators 

implement Network Address Translation (NAT) to assign IP addresses within 

their network.  While these addresses are defined within the network, they have 

no meaning to routers outside of the network [17]. 

 



35 

    

 

 

Figure 6.   Addressability obstacles to TwiddleNet 
 

2. Modality Interoperability 
TwiddleNet has been tested over two different network infrastructures, 

GPRS and Wi-Fi, with mixed results.  These varying results are due to network 

obstacles discussed above and the different configurations possible with the 

three basic components in TwiddleNet; portal, personal server and client.  The 

different configurations of the TwiddleNet components are; all three in the same 

subnet, all three in separate subnets, or one of the components is in a separate 

subnet with or without firewalls or separate subnet employing NAT.   

Mobile service providers place numerous restrictions on their networks to 

provide customer security and network optimization.  Providers use both network 

address translators and firewalls, this prevents TwiddleNet from functioning 

properly when a personal server is on a different subnet than the client that is 

trying to reach it.  First, due to NAT the address provided by the personal server 

would be meaningless to the client and therefore the client would be unable to 



36 

reach the personal server.  Second, if the message were able to find the 

personal server, the message will be blocked by the firewall since it is a request 

message and not a response.  On the other hand, if both the personal server and 

client are on the same GPRS subnet, even if the portal is not, TwiddleNet will 

function properly.  This problem is not limited to GPRS networks.  If the personal 

server and client are separated by a NAT and/or a firewall in a Wi-Fi network, 

TwiddleNet will similarly fail.  The simplest solution to the obstacle is that the 

peer-to-peer connection must take place within the same subnet and not be 

blocked by NAT or a firewall.  The more complex and general solution is to 

provide links among different subnets implemented by different mobile network 

service providers.  This implementation has not been completed in this thesis. 

 

        

 

Figure 7.   Peer-to-peer connection on same subnet 
 

The following table displays the current modality combinations and their 

operability as it applies to TwiddleNet. 

 

 

 

 

 



37 

 

 

 

 

 

Table 2.   TwiddleNet operability table 



38 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



39 

IV.  TAGGING 

This chapter details the methodology related to the overall tagging 

process in TwiddleNet.  Program flow is also discussed from content generation 

and onward to the point at which the tag file is prepared to be transmitted.  

 

A. PROVISIONING 
 

The TwiddleNet model requires that generated metadata be fitting and 

appropriate to the environment in which TwiddleNet would be deployed.  First 

responders would have mission specific tags, as would military units, disaster 

relief, and so on.  This should be accomplished without the need for modification 

and re-provisioning of the actual program code.  These goals are achieved by 

generically writing the application such that a single configuration document can 

produce the desired tags. 

Evaluation of the TwiddleNet tagging model demonstrates these 

grounding concepts: 1) a notion of lifecycle, or timing, needs to be applied to the 

provisioning document.  This would facilitate ongoing content and metadata 

modification, as well as specify generation time and sending time tags.  2) Each 

tag should have a mandate, or authority, as to whether it will get populated.  This 

will enforce minimal metadata generation, and will facilitate metadata documents 

that are tailored to system administrator needs.  3) How tags get populated be 

specified as either automated or user defined.  4) Type integrity of user entered 

tags be maintained.  And, 5) the produced metadata should be compliant to the 

Atom syndication standard. 

When, authority and how are the factors that determine the actual number 

of different tag types that can appear in the configuration document.  The when 

factor has three categories; predefined (predefined), on generation (onGen) and 

on sending (onSend).  Authority requires two categories (mandatory and 

optional) as does how (userdefined or automatic).  The combination of these 



40 

attributes yields 12 possible tag types; however, for purposes of the TwiddleNet 

application two of these types will never be provisioned 

(userdefined/mandatory/onGen and userdefined/mandatory/onSend).  Allowing 

these tag types would require user interaction with every metadata entry prior to 

its transmission.  Such an arrangement would disrupt ongoing UGC creation and 

file sharing, hence their exclusion from provisioning documents. The application 

therefore has 10 possible tag types for provisioning document construction. 

Based on these grounding criteria, we have selected XML as the means to 

express generated metadata.  Each tag has a minimum of three descriptors 

(when, authority, how) that are expressed as XML attributes. TwiddleNet tags 

may also have further attributes, depending on their role within the application.  

Since the Atom standard [5] employs a REST approach (as explained in Chapter 

II) to web services, it defines its interfaces in terms of XML and HTTP.  This 

allows tag extensibility through the employment of XML namespaces, while still 

remaining within the Atom standard. 

The following figure presents two possible tag configurations, each 

demonstrating distinct tag types, namespaces and provisioning document 

construction.  The three primary attributes (when, authority, how) in each 

configuration dictate how the tag is handled within the application.  The first 

example details a summary tag that will be populated at generation time (when = 

“onGen”), by a manual user input (how = “userdefined”), but may or may not be 

utilized (authority = “optional”).  Note that the summary tag is defined within the 

Atom namespace, so it does not require a namespace declaration.  The second 

example details an ipaddress tag that will be populated at transmission (when = 

“onSend”), by an automatic function (how = “automatic”), but may or may not be 

selected for population (authority = “optional”).  Note that the ipaddress tag is not 

within the Atom namespace, hence the namespace declaration in the opening 

brace (t:ipaddress).  Both tags are unrestricted data types (indicated by datatype 

= “0”), so there is no regular expression restriction governing how they may be 

filled. 



41 

 
Figure 8.   Sample Tags 

 
A sample provisioning document is provided in the Appendix.  For future 

reference, the following icons will be used in process flow illustrations to indicate 

the provisioning document itself and metadata documents describing generated 

content (below). 

                        

 

Figure 9.   Provisioning Document and Generated Metadata 
 

B. METADATA COHERENCE 
 

TwiddleNet tags are only supplied by the content owner.  While this 

generally serves to lower the incidence of metadata noise, it might still be 

insufficient to guarantee complete and coherent results for users who are 

locating content via portal searches.  Insuring metadata consistency at the portal 

was not considered an option, since there would be additional bandwidth 

overhead associated with error detection and correction between the posting 

device and the portal.  Such an implementation would also conflict with the 

distributed network design; to the largest extent possible, centralized data 

operations were reduced. 

Consequently, metadata type integrity would need to be policed on the 

device side.  The issues to balance were metadata expressiveness and type 

consistency.  Users must have great latitude when providing input to maximize 



42 

contextual descriptiveness; nevertheless, those fields must meet criteria 

specified by system administrators via their provisioning document.  This design 

feature is implemented through the use of a datatype attribute that indicates a 

regular expression against which a particular field will be checked.  Inputs not 

satisfying those regular expressions are rejected.  For instance, suppose a tag 

describing the size of an object required an integer as its input, a value of “very 

large” would be rejected, where “1000” would not.  This is a very general 

example, but the concept can be extended to support proper names, date/time 

formats, and so on. 

 

                                   

 

Figure 10.   Regular expression controlling inputs of type email 
 
 
C. METADATA LIFECYCLE PHASES (WHEN) 

 

When developing TwiddleNet, it was useful to think of metadata 

generation in terms of shared file lifecycle.  Unlike many metadata generation 

schemes, the TwiddleNet tagging model requires the flexibility to make metadata 

update dynamic and ongoing.  This is considered critical in a system where 

amplifying information about formerly described content can continue to evolve or 

to become available. 



43 

TwiddleNet tags afford three options for specifying the when attribute of a 

tag; predefined, onGen, and onSend.  These criteria specify the point in the 

lifetime of the metadata at which the value of a tag should get populated.  Prior to 

initial access, a TwiddleNet provisioning document is completely unpopulated.  

This unpopulated state causes the application to offer a configuration interface in 

which the user enters values for predefined tags.  Automated tags designated as 

predefined are also populated at this point; static owner data is applied here as is 

any data that must be applied to each shared file as part of Atom standard 

conformance.  Resulting values are then retained in the provisioning document 

from that point forward.  These tags are durable and their values will be applied 

to all future generated metadata. 

       

 

Figure 11.   Predefined, on generation, and modify interfaces 
 



44 

When new content is shared, an XML file associated with that content is 

created from the provisioning document.  Automated tags designated as onGen 

are then filled, and in general an interface is presented to the user for population 

of contextual tags as well.  However, manually entered contextual tagging may 

optionally be deferred until a later time, or not at all.  This could be a simple user 

preference, or it could be a function of ongoing content generation to which 

assignment of metadata tags might be disruptive.  OnSend tags are the final tags 

to be populated prior to transmitting the metadata file to the portal.  These tags 

are provided in order to capture the most recent metadata possible associated 

with the file and the device state.  Remaining device battery charge, IP address, 

or a GPS stamp are tags that would be well suited for transmission time 

population. 

The ability to modify metadata at any time fills in the gaps between these 

distinct tagging states.  Once a metadata entry has been created for a shared 

file, its tags thereafter become accessible for modification.  Metadata can then be 

updated at any time while the associated data file is still in a shared mode.  

Changes to the described content or additional contextual details can be added 

to the metadata document as needed, completing the tagging process and fully 

encompassing the lifespan of the shared file. 

 

D. METADATA MANDATE (AUTHORITY) 
 

The provisioning document provides the baseline set of tags.  Yet, there is 

no requirement that each and every suggested tag be a used when building 

metadata documents.  This control is implemented through each tag’s how XML 

attribute as given in the provisioning document.  The implementation is 

straightforward; tags marked as mandatory must always be filled in, while tags 

marked as optional may be filled in at the user’s discretion.  Mandate 

designations apply to both contextual and automatic tags, but their 

implementation differs. 



45 

By default, automated tags will always get populated unless the user 

elects to preclude those tags from the generated metadata document.  Figure 12 

shows the user interface through which optional automatic tags are specified.  

The user simply selects the desired tags from those offered.  Subsequent XML 

contains only those selected tags.  In the case of contextual metadata, a tag’s 

mandate is indicated by the presence of an asterisk on the input box label.  Tags 

not having an asterisk are optional, and may go unpopulated.  Contextual tag 

mandate is shown in Figure 13. 

                          

 

Figure 12.   Automatic tag selection interface 
 
 

                                     
 

Figure 13.   Mandatory contextual tags (predefined) 
 



46 

Elective tagging based on mandate serves several functions. The first is 

the facilitation of the mobile context in which TwiddleNet is used.  Since not all 

tags must be filled in, leaner metadata can be sent to the portal.  This allows 

users to be cognizant of their device resources and enables them to provide only 

the amount of information they deem necessary, thereby minimizing resource 

load.  Secondly, the tag mandate enforces coherence to the Atom standard.  The 

Atom standard requires certain tags to be included with each entry level node.  

By making these tags mandatory, resulting metadata will always contain the 

appropriate information for Atom compliance.  Finally, optional contextual tags 

facilitate the content collection process; since tags need not be populated, the 

user can streamline tagging to the extent necessary according to the current 

environment. 

 

E. METADATA GENERATION METHODOLOGY (HOW) 
 

A tag’s how attribute simply lets the application know how the tag should 

be processed.  User-defined tags are presented in contextual tag user interfaces, 

while automated tag processing takes place without the user’s knowledge.  With 

each automated tag there is the issue of ensuring that corresponding application 

code is in place.  Selection of an automated tag implies that a routine exists that 

can farm the desired metadata from some system resource.  This issue 

constrains provisioning; automated tags cannot be placed within a provisioning 

document without ensuring that code exists to support those tags.  The 

TwiddleNet application design mitigates this issue somewhat, since all data 

farming code is held within a single class.  In the case where additional data 

farming methods are necessary, only this section of code will need modification. 

 

 

 

 



47 

F. SYNDICATION 
 

TwiddleNet is predicated on the notion of widespread sharing of 

information in a rapid manner.  Two approaches have been taken to achieve this 

dissemination; content push and content pull.  Content push incorporates an alert 

mechanism that notifies subscribers of new content as it is posted.  Content pull 

is accomplished via HTML and uses a typical web browser.  In spite of this, the 

TwiddleNet device side application has been designed to produce valid Atom 

feeds as well.  Leveraging this syndication technology could radically increase 

data dissemination. 

 

 

 

Figure 14.   Sample Atom entry resulting from contained photo capture. 
 

The process of syndication in TwiddleNet starts with a provisioning 

document.  This provisioning document template is constructed such that the 

XML it produces adheres to the Atom standard; both in type integrity and in the 

observance of mandatory fields.  Entry generation is commenced as a 

consequence of placing the file within a specific directory.  This sharing action 

initiates application level processes that gather appropriate metadata and 

construct the baseline entry.  Subsequent tag population and modification 



48 

continues as long as the file remains in a shared state, although the initial entry is 

correct to the Atom standard and can be transmitted without further modification. 

Metadata customization is possible using the Atom standard through the 

use of XML namespace extensions.  Atom parsers drop unknown tags by default, 

but can interpret other information contained in the entry.  This facet of the Atom 

standard allows two key functions: 1) It enables customization of the TwiddleNet 

portal, since tags can be freely employed that have precise meaning within the 

TwiddleNet namespace, and 2) Clients not running the TwiddleNet application 

could still receive content by subscribing to posted feeds via an ordinary web 

browser.  Content outreach is accordingly widened, while allowing the portal to 

react in a desired fashion to the posted metadata, according to administrator 

needs. 

The TwiddleNet device application also maintains a complete Atom feed.  

The update mechanism for the feed is tied to the same processes that drive entry 

creation.  As files are shared, unshared, deleted or modified, corresponding 

entries are handled appropriately; similarly the Atom feed is also modified to 

reflect shared folder contents.  This document could then be passed to the portal 

as a complete feed detailing the device contents and viewable to any Atom 

capable browser. 

 

G. ADD, DELETE, MODIFY 
 

While not explicitly dealing with generation, maintaining metadata state 

awareness is necessary to insure information currency within TwiddleNet.  This is 

achieved through the use of a special tag (hereafter referred to as the Action tag) 

attached to each generated metadata file.  Simply put, the Action tag is updated 

according to actions taken either on the shared content or on the corresponding 

XML.  When a file is first shared, it receives an Action value of add; modify and  

 

 



49 

delete values are applied as one would intuit.  When metadata is posted to the 

TwiddleNet portal, the Action tag value determines how that metadata will be 

handled. 

 

H. METADATA GENERATION PROCESS FLOW 
 

This section details the tagging process flow of a photograph.  The flow is 

depicted sequentially, from initial provisioning to completed metadata 

transmission. 

 

1. Step One: Provisioning Document Setup 
The provisioning document must first be set up to reflect mission 

requirements.  This is accomplished using contextual and syntactic tag 

interfaces.  Mandatory fields will be populated, and any automated tags the user 

wishes to appear in subsequent metadata documents will be selected. 

 

             

 

Figure 15.   Provisioning document set up 
 

2. Step Two: Content Generation 
Once content is generated (depicted here as a photo of an automobile), a 

corresponding metadata file containing tags selected and populated in Step 1 is 



50 

created.  That metadata file will hereafter be the file to which modifications are 

applied and that will eventually be sent to the TwiddleNet portal. 

 

     

 

Figure 16.   Metadata file creation based on shared photo 
 

3. Step Three: OnGeneration Tagging and Metadata Evolution 
Users may elect to append some contextual tags immediately after 

content capture (so called OnGeneration tags).  If so, the content associated 

metadata file generated in Step 2 will be modified to reflect any additions entered 

into the OnGeneration user interface.  Alternatively, they may elect to defer this 

process, or not to populate these tags at all.  Metadata files may be freely 

modified at any point while the associated content is still in a shared mode. 

      

 

Figure 17.   OnGeneration tag population and ongoing modification 
 

 



51 

4. Step Four: Metadata Finalization and Transmission 
Metadata is transmitted at varying times throughout application usage.  

Prior to transmission, some finalizing tasks must be accomplished.  First, 

OnGeneration tags that had been deferred are offered for population.  OnSend 

tags (customarily automated) are then added to the metadata.  Finally, the 

document is scanned in its entirety, and unused tags and administrative 

attributes are stripped.  The document has been slimmed to its bare essentials 

and is now ready to be transmitted. 

 

        

 

Figure 18.   Metadata finalization and transmission 
 



52 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



53 

V.  DATA DISTRIBUTION 

This chapter describes in detail how data is disseminated through the 

TwiddleNet network.  Several cases will be discussed to include posting of 

original content, manual retrieval of content and automatic alerts. 

 

A. DISTRIBUTION TECHNIQUES 
 

TwiddleNet uses a hybrid peer-to-peer architecture using a combination of 

push and pull mechanisms to disseminate information among network users.  

The architecture is a hybrid P2P because the portal is a unique entity within the 

network.  The portal performs the function of a central store for the network’s 

shared metadata.  Without the portal, no user would be able to locate information 

of interest.  Nevertheless, it is a P2P architecture because once a user has 

located information of interest a direct P2P connection is made between the 

client and the personal server that contains the data.   

 

1. Posting Content 
The data dissemination process in TwiddleNet begins with a TwiddleNet 

user posting some content he wishes to share.  Posting is accomplished by the 

user placing a document in the shared folder of the application and triggering the 

send function of the application.  The send function performs an information push 

to the TwiddleNet portal.  The function contains a series of criteria that must be 

met before the metadata document can be sent to the portal.  The first check that 

takes place is to confirm that there is actually a document in the shared folder 

that needs to be sent. If confirmed, the application then checks to insure that the 

device has a connection.  If the personal server has an existing connection, the 

signal strength is checked against a given threshold.   If any of these checks fail, 

the application will not attempt to send the document.  On the other hand, if all 

conditions are met, the application will attempt to post the document with the 



54 

portal.  This posting is an HTTP POST request made to the portal.  For a post to 

be accepted by the portal, the HTTP request must be properly formatted and the 

XML document must be a properly formatted add document with all required tag 

values filled.  The final phase of posting is the portal returning an HTTP message 

that the document has been successfully added.  The following figure shows a 

state diagram of the posting process. 

 

 

 

Figure 19.   Posting process state diagram. 
 

2. Viewing Shared Documents 
There are several methods that enable the user to view shared 

information via TwiddleNet.  The first is to browse to the portal and conduct a 

search for the content of interest.  The second is to subscribe to information of 

interest and receive an alert when information becomes available.  

A mobile client on TwiddleNet can view content once a document has 

been posted in the portal.  The process of viewing shared documents involves an 

information pull from the portal to a mobile client (Step 1, Figure 21).  The mobile 

client initiates the process by browsing to the portal’s URL.  The URL provides a 

search function where the user can search via keywords such as title, author, 

date, etc.  The search function is similar to standard Web searches available 

today on the internet.  The search results will provide the user with a list of 

documents and their corresponding tagged information as seen in the following 

figure.    



55 

   

 

Figure 20.   Sample result from a TwiddleNet search request. 
 

From this point, to view a document the user simply clicks the link 

provided.  This establishes the peer-to-peer connection from the client device to 

the server device (Step 2, Figure 21).  Again HTTP is used to request the 

document.  The client device initiates the HTTP session by sending a GET 

request to the client.  The GET request contains the URL for the specified 

document.  The server device then returns an HTTP POST message including 

the document. 

       

 

Figure 21.   Pulling data from the portal and mobile server. 



56 

The second method to view data is to receive automatic alerts when new 

information is available.  It uses a combination of push and pull techniques to 

disseminate the data through the network.  This method is similar to publish-

subscribe methods gaining popularity on the Web today.  A subscriber places a 

standing request with the portal to be notified when specific documents of 

interest become available.  The process begins when new content is generated 

and posted on the portal (Step 1, Figure 23).  When the portal receives new 

content matching a subscriber’s request, it will push an automated alert to the 

subscriber’s device (Step 2, Figure 23).  This alert contains the title, author and 

date/time group of the new document as seen in the below figure.   

 

            

 

Figure 22.   Automatic update from portal. 
 
The user can choose whether to view the data or not.  If he chooses to view the 

document, the client device will place an HTTP GET request to the URL in the 

alert (Step 3, Figure 23).  The URL is the exact address for the newly generated 

document described in the alert.  The process now precedes the same as before.  

The entire content generation with alert sequence is diagramed below. 

 



57 

 

  

Figure 23.   Alert push and data pull sequence 
 

B. RESOURCE MANAGEMENT TECHNIQUES 
 

Given the resource limitations of mobile devices, resource management 

and conservation are important issues in any mobile application.  There are 

some features on devices that allow the user to adapt the settings to his/her 

liking such as adjustments of the backlight and WiFi power saving modes.  

Mobile device resource management must also take into consideration the 

resource management of the user.  The most critical of these resources is time.  

Mobile device operators use mobile devices to help manage time and reduce 

their task load.  Ultimately, the user has the best situational awareness as to how 

the device should be operating given the current circumstances.  Therefore, 

he/she should be able to choose the settings to meet the current requirements.  

Yet, once set the device should remain hands off from a user’s perspective.  

These techniques allow more user interaction and control over the device.  The 

design of TwiddleNet incorporates several resource management features into 

the data dissemination schemes.  These features aim at increasing the efficiency 

of the device and the user.  This functionality takes into consideration the current 

context of the user and the device.  For example, is the user busy performing 

other tasks?  Does the user wish to share new content now or can it wait?  Does 



58 

the device have a connection?  These questions are addressed by allowing the 

user to manually set automatic functions that help control the device.  

 

C. SENDING OCCASION OPTIONS 
 

The user is provides with five different options for when they would like to 

send their updates.  These options include sending on: 

1. Timed interval. 

2. Document generation. 

3. Delayed document generation. 

4. Sensing a connection. 

5. Manual.   

The timed interval option allows for documents to be sent on regular timed 

intervals such as every hour or every ten hours.  The feature allows the user to 

define a sending interval between 1 minute and 999 hours.  This feature will 

allow the user to collect documents during the time interval without having to 

manually send them.  It also allows for the collection of many documents to be 

sent at one time vice being sent one at a time, thus conserving power and 

bandwidth.   

The on document generation feature allows for automatic sending of 

documents as soon as they are either created or added to the shared folder.  

This feature allows the user to automatically update the portal with information as 

soon as it is created.  Although this is not ideal for power conservation it is ideal 

in situations where information timeliness is an issue.  The incorporation of the 

on document generation feature is what makes TwiddleNet a real-time 

application.  The feature provides documents for viewing by others within a 

matter of seconds.  This real-time ability is crucial in many military and disaster 

response applications. 



59 

The on delayed generation function is an attempt to gain the power saving 

benefits of sending numerous documents at once while still maintaining the real-

time benefits of the application.  In many situations where pictures are being 

taken, more than one picture is taken in the same relative time frame of the 

subject matter.  The on delayed generation feature works by activating a timer 

set to five minutes when a document is generated.  During the five minutes if 

another document is generated the timer is reset.  This continues until the timer 

expires at which time all of the new documents are sent together.  This feature is 

ideal when the user takes pictures in clusters.  Say for instance a user saw a site 

or an object of interest and is going to take several pictures.  The delayed 

sending feature allows all of the pictures to be collected and their documents to 

be sent after the picture taking was complete (i.e., the timer expired).  This saves 

time, bandwidth and power by making one connection rather than numerous 

individual ones. 

The sending on a new connection feature is designed for use in areas 

where Wi-Fi or cellular connections are sparse.  This function frees the user from 

constantly monitoring a connection status to update information.  The device 

passively monitors the connection status and when a connection is detected 

initiates the posting sequence. 

The manual sending feature is always functional, offering the user the 

option to send at any given time.  This enables the user to override any 

previously chosen sending algorithm if the user deems necessary.  

The data sending features are designed to increase the overall efficiency 

of both the user and the device.  Allowing the device to handle the menial tasks 

that require constant monitoring frees the user to concentrate on his immediate 

task.  Furthermore, creating schemes that optimize device resources allows the 

device to perform its tasks for an increased amount of time. 



60 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



61 

VI.  SUMMARY AND CONCLUSIONS 

TwiddleNet is a dynamic mobile file sharing application that enhances the 

functionality of today’s highly capable mobile devices.  Through dynamic 

document tagging and automated information dissemination, TwiddleNet 

increases today’s mobile user’s ability to instantly capture and share data.  

Further, functionality of TwiddleNet enables enhanced owner control over content 

accessibility.  More importantly these functions are provided with an emphasis 

placed on conservation of device resources.  It has been shown that numerous 

scenarios such as emergency response, military, law enforcement and social file 

sharing can all benefit from TwiddleNet.  TwiddleNet’s flexible and easily 

adaptable design allows for the seamless transition from its use as a tool for 

military forces on the battlefield to teenagers sharing pictures of the latest party.   

The current development of TwiddleNet presents a robust mobile file 

sharing architecture that employs a dynamic XML tagging scheme.  TwiddleNet 

optimizes metadata generation and minimizes the manual input burden to the 

user.  TwiddleNet also employs a data dissemination scheme that is flexible 

enough to allow fine-grained user control while maximizing device resources at 

the same time.  The current version of TwiddleNet serves as a solid foundation 

that positively demonstrates the functionality of the network architecture.   

  

A. FUTURE WORK 
 

The TwiddleNet system to date is probably best described as an early 

prototype.  While a great many functions have been implemented, there still 

remains a substantial amount of work to do before scalability can be evaluated 

and full system testing can take place.  The following sections discuss future 

design implementations and recommendations to improve the current iteration of 

TwiddleNet, or to further work already begun.  

 



62 

1. Portal Caching and Intelligent File Servicing 
One goal of TwiddleNet is to implement distributed computing on edge 

devices to the largest extent possible.  This has already been achieved to a large 

degree; file generation, metadata creation and file servicing functions are all 

resident on TwiddleNet devices.  However, the mobile context presents some 

issues in regards to scalability.  Although TwiddleNet devices are intelligent 

about metadata upload, they are not currently intelligent about file servicing.  A 

TwiddleNet personal server will service all requests, current device state 

notwithstanding.  While an implementation that would address this issue is 

clearly necessary, a great deal of pertinent code has already been implemented 

in this regard.  The same evaluation algorithms applied to metadata upload can 

also be applied to the file servicing process.  So while this is an important point, it 

may be relatively easily tackled. 

Preventing file servicing based on personal server resource context does 

not solve the fundamental issue; requesting clients still have need of the file, 

even if intelligent servicing prevents its transmission.  For example, suppose a 

particular TwiddleNet producer had generated a unique photograph of some 

occurrence.  Suppose also that numerous service requests for that file had been 

received and honored by the owner personal server, until the personal server 

resource context prevented further servicing of the photo.  Requests may 

continue to pour in, but the device is no longer capable of providing the file given 

its current resource state.  Although device resources are now being intelligently 

conserved, client needs have not been fully met. 

This situation could be resolved with content caching at the TwiddleNet 

portal.  Via statistical methods, the need for that file could be assessed as so 

high as to warrant complete upload of the file to more robust storage.  The file 

would then be available from a different location for which resource constraints 

are not an issue.  Initial efforts in that direction have begun, although they are in 

their infancy.  TwiddleNet producers can provide encoded photos as a file 

associated metadata tag for subsequent upload to the portal during a standard  

 



63 

update.  However, this election is solely up to the user and is in no way 

automated.  Such an implementation may greatly improve overall system 

performance and data reliability. 

 

2. Syndication 
Currently, TwiddleNet metadata is provided in a form that is compliant to 

the Atom standard.  Each shared file represents an Atom formatted entry, or 

node, within the syndication feed, or tree.  These entries are individually stored 

on each TwiddleNet producer device and are added to an Atom feed maintained 

on the same platform.  This feed is designed to always reflect the current state of 

the shared directory. 

Implementations to post device feeds on the TwiddleNet portal have not 

yet been developed.  The portal is the only truly centralized entity in the 

TwiddleNet architecture and is therefore the most reasonable location for 

syndication feeds to be placed.  Implementations could take several forms.  The 

exact feed produced by the mobile device could be directly appended to the 

portal homepage, or customized feeds could be created out of entry level node 

collections extracted from the portal database.  Either implementation would 

allow non-TwiddleNet users the ability to access personal server data via 

syndication subscriptions. 

 

3. Subnets and Handoff 
Currently TwiddleNet producers provide their IP address as the sole 

indication of their whereabouts.  For architectures where devices are all 

collocated on the same subnet this is sufficient.  On the other hand, for 

architectures where true mobility is desired this model must be changed.  More 

thorough routing affiliated metadata must be provided from the device to ensure 

clients external to its subnet can be reached.  Note that cellular datalink devices 

present special issues that effectively prevent disparate subnet file sharing at the 



64 

lowest level.  So although subnet issues can be handled for Wi-Fi, cellular 

networks at this time remain out of reach. 

Handoff is another issue that should be addressed in future iterations.  

Under the current implementation, TwiddleNet producers do not provide any sort 

of update resulting from handoff or change in IP address.  Unless file associated 

metadata is specifically changed, or a UGC file is otherwise altered, the portal 

remains unaware of location changes, even if the last known address has 

become stagnant.  Connection time outs resulting from stagnated pointers slow 

the network down substantially and preclude information exchange outright.  This 

clearly goes against the TwiddleNet design principles of “real-time” content 

sharing, and is a key area of address for system improvement. 

 

4. File Transfer 
Although TwiddleNet can effectively tag any type of file, only files capable 

of being rendered in a browser are fully sharable.  This is due to the 

implementation currently in place where files are requested and opened directly 

from such an application.  This will require a change from the current model to 

one in which files are downloaded in a manner appropriate to their file type and 

to user desire.  There is nothing wrong with rendering images for viewing in a 

browser, but if the user wishes to zoom in on a certain part of the image, then the 

image must be otherwise accessible.  The current design is very limiting in this 

regard, and a change to the mode in which files are downloaded will go a great 

distance in improving system flexibility. 

 

5. System Log In 
The system does not provide any means for users to log in and remain 

known to the portal.  This prevents discrete management of content alerts to 

specific consumers.  Currently the system simply issues alerts to all active 

members about all posted content.  Since there is no way to identify members or 

to recall information about them, this is the only means available to perform such 



65 

an information push.  This implementation is wasteful.  By updating every user, 

the portal wastes time and bandwidth attempting to connect to offline users.  A 

system log in will allow user identification to be associated with content 

descriptors, allowing a more streamlined implementation of the alert system. 

 

6. Security 
The only security mechanism employed by the TwiddleNet architecture to 

date is that provided by virtue of the carrier network.  In the case of WiFi for 

instance, security is most often Wired Equivalent Privacy (WEP) and generally 

nothing more.  Given the usage model in which this system would be used, 

robust security is a must.  Privacy, Integrity, authenticity and provision of service 

are only a few of the areas that need to be addressed.  Furthermore, these 

issues must be addressed from the perspective of the personal server and the 

portal.  Personal server protection is of the utmost importance since users allow 

unknown visitors direct access to their device.  It is crucial to ensure that access 

is strictly limited to the TwiddleNet shared directory, thereby precluding malicious 

intrusion to other parts of the device.  Portal protection is also a critical concern, 

since it is a potential single point of failure in the architecture. 

 

7. Single Point of Failure 
Since TwiddleNet is a hybrid peer-to-peer architecture it contains a unique 

network entity, the portal.  Currently, the portal is a single data base that contains 

all of the shared metadata provided by the personal servers.  Therefore the portal 

is a single point of failure and is a critical target for malicious users and a 

vulnerability of the network in the case of device failure or malfunction.  There 

has been significant work in the field of distributed databases and mobility.  The 

approach of spreading the database content among numerous separate network 

entities would be a large step forward to protecting the portal through 

redundancy. 

 



66 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



67 

APPENDIX  

<?xml version="1.0" encoding="UTF-8"?> 
<feed xmlns:t="http://www.TwiddleNet.com"> 
  <action action=""> 
    <entry> 
      <title when ="predefined" how="userdefined" authority="mandatory" dataType ="0"></title> 
      <id when ="predefined" how="userdefined" authority="mandatory" dataType ="0"></id> 
      <updated when ="onSend" how="automatic" selected="true" authority="mandatory" dataType ="2"></updated> 
      <author> 
        <name when ="predefined" how="userdefined" authority="mandatory" dataType ="0"></name> 
        <email when ="predefined" how="userdefined" authority="optional" dataType ="1"></email> 
        <url when ="predefined" how="userdefined" authority="optional" dataType ="4"></url> 
      </author> 
      <summary when ="onGen" how="userdefined" authority="optional" dataType ="0"></summary> 
      <t:created when ="onGen" how="automatic" selected="true" authority="mandatory" dataType ="2"></t:created> 
      <t:fileUpdated when ="onGen" how="automatic" selected="true" authority="optional" dataType ="2"></t:fileUpdated> 
      <t:extension when ="onGen" how="automatic" selected="true" authority="optional" dataType ="6"></t:extension> 
      <t:missionNumber when ="predefined" how="userdefined" authority="optional" dataType ="0"> </t:missionNumber> 
      <t:priority when ="onGen" how="userdefined" authority="optional" dataType ="6"></t:priority> 
      <t:kw when ="onGen" how="userdefined" authority="optional" dataType ="0"></t:kw> 
      <t:idcode when ="onSend" how="automatic" selected="true" authority="mandatory" dataType ="6"></t:idcode> 
      <t:phone when ="onSend" how="automatic" selected="true" authority="optional" dataType ="7"></t:phone> 
      <t:title when ="onGen" how="automatic" selected="true" authority="mandatory" dataType ="0"></t:title> 
      <t:length when ="onGen" how="automatic" selected="true" authority="optional" dataType ="0"></t:length> 
      <t:ipaddress when ="onSend" how="automatic" selected="true" authority="optional" dataType ="0"></t:ipaddress> 
      <t:image when ="onGen" how="automatic" selected="true" authority="optional" dataType ="0"></t:image> 
      <link when ="onSend" how="automatic" selected="true" authority="mandatory"  dataType ="5" rel="enclosure" title="" 
length="" href=""></link> 
    </entry> 
  </action> 
</feed> 



68 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



69 

LIST OF REFERENCES 

[1]  T. Pering, Y. Agarwal, R. Gupta and R. Want, "CoolSpots: reducing the 
power consumption of wireless mobile devices with multiple radio 
interfaces," in MobiSys '06: Proceedings of the 4th international 
conference on Mobile systems, applications and services, pp. 220-232, 
2006. 

[2]  Semagix White Paper, "A Semantic Metadata Approach to Enterprise 
Information Integration." 

[3]  H. Halpin, V. Robu and H. Shepherd, "The Complex Dynamics of 
Collaborative Tagging," in WWW 2007, pp. 211-211-220, 2007. 

[4]  D. Johnson, RSS and Atom in action, 209 Bruce Park Ave., Greenwich, 
CT 06830: Manning Publications Co., 2006, pp. 368. 

[5]  M. Nottingham and R. Sayre, "RFC 4287; The Atom Syndication Format," 
pp. 1-43, 2005. 

[6]  A. Sorvari, J. Jalkanen, R. Jokela, A. Black, K. Koli, M. Moberg and T. 
Keinonen, "Usability issues in utilizing context metadata in content 
management of mobile devices," in NordiCHI '04: Proceedings of the third 
Nordic conference on Human-computer interaction, pp. 357-363, 2004. 

[7]  M. Ames and M. Naaman, "Why we tag: motivations for annotation in 
mobile and online media," in CHI '07: Proceedings of the SIGCHI 
conference on Human factors in computing systems, pp. 971-980, 2007. 

[8]  R. Sarvas, E. Herrarte, A. Wilhelm and M. Davis, "Metadata creation 
system for mobile images," in MobiSys '04: Proceedings of the 2nd 
international conference on Mobile systems, applications, and services, 
pp. 36-48, 2004. 

[9]  G. Muhl, A. Ulbrich and K. Herrman, "Disseminating information to mobile 
clients using publish-subscribe," Internet Computing, IEEE, vol. 8, pp. 46-
53, 2004. 

[10]  A.P. Afonso and M.J. Silva, "Dynamic Information Dissemination to Mobile 
Users," Mobile Networks and Applications, vol. 9, pp. 529, Oct. 2004. 

[11]  K. Ragab, N.Y. Horikoshi, H. Kuriyama and K. Mori, "Autonomous 
decentralized community communication for information dissemination," 
Internet Computing, IEEE, vol. 8, pp. 29-36, 2004. 

[12]  A. Oram, "Peer-to-peer: harnessing the benefits of a disruptive 
technology," pp. 432, 2001. 



70 

[13]  R. Schollmeier, "A Definition of Peer-to-Peer Networking for the 
Classification of Peer-to-Peer Architectures and Applications," in 
Procedings of the First International Conference on Peer-to-Peer 
Computing, 2001. 

[14]  M. Mallick, "Mobile and wireless design essentials," pp. 454, 2003. 

[15]  O. Volgin, W. Hung, C. Vakili, J. Flinn and K.G. Shin, "Context-aware 
metadata creation in a heterogeneous mobile environment," in NOSSDAV 
'05: Proceedings of the international workshop on Network and operating 
systems support for digital audio and video, pp. 75-80, 2005. 

[16]  P. Vartiainen, "Using Metadata and Context Information in Sharing 
Personal Content of Mobile Users," 27 Feb 2003. 2003. 

[17]  J. Wikman and F. Dosa, "Providing HTTP Access to Web Servers 
Rinning," Nokia., Tech. Rep. NRC-TR-2006-005, 2006. 

 

 

 



71 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Fort Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 
 
3. Marine Corps Representative 
 Naval Postgraduate School 
 Monterey, California 
 
4. Director, Training and Education, MCCDC, Code C46 
 Quantico, Virginia 
 
5. Director, Marine Corps Research Center, MCCDC, Code C40RC 
 Quantico, Virginia 
 
6. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer) 
 Camp Pendleton, California 
 

 

 


