
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2007-12

A study to model human behavior in Discrete Event

Simulation (DES) using Simkit

Tan, Boon Leng (Ryan)

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/3046

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36696775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

A STUDY TO MODEL HUMAN BEHAVIOR IN DISCRETE
EVENT SIMULATION (DES) USING SIMKIT

by

Boon Leng (Ryan), Tan

December 2007

 Thesis Advisor: Arnold H. Buss
 Second Reader: Christian J. Darken

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE A Study to Model Human Behavior in Discrete Event
Simulation (DES) using Simkit
6. AUTHOR(S) Boon Leng (Ryan) Tan

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
In modern simulation systems, there are two main domains. The first is the Event Driven domain that uses

events as the driver in the simulation. Event driven simulations are efficient as they avoid unnecessary time steps and,
when carefully designed, can realistically represent real world events. The Time Driven paradigm, the other
simulation domain, is favored by agent-based simulations due to the time stepping characteristic suitable for the agent
decision cycle. Agent-based simulations such as the multi-agent systems are capable of modeling complex human
intelligence and behavior.

In this thesis, Discrete Event Multi Agent Simulation (DEMAS) is introduced as a new design concept which
provides the mean to have the best of both simulation domains. DEMAS design concept uses event graph
methodology and LEGO framework to achieve design simplicity and modularity, allowing multi-agent systems to be
added into a discrete event world. To validate the new design concept, three simulations of different complexity levels
were developed using Simkit Java package. The validations eventually proved the worthiness of the DEMAS design
concept for providing the means to build simulations with benefiting characteristics of both multi-agent systems and
discrete event simulations.

15. NUMBER OF
PAGES

103

14. SUBJECT TERMS Simulation, Simulation Design, Discrete Event Simulation, DES, Multi Agent
Simulation, MAS, Agent Based Simulation, ABS, Event Graph, Simkit, Discrete Event Multi Agent
Simulation, DEMAS, Riverine Sustainment 2012, SEA11.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

A STUDY TO MODEL HUMAN BEHAVIOR IN DISCRETE EVENT
SIMULATION (DES) USING SIMKIT

Boon Leng (Ryan), Tan

Major, Republic Of Singapore Navy
B. (Hons) Comp Science, University of Melbourne, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MODELING, VIRTUAL ENVIRONMENTS AND
SIMULATION (MOVES)

from the

NAVAL POSTGRADUATE SCHOOL
December 2007

Author: Boon Leng (Ryan), Tan

Approved by: Professor Arnold H. Buss
Thesis Advisor

Professor Christian J. Darken
Second Reader

Professor Rudolph P. Darken
Chair, Department of MOVES Institute

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

In modern simulation systems, there are two main domains. The first is the Event

Driven domain that uses events as the driver in the simulation. Event-driven simulations

are efficient as they avoid unnecessary time steps and, when carefully designed, can

realistically represent real-world events. The Time Driven paradigm, the other simulation

domain, is favored by agent-based simulations due to the time stepping characteristic

suitable for the agent decision cycle. Agent-based simulations such as the multi-agent

systems are capable of modeling complex human intelligence and behavior.

In this thesis, Discrete Event Multi Agent Simulation (DEMAS) is introduced as a

new design concept that provides the means to have the best of both simulation domains.

DEMAS design concept uses event graph methodology and LEGO framework to achieve

design simplicity and modularity, allowing multi-agent systems to be added into a

discrete event world. To validate the new design concept, three simulations of different

complexity levels were developed using the Simkit Java package. The validations

eventually proved the worthiness of the DEMAS design concept for providing the means

to build simulations with beneficial characteristics of both multi-agent systems and

discrete event simulations.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

II. BACKGROUND STUDIES ..5
A. GENERAL BACKGROUND ...5
B. DISCRETE EVENT SIMULATION (DES)..5
C. MULTI AGENT SYSTEM (MAS)...8
D. THE EVENT GRAPH METHODOLOGY...11
E. SIMKIT...16

III. LITERATURE FINDINGS...21
A. RESEARCH WORKS ON INTEGRATING DES AND MAS..................21

1. Swarm (1995)..21
2. Agent-Object-Relationship (AOR) Metamodel (2003)22
3. System for Parallel-Agent Discrete Event Simulation (SPADE)

(2003)...25
4. Integrating ABS into DES (2005) ...26

B. BENEFIT STUDIES..28
C. EXPECTED CHALLENGES...30

IV. DEMAS DESIGN CONCEPT ..33
A. DEMAS DESIGN OVERVIEW ...33

1. Model DEMAS by First Scoping the Simulated World With
DES..34

2. Define the MAS Mental Model ...36
3. Correlate Discrete Events in DES with MAS Mental Model.........37

B. DESIGNING DEMAS WITH EVENT GRAPH AND LEGO38
C. DESIGNING THE MAS IN A DEMAS MODEL41
D. DEMAS DEVELOPMENT USING SIMKIT ...42

1. Simple Server DEMAS..43
2. El Farol Bar DEMAS...48

V. IMPLEMENTING DEMAS INTO SEA11 PROJECT..57
A. INTRODUCTION TO SEA11 PROJECT ..57
B. INTRODUCTION TO SEA11 LOGISTIC DES ..57
C. DESIGNING SEA11 LOGISTIC DEMAS..60
D. RESULT AND ANALYSIS...65

VI. CONCLUSION ..71

APPENDIX A. SIMPLE SERVER DEMAS..73
A. SIMPLE SERVER DISCRETE EVENT CODE SAMPLE73
B. SIMPLE SERVER MAS MENTAL MODEL CODE SAMPLES............73

APPENDIX B. EL FAROL BAR DEMAS ..75
A. EL FAROL DISCRETE EVENT CODE SAMPLES.................................75
B. EL FAROL MAS MENTAL MODEL CODE SAMPLES76

 viii

APPENDIX C. SEA11 LOGISTIC DEMAS ...79
A. SEA11 LOGISTIC DISCRETE EVENT CODE SAMPLES79
B. SEA11 LOGISTIC MAS MENTAL MODEL CODE SAMPLES............80

LIST OF REFERENCES..83

INITIAL DISTRIBUTION LIST ...87

 ix

LIST OF FIGURES

Figure 1. An Illustration of a Discrete Event System model...6
Figure 2. Simple Automated Wake-Up System. ...7
Figure 3. Graphical representation of an Agent by Prof. J. Hiles of NPS.........................8
Figure 4. Simple Library Book Loan Event Graph. ..13
Figure 5. Simple Library Book Loan Event Graph. ..15
Figure 6. Linking Simple Library models with LEGO Listener.15
Figure 7. Modified Simple Library Arrival Queue Event Graph.16
Figure 8. Linking Simple Library models with LEGO Adaptor.16
Figure 9. Event Graph for Arrival Process Model. ...18
Figure 10. The core state structure modeling elements of external AOR diagrams

[From [11]]...23
Figure 11. An Elevator scenario as an external AOR model [From [11]].24
Figure 12. A UML class diagram describing the basic ontology of AORS [From

[11]]..24
Figure 13. Integration of an Agent Based Module with the Discrete Event

Environment [From [10]]...27
Figure 14. Physical Layout of the Environment and Some Possible Test Case

Scenarios [From [10]]. ...27
Figure 15. Identifying the Events and Agent of a system. ..35
Figure 16. Identifying Perception and Action of the Agent interacting in the system......35
Figure 17. Pseudo Event Graph representation of the DEMAS model.............................36
Figure 18. Events Scheduled as Input Suite and from Output Suite of the Agent.37
Figure 19. An Illustration of a Complete DEMAS Event Graph Model...........................39
Figure 20. An Illustration of a DEMAS Event Graph Model with multiple MAS.39
Figure 21. Modeling AOR Elevator Problem (Figure 11) with DEMAS.40
Figure 22. Pictorial Representation of MAS structure for El Farol Bar Problem.42
Figure 23. Simple Server Modeled with Event Graph. ...43
Figure 24. Simple Server DEMAS Modeled with Event Graph.44
Figure 25. Average System Time over 500 runs for Simple Server DES.........................47
Figure 26. Average System Time over 500 runs for Simple Server DEMAS.47
Figure 27. El Farol DEMAS Modeled with Event Graph...51
Figure 28. Weekly and Cumulative Attendance from El Farol MAS.54
Figure 29. Weekly and Cumulative Attendance from El Farol DEMAS..........................55
Figure 30. Screen Capture of the SEA11 Logistic DES..59
Figure 31. SEA11 Logistic DEMAS Event Graph Modules. ...61
Figure 32. Event Graph for “SeaSupplyCraftScheduler” Subsystem.63
Figure 33. SEA11 Logistic DEMAS Event Graph for MAS “AgentDecision”

Module. ..64
Figure 34. SEA11 Logistic DEMAS Result..66
Figure 35. Zoom In View Of SEA11 Logistic DEMAS Result..67
Figure 36. SEA11 Logistic DEMAS Result (For Operating Base with Increased

Capacity And Consumption Rate). ..68

 x

Figure 37. Zoom in View of the SEA11 Logistic DEMAS Result (For Operating
Base with Increased Capacity and Consumption Rate).69

Figure 38. doEndService Code Sample in SimpleServer Class.73
Figure 39. doMASDecision Code Sample in AgentProcess Class.73
Figure 40. makeDecision Code Sample in AgentProcess Class.74
Figure 41. doArrival Code Sample in EnterBarEvents Class. ..75
Figure 42. doJoinQueue Code Sample in EnterBarEvents Class......................................75
Figure 43. doEntersBar Code Sample in EnterBarEvents Class.76
Figure 44. doLeavesBar Code Sample in EnterBarEvents Class......................................76
Figure 45. MAS Constructor Code Sample in MAS Class. ..77
Figure 46. doOpenBar Code Sample in MAS Class. ..77
Figure 47. doGoHome Code Sample in MAS Class. ..77
Figure 48. doLeaveBar Code Sample in MAS Class. ...78
Figure 49. doCloseBar Code Sample in MAS Class...78
Figure 50. doPreDeploy Code Sample in SupplyCraftScheduler Class............................79
Figure 51. doClearWeather Code Sample in WeatherAgent Class...................................79
Figure 52. doChangeWeather Code Sample in WeatherAgent Class.79
Figure 53. doAgentDecision Code Sample in SupplyCraftAgent Class.80
Figure 54. getDeploymentResult Code Sample in SupplyCraftAgent Class.80
Figure 55. updateVoters Code Sample in SupplyCraftAgent Class..................................82

 xi

LIST OF TABLES

Table 1. Structure of a DES model. ...6
Table 2. MAS Components and definitions...9
Table 3. Basic Symbols used in Event Graph..11
Table 4. LEGO Symbols used with Event Graph. ...14
Table 5. Relationship of Event Graph and Simkit Classes (After Ref. [22])................17
Table 6. Extracted Simkit Code for Arrival Process Model. ...19
Table 7. Summary of Benefits cited in Research Studies. ...28
Table 8. Expected Challenges of the Research Studies. ..31
Table 9. Simkit Code used in Simple Server DEMAS. ...46
Table 10. Parameters and setting used for Both Simple Server DES and DEMAS.46
Table 11. Output Results Of Both Simple Server Simulation. ..48
Table 12. Simkit Code used in El Farol DEMAS. ...52
Table 13. Parameters and setting used for Both El Farol MAS and DEMAS.53
Table 14. Operating Base and Supply Craft Parameters..58
Table 15. Parameters and Settings used for SEA11 Logistic DEMAS.65

 xii

 THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

My most sincere gratitude and appreciation goes to my advisor, Professor Arnold

H. Buss, from whom I have learnt much about Discrete Event Simulation and Simkit. I

gratefully acknowledge his patient support and guidance, which has made this thesis

possible. It is a privilege to have worked with him for the past one year. His knowledge

and expertise have truly inspired me in many ways.

I would like to thank Professor John Hiles for allowing me to reference some of

his teaching materials for multi-agent systems. I would also like to acknowledge that his

lectures on multi-agent systems were part of my inspiration to do the work in this thesis.

I sincerely thank the Republic of Singapore Navy (RSN) for providing the

sponsorship that had made this academic opportunity possible.

Lastly, I would also like to thank Mr. Richard Black-Howell for putting in his

time and effort to edit this thesis. Without him, I would have to spend much more time

and hard work in getting this thesis completed.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

There are two main domains in modern simulation systems. The first is the Event

Driven domain that uses events as the driver in the simulation. An event driven

simulation progresses as events take place; usually, time is a measured result from the

simulation system. This type of simulation is suitable when specific events can be pre-

defined and mapped in the simulated world. Event driven simulations, specifically

Discrete Event Simulator (DES), arguably bear a closer resemblance to the actual world.

The second type of simulation domain is the Time Driven domain. In time driven

simulation, also commonly termed as Time Stepping simulation, processes take place in

accordance to time. At each time step, the simulation halts for the processing cycle to be

performed by each entity. These entities, for example, can be autonomous decision-

making agents, user controlled decision inputs, or environmental conditions affecting the

simulated world. Time driven domain, due to its time stepping characteristic, has been

favored by Agent Based Simulation (ABS) and likewise for Multi Agent System (MAS).

This is due to the agent decision cycle, which can be easily correlated with each time

step. Because human behavior is unpredictable, coupled with the randomness in human

differences, ABS and MAS provide the ability to model what mathematical formulae

could not. The differences and individual benefits of both the Event Driven and Time

Driven domains have led to independent development and many achievements over the

last two decades [1] – [4].

This thesis developed a new designing concept for building a more realistic

simulation model. Inspired by both the DES and MAS behavior models, a new design

concept to incorporate MAS behaviors into DES is proposed. It is not difficult to realize

that the real world consists of events that trigger behaviors and decisions. Despite that, it

is impossible to model the whole world, which is made up of a huge number of events

taking place concurrently. It is, however, feasible to carefully scope and scale simulated

worlds to be modeled with finite events. The proposed design concept targets the need to

harvest “intelligence” of multiple autonomous agents interacting with a DES, and is

given the term Discrete Event Multi Agent Simulations (DEMAS). This thesis exploits

 2

the popular modeling methodology, Event Graph, developed by Schruben [5], and

couples with the Listener Event Graph Objects (LEGO) developed by Buss [6], [7] as the

designing tool in the DEMAS modeling. Simkit1 is then used in the development to

demonstrate and verify a few of the DEMAS systems introduced in this thesis as

verification of the design concept.

It is not a new concept to hybrid both DES and MAS. As early as 1995, SWARM

[9], a set of Objective-C libraries developed by Santa Fe Institute, provided the mean to

implement agent-based modeling driven by continuous processes and discrete events.

More recent researches included Dubeil and Tsimhon [10] and Wagner [11], works that

looked at integrating ABS into DES, and Agent-Object-Relationship Metamodel

respectively. Chapter II of this thesis consists of background understanding of DES and

MAS. It can be read separately, especially for readers and researchers who want to know

the fundamentals of each. It is also important to note that the materials covered in both

DES and MAS will not be substantial and it is recommended that readers who need more

information may obtain greater details from the references provided.

Chapter III looks at the research works done by Dubeil and Tsimhon [10],

Wagner[11] and Riley[12], who all have proposed their methodologies to integrate DES

and MAS, and summarizes some of the important findings. This chapter further

highlights the reasons and benefits, together with potential usage, of having simulation

models integrating multiple agents into DES. This approach is meant to result in more

realistic simulators when carefully designed.

Chapter IV will discuss the DEMAS design concept using Event Graph and

LEGO. A new graph figure is introduced to represent multi-agents decision cycle. The

chapter will continue on to conceptualize DEMAS design concept by introducing two

DEMAS examples. The first is a simple queuing system originated with DES, while the

second example is the El Farol problem, which is a well known MAS example.

1 Simkit is a set of Java packages which support the building of discrete event models. It was

developed by Professor Arnold H. Buss of the Naval Postgraduate School (NPS) [8].

 3

Chapter V describes the implementation of the DEMAS in the System

Engineering and Analysis (SEA) Project 11 Logistic Support Simulation. The SEA11

logistic simulation was completed in June 2007, by the students from both the SEA

curriculum of the NPS and the Temasek Defence Systems Institute (TDSI) of Singapore,

The project studied the logistic support for U.S. 2012 Riverine Operations; the simulation

was built using Simkit and functioned as a pure DES model. The addition of MAS in the

simulation allowed autonomous decision making processes to achieve local and global

goals. The results and analysis from the new SEA11 DEMAS are used to compare with

the original model.

The conclusion of this thesis re-emphasizes the benefit of merging MAS into DES

as the new design concept called DEMAS. When carefully modeled, a realistic simulated

environment coupled with human-like intelligence and behavior can be achievable using

DEMAS design concept.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND STUDIES

This chapter provides the background understanding of Discrete Event Simulation

(DES) and Multi Agent System (MAS). The individual sections can be read separately as

they are catered toward readers and researchers who need the fundamentals. The

materials covered will not be substantial and therefore it is recommended that readers

needing more information on the various fields obtain better coverage from the references

provided.

A. GENERAL BACKGROUND

Simulation is a type of modeling approach used to study a system. A system here

represents a real-world process of interest, or facility of a kind that warrants a scientific

study [13]. A system is also defined by Schmidt and Taylor as a set of entities, such as

people and machines that communicate and work as a whole in achieving some logical

end [14]. Other than simulation modeling, there are generally two other types of model,

namely, the Analytic and Algorithmic models. Analytic models are best suited for

systems represented by well defined sets of equations, while algorithmic models are

preferred in systems with logical characteristics that can easily be translated into

computer algorithms. Simulation, on the other hand, is suited for systems with

randomness, where no simple equations or logic are derivable. Both DES and MAS are

types of simulation techniques used in modeling a system.

B. DISCRETE EVENT SIMULATION (DES)

The term discrete as opposed to continuous indicates that there is a moment of

“pause” or breakpoint. And at each breakpoint, the State of the system changes

instantaneously. Law [13] defines the state of a system as a collection of variables

necessary to describe a system at a particular time. A complete definition of DES is

therefore a simulation concerned with the modeling of a system, with representation at

each separated point in time of the instantaneous changes in its state variables. Each point

in time is said to be an Event, which may change the state of the system.

 6

The structure of a DES model consists of four elements as shown in Table 1.

These elements form the basic model of a DES [15]. To illustrate the difference of these

elements, Figure 1 shows a diagrammatic use of each element in representing a system.

Table 1. Structure of a DES model.

Elements of DES Definition

Parameters Variables input into the system but will not change at

each discrete interval.

State Variables Variables representing the state of the system. These

may change at each discrete interval.

Events Interesting occurrences of the system.

Scheduling Relationships Events’ inter scheduling connection within the system.

Figure 1. An Illustration of a Discrete Event System model.

Figure 1 shows a simple system with three events. Since the scheduled time A and

B used in the system do not change the state of the system, they are termed the

parameters. When each of the events takes place at some discrete timing, represented by

 7

circles in the diagram, the state variables representing the status of the system get

changed. α, β and γ are the state variables used in this system. The scheduling

relationships shown in the diagram indicate that after Event 1 takes place, Event 1 will

schedule the occurrence of Event 2 and Event 3 after scheduled time A and scheduled

time B, respectively. To better understand the structure of a DES model, Figure 1 is

mapped into a simple real-life Automated Wake-up System example as shown in Figure

2. Despite that, the given example is one that is unsophisticated, and therefore does not

require the need of a scientific study; it is considered to be a complete DES model

suitable for crafting into a computer simulation.

Figure 2. Simple Automated Wake-Up System.

As stated earlier, the automated wake up system example is a discrete event

system with changes occurring at particular instants of time. This time is advanced at

discrete steps to the next interesting state change, or a new event occurrence such as

“Turn on Radio.” In general, it is not straightforward to see a real-life system as a discrete

event system. The ability to do so takes practice to develop a good model.

 8

C. MULTI AGENT SYSTEM (MAS)

To understand MAS, it is best to first grasp the concept of an Agent. An agent, in

computer simulation terms, means a simulated autonomous entity - such as a person,

animal, vehicle or the weather - that has attributes and potentially complex behaviors.

The attributes and behaviors of the agent allow it to strive toward individual goals. Figure

3 shows a graphical representation of an agent illustrated by Professor John Hiles during

his lecture in NPS. When many of these agents are placed within a system, it becomes

MAS. The agents interact within the system and, depending on the setup, sometimes

interacting among each other, with the sole objective of fulfilling individual goals. The

scientific benefits achievable from MAS are vast [16]. Due to the ability to model

complex behaviors in social context, MAS has recently gained interest among the defense

and homeland security departments, in attempts to model and study terrorist behavior.

Some examples of terrorist MAS research work are Bulleit and Drewek [17], and the

NetBreaker [18] from North et al.

Figure 3. Graphical representation of an Agent by Prof. J. Hiles of NPS.

A MAS simulation typically consists of multiple autonomous agents with

complex behavior, attempting to function in the modeled system. Agents will likely be

 9

given individual goals that they will strive for in order to “survive” in the system. Each

autonomous agent follows a time-stepping driver in making decisions for next action. At

each time step, agents make decisions based on the information gathered from the sensors

probed into the environment. The decision’s outcome in turn becomes influential toward

the system. This is the micro level observation of a MAS system. In the macro level, as

each of the autonomous agents reacts to the system based on its individual goals, global

objectives and behavior can be observed for study and analysis. MAS simulations

consisting of agents with human-like complex behaviors will have the potential to exhibit

global human community behavior at the macro level.

Professor Hiles describes MAS as a complex adaptive system [19]. To fully

satisfy a MAS requirement, MAS needs to have an Environment, a group of Agents, a set

of Objects, a set of Operations and finally some Laws. These are shorthanded as MAS =

{E, A, O, Ops, Laws} [19]. Table 2. lists out the components of a MAS and the

respective definitions.

Table 2. MAS Components and definitions.

Component Definition

Environment The environment is where the agents reside. It is a boundary to what

is inside the system and what is to be left out. For example, does the

system demand an indoor environment or an outdoor environment?

For example, in a study to evaluate the elevator usage of a multi-

story shopping mall, the environment is the building inclusive of

elevators, escalators and stairs.

Agents As explained, agents are autonomous entities, actively participating

in the system. They have behavior and make decisions to achieve

individual goals. Agents’ action from the decisions made can include

movement, sensing or modifying the environment. Agents can differ

from each other in behaviors, goals, utilization of feedback, way of

 10

seeing the environment, choices of alternative behaviors and even

acting on the environment.

In the elevator usage system, agents are customers who decide to use

the elevators or to use the escalators. Decisions will base on the fact

that escalator serve single floors while elevators serve more than one

level.

Objects Objects are the non-autonomous parts of the Environment. Objects

can range from resources, tools, devices, concepts to even

categories. Objects are utilized or acted upon by the agents. In many

cases, unnecessary objects designed into the system may complicate

the environment, which directly increases the complexity of the

agents’ interaction. In the same example, the elevators and escalators

are the objects with which the agents interact to achieve goals.

Operations Operations are the processes that operate within the environment. In

most cases, operations are part of the agents in the way they interact

with the environment. Sometimes operations can be more

complicated and may reside within multiple agents.

In the example, the utilization rate of the elevators will be gathered.

Other operations such as average waiting time for the elevators and

escalators can also be obtained through implicit agents’ behaviors

and decisions.

Laws These are the ground rules that govern the environment of the MAS.

These laws are the constraints that the agents must obey.

The number of customers an elevator can carry, the service time of

the elevator at each floor, the tolerance level of the customer for

waiting on elevators are some examples of laws that the shopping

mall MAS will have.

 11

D. THE EVENT GRAPH METHODOLOGY

Event Graph was first introduced by Schruben as a concise method for organizing

the elements of a DES [5]. The method was subsequently refined by Sargent [20] and

Som and Sargent [21]. The simplicity and clarity of event graph methodology resulted in

its popular acceptance in designing DES models. Figures 1 and 2 are actually event

graphs that have expressed the concept of DES effortlessly. As reusability, modular

designs and object oriented (OO) programming became popular, a greater breakthrough

in DES modeling was achieved by Professor Buss, who introduced the idea of Listener

Event Graph Objects (LEGO) in event graph [6], [7] and subsequently the development

in the set of the DES Java package called Simkit [8]. LEGO, which allows modularity

and reusability within DES, is the main driver that has allowed the design concept

DEMAS in this thesis to work.

Event graph has direct representation for three out of the four elements of a

discrete event system, namely, the state variables, the events that change the values of

these state variables, and the scheduling relationships between the events. Parameter,

which is the fourth element, exists within the discrete event system but is represented

indirectly as unchanged values parsed within the system. Table 3 lists the basic symbols

used in event graphs.

Table 3. Basic Symbols used in Event Graph.

Symbol Definition

The basic unit of an Event. This represents an event

within the discrete event system at an instant of time,

which state variables may change.
Event

 12

An Event with defined argument parsed in by other

scheduling events. There is no limit to the number of

parameters parsed into the event.

The Edge symbol that connects two events. This symbol

means that there exists a scheduling relationship between

the connected events and that Event A (arrow tail) will

schedule Event B (arrow head) after time interval of

Tdelay. If Tdelay is absent, it represents a schedule with

Tdelay = 0.

The condition edge. Similar to the normal scheduling

edge but the connected event (arrow head) will only be

scheduled if the condition is valid.

Scheduling edge with arguments parsing. This must

correlate with the same arguments as the scheduled

event.

Cancellation Edge symbol used to remove a scheduled

event if it existed in the future events list. Matching event

name and argument if parsed ensures the correct event

will be cancelled.

The curly brackets, used under each event institute the

state variable changes and processes associated at the

discrete event time.

A simple Library Book Loan System will be able to demonstrate the use of the

event graph methodology in modeling a discrete event system. To simplify the problem,

the model will only deal with the number of books loaned out at any specific time. Figure

4 shows the event graph model of the Library Book Loan System, where the “RUN”

arg

Event
(arg)

- State Variable Changes
- Processes

Tdelay

(conditions)

 13

event acts as an initialization, which Schruben advocated. The “RUN” event schedules,

without time delay, the “Borrow Book” event where library members at the queue will be

assigned with the book they borrowed and the “Book on Loan” state variables get

incremented. The “Borrow Book” event will schedule the “Return Book (Member)”

event only after a time delay of Treturn, which is a parameter (usually random) associated

with the members. However, in order that the “Return Book (Member)” event knows

which member is returning, the argument “Member” is parsed into the event. To continue

serving the remaining members waiting in the queue, the “Borrow Book” event schedules

itself with no time delay, with the condition that there are still members waiting in the

queue.

Figure 4. Simple Library Book Loan Event Graph.

LEGO is a powerful and flexible component framework developed by Professor

Buss. LEGO promotes reusability and modularity within DES modeling [6], [7], which

goes hand-in-hand with the present trend of OO programming. In the traditional event

graph models, all events are pre-defined and hard-wired to represent a system. To expand

the system, additional events cannot be added without having additional edges modified

into the existing system. Such models eliminate the potential for reusability and

encapsulation. LEGO bridges the gap by providing a listening link between separate

 14

event graph models. A scheduled event in one model becomes the trigger to another

event in other models. These listening links are listed in Table 4.

Table 4. LEGO Symbols used with Event Graph.

Symbol Definition

The Listener symbol, crafted to resemble the stethoscope

used by a doctor. The symbol represents an Event Graph

model listening (single line end) to the event triggers of

the other Event Graph model (three lines end). Both

events residing in both models must have the same

names and arguments.

An Adaptor symbol is a more complex LEGO

framework. While a listener symbol is only concerned

with event triggers with the same names and arguments,

the adaptor symbol represents a listening link between

two models that have the corresponding events labeled as

A and B. In this case, the listening model listens to event

B in the other model, and upon hearing event B being

scheduled, event A in the listening model is scheduled.

The Simple Library example in Figure 4 is not complete without understanding

how the “ArriveQueue” gets populated with members. Figure 5 shows the model of a

Simple Library Arrival Queue event graph that models the member arrival at Tmember_arrive

(random valued parameter). “RUN” event cleared the queue and scheduled the “Member

Arrive” event after delay time of Tmember_arrive. “Member Arrive” event continues to

schedule itself for the next member arrival and also the “Borrow Book” event, which in

this case does not have a state variable changes.

A

B

 15

Figure 5. Simple Library Book Loan Event Graph.

Some people may ask why the Simple Library Book Loan and Simple Library

Arrival Queue are built as two separate models. By separating the two models, it allows

simplicity, encapsulation, modularity and reusability. Imagine that changes in one model

no longer affect the other part of the bigger Library system. LEGO framework can now

be applied to the two models by first using a Listener link as shown in Figure 6.

Figure 6. Linking Simple Library models with LEGO Listener.

To use LEGO Adaptor (see Figure 8) instead of the Listener framework, the

“Borrow Books” event of the Simple Library Arrival Queue will not be needed, therefore

simplifying the model further as shown in Figure 7.

 16

Figure 7. Modified Simple Library Arrival Queue Event Graph.

Figure 8. Linking Simple Library models with LEGO Adaptor.

E. SIMKIT

Simkit is an open source Java package created by Professor Buss. It is freely

available for anyone who has the interest to build DES. Simkit was first introduced in

2001 [8]. This section is not meant to deliver a complete understanding to using Simkit,

but rather a basic introduction. To be familiar with Simkit, it is recommended to attend

the courses provided by Professor Buss in NPS.

Simkit has been designed to allow straightforward association with an event graph

model. Every element in an event graph, including the LEGO framework (Table 3 and

 17

Table 4) has a corresponding element in Simkit. Table 5 below shows the relationship

between the basic elements of an event graph and Simkit classes, which was extracted

from Professor Buss’s class notes for OA3302, Winter 2007.

Table 5. Relationship of Event Graph and Simkit Classes (After Ref. [22]).

Event Graph Simkit

Event Graph Parameter Private instance variable, setter and getter

State Variable Protected instance variable, getter, no setter

Event ‘do’ method

Scheduling Edge Call to waitDelay() in scheduling event’s

‘do’ method

Run Event Reset() method to initialize state variables;

doRun() method to fire PropertyChange events

for time-varying state variables.

Event scheduled from Run

event

Call to waitDelay() in doRun() method

Event scheduled from any

Event

Call to waitDelay() in scheduling event’s

‘do’ method

Priority on Scheduling Edge Priority instance as third argument to

waitDelay()

Argument(s) on Events Arguments in corresponding ‘do’ method

Parameters(s) on Edges Add parameter values/expressions last (in correct

order) in waitDelay()

Canceling Edge Call to interrupt()

LEGO Simkit

 18

Listener Link Linking model classes with

addSimEventListener().

A.addSimEventListener(B) means that

model B is listening to model A

Adaptor Link First declare a new Adaptor(“a”, “b”)

class and using then use

Adaptor.connect(A, B) for the linking of

model classes. “a” and “b” are the events in the

classes while A and B are the model classes.

To implement Simkit components, new Java classes must abstract

SimEntityBase class, available in the Simkit package. Figure 9 below shows an

Arrival Process event graph. The corresponding extracted Simkit code is shown in Table

6.

Figure 9. Event Graph for Arrival Process Model.

 19

Table 6. Extracted Simkit Code for Arrival Process Model.

37 * Schedule ARRIVAL event after delay of inter-arrival time. */
38 public void doRun(){
39 /** Initiate a print statement of the value change. */
40 firePropertyChange("numberArrivals", getNumberArrivals());
41
42 /** Cause a waiting time generated by random value. */
43 waitDelay("Arrival", interarrivalTime.generate());
44 }
45
46 /** Arrival event method of the Event Graph Diagram.
47 * Increment number of arrivals, schedule next arrival after
48 * delay of inter-arrival timPeag.e 1*/
49 public void doArrival(){
50 int oldValue = getNumberArrivals();
51 numberArrivals = numberArrivals + 1;
52
53 /** Initiate a print statement of the value change.*/
54 firePropertyChange("numberArrivals", oldValue,
 GetNumberArrivals());
55
56 /** Cause a waiting time generated by random value. */
57 waitDelay("Arrival", interarrivalTime.generate());

58 }

 20

THIS PAGE INTENTIONALLY LEFT BLANK

 21

III. LITERATURE FINDINGS

This chapter focuses on the literature findings obtained from the study of this

thesis. The idea to hybrid DES and MAS emerged in 1995 from the Santa Fe Institute

research group who developed the Swarm Objective-C libraries [9]. However, the merger

concept did not gain further research popularity beyond the isolated effort to develop

Swarm. It was not until 2003, that more studies and research papers were published. The

following sub-sections will give a quick look at Swarm and its development up to now,

followed by another three researches completed between 2003 and 2006. These findings

allowed the addition to the developed work by other research and, more importantly, in

support of the expected benefits achievable in this thesis research.

A. RESEARCH WORKS ON INTEGRATING DES AND MAS

1. Swarm (1995)

Swarm was built as a multi-agent software platform for the simulation of complex

adaptive systems [9]. Swarm is not merely a collection of simulation modeling tools, but

also provides a set of OO support libraries for analyzing the models and display

functionalities, and also in controlling experiments on those models. A Swarm model will

consist of a collection of independent agents interacting via DES, and each Swarm model

can be hierarchically stacked into a nested structure, composed of swarms of other

agents. The Swarm system is designed as a multi-agent system, where the basic unit is

the agent. Each agent is any actor or entity within a system that can generate events that

affect itself and other agents. The events generation and interaction among the agents are

then handled by an “event scheduler mechanism,” which advances time based on the

scheduling of these events. Swarm is an open source system available to the community

of researchers building computer simulations.

The goal of Swarm is to provide consistent experimental tools in the form of

libraries of carefully designed, implemented and tested code, targeted for reusability,

sharing and encapsulation. Swarm has yielded many developments since its public

 22

release in 1997. Swarm was first developed using Objective-C code in Linux/Unix

environment, but recently, interfaces for C++ and Java, and installations suitable for

Microsoft Windows and Macintosh OS have been made available. Swarm development is

presently managed under the Swarm Development Group [23]. An annual conference, the

“SwarmFest,” is one of the events organized by the development group to gather Swarm

simulation developers around the world. More research and development using Swarms

is available in the informative SwarmWiki webpage listed as reference [23].

2. Agent-Object-Relationship (AOR) Metamodel (2003)

Wagner commented that Swarm does not support any cognitive agent concept,

such as a theoretical foundation in the form of a metamodel [11], therefore limiting the

specification of a Swarm simulation model to only low-level imperative programming

languages. Wagner developed the AOR modeling language (AORML), basing it on high-

level declarative specification language in Unified Modeling Language (UML)-based

visual syntax (and an underlying simulation metamodel) coupled with abstract simulator

architecture and execution model. AORML is claimed to refine the classical DES

paradigm by enriching it with the basic concepts of the AOR metamodel [24]. Wagner

proposed an Agent-based Discrete Event Simulation (ABDES) approach that adopted a

number of essential ontological distinctions from the AORML with additional

introduction of exogenous events.2

AORML is based on an ontological distinction between active and passive

entities, with entity defined as: an agent, an event, an action, a claim, a commitment or an

ordinary object in AORML, which can only interact through communications, perception

of environmental information, performance of an action, making of a commitment and

even satisfaction of claims. Objects that are passive entities do not have such capabilities.

AOR modeling includes concepts for human (natural) agents, artificial (robotic) agents,

and institutional (social) agents that are composed of numerous other autonomous agents.

AOR modeling can also be modeled as external view or internal view, with the former

 23

adopting the perspective of an external observer who is looking at the agents and their

interactions while the latter express as a first-person view of a particular agent to be

modeled. Figure 10 shows the core state structure modeling elements of external AOR

diagrams extracted from Wagner’s paper [11].

Figure 10. The core state structure modeling elements of external AOR diagrams [From
[11]].

Wagner explained that in many ABDES approaches, similar to his, the basic DES

model is modified to become an ABDES through representation of additional ABS

conceptual distinctions, including the distinction between interacting agents and passive

objects. The ABDES methodology - AOR simulation (AORS) - proposed by Wagner

started with time-driven DES, but the listed simulation cycle steps, along with the set of

PROLOG prototypes developed by Wagner, suggests that the simulation can be event-

driven if desired. In AORS, the simulation modeling is achieved by AOR models and

UML object diagrams, along with the encoding represented by means of high-level

UML-based modeling language. DES controls the passive entities directly, influencing

the active agents’ internal state via event messages or signals and resulting in agents’

responses via action event triggers that can be represented in an AOR metamodel. Figure

2 Wagner explained exogenous events as non-action events that are not caused by other events or

external action events in the sense that their actor is not included in the simulation, but generated
periodically at random and by successor events, which are either caused event or action events [11].

 24

11 shows Wagner’s example of an AOR model with agent and event triggers, while

Figure 12 shows the representation of a complete AORS as class diagram.

Figure 11. An Elevator scenario as an external AOR model [From [11]].

Figure 12. A UML class diagram describing the basic ontology of AORS [From [11]].

 25

3. System for Parallel-Agent Discrete Event Simulation (SPADE) (2003)

SPADE functions as a middleware that primarily provides support for Artificial

Intelligence (AI) simulations, with agents running in parallel across multiple machines. It

also supports the tracking of computation time used by these agents. SPADE takes

advantage of running the simulation backboned as a DES, therefore allowing a common

association for SPADE to take care of the many system details required in handling the

distribution in an efficient and reproducible manner. Developed by P. Riley [12], this

middleware focuses on the agent as the fundamental simulation and is designed to

support simulations for AI community without their being tied down to a particular

simulated world.

There are five main capabilities of SPADE. First is the agent-based execution,

with which SPADE is able to provide explicit support for modeling latencies in sensation,

thinking and acting among the modeled agents. Second is the capability to distribute the

agents across multiple machines, therefore increasing the pace of the simulation. The

third capability involves result collection, where collected results are not affected by the

network delays or load variations among the machines. In other words, the simulation

results are independent of external factors. Fourth, the architecture of the agents is

independent of the programming language used, allowing flexibility for developers.

Finally, due to the DES engine’s running as the backbone, the agent’s action does not

need to be synchronized in the domain. This eliminates any latency that may be caused

by agents in different machines needing to wait for one another for actions to be executed

simultaneously. Experimental results from SPADE indicate higher efficiency and

significant parallel speedup in the agent simulation. SPADE is releases as a GNU Lesser

General Public License with complete documentation downloadable at [25].

SPADE is very different from other researches to integrate DES and MAS.

SPADE takes an agent-based simulation and layers it onto a DES backbone for easier

distribution and control on multiple machines. In this way, DES in SPADE needs to be

 26

transparent to the actual agent simulation. On the other hand, DES used in other

integration researches focuses on harmonizing discrete events with agents in a complete

simulation solution to the problem domain.

4. Integrating ABS into DES (2005)

Dubiel and Tsimboni highlighted that DES typically requires predefined paths

with decision points that dictate entity movement [10]. Such limitation results in

difficulty achieving human-like characteristic in path-finding. It was argued that any

model that requires free movement of entities or a very detailed movement pattern is not

easily simulated with DES. Two other limitations of DES involving human-like traveling

characteristic include the impracticality of making decisions in very small time

increments and the inability for entities to function autonomously. ABS, on the other

hand, is a considerably better and straightforward approach to the problem domain, due

to the possibility of simulating real-time interactions of people and their environment.

Dubiel and Tsimboni proposed a different approach in ABS and DES integration.

In their study, ABS is integrated with DES to model humans’ traveling freely through a

DES environment. It was highlighted that the study will yield a desirable tool, given the

ability to model scenarios including free moving, pseudo-intelligent individuals while

utilizing existing commercial DES models.

A test case, based on a real-world problem from the theme park industry, was

developed to validate the integration methodology. The scenario consisted of a

customer’s having limited knowledge of the surrounding searches and walks to an

information source in an attempt to determine the location of a goal object, and then

either traveling on a discrete movement system (tram) or walking to the goal object.

Figure 13 gives the pictorial representation of the integration for the example used in the

study. The agents were modeled with both visual and audio perceptions, along with a

decision table mapped to choices, simple search ability, movement ability and also

interaction ability in the test case. Figure 14 presented the physical layout of the test case

used in the study.

 27

Figure 13. Integration of an Agent Based Module with the Discrete Event Environment
[From [10]].

Figure 14. Physical Layout of the Environment and Some Possible Test Case Scenarios
[From [10]].

Comprehensive verification and validation were done to study the results of the

integration. The results indicated the successful implementation of the integration

between ABS and DES, mimicking decision patterns and movement of individuals

navigating the simulation world without a defined path or decision points. Nevertheless,

 28

it was realized that the simulation domain, whether it is time stepped or event driven, was

never mentioned. Through observation, it was implicit that the agents have to proceed in

time-step decision cycles except when the agent enters the discrete movement system

(tram). It was also mentioned that the agents, when seeking information, need to move in

and out of the agent-based model to utilize DES functions. Arguably, Dubiel and

Tsimboni’s integration methodology provided a tool that allows agents to interact in

traditional time-step cycle and the integrated discrete event processes.

B. BENEFIT STUDIES

After studying the various research papers and projects, it was clear that the

benefits of integrating DES with MAS/ABS are worth pursuing. DES emerged as a

simple simulation model that works well with most operation research (OR) and

mathematical problem domains, such as queuing theories. On the other hand, MAS

provides mean of modeling human-like complex adaptive behavior, a field that even

today holds many unknowns due to the diverse possibilities involved. Table 7. Table 7

summarizes the benefits listed in the four research studies.

Table 7. Summary of Benefits cited in Research Studies.

Researches Benefits

Swarm [9] • Creates a set of efficient, reliable libraries for reusability.

• Defines a structure for simulations, a framework from

which models can be built. A DES of multiple agents using an

OO representation.

• Allows complex research simulations to be modeled with

agents, but not tied down to any domain-specific requirement.

Flexibility is achieved in using Swarm framework.

• Complex agents modeling with time advancement based on

scheduled events at successive times, eliminating unnecessary

 29

idling time-cycle in traditional time-step agent models.

AOR metamodel

[11]

• AORS supports a structure-preserving modeling and

closer-to-reality simulation that represents both passive

entities (objects) and interactive entities (agents)

• Functionally distributed simulation involving multiple

participating simulators is possible due to the discrete event-

driven engine.

• Design flexibility that allows building of interactive

simulation where the agent simulators may be replaced by

real counterparts.

SPADE [12] • Distributed simulation using multiple machines based on

DES functionalities. Networking and correlations functions

between machines are transparent to actual simulation.

• Simulation architecture is independent of programming

language. SPADE functions as middleware between the ABS

and the background processing machines functioning as DES.

• Large memories and processing time required by

traditional ABS can be distributed to multiple machines, thus

increasing efficiency and reducing latency.

Integrating ABS

into DES [10]

• Provides an effective tool to implement human-like

interaction and behavior into DES, especially existing

commercial DES.

• Integrating ABS into DES gives a more complete

understanding of human-like decision pattern, behavior and

interaction when modeling human path-finding.

Integration allows merger in aspects of the system that cannot

be simulated by either of the simulation methods alone.

 30

The primary benefit in combining both DES and MAS/ABS is really to harvest

the ability of modeling the different aspects capable by each simulation model. By doing

so, simulations that better mimic a real world can be built for more accurate studies or as

simulation trainers and gaming simulations. The advantage of using DES as the system

environment model or as backbone of the simulation provides a simpler and more

efficient architecture, both because events in DES can be well defined (and easily

simulated) functions and because event-driven time advancement eliminates the idling

time-step cycle that may happen in traditional time-step simulators. Carefully scoped

simulated worlds consist of well defined events happening at discrete times, matching the

idea of using DES to model and simulate the environment in these researches. With such

a well defined simulation world using DES, layering MAS/ABS on top adds the

intelligence aspect. In other words, expected applications from these hybrid models other

than SPADE, which uses DES for distributed processing purposes, include systems with

intelligence entities (MAS/ABS) interacting within a well defined environment (DES).

Applications, for example, can be some commercial queuing and trading systems,

military simulations for studies of terrorist behavior and mission planning simulators, and

even simulators for biology and ecology research.

C. EXPECTED CHALLENGES

There are also challenges when merging both DES and MAS/ABS. The main

challenge is choosing between an event-driven or a time-driven domain engine. This is

the main difference, which has also given both simulation models their unique purposes.

Table 8 lists some of the expected challenges when exploiting the work done in each of

the four researches. These challenges will assist as guidelines to be considered when

approaching the design concept proposed in this thesis.

 31

Table 8. Expected Challenges of the Research Studies.

Researches Challenges

Swarm [9] • Java and C++ were not popular during the initial

development in 1995; therefore, Objective-C was used for OO

approach. Limited Java and C++ interfaces have been

developed to use with Objective-C, but full compatibility is the

challenge.

• Lacks design tools. Only consists of standard libraries to

model ABS.

AOR metamodel

[11]

• Random, non-action events need to be represented; this is

done in AORS by introducing the exogenous event.

• The choice of event driven or time driven is left to

developer using AOR. Even though the metamodel allows

choice of either, the low-level design and implementation is

not highlighted in this high-level AOR metamodel

representation.

• Knowledge of UML is needed before simulation modeling

can take place.

• Modularity and reusability are not the concern of AOR

metamodel and AORS design.

SPADE [12] • Functions as a middleware, which also means that the DES

backbone architecture cannot be modified or customized.

Integrating ABS

into DES [10]

• Elaborated path-finding design is unable to break away from

time-step cycle required by MAS/ABS during path-finding.

• Absence of design concept and guidelines to the integration

since the paper is meant to only prove that ABS can be

integrated with a common DES.

 32

THIS PAGE INTENTIONALLY LEFT BLANK

 33

IV. DEMAS DESIGN CONCEPT

This chapter introduces the Discrete Event Multi Agent Simulation (DEMAS)

design concept. Similar to ABDES in the aspect that it is a hybrid of DES and MAS, this

proposed design concept, however, focused on a different standpoint in the design. This

standpoint will be introduced and concretized with the use of event graph methodology

and LEGO concept, along with a new graph figure to represent the multi-agent decision

cycle. To conceptualize the DEMAS design concept, two DEMAS examples will be

shown. The first is a simple queuing system originating in the DES field, while the

second is the El Farol problem, which is a well known MAS example.

A. DEMAS DESIGN OVERVIEW

The greatest different in the DEMAS design approach is really the main reason to

use the acronym DEMAS as opposed to ABDES. Other ABDES, such as Swarm, AORS

and SPADE, are agent focused. AORS, for example, focuses on external and internal

views of the agents design. The DEMAS design approach aims at providing a balance

between DES and MAS; however, with the starting base built on DES, this explains why

“DE” is used as the first two letters in the acronym.

Studies from various researches highlighted in Chapter III indicate that a good

design concept to hybrid both DES and MAS must, first, have flexibility, which means

that the concept must not be confined to any DES or MAS structures. Second, the design

concept must support modularity and reusability so to benefit future researches. Third,

the design concept should not nullify any benefits given by both DES (simplicity and

efficient events driver) and MAS (complex adaptive behavior modeling). On the other

hand, the expected challenges from the various researches also emphasized that there

should be robust and simple design tools catering for both DES and MAS as a system.

The design concept in DEMAS uses event graph methodology because of its powerful,

yet simple representation of DES [26]. Moreover, modular and encapsulation design are

two crucial factors that event graph coupled with LEGO concept can achieve. Using

event graph methodology will allow flexibility for DEMAS to be implemented in any

 34

simulation programming languages. Nonetheless, implementing DEMAS using Simkit

appears to be of great ease and advantage, given that Simkit has been solely developed to

closely associate with event graph methodology and LEGO concept.

1. Model DEMAS by First Scoping the Simulated World With DES

Exploiting the modularity and encapsulation capabilities provided by LEGO [6],

[7], designing the environment or the simulated world and the agent structure in DEMAS

can be done in separate modules, either concurrently or otherwise. Nevertheless, it is

highly encouraged that the DEMAS design approach should start with making the right

discrete events world before linking the triggers that the agents perceive and interact

with. To simulate the world with which agents interact, the “world” should first have

well-scoped events taking place. In Professor Hile’s concept where MAS = {E, A, O,

Ops, Laws}, both Objects and Operations exist as part of the modeled Environment, and

Laws are the binder that govern between the Environment and Agents [19]. The

Environment design must therefore be self sufficient in its design with events

manipulating the Objects and Operations, closely obeying the defined Laws. In DES

perspective of this Environment design, the Objects, Operations and Laws are merely the

state changes to the system via events, and these events will include both those that

interact with the agents and those that do not. By defining the scope of the Environment

first, trigger events that will interact with agents can be identified easily and mapped.

The best way to introduce the design approach to DEMAS is to go through an

example. The following figures illustrate the approach of the design concept. To begin,

Figure 15 provides the various events and an agent that the system will model.

 35

Figure 15. Identifying the Events and Agent of a system.

In this simple system, there are three subsystems illustrating that a simulated

world can be made up of encapsulated, modular subsystems in DEMAS. Each subsystem

can be independent, or can rely on the events scheduled by other subsystems. In this

example, the alarm clock subsystem will schedule a coffee timer event in which the

coffeemaker subsystem will “listen” to, assuming that the coffeemaker is electronically

linked for automation from the same alarm clock used to wake up the agent. The Bus

subsystem is independent from the other two subsystems. After identifying the events

within the system, the next step is to determine which triggering events the agent

perceives and what kind of actions is expected, as shown in Figure 16.

Figure 16. Identifying Perception and Action of the Agent interacting in the system.

 36

2. Define the MAS Mental Model

The mapping of perception to actions, in this case, is the mental model of the

agent. In some cases, the MAS mental model can be complicated. Agents can have single

perception events that trigger off multiple action events interacting with the environment,

or may involve sophisticated decision processes to derive which action events to take

place. The use of the DEMAS design approach does not limit the mental model structure

used. In general, as long as the intelligent system to be modeled involves an input suite

and an output suite that interact with a DES world, the DEMAS design concept can be

applied. For example, expert systems, neural network, fuzzy logic and even cognitive

blending concept can all be used to model the intelligence of a DEMAS design, instead of

the MAS mental model. However, this thesis focuses on using MAS as the intelligent part

of the design, mainly because MAS is gaining popularity in both commercial and defense

industry to model human complex behaviors.

Using a pseudo-event graph representation, the DES world of the DEMAS can be

crafted as shown in Figure 17, with each subsystems clearly boxed out.

Figure 17. Pseudo Event Graph representation of the DEMAS model.

 37

In DEMAS design, agents are represented by a triangle symbol in the event graph.

The triangle shape is chosen because it represented the three important elements of an

agent, which are the Input Suite, the Mental Model and the Output Suite, as shown in

Figure 3.

3. Correlate Discrete Events in DES with MAS Mental Model

In the design the two actions, namely “Wake Up” and “Have Coffee,” are not

modeled in the DES environment because they are simply part of the agent

states/conditions. Only “Board Bus” is an action event that interacts with the

environment. With the DES environment crafted and the agent perceptions, mental model

and actions identified, the perception events are then mapped as the agent’s input suite

and likewise the action event mapped back into the Environment as agent’s output suite.

These arrows represented scheduling of events, as shown in Figure 18.

Figure 18. Events Scheduled as Input Suite and from Output Suite of the Agent.

 38

The scheduling flow in Figure 18 is straightforward and self explanatory for a

discrete event system. This is again the reasons for using event graph methodology in the

DEMAS design concept. From the overview of this simple DEMAS modeling example, it

is important to understand that the discrete event environment needs to be defined

firsthand such that the simulated world will be event-driven focused. The time-driven

mindset of the traditional MAS should be avoided at all cost, as it will defeat the benefit

of having an efficient event-driven environment in DEMAS design.

B. DESIGNING DEMAS WITH EVENT GRAPH AND LEGO

The DEMAS design concept starts with an event graph that models the simulated

environment in which the agents will “live” and with which it will interact. The simulated

world should consist of smaller subsystems with encapsulation and modularity design in

mind. The LEGO concept provided the Listener Link between these modular models

such that scheduled events in one model will trigger off the same scheduled events in

other listening models. The LEGO concept was explained in Chapter II of this thesis.

There is no difference between designing DEMAS with event graph, and

designing normal DES with event graph. The only exception is with the introduction of

the Agent Triangle symbol, made to resemble the agent configuration illustrated in Figure

3. Figure 19 presents an illustration of a complete DEMAS event graph model, consisting

of three DES Subsystems and a MAS, using LEGO Listener Links to listen for event

schedules in one another. The MAS system perceptions and actions triggers, likewise, use

Listener Links for interaction with the DES subsystems. It is also possible to model more

complicated DEMAS systems that consist of more than one MAS, as shown in Figure 20.

 39

Figure 19. An Illustration of a Complete DEMAS Event Graph Model.

Figure 20. An Illustration of a DEMAS Event Graph Model with multiple MAS.

In the AOR Metamodel research introduced by Wagner [11], the example is given

of an elevator scenario focused largely on the agent aspect with discrete events providing

signals to trigger the decision process of the elevator agent (Figure 11). The simulated

world supposedly modeled as discrete events was not elaborated in the research paper. To

 40

verify the capability and flexibility of the DEMAS design concept, the elevator scenario

from Wagner has been borrowed and re-modeled as the DEMAS design shown in Figure

21.

Figure 21. Modeling AOR Elevator Problem (Figure 11. Figure 11) with DEMAS.

Following the DEMAS design concept approach, the re-modeling starts with the

elevator environment. From the study of the elevator AOR metamodel, information with

regard to the signals triggering the elevator agent was analyzed and rebuilt as event

 41

graphs. The elevator agent’s decision processes given in the AOR design were meant to

be at an abstract level, and likewise this applied to the re-modeled agent mental model in

DEMAS. In the DEMAS design, the “Request Pickup” and “Destination Selection”

events add floor services request to the list that the elevator agent process. The

“makeDecision” process performed by the agent, not elaborated in detail, simply applies

a decision-making cycle to ensure the most efficient floor stop at all times. The agent,

upon determining the floor to service, will schedule the respective events, “Move Up” or

“Move Down” until the desired floor is reached. “Halt,” “Open Door” and “Close Door”

are the various events that the agent will schedule upon reaching the desired floor. These

scheduled events directly affect the operation of the elevator in discrete event-driven time

advancement. One difference between the re-modeled DEMAS with the original AOR is

the insertion of passenger arrival time “ta”. Adding the passenger arrival time increases

the realistic modeling of the elevator scenario using DEMAS. The arrival time of the

passenger can be assumed to be normally distributed around two peaks; the first is at the

beginning of a working day and the second is at the end of the same working day.

C. DESIGNING THE MAS IN A DEMAS MODEL

On top of the agent triangle symbol added to the event graph methodology to

represent MAS in DEMAS, a more complex MAS structure can be illustrated with the

addition of a pictorial sketch. The use of the sketch is because MAS most often involves

complex behavior that cannot be easily exposited with mathematical equation or logical

expression. Using pictorial representation commonly termed as the “Helicopter View” or

“Top View” was also advocated by Professor Hiles [19] in the MAS lectures conducted

at NPS. The focus of the pictorial representation is to show the main piece of the agent

mental model and how it relates with the scheduling events entering as input suite and

exiting as output suite as a whole. Importantly, there is no specific guideline as to how

the sketch should be drawn as long as the sketch is able to bring out the MAS structure.

To give an example of a MAS sketch, Figure 22 lays out the MAS structure of the

well known El Farol Bar Problem. The El Farol Bar problem is a well known MAS

example, which will be re-modeled with DEMAS later in this chapter. As a short

 42

introduction, the El Farol Bar plays lovable music enjoyed by the 100 patrons.

Nonetheless, the attendance threshold of the bar is defined as sixty patrons each night in

order for anyone to enjoy the music. Setting the rule that there will not be prior

communication among the patrons, each patron has to rely on their set of predictors to

make the decision to go or to stay at home. The happiness of the patron is further

governed by each of their personalities, which in turn gives weights to the predictors

used. The objective of modeling the El Farol system is to determine if the patrons will

eventually exhibit some complex adaptive behavior.

Figure 22. Pictorial Representation of MAS structure for El Farol Bar Problem.

D. DEMAS DEVELOPMENT USING SIMKIT

To verify the usability of the DEMAS design concept, two examples were tackled

and re-modeled as DEMAS and implemented using Simkit. As mentioned, Simkit is built

with great emphasis on implementation of DES designs using event graph methodology.

The first example taken from Queuing Theory is the model of a Simple Server system

involving customers arriving at the queue waiting to be served. The Simple Server system

 43

will be incorporated with a MAS to determine if such added “intelligence” will improve

the queuing system. The second example is the El Farol Bar problem, originated as a

well-known MAS problem. The El Farol Bar problem will likewise be re-modeled into a

DEMAS system and the advantages of doing so will be studied.

1. Simple Server DEMAS

Figure 23 is an event graph model of a Simple Server Queuing system. The

Simple Server system is a standalone DES. As the system runs, customers arrive at ta

interval, which is usually dictated by a Normal distribution. The simple server system

does not model rejection, thus all customers who had joined the queue will be served

until the end of the simulation. When there is a free server available in the system, the

first customer in the queue will be served and the service time again will be normally

distributed, represented as ts in the event graph. The time when the customer joins the

queue to the time the same customer has been served is the total System Time obtainable

from the simulation.

Figure 23. Simple Server Modeled with Event Graph.

 44

To include intelligence into the Simple Server system, a simple MAS is added

into the existing Simple Server DES shown in Figure 23. The main objective is to

determine if certain adaptive behavior will be displayed if customers are allowed to vary

their own arrival time individually. This is the desire to achieve the modeling of a more

realistic queuing system, given that actual humans do vary their own preference to visit a

service based on past experience. For instance, when a customer visits a bank on a

Monday peak morning and realizes the waiting time is extremely long, he or she will vary

his next visit to avoid the Monday morning peak. This is a demonstration of an adaptive

behavior toward the system. Figure 24 shows the new DEMAS event graph added with

MAS into the previous DES. The addition of the MAS into the DES does not cause much

change, except for the re-routed edges into and out of the MAS. Modularity design with

LEGO can be used but has not been applied because of the simple system configuration.

Figure 24. Simple Server DEMAS Modeled with Event Graph.

 45

In this Simple Server DEMAS, the customer agents are first assigned a random

arrival time with exponential distribution. It is important to note that customers within the

server system advance in event-driven paradigm and, likewise, the customer decision

cycle in MAS is also triggered via event scheduling. Upon completion of the service

through the server system, the system time of each customer is remembered individually.

Without interacting with other customers, each customer is then allowed to make a

decision on the next arrival time, based on the consolidated average system time of all

customers. The goal of the customer is to achieve a system time equal to or less than the

average system time within the DEMAS system.

Implementing the simple server DEMAS in Simkit is relatively simple and

straightforward. The implementation makes use of the previously built Simple Server

DES and, with minimum modification, adds the MAS portion to complete the DEMAS.

Table 9 list the two event codings used in Simkit to represent the MAS portion of the

Simple Server DEMAS3. “makeDecision()” makes use of the average system time

to gauge the happiness of the customer agent. If the customer’s system time is above the

average system time of all the other customers, it will make modifications to affect the

next arrival time, such as by increasing the current arrival time by 50%, decreasing it by 1

simulation time, or randomly selecting a new arrival time. Since the Simple Server

DEMAS is meant to be an entry test to validate the DEMAS design concept, the MAS

mental model is designed to be simple, with only five types of arrival time modifiers. In

addition, the MAS decision does not keep track of the effectiveness or any reusing of the

modifiers, which implies that customers may achieve worse system times. Table 10 list

the parameters and settings used to run the Simple Server DEMAS.

3 The complete Simkit code is available from the advisor to this thesis. Refer to Appendix A for the

highlighted sample codes.

 46

Table 9. Simkit Code used in Simple Server DEMAS.

Events Simkit Implementation

Run Event
public void doRun() {
 for (int count = 0; count < noOfAgent; count ++)
 waitDelay("Arrival",
 agents[count].getArrivalTime(),
 Priority.HIGHEST, agents[count]);
}

MAS Event
public void doMASDecision(Agent agent) {
 double ave = getAve();
 makeDecision(agent, ave);
 printAveSystemTime();
 waitDelay("Arrival", agent.getArrivalTime(),
 agent);
}

Table 10. Parameters and setting used for Both Simple Server DES and DEMAS.

Parameters and Settings Values

Simulation Run Time 500 time units

Number of Servers 5

Number of Customers 50

Customer Inter-arrival Time Exponential Distribution with mean of 1.7

Server Service Time Normal Distribution with mean of 5.0 and

standard deviation of 1.0

The results from the Simple Server DEMAS are favorable when compared to a

Simple Server DES using only random arrival time. After 500 simulation time units, a

continuous improvement in reduction of overall average system time of all customers has

been observed. This improvement is the result of the MAS exhibiting complex adaptive

behavior in the DES. Each customer of the MAS, when attempting to attain individual

goals, adapts to the system as a whole. The DEMAS model also shows a better total

number of customers being served, and a lower average number of queuing customers,

 47

when compared to the normal DES. Figures 25 and 26 show the results of the average

system time over 500 simulation time and Table 11 shows a segment of the outputs from

both Simple Server Simulations.

Figure 25. Average System Time over 500 runs for Simple Server DES.

Figure 26. Average System Time over 500 runs for Simple Server DEMAS.

 48

Table 11. Output Results Of Both Simple Server Simulation.

Simple Server DES Simple Server DEMAS
Simulation ended at time 500.0
There have been 491 customers served
Average number in queue 43.1086
Average utilization 1.0000�

Simulation ended at time 500.0
There have been 500 customers served
Average number in queue 37.7646
Average utilization 1.0000�

2. El Farol Bar DEMAS

The next validation for the DEMAS design concept is centered on an

implementation that starts with a given MAS. This design approach, as mentioned in the

previous text, is not recommended because of the tendency to drift into a time-stepping

mindset, which also nullifies the efficiency that the event-driven paradigm provides in

DEMAS. The selected MAS is the El Farol Bar problem introduced by Arthur in 1994

[27]. Arthur described the El Farol Bar problem as a paradigm of complex economic

systems consisting of inductive reasoning ability. In the El Farol Bar MAS model a

population of agents has to decide whether to go to the “El Farol” Bar each Thursday

night. The personality of the agents is crafted such that they will feel happy to go to the

bar as long as it is not too crowded. Arthur tagged the attendance threshold of a crowded

bar at sixty, given 100 agents in total. Before the opening hour of the bar, each agent

predicts the attendance outcome of the bar, based on recent past history such as

“Attendance similar to last week” or “the average attendance of the past two weeks.” If

most of the agents predict that bar attendance will total fewer than sixty, then most of

them will turn up, crowding the bar and becoming unhappy. Conversely, if they predict

that attendance will be high, they will stay home, resulting in low attendance. These sets

of predictors are randomly assigned to each agent and each predictor will be assigned a

weight based on the happiness outcome. Favored predictors will be reused many times,

while unpopular ones will be kept out of the agents’ focus.

 49

Using the recent past attendance as the prediction models can yield a large

number of reasonable and defensible models. As a result, when the agents are not sharing

the knowledge of which models they are using, there is no deducible rational solution.

Individually, each agent has to rely on induction behavior to determine the best suited

model.

Arthur’s computer simulation experiment on the El Farol Bar problem first

showed the attendance at the bar oscillating in an apparently random manner. However,

after some initial learning time the agents’ hypotheses and mental models in use were

mutually co-adapted, causing the cumulative attendance to settle near the critical sixty

mark.

To model the El Farol DEMAS, a set of El Farol Java classes previously

developed in a pure MAS design was used. The objective of this implementation is to

demonstrate that the DEMAS design concept is able to transform an ordinary MAS

design, first to improve efficiency by using discrete event drivers, and second, to

complement what MAS lacks and what DES can provide. The design of the El Farol Bar

problem was previously shown in Figure 22 of this chapter. The event graphs in figure 27

represent the design of the El Farol DEMAS model. The implementation makes an effort

to retain the full structure of the original El Farol MAS mental model and, therefore, an

additional class is introduced as part of the MAS subsystem to manage all events

scheduling with the El Farol MAS mental model. Including the MAS subsystems, there

are a total of three subsystems in the El Farol DEMAS. The “BarEvents” subsystem takes

care of opening and closing of the bar, and also the starting and ending of queuing events.

The “EnterBarEvents” subsystem, on the other hand, handles all movement in and out of

the bar, and includes monitoring of agents at the queue. LEGO Listener links are used to

trigger event schedules between these subsystems.

The new El Farol DEMAS added new features to be modeled. The additional

features were deemed to be benefits of DES that MAS itself cannot achieve. In the

original El Farol MAS, the bar was modeled as a single-day activity without

consideration of the agents’ arriving at different times or leaving earlier so that new

agents could join in and enjoy. In the El Farol DEMAS, the different arrival time and

 50

leaving time of each agent is modeled to provide a more realistic bar attendance situation.

Similarly, instead of having sixty as the crowded threshold, the El Farol DEMAS

assumes that the maximum capacity of the bar is sixty, which is again a realistic

limitation to an actual bar. Lastly, the adding of the queue commonly found in many bars,

such that agents who cannot enter the bar due to capacity limitation can wait at the queue.

In the El Farol DEMAS design, “BarEvents” subsystem is a straightforward

implementation as compared to the “EnterBarEvents” subsystem. In the

“EnterBarEvents” subsystem, customer agents arriving at the “Arrival” event may join

the queue only if the queue threshold is not met. If the queue is full, the customer returns

home feeling unhappy to have made the trip. This is similar to the original El Farol MAS.

However, if the queue is free the customer will be allowed to join the queue and wait for

an opportunity to enter the bar. This realistically models the real situation commonly seen

in many pubs and bars. Customer will be allowed to enter the bar only if the bar threshold

of sixty is not reached. “Ts” is the stay time preferred by the customer upon entering the

bar. Both arrival time “Ta” and stay time “Ts” are uniformly distributed based on the

operating hours of the bar. Customers who have joined the queue and waited to enter the

bar will all be declared happy agents. This is modeled slightly different from the original

El Farol MAS, which unrealistically assumed all agents to be unhappy once the bar

threshold was breeched.

The Simkit implementation of the El Farol DEMAS is challenging due to the

necessary steps to break up the MAS mental model from the original time-stepped

environment. In the El Farol DEMAS Simkit development, the “MAS” class functions as

the event scheduling manager to interact with the MAS mental model. Table 12 shows

the “OpenBar” event call that triggers the MAS to perform the decision-making process.

 51

Figure 27. El Farol DEMAS Modeled with Event Graph.

 52

The detailed design of the MAS mental model will not be illustrated in this thesis, since

the focus here is to understand the potential of merging DES and MAS to form the

DEMAS design concept. Nevertheless, in short summary, the MAS mental model

consists of thirty-six predictors, of which eight are randomly assigned to each agent.

Individual agent in turn manage its own set of eight focal predictors, increasing weight to

predictors that give good prediction while reducing weight to unfavorable ones. The

highest weighted predictor will be the active predictor making decision for the next

move. Code samples of the implementation are provided in Appendix B for reference.

Similar to the Simple Server DEMAS, the parameters and setting to run both the

El Farol MAS and El Farol DEMAS experiments are shown in Table 13.

Table 12. Simkit Code used in El Farol DEMAS.

Events Simkit Implementation

OpenBar

Event in

MAS class

public void doOpenBar() {
 int attendance = 0;
 RandomVariate arrTimeGenerator =
 RandomVariateFactory.getInstance("Uniform",
 0,7*60*60));
 for (int agentCount = 0; agentCount < noOfCustomers;
 agentCount ++) {
 Customer cust = custArray.get(agentCount);
 /** Randomly assign next arrival time. */
 cust.setArrTime(arrTimeGenerator.generate());
 /** Agent arriving on time, will have this
 * maximum stay time cal.
 * to be 8hours - arrival time. */
 cust.setMaxStayTime((8*60*60)-cust.getArrTime());
 /** Decision to go or stay home is derived in
 * makeDecision function in MAS mental model
 * class. Decision is added to the attendance
 * list. */
 attendance += cust.makeDecision(barThreshold);
 waitDelay("Arrival", cust.getArrTime(), cust);
 }
 weeklyAve.add(attendance);
}

 53

Table 13. Parameters and setting used for Both El Farol MAS and DEMAS.

Parameters and Settings Values

Simulation Run Time 1000 weeks

Number of Customers 200

Customer Inter-arrival Time Uniform Distribution with minimum 0 and

maximum of 7 hours

Customer Stay Time (Only for

DEMAS)

Uniform Distribution with minimum 0 and

maximum of 8 hours – arrival time

Bar Operating hours 8 hours

Bar Close hours 6 days, 16 hours (Weekly event)

Bar Capacity Threshold 60 pax.

Queue Threshold 10 pax.

No Queue Hour 2 hours before Bar closure

Number of predictors 36

Number of focal predictors 8 per agent inclusive of 1 active predictor

Agent Personality Types Extrovert, Introvert and Neutral

The result from the El Farol DEMAS is expected to differ from the original El

Farol MAS, mainly due to the fact that the DEMAS model is the more precise and

realistic El Farol Bar environment. However, the characteristics of the result should

closely resemble each other. This is because they both use the same predictor sets and the

same MAS mental model.

 54

Figure 28. Weekly and Cumulative Attendance from El Farol MAS.

Cumulative Attendance

Weekly Attendance

 55

Figure 29. Weekly and Cumulative Attendance from El Farol DEMAS.

Figures 28 and 29 show the resulting attendance of the El Farol MAS and

DEMAS, respectively. In Figure 28, the cumulative attendance settles closely at the bar

threshold, concurring with the experiments conducted by Arthur. In the new El Farol

DEMAS, the ability to model discrete time in a single day of the bar activity allowed the

bar to serve more than the threshold of sixty. Figure 29 shows that the cumulative

attendance of the bar stabilized at around hundred. Closer observation indicated that both

graphs have similar characteristics, where the attendance oscillates around some desired

point. In the MAS model, it is the bar threshold of sixty, while in the DEMAS model it is

the average customers served weekly. The El Farol DEMAS can be further enhanced to

model queue preferences, viability of increasing bar capacity, customer preference stay

time and arrival time problems commonly needed by commercial business.

 56

Despite the fact that the El Farol DEMAS models a slightly different aspect of the

El Farol Bar problem, the design has become more realistic because of the DES model’s

running as the environment. For pure MAS, time stepping through every second of the

Bar activities such as the modeling of the agent arriving and leaving the El Farol Bar will

be computationally taxing if not impossible. Using the event-driven paradigm eliminates

the computational issue, allowing bar level activities to be modeled as events take place.

The DEMAS design concept provides the means to hybrid the benefits of DES and MAS

for the implementation of a more realistic El Farol Bar problem.

 57

V. IMPLEMENTING DEMAS INTO SEA11 PROJECT

A. INTRODUCTION TO SEA11 PROJECT

System Engineering and Analysis 11 (SEA11) project4 is also termed as the

Riverine Sustainment 2012 project. This project is a joint thesis involving 25

postgraduate students from the different curriculums of the NPS. The project was

completed in June 2007 submitted as an M.S. graduating thesis [28].

The SEA11 project covered a relatively large research area for the U.S. Navy

riverine operation, planned for year 2012. The objective is to harness presently emerging

technologies in support of the expected military requirements. The scopes covered in the

project consisted of four main portions, namely Force Protection, C3, Logistic Supply

and Maintenance Repair. Because of the projection of advanced technologies and

operation concepts that will not be available for full testing and implementation, the

project group relied on simulation and mathematical models for analyses and studies.

Several simulation packages were used in the process of the studies. For example,

MANA was used for the study of force protection and Simkit was used to analyze the

logistic supply plan.

B. INTRODUCTION TO SEA11 LOGISTIC DES

One of the main reasons to use SEA11 project as a validation to DEMAS design

was because of the already implemented and validated Logistic Supply simulation

developed using Simkit. It is also considered valuable to apply the DEMAS design in a

real problem using realistic data. After all, the two implementation examples given in

Chapter IV are considered theoretical solutions. In addition, it was because of familiarity

with the SEA11 project, particularly in the development of the logistic simulation.

4 SEA project is managed by the System Engineering and Analysis Curriculum Office of the Naval

Postgraduate School. The number 11 represents the project number that runs consecutively every year
within the SEA curriculum.

 58

The SEA11 Logistic Supply simulation was built using Simkit and LEGO

framework. The simulation modeled the logistic supply plan between the supply ship and

the various types of riverine operating bases. Because of other operation requirements

and the risk of exposure to confined area attack, the supply ship will not station near the

operating base. The cycle time of the supply ship ranges from four to nine days, and it

will station outside the area of operation when present. The logistic support link between

the supply ship and the operating base therefore is reliant upon the smaller supply craft

deployed from the operating base. The simulation objective was therefore to model the

supply and scheduling plans using different supply craft combinations. The results from

the simulation were used as part of the feasibility analysis, economical studies and

operational planning for the overall logistic support in riverine sustainment 2012.

The SEA11 Logistic simulation modeled three types of operating base and four

types of supply craft. Table 14 lists the parameters for both. The details of the various

operating bases and supply crafts can be found in reference [28].

Table 14. Operating Base and Supply Craft Parameters.

Operating Base Capacity

(ton)

Threshold

(ton)

Storage

(days)

Forward Operating Base (FOB) 495 67 15

Mobile Operating Base 1 (MOB1) 529 73 15

Mobile Operating Base 2 (MOB2) 818 110 15

Supply Craft Unit LCU-1610 Jim G LCU-2000 CH-53

Speed kts 6 ± 2 9 ± 2 9 ± 2 100 ± 10

Weight tons 106 330 260 10

Loading time ton/min 2 1 2 2

Unloading time ton/min 4 2 4 2

 59

From initial studies, it was decided that there will only be one operating base

within the area of operation, and only two supply craft operating at any one time to

reduce exposure. These were the constraints applied in the simulation. The simulation

was used to generate reports showing the logistical health of the operating base. Given

the need to study all combinations of any two supply craft types with each type of

operating base, it was determined that a total of seventy-five permutations would be

required. In addition, the simulation needed to perform at least thirty runs for each of the

permutations to fulfill the statistical analysis. In total, 2250 runs were generated for the

SEA11 Logistic study. Figure 30 shows the screen capture of the SEA11 Logistic

simulation program developed with Simkit.

Figure 30. Screen Capture of the SEA11 Logistic DES.

After completing all 2250 sets of simulation runs, the findings from the

simulation strongly suggested that the best combination of supply craft suitable for the

Forward Operating Base

Supply Ship

Jim G

 60

riverine logistic support consisted of one Jim G and one LCU2000 for all three types of

operating base. The use of helicopter platforms, particularly CH-53 was found to have

little operational benefit, mainly due to the high operating and maintenance cost involved.

C. DESIGNING SEA11 LOGISTIC DEMAS

The idea to implement the DEMAS design in SEA11 Logistic simulation started

with the desire to reduce the simulation and analysis time. On top of the processing time

to deliver the necessary data, it was also realized that the analysis process taxed available

work hours with tedious data comparison. The formulae involved in the analysis revolved

around time, cost and capacity - which also happen to be the goals of this SEA11 logistic

support plan. If these goals can be translated into an agent’s mental model, adopting the

goals that minimize time and cost while maximizing utilization of the capacity, the

analysis can be automated. However, because of the randomness in the supply ship’s

routine call and effect caused by weather conditions, the agents need to exhibit complex

adaptive behavior in order to induce the correct solution.

The DES environment model used in the SEA11 Logistic DEMAS is the direct

duplicate of the original SEA11 DES. Minimum modifications were applied to the

model. However, since the SEA11 project was unable to model weather condition as part

of the simulation, the DEMAS implementation took the extra step to implement a

“Weather Agent,” which affects weather conditions during operation runtime. The

implemented weather agent is a naïve model centered on normally distributed foul

weather occurrence and duration. More complicated weather models may be

implemented in future enhancements. Figure 31 shows the overview event graph of the

SEA11 Logistic DEMAS model. The light grey subsystems are the same as the original

simulation, while the dark gray subsystems are the added DEMAS subsystems. Since the

“SeaSupplyCraftScheduler” subsystem is designed as the scheduler to deploy supply

craft, the “SupplyCraftAgent” subsystem interacts directly with it. The “WeatherAgent”

subsystem has a listener link from the “SeaSupplyCraftManager” subsystem because

“SeaSupplyCraftManager” dictates the speed during the movement of the supply craft

and also the capacity during loading and unloading before any movement.

 61

Figure 31. SEA11 Logistic DEMAS Event Graph Modules.

Figure 32 zooms into the event graph’s design of the “SeaSupplyCraftScheduler”

subsystem. The light grey events are originated from the SEA11 Logistic simulator, and

while the dark grey events indicate the existence of listener relationships with the

“SupplyCraftAgent” MAS subsystem, only the “AgentDecision” event is a new add-on.

In the design, the “PreDeploy” event schedules the “AgentDecision” event to trigger the

MAS, and this in turn makes the decision to schedule which supply craft to be deployed.

The “Absence” and “Presence” events representing the main supply ship, when

scheduled, will trigger their respective perception information to the MAS, and this is

likewise when the supply craft returns to the docking station where the “SSC Returns”

event is scheduled.

 62

Figure 33 shows the pictorial design of the supply craft MAS mental model. In

this mental model, a set of thirty voters are assigned to each supply craft (two for each

type of supply craft). Each voter is randomly assigned a set of three models from the total

of fifteen generated from data concerning the supply craft’s capability and the presented

operation status. Within these three assigned models, each voter continuously evaluates

the correctness when input data is perceived from discrete events state changes.

Evaluation is done by changing the weight, such that the highest weighted model will be

the active decision model. This is similar, in concept, to the El Farol MAS design. When

supply demand is requested from the operating base, the MAS will be triggered to

consolidate voting from the voters of the available supply craft within the depot. From

the decision process, the sea supply craft with the highest vote for deployment will be

selected and scheduled for an actual mission by the “SeaSupplyCraftScheduler”

subsystem.

The weight and correctness in the decision models are updated at various event

schedules within the operation timeframe. Correctness of a decision model is based on

improvement measured at each deployment. In other words, if the decision model

suggested for deployment, and the deployment itself, yield improvement in the delivery

time, cost and capacity, then the decision model will be deemed correct and vice versa.

The majority of the data, such as overall deployment time and capacity requested, are fed

into the input suite of the MAS when the supply ship arrives or departs from the area of

operation. Other minor components such as average deployment speed and average

capacity will be received when a supply craft returns from mission to docking station.

The Simkit development of the new Logistic DEMAS requires the additional

MAS classes to be linked into the original Simkit simulation. Using LEGO framework

allows encapsulation and modularity, which in turn minimizes modification required to

establish these links. Simkit code samples for SEA11 Logistic DEMAS are provided in

Appendix C for reference. The simulation parameters are shown in Table 15 (page 65).

 63

Figure 32. Event Graph for “SeaSupplyCraftScheduler” Subsystem.

 64

Figure 33. SEA11 Logistic DEMAS Event Graph for MAS “AgentDecision” Module.

 65

Table 15. Parameters and Settings used for SEA11 Logistic DEMAS.

Parameters and Settings Values

Simulation Run Time 180 days

Number of Agents (voters) 30 x 8 = 240

Supply Ship Cycle Time Triangle distribution centered at 6 days and

ranges from 3 to 9 days.

Number of Decision Models 15 decision model, 3 randomly assigned to

each agent

Foul Weather Occurrence Normal distribution around 10 days with

standard deviation of 2 days

Foul Weather Duration Normal distribution around 1 day with

standard deviation of 3 hours

D. RESULT AND ANALYSIS

By adding intelligence into the SEA11 Logistic DES, it is hoped that the agents

will induce and adapt to the overall environmental and operational goals. The resulting

deployment plans and profiles would likely match the findings from the SEA11 analysis.

Figure 34 shows the Logistic DEMAS deployment time chart for the supply craft. A full

solid line across indicates no deployment throughout the simulation. Pockets of lines

indicate deployment duration of the supply craft. Figure 35 shows a clearer blown-up

portion of the deployment time chart. Foul weather condition is shown in the first row

across, while the remaining rows represent each of the supply craft.

From the deployment time line chart, it is clearly indicative that the MAS decision

continuously chooses to deploy one Jim G (Seacor) and one LCU 2000 at different

intervals. A CH-53 was deployed only once throughout the simulation, on approximately

29 April. It is also observed that both LCU 2000s were deployed but at a different time

frame. The result further indicated that a single Jim G or a single LCU 2000 supply craft

 66

is sufficient to sustain the operational profile of the operating base for a period up to 180

days. These results and analysis match the findings of the SEA11 project, therefore

validating the ability of the new DEMAS system to perform logistic planning with

human-like considerations and objectives. More importantly, the DEMAS design

eliminated the need to run the simulation 2250 times. Instead, for a complete coverage of

modeling all three operating base types, and to obtain thirty runs per base to fulfill the

statistical requirement, the SEA 11 Logistic DEMAS only requires ninety simulation

runs.

Figure 34. SEA11 Logistic DEMAS Result.

 67

Figure 35. Zoom In View Of SEA11 Logistic DEMAS Result.

To further challenge the DEMAS model, the operating base capacity and

consumption rate were increased ten times from the original value. This will render the

replenishment capacity of a single Jim G or LCU 2000 insufficient in fulfilling the supply

request. The purpose of this diversion is to verify that the agent mental model in the

Logistic DEMAS is able to adapt to harsher demand. Figure 36 shows the deployment

time line chart, highlighting that multiple supply craft must be deployed at each supply

request mission, in order to fully replenish the operating base.

 68

Figure 36. SEA11 Logistic DEMAS Result (For Operating Base with Increased Capacity
And Consumption Rate).

Figure 37 display a blown up portion of the chart. Jim G and LCU 2000 were both

equally popular for deployment as compared to LCU 1610 and CH-53. The time line

chart displayed a sparse deployment profile for both the LCU 1610. The graph also

shows no deployment for either of the CH-53 helicopters, which is probably due to their

limited replenishing capacity with respect to increase in capacity and consumption rate of

the operating base. It was observed that Jim G supply craft 3 was only deployed once

during the 180-day operation, which is possibly due to undesirable random assignment of

the decision model within the voter agents. The deployment time line chart also reveals

randomness in the deployment profile, suggesting the adaptive behavior of the MAS

attempting to adapt to the operational needs.

 69

Figure 37. Zoom in View of the SEA11 Logistic DEMAS Result (For Operating Base
with Increased Capacity and Consumption Rate).

The analysis continues to suggest that Jim G and LCU 2000 are the best

combination in most cases, even when deployed as a pair. CH-53, due to the limited

capacity and high operating cost, is not feasible given such operation requirement.

The integration of MAS into the SEA11 Logistic DES using the DEMAS design

concept was successful and has proven to be beneficial. Future enhancement can include

the addition of a more complex weather agent model that will realistically put the

simulation to test. Further analysis can also be obtained from analyzing the adaptive

behavior of the MAS for future logistic support planning. This chapter concludes the

validation of the DEMAS design concept in merging MAS into DES.

 70

THIS PAGE INTENTIONALLY LEFT BLANK

 71

VI. CONCLUSION

The benefits of merging DES and MAS were apparent and have been supported

by other researches, such as SWARM, SPADE and AOR metamodel. A successfully

merged simulation will exhibit intelligence, by means of agents with human-like adaptive

behavior, interacting with an efficient discrete event world, advancing using the event-

driven paradigm.

A new design concept, termed the Discrete Event Multi Agent Simulation or

DEMAS, was proposed as the designing approach to merge Multi Agent System and

Discrete Event Simulation. The concept approaches the merger by first defining the DES

environment as independent subsystems, followed by defining the input and output suite

of the MAS. Lastly, the design is completed by linking the interaction and triggers

between the DES subsystems and the MAS. The DEMAS design uses Event Graph

Methodology as the designing tool because of its simple, yet powerful representation of

DES. Listener Event Graph Objects (LEGO) framework is applied into the event graph in

order to support modularity design for DEMAS.

To validate the feasibility and usability of the DEMAS design concept, two

implementations were introduced. First was the Simple Server DEMAS, which resulted

in agents’ adapting and improving the overall system time. Likewise, in the second

implementation the El Farol DEMAS validated that a more efficient and realistic bar

environment can be modeled without losing the adaptive ability of the MAS. The

DEMAS development uses Simkit as the development library due to close correlation

between Simkit and event graph. In addition, Simkit supports the LEGO framework.

The final implementation involves application of the DEMAS design concept in a

larger, more realistic simulation model consisting of real data analysis. The SEA11

Logistic DES was added with MAS to produce the SEA11 Logistic DEMAS. The

DEMAS design successfully allowed human-like planning consideration to be added to

the simulation, with a much lesser simulation runtime requirement.

 72

The DEMAS design concept has been validated with the ability to retain the

benefits of both DES and MAS combined. In addition, the DEMAS design concept,

which uses Event Graph, LEGO framework and Simkit libraries, provided added

advantages such as simplicity in representation and modularity design that will assist

future researches and development.

Future researches on DEMAS should look into topics such as autonomous new

event creations. This is a higher level of autonomous agent, where the agent no longer

relies on pre-defined events, but is also able to create new events to interact with the

simulated world.

 73

APPENDIX A. SIMPLE SERVER DEMAS

A. SIMPLE SERVER DISCRETE EVENT CODE SAMPLE

/**
 * EndService event increment the number of available servers
 * and the total number of customer being served. It will schedule
 * MASDecision upon completion of current service. MASDecision will
 * capture the total system time, compute an average and update the
 * new interarrival time of the customer for the next arrival. It
 * will schedule another StartService event with no delay if there are
 * customers waiting in the queue (Q > 0).
 */
public void doEndService(Agent agent) {
 double newSystemTime = agent.getElapedTime();
 int oldNumberAvailableServers = getNumberAvailableServers();
 int oldNumberServed = getNumberServed();
 numberAvailableServers = numberAvailableServers + 1;
 numberServed = numberServed + 1;
 firePropertyChange("numberAvailableServers",oldNumberAvailableServers,
 getNumberAvailableServers());
 firePropertyChange("numberServed", oldNumberServed,getNumberServed());
 if (getNumberInQueue() > 0) {
 waitDelay("StartService", 0.0);
 }
 agent.setSystemTime(newSystemTime);
 waitDelay("MASDecision", 0.0, agent);

}

Figure 38. doEndService Code Sample in SimpleServer Class.

B. SIMPLE SERVER MAS MENTAL MODEL CODE SAMPLES

/**
 * MASDecision event accept 1 argument namely the Agent entity. This is
* to tell the system that the agent(customer) has completed being
* served by the Server and is ready to decide on the next arrival
* time.

 */
public void doMASDecision(Agent agent) {
 double ave = getAve();
 makeDecision(agent, ave);
 waitDelay("Arrival", agent.getArrivalTime(), agent);

}

Figure 39. doMASDecision Code Sample in AgentProcess Class.

 74

/**
 * makeDecision function make decision to affect the new arrival time
 * as long as the System time for the agent is above the average System
 * Time of all the agents.
 * @param agent The agent entity.
 * @param ave The average of all the agents' system time.
 */
public void makeDecision(Agent agent, double ave) {
 if (agent.getSystemTime() > ave) {
 String distributionSer = "Uniform";
 double alpha = 0;
 double beta = 5;
 RandomVariate decisionRnd =
 RandomVariateFactory.getInstance(distributionSer,alpha,beta);

 int newStrategy = (int) decisionRnd.generate();

 if (newStrategy == 0)
 agent.setArrivalTime(agent.getArrivalTime() * 1.5f);
 else if (newStrategy == 1)
 agent.setArrivalTime(agent.getArrivalTime()* 0.5f);
 else if (newStrategy == 2)
 agent.setArrivalTime(agent.getArrivalTime() + 1);
 else if (newStrategy == 3) {
 agent.setArrivalTime(agent.getArrivalTime() - 1);
 if (agent.getArrivalTime() < 0d)
 agent.setArrivalTime(ave);
 }
 else if (newStrategy == 4) {
 distributionSer = "Exponential";
 double mean = 1.7;
 RandomVariate arrTime =
 RandomVariateFactory.getInstance(distributionSer, mean);
 agent.setArrivalTime(arrTime.generate());
 }
}

Figure 40. makeDecision Code Sample in AgentProcess Class.

 75

APPENDIX B. EL FAROL BAR DEMAS

A. EL FAROL DISCRETE EVENT CODE SAMPLES

/**
 * When customers arrived, Arrival event will be scheduled.
 * Increment the total number of arrival only if the customer is meant
 * to enter the bar. This is the way to the happiness coding of MAS to
 * find out if the customer's decision is correct based on the decision
 * made. Only by "forcing" the customer to arrive that the actual queue
 * length and attendance in the bar can be determine to judge the
 * correctness of the decision.
 * Customer joins the queue if the decision is to go to the bar.
 * Customer goes home if the decision is not to go to the bar or when
 * the queue is full.
 */
public void doArrival(Customer cust) {
 if (cust.getLastDecision() == 1) {
 totalArrival = totalArrival + 1;
 if (queue.size() < qThreshold)
 waitDelay("JoinQueue", 0.0, cust);
 else
 waitDelay("GoHome", 0.0, cust);
 }
 else
 waitDelay("GoHome", 0.0, cust);
}

Figure 41. doArrival Code Sample in EnterBarEvents Class.

/**
 * JoinQueue will time stamp the customer, add the customer to the queue
 * and when the bar is below the threshold, schedules the customer to
 * enters the bar.
 */
public void doJoinQueue(Customer cust) {
 LinkedList<Customer> oldQueue = getQueue();
 cust.stampTime();
 queue.add(cust);
 firePropertyChange("queue", oldQueue, getQueue());
 if (currAtt < threshold)
 waitDelay("EntersBar", 0.0, Priority.HIGH);
}

Figure 42. doJoinQueue Code Sample in EnterBarEvents Class.

/**
 * EntersBar simple increase the total number of customer served and
 * determine the time which the customer will leave the bar.
 */
public void doEntersBar() {
 LinkedList<Customer> oldQueue = getQueue();
 Customer cust = queue.removeFirst();
 firePropertyChange("queue", oldQueue, getQueue());
 totalAtt = totalAtt + 1;

 76

 int oldCurrAtt = getCurrAtt();
 currAtt = currAtt + 1;
 firePropertyChange("currAtt", oldCurrAtt, getCurrAtt());
 double oldTimeInQueue = getTimeInQueue();
 timeInQueue += cust.getElapedTime();
 firePropertyChange("timeInQueue", oldTimeInQueue, getTimeInQueue());
 // New Stay Time affected by the queuing time.
 double newStayTime = cust.getMaxStayTime() - cust.getElapedTime();
 RandomVariate stayTimeGenerator = RandomVariateFactory.getInstance
 ("Uniform", 0, newStayTime);
 waitDelay("LeavesBar", stayTimeGenerator.generate(), cust);
}

Figure 43. doEntersBar Code Sample in EnterBarEvents Class.

/**
 * Customer leaving the bar is a happy customer. LeavesBar schedules
 * the next EntersBar if the waiting queue is not empty.
 */
public void doLeavesBar(Customer cust) {
 int oldCurrAtt = getCurrAtt();
 currAtt = currAtt - 1;
 firePropertyChange("currAtt", oldCurrAtt, getCurrAtt());
 if (!queue.isEmpty())
 waitDelay("EntersBar", 0.0, Priority.HIGH);

}

Figure 44. doLeavesBar Code Sample in EnterBarEvents Class.

B. EL FAROL MAS MENTAL MODEL CODE SAMPLES

/**
 * Constructor for MAS. Setting the starting week count because of the
 * need to include some history for MAS decision (Preprocessing).
 * Define the number of customer and the number of Focal Predictors for
 * each customer. unbalancedPersonality is only used for MV4015 project.
 */
public MAS(int barThreshold) {
 this.barThreshold = barThreshold;
 startWeek = 7; // Pre history for 7 weeks.
 predictorThreshold = -10; // when will predictor be discarded?
 noOfCustomers = 200;
 noOfFocalPredictors = 8;
 unbalancedPersonality = false;
 // Generate a set of fake history randomly. One time only.
 weeklyAve = new ArrayList<Integer>();
 preWeekHistoryGenenrator(startWeek);
 // Set up the predictors to have some preset value for past 7 days.
 predictors = new ElFarolPredictorsManager(predictorThreshold);
 predictors.updatePredictor(getWeeklyAve());
 // Create a number of customers.
 custArray = new ArrayList<Customer>();
 for (int agentCount = 0; agentCount < noOfCustomers; agentCount ++) {
 Customer cust = new
 Customer(noOfFocalPredictors, predictors,
 unbalancedPersonality);
 custArray.add(cust);
 }

 77

}

Figure 45. MAS Constructor Code Sample in MAS Class.

/**
 * Linked to the customer (MAS) decision maker function.
 * OpenBar schedules decision making process for all customer. The
 * decision to go to the bar will be determine by the value of the focal
 * predictors assigned to each customer. makeDecision uses the El Farol
 * Project in MV4015 Summer 2007.
 */
public void doOpenBar() {
 int attendance = 0;
 RandomVariate arrTimeGenerator =
 RandomVariateFactory.getInstance("Uniform", 0, (7*60*60));
 for (int agentCount = 0; agentCount < noOfCustomers; agentCount ++) {
 Customer cust = custArray.get(agentCount);
 // Randomly assign arrival time to agent.

 cust.setArrTime(arrTimeGenerator.generate());
 // Agent arriving on time, will have this maximum stay time cal.
 // to be 8hours - arrival time.
 cust.setMaxStayTime((8.0 * 60 * 60) - cust.getArrTime());
 // Decision to go or stay home is derived in makeDecision
 // function in MAS mental model class. Decision is added to
 // the attendance list.
 attendance += cust.makeDecision(barThreshold);
 waitDelay("Arrival", cust.getArrTime(), cust);
 }
 // Keeping track of the weekly attendance.
 weeklyAve.add(attendance);
}

Figure 46. doOpenBar Code Sample in MAS Class.

/**
 * When the GoHome Event is scheduled at the EnterBarEvents, the
 * correctness of the last decision is weighted. For customer whom has
 * decided to go to the bar but could not join the queue, the decision
 * gets an incorrect weight. OTOH, customer whom has decided not to go
 * to the bar but got rejected from joining the queue, will get a
 * correct weight added to the decision.
 */
public void doGoHome(Customer cust) {
 // If the agent decision was not to go (0), then by not being able
 // to join the queue is the right decision initially.
 if (cust.getLastDecision() == 0)
 cust.addCorrectness(1); // Right decision made.
 else
 cust.addCorrectness(0); // Wrong decision made.
}

Figure 47. doGoHome Code Sample in MAS Class.

 78

/**
 * Agent leaving the bar after successful entering has decision with
 * correct weight.
 */
public void doLeavesBar(Customer cust) {
 //Agent leaving the bar as a happy agent.
 cust.addCorrectness(1);
}

Figure 48. doLeaveBar Code Sample in MAS Class.

/**
 * CloseBar event trigger the MAS to compute and updates all the
 * predictors' correctness.
 */
public void doCloseBar() {
 // Update all correctness in the predictor at close time.
 predictors.updateCorrectness(barThreshold, weeklyAve.get(weeklyAve.
 size()-1));
 // Update all agent focals predictors at close time.
 for (int agentCount = 0; agentCount < noOfCustomers; agentCount ++)
 custArray.get(agentCount).updateFocals();
 System.out.println();
 printHappiness();
}

Figure 49. doCloseBar Code Sample in MAS Class.

 79

APPENDIX C. SEA11 LOGISTIC DEMAS

A. SEA11 LOGISTIC DISCRETE EVENT CODE SAMPLES

/**
 * preDeploy event schedules the AgentDecision so that the deployment
 * will be based on the highest voted SSC.
 * The new SSCList will contain the ranked SSC to be deployed.
 */
public void doPreDeploy(){
 if((deploymentCount > 0) && this.getGfsOnStation()){
 if(this.weightDemand > this.weightDelivered) {
 waitDelay("AgentDecision",0.0,
 getWeightDemand(),getWeightDelivered());
 }
 }

}

Figure 50. doPreDeploy Code Sample in SupplyCraftScheduler Class.

/**
 * ClearWeather event schedules the ChangeWeather event after a delay of
 * foulWeatherRV time. It also pass in a effect of 0.8 (20% reduction)
 * to the SSC capability. foulWeatherRV is a simple Normal distribution
 * randomness
 */
public void doClearWeather (){
 if (startOfWeatherChange != 0) {
 endOfWeatherChange = eventList.getSimTime();
 timeChart.addSubTask(foulWeatherTime, startOfWeatherChange,
 endOfWeatherChange);
 }
 waitDelay("ChangeWeather", foulWeatherRV.generate(),
 Priority.HIGHEST, 0.8);

}

Figure 51. doClearWeather Code Sample in WeatherAgent Class.

/**
 * ChangeWeather event causes foul weather in the simulation. It takes
 * in a parameter representing the effect towards the SSC, and it
 * schedules the ClearWeather event after a delay of clearRV. ClearRV is
 * a simple Normal distribution randomness.
 * @param weatherEffect The effect to the speed, loading time and
 * unloading time of the SSC.
 */
public void doChangeWeather (double weatherEffect){
 startOfWeatherChange = eventList.getSimTime();
 waitDelay("ClearWeather", clearRV.generate(),Priority.HIGHEST);

}

Figure 52. doChangeWeather Code Sample in WeatherAgent Class.

 80

B. SEA11 LOGISTIC MAS MENTAL MODEL CODE SAMPLES

/**
 * AgentDecision prepare and call for the voting to SSC deployment.
 * The highest voted SSC will be placed on the front of the linked-list
 * for deployment. It schedules “DEPLOY” upon completion of the voting.
 */
public void doAgentDecision(double weightDemand,double weightDelivered){

 // Update new needs and aveSpeed thus far.
 double need = weightDemand - weightDelivered;

 // 1. Determine if the last result yield improvement?
 // 2. Ranked Voter IDs based on voting and parse to ranking array.
 // 3. Sort SSC List according to Ranking array.
 // 4. Update the winner list and also the voters' last decision.

 boolean improvement = getDeploymentResult(need, totalCost);
 int[] ranking = rankVoters(need, improvement);
 sortSSCList(ranking);
 updateWinner(ranking[0]);
 // First deployment, just add the craft's speed in. Else add and ave
 // it.
 if (aveSpeed == 0)
 aveSpeed = seaSupplyCraftList.get(0).getSpeed();
 else
 aveSpeed = (aveSpeed + seaSupplyCraftList.get(0).getSpeed()) / 2;
 // Deploy the SSC for duty. */
 waitDelay("Deploy", 0.0, Priority.HIGHEST);

}

Figure 53. doAgentDecision Code Sample in SupplyCraftAgent Class.

/**
 * Adding the result of the need and cost into the ArrayList
 * winnerResult. Need is set at 80% importance while cost at 20%
 * influence. For improvement to be true, the reduction must be 10% or
 * better.
 * @param need The needed capacity still on request.
 * @param cost The cost of the transfer thus far.
 * @return A boolean indicating if there's improvement.
 * (true=improvement)
 */
private boolean getDeploymentResult(double need, double cost) {
 boolean improvement = false;
 double result = (need * 0.8) + (cost * 0.2);
 // At least 10% improvement then previous result.
 if (winnerResult.size() != 0) { // If not the first result.
 if (result < (0.9 * winnerResult.get(winnerResult.size()-1)))
 improvement = true;
 }
 winnerResult.add(result);
 return improvement;

}

Figure 54. getDeploymentResult Code Sample in SupplyCraftAgent Class.

 81

/**
 * Update the voters' active decision based on the previous result
 * obtained.
 * Decisions == Prev stands Decisions != Prev stands
 * ---
 * IMPROVEMENT DEPROVEMENT IMPROVEMENT DEPROVEMENT
 *
 * GO +1 -1 -1 +1
 *
 * STAY +1 -1 -1 +1
 * Only the winner will have the previous stand as TRUE.
 */
private void updateVoters(boolean improvement) {
 // Update all Scoring basing on previous Deployment result.
 // Need winner (who is winner), improvement(winner result)
 // Who is the previous 2nd winner, whom will be the only one with
 // GO.
 int previousWinner = winner.get(winner.size()-2);
 // Update all the decision score including active decision.
 // For each SSC, traverse the voters.
 for (int SSCcount = 0; SSCcount < totalSSC; SSCcount ++) {
 int wasDeployed = 0;
 if (SSCcount == previousWinner)
 wasDeployed = 1;
 // for each Voters, update the result.
 for (int voteCount = 0; voteCount < totalVoters; voteCount++) {
 // Current voter.
 Voter thisVote = voters[SSCcount][voteCount];
 if (improvement) {
 // 1st Decision
 if (thisVote.getDecisionList(0) == wasDeployed)
 thisVote.setDecisionScore(0,
 thisVote.getDecisionScore(0) + 1);
 else
 thisVote.setDecisionScore(0,
 thisVote.getDecisionScore(0) - 1);
 // 2nd Decision
 if (thisVote.getDecisionList(1) == wasDeployed)
 thisVote.setDecisionScore(1,
 thisVote.getDecisionScore(1) + 1);
 else
 thisVote.setDecisionScore(1,
 thisVote.getDecisionScore(1) - 1);
 // 3rd Decision
 if (thisVote.getDecisionList(2) == wasDeployed)
 thisVote.setDecisionScore(2,
 thisVote.getDecisionScore(2) + 1);
 else
 thisVote.setDecisionScore(2,
 thisVote.getDecisionScore(2) - 1);
 }
 else {
 // 1st Decision
 if (thisVote.getDecisionList(0) == wasDeployed)
 thisVote.setDecisionScore(0,
 thisVote.getDecisionScore(0) - 1);
 else
 thisVote.setDecisionScore(0,
 thisVote.getDecisionScore(0) + 1);
 // 2nd Decision
 if (thisVote.getDecisionList(1) == wasDeployed)
 thisVote.setDecisionScore(1,
 thisVote.getDecisionScore(1) - 1);

 82

 else
 thisVote.setDecisionScore(1,
 thisVote.getDecisionScore(1) + 1);
 // 3rd Decision
 if (thisVote.getDecisionList(2) == wasDeployed)
 thisVote.setDecisionScore(2,
 thisVote.getDecisionScore(2) - 1);
 else
 thisVote.setDecisionScore(2,
 thisVote.getDecisionScore(2) + 1);
 }

 // Make the highest Scored decision the active Decision.
 int presentActive = thisVote.getActiveDecision();
 int presentActiveScore = thisVote.getDecisionScore(presentActive);
 int highestActive = presentActive;
 int highestScore = presentActiveScore;
 for (int decisionCount = 0; decisionCount < 3; decisionCount++) {
 if (thisVote.getDecisionScore(decisionCount) > highestScore) {
 highestScore = thisVote.getDecisionScore(decisionCount);
 highestActive = decisionCount;
 }
 }
 // Highest Score became the active Decision.
 thisVote.setActiveDecision(highestActive);
 }
 }
}

Figure 55. updateVoters Code Sample in SupplyCraftAgent Class.

 83

LIST OF REFERENCES

[1] M. Bumble and L. Coraor, “Implementing Parallelism in Random Discrete Event-
Driven Simulation,” The Pennsylvania State University, 1998.

[2] E. Ros, R. Carrillo, E.M. Ortigosa, B. Barbour, and R. Agis, “Event-driven
simulation scheme for spiking neural networks using lookup tables to characterize
neuronal dynamics,” Neural Computation, 18(12), pp. 2959-2993,
December 1, 2006.

[3] M.L. Huson, “An Empirical Development of Parallelization Guidelines for Time-
Driven Simulation,” M. S. thesis, Defence Technical Information Center,
December 1989.

[4] S. Cho, “A distributed time-driven simulation method for enabling real-time
manufacturing shop floor control,” in Computers and Industrial Engineering, vol.
49 issue 4, pp. 572-590, 2005.

[5] L.W. Schruben, Graphical Simulation Modelling and Analysis: Using SIGMA for
Windows. The Scientific Press Series, 1995.

[6] A. Buss, “Component-Based Simulation Modeling,” in Proceedings of the 1996
Winter Simulation Conference, pp. 964-971, 2000.

[7] A. Buss, “Component-Based Simulation Modeling with Simkit,” in Proceedings
of the 2002 Winter Simulation Conference, pp. 243-249, 2002.

[8] A. Buss, “Discrete Event Programming with Simkit,” in Technical Notes of
Simulation News Europe, issue 32/33, pp. 15-25, November 2001.

[9] N. Minar, R. Burkhart, C. Langton, and M. Askenazi, “The Swarm Simulation
System: A Toolkit for Building Multi-Agent Simulations,” June 21, 1996.

[10] B. Dubiel and O. Tsimhoni, “Integrating Agent Based Modeling into Discrete
Event Simulation,” in Proceedings of the 2005 Winter Simulation Conference, pp.
1029-1037, 2005.

[11] G. Wagner, “The Agent-Object-Relationship Metamodel: Towards a Unified
View of State and Behavior,” in Information Systems 28:5, 2003.

[12] P. Riley, “Spades: A System for parallel-agent, discrete-event simulation,” in AI
Magazine, issue 24, vol 2, pp. 41-42, Summer 2003.

[13] A.M. Law, Simulation Modeling & Analysis, 4th Edition, McGraw-Hill, 2007.

 84

[14] J.W. Schmidt and R.E. Taylor, Simulation and Analysis of Industrial Systems,
Homewood, Illinois: Irwin, 1970.

[15] A. Buss, “Structure of DES Model,” class notes for OA3302, Operations
Research Department, Naval Postgraduate School at Monterey-California, Winter
2007.

[16] P. Davidsson, “Multi Agent Based Simulation: Beyond Social Simulation,”
Department of Software Engineering and Computer Science, University of
Karlskrona/Ronneby Soft Center, Ronneby-Sweden, 2000.

[17] W.M. Bulleit and M.W. Drewek, “Simulating Terrorism in a Community,” in
Proceeding of the Agent 2006 on Social Agents, pp. 255-263, 2006.

[18] M.J. North, C.M. Macal and J.R. Vos, “Terrorist Organization Modeling,” in
Proceedings of NAACSOS Conference, 2004.

[19] J. Hiles, “MAS Design Template,” class notes for MV4015, Modeling, Virtual
Environments and Simulation (MOVES) Institute, Naval Postgraduate School at
Monterey-California, Spring 2007.

[20] R.G. Sargent, “Event Graph Modelling for Simulation with An Application to
Flexible Manufacturing Systems,” in Management Science, vol. 34, issue 10, pp.
1231-1251, October 1988.

[21] T.K. Som and R.G. Sargent, “A Formal Development of Event Graphs as an Aid
to Structured and Efficient Simulation Programs,” in ORSA J. Computing, 1, pp.
107-125, 1989.

[22] A. Buss, “Event Graph Models and Simkit”, class notes for OA3302, Operations
Research Department, Naval Postgraduate School at Monterey-California, Winter
2007.

[23] Swarm Development Group, “Swarm Development Group Wiki,” Internet:
http://www.swarm.org/wiki/Main_Page#Swarm_Development_Group, 26
February 2007 [accessed 7 December 2007].

[24] G. Wagner, “The Agent-Object-Relationship Meta-Model: Towards a Unified
View of State and Behavior,” in Information Systems, issue 28, vol 5, pp. 475-
504, 2003.

[25] P. Riley (pfr+@cs.cmu.edu), “SPADES,” Project post to SourceForge.Net, 2007,
Internet: http://sourceforge.net/project/showfiles.php?group_id=61929 [accessed
7 December 2007].

[26] A. Buss, “Basic Event Graph Modeling,” in Simulation News Europe, issue 31,
pp. 1-6, April 2001.

 85

[27] W.B. Arthur, “Inductive Reasoning and Bounded Rationality,” in Papers and
Proceedings of American Economic Review, issue 84, pp. 406-411, 1994.

[28] M.F. Galli, et. al., “Riverine Sustainment 2012,” M.S. thesis, Naval Postgraduate
School, Monterey, CA, U.S.A., June 2007.

 86

THIS PAGE INTENTIONALLY LEFT BLANK

 87

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Arnold H. Buss
Naval Postgraduate School
Monterey, California

4. Professor Christian J. Darken
Naval Postgraduate School
Monterey, California

5. Professor John Hiles

Naval Postgraduate School
Monterey, California

6. Professor Rudolph P. Darken

Naval Postgraduate School
Monterey, California

7. Professor Mathias Kolsch

Naval Postgraduate School
Monterey, California

8. Professor Curtis Blais
Naval Postgraduate School
Monterey, California

