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ABSTRACT 
 
 
 
Speech collected through a microphone placed in front of the mouth has been the 

primary source of data collection for speech recognition. There are only a few speech 

recognition studies using speech collected from the human ear canal. In this study, a 

speech recognition system is presented, specifically an isolated word recognizer which 

uses speech collected from the external auditory canals of the subjects via an in-ear 

microphone. Currently, the vocabulary is limited to seven words that can be used as 

control commands for a wide variety of applications. The speech segmentation task is 

achieved by using the short-time signal energy parameter and the short-time energy-

entropy feature (EEF), and by incorporating some heuristic assumptions. Multi-layer 

feedforward neural networks with two-layer and three-layer network configurations are 

selected for the word recognition task and use real cepstrum (RC) and mel-frequency 

cepstral coefficients (MFCCs) extracted from each segmented utterance as characteristic 

features for the word recognizer. Results show that the neural network configurations 

investigated are viable choices for this specific recognition task as the  average 

recognition rates obtained with the MFCCs as input features for the two-layer and three-

layer networks are 94.731% and 94.61% respectively on the data investigated. Average 

recognition rates obtained using the RCs as features on the same network configurations 

are 86.252% and 86.7% respectively. 
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EXECUTIVE SUMMARY 
 
 
 

Speech is the most natural way of communication for humans. The aim of speech 

recognition is to create machines that are capable of processing spoken information, and 

there have been quite remarkable advances and many successful applications in speech 

recognition, especially with computing technology advances beginning in the 1980s. 

Speech signals collected through a microphone placed in front of the mouth have 

usually been the primary source of data in speech recognition applications. The problem 

associated with such collection is that any ambient noise is also picked up via the 

microphone at the same time. As a result, there has been interest in collecting speech 

from other locations, which would provide some isolation from surrounding noise. For 

this purpose, speech collection from the external auditory canal (or the ear canal) via an 

ear-insert microphone has also been considered. The external auditory canal, when 

isolated properly with an ear-insert microphone, can provide intelligible speech even in 

severe noise conditions while intelligibility of the same speech collected through a 

microphone placed in front of the mouth decreases significantly. However, speech 

collected from the external auditory canal has not found many applications in speech 

recognition, except in a few recent studies [Westerlund, Dahl, Claesson, 2002a]. 

The main objective of this thesis is to implement a basic isolated word recognition 

system which operates on the utterances collected from the external auditory canals of the 

speakers via an ear-insert microphone. This study is an extension of an on-going research 

initiated by Newton [Newton, 2006], who collected the required speech data for the 

recognition implementations considered here. 

The speech data were collected from the external auditory canals of 20 native 

adult American English speakers, including sixteen males and four females, via an ear-

insert microphone. All the recordings were done in an office environment. The 

vocabulary used in this study consisted of seven words: up, down, left, right, kill, move, 

and pan. In order to investigate the recognizer performance in the presence of noise and 

changes in microphone placement, the subjects also uttered the word “kill” in a simulated 



 xx

noisy environment via the in-ear microphone (denoted as “kill_noise”) and the word 

“right” through a microphone placed in front of their mouth (denoted as “right_outside”). 

The total data size used for the study is 8,228 isolated utterances including “kill_noise” 

and “right_outside.” 

In order to implement the speech recognizer, recorded utterances were first 

isolated from the silence sections by an end point detection algorithm that follows a 

bandpass filter employed as the preprocessor. Note that the end point detection task is 

usually quite difficult in real-life conditions, except for high signal-to-noise ratio 

environments. However, it is the crucial part of any isolated word recognizer because 

detecting accurate utterance boundaries significantly reduces recognition errors. Different 

measures (parameters and features) used so far in literature for end point detectors were 

investigated, and the end point detection algorithm implemented uses both the short-time 

absolute magnitude energy parameter and the short-time energy-entropy feature (EEF), as 

well as by incorporating some heuristic assumptions on the thresholds required for this 

task. 

Next, fourteen real cepstrum (RC) coefficients and fourteen mel-frequency 

cepstral coefficients (MFCCs) were extracted separately for every segmented utterance 

and used as input features to a classifier. Feedforward back-propagation neural networks 

(BPNNs) were selected as the classifier types in this study, and ten different two- and 

three-layer neural network configurations were considered for word recognition. 

Recognition results showed that the performance of the two-layer and three-layer 

networks increased as the numbers of hidden neurons increased. Best overall average 

recognition rates were obtained for a ( )150 7−  two-layer network configuration 

(94.731%) and for a ( )60 40 7− −  three-layer network (94.61%) with fourteen MFCCs 

used as input features. Implementation results also showed that the conjugate gradient 

algorithm was more accurate and reliable than the Levenberg-Marquardt algorithm for 

the network complexities and data size considered in this study. Finally, we observed that 

the classifier performances degraded significantly under severe noise conditions, i.e., 



 xxi

when tested on “kill_noise,” showing that some type of noise cancellation scheme should 

be incorporated into the recognizer preprocessing stage. 
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I. INTRODUCTION 

Speech is the most natural way of communication for humans. The aim of speech 

recognition is to create machines that are capable of receiving speech from humans (or 

some spoken commands) and taking action upon this spoken information [Deller, 

Proakis, Hansen, 1993]. Although it was once thought to be a straightforward problem, 

many decades of research has revealed the fact that speech recognition is a rather difficult 

task to achieve, with several dimensions of difficulty due to the nonstationary nature of 

speech, the vocabulary size, speaker dependency issues, etc. [Deller, Proakis, Hansen, 

1993]. However, there have been quite remarkable advances and many successful 

applications in speech recognition field, especially with the advances in computing 

technology beginning in the 1980s. 

Until recently, speech signals collected through a microphone placed in front of 

the mouth have been the primary source of data in speech recognition applications. The 

problem associated with this type of speech collection is that the ambient noise is also 

picked up via the microphone at the same time. As a result, there has always been a 

search for another location on the human body rather than the mouth which could provide 

for some isolation from environmental noise as the performance of speech recognizers 

deteriorates under increasing noise levels. For this purpose, speech collection from the 

external auditory canal (or the ear canal) via an ear-insert microphone has also been 

considered before [Black, 1957]. The external auditory canal, when isolated properly 

with an ear-insert microphone, can provide intelligible speech even in severe noise 

conditions where the intelligibility of speech collected through a microphone placed in 

front of the mouth decreases significantly. However, speech collected from the external 

auditory canal has not found many applications in speech recognition, except in a few 

recent studies [Westerlund, Dahl, Claesson, 2002a]. 

The Hidden Markov Models (HMMs) have become the primary tool for speech 

recognition since the 1970s. As the interest in artificial neural networks (ANNs) 

increased with the reinvention of the backpropagation algorithm for multi-layer neural 

networks in the 1980s, researchers have started to consider the ANN as an alternative to 
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the HMM approach in speech recognition due to two broad reasons: speech recognition 

can basically be viewed as a pattern classification problem, and ANNs can perform 

complex classification tasks. Particularly, some advantages of the ANN over the HMM 

made them attractive for speech recognition, advantages such as flexible architecture, 

highly parallel and regular structure, robustness to the limited training data, ability to 

accommodate discriminant learning, and no need for assumptions about the statistical 

distribution of the inputs [Morgan, Bourlard, 1995]. As a result, ANNs have been 

successfully applied to speech recognition, especially to the phoneme, digit, and isolated 

word recognition problems, for the last two decades. 

Features that are efficient parametric representations of the speech are extracted 

and used in a speech recognizer. Common features used include the linear predictive 

coding coefficients (LPCCs), real cepstrum (RC) coefficients, and the mel-frequency 

cepstral coefficients (MFCCs). The LPCCs and RCs were the most popular choices for 

speech recognizers up until the 1980s [Deller, Proakis, Hansen, 1993]. However, MFCCs 

have become the most popular features for speech recognition nowadays after a study by 

Davis and Mermelstein in 1980 [Davis, Mermelstein, 1980] showed the superior 

performance of the MFCCs versus the well-known LPCCs and RCs. The power of the 

MFCCs comes from the fact that their extraction approximates the human perception. 

Words must be extracted before they can be recognized. Accurate segmentation is 

essential as studies have shown that more than half of the recognition errors are due to 

word boundary detection errors [Zhang, Zhu, Hao, 1997]. The Segmentation task is 

achieved by an end point detection algorithm which isolates speech utterances from the 

background noise sections, and this phase remains a challenging problem in real-life 

conditions where wide ranges of signal-to-noise ratios may be encountered. 

A. OBJECTIVE 

The main objective of this thesis is to implement an isolated word recognition 

system, which operates on utterances collected from the external auditory canals of the 

speakers via an ear-insert microphone. 

This study is part of an on-going research project and uses data collected earlier 

by Newton [Newton, 2006]. The database includes repetitions of seven words collected in 
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an office environment from the external auditory canals of 20 native adult American 

English speakers. 

The study had three main phases. First, the speech segmentation phase, where 

recorded utterances were first isolated from the background noise sections. This task was 

accomplished with a short-time absolute magnitude energy parameter and short-time 

energy-entropy feature (EEF). Second, the feature extraction phase, where we considered 

both RC coefficients and MFCCs extracted separately from every segmented utterance to 

be used as input features to the recognizer. Third, the classification phase, where we 

investigated several feedforward backpropagation neural network configurations. Ten 

different two- and three-layer neural network configurations were implemented and their 

word recognition performances compared. 

B. RELATED RESEARCH 
As discussed earlier, only a few speech recognition research studies that directly 

use the speech data collected from the ear canal have been reported in the literature, 

although speech collection from the ear canal through an ear-insert microphone is not a 

new concept in itself. The most recent in-ear microphone based study for hands-free 

communications applications has been reported recently by Westerlund [Westerlund, 

Dahl, Claesson, 2002a], [Westerlund, Dahl, Claesson, 2002b], [Westerlund, Dahl, 

Claesson, 2005]. In this study, the authors designed a speech recognition system for 

speech collected in a severely noisy environment from an in-ear microphone, showed that 

the recognizer accuracy was superior to that obtained with speech collected outside the 

mouth in the same noisy environment, and that performances further increased when 

noise reduction schemes were introduced. 

Another recent study by Vaidyanathan showed that the air flows caused by the 

tongue movements in the external auditory canal could be collected via an in-ear 

microphone, and mapped to respective tongue movements with 97.7% accuracy. This 

study showed that the control commands collected via an in-ear microphone could be 

used in a man-machine interface for the operation of either a robot or a device for a 

handicapped person [Vaidyanathan, 2004a], [Vaidyanathan, 2004b]. 

 



4 

C. THESIS ORGANIZATION 
This thesis consists of six chapters and two appendices. Chapter II presents the 

equipment used for the recordings, how recordings were conducted, and background 

information about the speech data. Chapter III discusses the end point detection task, and 

the problems and difficulties associated with this step. Several different measures 

investigated for the end point detection scheme are also presented and discussed within 

Chapter III. Chapter IV presents the spectral-based RC and MFCC features selected as 

input features to the classifier. Chapter V discusses the concept of multi-layer 

feedforward neural networks, and presents recognition results. Finally, conclusions and 

suggestions for future studies are presented in Chapter VI. 

Appendix A presents the specifications background information about the speech 

data used for recognition of the in-ear microphone used to collect the speech data. 

Appendix B contains the main Matlab codes implemented for the speech recognizer. 
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II. BACKGROUND 

This chapter first presents a brief introduction to the concept of collecting the 

speech from the ear canals of the subjects. Next, it presents the equipment used and 

procedures followed for the recordings. Finally, it discusses the phonetic and spectral 

characteristics of the specific vocabulary words selected for the study, including “up,” 

“down,” “left,” “right,” “kill,” “pan,” and “move.” 

A. INTRODUCTION 
Collecting speech signals from locations other than the speaker’s mouth is not a 

new concept. Throat and bone conduction microphones can be commonly found in 

specialized applications [O’Neill, 1958], [Graciarena, Franco, Sonmez, Bratt, 2003], 

[Shahina, Yegnanarayana, 2005]. Ear canal microphones have also been considered when 

dealing with severe noise conditions. Speech collection through the external auditory 

canal may be achieved by means of a small microphone placed into the ear canal. 

One of the earliest studies which investigates the intelligibility of the speech 

collected from the external auditory canal and the use of an ear-insert microphone was 

conducted by Black in 1957 [Black, 1957]. This early study showed that an ear-insert 

microphone could be used as an alternative for speech collection, and that the 

intelligibility of the speech recorded from the external auditory canal was superior to that 

collected via a microphone placed in front of the mouth in decreasing signal-to-noise 

ratios. Nowadays, speech collection through the ear canal is an ongoing research topic in 

biomedical applications [Rafaely, Furst, 1996] such as hearing aids, hearing screening 

tests, and speech enhancement for hands-free communication. 

With the advances in computers and electronics in the last two decades, the 

reduced size and increased performance of the ear microphones accelerated the research 

on the speech collected from the external auditory canal. For speech enhancement 

purposes in hands-free communication, a microphone placed into the external auditory 

canal was used recently by Westerlund in his research, [Westerlund, Dahl, Claesson, 

2002a], and [Westerlund, Dahl, Claesson, 2005]. In [Westerlund, Dahl, Claesson, 2002b], 

authors designed a speech recognition system for speech collected in a severely noisy 
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environment from an in-ear microphone, showed that the recognizer accuracy was 

superior to that obtained with speech collected outside the mouth in the same noisy 

environment, and that performances further increased when introducing noise reduction 

schemes. 

Thus, previous research results show that collecting speech data via an in-ear 

microphone may be a viable alternative for speech processing applications, specifically 

for speech recognition. The current study investigates the implementation of a basic 

speech recognition system using in-ear microphone speech data, with the long-term goal 

of investigating the system robustness to environmental noise distortions, as a noise 

immune recognizer would be highly desirable in numerous applications. 

B. EQUIPMENT USED 
The speech data used for this research were recorded in an office environment at 

the Naval Postgraduate School (NPS) in an earlier study by Newton [Newton, 2006]. 

The complete system used for the recordings consisted of four main devices: an 

ear microphone, an analog-to-digital converter (A/D), a data acquisition (DAQ) card by 

National Instruments, and a notebook PC. The complete system is shown in Figure 2.1. 

The in-ear microphone is mounted in a foam plug, which serves two purposes, 

enabling the microphone to stand still in the ear canal, and shielding the external auditory 

canal from the ambient noise by closing the ear canal entrance at the pinna (outer ear) 

side. The in-ear microphone used for the recordings is encased in foam and placed into 

the ear of a subject, as shown in Figure 2.2. Appendix A contains the in-ear microphone 

specifications. 

The analog speech signals coming from the in-ear microphone are digitized using 

an analog-to-digital (A/D) converter before being sent to the computer for recording. The 

A/D converter produces speech signals sampled at 8 kHz  with a 16-bit quantization 

scheme. 
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Figure 2.1. The complete set-up used for the recordings (ear microphone, A/D 

Converter, DAQ Card, and notebook with interface program). 
 

 
Figure 2.2. In-ear microphone used for recordings. 
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Next, digitized speech signals are transferred to a notebook PC via an interface 

cable which connects to the PCMCIA slot, or wireless connection slot, of the notebook 

via a National Instruments DAQ card. A Labview-based interface program is used during 

the recording sessions to control recordings, mark recordings as “good” or “bad,” and 

save them to the computer. 

Every recording is saved into a text file via the interface program loaded in the 

notebook by the session controller person. Each text file is named by the word being 

uttered, the respective number of the subject (speaker), the repetition number of the word 

by the same subject, and the recording date (month-day-year format with two digits). 

Therefore, the convention used for saving the individual recordings is as follows: 

Word_subject #_repetition #_month_day_year 

For example, “down_1_10_04_13_05.txt” indicates the tenth repetition of the 

word “down” by the first subject on April, 13, 2005. The noisy version of the word “kill” 

is denoted as “kill_noise,” and the word “right” collected through a microphone placed in 

front of the lips is denoted as “right_outside.” From now on, this convention will be used 

to denote a specific recording of a vocabulary word. 

All recordings belonging to a given subject are saved into one folder. Next, each 

word file is split into individual trials in separate folders for each subject to allow for easy 

access and manipulation. Finally, each trial is cropped to isolate the speech section using 

an “end point detection” algorithm to be presented in the next chapter. 

The following sections provide more details about the data set, vocabulary words, 

and their characteristics. 

C. DATA DESCRIPTION 

Twenty native adult American English speakers, including sixteen males and four 

females, were invited to speak seven different words, and recordings by each subject 

were conducted in separate sessions. The vocabulary used in this study consisted of seven 

words: up, down, left, right, kill, move, and pan. The data were collected via the in-ear 

microphone discussed earlier. In addition, subjects were asked to utter the word “kill” in a 

simulated noisy environment through the in-ear microphone, where the noise was 

generated by playing loud music in the office. Finally, each speaker was also asked to 
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utter the word “right” through a microphone placed in front of the mount of the speaker 

to investigate signal characteristic changes resulting from differences in the microphone 

location during recording. 

Even though the final number of repetitions per each word by each subject may 

vary somewhat, due to the removal of a few “bad” trials in each recording session, each 

speaker uttered each word and a noisy version of the word “kill” forty nine times on 

average. The average number of recordings for the word “right” collected via the 

microphone placed in front of the mouth is nineteen. Therefore, the total size of the 

database, including all usable (i.e., good) repetitions of all words for all speakers, and 

including “kill_noise” and “right_outside,” is 8,228. 

The quantitative information about the data is given in Table 2.1. Each speaker is 

denoted by an integer number from 1 to 20 in the table. Female speakers are identified 

with an asterisk (*) next to their identification number. This table lists the number of 

repetitions per word for each speaker, the average number of repetitions per word, the 

total number of repetitions per word, and the total data size (i.e., the total number of 

recordings). 
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1 44 49 49 49 49 49 43 45 19
2 48 49 49 50 49 49 49 49 19
3 50 44 49 49 48 48 39 49 19
4* 49 49 49 49 49 49 49 49 19
5 52 48 49 51 48 46 49 51 20
6 51 51 50 49 49 50 50 52 19
7 51 46 52 48 49 40 45 48 21
8 52 49 49 49 53 52 50 49 19
9* 46 50 49 50 49 50 52 49 19
10 49 49 50 49 49 49 49 49 24
11* 49 48 50 48 50 50 50 50 19
12* 49 49 48 49 50 48 51 51 19
13 52 51 52 50 44 50 50 51 21
14 48 49 49 50 49 51 49 48 19
15 49 50 50 49 49 48 49 30 18
16 54 51 49 50 48 50 50 50 20
17 49 49 49 49 49 49 49 49 20
18 46 49 49 51 49 48 45 47 19
19 62 49 49 49 49 49 49 49 19
20 48 48 49 52 49 49 50 49 19

Average # of 
Repetitions 
per Word

49.9 48.85 49.45 49.5 48.9 48.7 48.35 48.2 19.55

Total # of 
Repetitions 
per Word

998 977 989 990 978 974 967 964 391

Overall Data 
Size

Subject 
Number

The Number of Repetitions per Word

8228

up down left right kill pan move kill_noise right_outside

 
Table 2.1. Quantitative information about the data set used for the speech recognition 

task. Subject numbers with an asterisk (*) next to them indicate female speakers. 
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1. Phonetic Classification of the Data 
Speech is produced by the movements of the articulators constituting the human 

vocal tract, i.e., the movement of the organs such as vocal folds, larynx, pharynx, tongue, 

lips, and teeth, with the force of air through the lungs. Since speech is time-varying (or 

non-stationary) due to the rapid changes of the vocal tract during speech production, 

speech is usually segmented into smaller units or sounds that carries acoustical 

information [Deller, Proakis, Hansen, 1993]. These actual sound units that have certain 

acoustic and articulatory properties are called phones. Phones are realizations of 

phonemes, which are the basic theoretical linguistic units that comprise the word [Deng, 

O’Shaughnessy, 2003]. Therefore, phonemes are the smallest meaningful unit in a 

language, and the phones are the actual sounds of these phonemes uttered by a speaker. 

The phonetic classification is the process of grouping the phonemes based on 

their properties related to their waveforms, frequency characteristics, manner of 

articulation, place of articulation, type of excitation, and the stationary characteristic of 

the phoneme [Deller, Proakis, Hansen, 1993]. The most general classification scheme 

groups phonemes into two broad categories, voiced speech which does not restrict the 

airflow through the vocal tract, and unvoiced speech which restricts the airflow at some 

point and look like noise [Deng, O’Shaughnessy, 2003]. A more specific classification 

based on the properties mentioned above include vowels, diphthongs, fricatives, 

affricates, nasals, liquids, glides, and stops (or, plosives). 

The knowledge of the phonetic context of the vocabulary words will be especially 

important for analyzing the implementation and performance of the end point detection 

algorithm that will be discussed in the next chapter. As will be explained later, it may be 

a very challenging task to isolate the speech segment within the data file when the speech 

starts and/or ends with a weak fricative and/or a stop consonant (plosive), especially 

when the recording includes unwanted distortions. 

Although the vocabulary size is small, it is very rich in phonetic context such as 

different types of vowels, fricatives, stops (plosives), nasals, liquids, and diphthongs. 

Next, the phonemes present in each word will be discussed. The definitions and the 
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phoneme tables in both [Deller, Proakis, Hansen, 1993] and [Deng, O’Shaughnessy, 

2003] are used for the phonetic classification of the vocabulary words. 

The word “up” has the vowel /A/ and the unvoiced oral stop /p/ following the 

vowel sound. The word “down” starts with a voiced stop /d/ and continues with a 

diphthong /aw/ and ends with a final nasal /n/. The word “left” consists of a liquid /l/, a 

vowel /@/, an unvoiced fricative /f/, and a final unvoiced stop /t/. The word “right” has a 

liquid /r/, a diphthong /ay/, and a final unvoiced stop /t/. The word “kill” has an unvoiced 

plosive /k/, a vowel /i/, and a liquid /l/. The word “pan” starts with an unvoiced plosive 

/p/ and continues with the vowel /E/ and ends with a nasal /n/. The word “move” has a 

nasal /m/, a vowel /u/, and a voiced fricative /v/. 

The phonetic classification of the vocabulary words is summarized in Table 2.2. 

 

vowel diphthong liquid nasal fricative stop (plosive)
up / A / / p /

down / aw / / n / / d /
left / @ / / l / / f / / t /

right / ay / / r / / t /
kill / i / / l / / k /
pan / E / / n / / p /

move / u / / m / / v /

Vocabulary Words
Phonemes

 
Table 2.2. Phonetic classification of the vocabulary words. 

 
D. SPECTRAL CHARACTERISTICS OF THE DATA 

In order to extract the spectral characteristics of the vocabulary words, their short-

time Fourier Transform (STFT) magnitudes or spectrograms are investigated since they 

best express the time-varying nature of the speech signals and combine both the time-

domain and frequency-domain information into a single, consistent, and integrated 

framework [Deng, O’Shaughnessy, 2003]. The recorded utterances are sampled at 8 .kHz  

Therefore, the frequency axis on the spectrograms ranges up to 4 .kHz  The time axis, on 

the other hand, goes up to the end of the recordings. 

An example of both the time-domain waveform and the respective spectrogram 

for each vocabulary word collected via the in-ear microphone is illustrated in Figure 2.3 
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through Figure 2.9. The time-domain waveform and associated spectrogram of the word 

“right” collected via a microphone placed in front of the lips are shown in Figure 2.10. 
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Figure 2.3. Speech waveform (top plot) and associated spectrogram (bottom plot) of 

the word “down” (down_8_18_04_29_05.txt). 
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Figure 2.4. Speech waveform (top plot) and associated spectrogram (bottom plot) of 

the word “up” (down_8_36_04_29_05.txt). 
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Figure 2.5. Speech waveform (top plot) and associated spectrogram (bottom plot) of 

the word “left” (left_3_18_04_25_05.txt). 
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Figure 2.6. Speech waveform (top plot) and associated spectrogram (bottom plot) of 

the word “pan” (pan_13_35_05_04_05.txt). 
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Figure 2.7. Speech waveform (top plot) and associated spectrogram (bottom plot) of 

the word “kill” (kill_3_20_04_25_05.txt). 
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Figure 2.8. Speech waveform (top plot) and associated spectrogram (bottom plot) of 

the word “move” (move_8_6_04_29_05.txt). 
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Figure 2.9. Speech waveform (top plot) and associated spectrogram (bottom plot) of 

the word “right” (right_3_25_04_25_05.txt). 
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Figure 2.10. Speech waveform (top plot) and associated spectrogram (bottom plot) of 

the word “right” collected through the in-ear microphone placed in front of the mouth 
(right_outside_13_10_05_04_05.txt). 

 

A few important general observations, which will be very important for the front-

end processing of the data, can be made here: 

• There is a constant very low-frequency disturbance or “hum” present in all 
recorded speech spectrograms. This hum occupies the frequencies 
between 0 and 100 .Hz  

• The voiced portions of the speech waveforms, where most of the signal 
energy is concentrated, have frequency information mainly up to 2.3 ,kHz  
and not much frequency content is left above 2.3 .kHz  

• The frequency content of the word “right” collected via an outside 
microphone goes up to 3.5 ,kHz  and even up to 4 kHz  in some trials. 

Figures 2.9 and 2.10 show that the within-the-ear speech is dampened for 

frequencies above 2.1 .kHz  The in-ear microphone placed into the ear canal picks up 

mainly the bone conducted speech and the sound conducted through the muscles and 

tissues covering the skull. However, the speech energy transmitted through the muscles 
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and tissues in the head is considered negligible. These muscles and tissues are also 

assumed to have an attenuation effect on higher frequencies, i.e., they have a low-pass 

filtering effect on the bone conducted speech [Westerlund, Dahl, Claesson, 2005]. As a 

result, the speech collected from the ear canal is expected to be the low-pass filtered 

version of the speech collected from the same microphone placed in front of the mouth, 

explaining why the frequency content of the same word collected from the different 

mediums differs from each other. 

E. SUMMARY 
This chapter presented the main idea behind collecting speech using an ear-insert 

microphone. It also discussed both phonetic and spectral properties of the vocabulary 

words selected for the data collection, together with the equipment used and how the 

recordings were conducted. 

The following chapter presents the end point detection algorithm which is an 

essential and integral part of any speech recognizer. 
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III. END POINT DETECTION 

This chapter discusses end point detection, which is one of the most important 

parts of any speech recognizer. The chapter first briefly presents the basic idea behind 

end point detection. Second, it presents the problems encountered in the end point 

detection for the data under consideration in this study. Third, it presents the different 

parameters (or features) employed for various end point detection algorithms commonly 

used nowadays which were considered in this study: the short-time energy, Teager’s 

energy, zero-crossing rate, and energy-entropy schemes. Fourth, it discusses the end point 

detection algorithm implemented for the current study, which operates on the recordings 

that were filtered by an infinite impulse response (IIR) bandpass filter at the 

preprocessing stage prior to detection. Finally, this chapter concludes with a discussion 

about the effect of this IIR bandpass filter on the detection scheme. 

A. END POINT DETECTION 
End point detection is the process of finding the edge points of an uttered word or 

speech segment in the presence of background noise, i.e., finding the starting and ending 

points of the speech signal. End point detection is also equivalent to measuring the 

duration of an utterance in a certain interval of background noise [Taboada, Feijoo, Balsa, 

Hernandez, 1994].  

Accurately detecting the speech signal end points is very important in speech 

recognition applications for two reasons [Lamel, Rabiner, Rosenberg, Wilpon, 1981]: 

• The accuracy and reliability of the speech recognizer critically depend on 
the accurate detection of the boundaries of the uttered words. 

• Accurate detection of the end points and successful removal of the 
background noise or silence from the speech portions reduce the 
subsequent computations significantly. 

The first reason mentioned above can be understood easily if a recognizer using 

dynamic time warping (DTW) algorithm is considered, where an incoming end point 

detected speech signal is compared with some reference templates. In that case, the time 

alignment of the signals becomes a crucial issue. The study by Junqua et al., [Junqua, 

1991], showed that more than half of the recognition errors were due to word boundary 

detection errors [Zhang, Zhu, Hao, Luo, 1997]. The second reason is self-explanatory 
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because the processing time and burden for a recognizer are greatly reduced when 

unnecessary parts of the recordings are removed via the end point detection algorithm 

prior to further processing. 

End point detection may seem to be a trivial task to accomplish, but it is not the 

case, except in high signal-to-noise ratio environments, where discrimination between 

speech segments and background is very easy, and simple algorithms yield close to 

perfect results. In real-life applications, we are highly unlikely to find such high signal-

to-noise levels; hence, speech signals with lower signal-to-noise ratios and different noise 

types make end point detection a challenging problem. As a result, end point detection 

has been an active research topic since the 1970s. 

Up until the 1990s, a very limited amount of research on end point detection 

appears in the literature. Two studies that have been commonly referenced are by 

Rabiner, [Rabiner, Sambur, 1975], and Lamel, [Lamel, Rabiner, Rosenberg, Wilpon, 

1981], which are mainly based on energy measures. There has been a noticeable increase 

on the amount of research conducted on word boundary detection after the 1990s, and 

many different techniques have been investigated such as spectral approaches, variable 

frame rate methods, and lately entropy-based approaches. However, these research 

studies are mostly data-specific, and yet, no globally accepted or widely used approach 

has been proposed. 

Three types of end point detection schemes are currently available: explicit, 

implicit, and hybrid [Lamel, Rabiner, Rosenberg, Wilpon, 1981].  The main difference 

between explicit and implicit schemes is that there is a separate and independent end 

point detection stage prior to the recognizer in explicit techniques, whereas there is no 

separate endpoint detector in implicit approaches, i.e., it is accomplished by the 

recognition stage. The hybrid scheme essentially combines both explicit and implicit 

approaches. In [Lamel, Rabiner, Rosenberg, Wilpon, 1981], it is also indicated that a 

sophisticated explicit end point detection scheme always outperforms the other two 

approaches. Hence, an explicit end point detector is employed for the present study. The 

general block diagram of a speech recognizer using an explicit end point detector is 

shown in Figure 3.1. 
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Figure 3.1. Block diagram of a speech recognizer using an explicit end point detector. 
 

As noted earlier, end point detection algorithms that have been used or suggested 

so far are based on short-time energy, spectral-energy like Teager’s energy, zero-crossing 

rate (ZCR), variable frame rate (VFR) methods using cepstral or time derivate features, 

entropy, or energy-entropy (EE) features. The end point detection algorithm used for this 

study relies on two of these schemes, namely short-time absolute magnitude energy and 

energy-entropy (EE). Some of the other schemes mentioned above were also considered 

during early stages of this study and are discussed later in this chapter. 

B. PROBLEMS ENCOUNTERED WITH END POINT DETECTION 
End point detection is very challenging in real-life applications, as noted in the 

previous section. This is due to the fact that it is not possible to find a clean environment 

where signal-to-noise ratio is so high that even the lowest-energy portions of the speech 

signal, such as weak fricatives, significantly exceed the energy level of the background 

noise or silence. Although a simple energy-based algorithm that uses some types of 

thresholds is enough to discriminate low-energy level sounds from background noise in a 

high signal-to-noise case, it is usually not sufficient to do the same separation in real-life 

conditions. 

Recall from the previous chapter that the speech data recorded for the current 

study were taken in an office environment and includes distortions commonly found in 

such environments such as other speakers, phone rings, etc… Therefore, the end point 

detection is not a trivial problem with the data at hand since it gives an excellent example 

of real-life conditions. 

Examples of typical silence sections, or background noise, for the recordings via 

both the ear-insert microphone and the microphone placed in front of the mount are 

shown in Figure 3.2 and Figure 3.3, respectively, along with their estimated power 

spectral densities. The power spectral density estimations are obtained by using the 
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classical periodogram method. Both silence sections include the low-noise hum 

mentioned earlier, which occupies the frequency range up to 100 Hz  in all recordings. 

Note that the power of the low-frequency hum present in the in-ear microphone data 

drops to a mean level of 90 dB−  at around 200 Hz  and stays at that level, whereas the 

power of the low-frequency hum present in the outside microphone data is slow to decay 

to its average value of 90 dB− . 
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Figure 3.2. Typical silence waveform (top plot) and related power spectral density 

(bottom plot) for the recordings with the ear microphone (first 600 ms  of 
“left_3_18_04_25_05.txt”). 
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Figure 3.3. Typical silence waveform (top plot) and related power spectral density 

(bottom plot) for the recordings with the microphone placed in front of the mount 
(first 400 ms  of “right_outside_19_17_08_22_05.txt”). 

 

The noise types encountered in real environments, which cause failures in the end 

point detection algorithms, can be divided into three broad categories [Taboada, Feijoo, 

Balsa, Hernandez, 1994]: 

• Stationary noise associated with the transmission system, i.e. microphone 
and/or the surroundings.  

• Sporadic (non-stationary) noise including people talking in the vicinity, 
doors opening and closing, telephone ringing, mechanical (factory) noises, 
and so on. 

• Noise or artifacts generated by the speaker such as mouth noises, i.e., 
sounds made by the tongue and lips, heavy breathing noises, and breath 
releases. 

The last two of these noise types are the most difficult ones to deal with, and 

increase the complexity of end point detection algorithm. Non-stationary noises are long 

in duration and strong in intensity when compared to the speaker-generated artifacts such 
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as clicks and breath noise, which are much shorter in duration but sharper in intensity. A 

very strong and long-lasting non-stationary noise can clutter the whole spectrum of an 

utterance to the point that the speech may seem to be buried in noise. A speaker-

generated artifact such as a click, heavy breath release, coughing, or lip smacking 

attached to either the front or end of the desired speech segment can easily be detected as 

part of the speech segment. 

Examples of speech containing non-stationary noise and user-generated artifacts 

are shown in Figure 3.4 and Figure 3.5, respectively. In both figures, the bandpass 

filtered speech waveforms are plotted on top, and their respective absolute magnitude 

energy contours, which will be explained later in the following section, are plotted at the 

bottom. The actual boundaries of the speech segments are indicated with vertical dotted 

lines on each plot. Noise types present in the recordings are also indicated on the energy 

plots. Figure 3.4 illustrates an utterance contaminated with heavy mechanical (factory) 

noise. Note that the mechanical noise burst preceding the speech segment is much longer 

in duration than the speech and half in strength. Figure 3.5 illustrates a speech recording 

heavily cluttered with speaker-generated artifacts. The two clicks present before the 

utterance are shorter in duration and less strong in energy than the speech segment as 

noted earlier; however, the last artifacts generated by the speaker are longer in duration 

and much stronger in intensity, exceeding the speech energy. 
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Figure 3.4. Example of utterance contaminated by mechanical noises; speech 
waveform (up_1_12_04_13_05.txt) (top plot), absolute magnitude energy contour 

(bottom plot). Vertical dotted lines indicate the utterance boundaries. 
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Figure 3.5. Example of speech contaminated by speaker generated artifacts; speech 

waveform (pan_7_4_04_29_05.txt) (top plot), absolute magnitude energy contour 
(bottom plot). Vertical dotted lines indicate the utterance boundaries. 
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Difficulties in end point detection arise not only from the different types of noise 

present in the recordings, but also from the vocabulary words themselves. Some 

phonemes or sounds have very low energy when compared to the vowel portion of the 

speech, and they look like background noise. It is even very hard for a naked eye to 

detect the beginning or the end of an utterance in the presence of these low-energy, noise-

like phonemes at either the beginning or the end of the utterance. Broad categories of 

such problems encountered include [Rabiner, Sambur, 1975]: 

• Weak fricatives (/f, th, h/) at the beginning or end of an utterance. 

• Weak plosive bursts (/p, t , k/). 

• Final nasals (/m, n/). 

• Voiced fricatives at the end of words which become unvoiced. 

• Trailing off of certain voiced sounds. 

As presented in Table 2.2, the vocabulary words selected for the current study 

possess the first three properties. This issue also makes the end point detection to be 

implemented for the purpose of this study a much more challenging task, given the fact 

that the data has all sorts of noises as mentioned earlier. 

C. END POINT DETECTION MEASURES 
This section presents some of the measures that have been used for or proposed 

for end point detection which are considered in this study. These measures include short-

time energy quantity, Teager’s energy algorithm, short-time zero-crossing rate (ZCR), 

and energy-entropy feature (EEF). Two of these measures, short-time energy quantity 

and energy-entropy feature (EEF), are used for the end point detection algorithm in the 

current study. 

1. Short-Time Energy Measure 

The short-time energy measure has been used extensively in many end point 

detection algorithms for decades since it is computationally simple and easy to implement 

in both software and hardware. The short-time energy is also a natural way of 

representing the amplitude changes in speech signals. 

As mentioned earlier in the chapter, some segments of a speech signal such as 

unvoiced segments have much lower amplitude than the voiced segments, resulting in 

these unvoiced segments with lower energy than their voiced counterparts. Therefore, the 
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energy measure can be used to discriminate between voiced and unvoiced segments with 

appropriately set thresholds, even in poor signal-to-noise levels. The short-time energy 

measure can also be used to discriminate between speech and silence segments with a 

simple threshold, especially in environments with very high signal-to-noise ratios (30 dB  

or higher) as in such a case the lowest energy segments of the speech signal will exceed 

the energy of the silence segments [Rabiner, Sambur, 1975]. 

Short-time energy parameters commonly used in end point detection algorithms 

are squared energy, logarithmic energy, root mean square (RMS) energy, and absolute 

magnitude energy. 

The squared energy parameter is defined as: 

 ( )2

1
,

N

n
i

E x i
=

= ∑  (3.1) 

where n  is the frame index, and N  is the total number of samples in a given 

frame. 

The logarithmic energy is given by: 
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The root mean square (RMS) energy is defined as: 
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Finally, the absolute magnitude energy parameter is given by: 

 ( ) ( )
1

.
N

i
E n x i

=

= ∑  (3.4) 

The four types of short-time energies defined above are depicted in Figure 3.6 and 

Figure 3.7 for one of the recordings of the word “left” (left_3_18_04_25_05.txt). Recall 

that the time-domain waveform and corresponding spectrogram of the utterance was 

shown in Figure 2.5. The absolute magnitude energy and squared energy contours are 

shown in Figure 3.6. The RMS energy and logarithmic energy contours are shown in 
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Figure 3.7. The vertical dotted lines on each energy plot indicate the edge points of the 

utterance that are detected manually by listening to the utterance. Energy contours are 

computed using the bandpass filtered version of the utterance. 
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Figure 3.6. Absolute magnitude energy contour (top plot) and squared energy contour 

(bottom plot) of the word “left” (left_3_18_04_25_05.txt). Vertical dotted lines 
indicate the end points of the utterance. 
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Figure 3.7. RMS energy contour (top plot) and logarithmic energy contour (bottom 

plot) of the word “left” (left_3_18_04_25_05.txt). Vertical dotted lines indicate the 
end points of the utterance. 

 

The logarithmic energy reveals the details of the weak portions of the speech 

better than any other energy parameter defined above due to the nonlinear compression of 

the logarithm function applied to the signal amplitude. However, it also amplifies the 

noise or silence portions of the recording and makes it harder to set a threshold from this 

noisy signal [Qiang, Youwei, 1998]. 

The squared energy measure suppresses low-frequency noise completely, and is 

more stable than other measures. However, weak segments of an utterance, such as the 

weak fricative /f/ and stop consonant /t/ following the fricative in the word “left”, are also 

deemphasized at the same time along with the background noise. Thus, the squared 

energy quantity gives very conservative edge point estimates and can be used to detect 

the voiced (mainly, vowel) portions of the utterances [Qiang, Youwei, 1998]. 
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The RMS energy resembles the squared energy in the sense that it is a scaled 

version of the squared energy parameter. The square root operator emphasizes low 

energy segments while deemphasizing higher energy ones, which also makes it resemble 

the absolute magnitude energy. This characteristic in turn reduces the big energy 

difference between voiced and unvoiced segments present in an utterance, but the 

computational load increases at the same time. 

The absolute magnitude energy reflects the sum of the magnitudes of sample 

amplitudes per frame; hence, the weak unvoiced segments of the utterance are not 

deemphasized, and this quantity reveals information about the speech segment. As a 

result, it is much easier to define some thresholds from the background noise for end 

point detection than it is for the other quantities discussed. However, the detection 

scheme may become unstable in strong noise cases since the background noise is not 

suppressed at all [Qiang, Youwei, 1998]. 

The above discussion highlighted the facts that each short-time energy based 

measure has its own advantages and disadvantages. Among these energy based 

quantities, the absolute magnitude energy quantity is the simplest and fastest one in 

implementation, making it suitable for on-line implementations while yielding the same 

(or sometimes better) performance as the others. Therefore, the absolute magnitude 

energy quantity was ultimately chosen for the end point detector implemented for the 

present study. 

2. Teager’s Energy Algorithm 

The Teager’s energy algorithm, which was based on a new algorithm developed 

by Teager [Teager, 1980] in modeling speech production, was first presented by Kaiser, 

[Kaiser, 1990], to compute the energy of a signal. If the samples of a signal representing 

the oscillatory motion of the body are given by ( )cos ,ix A i φ= Ω +  where A  is the 

sample amplitude, Ω  is the digital frequency in radians/sample, and φ  is the arbitrary 

initial phase in radians, then the energy of the signal is given as [Kaiser, 1990]: 

 ( )2 2 2 2 2
1 1 sin .i i i iE x x x A A+ −= − = Ω ≈ Ω  (3.5) 
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The above equation is known as the Teager’s energy algorithm, or simply the 

Teager’s algorithm. Some observations can be made from Equation (3.5). While 

calculating the instantaneous energy per sample ,iE  the algorithm takes into account not 

only the current sample, but also two adjacent samples. Thus, the instantaneous energy 

computed on the time-domain samples can capture dynamic changes in a signal rapidly. 

The energy measure is affected by both the amplitude and the frequency of the samples. 

The last property also makes the algorithm track and respond rapidly to amplitude and 

frequency changes. 

The reasons indicated above made the Teager’s energy algorithm attractive for the 

end point detection because it can be used as a stand-alone feature for the end point 

detection, and replace the short-time zero-crossing rate (ZCR) quantity to be discussed 

next. It was first applied to the end point detection problem by Ying et al. [Ying, 

Mitchell, Jamieson, 1993], who implemented energy computations on a per-frame basis 

instead of on a per-sample basis and called the resulting algorithm the “frame-based 

Teager energy” approach. 

The power spectrum of the samples in a frame is first estimated from the fast-

Fourier transform (FFT) of the frame in the frame-based Teager energy approach [Ying, 

Mitchell, Jamieson, 1993]: 

 ( ) ( ) ( )1 ,    for   0,..., 2 ,
2n n nP X X

N
ω ω ω ω π∗= ⋅ ⋅ =  (3.6) 

where ( )nX ω  is the FFT of the n -th frame, N is the total number of the FFT 

points in a frame, and ω  is the digital frequency in radians/sample. 

Next, each sample in the power spectrum is weighted with the square of its 

corresponding digital frequency: 

 ( ) 2 ,    for   0,..., 2.nP ω ω ω π⋅ =  (3.7) 

Finally, the frame energy is obtained by taking the square root of the sum of the 

weighted power spectrum defined in Equation (3.7): 
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The Teager’s algorithm is illustrated in Figure 3.8 with the same utterance used 

previously, i.e., one of the utterances of the word “left” (left_3_18_04_25_05.txt). The 

Energy contour is again computed over the bandpass filtered version of the utterance. The 

filtered speech waveform is also shown in the same figure on top. The vertical dotted 

lines on the plots indicate the actual end points of the utterance. When the Teager’s 

energy contour is compared to the previously discussed energy contours of the same 

word in Figure 3.6 and Figure 3.7, it resembles the RMS energy with the exception that 

the latter is computed in the frequency domain. 

The Teager’s energy algorithm gives more conservative end point estimates than 

the short-time absolute magnitude energy does. In an on-line implementation, where the 

algorithm is forced to move from left to right and to decide as it operates on the data, the 

Teager’s energy algorithm also fails to capture the exact end point locations when there 

are weak fricatives and/or stop (plosive) consonants at either the beginning or the end of 

an utterance, which is a common problem in algorithms operating with energy 

parameters. 

In addition, the algorithm is not as efficient and successful in tracking the changes 

in signals with multiple frequency components as it is for signals with few frequency 

components, and it is sensitive to noise when the signal contains different frequency 

components [Kaiser, 1990]. Finally, Equations (3.6) through (3.8) reveal the fact that the 

Teager’s algorithm is computationally expensive. 

As a result, the Teager’s energy algorithm was not applied in our end point 

detection scheme. 
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Figure 3.8. Speech waveform of one of the recordings of the word “left” 
(left_3_18_04_25_05.txt) (top plot), and Teager’s energy plot of the utterance 

(bottom plot). Vertical dotted lines indicate the end points of the utterance. 
 
3. Short-Time Zero-Crossing Rate (ZCR) 
The short-time zero-crossing rate (ZCR) quantity is another parameter that has 

been used frequently, together with the short-time energy, for end point detection since 

the 1970s. It is generally employed as a secondary parameter to refine the initial end 

point estimates that were obtained by using short-time energy parameter.  

The short-time ZCR is defined as the number of times the successive samples of a 

speech sequence change sign per frame and given as: 

 ( ) ( ) ( )
1

1 sgn 1 sgn ,
2

N

m
Z n x m x m

=

= + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑  (3.9) 

where 
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The ZCR can give rough estimates of the frequency content of a speech signal, 

particularly in high signal-to-noise ratio environments. However, the ZCR is very 

sensitive to dc offset, low-frequency hum and any other type of noise that may be present 

in the recorded speech signal [Rabiner, Sambur, 1975], [Rabiner, Schafer, 1978]. The 

first two problems, i.e., dc offset and low-frequency hum, can be overcome prior to the 

end point detection by removing the mean of the speech and highpass (or bandpass) 

filtering the signal, but it is not realistic to remove all noise prior to the end point 

detection. Hence, the reliability and accuracy of the ZCR parameter decreases 

significantly as the signal-to-noise ratio decreases, and it really becomes impossible to 

obtain anything from the ZCR in low SNR environments. 

The ZCR of a reasonably noise-free utterance, one of the recordings of the word 

“kill” (kill_3_20_04_25_05.txt) whose waveform and spectrogram were shown in Figure 

2.7 in the previous chapter, is shown in Figure 3.9. Following Figure 3.9, the ZCR of a 

considerably noisy utterance, one of the recordings of the word “up” 

(up_1_1_04_13_05.txt), is shown in Figure 3.10. In each figure, the bandpass filtered 

speech waveforms are also plotted on top of the related ZCR plots. The vertical dotted 

lines on the plots indicate the utterance end points detected manually by listening to the 

utterance. The ZCR of the voiced speech segment is much lower and steady than the ZCR 

of the silence segments. Even in the low noise case, it is not easy to set a good threshold 

by looking at the ZCR of the silence sections and to determine the boundaries of the 

utterance, especially the end point of the utterance. Furthermore, it becomes almost 

impossible to say anything about the end points of the utterance from Figure 3.10 when 

noise is present, which illustrates how the ZCR parameter becomes unreliable in high-

noise environments. 

These two examples clearly show that the ZCR parameter was not a good choice 

for use as a secondary parameter to refine the utterance end points for the data under 

investigation. Thus, it was not used in our study. 
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Figure 3.9. ZCR plot (bottom plot) of a noise-free utterance (kill_3_20_04_25_05.txt) 

(top plot). Vertical dotted lines on the plots indicate the actual end points of the 
utterance. 
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Figure 3.10. ZCR plot (bottom plot) of a noisy utterance (up_1_1_04_13_05.txt) (top 

plot). Vertical dotted lines on the plots indicate the actual end points of the utterance. 
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4. Energy-Entropy Feature 

The entropy is the measure of uncertainty or the amount of unexpected 

information contained in a signal, and is extensively used in the fields of coding and 

information theory. It was first applied to the end point detection problem in speech 

recognition by [Shen, Hung, Lee, 1998]. The entropy is also referred to as the spectral 

entropy by [Shen, Hung, Lee, 1998] since all computations are carried out in the 

frequency domain. Although its usage in the end point detection is somewhat new, the 

entropy parameter has become a hot research topic in that area. 

In order to obtain the entropy or the spectral entropy of a speech frame ( ) ,nx m  

first the fast-Fourier transform (FFT) of the frame, i.e., short-time FFT of the frame, is 

computed by using: 

 ( ) ( ) 2

1
,    for 1, 2,..., .

N
j km N

n n
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X k x m e k Nπ−

=

= =∑  (3.11) 

Then, the spectral energy of the frequency index k  in each frame is estimated as: 

 ( ) ( ) 2
,    for 1, 2,..., 2.n nS k X k k N= =  (3.12) 

The probability associated with each frequency index ,k  i.e., the probability 

density function (pdf) estimation for the spectrum, can be estimated by normalizing the 

spectral energies: 
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Next, additional constraints are used to enhance the discriminality of the pdf 

defined above [Shen, Hung, Lee, 1998], [Huang, Yang, 2000]: 

 ( ) 0,    if  150   or  2300 ,nS k f Hz f Hz= < >  (3.14) 

 ( ) ( )0,    if  0.9.n np i p i= ≥  (3.15) 

Note that since a bandpass filter with a passband of [ ]150  ,  2300 Hz Hz was 

applied to the data to remove distortions present in all trials, as will be discussed later in 
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Section D.1, the frequency bands contribution outside [ ]150  ,  2300 Hz Hz  are 

eliminated. 

Finally, the entropy or the spectral entropy of a speech frame is defined as: 

 ( ) ( )
2

10
1

log .
N

n n n
i

H p i p i
=

= − ⋅ ⎡ ⎤⎣ ⎦∑  (3.16) 

The entropy curve of an utterance, one of the recordings of the word “right” 

(right_3_25_04_25_05.txt) whose waveform and spectrogram were shown earlier in 

Figure 2.9, is illustrated in Figure 3.11. The entropy of the utterance is computed on its 

bandpass filtered version, which is shown on the top plot of Figure 3.11. Vertical dotted 

lines on each plot indicate the actual beginning and end points of the utterance. 
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Figure 3.11. Waveform of one of the utterances of the word “right” 

(right_3_25_04_25_05.txt) (top plot), and corresponding entropy curve (bottom plot). 
Vertical dotted lines indicate the edge points of the utterance.  
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Results obtained by [Shen, Hung, Lee, 1998] revealed that the spectral entropy of 

a speech segment is quite different from that of a silence segment. Although the entropy 

parameter performs quite well on signals with low SNR contaminated with different 

types of noises such as white noise, pink noise, and gun shot [Shen, Hung, Lee, 1998], it 

is also known that the spectral entropy fails under multi-talker babble and background 

music [Huang, Yang, 2000]. However, the short-time energy quantity performs better in 

these noise conditions because of its additive property, which is the energy of the sum of 

speech plus noise always exceeds the energy of noise only [Wu, Wang, 2005]. Note that 

energy-based algorithms fail when the speech contains non-stationary noise such as 

mechanical or factory noise [Huang, Yang, 2000]. 

Both the short-time energy and spectral entropy have their own advantages and 

drawbacks depending on the noise conditions. Hence, both energy and entropy can be 

combined together to obtain a more reliable and robust feature, i.e., the energy-entropy 

feature (EEF), which takes advantage of the strengths of the two quantities while 

compensating for their limitations. The energy-entropy feature (EEF) of a frame, first 

defined by [Huang, Yang, 2000], is formed by simply multiplying the energy and the 

entropy computed for a specific frame. 

The energy-entropy feature (EEF) is given as: 

 1 .n n nEEF E H= + ×  (3.17) 

The multiplication operation defined above in Equation (3.17) emphasizes the 

voiced regions and attenuates the silence or noise regions. Doing so, the low-energy areas 

such as weak fricatives and stop consonants at the end or in front of an utterance can be 

emphasized over the attenuated noise regions and employed to refine the end point 

estimates. 

Because of the reasons stated so far, the EEF was chosen as the secondary feature 

for the refinement of the end point estimates obtained by the short-time energy quantity. 

As it will be explained later in the chapter, first, the short-time magnitude energy is used 

to get initial estimates of the end points of an utterance, and afterwards, the EEF is used 

to refine the end point estimates wherever needed. 
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The energy-entropy (EEF) contour of the same utterance used in Figure 3.11 

(right_3_25_04_25_05.txt) together with its absolute magnitude energy contour is shown 

in Figure 3.12. The vertical dotted lines on each plot indicate the actual end points of the 

utterance. 
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Figure 3.12. Absolute magnitude energy contour (top plot) and energy-entropy curve 

(bottom plot) of the waveform shown in Figure 3.11 (right_3_25_04_25_05.txt). 
Vertical dotted lines indicate the end points of the utterance. 

 

Figure 3.12 shows that the low-energy stop consonant /t/ following the diphthong 

/ay/ is more emphasized and visually noticeable on the EEF plot than it is on the pure 

energy or entropy plots, since the amplitude difference between vowel portion and 

consonant portions is reduced. However, note that the background noise sections are also 

emphasized when compared to the energy contour of the utterance, which is mainly due 

to the multiplication operation that forms the EEF as explained earlier. The amplification 

of the silence sections may partially be avoided by the selection of a different short-time 

energy quantity for the EEF, namely the short-time squared energy quantity. Recall from 
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Section C.1 and Figure 3.6 that the short-time squared energy quantity provides greater 

attenuation of background noise than the short-time absolute magnitude energy quantity 

does due to the squaring operation present in its definition. Therefore, using the short-

time squared energy for the EEF will yield an EEF plot with silence sections more 

attenuated than those obtained with the short-time absolute magnitude energy scheme. 

However, the short-time squared energy quantity was not used since the short-time 

absolute magnitude energy quantity was initially chosen for the end point detector 

implementation. Using a different energy parameter for the EEF would mean additional 

computation and reduced speed for the detection algorithm. Also, recall that threshold 

values for an algorithm which uses the squared energy with the entropy parameter would 

be set according to the silence sections. Therefore, there would be no improvement in 

implementation by using the short-time squared energy quantity rather than the short-

time absolute magnitude energy quantity. 

D. THE END POINT DETECTION ALGORITHM 
This section presents the end point detection algorithm used for the present study. 

First, we discuss the filter used as the preprocessor before the end point detection 

algorithm. Next, framing issues such as frame type and size are presented. Then, the 

threshold mechanism employed in the algorithm is discussed. Finally, we present the 

overall end point detection algorithm. 

1. Preprocessing Stage 
As discussed in Chapter II, there is a low-frequency hum in the frequency interval 

[ ]0  ,  100 Hz Hz  present in all recordings, and the frequency content of the recorded 

utterances is mainly concentrated up to 2.3 ,kHz  specifically for recordings collected 

from the ear canal. In addition, some recordings exhibit a strong stationary noise around 

2.4 .kHz  

Thus, recordings were bandpass filtered to remove the low-frequency noise and 

stationary noise contributions mentioned while keeping the useful frequency contents. 

The elliptical IIR bandpass filter selected has the following characteristics: 

• elliptical IIR filter, 

• 9th order, 
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• its passband is from 150 Hz to 2.3 ,kHz  

• its stopband is [ ]0  ,  100 Hz Hz  and [ ]2.35  ,  4 ,kHz kHz  

• at least 50 dB  attenuation in the stopband. 

An IIR filter was preferred to an FIR filter because required specifications could 

be implemented with a low order IIR implementation. For comparison, a one-stage FIR 

filter with the same specifications as those of the IIR filter would require an order of 

around 300, which is not suitable for a real-world application. However, the IIR filter 

selection results in some end point detection accuracy issues, which will be discussed in 

the next section. 

2. Framing 
The speech signals, which are non-stationary and wideband in nature, are divided 

into frames in which the speech can be assumed to be stationary. A rectangular window is 

selected to form the speech frames since it weights all the samples in a frame equally, and 

is the easiest one to use in an on-line implementation. Actually, the choice of a particular 

window is not important because the spectral resolution is not an issue here, as the 

algorithm operates mainly on the time-domain information. The use of any other window 

rather than the rectangular one may complicate the computations and the frame shift 

considerations as the window weights every sample in a frame differently. 

The frame length is selected to be 10 .ms  Since the sampling frequency is 8 ,kHz  

there are 80 samples per 10 ms  long frame. The frame rate is 5 ,ms  i.e., 50% overlapping 

is used between frames. Overlapping allows capturing the dynamic changes from one 

frame to another and increases the accuracy of the end point decisions since the end point 

decisions are made on a frame basis. 

Note that there is no actual multiplication performed to form the frames since the 

rectangular window is used for framing. A sliding window which takes 10 ms  long 

frames or 80 samples per frame from the incoming speech signal is applied from left to 

right by overlapping the frames 50% each time. The whole recorded speech is not 

segmented into frames and not stored in a matrix prior to the detection because this 

would conflict with the use of an on-line implementation. 
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3. Threshold Mechanism 

An upper and lower threshold are computed and supplied to the energy-based 

detection phase, as simulations showed that the algorithm often failed to detect the speech 

segment and the error rate was very high with one threshold only. Another advantage of 

using double thresholds is that the upper threshold speeds up the algorithm since the 

upper threshold is much higher than the maximum energy of most of the user- generated 

artifacts and sporadic noises. As a result, the algorithm does not spend much time on 

noisy sections. The lower threshold is used to refine end point estimates obtained with the 

upper threshold since the upper threshold is set more conservatively than the lower 

threshold to avoid sudden noise bursts that are strong in energy. 

The background or silence energy is used to set specific upper and lower 

threshold values. For this purpose, the first 100 ms  of a recording is assumed to be only 

silence or background noise, which corresponds to the first 20 overlapping frames. The 

average silence energy silenceE  is computed as the average of the short-time absolute 

magnitude energies of the first 20 frames. Upper and lower thresholds, denoted by ITU  

and ITL  respectively, are then obtained by multiplying silenceE  with some scalar which is 

dependent on the value of .silenceE  Therefore, an adaptive threshold mechanism based on 

the noise level is formed. 

Note that it is not always true that the first 100 ms  of a recording is purely silence 

because speech starts right at the beginning of the recording interval in a few occasions. 

In that case, silenceE  becomes excessively large, which in turn causes detection errors. In 

order to take these problem cases into account and prevent errors, the parameter silenceE  is 

reset to a predefined value of 0.5 when it is found to be higher than a predetermined value 

of 4.5, and thresholds are computed according to this reset value. These two 

predetermined values were selected after trial and error and adjusting the thresholds in 

this manner solved the problem of missing the entire utterance with the energy-based 

algorithm when speech was present in the first 20 frames. 

There were also cases where the first 20 frames contained a strong user-generated 

noise or a sporadic noise which may be very different from the characteristics of the rest 
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of the silence sections. These types of noises do not represent the actual background 

noise or silence behavior in the rest of the recording. In addition, there were a few cases 

where the first 20 frames were empty due to a late start in recording. Hence, to obtain a 

better estimate of silenceE  that represents the actual silence sections by taking the above 

situations into account, the algorithm was designed to continue searching to the right until 

silenceE  dropped below a predefined value of 2.0, or until reaching a predetermined 

maximum number of frames, i.e., 70, whichever occurred first. 

4. The End Point Detection Algorithm 
The stages preparing the speech signals for the end point detection have been 

discussed so far. The actual details of the algorithm will be presented here. 

The end point detection algorithm designed for this study uses two parameters 

presented earlier, namely the short-time absolute magnitude energy quantity, and the 

energy-entropy feature (EEF). The beginning and end points of an utterance are 

computed in two steps. First, the short-time absolute magnitude energy quantity is used to 

obtain the initial edge point estimates of the speech signal. Second, the refinement of the 

initial end point estimates is performed by the energy-entropy feature (EEF) when 

necessary. Then, end points are declared, and the speech segment of the recording 

corresponding to the section between these end points is cropped and forwarded to the 

feature extraction block prior to classification and recognition stages. 

Some heuristic assumptions were made and incorporated into the overall detection 

algorithm to increase its reliability and robustness, especially for the short-time absolute 

magnitude energy step, which provides most of the information used by the detection 

algorithm. These so-called assumptions are the duration information and the maximum 

energy. 

As mentioned earlier in the chapter, some noises present in the speech recordings, 

especially non-stationary noises and artifacts generated by the speakers, exceeded the 

upper threshold and were erroneously classified as speech. Even though most of these 

artifacts such as clicks, pops, and lip smacks have strong energy, they were generally 

short in duration, i.e., only a few frames long. In such cases, a duration count can help to 

not place the end points incorrectly. The duration count used in the detection algorithm is 
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10 frames, or 50 ,ms  and was selected empirically. Basically, the duration of the voiced 

section of the shortest word in the vocabulary, i.e., the word “up,” is around 20 frames or 

100 ms  on average. However, using 20 frames as the duration count value directly 

resulted in lots of detection errors such as misses or false detections with the word “up.”  

The algorithm starts to count the number of frames that are above the upper 

threshold once the energy of a frame exceeds the upper threshold. Speech is declared to 

have started when the number of frames exceeding the upper threshold is 10 (or, 50 ms  

in duration). 

Note that there were also a few cases where the algorithm failed to detect the 

presence of an utterance, or selected a noise segment as the desired speech despite the 

fact that the double threshold and the duration count were used. These errors were due to 

two reasons: 

• Short but strong spikes, generally generated by the speaker, right at the 
beginning of the voiced region, especially for the word “up.” 

• Non-stationary high-energy noises such as background talks and 
mechanical noises which were long in duration. 

We noted that the first reason mentioned above caused the energy based scheme 

to miss the entire utterance, especially with the word “up.” To remedy this problem, as 

soon as the energy algorithm finished its run from left to right with a miss result, the 

energy contour was smoothed with a 5th order median filter to push the energy level of 

the frames containing a spike below the upper threshold, where the filter order was 

selected as it yielded the best results among all filter orders investigated. At that point, 

the algorithm made one more pass through the energy contour to detect the speech 

segment.  

The second reason mentioned above caused the energy algorithm to detect noise 

sections as speech. In order to minimize this problem, the detected section is smoothed 

with a 5th order median filter, and the maximum energy of the detected section is 

compared to the maximum energy of the whole signal. Simulations showed that the 

maximum energy of the non-speech segment is always lower than that of the speech 

segment, specifically after the median filter is applied. In such a case, the algorithm 
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makes another pass over the smoothed previously computed energy contour to correct the 

initial end point detection results. 

Although the energy algorithm performances significantly improved with these 

additional constraints, it still sometimes failed to detect the stop consonants, like /t/ that 

followed the weak fricative /f/ in the word “left,” or /t/ in the word “right.” This 

phenomenon was detected while checking and listening to the end point detected and 

cropped utterances after the energy-based scheme finished running on the data. Note that 

the final stop /t/ is separated from the vowel portion of the word “left” with the weak 

fricative /f/ which behaves like noise. As a result, the energy algorithm detected the 

vowel portion and excluded the fricatives and/or stop consonants at either end of an 

utterance. In such cases, the energy-entropy feature (EEF) was adapted into the detection 

algorithm as the secondary refinement step. The EEF step is applied after the energy 

algorithm returns its end point estimation. 

The EEF uses two threshold values that were set according to the average energy-

entropy value of the first 20 frames assumed to contain only background noise or silence. 

The first threshold is used only to refine the speech start point, whereas the second 

threshold is used only for the speech end point. Both thresholds are derived by 

multiplying the average energy-entropy value of the first 20 frames silenceEEF  with some 

fixed scalar values that were determined empirically. Since there are no fricatives at the 

beginning of the vocabulary words, and the energy based algorithm does an excellent job 

at the beginning point estimation, the EEF searches only 5 frames back from the initial 

beginning point for correction. Since most detection problems arose at the end points of 

the specific words, “left” and “right,” the EEF was set to search 70 frames to the right, 

starting from the initial end point estimation returned by the energy algorithm. 

The overall start/end point detection process can be summarized as follows: 

• From the threshold algorithm, obtain the upper and lower thresholds, ITU  
and ,ITL  and the initial frame number from which the algorithm will start 
the search. 

• Compute the short-time absolute magnitude energy of the frame, ,nE  and 
move to the next frame. 

• Compare nE  with .ITU  
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• If ,nE ITU≤  continue the search with the next frame. 

• If ,nE ITU>  then check the short-time absolute magnitude energies of the 
next 10 frames, i.e., the next 50 ,ms  (duration count). If all 10 frame 
energies are above ,ITU  declare the first frame where nE ITU>  as the 

preliminary beginning point of the utterance .SP  Otherwise, continue the 
search. 

• After the preliminary beginning point SP  is found with ,ITU  refine it by 
searching back until the first point at which nE ITL>  is found. Label it as 
the “speech start point”, .SP  

• Continue forward until nE ITU<  to find the possible end point location. 

• If ,nE ITU<  then check the energy of the next 10 frames (i.e., the next 
50 ms ) in order to avoid a sudden energy dip. If the short-time energies of 
these 10 frames are not all above ,ITU  declare the first frame whose 

nE ITU<  as the preliminary end point of the utterance .EP  Otherwise, 
continue the search. 

• After the preliminary end point EP  is determined with ,ITU  refine it by 
searching forward until the first point at which nE ITL>  is found. Label it 
as the “speech end point”, .EP  

• Check the index of the speech start point. If it is found to be equal to the 
last frame index of the whole recording ,N  then the algorithm has 
completed a right-to-left run on the whole recording without finding any 
start and end point. Thus, a miss has occurred. If the speech start and end 
points are found to be the last frame index and zero respectively, then a 
miss has occurred. 

• In the case of a miss, we smooth the short-time absolute magnitude energy 
curve with a 5th order median filter, and conduct the same search 
procedure outlined above on the smoothed energy curve from right to left 
once more to find the speech end points, SP  and .EP  

• If there is no miss, then compute the energy of the rest of the recording, 
and smooth it with a 5th order median filter. 

• Find the maximum of the smoothed energy curve, ,medianE  of the whole 
recording ( )max ,medianE  and the maximum of the smoothed energy curve 

between the detected end points ( )max : .medianE SP EP⎡ ⎤⎣ ⎦  

• If ( ) ( )max : max ,median medianE SP EP E=⎡ ⎤⎣ ⎦  then terminate the energy 
algorithm, and return the edge point estimates that will be used by the EEF 
algorithm to refine the estimates if necessary. 
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• Otherwise, perform the search procedure outlined above on medianE  until 

( ) ( )max : max .median medianE SP EP E=⎡ ⎤⎣ ⎦  Terminate the energy algorithm, 
and return the edge point estimates for final refinement by the EEF 
algorithm. 

• Call the EEF algorithm to refine the start/end points. 

• Set the thresholds, 1EETL  for refining ,SP  and 2EETL  for refining ,EP  
according to .silenceEEF  

• Search five frames to the left starting from .SP  If 1nEEF EETL>  ( n  is 
between 5SP − and 1.SP − ), move SP  to that point. Otherwise, do not 
change the initial start point SP . Declare the “final speech start point”, 

.FSP  

• Search 70 frames to the right starting from .EP  If 2nEEF EETL>  ( n  is 
between 1EP + and 60.EP + ), check the EEF  of the next 10 frames (to 
take into account the duration of the stop consonant /t/ at the end of the 
words “left” and “right”), and move EP  to the last frame at the far right 
where 2.nEEF EETL>  Otherwise, do not change the initial end point .EP  
Declare the “final speech end point”, .FEP  

• Complete the end point detection algorithm and crop the signal from the 
estimated start/end points, FSP  and .FEP  

The complete end point detection algorithm outlined above is shown in flowchart 

diagram format in Figures 3.13 through 3.16. 
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Figure 3.13. Flowchart for the initial speech start point estimation using the short-time 

absolute magnitude energy quantity. 
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Figure 3.14. (Continued from Figure 3.13) Flowchart for the initial speech end point 
estimation using the short-time absolute magnitude energy quantity. 
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Figure 3.15. (Continued from Figures 3.13 and 3.14) Flowchart for the last part of the 

energy-based end point detection algorithm that addresses the miss and misdetection 
cases. 
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Figure 3.16. (Continued from Figures 3.13 through 3.15) Flowchart for determining the 
final speech edge points using the energy-entropy feature (EEF). 
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It may seem that the overall detection algorithm is computationally intensive and 

time-consuming, but the implementations conducted on a personal desktop PC with a 

Pentium Celeron ( 2.6 GHz ) processor and 256 MB  RAM took about 130 minutes for 

the algorithm to process all 8,228 utterances in the data set (which corresponds to about 

1 sec  per utterance). 

The resulting detection algorithm is very accurate and robust in the sense that it 

does not return any misses, i.e., declare “no speech is present” incorrectly or select 

background noise as the desired utterance. Also, the audio and visual checks verified that 

the detected and cropped utterances closely matched manually cropped words. 

E. THE EFFECT OF THE FILTER ON END POINT DETECTION 

A 9th order elliptical IIR filter was used for the end point detection, as explained 

in earlier sections. We selected this filter because it had a small number of coefficients 

and would be easy to implement in real-life applications. However, this particular filter 

also has some unwanted effects on some of the vocabulary words chosen for this study, 

which in turn may greatly affect the end point detection accuracies on these words. 

These so-called unwanted effects appear particularly at the end of the voiced 

segments of an utterance when the utterance ends with a nasal or a breath release, such as 

for vocabulary words “down,” “pan,” “move,” and “kill.” These unwanted effects were 

especially noticeable when a subject releases his breath heavily after these words, or 

utters the final phone by lengthening it. As a result, these filter effects could become a 

major concern in implementation. 

The IIR filter distorts the speech waveforms at the end of the voiced segments and 

amplifies the breath releases at the word ends. This in turn amplifies the absolute 

magnitude energy contour over the nasal or breath release sections right next to the 

voiced ones. This amplification of the energy contour causes the energy algorithm to 

move the end point of an utterance further right, which caused inaccurate end point 

estimations. In addition, it was not possible to increase threshold values to address this 

problem as doing so would have degraded the performance of the end point detection 

algorithm on other utterances, potentially missing the entire utterance or placing end 

points too conservatively. 
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An utterance of the word “pan” (pan_15_14_05_12_05.txt) is shown in Figure 

3.17. Vertical dotted lines show actual beginning and end points of the utterance. Figure 

3.18 plots the bandpass IIR filtered version of the utterance with its absolute magnitude 

energy contour underneath. Vertical dotted lines on the plots indicate the end point 

estimates returned by the end point detection algorithm applied to the IIR filtered speech. 

Note the amplification caused by the IIR filter is quite noticeable at the end sections on 

both the speech waveform and the energy contour. The detection error due to the IIR 

filter is 400 ,ms  which makes the use of an IIR filter a bit tricky. 
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Figure 3.17. Speech waveform of one of the utterances of the word “pan” 

(pan_15_14_05_12_05.txt). The vertical dotted lines indicate the actual end points. 
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Figure 3.18. Speech waveform of the IIR filtered utterance (pan_15_14_05_12_05.txt) 

(top plot), and the corresponding absolute magnitude energy contour (bottom plot). 
Vertical dotted lines indicate the detected end points. 

 

Note that a finite impulse response (FIR) filter does not cause the same 

amplification on both the speech signal and related energy curve as opposed to an IIR 

filter. The FIR filter selected to illustrate this phenomenon has the following 

characteristics: 

• bandpass equiripple FIR filter, 

• 300th order (one stage implementation), 

• passband is from 150 Hz to 2.3 ,kHz  

• stopband is [ ]0  ,  100 Hz Hz  and [ ]2.35  ,  4 ,kHz kHz  

• at least 50 dB  attenuation in the stopband. 

The FIR filter, therefore, has the same characteristics as the IIR filter discussed in 

Section D.1, except for the filter type and order. 
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The result of using a FIR filter on the utterance contained in Figure 3.17 

(pan_15_14_05_12_05.txt) is illustrated in Figure 3.19, which plots the FIR filtered 

utterance and its absolute magnitude energy contour. Vertical dotted lines on the plots 

mark the end points detected by using the end point detection algorithm with the FIR 

filtered speech waveform. Results show that the end point estimates found by the end 

point detection algorithm using the FIR filtered speech are off by only 16 ms  from actual 

speech boundaries. The unwanted effects caused by the IIR filter are not observed on 

either the time-domain waveform or energy contour of the FIR filtered speech. We also 

note that the separation between speech and silence segments is much clearer for the FIR 

filtered data, which makes the end point detection more reliable and accurate. 
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Figure 3.19. Speech waveform of the FIR filtered utterance (pan_15_14_05_12_05.txt) 

(top plot), and the corresponding absolute magnitude energy contour (bottom plot). 
Vertical dotted lines indicate the detected endpoints. 

 

The main drawback of the FIR filter implementation is the high order required to 

match desired specifications, i.e., 300, which makes it unsuitable for a real-life 
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application. However, such a FIR filter could be implemented in stages through multi-

rate signal processing techniques, which could reduce the overall complexity of the one-

stage FIR filter [Mitra, 2006]. 

F. SUMMARY 
This chapter discussed end point detection schemes, which are an essential part of 

any speech recognizer. Specifically, we presented the problems associated with end point 

detection, the parameters used for the detectors, and the specific detection algorithm 

ultimately used for the current recognizer. 

The feature extraction stage of the recognizer, which follows the speech detector, 

will be presented in the next chapter. 
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IV. FEATURE EXTRACTION 

This chapter presents the feature extraction block of the speech recognizer, which 

provides a compact representation of the segmented speech data to be used at the 

recognition stage. The chapter discusses two spectral features extensively used in speech 

recognition applications, real cepstrum (RC) coefficients and mel-frequency cepstral 

coefficients (MFCCs), which are also employed for the present study. 

A. REAL CEPSTRUM 
Speech production is usually modeled as the convolution of an excitation 

sequence ( )e n  with the impulse response of the vocal tract, ( ).h n  Therefore, the speech 

( )s n  can be written as: 

 ( ) ( ) ( ).s n e n h n= ∗  (4.1) 

In the frequency domain, Equation (4.1) is given as the multiplication of the 

discrete-time Fourier transforms (DTFT) of the two sequences: 

 ( ) ( ) ( ).S E Hω ω ω= ⋅  (4.2) 

The excitation sequence is considered to be a random noise sequence for unvoiced 

speech and a quasi-periodic impulse train with the pitch period for voiced speech, 

whereas the impulse response of the vocal tract is considered to be a short window. 

Therefore, the excitation sequence is viewed as the rapidly varying part of the speech, as 

opposed to the vocal tract filter which represents the slowly varying part of the speech. 

In many speech applications, the separate estimation of the excitation sequence 

and the vocal tract model is required. Since the speech is produced by the convolution 

operation (or, multiplication in frequency), it is not possible to separate the speech into 

two sequences by well-known linear techniques. As applied first by Noll [Noll, 1967], the 

excitation and vocal tract model can be separated by using a nonlinear operator, namely, 

by taking the logarithm of the signal: 

 ( ) ( ) ( )log log log .S E Hω ω ω= +  (4.3) 
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Cepstral analysis is motivated by the idea of separating these two components of 

the speech signal. It was first discovered and applied to seismic analysis by Bogert 

[Bogert, Healy, Tukey, 1963], but the cepstral analysis was extended and first applied to 

speech by Noll [Noll, 1967], [Deller, Proakis, Hansen, 1993]. The more general 

mathematical model which is called homomorphic (cepstral) signal processing was 

introduced by Oppenheim [Oppenheim, 1969]. The cepstrum derived from the 

homomorphic processing is usually known as the complex cepstrum, although its version 

used in practice is called the real cepstrum [Deller, Proakis, Hansen, 1993]. 

The main difference between the real cepstrum and the complex cepstrum is that 

the phase information about the speech signal is retained in the latter while it is discarded 

by the real cepstrum [Deller, Proakis, Hansen, 1993]. Even though the complex cepstrum 

might seem to be more attractive since it preserves more information than the real 

cepstrum does, it is not used much in practical applications unless it is desired to return 

back to the time domain [Gold, Morgan, 2000]. Real cepstrum coefficients are more 

commonly used in speech recognition applications as there is no return to the time 

domain once features are extracted. 

The real cepstrum (RC) of a speech sequence ( )s n  is defined as the inverse 

DTFT of the logarithm of the spectral (DTFT) magnitude: 

 ( ) ( ){ }{ } ( )1log log ,
2

j n
sc n IDTFT DTFT s n S e d

π
ω

π

ω ω
π −

= = ∫  (4.4) 

where the natural or base 10 logarithm is generally used in the definition. Since 

the speech sequence ( )s n  is real-valued, its logarithmic spectral magnitude, ( )log ,S ω  

is real and even. Therefore, the real cepstrum ( )sc n  is real and even, i.e., the second half 

of the real cepstrum coefficients is redundant and repetitive of the first half. The 

computation process of the real cepstrum is shown as a block diagram in Figure 4.1. 
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DTFT log |.| IDTFT
Speech Frame Real Cepstrum

( )s nc( )s n

( )S ω ( ) ( )log sS Cω ω=  
Figure 4.1. Computation of the real cepstrum using the DTFT (After: [Deller, Proakis, 

Hansen, 1993]). 
 

In practical applications, the DTFT and IDTFT in the above definition are 

replaced by the discrete Fourier transform (DFT) and inverse discrete Fourier transform 

(IDFT), respectively. In this case, Equation (4.4) can be modified as: 

 ( ) ( )
1

2

0

1 log ,    for   0,1,..., 1.
N

j kn N
d

k
c n S k e n N

N
π

−

=

= = −∑  (4.5) 

Since the speech is time-varying, it is blocked into small frames where it is 

assumed to be stationary, thereby allowing to capture speech temporal and spectral 

dynamic changes. Hence, the above real cepstrum definition is also known as the short-

time real cepstrum since it is applied to each individual frame. 

The real cepstrum computation in Figure 4.1 is modified according to Equation 

(4.5) and shown in Figure 4.2. 

 

DFT log |.| IDFT
( )s n Zero 

padding
( )d nc

( )kS ( ) ( )log dS k C k=  
Figure 4.2. Computation of the real cepstrum using the DFT (After: [Deller, Proakis, 

Hansen, 1993]). 
 

Using the DFT instead of the DTFT is similar to sampling the DTFT at N  

equally spaced frequencies from π−  to .π  In this case, ( )dc n  in Equation (4.5) becomes 

the convolution of the original ( )sc n  in Equation (4.4) with a uniform impulse train of 

period N  [Deng, O’Shaughnessy, 2003]: 
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 ( ) ( ),    for   0,1,..., 1.d s
i

c n c n iN n N
∞

=−∞

= + = −∑  (4.6) 

Therefore, the real cepstrum computed with the DFT and IDFT contains the 

replicas of the real cepstrum computed with the DTFT and the IDTFT at intervals of .N  

This in turn may potentially cause some aliasing, but can be minimized when the number 

of DFT points N  is kept large enough, typically more than 100 points [Deng, 

O’Shaughnessy, 2003]. Thus avoiding aliasing can be achieved by either selecting longer 

frames or zero padding, as indicated in Figure 4.2. 

For speech recognition purposes, the number of real cepstrum coefficients 

retained is generally less than 20 and typically 10 to 14. This ensures that the speech 

portion due to the vocal tract is kept while removing the contribution due to the 

excitation. Hence, for the current study, 14 real cepstrum coefficients are used for each 

speech segment cropped by the endpoint detection algorithm discussed in Chapter III. 

The real cepstrum coefficients derived from one of the segmented utterances of 

the word “left” are plotted in Figure 4.3. 
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Figure 4.3. Real Cepstrum Coefficients of one of the segmented utterances of the 

word “left” (left_11_1_05_02_05.txt). Only the first 14 coefficients are plotted. 
 

B. MEL-FREQUENCY CEPSTRAL COEFFICIENTS 

The linear predictive coding (LPC) and real cepstrum coefficients were the major 

parameters used to represent utterances for speech recognizers up until the 1980s [Deller, 

Proakis, Hansen, 1993]. The mel-frequency cepstral coefficients (MFCC) were first used 

for a speech recognition system with a dynamic-time warping algorithm (DTW) in a 

study by Davis and Mermelstein in 1980 [Davis, Mermelstein, 1980]. Their study 

revealed the fact that MFCCs outperform any other parametric representation such as 

LPC and real cepstrum coefficients. MFCCs developed by Davis and Mermelstein 

[Davis, Mermelstein, 1980] have become the most popular features up to date. 

The basic idea behind using MFCCs is to obtain a feature representation which 

approximates the human perception. MFCCs are the nonlinearly weighted and warped 

(with a nonlinear mapping scale) versions of the real cepstrum coefficients [Deng, 

O’Shaughnessy, 2003]. Basically, the logarithmic spectral magnitudes on the physical 
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frequency scale obtained by the real cepstrum are warped to corresponding magnitudes 

on a perceptual frequency scale since the perceived pitch or frequency of a tone is 

different than the physical frequency in Hz  [Deller, Proakis, Hansen, 1993]. As a result, 

the mel scale allows for the required mapping (or warping) from the physical frequencies 

to the actual perceptual frequencies, as shown in Figure 4.4. 

 

 
Figure 4.4. The mel scale (From: [Deller, Proakis, Hansen, 1993]). 

 

Figure 4.4 shows that the mapping is linear below 1 kHz  and is logarithmic above 

1 .kHz  The mapping is achieved by the formula [Picone, 1993]: 

 ( )102595 log 1 700 .melF f= × +  (4.7) 

The MFCCs, however, are computed by using the human perceptual model 

instead of warping the real cepstrum with a mel scale as discussed above. The human 
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perception, or the operation of the basilar membrane in the inner ear, is generally 

modeled as a bank of 24 or so bandpass filters. Studies have shown that the basilar 

membrane is 32 mm  long and that each bandwidth is about 1.5 mm  in length along the 

basilar membrane; resulting in 24 bandpass filters (also called “critical band” filters) 

needed to model the basilar membrane [Deng, O’Shaughnessy, 2003]. The distribution of 

these critical band filters is also linear below 1 kHz  and logarithmic above 1 .kHz  Thus, 

their center frequencies and bandwidths follow the mel scale shown in Figure 4.4. 

The critical band filters are conceptualized by a simple set of triangular windows 

(or bandpass filters), each centered on a critical band, as shown in Figure 4.5. 

 

 
Figure 4.5. Conceptual triangular filters for extracting the MFCCs (From: [Deng, 

O’Shaughnessy, 2003]). 
 

In practice, other types of filters can be applied to generate the MFCCs. However, 

the triangular filters are consistently used in speech recognition studies as they are 

especially easy to implement [Deller, Proakis, Hansen, 1993]. Thus, triangular filters 

were chosen to extract the MFCCs in this study. 

Since the human auditory system responds to the energy in a critical band, the 

total logarithmic energy in a critical band is obtained through the conceptual filters, and 

the energy of each critical band is converted to corresponding MFCC via an IDFT. 

Generally, the final IDFT block is implemented with a discrete cosine transform (DCT) 

by replacing the complex exponential with a cosine since the logarithmic spectral energy 

is real and even, as explained in the previous section. The MFCC computational process 
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is presented next and the derivation follows closely that presented in [Vergin, 

O’Shaughnessy, Farhat, 1999]. 

First, the spectral magnitude (or energy) of a speech signal or a frame of the 

speech signal ( )s n  is calculated as: 

 ( ) ,    for   0,1,..., 2,iS S k i N= =  (4.8) 

where ( )S k  is the N -point DFT of the speech signal or a frame of the speech 

signal: 

 ( ) ( )
1

2

0

,    for   0,1,..., 1.
N

j kn N

n
S k s n e k Nπ

−

=

= = −∑  (4.9) 

The spectral energy, ( ) 2
,S k  can also be used in Equation (4.8) instead of the 

spectral magnitude. 

Next, the energy in each critical band is obtained by applying the conceptual 

triangular windows shown in Figure 4.5 to the spectral magnitude in Equation (4.8): 

 ( )
( )2 1

0
,    for   1,..., ,

N

j i j
i

E S h i j J
−

=

= ⋅ =∑  (4.10) 

where J  is the total number of triangular filters, ( ) ,jh i  used. 

Finally, MFCCs are calculated as: 

 ( ) ( ) ( )10
1
log cos 0.5 ,

J

s j
j

c n E n j
J
π

=

⎡ ⎤= +⎢ ⎥⎣ ⎦
∑  (4.11) 

where n  is the number of MFCCs to be retained, generally 8 to 14 [Deng, 

O’Shaughnessy, 2003]. 

The computational process explained above is illustrated as a block diagram in 

Figure 4.6. 
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Figure 4.6. The MFCC computation as a block diagram (After: [Zhu, Alwan, 2003]). 
 

The first coefficient ( )0sc  represents the average power in the speech signal. 

However, ( )0sc  is not often used in recognition applications since the average power 

varies considerably depending on the microphone placement and channel. The 

coefficients ( )sc n  give increasingly finer spectral details for each 1n >  [Deng, 

O’Shaughnessy, 2003]. 

Fourteen MFCCs, excluding the first coefficient, are extracted for each segmented 

utterance and selected as feature vectors for the classification stage of the recognizer. The 

choice of fourteen MFCCs follows the above discussions, as the coefficients become 

negligibly small when the order, i.e., index number, increases. Even in the case of 

fourteen coefficients, the last few coefficients are much smaller in amplitude than the rest 

of the coefficients. 

The MFCCs derived for one of the segmented utterances of the word “up” are 

illustrated in Figure 4.7. 
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Figure 4.7. Mel-frequency Cepstral Coefficients (MFCC) of one of the segmented 

utterances of the word “up” (up_8_1_04_29_05.txt). 15 MFCCs, including the first 
coefficient, are plotted. 

 
C. SUMMARY 

This chapter presented the feature extraction section of the speech recognizer, 

which serves to represent the segmented utterances in both a useful and efficient way for 

the recognizer. Specifically, two extensively used spectral features that are also chosen 

for the current study were presented in detail, namely, the real cepstrum, and the mel-

frequency cepstrum. 

The next chapter will present the recognition stage and the recognition results 

obtained. 
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V. RECOGNITION RESULTS 

This chapter describes the feedforward multi-layer neural network configuration 

used as speech recognizer for this study and the resulting recognition results. First, the 

chapter introduces the basic concepts behind artificial neural networks. Next, two 

learning algorithms commonly used in multi-layer neural networks (conjugate gradient 

and Levenberg-Marquardt algorithms) are presented. Third, we discuss implementation 

issues for the multi-layer neural networks used for the present study. Finally, we present 

recognition results. 

A. INTRODUCTION 
Artificial neural networks (ANNs) are inspired by the human nervous system. The 

human nervous system consists of approximately 1110  nerve cells, or neurons, each of 

which has 410  connections with other neurons [Deller, Proakis, Hansen, 1992]. A 

simplified model of a biological neuron is shown in Figure 5.1. 

 

 
Figure 5.1. A simplified model of a biological neuron (From: [Deller, Proakis, 

Hansen, 1992]). 
 

There are three main components in a nerve cell: the dendrites, the cell body (or 

the soma), and the axon. The dendrites are the receptive nerve fibers that carry the input 

signals into the cell body. The cell body sums and thresholds the received signals through 
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the dendrites. The axon is a long transmission line that carries the signals from one cell 

body to others. The synapse is the connection point between an axon of a cell and a 

dendrite of another. The nervous system is a highly parallel structure, which is a 

combination of the nerve cells described above [Hagan, Demuth, Beale, 1996]. 

ANNs, which are inspired by the biological neural system introduced above, are 

the simplified version of the complex human nervous system, although the exact 

mathematical behavior of the nervous system is unknown [Hagan, Demuth, Beale, 1996]. 

An artificial neuron accepts signals from other neurons or from its inputs, integrates or 

sums the incoming signals, and then the output is determined according to some sort of 

threshold function. A typical artificial neuron structure is illustrated in Figure 5.2. 

 

( ).∑ ( ).f

Incoming 
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from other 
cells

Dendrites
(Receiving 

Inputs)

Cell Body sums and thresholds 
the incoming signals

Axon
(Transmission Line 
to Other Neurons) To Other Neurons

 
Figure 5.2. Artificial neuron model (After: [Deller, Proakis, Hansen, 1992]). 

 

Therefore, an ANN is a network of these artificial neurons connected via some 

connections in a parallel structure. ANNs learn from examples shown to them, much like 

the way humans learn from the examples they see, which is called the training phase of 

the network. After learning from examples during training, they are capable of 

generalizing the learned examples to new examples that are not introduced during the 

training period, which is called the testing phase. 

The first practical application of artificial neural networks dates back to late 1950s 

with the invention of the perceptron network by Rosenblatt [Rosenblatt, 1958]. The 
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perceptron was capable of performing pattern classification on two linearly separable 

classes. Artificial neural networks did not get much attention until the 1980s mainly due 

to the lack of powerful computers and processors needed to conduct the experiments 

combined with the limitations of the networks in classification, as well as the lack of 

powerful learning algorithms to train the networks for more complex problems. Interest 

in artificial neural networks increased dramatically with the advances in computing 

technology. New concepts introduced in the 1980s also contributed to this increase in 

research efforts on specific ANN types, namely, the recurrent network [Hopfield, 1982], 

and the backpropagation algorithm [Rumelhart, McClelland, 1986]. In particular, the 

discovery of the backpropagation algorithm allowed ANNs to perform complex pattern 

classification tasks on nonlinear data [Hagan, Demuth, Beale, 1996]. 

Artificial neural networks have found successful applications in a wide variety of 

fields for the last three decades. These fields include: aerospace, automotive, banking, 

defense, electronics, entertainment, financial, insurance, manufacturing, medical, oil and 

gas, robotics, speech, securities, telecommunications, and transportation [Hagan, 

Demuth, Beale, 1996]. There are many commercial implementations of artificial neural 

networks that are being used in the related fields mentioned above. 

Since the speech recognition can basically be viewed as a pattern classification 

problem, and since the artificial neural networks are capable of performing complex 

classification tasks, ANNs have easily become a research tool for speech recognition 

purposes for the last two decades as an alternative to the hidden Markov model (HMM) 

that is the most common technique used for speech recognition. Particularly, some 

advantages of the ANNs which made them attractive for the speech recognition are their 

flexible architecture, highly parallel and regular structure, robustness to the limited 

training data, ability to accommodate discriminant learning, and no need to know the 

statistical distribution of the input features [Morgan, Bourlard, 1995]. 

ANN applications to speech recognition are basically divided into two broad 

categories; isolated word recognition and continuous speech recognition. The recognition 

task in the present study falls into the category of the isolated word recognition. 
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ANNs have not been quite successful in continuous speech recognition 

applications, and actually, it is not yet known how to implement a neural network based 

complete system for continuous speech recognition. This challenge is due to at least one 

fundamental problem with the training of the networks used for the continuous speech 

recognition: a target vector must be defined [Morgan, Bourlard, 1995]. 

Different types of ANNs, however, have been applied successfully to the 

phoneme, digit and isolated word recognition, and feedforward neural networks such as 

multi-layer networks with backpropagation algorithm, radial basis function (RBF) 

networks, probabilistic neural networks (PNN), and time-delay neural networks (TDNN) 

are architectures commonly used in these speech applications. A multi-layer neural 

network configuration with backpropagation algorithm is applied to the isolated word 

recognition problem of the present study. Next, we briefly introduce the basic idea behind 

multi-layer neural networks and the backpropagation algorithm. 

B. MULTI-LAYER NEURAL NETWORKS 
As indicated earlier, the artificial neuron (also called a node or a unit) is the 

smallest fundamental building block of an artificial neural network. It is a simple 

processing unit which tries to mimic the biological neuron. 

In an artificial neural network model, incoming signals are multiplied by 

respective scalar weights (or connections) and passed to a summer which combines 

weighted inputs together with a scalar bias. The output of the summer forms the net 

input, which can also be viewed as the inner product of the inputs with the weights 

shifted by some bias (if any). The net input is then applied to an activation function, or a 

transfer function, whose output is the output of that specific neuron. The neuron output a  

is given by: 

 ( ) ,a f W p b= ⋅ +  (5.1) 

where W  is the weight matrix, p  is the input vector, b  is the bias, and ( ).f  is 

the activation function. 

A single neuron model with multiple inputs is illustrated in Figure 5.3. 
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Figure 5.3. Mathematical model of a single artificial neuron with multiple inputs 
(After: [Hagan, Demuth, Beale, 1996]). 

 

When the above model is related to the actual neuron model discussed in the 

introduction, the weights represent the strengths of the synapses, the summer and the 

activation function correspond to the cell body, and the net output corresponds to the 

signals on the axon [Hagan, Demuth, Beale, 1996]. Weights and biases are the values that 

have to be learned by using a learning function during training, and need to be stored for 

use afterwards. The bias, however, may or may not be used. 

The activation function, or the transfer function, can be any type of function that 

fits the action desired from the respective neuron and is a design choice which depends 

on the specific problem. Some common types of activation functions are the hard-limit 

function (hardlim), linear function (purelin), log sigmoid function (logsig), and 

hyperbolic tangent sigmoid function (tansig). Log sigmoid and hyperbolic tangent 

sigmoid functions are commonly used in multi-layer neural networks with a 

backpropagation algorithm since they are differentiable and can form arbitrary nonlinear 

decision surfaces. 

The collection of these artificial neurons forms the layers of a network. The 

neural networks can be classified as single-layer and multi-layer networks depending on 

the number of the layers. In a multi-layer structure, the last layer is called the output 

layer, while the rest are called hidden layers since their outputs do not have any 

connection with the outside environment. 
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Multi-layer networks are also referred to as feedforward networks since any 

feedback connection from the output layer to any of the hidden layers does not exist. In a 

feedforward multi-layer network, the output of a hidden layer effectively becomes an 

input to the next layer. A feedforward multi-layer neural network that has two layers is 

shown in Figure 5.4. The abbreviated matrix notation and network structure in Figure 5.4 

will be used from now on throughout the chapter. 
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Figure 5.4. Feedforward two-layer neural network (After: [Hagan, Demuth, Beale, 
1996]). 

 

The number of layers, number of neurons in each layer, and type of activation 

functions per layer or per neuron in each layer are design parameters, i.e., the designer 

has to choose them according to the specific problem because there are no restrictions or 

no specific rules about the selection of these parameters. These parameters are generally 

set on a trial-and-error basis, which may be viewed as a drawback of the neural networks. 

Although there is no specific rule on the number of layers to be used, it has been 

shown that two-layer networks with nonlinearities can, at least in theory, approximate 

any complex function given a sufficient number of neurons in the hidden layers. This 

property is the great computational power or expressive power of the multi-layer 

networks compared to the networks with no hidden layers [Duda, Hart, Stork, 2001]. 
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C. THE BACKPROPAGATION ALGORITHM 

The backpropagation algorithm is the most general and yet powerful method to 

train a single-layer or a multi-layer neural network. It is a generalization of the least mean 

square (LMS) algorithm used for linear networks, where the performance index is the 

mean square error (MSE) for both algorithms. 

Basically, a training sequence is passed through the multi-layer network, the error 

between the target (desired) output and the actual output is computed, and the error is 

then propagated back through the hidden layers from the output to the input in order to 

update weights and biases in all layers. 

Next, we present the algorithm. Notations and derivations below follow closely 

[Hagan, Demuth, Beale, 1996], and partially [Duda, Hart, Stork, 2001]. 

The feedforward operation of a multi-layer network can be defined as: 

 ( )1 1 1 1     for     0,1,..., 1,m m m m ma f W a b m M+ + + += + = −  (5.2) 

where M  is the total number of layers in the network. This is simply the 

extension of Equation (5.1) to a multi-layer case. 

As indicated earlier, the MSE is the performance index (or function) of the 

algorithm used to update the network parameters. The performance function for a multi-

output case is given by: 

 ( ) { } ( ) ( ){ },TTF x E e e E t a t a= ⋅ = − ⋅ −  (5.3) 

where t  is the target vector, a  is the actual output vector, e  is the error vector 

(i.e., the difference between the target and actual outputs), and x  is the network 

parameter vector containing weights and biases. 

The expectation operation in Equation (5.3) can be approximated as: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ,
T TF x t k a k t k a k e k e k= − ⋅ − = ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (5.4) 

where k  is the iteration number. 
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The weight and bias updates at iteration ( 1)k +  can be expressed in terms of the 

weights and biases at iteration ,k  and in terms of the performance function: 

 ( ), ,
,

ˆ
( 1) ,m m

i j i j m
i j

Fw k w k
w

α ∂
+ = −

∂
 (5.5) 

 ( ) ( )
ˆ

1 ,m m
i i m

i

Fb k b k
b

α ∂
+ = −

∂
 (5.6) 

where ,
m
i jw  is the weight associated with the thj  connection to the thi  neuron at 

layer ,m  and α  is the learning rate that determines the amount of change to the weights 

and biases. The learning rate also determines how fast the algorithm will converge to the 

minimum point on the error surface while ensuring convergence. 

Note that the last two equations are simply a re-statement of the well-known 

steepest descent algorithm, where the error is minimized by taking steps of α  in the 

negative direction of the gradient of the performance function which causes a downhill 

movement on the performance function surface. Thus, the backpropagation algorithm is 

merely a gradient descent scheme. 

The derivations up to this point are identical to the LMS algorithm, which is also 

a modified version of the steepest descent algorithm. Computing the partial derivatives in 

Equations (5.5) and (5.6) is the hardest part of the algorithm since the error does not 

explicitly depend on the weights and biases in the hidden layers. Therefore, the chain rule 

is used to compute these partial derivatives: 
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ˆ ˆ
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m
i

m m m
i j i i j

nF F
w n w
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= ×
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∂ ∂ ∂
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where m
in  is the net input of the thi  neuron in layer ,m  and is given by: 
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where 1mS −  represents the total number of neurons in layer 1.m −  

Using the chain rule makes the error an explicit function of the weights and biases 

of layer .m  Therefore, the partial derivatives of the performance function can be written 

as: 

 1

,

ˆ
,m m

i jm
i j

F s a
w

−∂
= ⋅

∂
 (5.10) 
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im

i
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where m
is  is called the sensitivity, which describes how the error changes with the 

net input at layer ,m  and is given as [Hagan, Demuth, Beale, 1996]: 
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i m

i

Fs
n
∂
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∂

 (5.12) 

The weight and bias updates defined in Equations (5.5) and (5.6) become in 

matrix form: 

 ( ) ( ) ( )11 ,
Tm m m mW k W k s aα −+ = −  (5.13) 

 ( ) ( )1 .m m mb k b k sα+ = −  (5.14) 

The last two equations above are the weight and bias update equations that define 

the backpropagation algorithm. 

The sensitivities in Equations (5.13) and (5.14) must be computed and propagated 

back through the network from the output nodes to the input nodes since the error is 

propagated back with the sensitivities, as will be apparent shortly. This is also obtained 

using the chain rule: 

( )( ) ( )( )
1

1 1 1
1 1

ˆ ˆ ˆ
,

Tm T Tm m m m m m m m
m m m m

F n F Fs F n W F n W s
n n n n

+
+ + +

+ +

⎛ ⎞∂ ∂ ∂ ∂
= = = =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

(5.15) 

where the partial derivative of the net input vector at layer 1m +  with respect to 

the net input vector at layer m  is given by: 
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and the matrix that contains the partial derivatives of the activation functions at 

layer m  is computed as: 

 ( )

( )
( )

( )

1

2

0 0

0 0
.

0 0 m

m m

m m
m m

m m
S

f n

f n
F n

f n

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (5.17) 

Equation (5.17) reveals an important property of the backpropagation algorithm: 

all the activation functions used for the network design must be differentiable. 

The sensitivity of the output layer which starts the propagation of the network 

error back to the hidden layers can be computed by using Equation (5.15), and is defined 

as: 

 ( )( )2 .M M M

e

s F n t a= − −  (5.18) 

The sensitivity at layer m  is obtained from the sensitivity of layer 1;m +  hence, 

the name backpropagation. The last equation also reveals the fact that the sensitivities are 

actually a means of propagating the network error back to the hidden layers, and measure 

how each layer responds to the changes caused by the error. This phenomenon is 

illustrated in Figure 5.5, where each circle stands for a neuron, and each arrow indicates a 

connection between neurons of different layers. The weights associated with each 

connection are also shown in Figure 5.5. 
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Figure 5.5. Backpropagation of sensitivities in a feedforward two-layer neural 

network (After: [Duda, Hart, Stork, 2001]). 
 

There are a few issues that need to be addressed about the backpropagation 

algorithm. The very first issue deals with the convergence of the algorithm. There may be 

cases where the algorithm returns networks parameters which seem to minimize the 

MSE, but do not yield desired results or approximations. Since the error surface for 

multi-layer networks is very complex, there are multiple local minimum points in 

addition to the global minimum along the error surface. In practice, it is impossible to 

evaluate whether the algorithm converges to the global minimum or a local minimum. 

Furthermore, it is usually impossible to compute initial weight and bias values close to a 

minimum. Therefore, it is essential to iterate the algorithm multiple times over the whole 

training set with different initial weight and bias values. 

Another issue to consider is the potential long learning time or large number of 

epochs needed to train the network. Thus, several variations of the basic algorithm have 

been proposed over the years and successfully used in most of the multi-layer networks 

with backpropagation to speed-up the algorithm training phase. These modifications and 

techniques include: adding a momentum term to the algorithm (backpropagation with 

momentum), variable learning rate, conjugate gradient descent, and Levenberg-

Marquardt algorithm. 
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The conjugate gradient (CG) descent and Levenberg-Marquardt (LM) algorithms 

will be discussed in the following sections. 

D. CONJUGATE GRADIENT ALGORITHM 

The conjugate gradient (CG) algorithm is a numerical optimization technique 

designed to speed up the convergence of the backpropagation algorithm. It is in essence a 

line search technique along any set of conjugate directions, instead of along the negative 

gradient direction as is done in the steepest descent approach. The power of the CG 

algorithm comes from the fact that it avoids the calculation of the Hessian matrix or 

second order derivatives, which are required in the LM derivation, yet it still converges to 

the exact minimum of a quadratic function with n  parameters in at most n  steps [Hagan, 

Demuth, Beale, 1996]. 

The algorithm starts by selecting the negative gradient direction as the initial 

descent direction, i.e., the initial search direction. Next, the algorithm moves along the 

initial search direction until the local minimum in error is reached in that direction. At 

that point, the next search direction (i.e., the conjugate direction) is computed by 

selecting a direction orthogonal to the previous one and the following iteration selected as 

leading to the minimum value along that direction [Duda, Hart, Stork, 2001]. 

A detailed discussion of the steps taken to accomplish the algorithm will be 

presented next, where the notations and derivations follow closely those presented in 

[Hagan, Demuth, Beale, 1996]. 

The conjugate gradient algorithm starts by selecting the initial search direction as 

the negative of the gradient: 

 0 0 ,p g= −  (5.19) 

and 

 ( ) ,
k

i x x
g F x

=
= ∇  (5.20) 

where x  is the vector containing the weights and biases and ( )F x  is the 

performance function, i.e., the mean square error (MSE). 
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The search directions ip  are called conjugate with respect to a positive definite 

Hessian matrix if and only if 

 0     for     ,T
i jp Ap i j= ≠  (5.21) 

where A  represents the Hessian matrix ( )2 .F x∇  

The above condition can be modified to avoid the calculation of the Hessian 

matrix for practical purposes, and is given as: 

 0     for     .T
i jg p i j∆ = ≠  (5.22) 

The new weights and biases are computed by taking a step with respect to the 

learning rate iα  along the search direction that minimizes the error: 

 1 ,i i i ix x pα+ = +  (5.23) 

where the learning rate iα  for the current step is given by: 

 .
T
i i

i T
i i i

g p
p A p

α = −  (5.24) 

Next, the new conjugate search direction is selected to continue the algorithm: 

 1 1 1 ,i i i ip g pβ+ + += − +  (5.25) 

where the scalar iβ , which can be viewed as a momentum added to the algorithm 

[Duda, Hart, Beale, 2001], is given by one of three common choices (only Fletcher and 

Reeves formula is shown here since it is used for the current implementation): 

 1 1 .
T
i i

i T
i i

g g
g g

β + +=  (5.26) 

The algorithm iterates along successive conjugate directions until it converges to 

the minimum, or a predefined error criterion is achieved. 

As is obvious from the above steps, the conjugate gradient algorithm requires a 

batch mode training, where weight and bias updates are applied after the whole training 
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set is passed through the network, since the gradient is computed as an average over the 

whole training set [Duda, Hart, Beale, 2001]. 

The conjugate gradient algorithm outlined above is guaranteed to converge to the 

minimum in n  iterations if the performance function is quadratic with n  parameters, as 

indicated earlier. The algorithm, however, may not converge to the minimum in n  

iterations if the network is a multi-layer network with many hidden neurons. This is due 

to the fact that the performance function is not quadratic for multi-layer networks, but 

may exhibit many local minima. Therefore, the conjugate gradient method was modified 

to be applied to multi-layer networks. The algorithm does not specify what to do if 

convergence is not reached after n  iterations. As a result, one of the possible approaches 

to force the algorithm to continue in the case of multi-layer networks is to simply reset 

the search direction to the negative of the gradient after n  iterations [Hagan, Demuth, 

Beale, 1996]. 

Although the conjugate gradient algorithm requires many computations to reach 

convergence, it is one of the fastest batch training algorithms, and has very useful 

properties, such as avoiding the computation and storage of second order derivatives, 

while preserving a quadratic convergence property [Hagan, Demuth, Beale, 1996]. 

E. LEVENBERG-MARQUARDT ALGORITHM 
The Levenberg-Marquardt (LM) algorithm is a modified version of Newton’s 

method which finds the minimum of a quadratic function in one iteration only by using 

the second order derivatives information. Newton’s method approximates the 

performance function as a sum of squares, i.e., as a quadratic, which makes the LM 

algorithm suitable to the training of multi-layer networks as they have complex nonlinear 

performance surfaces. 

The basic Newton’s iteration can be written as: 

 ( ) ( )
1

2
1 ,

i
k k x x

x x F x F x
−

+ =
⎡ ⎤= − ∇ × ∇⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦

 (5.27) 

where the performance function ( )F x  is defined as [Hagan, Demuth, Beale, 

1996]: 
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 ( ) ( ) ( ).TF x v x v x= ⋅  (5.28) 

Newton’s method requires the computation and storage of the second order 

derivatives, i.e., the Hessian matrix, as well as the inverse of the Hessian matrix. 

Newton’s scheme is, therefore, expensive and not desirable in large real-life applications. 

The LM scheme modifies the original scheme given in Equation (5.27) by approximating 

the Hessian matrix with the Jacobian matrix that contains only first order derivatives. 

The weight and bias update formula for the LM scheme can be defined as [Hagan, 

Demuth, Beale, 1996]: 

 ( ) ( ) ( ) ( )1

1 ,T T
i i i i i i ix x J x J x J x v xµ

−

+ ⎡ ⎤= − + Ι⎣ ⎦  (5.29) 

where iµ  is a small scalar added to the Hessian matrix estimation in order to 

insure it is invertible, and ( )J x  represents the Jacobian matrix containing the first order 

derivatives [Hagan, Demuth, Beale, 1996]: 

 ( )

( ) ( )

( ) ( )

1 1
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∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥=
⎢ ⎥
∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

 (5.30) 

The algorithm approaches the steepest descent algorithm with a small learning 

rate when iµ  increases, whereas it approaches Newton’s scheme when iµ  decreases. The 

LM algorithm, therefore, combines the speed of Newton’s scheme and the guaranteed 

convergence of the steepest descent [Hagan, Demuth, Beale, 1996]. 

The LM scheme is the fastest algorithm among the possible selection of 

algorithms for networks with moderate to small size parameters. However, the algorithm 

has two main drawbacks. First, the algorithm is computationally intensive as it requires 

more computations per iteration, including the matrix inversion, than other schemes such 

as the conjugate gradient. Second, it requires the storage of the Hessian matrix 

estimation, which is a n n×  matrix, where n  represents the number of network 

parameters (i.e., the weights and biases), whereas other schemes such as the conjugate 
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gradient requires only the storage of the gradient that is a n  dimensional vector. As a 

result, it becomes impractical to use the LM scheme for large network configurations 

[Hagan, Demuth, Beale, 1996]. 

F. IMPLEMENTATION 

Multi-layer neural networks with the backpropagation algorithm are used in this 

speech recognition study. Two different neural network structures were implemented: a 

two-layer feedforward neural network with one hidden and one output layer, and a three-

layer feedforward neural network with two hidden layers and one output layer. Note that 

the two neural network structures considered in this study use same inputs, target 

assignments, activation functions, output layer structure, network parameters, and differ 

only in the number of layers and hidden neurons in the hidden layers. 

For both network types, the output layer has seven neurons, each of which 

corresponds to one word in the vocabulary. Recall from Chapter II that the vocabulary 

chosen for this study has only seven words. For the classification purpose, each word is 

assumed to correspond to a class, and each word belonging to its respective class is 

labeled with an integer number from one to seven. More on the class and target 

assignments will be explained later. 

The numbers of hidden neurons in the hidden layers were varied in each trial of 

two multi-layer networks in order to evaluate their performance. For the two-layer 

network, 50, 100, and 150 hidden neurons in the hidden layer were selected in the 

implementation. Therefore, the two-layer networks employed for this study are denoted 

as ( )50 7 ,−  ( )100 7 ,−  and ( )150 7 .−  Four different structures with different number of 

hidden neurons were implemented for the three-layer network structure: ( )30 20 7 ,− −  

( )40 20 7 ,− −  ( )50 30 7 ,− −  and ( )60 40 7 .− −  

The hyperbolic tangent sigmoid function (tansig) was selected as the activation 

function for the hidden neurons, as it provides the necessary nonlinearities in the network 

to solve the classification problem. The log sigmoid function (logsig) was used for the 

neurons at the output layer in order to restrict the network outputs to the interval 

[ ] 0 ,  1 .  
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Recall from Chapter IV that both real cepstrum (RC) coefficients and mel-

frequency cepstral coefficients (MFCCs) were extracted from each segmented utterance 

to be used as feature vectors. The MFCCs are the primary features used as the input 

vectors that represent the segmented utterances for all the multi-layer networks 

implemented. In addition, the RC coefficients are used with one of each of the two-layer 

and three-layer configurations, namely the ( )150 7−  and ( )60 40 7− −  networks for 

comparison purposes. As explained in Chapter IV, each segmented speech is represented 

with 14 spectral coefficients, either MFCC or RC coefficients. Therefore, the network 

input vectors which represent the segmented utterances are 14 dimensional, i.e., 14 1×  

column vectors. Finally, inputs were preprocessed to have zero mean and unit variance 

before being fed into the network to enhance the network performance. 

The architectures of the multi-layer neural networks implemented for the word 

recognition are shown in Figure 5.6 and Figure 5.7, which illustrate the (150-7) and (60-

40-7) configurations. 
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Figure 5.6. Two-layer feedforward neural network architecture implemented; 
( )150 7−  configuration. 
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Figure 5.7. Three-layer feedforward neural network architecture implemented; 
( )60 40 7− −  configuration. 

 

1-of- n  coding was selected for the target representation, where 7n =  is the total 

number of classes. In the 1-of-7 representation, the output of one of the neurons at the 

output layer which corresponds to one of the seven classes is set to one, with the output 

of the rest set to zero. For instance, the word “up” is labeled as Class 1, and its associated 

target vector is defined as [ ] 0 0 0 0 0 0 1 .T  The class number and target vector 

assignment for each word in the vocabulary are shown in Table 5.1. 

 

up 1 [ 0 0 0 0 0 0 1 ]
down 2 / aw /
left 3

right 4 / ay /
kill 5
pan 6

move 7

Vocabulary Words Class Number Associated Target 
Vector

[ 0 0 0 0 0 0 1 ]T

[ 0 0 0 0 0 1 0 ]T

[ 0 0 0 1 0 0 0 ]T

[ 0 0 1 0 0 0 0 ]T

[ 0 1 0 0 0 0 0 ]T

[ 1 0 0 0 0 0 0 ]T

[ 0 0 0 0 1 0 0 ]T

 
Table 5.1. Class numbers and target vectors associated with the vocabulary words. 
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Network outputs are continuous between zero and one, as the logsig function is 

used in the output layer. In order to achieve 1-of- n  coding, network outputs were 

converted to zeros and ones by passing them through a simple maximum detector which 

assigns one to the maximum output value and zero to the rest. 

The conjugate gradient (CG) algorithm was selected as the main backpropagation 

learning function instead of the Levenberg-Marquardt (LM) algorithm because the CG 

approach was computationally much faster and led to better classification results. Recall 

that the CG algorithm possesses two useful properties: the memory requirement is 

minimal when compared to the LM algorithm, and the CG method is much faster than the 

LM scheme although it usually requires a larger number of epochs for convergence. 

However, we experimentally observed that the longer the network was trained, the better 

the results were. One of the multi-layer network configurations, namely the ( )40 20 7− −  

network, was also tested with the LM scheme to compare the results of the LM scheme 

with those obtained with the CG scheme. All these issues will be addressed in the next 

section. 

All network configurations considered in the study were applied to 80 

experiments (i.e., iterations) to obtain statistically meaningful results. As will be 

explained later in this section, the training phase used a randomly selected fixed 

percentage of the data, while the rest was used for the testing phase. The maximum 

number of epochs for network training was set to 1,000 after observing that convergence 

was reached within that range. 

One of the problems associated with the neural network training is called 

overfitting, where the error on the training set approaches to zero, but the error becomes 

very large on the testing set as the network memorizes patterns shown in the training set 

but is unable to generalize to slightly different patterns contained in the testing set and to 

classify new samples in the testing set. As a result, the best way to tackle the 

generalization issue is to select a network configuration that is just large enough to 

provide the desired result. However, determining the right size of a multi-layer network 

beforehand is very difficult unless the problem is easy to solve, and the network size is 

usually determined experimentally. Two commonly used methods to improve 
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generalization are regularization and early stopping. In this study, we selected the 

regularization technique to prevent overfitting. Regularization improves generalization by 

modifying the performance function (i.e., the MSE) and adding an additional term that 

contains the mean of the sums of the network parameters. The modified performance 

function msereg is given as [Demuth, Beale, 2005]: 

 ( )1 ,msereg mse mswγ γ= + −  (5.31) 

where γ  is the performance ratio, which is also determined experimentally, and 

set to 0.85 for this study. Using msereg causes the weights and biases to be smaller, 

which in turn yields a smoother network response that is better designed to avoid 

overfitting [Demuth, Beale, 2005]. 

The training set selected for each iteration was formed by randomly picking 15 

repetitions of a word for each subject. As a result, the total size of the training set was 

2100, or ( )20 7 15 ,× ×  since there are 20 subjects and 7 words in the vocabulary. The 

remaining repetitions of a word for each subject were assigned to the testing set for each 

experiment (i.e., iteration). As a result, the relative percentages of the training and testing 

sets were 25.52% and 74.48%, respectively. The total data size was 8,228 as indicated in 

Chapter II, resulting in the total size of 6,128 for the testing set. 

The various network configurations considered in this study are listed in Table 

5.2. 

 

Structure Neuron #s Features Activation 
Function

Training 
Function

Perform. 
Function Iteration #s

50-7 MFCC CG
100-7 MFCC CG
150-7 MFCC & RC CG

30-20-7 MFCC CG
40-20-7 MFCC CG & LM
50-30-7 MFCC CG
60-40-7 MFCC & RC CG

msereg 80

tansig - tansig - logsig

tansig - logsigTwo-layer

Three-layer

 
Table 5.2. Multi-layer network structures considered in the study. 
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G. RECOGNITION RESULTS 

The word recognition results obtained with the different multi-layer neural 

network configurations considered are presented in this section. Performance measures 

include: 

• The confusion matrix for the training set, 

• The confusion matrix for the testing set, 

• The confusion matrix when the network is tested on “kill_noise” and 
“right_outside,” on which it is not trained, 

• Average classification rate and 95% confidence interval plot for the testing 
set, and 

• Average classification rate and 95% confidence interval table for the 
testing sets of all the configurations used in the study. 

 

1. Network Configurations Considered 
Table 5.3 shows the overall average classification rates for both the training and 

testing sets, and the 95% confidence intervals for the average classification rates for the 

testing sets obtained after 80 iterations with each network configuration considered in the 

study. Results show that overall average classification rates increase for two-layer and 

three-layer network configurations as the number of neurons in the hidden layers 

increases. The best two-layer network average classification rates are obtained with the 

( )150 7−  configuration, and obtained with the ( )60 40 7− −  configuration among the 

three-layer networks. Results also show their performances to be very similar with 

94.731% and 94.61%, for the two- and three-layer network structures, respectively. 

Results in Table 5.3 also show that MFCCs lead to better recognition rates than RCs do. 

We note there is about an 8% difference between the average classification rates obtained 

with the best network structures, i.e., the ( )150 7−  and ( )60 40 7− −  networks, using the 

MFCCs and RCs as features. Another important point to note is the performance 

difference between the network trained using the CG or the LM scheme. The network 

trained using the CG algorithm yields around a 3.5% higher recognition result than that 

obtained with the LM algorithm on the same network configuration, i.e., the 

( )40 20 7− −  network that operates on the MFCC. Results also show that the 95% 
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confidence interval (CI) for the LM scheme is the largest of all CIs obtained with MFCCs 

as input features in this study, which makes the network configuration obtained with the 

LM scheme much less desirable. 

 

Network 
Configuration

Training 
Function Features

Average Classification 
Rate for Training Set    

(in %)

Average Classification Rate and 
95% Confidence Interval for Testing 

Set (in %)

50 - 7 MFCC 93.17 89.281                         
[ 88.226 , 90.32 ]

100 - 7 MFCC 97.941 93.578                         
[ 92.727 , 94.559 ]

150 - 7 MFCC 99.166 94.731                         
[ 93.647 , 95.47 ]

150 - 7 RC 95.04 86.252                         
[ 84.926 , 87.546 ]

30 - 20 -7 MFCC 97.498 92.297                         
[ 91.22 , 93.319 ]

40 - 20 -7 MFCC 98.847 93.405                         
[ 91.954 , 94.217 ]

50 - 30 - 7 MFCC 99.711 94.306                         
[ 93.335 , 95.048 ]

60 - 40 -7 MFCC 99.944 94.61                          
[ 93.795 , 95.381 ]

60 - 40 - 7 RC 98.782 86.7                           
[ 85.708 , 87.783 ]

40 - 20 - 7 LM MFCC 97.048 89.792                         
[ 78.436 , 92.74 ]

CG

 
Table 5.3. Average recognition results obtained for the different multi-layer neural 

network configurations considered in this study; 80 experiments. 
 
2.  Computational Time Issues 

One last note that has to be addressed about the use of LM algorithm is the choice 

of the ( )40 20 7− −  network with the LM scheme and the amount of time needed to 

complete all 80 experiments with the LM scheme. The choice of the ( )40 20 7− −  

network is due to the large memory requirements of the implementations with the LM 

scheme, as discussed in earlier sections. As a result, that network configuration was the 

largest complexity network we could run with LM scheme with a Pentium 4 (3 GHz ) 

processor with 512 MB  DDR2 RAM for 80 iterations without early termination due to 
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“out-of-memory” problems. We noted that using the reduced memory LM option in the 

LM algorithm did not help with the out-of-memory problem for the configurations 

considered. We also noted that the CG algorithm applied to the same complexity network 

considered in this study, ( )40 20 7 ,− −  converged with about 1000 epochs in about eight 

minutes, while the LM algorithm took on average 15 minutes to compute 20-30 epochs. 

Therefore, the time required for a multi-layer network with LM algorithm to complete an 

implementation with multiple iterations was not very practical as the network complexity 

increased. 

3. Results 

Recognition results obtained with each multi-layer network configuration shown 

in Table 5.3 will be presented in this section. Confusion matrices for both training and 

testing sets, confusion matrices for “kill_noise” and “right_outside” are given in Tables 

5.4 through 5.33. Average classification rate and 95% confidence intervals for the testing 

sets of all configurations used in the study are presented in Table 5.34. Finally, Figures 

5.8 through 5.17 present the 95% confidence intervals for the average classification rates 

for the testing set of each network configuration. 
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UP DOWN LEFT RIGHT KILL PAN MOVE
UP 95.88333 0.279167 3.875 0.258333 0.275 0.004167 0.579167

DOWN 1.345833 95.47917 2.4625 2.295833 2.033333 1.658333 0.05
LEFT 1.9125 0.845833 89.475 3.670833 0.258333 0.075 0.15

RIGHT 0.016667 0.7 1.683333 89.10417 3.458333 3.325 0.133333
KILL 0 0.908333 0.575 2.3 89.10833 0.591667 0.058333
PAN 0.145833 1.7625 1.170833 1.333333 3.658333 94.20833 0.1

MOVE 0.695833 0.025 0.758333 1.0375 1.208333 0.1375 98.92917

Overall Classification 
Rate = 93.17%

DATA BELONGING TO :

DATA 
IDENTIFIED 

AS :

 

Table 5.4. Average recognition rates for Training data; ( )50 7−  network 
configuration; MFCCs as input features; 80 experiments. 

 

UP DOWN LEFT RIGHT KILL PAN MOVE
UP 94.29979 0.406204 6.20283 0.650362 0.368732 0.005564 1.049475

DOWN 2.19914 91.62851 3.931422 3.811594 2.367257 1.854599 0.140555
LEFT 2.65043 1.578656 82.34761 5.021739 0.363201 0.072329 0.723388

RIGHT 0.112822 1.488183 3.350871 81.68478 4.972345 4.037463 0.47976
KILL 0.010745 1.838996 1.444122 4.461957 86.30531 1.075668 1.193778
PAN 0.127149 2.861891 1.357039 3.039855 4.109513 92.64095 0.356072

MOVE 0.599928 0.197563 1.36611 1.32971 1.513643 0.313427 96.05697

DATA 
IDENTIFIED 

AS :

Overall Classification 
Rate = 89.281%

DATA BELONGING TO :

 

Table 5.5. Average recognition rates for Testing data; ( )50 7−  network 
configuration; MFCCs as input features; 80 experiments. 

 

KILL_NOISE RIGHT_OUTSIDE
UP 12.59076763 3.801150895

DOWN 12.51426349 24.86892583
LEFT 9.220695021 2.845268542

RIGHT 12.99144191 53.73721228
KILL 22.84621369 2.33056266
PAN 7.575207469 12.4168798

MOVE 22.26141079 0

DATA BELONGING TO:

DATA 
IDENTIFIED 

AS :

 
Table 5.6. Average recognition rates for the words “kill_noise” and “right_outside;” 

( )50 7−  network configuration; MFCCs as input features; 80 experiments. 
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UP DOWN LEFT RIGHT KILL PAN MOVE
UP 99.05417 0.045833 1.033333 0.033333 0.029167 0 0.066667

DOWN 0.3375 98.80833 1.279167 0.733333 0.6875 0.55 0.008333
LEFT 0.479167 0.283333 96.67083 1.0875 0.033333 0 0.033333

RIGHT 0.004167 0.204167 0.625 96.61667 1.65 0.875 0.0625
KILL 0 0.354167 0.066667 0.75 96.17917 0.108333 0.0125
PAN 0.05 0.304167 0.158333 0.5125 1.175 98.44167 0

MOVE 0.075 0 0.166667 0.266667 0.245833 0.025 99.81667

Overall Classification 
Rate = 97.941%

DATA BELONGING TO :

DATA 
IDENTIFIED 

AS :

 

Table 5.7. Average recognition rates for Training data; ( )100 7−  network 
configuration; MFCCs as input features; 80 experiments. 

 

UP DOWN LEFT RIGHT KILL PAN MOVE
UP 96.44699 0.251108 3.454282 0.322464 0.138274 0.012982 0.41042

DOWN 1.085244 94.92061 2.882801 2.338768 1.076696 1.400223 0.074963
LEFT 1.855301 0.865953 89.37772 2.684783 0.178835 0.016691 0.386057

RIGHT 0.159384 0.976736 2.66328 89.1087 4.035767 1.817507 0.509745
KILL 0.008954 1.366322 0.522496 3.251812 91.87869 0.563798 1.017616
PAN 0.159384 1.495569 0.488026 1.699275 2.15708 96.03858 0.326087

MOVE 0.284742 0.123708 0.611393 0.594203 0.534661 0.150223 97.27511

Overall Classification 
Rate = 93.578%

DATA BELONGING TO :

DATA 
IDENTIFIED 

AS :

 

Table 5.8. Average recognition rates for Testing data; ( )100 7−  network 
configuration; MFCCs as input features; 80 experiments. 

 

KILL_NOISE RIGHT_OUTSIDE
UP 10.27748963 3.983375959

DOWN 11.8218361 27.10038363
LEFT 8.539937759 5.006393862

RIGHT 17.07728216 48.20652174
KILL 25.08428423 2.586317136
PAN 7.139522822 12.99872123

MOVE 20.0596473 0.118286445

DATA BELONGING TO:

DATA 
IDENTIFIED 

AS :

 
Table 5.9. Average recognition rates for the words “kill_noise” and “right_outside;” 

( )100 7−  network configuration; MFCCs as input features; 80 experiments. 
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UP DOWN LEFT RIGHT KILL PAN MOVE
UP 99.72083 0.008333 0.358333 0.004167 0.004167 0 0.016667

DOWN 0.075 99.65417 0.8875 0.304167 0.245833 0.183333 0
LEFT 0.1625 0.1375 98.43333 0.591667 0.029167 0.004167 0.0125

RIGHT 0 0.045833 0.208333 98.41667 0.725 0.308333 0.045833
KILL 0 0.058333 0.008333 0.454167 98.525 0.0125 0
PAN 0.0125 0.095833 0.0375 0.129167 0.416667 99.4875 0

MOVE 0.029167 0 0.066667 0.1 0.054167 0.004167 99.925

Overall Classification 
Rate = 99.166%

DATA BELONGING TO :

DATA 
IDENTIFIED 

AS :

 

Table 5.10. Average recognition rates for Training data; ( )150 7−  network 
configuration; MFCCs as input features; 80 experiments. 

 

UP DOWN LEFT RIGHT KILL PAN MOVE
UP 96.90007 0.199409 2.686865 0.228261 0.127212 0.02411 0.30922

DOWN 0.863181 96.05244 2.378447 1.728261 0.711652 1.192507 0.058096
LEFT 1.68159 0.760709 91.28991 2.277174 0.154867 0.011128 0.296102

RIGHT 0.166547 0.891802 2.403846 90.8279 3.408923 1.164688 0.528486
KILL 0.016117 0.915805 0.410015 3.074275 93.50479 0.548961 0.927661
PAN 0.170129 1.091211 0.362845 1.425725 1.749631 96.94547 0.284858

MOVE 0.202364 0.088626 0.46807 0.438406 0.34292 0.113131 97.59558

DATA 
IDENTIFIED 

AS :

Overall Classification 
Rate = 94.731%

DATA BELONGING TO :

 

Table 5.11. Average recognition rates for Testing data; ( )150 7−  network 
configuration; MFCCs as input features; 80 experiments. 

 

KILL_NOISE RIGHT_OUTSIDE
UP 9.408713693 4.216751918

DOWN 10.94268672 26.93734015
LEFT 8.550311203 7.036445013

RIGHT 19.51763485 46.17327366
KILL 25.77282158 3.391943734
PAN 7.196576763 12.06202046

MOVE 18.61125519 0.182225064

DATA BELONGING TO:

DATA 
IDENTIFIED 

AS :

 
Table 5.12. Average recognition rates for the words “kill_noise” and “right_outside;” 

( )150 7−  network configuration; MFCCs as input features; 80 experiments. 
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UP DOWN LEFT RIGHT KILL PAN MOVE
UP 97.78333 0.070833 1.766667 0.041667 0.179167 0.004167 0.320833

DOWN 0.45 96.10417 1.925 1.191667 3.0875 1.954167 0.1875
LEFT 1.141667 0.879167 93.24167 1.4 0.545833 0.091667 0.695833

RIGHT 0.025 0.654167 1.045833 92.44583 3.508333 1.1375 0.020833
KILL 0.0125 0.35 0.666667 3.295833 90.75 0.35 0.004167
PAN 0.179167 1.55 0.733333 0.529167 1.679167 96.25833 0.070833

MOVE 0.408333 0.391667 0.620833 1.095833 0.25 0.204167 98.7

Overall Classification 
Rate = 95.04%

DATA BELONGING TO :

DATA 
IDENTIFIED 

AS :

 

Table 5.13. Average recognition rates for Training data; ( )150 7−  network 
configuration; RCs as input features; 80 experiments. 

 

UP DOWN LEFT RIGHT KILL PAN MOVE
UP 92.69162 0.409897 5.462627 0.289855 0.291298 0.046365 0.699025
DOWN 1.484599 86.43464 4.963716 3.286232 4.664454 4.324926 0.635307
LEFT 4.222779 3.6226 80.72932 3.798913 1.430678 0.218843 1.84033
RIGHT 0.232808 2.762186 3.216618 78.29529 9.105826 2.349777 1.043853
KILL 0.112822 1.240768 2.463716 10.11775 80.19358 1.656157 0.845202
PAN 0.433381 4.67873 1.050435 2.367754 3.20059 90.90319 0.421664
MOVE 0.821991 0.851182 2.11357 1.844203 1.113569 0.500742 94.51462

DATA 
IDENTIFIED 
AS :

Overall Classification 
Rate = 86.252%

DATA BELONGING TO :

 

Table 5.14. Average recognition rates for Testing data; ( )150 7−  network 
configuration; RCs as input features; 80 experiments. 

 

KILL_NOISE RIGHT_OUTSIDE
UP 11.15793568 8.903452685

DOWN 13.12240664 19.58439898
LEFT 17.43775934 6.988491049

RIGHT 17.06431535 35.96867008
KILL 21.81924274 7.826086957
PAN 4.914419087 18.24488491

MOVE 14.48392116 2.484015345

DATA BELONGING TO:

DATA 
IDENTIFIED 

AS :

 
Table 5.15. Average recognition rates for the words “kill_noise” and “right_outside;” 

( )150 7−  network configuration; RCs as input features; 80 experiments. 
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UP DOWN LEFT RIGHT KILL PAN MOVE
UP 98.93333 0.091667 1.004167 0.029167 0.058333 0.004167 0.075

DOWN 0.3125 98.04583 1.533333 0.983333 0.695833 0.954167 0.020833
LEFT 0.566667 0.4125 95.7625 1.558333 0.066667 0.008333 0.029167

RIGHT 0.0125 0.4 1.070833 95.575 1.1625 0.966667 0.0625
KILL 0 0.516667 0.1875 1.1125 96.5875 0.216667 0.029167
PAN 0.104167 0.525 0.254167 0.479167 1.283333 97.81667 0.020833

MOVE 0.070833 0.008333 0.1875 0.2625 0.145833 0.033333 99.7625

Overall Classification 
Rate = 97.498%

DATA BELONGING TO :

DATA 
IDENTIFIED 

AS :

 

Table 5.16. Average recognition rates for Training data; ( )30 20 7− −  network 
configuration; MFCCs as input features; 80 experiments. 

 

UP DOWN LEFT RIGHT KILL PAN MOVE
UP 95.57486 0.328656 3.835269 0.358696 0.114307 0.025964 0.573463

DOWN 1.332378 93.67245 3.354499 2.405797 1.15413 1.904674 0.140555
LEFT 2.587751 1.172452 87.75218 3.681159 0.230457 0.040801 0.496627

RIGHT 0.15043 1.504801 3.011611 86.21196 4.044985 1.845326 0.633433
KILL 0.023281 1.412482 0.769231 4.369565 91.26291 0.827151 1.36057
PAN 0.162966 1.861152 0.636792 2.429348 2.505531 95.21513 0.406672

MOVE 0.168338 0.048006 0.640421 0.543478 0.687684 0.14095 96.38868

DATA 
IDENTIFIED 

AS :

Overall Classification 
Rate = 92.297%

DATA BELONGING TO :

 

Table 5.17. Average recognition rates for Testing data; ( )30 20 7− −  network 
configuration; MFCCs as input features; 80 experiments. 

 

KILL_NOISE RIGHT_OUTSIDE
UP 9.1156639 4.862531969

DOWN 9.463174274 26.95012788
LEFT 11.07624481 6.297953964

RIGHT 20.3591805 46.08375959
KILL 22.41830913 2.80370844
PAN 7.441649378 12.82928389

MOVE 20.12577801 0.172634271

DATA BELONGING TO:

DATA 
IDENTIFIED 

AS :

 
Table 5.18. Average recognition rates for the words “kill_noise” and “right_outside;” 

( )30 20 7− −  network configuration; MFCCs as input features; 80 experiments. 
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UP DOWN LEFT RIGHT KILL PAN MOVE
UP 99.6125 0.058333 0.408333 0 0.020833 0 0.025

DOWN 0.116667 99.31667 1.054167 0.516667 0.304167 0.4875 0.004167
LEFT 0.183333 0.166667 97.79167 0.95 0.020833 0.004167 0.008333

RIGHT 0.004167 0.116667 0.479167 97.7375 0.545833 0.416667 0.025
KILL 0.004167 0.1625 0.058333 0.408333 98.58333 0.1 0.0125
PAN 0.066667 0.179167 0.125 0.25 0.491667 98.9625 0

MOVE 0.0125 0 0.083333 0.1375 0.033333 0.029167 99.925

Overall Classification 
Rate = 98.847%

DATA BELONGING TO :

DATA 
IDENTIFIED 

AS :

 

Table 5.19. Average recognition rates for Training data; ( )40 20 7− −  network 
configuration; MFCCs as input features; 80 experiments. 

 

UP DOWN LEFT RIGHT KILL PAN MOVE
UP 96.16404 0.306499 3.136792 0.253623 0.105088 0.027819 0.371064

DOWN 1.054799 94.60672 2.835631 1.994565 0.866519 1.680267 0.108696
LEFT 2.310172 1.028434 89.44122 3.001812 0.160398 0.046365 0.395427

RIGHT 0.17192 1.286928 2.942671 88.00543 3.545354 1.511499 0.655922
KILL 0.016117 1.152142 0.649492 4.181159 92.78577 0.771513 1.161919
PAN 0.145057 1.569424 0.46807 2.103261 2.04646 95.86795 0.344828

MOVE 0.137894 0.049852 0.526125 0.460145 0.490413 0.094585 96.96214

DATA 
IDENTIFIED 

AS :

Overall Classification 
Rate = 93.405%

DATA BELONGING TO :

 

Table 5.20. Average recognition rates for Testing data; ( )40 20 7− −  network 
configuration; MFCCs as input features; 80 experiments. 

 

KILL_NOISE RIGHT_OUTSIDE
UP 8.311721992 5.047953964

DOWN 9.544865145 27.11317136
LEFT 9.71473029 7.893222506

RIGHT 21.84128631 43.54539642
KILL 24.09880705 3.318414322
PAN 7.021524896 12.81969309

MOVE 19.46706432 0.262148338

DATA 
IDENTIFIED 

AS :

DATA BELONGING TO:

 
Table 5.21. Average recognition rates for the words “kill_noise” and “right_outside;” 

( )40 20 7− −  network configuration; MFCCs as input features; 80 experiments. 
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UP DOWN LEFT RIGHT KILL PAN MOVE
UP 99.95 0.0125 0.0875 0.008333 0.008333 0 0

DOWN 0.008333 99.88333 0.495833 0.1125 0.05 0.1125 0
LEFT 0.025 0.029167 99.26667 0.3625 0 0 0

RIGHT 0.004167 0.033333 0.116667 99.225 0.0875 0.041667 0.008333
KILL 0 0.0375 0.0125 0.2 99.8125 0 0
PAN 0.008333 0.004167 0.016667 0.079167 0.041667 99.84583 0

MOVE 0.004167 0 0.004167 0.0125 0 0 99.99167

Overall Classification 
Rate = 99.711%

DATA BELONGING TO :

DATA 
IDENTIFIED 

AS :

 

Table 5.22. Average recognition rates for Training data; ( )50 30 7− −  network 
configuration; MFCCs as input features; 80 experiments. 

 

UP DOWN LEFT RIGHT KILL PAN MOVE
UP 96.61891 0.238183 2.570755 0.268116 0.092183 0.016691 0.324213

DOWN 0.757521 95.51329 2.58164 1.788043 0.663717 1.687685 0.118066
LEFT 2.179441 0.94904 90.90348 2.494565 0.164086 0.04822 0.279235

RIGHT 0.148639 1.172452 2.734035 89.79891 3.438422 1.003338 0.631559
KILL 0.025072 0.696086 0.471698 3.615942 93.56563 0.60089 1.154423
PAN 0.155802 1.388479 0.312046 1.643116 1.698009 96.55972 0.30922

MOVE 0.114613 0.042467 0.426343 0.391304 0.37795 0.083457 97.18328

Overall Classification 
Rate = 94.306%

DATA BELONGING TO :

DATA 
IDENTIFIED 

AS :

 

Table 5.23. Average recognition rates for Testing data; ( )50 30 7− −  network 
configuration; MFCCs as input features; 80 experiments. 

 

KILL_NOISE RIGHT_OUTSIDE
UP 7.625778008 4.894501279

DOWN 9.207728216 25.57225064
LEFT 9.9468361 8.81713555

RIGHT 23.00440871 44.12723785
KILL 24.69528008 3.670076726
PAN 6.758298755 12.58951407

MOVE 18.76167012 0.329283887

DATA BELONGING TO:

DATA 
IDENTIFIED 

AS :

 
Table 5.24. Average recognition rates for the words “kill_noise” and “right_outside;” 

( )50 30 7− −  network configuration; MFCCs as input features; 80 experiments. 
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UP DOWN LEFT RIGHT KILL PAN MOVE
UP 100 0 0.004167 0.004167 0.004167 0 0

DOWN 0 99.99583 0.154167 0.025 0.008333 0.0125 0
LEFT 0 0 99.83333 0.0875 0 0 0

RIGHT 0 0.004167 0.004167 99.825 0.008333 0 0
KILL 0 0 0 0.045833 99.96667 0 0
PAN 0 0 0.004167 0.0125 0.0125 99.9875 0

MOVE 0 0 0 0 0 0 100

Overall Classification 
Rate = 99.944%

DATA BELONGING TO :

DATA 
IDENTIFIED 

AS :

 

Table 5.25. Average recognition rates for Training data; ( )60 40 7− −  network 
configuration; MFCCs as input features; 80 experiments. 

 

UP DOWN LEFT RIGHT KILL PAN MOVE
UP 96.6798 0.258493 2.583454 0.21558 0.094027 0.025964 0.23988

DOWN 0.728868 95.64993 2.155298 1.539855 0.678466 1.350148 0.118066
LEFT 2.15437 1.054284 91.44049 2.335145 0.178835 0.04822 0.260495

RIGHT 0.146848 1.043205 2.685051 90.33333 3.442109 0.847552 0.562219
KILL 0.025072 0.655465 0.471698 3.641304 93.62647 0.623145 0.983883
PAN 0.155802 1.281388 0.313861 1.572464 1.699853 97.00482 0.297976

MOVE 0.109241 0.057238 0.350145 0.362319 0.280236 0.100148 97.53748

Overall Classification 
Rate = 94.61%

DATA BELONGING TO :

DATA 
IDENTIFIED 

AS :

 

Table 5.26. Average recognition rates for Testing data; ( )60 40 7− −  network 
configuration; MFCCs as input features; 80 experiments. 

 

KILL_NOISE RIGHT_OUTSIDE
UP 7.378112033 4.721867008

DOWN 9.918309129 24.31905371
LEFT 9.802904564 10.39002558

RIGHT 22.68931535 44.07289003
KILL 25.48495851 4.124040921
PAN 6.790715768 12.17071611

MOVE 17.93568465 0.20140665

DATA BELONGING TO:

DATA 
IDENTIFIED 

AS :

 
Table 5.27. Average recognition rates for the words “kill_noise” and “right_outside;” 

( )60 40 7− −  network configuration; MFCCs as input feature; 80 experiments. 
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UP DOWN LEFT RIGHT KILL PAN MOVE
UP 99.521 0.004167 0.2125 0 0.10833 0 0.058333

DOWN 0.0875 99.042 0.44583 0.19583 0.76667 0.52083 0.075
LEFT 0.27083 0.27083 98.171 0.3875 0.37917 0.041667 0.0875

RIGHT 0.004167 0.17917 0.34167 98.387 0.77917 0.17917 0.029167
KILL 0.0125 0.066667 0.35 0.58333 97.487 0.079167 0.004167
PAN 0.079167 0.21667 0.38333 0.1875 0.45833 99.121 0.004167

MOVE 0.025 0.22083 0.095833 0.25833 0.020833 0.058333 99.742

Overall Classification 
Rate = 98.782%

DATA BELONGING TO :

DATA 
IDENTIFIED 

AS :

 

Table 5.28. Average recognition rates for Training data; ( )60 40 7− −  network 
configuration; RCs as input features; 80 experiments. 

 

UP DOWN LEFT RIGHT KILL PAN MOVE
UP 92.676 0.56499 5.361 0.26449 0.28208 0.057493 0.56784

DOWN 1.1479 86.257 3.8806 2.837 3.3647 4.0078 0.62219
LEFT 4.7529 3.6097 81.402 3.4058 1.8252 0.41728 1.578

RIGHT 0.22564 2.9985 3.6847 79.618 9.8138 1.9381 1.4561
KILL 0.18625 1.5306 2.7141 10.118 81.217 1.8509 1.0926
PAN 0.38682 4.2559 1.0849 2.3659 2.6088 91.419 0.37106

MOVE 0.625 0.78287 1.8723 1.3913 0.88864 0.30972 94.312

Overall Classification 
Rate = 86.7%

DATA BELONGING TO :

DATA 
IDENTIFIED 

AS :

 

Table 5.29. Average recognition rates for Testing data; ( )60 40 7− −  network 
configuration; RCs as input features; 80 experiments. 

 

KILL_NOISE RIGHT_OUTSIDE
UP 9.8561 8.9898

DOWN 11.677 18.632
LEFT 18.474 7.8485

RIGHT 20.502 34.386
KILL 21.272 10.444
PAN 5.0726 17.42

MOVE 13.147 2.2794

DATA BELONGING TO:

DATA 
IDENTIFIED 

AS :

 
Table 5.30. Average recognition rates for the words “kill_noise” and “right_outside;” 

( )60 40 7− −  network configuration; RCs as input feature; 80 experiments. 
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UP DOWN LEFT RIGHT KILL PAN MOVE
UP 97.91667 0.441667 0.716667 0.066667 0.0625 0.1625 0.2375

DOWN 0.358333 95.8875 1.25 0.954167 0.354167 0.945833 0.179167
LEFT 1 1.045833 96.85833 1.141667 0.095833 0.195833 0.391667

RIGHT 0.191667 0.9125 0.704167 95.87917 1.0625 1.0625 0.295833
KILL 0.170833 0.5 0.154167 1.183333 97.71667 0.558333 0.541667
PAN 0.220833 1.0875 0.191667 0.529167 0.6125 96.8875 0.1625

MOVE 0.141667 0.125 0.125 0.245833 0.095833 0.1875 98.19167

Overall Classification 
Rate = 97.048%

DATA BELONGING TO :

DATA 
IDENTIFIED 

AS :

 

Table 5.31. Average recognition rates for Training data; ( )40 20 7− −  network 
configuration; LM algorithm; MFCCs as input features; 80 experiments. 

 

UP DOWN LEFT RIGHT KILL PAN MOVE
UP 93.44377 0.925037 4.003991 0.492754 0.250737 0.320846 0.927661

DOWN 1.260745 88.93833 3.352685 3.471014 0.973451 2.674332 0.404798
LEFT 3.794771 2.9339 86.11756 3.612319 0.628687 0.50816 0.938906

RIGHT 0.444126 2.629247 3.889695 83.62138 4.935472 2.173591 0.878936
KILL 0.222063 1.33678 1.012337 5.480072 89.82485 1.730341 1.997751
PAN 0.363539 2.944978 0.71299 2.61413 2.54056 92.14763 0.401049

MOVE 0.470989 0.291728 0.91074 0.708333 0.846239 0.445104 94.4509

Overall Classification 
Rate = 89.792%

DATA BELONGING TO :

DATA 
IDENTIFIED 

AS :

 

Table 5.32. Average recognition rates for Testing data; ( )40 20 7− −  network 
configuration; LM algorithm; MFCCs as input features; 80 experiments. 

 

KILL_NOISE RIGHT_OUTSIDE
UP 8.606068465 7.007672634

DOWN 9.014522822 23.38554987
LEFT 12.40923237 7.909207161

RIGHT 19.27645228 42.55754476
KILL 23.74610996 4.846547315
PAN 8.292271784 13.48465473

MOVE 18.65534232 0.808823529

DATA BELONGING TO:

DATA 
IDENTIFIED 

AS :

 
Table 5.33. Average recognition rates for the words “kill_noise” and “right_outside;” 

( )40 20 7− −  network configuration; LM algorithm; RCs as input features; 80 
experiments. 
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Figure 5.8. Average Classification Rates and 95% Confidence Intervals; Testing data; 

( )50 7−  network; 14 MFCCs as input features; 80 experiments. 
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Figure 5.9. Average Classification Rates and 95% Confidence Intervals; Testing Set; 

( )100 7−  network; 14 MFCCs as input features; 80 experiments. 
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Figure 5.10. Average Classification Rates and 95% Confidence Intervals; Testing Set; 

( )150 7−  network; 14 MFCCs as input features; 80 experiments. 
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Figure 5.11. Average Classification Rates and 95% Confidence Intervals; Testing Set; 

( )150 7−  network; 14 RCs as input features; 80 experiments. 
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Figure 5.12. Average Classification Rates and 95% Confidence Intervals; Testing Set; 

( )30 20 7− −  network; 14 MFCCs as input features; 80 experiments. 
 

UP DOWN LEFT RIGHT KILL PAN MOVE

75

80

85

90

95

100
 → Average Classification Rates

95% Confidence Intervals for the Testing Set
[ (40-20-7) Network with MFCC as features ]

Vocabulary Words

95
%

 C
on

fid
en

ce
 In

te
rv

al

 
Figure 5.13. Average Classification Rates and 95% Confidence Intervals; Testing Set; 

( )40 20 7− −  network; 14 MFCCs as input features; 80 experiments. 
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Figure 5.14. Average Classification Rates and 95% Confidence Intervals; Testing Set; 

( )50 30 7− −  network; 14 MFCCs as input features; 80 experiments. 
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Figure 5.15. Average Classification Rates and 95% Confidence Intervals; Testing Set; 

( )60 40 7− −  network; 14 MFCCs as input features; 80 experiments. 
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Figure 5.16. Average Classification Rates and 95% Confidence Intervals; Testing Set; 

( )60 40 7− −  network; 14 RCs as input features; 80 experiments. 
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Figure 5.17. Average Classification Rates and 95% Confidence Intervals; Testing Set; 

( )40 20 7− −  network; LM method; 14 MFCCs as input features; 80 experiments. 
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UP DOWN LEFT RIGHT KILL PAN MOVE

50 - 7 94.3             
[ 92.55 , 95.559 ]

91.629          
[ 89.365 , 93.944 ]

82.348           
[ 78.52 , 85.196 ]

81.685           
[ 77.826 , 85.072 ]

86.305           
[ 84.661 , 87.906 ]

92.641           
[ 90.208 , 94.807 ]

96.057           
[ 94.303 , 97.601 ]

89.281           
[ 88.226 , 90.32 ]

100 - 7 96.447           
[ 94.986 , 97.708 ]

94.921          
[ 92.762 , 97.046 ]

89.378           
[ 87.083 , 92.163 ]

89.109           
[ 86.812 , 91.449 ]

91.879           
[ 88.201 , 94.838 ]

96.039           
[ 94.807 , 97.329 ]

97.275           
[ 94.303 , 98.351 ]

93.578           
[ 92.727 , 94.559 ]

150 - 7 96.9             
[ 95.702 , 98.138 ]

96.052          
[ 93.796 , 97.637 ]

91.29            
[ 88.389 , 93.614 ]

90.828           
[ 88.116 , 93.043 ]

93.505           
[ 89.233 , 95.575 ]

96.945           
[ 95.549 , 98.22 ]

97.596           
[ 95.802 , 98.651 ]

94.731           
[ 93.647 , 95.47 ]

150 - 7 (RC) 92.692           
[ 90.831 , 94.842 ]

86.435          
[ 83.013 , 89.956 ]

80.729           
[ 76.778 , 83.559 ]

78.295           
[ 74.203 , 81.739 ]

80.194           
[ 74.926 , 84.218 ]

90.903           
[ 88.131 , 93.62 ]

94.515           
[ 92.504 , 96.252 ]

86.252           
[ 84.926 , 87.546 ]

30 - 20 -7 95.575           
[ 93.553 , 97.421 ]

93.672          
[ 91.137 , 95.864 ]

87.752           
[ 84.906 , 90.421 ]

86.212           
[ 83.333 , 88.986 ]

91.263           
[ 87.611 , 93.658 ]

95.215           
[ 93.027 , 96.884 ]

96.389           
[ 95.052 , 97.451 ]

92.297           
[ 91.22 , 93.319 ]

40 - 20 -7 96.164           
[ 94.699 , 97.708 ]

94.607          
[ 91.433 , 97.046 ]

89.441           
[ 86.792 , 91.872 ]

88.005           
[ 85.507 , 90.725 ]

92.786           
[ 89.676 , 94.543 ]

95.868           
[ 93.62 , 97.329 ]

96.962           
[ 95.502 , 98.201 ]

93.405           
[ 91.954 , 94.217 ]

50 - 30 - 7 96.619           
[ 95.272 , 97.564 ]

95.513          
[ 93.058 , 97.489 ]

90.903           
[ 87.954 , 93.033 ]

89.799           
[ 86.812 , 91.884 ]

93.566           
[ 91.445 , 95.428 ]

96.56            
[ 94.659 , 97.923 ]

97.183           
[ 96.102 , 98.351 ]

94.306           
[ 93.335 , 95.048 ]

60 - 40 -7 96.68            
[ 95.559 , 97.851 ]

95.65           
[ 93.353 , 97.341 ]

91.44            
[ 89.115 , 93.759 ]

90.333           
[ 86.957 , 93.043 ]

93.626           
[ 91.593 , 95.428 ]

97.005           
[ 95.401 , 98.368 ]

97.537           
[ 96.102 , 98.651 ]

94.61            
[ 93.795 , 95.381 ]

60 - 40 - 7 (RC) 92.676           
[ 90.115 , 94.699 ]

86.257          
[ 83.456 , 89.365 ]

81.402           
[ 78.665 , 85.051 ]

79.618           
[ 76.667 , 83.333 ]

81.217           
[ 76.991 , 83.923 ]

91.419           
[ 89.466 , 93.917 ]

94.312           
[ 92.804 , 95.802 ]

86.7             
[ 85.708 , 87.783 ]

40 - 20 - 7 (LM) 93.444           
[ 90.401 , 96.991 ]

88.938          
[ 78.73 , 94.978 ]

86.118           
[ 79.681 , 90.771 ]

83.621           
[ 76.377 , 88.116 ]

89.825           
[ 82.448 , 92.625 ]

92.148           
[ 78.338 , 96.884 ]

94.451           
[ 86.507 , 97.451 ]

89.792           
[ 78.436 , 92.74 ]

VOCABULARY WORDS
Overall Average 

Classification 
Rate and 95% 

Confidence 
Interval

Network 
Configuration

 
Table 5.34. Average Classification Rates and 95% Confidence Intervals for the 

Testing sets of all configurations considered. 
 

The following overall comments can be made from the results: 

• The recognition performance of the multi-layer networks gradually 
increases as the number of hidden neurons in the hidden layer(s) increases 
for both two-layer and three-layer network configurations. 

• The best recognition performances are obtained with the ( )150 7−  
network for the two-layer network configurations, and with the 
( )60 40 7− −  network for the three-layer networks when MFCCs are used 
as input features. The overall average recognition rates obtained with the 
( )150 7−  and ( )60 40 7− −  networks are 94.761% and 94.61%, 
respectively. It is not, however, possible to tell which one is superior to the 
other since their recognition performances are very close to each other. 

• The best network configurations, i.e., the ( )150 7−  and ( )60 40 7− −  
networks that yield the highest average recognition results with the 
MFCCs, produce 86.252% and 86.7% respectively when RC coefficients 
are used for input features. There is about an 8% difference between the 
overall average recognition rates obtained with the MFCCs and RCs. The 
performance degradation is more severe and noticeable on the words 
“left,” “right,” and “kill.” The 95% average classification rates confidence 
interval lower bounds for the networks with the RC coefficients goes 
down to 74%, and we note that the confidence interval spreads are much 
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larger than those obtained with the MFCCs, sometimes 8% to 10% for the 
words “left,” “right,” and “kill.” Therefore, results show that the MFCCs 
are superior to the RCs in recognition performance when used with the 
multi-layer neural networks for the data under investigation. 

• The average recognition rate obtained for the CG algorithm is about 3.5% 
better than that obtained with the LM algorithm for the ( )40 20 7− −  
network configuration. Although the difference in overall classification 
performances may seem small, the difference between the two algorithms 
becomes more significant when the individual confusion matrices and 
95% confidence interval plots are examined. The degradation in 
recognition is very noticeable on all the vocabulary words except “move” 
and “up.” The spreads in confidence intervals of the words “down” and 
“pan” obtained with the LM method are 16.25% and 18.55% respectively, 
whereas the spreads for the same words obtained with the CG method are 
5.6% and 3.7%, respectively. Therefore, the CG algorithm leads to a more 
accurate and reliable network configuration for this word recognition 
study than the LM algorithm does. 

• All network configurations considered here produce the same recognition 
trend for the seven vocabulary words. The highest recognition results are 
consistently obtained with the words “move,” “up,” “pan,” “down,” and 
“kill,” respectively. Results show that the recognition rate is always lower 
for the words “right” and “left,” respectively. Although there might be 
multiple reasons for this performance degradation on these two words, one 
possible cause may be the gap (due to weak fricative or diphthong) 
between the voiced portion of these words and the stop consonant / t / at 
the end of the same words, resulting in incorrect end-point detection. 

• Recognition performances become very poor, when the networks are 
tested on types of data that they were not trained on, i.e., when tested on 
the “kill_noise” and “right_outside” data. As explained in Chapter II, the 
frequency contents the words “right,” collected within the ear canal and 
“right_outside,” collected from a microphone placed in front of the mouth, 
are quite different due to the low-pass nature of the auditory canal. The 
spectrograms for the two versions of the same word, shown in Figures 2.9 
and 2.10, show that higher frequencies are dampened for the signal 
collected within the ear canal, resulting in potential large differences in the 
spectral-based RC and MFCC coefficients. Such differences are very 
likely responsible for performance degradations observed when the 
networks are tested on the “right_outside” data. These results also show 
that additional training with signals generated in front of the mouth would 
be required if a dual input mode microphone set-up (i.e., either data 
collected at mouth or within the ear canal) was to be considered. The 
highly degraded recognition performance observed for the “kill_noise” 
data is due to the noise embedded in these utterances. Although all other 
utterances on which the networks are trained and tested contain some 
amount of noise, the noise is not as severe as that present in the 
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“kill_noise” data, as illustrated in Figure 5.18 to be compared to Figure 
2.7. The amount of noise result in RC and MFCC coefficients obtained for 
the “kill_noise” data to be different from those obtained with the “kill” 
data which in turn results in very poor recognition rates. Therefore, some 
sort of speech enhancement or noise cancellation techniques should be 
incorporated prior to the word recognition step. 
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Figure 5.18. Speech waveform (top plot) and associated spectrogram (bottom plot) of 

“kill_noise” (kill_noise_16_35_08_25_05.txt). 
 

H. SUMMARY 
This chapter presented the multi-layer neural networks and the related learning 

algorithms considered in this study. Next, we presented the recognition results obtained 

with the different multi-layer neural network configurations considered and two different 

spectral-based representations, i.e., the MFCCs and RC coefficients. 

Results show that the ( )150 7−  network among all two-layer network 

configurations and the ( )60 40 7− −  network among three-layer network configurations 
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considered yielded highest and similar average recognition results when MFCCs were 

used as input features. As a result, either of these two configurations could be selected for 

word recognition. Results showed that MFCCs lead to better classification rates than RCs 

do for all network configurations investigated, as commonly observed in typical speech 

signal studies. Results also showed that the CG algorithm led to more accurate and 

reliable network configurations than the LM algorithm did for the network complexities 

and data size considered in this study. We also noted that the performance of the multi-

layer networks degraded significantly under severe noise conditions, which points out the 

need for some type of noise cancellation to be applied prior to the speech recognition 

stage. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 
This study implemented a basic isolated word recognition system operating on 

utterances collected from the external auditory canals of speakers via an ear-insert 

microphone. The speech recognition system considered here includes preprocessing, end 

point detection, feature extraction, and recognition stages. 

Initial preprocessing was achieved by a simple IIR bandpass filter to remove a 

low-frequency hum present in the recordings and high frequencies that did not carry 

much speech information. Next, the speech was passed through an end point detector that 

isolated speech from non-speech segments. 

Next, real cepstrum (RC) coefficients and mel-frequency cepstral coefficients 

(MFCCs) were extracted from each segmented utterance and used as input features for 

different neural network classifiers. Ten different two- and three-layer neural network 

configurations with different numbers of hidden neurons were implemented for the word 

recognition task and their resulting classification performances compared. 

Recognition results showed that increasing the numbers of hidden neurons (while 

avoiding overfitting) increased the performance of both two-layer and three-layer 

networks. Best overall recognition rates were obtained for the two-layer network with the 

( )150 7−  configuration using MFCCs as input features (94.731%), and for the three-

layer network with the ( )60 40 7− −  configuration (94.61%), respectively. Best overall 

recognition rates obtained with the same ( )150 7−  and ( )60 40 7− −  networks using RCs 

as input features were 86.252% and 86.7% respectively. Therefore, results showed that 

MFCCs are a better choice for the data under investigation, as observed in other speech 

studies where data collection is done at the mouth. Implementation results also showed 

that the conjugate gradient algorithm led to more accurate and reliable network 

configuration than the Levenberg-Marquardt algorithm did for the network complexities 

and data size considered in this study. Finally, we noted that the performance of the 

multi-layer networks degraded significantly under severe noise conditions, i.e., when 
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tested on the “kill_noise,” data, thereby showing the need for some noise cancellation 

prior to data processing. 

In conclusion, the study showed that a simple feedforward back propagation 

configuration can be used for this isolated word recognition problem, given a sufficient 

number of neurons in the hidden layers and MFCCs are selected as input features. 

B. RECOMMENDATIONS 

There are still a wide variety of issues that can be addressed in order to build a 

robust and reliable speech recognizer. Suggestions for future studies include: 

• Expanding the vocabulary used for speech recognition with new words 
and increasing the database. 

• Incorporating speech enhancement techniques to the preprocessing stage 
to enhance the recognizer accuracy and reliability in the presence of noise. 

• Using a frame-based feature extraction method instead of computing the 
input features on one frame only which includes the entire word as done in 
this study. 

• Investigating the performance of other neural network types for word 
recognition, especially those that take the dynamic nature of speech into 
account, such as time-delay neural networks (TDNN) for example. 
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APPENDIX A. IN-EAR MICROPHONE SPECIFICATIONS 

This appendix lists the specifications of the in-ear microphone used for 

recordings.  

 

 
Figure A.1. Specifications of the in-ear microphone used for recordings (From: 

www.knowlesacoustics.com, last accessed on February 15, 2006). 
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Figure A.2. (Continued from Figure A.1.) Specifications of the in-ear microphone 

used for recordings (From: www.knowlesacoustics.com, last accessed on February 
15, 2006). 
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APPENDIX B. MATLAB SOURCE CODE 

This appendix lists all Matlab programs and functions used for this study. These 

programs have been developed according to the problem definition of the current study. 

Two of the functions used for feature extraction task are from the “Voicebox Toolbox” 

by Brookes [Brookes, 1997] and modified according to the requirements of this study. 

Listed below are the three stages of the word recognizer implemented for this 

study. The Matlab programs and functions are presented along with their descriptions 

under the stage they belong to. For the first two stages, the first program is the main 

program to be executed, and the following are the functions that are being called by the 

main program. For the last stage, all the programs listed are the main programs to be 

executed, and only two programs (one for two-layer network and one for three-layer 

network) for two networks out of ten configurations implemented for this study are 

shown. The other configurations for both network types can easily be obtained by 

changing a few parameters in the programs. 

1. DESCRIPTION 

a. End Point Detection 

• speech_segmentation.m: Performs the speech segmentation task on the 
whole data set. 

• energy_threshold.m: Computes the required thresholds, and passes them to 
the following energy-based end point detection algorithm. 

• endpoint_detection.m: Conducts the complete energy-based end point 
detection algorithm and finds the initial end point estimates of an 
utterance. This function calls two sub-functions in itself, 
endpoint_detector.m, and endpoint_correct.m. 

• endpoint_detector.m: Conducts the actual energy-based end point 
detection, computes the utterance energy, and returns the initial end point 
estimates if a miss does not occur. 

• endpoint_correct.m: Complements the energy-based end point detection 
algorithm, and resumes operation if a miss or a false alarm occurs at the 
completion of endpoint_detector.m. This sub-function uses the median 
filtered short-time energy quantity to find the utterance end points. 

• endpoint_refine: Refines the initial end point estimates returned by the 
energy-based end point detection algorithm (endpoint_detection.m), as the 
secondary measure. This function uses the energy-entropy feature (EEF). 
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b. Feature Extraction 

• Feature_extract.m: Extracts both the MFCCs and RC coefficients for each 
segmented utterance, and saves all extracted MFCC and RC features in 
two separate mat files for use in the classification stage. 

• melcepstrum.m: Computes the MFCCs of an input speech signal (From 
[Brookes, 1997]). 

• melbank.m: Creates the conceptual triangular filters that are used as the 
filterbank to compute the MFCCs (From [Brookes, 1997]). 

c. Recognition 

• BPNN_MFCC_2_Layer.m: Performs the word recognition task. This 
program contains the ( )150 7−  network that uses the MFCCs as its input 
features. 

• BPNN_MFCC_3_Layer.m: Performs the word recognition task. This 
program contains the ( )60 40 7− −  network that uses the MFCCs as its 
input features. 

2. MATLAB CODE LISTING 

• speech_segmentation.m: 
 

% ********************************************************************* 
% Filename  : speech_segmentation.m 
%     (Speech Segmentation Main Program) 
% Thesis Advisor : Prof. Monique P. Fargues 
% Author  : LTJG Gokhan Bulbuller 
%     Turkish Navy 
% Date   : November, 2005 
% Description  : The main program for the speech segmentation task. It takes a  
%     recorded speech file from the folder that belongs to a word  
%     uttered by a subject in the "Split" folder, passes it through an  
%     elliptical bandpass IIR filter, finds the utterance end points, crops  
%     the utterance from the detected end points, and saves the  
%     segmented utterance into a folder belonging to the same word  
%     uttered by the same subject in the "Crop" folder. 
% Inputs  : Recorded utterances in the database. 
% Outputs  : Segmented utterances. 
% Functions Used : energy_threshold.m, endpoint_detection.m, endpoint_refine.m. 
% ********************************************************************* 
 
clear all, close all, clc, 
 
Main_loc = ['C:\Documents and Settings\Owner\My Documents\thesis\ear_mic_data\ 
data\' ] ; 
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% Specify the full path names for subjects, recording dates associated with subjects, and 
% the vocabulary words. 
 
path_name(1,1)  = { Main_loc '1'  } ; 
path_name(2,1)  = { Main_loc '2'  } ; 
path_name(3,1)  = { Main_loc '3'  } ; 
path_name(4,1)  = { Main_loc '4'  } ; 
path_name(5,1)  = { Main_loc '5'  } ; 
path_name(6,1)  = { Main_loc '6'  } ; 
path_name(7,1)  = { Main_loc '7'  } ; 
path_name(8,1)  = { Main_loc '8'  } ; 
path_name(9,1)  = { Main_loc '9'  } ; 
path_name(10,1) = { Main_loc '10' } ; 
path_name(11,1) = { Main_loc '11' } ; 
path_name(12,1) = { Main_loc '12' } ; 
path_name(13,1) = { Main_loc '13' } ; 
path_name(14,1) = { Main_loc '14' } ; 
path_name(15,1) = { Main_loc '15' } ; 
path_name(16,1) = { Main_loc '16' } ; 
path_name(17,1) = { Main_loc '17' } ; 
path_name(18,1) = { Main_loc '18' } ; 
path_name(19,1) = { Main_loc '19' } ; 
path_name(20,1) = { Main_loc '20' } ; 
 
date(1,1)  = { '04_13_05' } ; 
date(2,1)  = { '04_25_05' } ; 
date(3,1)  = { '04_25_05' } ; 
date(4,1)  = { '04_28_05' } ; 
date(5,1)  = { '04_28_05' } ; 
date(6,1)  = { '04_29_05' } ; 
date(7,1)  = { '04_29_05' } ; 
date(8,1)  = { '04_29_05' } ; 
date(9,1)  = { '04_29_05' } ; 
date(10,1) = { '05_02_05' } ; 
date(11,1) = { '05_02_05' } ; 
date(12,1) = { '05_02_05' } ; 
date(13,1) = { '05_04_05' } ; 
date(14,1) = { '05_05_05' } ; 
date(15,1) = { '05_12_05' } ; 
date(16,1) = { '08_25_05' } ; 
date(17,1) = { '08_22_05' } ;  
date(18,1) = { '08_22_05' } ; 
date(19,1) = { '08_22_05' } ; 
date(20,1) = { '08_25_05' } ; 
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word(1,1) = { 'up'    } ; 
word(2,1) = { 'down'  } ; 
word(3,1) = { 'left'  } ; 
word(4,1) = { 'right' } ; 
word(5,1) = { 'kill'  } ; 
word(6,1) = { 'pan'   } ; 
word(7,1) = { 'move'  } ; 
word(8,1) = { 'kill_noise'    } ; 
word(9,1) = { 'right_outside' } ; 
 
fs = 8e3 ;      % Sampling Frequency used for recordings. 
 
% -------- Preprocessing Stage ------------- 
% Elliptical bandpass IIR filter  
% Passband = 150 - 2300 Hz , and Transition Band = 50 Hz (on both sides). 
 
[m,Wn] = ellipord([0.0375 0.575],[0.025 0.5875],1,50) ; 
[b,a] = ellip(m,1,50,Wn) ; 
 
% ----------------------------------------------- 
 
% The loop below implements the speech segmentation task for the whole data set. The 
% outer loop is for the 20 subjects, and the inner loop is for nine words uttered by each  
% subject. 
 
for i = 1:20 
 
for j = 1:9 
 
% Define the Split folder location to be opened, the folder location to be created to save 
% the segmented utterances. 
 
open_loc  = [ path_name{i,1} '\Split\' word{j,1} ] ; 
save_loc = [ path_name{i,1} '\Cropped\' word{j,1} ] ; 
 
mkdir(save_loc) ; 
 
Open_dir = dir(open_loc) ;               % List the contents of the folder.  
[m,n] = size(Open_dir) ;           % Size of the folder. 
 
% Implement the end point detection and segmentation for each recorded utterance. 
 
for trial=1:(m-2) 
 
% Specify the file to be opened of the form:  
%                    "word_subject #_trial #_month_day_year.txt."  
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open_split_file_loc = [open_loc,'\',word{j,1},'_',num2str(i),'_',... 
                                                         num2str(trial),'_',date{i,1},'.txt'];  
 
fid = fopen(open_split_file_loc,'r');                  % Open text file for read. 
 
%If the maximum number of recorded utterances in the folder is exceeded, then 
%terminate the loop. 
 
if fid == -1 
    break ; 
end 
 
sig_str = fscanf(fid,'%c');             % Read the file as string characters, and 
sig = str2num(sig_str);                 % Convert it to a numeric vector. 
 
if size(sig,1) ~= 1, sig = sig' ; end         % Work with row vectors. 
 
sig = sig - mean(sig) ;      % Remove the DC Offset from the signal. 
 
sig_filtered = filter(b,a,sig) ; % Pass the signal through the bandpass filter. 
 
sig1 = sig ; sig = sig_filtered ; 
 
N = fs/100 ;           % Total number of samples in each overlapping frame. 
n = floor(2*length(sig)/N) ;          % Total number of overlapping frames. 
 
%Calculate the silence energy, computed portion of the energy curve, upper and lower 
%thresholds, starting frame number for end point detection algorithm, and related index 
%numbers. 
 
[E,E_silence,ITU,ITL,start,p,k] = energy_threshold(sig,N,n) ; 
 
% Implement the end point detection algorithm using the short-time absolute magnitude 
% energy parameter. 
 
[startpt,endpt,E] = endpoint_detection(sig,ITL,ITU,E,start,p,k,N,n) ; 
 
% Refine the end points using energy-entropy feature (EEF). 
 
[startpt_rev,endpt_rev] = endpoint_refine (sig,startpt,endpt,E,N,n) ; 
 
% Crop the recording from the end points detected by the algorithm employed above to 
% isolate the utterance from silence sections. 
 
sig_chopped = sig(startpt_rev:endpt_rev) ; 
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sig_chop_dur (trial) = ( (endpt_rev - startpt_rev) / N ) * 10 ; % Segmented utterance 
durations. 
 
% Specify the location to save the segmented utterance. 
 
cropped_loc = [save_loc,'\',word{j,1},'_',num2str(i),'_',...  
                                                  num2str(trial),'_',date{i,1},'.txt']; 
 
save(cropped_loc,'sig_chopped','-ASCII') ;                   % Save the segmented utterance. 
 
end 
 
end 
 
end 
 
% *********************** END OF MAIN PROGRAM ********************** 
  

• energy_threshold.m: 
 

function [E,E_silence_20,E_silence,ITU,ITL,start,p,k] = energy_threshold(sig,N,n) 
% ********************************************************************* 
% Filename  : energy_threshold.m 
%     (Function) 
% Thesis Advisor : Prof. Monique P. Fargues 
% Author  : LTJG Gokhan Bulbuller 
%     Turkish Navy 
% Date   : October, 2005 
% Description  : Threshold function for the energy-based end point detection  
%     algorithm. 
% Inputs  : 1. sig : Filtered speech signal, 
%     2. N : Total number of samples in a frame. 
%     3. n : Total number of overlapping frames. 
% Outputs  : 1. ITL  : Lower Threshold, 
%     2. ITU  : Upper Threshold, 
%     3. E   : Short-time absolute magnitude energy, 
%     4. E_silence_20 : Average silence energy derived from 
%        the first 20 frames of a recording, 
%     5. E_silence  : Modified average silence energy, 
%     6. start  : Frame index to start the end point search, 
%     7. p and k  : Sample points to start to compute the  
%        energy in the end point detection  
%        algorithm.  
% Functions Used : N/A 
% ********************************************************************* 
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p = 1 ; k = N ;      % Edges of the first frame. 
 
% Compute the short-time absolute magnitude energies of the first 20 frames. 
 
for i=1:20 
    E(i) = sum(abs(sig(p:k))) ; 
    k = k + 40 ; p = p + 40 ;         % Shift frame to the right. 
    if k > length(sig) 
       sig(length(sig):k) = 0 ; 
    end 
end 
 
start = i ;  
 
E_silence = (1/20) * sum(E) ;      % Average silence energy. 
E_silence_20 = E_silence ; 
 
% Modify E_silence if necessary. 
 
if (3.0 < E_silence & E_silence < 4.5) | (E_silence == 0) 
   for i= 21:60 
        E(i) = sum(abs(sig(p:k))) ; 
        k = k + 40 ; p = p + 40 ; 
        if k > length(sig) 
           sig(length(sig):k) = 0 ; 
        end 
        E_silence = (1/20) * sum(E((i - 19) : i)) ;  
        start = i ; 
        if E_silence < 2.0 
           break 
        end 
   end    
end 
 
% Set the upper and lower thresholds, ITL and ITU, with respect to E_silence. 
 
if E_silence >= 3.0 & E_silence < 4.5 
    ITL = 1.2 * E_silence ; 
    ITU = 3 * E_silence ; 
elseif 2.0 <= E_silence & E_silence < 3.0 
    ITL = E_silence ; 
    ITU = 2.5 * E_silence ; 
elseif 1.0 < E_silence & E_silence < 2.0 
    ITL = 1.5 * E_silence ; 
    ITU = 3 * E_silence ; 
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elseif E_silence <= 1.0 & E_silence >= 0.5 
    ITL = 2 * E_silence ; 
    ITU = 4 * E_silence ; 
elseif E_silence >= 0.25 & E_silence < 0.5 
    ITL = 2 * E_silence ; 
    ITU = 3 * ITL ; 
elseif E_silence < 0.25 
    ITL = 3 * E_silence ; 
    ITU = 4 * ITL ; 
end 
 
if E_silence >= 4.5 
    E_silence = 0.5 ;  
    ITL = 3 * E_silence    
    ITU = 6 * E_silence ;   
    start = 1 ; 
end 
 
% ************************* END OF FUNCTION ************************* 
 

• endpoint_detection.m: 
 
function [startpt,endpt,E] = endpoint_detection(sig,ITL,ITU,E,start,p,k,N,n) 
% ********************************************************************* 
% Filename  : endpoint_detection.m 
%     (Function) 
% Thesis Advisor : Prof. Monique P. Fargues 
% Author  : LTJG Gokhan Bulbuller 
%     Turkish Navy 
% Date   : November, 2005 
% Description  : Energy-based end point detection algorithm that finds the initial  
%     end point estimates of an utterance and computes the utterance  
%     energy. 
% Inputs  : 1. sig  : Filtered speech signal, 
%     2. E  : Short-time absolute magnitude energy of the  
%       recording computed up to sample index k, 
%     3. ITL : Lower Threshold, 
%     4. ITU : Upper Threshold, 
%     5. N  : Total number of samples in a frame, 
%     6. n  : Total number of overlapping frames. 
%     7. start : Frame index to start the end point search,  
%     8. p and k : Sample indices to start to compute energy. 
% Outputs  : 1. startpt : Initial estimate of the speech start point, 
%     2. endpt : Initial estimate of the speech end point, 
%     3. E  : Short-time absolute magnitude energy. 
% Functions Used : endpoint_detector.m, endpoint_correct.m (Sub-functions) 
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% ********************************************************************* 
 
start2 = start ; endfr = 0 ; 
 
% Conduct the end point detection algorithm, and find the initial edge point estimates. 
 
[start,endfr,E,p,k,i] = endpoint_detector (sig,ITL,ITU,E,start,endfr,p,k,n,N) ; 
 
% If a "miss" has occured (the first condition below), then pass the energy function  
% through a fifth order median filter, and repeat the end point detection scheme with  
% "endpoint_correct.m". Otherwise, compute the rest of the energy curve. 
 
if ( start == n-1 ) & ( i == n )         % ==> Then, a "miss" has occured!  
    sig( length(sig):k ) = 0 ;      
    E (i) = sum( abs(sig(p:k)) ) ;  
    E_med = medfilt1 (E,5) ;  
    [start,endfr] = endpoint_correct (E_med,ITL,ITU,n,N,start2) ; 
else 
     while ( start ~= n-1 ) & ( i <= n )         % ==> Detection case, 
        E(i) = sum(abs(sig(p:k))) ;                        % Continue the normal operation. 
        k = k + 40 ; p = p + 40 ; 
        if k > length(sig) 
           sig(length(sig):k) = 0 ; 
        end 
        i = i + 1 ; 
     end 
     E_med = medfilt1 (E,5) ;              % Median filter the energy function. 
end 
 
% Find the maximum of median filtered energy curve between the initial end point  
% estimates. 
 
max_chop = max( E_med(start:endfr) ) ; 
 
% If a false alarm occurs (i.e., a nonspeech segment was declared as speech), then repeat  
% the detection scheme starting from the previously declared speech ending point. 
 
while max_chop < max(E_med)        % ==> False Detection 
   start_old = start ; endfr_old = endfr ;             % Keep the old estimates.  
   start2 = endfr ; 
   [start,endfr] = endpoint_correct (E_med,ITL,ITU,n,N,start2) ; 
   max_chop = max( E(start:endfr) ) ; 
   if start > endfr                                     % In case of error, use the old estimates. 
       start = start_old ; endfr = endfr_old ; 
   end 
end 
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startpt = start * (N/2) ;  % Initial estimate of the utterance start point detected by the  
                                      % energy-based algorithm.  
 
endpt = endfr * (N/2) ;  % Initial estimate of the utterance end point detected by the  
                                      % detected by the energy-based algorithm.  
 
% ********************** END OF MAIN FUNCTION *********************** 
 

• endpoint_detector.m: 
 
function [start,endfr,E,p,k,i] = endpoint_detector(sig,ITL,ITU,E,start,endfr,p,k,n,N) 
% ********************************************************************* 
% Filename  : endpoint_detector.m 
%     (Sub-function) 
% Thesis Advisor : Prof. Monique P. Fargues 
% Author  : LTJG Gokhan Bulbuller 
%     Turkish Navy 
% Date   : November, 2005 
% Description  : The first sub-function used by the main function.  
%     This sub-function implements the actual energy-based end point  
%     detection algorithm, and returns the initial end point estimates  
%     together with the utterance energy. 
% Inputs  : 1. sig  : Filtered speech signal, 
%     2. E  : Short-time absolute magnitude energy of the  
%       recording computed up to sample index k, 
%     3. ITL : Lower Threshold, 
%     4. ITU : Upper Threshold, 
%     5. N  : Total number of samples in a frame, 
%     6. n  : Total number of overlapping frames, 
%     7. start : Frame index to start the end point search, 
%     8. endfr : Frame index for the end point, 
%     9. p and k : Sample indices to start to compute energy. 
% Outputs  : 1. start : Estimate of the speech start point, 
%     2. endfr : Estimate of the speech end point, 
%     3. E  : Short-time absolute magnitude energy, 
%     4. p and k : Sample indices for the frame start and end, 
%     5. i  : Frame index. 
% Functions Used : N/A 
% ********************************************************************* 
 
t = 0 ; 
 
if start == 1    % Determine the initial starting frame number. 
   i = 21 ; 
elseif start ~= 1 
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   i = start + 1 ; 
end 
 
% Search to the right for the preliminary start point. 
 
while i < n 
    E(i) = sum(abs(sig(p:k))) ;        % Compute the frame energy. 
    k = k + 40 ; p = p + 40 ;       % Shift frame to the right. 
    if k > length(sig) 
       sig(length(sig):k) = 0 ; 
    end 
    if E(i) < ITU                 % ==> Continue to search for a possible start point. 
       start = start + 1 ; i = i + 1 ; 
    else 
    if E(i) > ITU               % ==> Possible start point.   
                                        %     Check the next 10 frames if E(i+1:i+10)>ITU. 
           for j = (i+1):(i+10) 
               E(j) = sum(abs(sig(p:k))) ;  
               k = k + 40 ; p = p + 40 ; 
               if k > length(sig) 
                  sig(length(sig):k) = 0 ; 
               end 
               if E(j) > ITU 
                  t = t + 1 ; 
               end 
           end 
           if t ~= 10            % ==> Continue to search for a possible start point.  
              start = start + 11 ; i = i + 11 ; 
              t = 0 ;  
           end 
    end   
    end 
           if t == 10                   % ==> Preliminary start point. Terminate the loop. 
              start = start + 1 ; break  
           end 
end 
 
% Move backwards to find where the energy first goes under ITL. Mark it as the initial  
% utterance start point. 
 
while E(start) > ITL 
  start = start - 1; 
  if start == 1 
      break 
  end 
end 
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if ( start == n-1 ) & ( i == n )            % ==> A "miss" has occured! 
    detect_case = 0 ; 
else detect_case = 1 ;                  % ==> Detection case. 
end 
 
switch detect_case 
    case (1)                      % ==> Continue to search for the utterance end point. 
 
% Search to the right for the preliminary end point starting from the point where the  
% algorithm has stopped the energy computation. 
 
t = 0 ; endfr = j ; i = j + 1 ;              % ==> Set the starting frame index. 
 
while i < n 
    E(i) = sum(abs(sig(p:k))) ;          % Compute the frame energy. 
    k = k + 40 ; p = p + 40 ;           % Shift frame to the right. 
    if k > length(sig) 
       sig(length(sig):k) = 0 ; 
    end 
    if E(i) > ITU             % ==> Continue to search for a possible end point. 
        endfr = endfr + 1 ; i = i + 1 ; 
    else 
    if E(i) < ITU             % ==> Possible end point.   
                                      %     Check the next 10 frames if E(i+1:i+10)>ITU. 
           for j = (i+1):(i+10) 
               E(j) = sum(abs(sig(p:k))) ;  
               k = k + 40 ; p = p + 40 ; 
               if k > length(sig) 
                  sig(length(sig):k) = 0 ; 
               end 
               if E(j) > ITU                     
                  t = t + 1 ; 
               end 
           end 
           if t ~= 10               % ==> Preliminary end point. Terminate the loop. 
              endfr = endfr + 1 ; break   
           end 
           if t == 10              % ==> Continue to search for a possible end point. 
              endfr = endfr + 11 ; i = i + 11 ; 
              t = 0 ;   
           end 
    end   
    end 
end 
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% Move forwards to find where the energy first goes under ITL. Mark it as the initial  
% utterance end point. 
 
while E(endfr) > ITL 
  endfr = endfr + 1; 
  if endfr > j              % ==> If frame index exceeds the computed energy index. 
     E(endfr) = sum(abs(sig(p:k))) ; 
     k = k + 40 ; p = p + 40 ; 
     if k > length(sig) 
       sig(length(sig):k) = 0 ; 
     end 
  end 
end 
 
% Adjust frame index numbers for subsequent computations. 
 
if endfr <= j 
   i = j + 1 ; 
else i = endfr + 1 ; 
end 
 
case (0)               % ==> "Miss case". Do not conduct the end point search,  
                            %     and return to the main function. 
    endfr = 0 ; 
end 
 
% ************************** END OF FUNCTION ************************* 
 

• endpoint_correct.m: 
 
function [start,endfr] = endpoint_correct (E_med,ITL,ITU,n,N,start2) 
% ********************************************************************* 
% Filename  : endpoint_correct.m 
%     (Sub-function) 
% Thesis Advisor : Prof. Monique P. Fargues 
% Author  : LTJG Gokhan Bulbuller 
%     Turkish Navy 
% Date   : November, 2005 
% Description  : The second sub-function used by the main function, which  
%     complements the energy-based end point detection scheme.  
%     This sub-function resumes operation if a "miss" or "false alarm"  
%     occurs at the completion of energy-based end point detection  
%     function. It searches for the end points using the median filtered  
%     energy function. Corrected or detected edge points are returned to  
%     the main program. 
% Inputs  : 1. E_med : Median filtered energy function, 



126 

%     2. ITL : Lower Threshold, 
%     3. ITU : Upper Threshold, 
%     4. N  : Total number of samples in a frame, 
%     5. n  : Total number of overlapping frames, 
%     6. start2 : Frame index to start the end point search. 
% Outputs  : 1. start : Estimate of the speech start point, 
%     2. endfr : Estimate of the speech end point. 
% Functions Used : N/A 
% ********************************************************************* 
 
% Adjust the upper threshold if it exceeds the maximum of the energy function after  
% median filtering. 
 
if ITU >= max (E_med) 
    ITU = 0.8 * ( max(E_med) - ITL ) ; 
end 
 
start = start2 ; endfr = 0 ; i = start2 + 1 ; 
 
t = 0 ; 
 
% Search forwards for the preliminary start point. 
 
while i < n 
   if E_med(i) < ITU               % ==> Continue to search for a possible start point. 
      start = start + 1 ; i = i + 1 ; 
    else 
    if E_med(i) > ITU                % ==> Possible start point.   
                                                  %   Check the next 10 frames if E_med(i+1:i+10)>ITU. 
           for j = (i+1):(i+10) 
               if E_med(j) > ITU 
                  t = t + 1 ; 
               end 
           end 
           if t ~= 10              % ==> Continue to search for a possible start point. 
              start = start + 11 ; i = i + 11 ; 
              t = 0 ;  
           end 
    end   
    end 
    if t == 10                      % ==> Preliminary start point. Terminate the loop. 
       start = start + 1 ; break  
    end 
end 
 
% Move backwards to find where the smoothed energy first goes under ITL. Mark it as  
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% the initial utterance start point. 
 
while E_med(start) > ITL 
  start = start - 1; 
  if start == 1 
      break 
  end 
end 
 
% Search forwards for the preliminary end point. 
 
endfr = j ; i = j + 1 ; t = 0 ; 
 
while i < n 
    if E_med(i) > ITU              % ==> Continue to search for a possible end point. 
       endfr = endfr + 1 ; i = i + 1 ; 
    else 
    if E_med(i) < ITU                 % ==> Possible end point.   
                                                   %  Check the next 10 frames if E_med(i+1:i+10)>ITU. 
           for j = (i+1):(i+10) 
               if E_med(j) > ITU 
                  t = t + 1 ; 
               end 
           end 
           if t ~= 10                      % ==> Preliminary end point. Terminate the loop. 
              endfr = endfr + 1 ; break   
           end 
           if t == 10                      % ==> Continue to search for a possible end point. 
              endfr = endfr + 11 ; i = i + 11 ; 
              t = 0 ;   
           end 
    end   
    end 
end 
 
% Move forwards to find where the smoothed energy first goes under ITL. Mark it as the  
% initial utterance end point. 
 
while E_med(endfr) > ITL 
  endfr = endfr + 1; 
  if endfr == n   
     break 
  end 
end 
 
% ************************** END OF FUNCTION ************************* 
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• endpoint_refine.m: 

 
function [startpt_rev,endpt_rev] = endpoint_refine (sig,startpt,endpt,E,N,n) 
% ********************************************************************* 
% Filename  : endpoint_refine.m 
%     (Function) 
% Thesis Advisor : Prof. Monique P. Fargues 
% Author  : LTJG Gokhan Bulbuller 
%     Turkish Navy 
% Date   : November, 2005 
% Description  : Secondary measure to refine the initial end point estimates  
%     obtained from the energy-based end point detection algorithm  
%     (endpoint_detection.m). It relies on the energy-entropy feature  
%     (EEF). 
% Inputs  : 1. sig  : Filtered speech signal, 
%     2. E  : Short-time absolute magnitude energy, 
%     3. startpt : Initial estimate of the speech start point, 
%     4. endpt : Initial estimate of the speech end point, 
%     5. N  : Total number of samples in a frame, 
%     6. n  : Total number of overlapping frames. 
% Outputs  : 1. startpt_rev : Final (refined) speech start point, 
%     2. endpt_rev : Final (refined) speech end point. 
% Functions Used : N/A 
% ********************************************************************* 
 
start = startpt / (0.5*N) ;           % Frame indices of utterance boundaries. 
endfr = endpt / (0.5*N) ; 
 
start_rev = start ; end_rev = endfr ;         % Initial search points. 
 
% Below loop computes the entropy of the whole recording. 
 
p = 1 ; k = N ; 
 
for i=1:n 
    sig_fft = fft(sig(p:k),512) ;                   % 512-point FFT of a speech frame. 
    sig_fft_1 = sig_fft(18:127) ;            % Retain only 150 Hz <= f <= 2300 Hz. 
    norm_fft = sum ( abs(sig_fft_1(:)).^2 ) ;             % Spectral energy. 
    pp = abs( sig_fft_1(:) ).^2 / norm_fft ;            % PDF estimation. 
    for j = 1:110 
        if pp (j) >= 0.9 | pp (j) == 0.0 
            pp (j) = 1e-12 ; 
        end 
    end 
    pk = log10 ( pp ) ; 
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    H (i) = - ( sum ( pp .* pk) ) ;             % Entropy of a frame  
    k = k + 40 ; p = p + 40 ;              % Shift frame to the right. 
    if k > length(sig) 
       sig(length(sig):k) = 0 ; 
    end 
end 
 
EEF = sqrt ( 1 + ( E .* H ) ) ;             % Compute the EEF. 
 
EEF_silence = (1/20) * sum( EEF (1:20) ) ;               % Average silence EEF. 
 
% Set the thresholds with respect to the average silence EEF. 
 
EETL1 = 1.2 * EEF_silence ; 
 
EETL2 = 2 * EEF_silence ; 
 
i = start - 1 ;                   % Initial search point for refining the start point. 
 
% Search back only 5 frames to refine the speech start point. 
 
while ( i > 20 ) & ( i >= (start - 5) )  
    if EEF (i) < EETL1            % ==> Continue to search. 
        i = i - 1 ; 
    elseif EEF (i) > EETL1          % ==> Shift the initial start point to left. 
        start_rev = i ; 
        i = i - 1 ; 
    end 
end 
 
startpt_rev = start_rev * (0.5*N) ;                % Refined speech start point. 
 
i = endfr + 1 ;             % Initial search point for refining the end point. 
 
% Search forwards 70 frames to refine the speech end point. 
 
while ( i < (n-20) ) & ( i <= ( endfr + 70 ) ) 
    if EEF (i) < EETL2                  % ==> Continue to search. 
        i = i + 1 ; 
    end 
    if EEF (i) > EETL2     % Possible end point. Check the next 10 frames. 
        for j=(i+1):(i+10) 
            if EEF (j) > EETL2 
              end_rev = j + 1 ;              % ==> Shift the initial end point to right. 
            end 
        end 



130 

    break 
    end 
end 
 
endpt_rev = end_rev * (0.5*N) ;              % Refined speech end point. 
 
% ************************* END OF FUNCTION ************************** 
 

• Feature_extract.m: 
 
% ********************************************************************* 
% Filename  : Feature_extract.m 
%     (Feature Extraction Main Program) 
% Thesis Advisor : Prof. Monique P. Fargues 
% Author  : LTJG Gokhan Bulbuller 
%     Turkish Navy 
% Date   : November 27, 2005 17:30 PST 
% Description  : The main program for feature extraction. 
%     It takes a segmented (end point detected and cropped) speech  
%     from the folder that belongs to a word uttered by a subject in the  
%     "Cropped" folder. 15 MFCCs (including the first coefficient) and  
%     15 RC coefficients are extracted for each segmented utterance.  
%     These MFCCs and RC coefficients are stored in separate  
%     20*9 cell arrays, and saved as individual "mat" files for use in  
%     classification stage. 
% Inputs  : Segmented utterances in the "Cropped" folder. 
% Outputs  : 1. RC_Features.mat, 
%     2. MFCC_Features.mat. 
% Functions Used : melcepstrum.m (modified from Voicebox) 
% ********************************************************************* 
 
clear all, close all, clc,  
 
Main_loc = [ 'C:\Documents and Settings\Owner\My Documents\thesis' ] ; 
Main_loc_2 = [ 'C:\Documents and Settings\Owner\My Documents\thesis\ear_mic_data\ 
data\' ] ; 
 
% Specify the full path names for subjects, recording dates associated with subjects, and  
% the vocabulary words. 
 
path_name(1,1)  = { Main_loc_2 '1'  } ; 
path_name(2,1)  = { Main_loc_2 '2'  } ; 
path_name(3,1)  = { Main_loc_2 '3'  } ; 
path_name(4,1)  = { Main_loc_2 '4'  } ; 
path_name(5,1)  = { Main_loc_2 '5'  } ; 
path_name(6,1)  = { Main_loc_2 '6'  } ; 
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path_name(7,1)  = { Main_loc_2 '7'  } ; 
path_name(8,1)  = { Main_loc_2 '8'  } ; 
path_name(9,1)  = { Main_loc_2 '9'  } ; 
path_name(10,1) = { Main_loc_2 '10' } ; 
path_name(11,1) = { Main_loc_2 '11' } ; 
path_name(12,1) = { Main_loc_2 '12' } ; 
path_name(13,1) = { Main_loc_2 '13' } ; 
path_name(14,1) = { Main_loc_2 '14' } ; 
path_name(15,1) = { Main_loc_2 '15' } ; 
path_name(16,1) = { Main_loc_2 '16' } ; 
path_name(17,1) = { Main_loc_2 '17' } ; 
path_name(18,1) = { Main_loc_2 '18' } ; 
path_name(19,1) = { Main_loc_2 '19' } ; 
path_name(20,1) = { Main_loc_2 '20' } ; 
 
date(1,1)  = { '04_13_05' } ; 
date(2,1)  = { '04_25_05' } ; 
date(3,1)  = { '04_25_05' } ; 
date(4,1)  = { '04_28_05' } ; 
date(5,1)  = { '04_28_05' } ; 
date(6,1)  = { '04_29_05' } ; 
date(7,1)  = { '04_29_05' } ; 
date(8,1)  = { '04_29_05' } ; 
date(9,1)  = { '04_29_05' } ; 
date(10,1) = { '05_02_05' } ; 
date(11,1) = { '05_02_05' } ; 
date(12,1) = { '05_02_05' } ; 
date(13,1) = { '05_04_05' } ; 
date(14,1) = { '05_05_05' } ; 
date(15,1) = { '05_12_05' } ; 
date(16,1) = { '08_25_05' } ; 
date(17,1) = { '08_22_05' } ;  
date(18,1) = { '08_22_05' } ; 
date(19,1) = { '08_22_05' } ; 
date(20,1) = { '08_25_05' } ; 
 
word(1,1) = { 'up'    } ; 
word(2,1) = { 'down'  } ; 
word(3,1) = { 'left'  } ; 
word(4,1) = { 'right' } ; 
word(5,1) = { 'kill'  } ; 
word(6,1) = { 'pan'   } ; 
word(7,1) = { 'move'  } ; 
word(8,1) = { 'kill_noise'    } ; 
word(9,1) = { 'right_outside' } ; 
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fs = 8e3 ;                  % Sampling Frequency used for recordings 
 
% 20*9 cell arrays for storing the MFCCs and RCs. 
 
MFCC_Feature_cell(20,9) = {[]} ;  
RC_Feature_cell(20,9)       = {[]} ; 
 
% Below loop implements the feature extraction for the whole segmented data set.  
% The outer loop is for the 20 subjects, and the inner loop is for 9 words uttered by each 
% subject. 
 
for i = 1:20 
     
for j = 1:9 
 
% Define the cropped folder location to be opened. 
 
open_loc = [ path_name{i,1} '\Cropped\' word{j,1} '\'] ; 
 
Open_dir = dir(open_loc) ;           % List the content of the folder. 
[m,n] = size(Open_dir) ;         % Size of the folder. 
 
% Extract both features (MFCCs and RCs) for each segmented utterance in a segmented  
% word folder belonging to a subject. 
 
for k = 1:(m-2) 
 
% Specify the cropped file to be opened of the form:  
%                              "word_subject #_trial #_month_day_year.txt." 
 
open_cropped_file_loc = [open_loc,word{j,1},'_',num2str(i),'_',... 
                                                                  num2str(k),'_',date{i,1},'.txt'] ;  
 
fid = fopen(open_crop_file_loc,'r') ;           % Open text file for read. 
 
% If the maximum number of cropped utterances in the folder is exceeded, then terminate  
% the loop. 
 
if fid == -1 
    break ; 
end 
 
sig_str = fscanf(fid,'%c');               % Read the file as string characters, and 
sig = str2num(sig_str);                   % convert it to a numeric vector.  
 
status = fclose(fid) ;          % Close the text file. 
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if size(sig,1) ~= 1, sig = sig' ; end           % Work with row vectors. 
 
c_mel(:,k) = ( melcepstrum (sig,fs,'Ratz0',14,20,length(sig),0,0,0.5) )' ; 
 
cc = rceps(sig) ; c_rc(:,k) = cc(1:15)' ; 
 
end 
 
MFCC_Feature_cell(i,j) = { c_mel } ;  
RC_Feature_cell(i,j)       = { c_rc } ; 
 
clear c_mel c_rc ; 
 
end 
 
end 
 
save_loc_1 = [ Main_loc '\' 'MFCC_Features.mat' ] ; 
save(save_loc_1,'MFCC_Feature_cell') ;                 % Save the MFCCs for classification. 
 
save_loc_2 = [ Main_loc '\' 'RC_Features.mat' ] ; 
save(save_loc_2,'RC_Feature_cell') ;                       % Save the RCs for classification. 
 
% This section computes the overall data size by counting the feature vectors in one of  
% the feature cells computed above. 
 
data_size = 0 ; 
 
for i=1:20 
    for j=1:9 
        data_size = data_size + size(MFCC_Feature_cell{i,j},2) ; 
    end 
end 
 
disp('Overall Data Size = ') ; disp(data_size) ; 
 
% *********************** END OF MAIN PROGRAM ********************** 
 

• melcepstrum.m: 
 
function c_mel = melcepstrum (sig,fs,w,nc,p,n,inc,fl,fh) 
% ********************************************************************* 
% Filename  : melcepstrum.m 
%     (Function) 
% Thesis Advisor : Prof. Monique P. Fargues 
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% Author  : Mike Brookes, (melcepst.m, v 1.3 2005/02/21 15:22:13) 
%     http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/ voicebox.html 
%     (Last accessed on November 05, 2005) 
% Modified by : LTJG Gokhan Bulbuller 
%     Turkish Navy 
% Date Modified : November 2005 
% Description  : Function for extracting the MFCC features. 
%     It computes the MFCCs for a given segmented utterance by  
%     assuming the whole segmented utterance as one rectangular frame  
%     of speech. The triangular filters are used as the filterbank for  
%     feature extraction. 
% Inputs  : 1. sig  : Segmented speech signal, 
%     2. fs  : Sampling frequency in Hz (default fs=8e3 Hz),  
%     3. nc  : Number of MFCCs excluding the first coefficient 
%       (default 14), 
%     4. p  : Number of filters in filterbank (default 14), 
%     5. n  : Frame length (default length(sig)), 
%     6. inc  : Frame increment (default 0), 
%     7. fl  : Low end of the lowest filter as a fraction of fs  
%       (default 0), 
%     8. fh  : High end of highest filter as a fraction of fs  
%       (default 0.5),  
%     9. w  : Any sensible combination of the following: 
% 
%    'R'   Rectangular window in time domain (default). 
%    't'   Triangular shaped filters in mel domain (default). 
%    'p'   Filters act in the power domain. 
%    'a'   Filters act in the absolute magnitude domain 
%       (default). 
%    '0'   Include 0'th order cepstral coefficient. 
%    'e'   Include log energy. 
%    'z'   Highest and lowest filters taper down to zero 
%       (default). 
% Outputs  : c_mel : MFCCs of the segmented utterance. 
% Functions Used : melbank.m (modified from Voicebox) 
% ********************************************************************* 
 
% Set the default values. 
 
if nargin<2 fs = 8e3     ;   end 
if nargin<3 w = 'Ratz0'  ;   end 
if nargin<4 nc = 14      ;   end 
if nargin<5 p = 14       ;   end 
if nargin<6 n = length(sig) ; end 
if nargin<9 
   fh = 0.5 ;    
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   if nargin<8 
     fl = 0 ; 
     if nargin<7 
        inc = 0 ; 
     end 
  end 
end 
 
f = fft(sig') ; 
 
[m,a,b] = melbank(p,n,fs,fl,fh,w) ;           % Create the conceptual filterbank. 
 
pw = f(a:b) .* conj(f(a:b)) ;          % Signal power.  
 
pth = max(pw) * 1E-6 ;             % Small control value to avoid "log (zero)". 
 
% Compute the logarithm of the spectral energies of each conceptual filter output. 
 
if any(w=='p')                % ==> Use the power domain for feature extraction.  
   y = log( max(m*pw,pth) ) ; 
else                      % ==> Use the absolute magnitude domain for feature extraction. 
   ath = sqrt( pth ) ;                    % Small control value to avoid "log (zero)". 
   y = log( max( m*abs(f(a:b)) , ath ) ) ; 
end 
 
c_mel = dct(y)' ;               % The MFCCs of the utterance. 
 
nc = nc + 1 ; 
nf = 1 ; 
 
% Adjust the coefficients. 
 
if p > nc                  % ==> Discard the extra coefficients. 
   c_mel(nc+1:end) = [] ; 
elseif p < nc                 % ==> Add zeros to the coefficient vector. 
   c_mel = [ c_mel 0 ] ; 
end 
 
if ~any(w=='0')                % ==> Discard the 0'th order coefficient if not requested. 
   c_mel(1) = [] ;   
   nc = nc - 1 ; 
end 
 
if any(w=='e')                     % ==> Include the signal log energy if requested. 
   c_mel = [ log(sum(pw)).' c_mel ]; 
   nc = nc + 1 ; 
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end 
  
% ************************* END OF FUNCTION ************************** 
 

• melbank.m: 
 
function [x,mn,mx]=melbank(p,n,fs,fl,fh,w) 
% ********************************************************************* 
% Filename  : melbank.m 
%     (Function) 
% Thesis Advisor : Prof. Monique P. Fargues 
% Author  : Mike Brookes, (melbankm.m,v 1.3 2005/02/21 15:22:13) 
%     http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/ voicebox.html 
%     (Last accessed on November 05, 2005) 
% Modified by : LTJG Gokhan Bulbuller 
%     Turkish Navy 
% Date Modified : November 2005 
% Description  : Creates the conceptual triangular shaped filters to be used as  
%     filterbank for MFCC extraction by "melcepstrum.m". 
% Inputs  : 1. p : Number of filters in filterbank, 
%     2. n : Frame length (default length(sig)), 
%     3. fs : Sampling frequency in Hz (default fs=8e3),  
%     4. fl : Low end of the lowest filter as a fraction of fs (default 0), 
%     5. fh : High end of highest filter as a fraction of fs (default 0.5), 
%     6. w : any sensible combination of the following: 
 
%    't'   Triangular shaped filters in mel domain (default). 
%    'z'   Highest and lowest filters taper down to zero 
%       (default). 
% Outputs  : 1. x : Sparse matrix containing the filterbank amplitudes, 
%     2. mn : The lowest fft bin with a non-zero coefficient, 
%     3. mx : The highest fft bin with a non-zero coefficient. 
% Functions Used : N/A 
% ********************************************************************* 
 
% Set the default values. 
 
if nargin<2 n = length(sig) ; end 
if nargin<3 fs = 8e3        ; end 
if nargin<4 fl = 0          ; end 
if nargin<5 fh = 0.5        ; end 
if nargin<6 w='tz'          ; end 
 
f0=700/fs; 
fn2=floor(n/2); 
lr=log((f0+fh)/(f0+fl))/(p+1); 
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% Convert to FFT bin numbers with 0 for DC term. 
 
bl=n*((f0+fl)*exp([0 1 p p+1]*lr)-f0); 
b2=ceil(bl(2)); 
b3=floor(bl(3)); 
 
b1=floor(bl(1))+1; 
b4=min(fn2,ceil(bl(4)))-1; 
pf=log((f0+(b1:b4)/n)/(f0+fl))/lr; 
fp=floor(pf); 
pm=pf-fp; 
k2=b2-b1+1; 
k3=b3-b1+1; 
k4=b4-b1+1; 
r=[fp(k2:k4) 1+fp(1:k3)]; 
c=[k2:k4 1:k3]; 
v=2*[1-pm(k2:k4) pm(1:k3)]; 
mn=b1+1; 
mx=b4+1; 
 
 
if nargout > 1 
  x=sparse(r,c,v); 
else 
  x=sparse(r,c+mn-1,v,p,1+fn2); 
end 
 
% ************************* END OF FUNCTION ************************** 
 

• BPNN_MFCC_2_Layer.m: 

 
% ********************************************************************* 
% Filename  : BPNN_MFCC_2_Layer.m 
%     (Recognition Main Program) 
% Thesis Advisor : Prof. Monique P. Fargues 
% Author  : LTJG Gokhan Bulbuller 
%     Turkish Navy 
% Date   : January 14, 2006 21:30 PST 
% Description  : The main program for word recognition. 
%     The (150-7) network implemented below is one of the ten  
%     configurations considered for recognition purposes. MFCCs  
%     stored in "MFCC_Features.mat" are used as input features. The  
%     features. The network is iterated 80 times on data by randomly  
%     selecting the training set each time, and results are saved in  
%     related ".mat" files. 
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% Inputs  : MFCC_Features.mat (14 Dimensional MFCCs) 
% Outputs  : 1. Results_MEL_2_150.mat : Contains all the confusion matrices  
%         for every individual iteration,  
%     2. Conf_MEL_2_150.mat : Contains the overall average  
%         confusion matrices of all 80  
%         iterations,  
%     3. Overall_Class_train : The overall average classification  
%         rate for the training data set, 
%     4. Overall_Class_test : The overall average classification  
%         rate for the testing data set. 
% Functions Used : N/A 
% ********************************************************************* 
 
clear all, close all, clc, 
 
Main_loc = [ 'C:\Documents and Settings\Owner\My Documents\thesis' ] ; 
Feature_loc = [ Main_loc '\' 'MFCC_Features.mat' ] ;  
 
load (Feature_loc)  ;           % Load the MFCCs of all data set.  
 
results(80,3) = { [] } ;             % Cell array that will store the results. 
 
for trial=1:80  
 
p = randperm(39) ; 
 
%                                             Create the Training Data Set 
% To construct the training set, select randomly 15 out of all recorded repetitions of a  
% subject for a word. The training matrix size is 14*2100. 
 
train_cell(20,7) = {[]} ; 
 
k = 1:15 ; 
 
for i=1:20 
    for j=1:7 
        x = MFCC_Feature_cell{i,j} ; 
        train_cell(i,j) = { x(2:15,p(k)) } ; 
    end 
end 
 
cl1 = 1 ; cl2 = 15 ; 
 
for i=1:7 
    for j=1:20 
        train_mtx(:,cl1:cl2) = train_cell{j,i} ; 
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        cl1 = cl1 + 15 ; cl2 = cl2 + 15 ; 
    end 
end  
 
% Make the training set zero mean and unit variance. 
 
for i=1:14         
    train_mtx(i,:) = train_mtx(i,:) - mean(train_mtx(i,:)) ; 
    train_mtx(i,:) = train_mtx(i,:)./std(train_mtx(i,:)) ; 
end         
 
%                                        Create the Testing Data Set  
% To construct the testing set, assign all the remaining utterances to the testing set  
% matrix. 
 
test_cell(20,7) = {[]} ; 
 
for i=1:20 
    for j=1:7 
        x = MFCC_Feature_cell{i,j} ; 
        X = x(2:15,p(16:end)) ; 
        if size(x,2) > 39 
            X = [ X x(2:15,40:end) ] ; 
        end 
        test_cell(i,j) = { X } ; 
    end 
end 
 
m = 1 ; n = size(test_cell{1,1},2) ; 
 
for i=1:7 
    if i ~= 1 
        m = n + 1 ; n = n + size(test_cell{1,i},2) ; 
    end 
    for j=1:20 
        test_mtx(:,m:n) = test_cell{j,i} ; 
        if j ~= 20 
           m = n + 1 ; n = n + size(test_cell{j+1,i},2) ; 
        end 
    end 
    N(i) = n ; 
end 
 
% Make the testing set zero mean and unit variance. 
 
for i=1:14         
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    test_mtx(i,:) = test_mtx(i,:) - mean(test_mtx(i,:)) ; 
    test_mtx(i,:) = test_mtx(i,:)./std(test_mtx(i,:)) ; 
end 
 
% Create the target matrix, which is (7*2100). 1-of-7 coding is used to represent each of  
% seven words.  
 
tgt = zeros(7,size(train_mtx,2)); 
tgt(7,1:300) = 1 ; tgt(6,301:600) = 1 ;  
tgt(5,601:900) = 1 ; tgt(4,901:1200) = 1 ; 
tgt(3,1201:1500) = 1 ; tgt(2,1501:1800) = 1 ; 
tgt(1,1801:2100) = 1 ;  
 
% Create, train and test the (150-7) network for word recognition. 
 
z = [ min(train_mtx')' max(train_mtx')' ] ; 
 
net = newff(z,[150,7],{'tansig','logsig'},'traincgf') ; 
net.performFcn = 'msereg' ; 
net.performParam.ratio = 0.85 ; 
net.trainParam.show = 10 ; 
net.trainParam.epochs = 1000 ; 
 
[net,tr,Y,E] = train(net,train_mtx,tgt) ;         % Train the network. 
 
A = sim(net,test_mtx) ;             % Test the network. 
 
% Convert the network outputs obtained from training to binary outputs. 
 
Y_bin_out=zeros(size(Y)); 
 
for i=1:7 
    for j=1:size(train_mtx,2) 
        if Y(i,j)==max(Y(:,j)) 
           Y_bin_out(i,j)=1; 
        else Y_bin_out(i,j)=0; 
        end 
    end 
end 
 
% Convert the network outputs obtained from testing to binary outputs. 
 
A_bin_out = zeros(size(A)) ; 
 
for i=1:7 
    for j=1:size(test_mtx,2) 
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        if A(i,j)==max(A(:,j)) 
           A_bin_out(i,j)=1; 
        else A_bin_out(i,j)=0; 
        end 
    end 
end 
 
% Construct the confusion matrix for the training set, and compute the related average  
% classification rate. 
 
M = zeros(7,7) ; 
[I,J] = find(Y_bin_out) ; 
 
for i=1:size(Y_bin_out,2) 
    if ( i <= 300 ) 
       if I(i)==1, M(7,1)=M(7,1)+1; end 
       if I(i)==2, M(6,1)=M(6,1)+1; end 
       if I(i)==3, M(5,1)=M(5,1)+1; end 
       if I(i)==4, M(4,1)=M(4,1)+1; end 
       if I(i)==5, M(3,1)=M(3,1)+1; end 
       if I(i)==6, M(2,1)=M(2,1)+1; end 
       if I(i)==7, M(1,1)=M(1,1)+1; end 
    end 
    if ( i > 300 ) & ( i <= 600 ) 
       if I(i)==1, M(7,2)=M(7,2)+1; end 
       if I(i)==2, M(6,2)=M(6,2)+1; end 
       if I(i)==3, M(5,2)=M(5,2)+1; end 
       if I(i)==4, M(4,2)=M(4,2)+1; end 
       if I(i)==5, M(3,2)=M(3,2)+1; end 
       if I(i)==6, M(2,2)=M(2,2)+1; end 
       if I(i)==7, M(1,2)=M(1,2)+1; end 
    end 
    if ( i > 600 ) & ( i <= 900 ) 
       if I(i)==1, M(7,3)=M(7,3)+1; end 
       if I(i)==2, M(6,3)=M(6,3)+1; end 
       if I(i)==3, M(5,3)=M(5,3)+1; end 
       if I(i)==4, M(4,3)=M(4,3)+1; end 
       if I(i)==5, M(3,3)=M(3,3)+1; end 
       if I(i)==6, M(2,3)=M(2,3)+1; end 
       if I(i)==7, M(1,3)=M(1,3)+1; end 
    end 
    if ( i > 900 ) & ( i <= 1200 ) 
       if I(i)==1, M(7,4)=M(7,4)+1; end 
       if I(i)==2, M(6,4)=M(6,4)+1; end 
       if I(i)==3, M(5,4)=M(5,4)+1; end 
       if I(i)==4, M(4,4)=M(4,4)+1; end 
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       if I(i)==5, M(3,4)=M(3,4)+1; end 
       if I(i)==6, M(2,4)=M(2,4)+1; end 
       if I(i)==7, M(1,4)=M(1,4)+1; end 
    end 
    if ( i > 1200 ) & ( i <= 1500 ) 
       if I(i)==1, M(7,5)=M(7,5)+1; end 
       if I(i)==2, M(6,5)=M(6,5)+1; end 
       if I(i)==3, M(5,5)=M(5,5)+1; end 
       if I(i)==4, M(4,5)=M(4,5)+1; end 
       if I(i)==5, M(3,5)=M(3,5)+1; end 
       if I(i)==6, M(2,5)=M(2,5)+1; end 
       if I(i)==7, M(1,5)=M(1,5)+1; end 
    end 
    if ( i > 1500 ) & ( i <= 1800 ) 
       if I(i)==1, M(7,6)=M(7,6)+1; end 
       if I(i)==2, M(6,6)=M(6,6)+1; end 
       if I(i)==3, M(5,6)=M(5,6)+1; end 
       if I(i)==4, M(4,6)=M(4,6)+1; end 
       if I(i)==5, M(3,6)=M(3,6)+1; end 
       if I(i)==6, M(2,6)=M(2,6)+1; end 
       if I(i)==7, M(1,6)=M(1,6)+1; end 
    end 
    if ( i > 1800 ) & ( i <= 2100 ) 
       if I(i)==1, M(7,7)=M(7,7)+1; end 
       if I(i)==2, M(6,7)=M(6,7)+1; end 
       if I(i)==3, M(5,7)=M(5,7)+1; end 
       if I(i)==4, M(4,7)=M(4,7)+1; end 
       if I(i)==5, M(3,7)=M(3,7)+1; end 
       if I(i)==6, M(2,7)=M(2,7)+1; end 
       if I(i)==7, M(1,7)=M(1,7)+1; end 
    end 
end 
 
Train_Conf_matrix = ( M ./300 ) .* 100 ; 
Class_rate_train = sum(diag(Train_Conf_matrix)) / 7 ; 
 
% Construct the confusion matrix for the testing set, and compute the related average  
% classification rate. 
 
M_tst = zeros(7,7) ; 
[II,JJ] = find(A_bin_out) ; 
 
for i=1:size(A_bin_out,2) 
    if ( i <= N(1) ) 
       if II(i)==1, M_tst(7,1)=M_tst(7,1)+1; end 
       if II(i)==2, M_tst(6,1)=M_tst(6,1)+1; end 
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       if II(i)==3, M_tst(5,1)=M_tst(5,1)+1; end 
       if II(i)==4, M_tst(4,1)=M_tst(4,1)+1; end 
       if II(i)==5, M_tst(3,1)=M_tst(3,1)+1; end 
       if II(i)==6, M_tst(2,1)=M_tst(2,1)+1; end 
       if II(i)==7, M_tst(1,1)=M_tst(1,1)+1; end 
    end 
    if ( i > N(1) ) & ( i <= N(2) ) 
       if II(i)==1, M_tst(7,2)=M_tst(7,2)+1; end 
       if II(i)==2, M_tst(6,2)=M_tst(6,2)+1; end 
       if II(i)==3, M_tst(5,2)=M_tst(5,2)+1; end 
       if II(i)==4, M_tst(4,2)=M_tst(4,2)+1; end 
       if II(i)==5, M_tst(3,2)=M_tst(3,2)+1; end 
       if II(i)==6, M_tst(2,2)=M_tst(2,2)+1; end 
       if II(i)==7, M_tst(1,2)=M_tst(1,2)+1; end 
    end 
    if ( i > N(2) ) & ( i <= N(3) ) 
       if II(i)==1, M_tst(7,3)=M_tst(7,3)+1; end 
       if II(i)==2, M_tst(6,3)=M_tst(6,3)+1; end 
       if II(i)==3, M_tst(5,3)=M_tst(5,3)+1; end 
       if II(i)==4, M_tst(4,3)=M_tst(4,3)+1; end 
       if II(i)==5, M_tst(3,3)=M_tst(3,3)+1; end 
       if II(i)==6, M_tst(2,3)=M_tst(2,3)+1; end 
       if II(i)==7, M_tst(1,3)=M_tst(1,3)+1; end 
    end 
    if ( i > N(3) ) & ( i <= N(4) ) 
       if II(i)==1, M_tst(7,4)=M_tst(7,4)+1; end 
       if II(i)==2, M_tst(6,4)=M_tst(6,4)+1; end 
       if II(i)==3, M_tst(5,4)=M_tst(5,4)+1; end 
       if II(i)==4, M_tst(4,4)=M_tst(4,4)+1; end 
       if II(i)==5, M_tst(3,4)=M_tst(3,4)+1; end 
       if II(i)==6, M_tst(2,4)=M_tst(2,4)+1; end 
       if II(i)==7, M_tst(1,4)=M_tst(1,4)+1; end 
    end 
    if ( i > N(4) ) & ( i <= N(5) ) 
       if II(i)==1, M_tst(7,5)=M_tst(7,5)+1; end 
       if II(i)==2, M_tst(6,5)=M_tst(6,5)+1; end 
       if II(i)==3, M_tst(5,5)=M_tst(5,5)+1; end 
       if II(i)==4, M_tst(4,5)=M_tst(4,5)+1; end 
       if II(i)==5, M_tst(3,5)=M_tst(3,5)+1; end 
       if II(i)==6, M_tst(2,5)=M_tst(2,5)+1; end 
       if II(i)==7, M_tst(1,5)=M_tst(1,5)+1; end 
    end 
    if ( i > N(5) ) & ( i <= N(6) ) 
       if II(i)==1, M_tst(7,6)=M_tst(7,6)+1; end 
       if II(i)==2, M_tst(6,6)=M_tst(6,6)+1; end 
       if II(i)==3, M_tst(5,6)=M_tst(5,6)+1; end 
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       if II(i)==4, M_tst(4,6)=M_tst(4,6)+1; end 
       if II(i)==5, M_tst(3,6)=M_tst(3,6)+1; end 
       if II(i)==6, M_tst(2,6)=M_tst(2,6)+1; end 
       if II(i)==7, M_tst(1,6)=M_tst(1,6)+1; end 
    end 
    if ( i > N(6) ) & ( i <= N(7) ) 
       if II(i)==1, M_tst(7,7)=M_tst(7,7)+1; end 
       if II(i)==2, M_tst(6,7)=M_tst(6,7)+1; end 
       if II(i)==3, M_tst(5,7)=M_tst(5,7)+1; end 
       if II(i)==4, M_tst(4,7)=M_tst(4,7)+1; end 
       if II(i)==5, M_tst(3,7)=M_tst(3,7)+1; end 
       if II(i)==6, M_tst(2,7)=M_tst(2,7)+1; end 
       if II(i)==7, M_tst(1,7)=M_tst(1,7)+1; end 
    end 
end 
 
Test_Conf_matrix(:,1) = ( M_tst(:,1) ./ N(1) ) .* 100 ;  
Test_Conf_matrix(:,2) = ( M_tst(:,2) ./ ( N(2)-N(1) ) ) .* 100 ; 
Test_Conf_matrix(:,3) = ( M_tst(:,3) ./ ( N(3)-N(2) ) ) .* 100 ; 
Test_Conf_matrix(:,4) = ( M_tst(:,4) ./ ( N(4)-N(3) ) ) .* 100 ; 
Test_Conf_matrix(:,5) = ( M_tst(:,5) ./ ( N(5)-N(4) ) ) .* 100 ; 
Test_Conf_matrix(:,6) = ( M_tst(:,6) ./ ( N(6)-N(5) ) ) .* 100 ; 
Test_Conf_matrix(:,7) = ( M_tst(:,7) ./ ( N(7)-N(6) ) ) .* 100 ; 
 
Class_rate_test = sum(diag(Test_Conf_matrix)) / 7 ; 
 
% Test the (150-7) network on "kill_noise" and "right_outside" on which it was not  
% trained. 
 
% Construct the new testing set from "kill_noise" and "right_outside". 
 
test_cell_2(20,2) = {[]} ; 
 
for i=1:20 
    XX = MFCC_Feature_cell{i,8} ; XX(1,:) = [] ; 
    test_cell_2(i,1) = { XX } ; 
    XX = MFCC_Feature_cell{i,9} ; XX(1,:) = [] ; 
    test_cell_2(i,2) = { XX } ; 
end 
 
m = 1 ; n = size(test_cell_2{1,1},2) ; 
 
for i=1:2 
    if i ~= 1 
        m = n + 1 ; n = n + size(test_cell_2{1,i},2) ; 
    end 
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    for j=1:20 
        test_mtx_2(:,m:n) = test_cell_2{j,i} ; 
        if j ~= 20 
           m = n + 1 ; n = n + size(test_cell_2{j+1,i},2) ; 
        end 
    end 
    NN(i) = n ; 
end 
 
% Make the new testing set zero mean and unit variance. 
 
for i=1:14         
    test_mtx_2(i,:) = test_mtx_2(i,:) - mean(test_mtx_2(i,:)) ; 
    test_mtx_2(i,:) = test_mtx_2(i,:)./std(test_mtx_2(i,:)) ; 
end 
 
AA = sim(net,test_mtx_2) ;   % Test the network. 
 
% Convert the network outputs obtained from testing to binary outputs. 
 
A_bin_out2 = zeros(size(AA)) ; 
 
for i=1:7 
    for j=1:size(test_mtx_2,2) 
        if AA(i,j)==max(AA(:,j)) 
           A_bin_out2(i,j)=1; 
        else A_bin_out2(i,j)=0; 
        end 
    end 
end 
 
% Construct the confusion matrix for the testing set obtained from "kill_noise" and 
% "right_outside". 
 
M_tst2 = zeros(7,2) ; 
[II,JJ] = find(A_bin_out2) ; 
 
for i=1:size(A_bin_out2,2) 
    if ( i <= NN(1) ) 
       if II(i)==1, M_tst2(7,1)=M_tst2(7,1)+1; end 
       if II(i)==2, M_tst2(6,1)=M_tst2(6,1)+1; end 
       if II(i)==3, M_tst2(5,1)=M_tst2(5,1)+1; end 
       if II(i)==4, M_tst2(4,1)=M_tst2(4,1)+1; end 
       if II(i)==5, M_tst2(3,1)=M_tst2(3,1)+1; end 
       if II(i)==6, M_tst2(2,1)=M_tst2(2,1)+1; end 
       if II(i)==7, M_tst2(1,1)=M_tst2(1,1)+1; end 
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    end 
    if ( i > NN(1) ) & ( i <= NN(2) ) 
       if II(i)==1, M_tst2(7,2)=M_tst2(7,2)+1; end 
       if II(i)==2, M_tst2(6,2)=M_tst2(6,2)+1; end 
       if II(i)==3, M_tst2(5,2)=M_tst2(5,2)+1; end 
       if II(i)==4, M_tst2(4,2)=M_tst2(4,2)+1; end 
       if II(i)==5, M_tst2(3,2)=M_tst2(3,2)+1; end 
       if II(i)==6, M_tst2(2,2)=M_tst2(2,2)+1; end 
       if II(i)==7, M_tst2(1,2)=M_tst2(1,2)+1; end 
    end 
end 
 
Test_Conf_matrix_2(:,1) = ( M_tst2(:,1) ./ NN(1) ) .* 100 ;  
Test_Conf_matrix_2(:,2) = ( M_tst2(:,2) ./ ( NN(2)-NN(1) ) ) .* 100 ; 
 
% Store the confusion matrices obtained for each iteration in a cell array. 
 
results(trial,1) = { Train_Conf_matrix  } ; 
results(trial,2) = { Test_Conf_matrix   } ; 
results(trial,3) = { Test_Conf_matrix_2 } ; 
 
end 
 
% Save all the confusion matrices obtained for 80 iterations. 
 
save_loc = [ Main_loc '\' 'Results_MEL_2_150.mat' ] ;  
save(save_loc,'results') ; 
 
% This section computes the overall average confusion matrices, and related average  
% classification performances. 
 
conf_train = results{1,1}  ; 
conf_test = results{1,2}  ; 
conf_test2 = results{1,3}  ; 
 
for i=2:80 
    conf_train = conf_train + results{i,1} ; 
    conf_test = conf_test + results{i,2} ; 
    conf_test2 = conf_test2 + results{i,3} ; 
end 
 
conf_train = conf_train ./ 80 ; 
conf_test = conf_test ./ 80 ; 
conf_test2 = conf_test2 ./ 80 ; 
 
Conf_all(1,3) = { [] } ; 
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Conf_all(1,1) = { conf_train } ; 
Conf_all(1,2) = { conf_test } ; 
Conf_all(1,3) = { conf_test2 } ; 
 
% Save the overall average confusion matrices. 
 
save_loc_2 = [ Main_loc '\' 'Conf_MEL_2_150.mat' ] ;  
save(save_loc_2,'Conf_all') ; 
 
% Overall classification rates for the training and testing sets. 
 
Overall_Class_train = sum(diag(conf_train)) / 7 ; 
Overall_Class_test = sum(diag(conf_test)) / 7 ; 
 
clc, 
 
disp(' Overall Average Classification Rate for Training = ') ;  
disp(Overall_Class_train) ; 
disp(' Overall Average Classification Rate for Testing = ') ;  
disp(Overall_Class_train) ; 
 
% *********************** END OF MAIN PROGRAM ********************** 
 

• BPNN_MFCC_3_Layer.m: 
 
% ********************************************************************* 
% Filename  : BPNN_MFCC_3_Layer.m 
%     (Recognition Main Program) 
% Thesis Advisor : Prof. Monique P. Fargues 
% Author  : LTJG Gokhan Bulbuller 
%     Turkish Navy 
% Date   : January 12, 2006 21:30 PST 
% Description  : The main program for word recognition. 
%     The (60-40-7) network implemented below is one of the ten  
%     configurations considered for recognition purposes. MFCCs  
%     stored in "MFCC_Features.mat" are used as input features.  
%     The network is iterated 80 times on data by randomly selecting  
%     the training set each time, and results are saved in related ".mat"  
%     related ".mat" files. 
% Inputs  : MFCC_Features.mat (14 Dimensional MFCCs) 
% Outputs  : 1. Results_MEL_64.mat : Contains all the confusion matrices  
%         for every individual iteration,  
%     2. Conf_MEL_64.mat : Contains the overall average  
%         confusion matrices of all 80  
%         iterations,  
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%     3. Overall_Class_train : The overall average classification  
%         rate for the training data set, 
%     4. Overall_Class_test : The overall average classification  
%         rate for the testing data set. 
% Functions Used : N/A 
% ********************************************************************* 
 
clear all, close all, clc, 
 
Main_loc = [ 'C:\Documents and Settings\Owner\My Documents\thesis' ] ; 
Feature_loc = [ Main_loc '\' 'MFCC_Features.mat' ] ;  
 
load (Feature_loc)  ;                       % Load the MFCCs of all data set.  
 
results(80,3) = { [] } ;           % Cell array that will store the results. 
  
for trial=1:80  
 
p = randperm(39) ; 
 
%                                              Create the Training Data Set  
% To construct the training set, select randomly 15 out of all recorded repetitions of a  
% subject for a word. The training matrix size is 14*2100. 
 
train_cell(20,7) = {[]} ; 
 
k = 1:15 ; 
 
for i=1:20 
    for j=1:7 
        x = MFCC_Feature_cell{i,j} ; 
        train_cell(i,j) = { x(2:15,p(k)) } ; 
    end 
end 
 
cl1 = 1 ; cl2 = 15 ; 
 
for i=1:7 
    for j=1:20 
        train_mtx(:,cl1:cl2) = train_cell{j,i} ; 
        cl1 = cl1 + 15 ; cl2 = cl2 + 15 ; 
    end 
end  
 
% Make the training set zero mean and unit variance. 
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for i=1:14         
    train_mtx(i,:) = train_mtx(i,:) - mean(train_mtx(i,:)) ; 
    train_mtx(i,:) = train_mtx(i,:)./std(train_mtx(i,:)) ; 
end         
 
%                                                 Create the Testing Data Set  
% To construct the testing set, assign all the remaining utterances to the testing set  
% matrix. 
 
test_cell(20,7) = {[]} ; 
 
for i=1:20 
    for j=1:7 
        x = MFCC_Feature_cell{i,j} ; 
        X = x(2:15,p(16:end)) ; 
        if size(x,2) > 39 
            X = [ X x(2:15,40:end) ] ; 
        end 
        test_cell(i,j) = { X } ; 
    end 
end 
 
m = 1 ; n = size(test_cell{1,1},2) ; 
 
for i=1:7 
    if i ~= 1 
        m = n + 1 ; n = n + size(test_cell{1,i},2) ; 
    end 
    for j=1:20 
        test_mtx(:,m:n) = test_cell{j,i} ; 
        if j ~= 20 
           m = n + 1 ; n = n + size(test_cell{j+1,i},2) ; 
        end 
    end 
    N(i) = n ; 
end 
 
% Make the testing set zero mean and unit variance. 
 
for i=1:14         
    test_mtx(i,:) = test_mtx(i,:) - mean(test_mtx(i,:)) ; 
    test_mtx(i,:) = test_mtx(i,:)./std(test_mtx(i,:)) ; 
end 
 
% Create the target matrix, which is (7*2100). 1-of-7 coding is used to represent each of  
% seven words.  
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tgt = zeros(7,size(train_mtx,2)); 
tgt(7,1:300) = 1 ; tgt(6,301:600) = 1 ;  
tgt(5,601:900) = 1 ; tgt(4,901:1200) = 1 ; 
tgt(3,1201:1500) = 1 ; tgt(2,1501:1800) = 1 ; 
tgt(1,1801:2100) = 1 ;  
 
% Create, train and test the (60-40-7) network for word recognition. 
 
z = [ min(train_mtx')' max(train_mtx')' ] ; 
 
net = newff(z,[60,40,7],{'tansig','tansig','logsig'},'traincgf') ; 
net.performFcn = 'msereg' ; 
net.performParam.ratio = 0.85 ; 
net.trainParam.show = 10 ; 
net.trainParam.epochs = 1000 ; 
 
[net,tr,Y,E] = train(net,train_mtx,tgt) ;               % Train the network. 
 
A = sim(net,test_mtx) ;                % Test the network. 
 
% Convert the network outputs obtained from training to binary outputs. 
 
Y_bin_out=zeros(size(Y)); 
 
for i=1:7 
    for j=1:size(train_mtx,2) 
        if Y(i,j)==max(Y(:,j)) 
           Y_bin_out(i,j)=1; 
        else Y_bin_out(i,j)=0; 
        end 
    end 
end 
 
% Convert the network outputs obtained from testing to binary outputs. 
 
A_bin_out = zeros(size(A)) ; 
 
for i=1:7 
    for j=1:size(test_mtx,2) 
        if A(i,j)==max(A(:,j)) 
           A_bin_out(i,j)=1; 
        else A_bin_out(i,j)=0; 
        end 
    end 
end 
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% Construct the confusion matrix for the training set, and compute the related average  
% classification rate. 
 
M = zeros(7,7) ; 
[I,J] = find(Y_bin_out) ; 
 
for i=1:size(Y_bin_out,2) 
    if ( i <= 300 ) 
       if I(i)==1, M(7,1)=M(7,1)+1; end 
       if I(i)==2, M(6,1)=M(6,1)+1; end 
       if I(i)==3, M(5,1)=M(5,1)+1; end 
       if I(i)==4, M(4,1)=M(4,1)+1; end 
       if I(i)==5, M(3,1)=M(3,1)+1; end 
       if I(i)==6, M(2,1)=M(2,1)+1; end 
       if I(i)==7, M(1,1)=M(1,1)+1; end 
    end 
    if ( i > 300 ) & ( i <= 600 ) 
       if I(i)==1, M(7,2)=M(7,2)+1; end 
       if I(i)==2, M(6,2)=M(6,2)+1; end 
       if I(i)==3, M(5,2)=M(5,2)+1; end 
       if I(i)==4, M(4,2)=M(4,2)+1; end 
       if I(i)==5, M(3,2)=M(3,2)+1; end 
       if I(i)==6, M(2,2)=M(2,2)+1; end 
       if I(i)==7, M(1,2)=M(1,2)+1; end 
    end 
    if ( i > 600 ) & ( i <= 900 ) 
       if I(i)==1, M(7,3)=M(7,3)+1; end 
       if I(i)==2, M(6,3)=M(6,3)+1; end 
       if I(i)==3, M(5,3)=M(5,3)+1; end 
       if I(i)==4, M(4,3)=M(4,3)+1; end 
       if I(i)==5, M(3,3)=M(3,3)+1; end 
       if I(i)==6, M(2,3)=M(2,3)+1; end 
       if I(i)==7, M(1,3)=M(1,3)+1; end 
    end 
    if ( i > 900 ) & ( i <= 1200 ) 
       if I(i)==1, M(7,4)=M(7,4)+1; end 
       if I(i)==2, M(6,4)=M(6,4)+1; end 
       if I(i)==3, M(5,4)=M(5,4)+1; end 
       if I(i)==4, M(4,4)=M(4,4)+1; end 
       if I(i)==5, M(3,4)=M(3,4)+1; end 
       if I(i)==6, M(2,4)=M(2,4)+1; end 
       if I(i)==7, M(1,4)=M(1,4)+1; end 
    end 
    if ( i > 1200 ) & ( i <= 1500 ) 
       if I(i)==1, M(7,5)=M(7,5)+1; end 
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       if I(i)==2, M(6,5)=M(6,5)+1; end 
       if I(i)==3, M(5,5)=M(5,5)+1; end 
       if I(i)==4, M(4,5)=M(4,5)+1; end 
       if I(i)==5, M(3,5)=M(3,5)+1; end 
       if I(i)==6, M(2,5)=M(2,5)+1; end 
       if I(i)==7, M(1,5)=M(1,5)+1; end 
    end 
    if ( i > 1500 ) & ( i <= 1800 ) 
       if I(i)==1, M(7,6)=M(7,6)+1; end 
       if I(i)==2, M(6,6)=M(6,6)+1; end 
       if I(i)==3, M(5,6)=M(5,6)+1; end 
       if I(i)==4, M(4,6)=M(4,6)+1; end 
       if I(i)==5, M(3,6)=M(3,6)+1; end 
       if I(i)==6, M(2,6)=M(2,6)+1; end 
       if I(i)==7, M(1,6)=M(1,6)+1; end 
    end 
    if ( i > 1800 ) & ( i <= 2100 ) 
       if I(i)==1, M(7,7)=M(7,7)+1; end 
       if I(i)==2, M(6,7)=M(6,7)+1; end 
       if I(i)==3, M(5,7)=M(5,7)+1; end 
       if I(i)==4, M(4,7)=M(4,7)+1; end 
       if I(i)==5, M(3,7)=M(3,7)+1; end 
       if I(i)==6, M(2,7)=M(2,7)+1; end 
       if I(i)==7, M(1,7)=M(1,7)+1; end 
    end 
end 
 
Train_Conf_matrix = ( M ./300 ) .* 100 ; 
Class_rate_train = sum(diag(Train_Conf_matrix)) / 7 ; 
 
% Construct the confusion matrix for the testing set, and compute the related average  
% classification rate. 
 
M_tst = zeros(7,7) ; 
[II,JJ] = find(A_bin_out) ; 
 
for i=1:size(A_bin_out,2) 
    if ( i <= N(1) ) 
       if II(i)==1, M_tst(7,1)=M_tst(7,1)+1; end 
       if II(i)==2, M_tst(6,1)=M_tst(6,1)+1; end 
       if II(i)==3, M_tst(5,1)=M_tst(5,1)+1; end 
       if II(i)==4, M_tst(4,1)=M_tst(4,1)+1; end 
       if II(i)==5, M_tst(3,1)=M_tst(3,1)+1; end 
       if II(i)==6, M_tst(2,1)=M_tst(2,1)+1; end 
       if II(i)==7, M_tst(1,1)=M_tst(1,1)+1; end 
    end 
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    if ( i > N(1) ) & ( i <= N(2) ) 
       if II(i)==1, M_tst(7,2)=M_tst(7,2)+1; end 
       if II(i)==2, M_tst(6,2)=M_tst(6,2)+1; end 
       if II(i)==3, M_tst(5,2)=M_tst(5,2)+1; end 
       if II(i)==4, M_tst(4,2)=M_tst(4,2)+1; end 
       if II(i)==5, M_tst(3,2)=M_tst(3,2)+1; end 
       if II(i)==6, M_tst(2,2)=M_tst(2,2)+1; end 
       if II(i)==7, M_tst(1,2)=M_tst(1,2)+1; end 
    end 
    if ( i > N(2) ) & ( i <= N(3) ) 
       if II(i)==1, M_tst(7,3)=M_tst(7,3)+1; end 
       if II(i)==2, M_tst(6,3)=M_tst(6,3)+1; end 
       if II(i)==3, M_tst(5,3)=M_tst(5,3)+1; end 
       if II(i)==4, M_tst(4,3)=M_tst(4,3)+1; end 
       if II(i)==5, M_tst(3,3)=M_tst(3,3)+1; end 
       if II(i)==6, M_tst(2,3)=M_tst(2,3)+1; end 
       if II(i)==7, M_tst(1,3)=M_tst(1,3)+1; end 
    end 
    if ( i > N(3) ) & ( i <= N(4) ) 
       if II(i)==1, M_tst(7,4)=M_tst(7,4)+1; end 
       if II(i)==2, M_tst(6,4)=M_tst(6,4)+1; end 
       if II(i)==3, M_tst(5,4)=M_tst(5,4)+1; end 
       if II(i)==4, M_tst(4,4)=M_tst(4,4)+1; end 
       if II(i)==5, M_tst(3,4)=M_tst(3,4)+1; end 
       if II(i)==6, M_tst(2,4)=M_tst(2,4)+1; end 
       if II(i)==7, M_tst(1,4)=M_tst(1,4)+1; end 
    end 
    if ( i > N(4) ) & ( i <= N(5) ) 
       if II(i)==1, M_tst(7,5)=M_tst(7,5)+1; end 
       if II(i)==2, M_tst(6,5)=M_tst(6,5)+1; end 
       if II(i)==3, M_tst(5,5)=M_tst(5,5)+1; end 
       if II(i)==4, M_tst(4,5)=M_tst(4,5)+1; end 
       if II(i)==5, M_tst(3,5)=M_tst(3,5)+1; end 
       if II(i)==6, M_tst(2,5)=M_tst(2,5)+1; end 
       if II(i)==7, M_tst(1,5)=M_tst(1,5)+1; end 
    end 
    if ( i > N(5) ) & ( i <= N(6) ) 
       if II(i)==1, M_tst(7,6)=M_tst(7,6)+1; end 
       if II(i)==2, M_tst(6,6)=M_tst(6,6)+1; end 
       if II(i)==3, M_tst(5,6)=M_tst(5,6)+1; end 
       if II(i)==4, M_tst(4,6)=M_tst(4,6)+1; end 
       if II(i)==5, M_tst(3,6)=M_tst(3,6)+1; end 
       if II(i)==6, M_tst(2,6)=M_tst(2,6)+1; end 
       if II(i)==7, M_tst(1,6)=M_tst(1,6)+1; end 
    end 
    if ( i > N(6) ) & ( i <= N(7) ) 
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       if II(i)==1, M_tst(7,7)=M_tst(7,7)+1; end 
       if II(i)==2, M_tst(6,7)=M_tst(6,7)+1; end 
       if II(i)==3, M_tst(5,7)=M_tst(5,7)+1; end 
       if II(i)==4, M_tst(4,7)=M_tst(4,7)+1; end 
       if II(i)==5, M_tst(3,7)=M_tst(3,7)+1; end 
       if II(i)==6, M_tst(2,7)=M_tst(2,7)+1; end 
       if II(i)==7, M_tst(1,7)=M_tst(1,7)+1; end 
    end 
end 
 
Test_Conf_matrix(:,1) = ( M_tst(:,1) ./ N(1) ) .* 100 ;  
Test_Conf_matrix(:,2) = ( M_tst(:,2) ./ ( N(2)-N(1) ) ) .* 100 ; 
Test_Conf_matrix(:,3) = ( M_tst(:,3) ./ ( N(3)-N(2) ) ) .* 100 ; 
Test_Conf_matrix(:,4) = ( M_tst(:,4) ./ ( N(4)-N(3) ) ) .* 100 ; 
Test_Conf_matrix(:,5) = ( M_tst(:,5) ./ ( N(5)-N(4) ) ) .* 100 ; 
Test_Conf_matrix(:,6) = ( M_tst(:,6) ./ ( N(6)-N(5) ) ) .* 100 ; 
Test_Conf_matrix(:,7) = ( M_tst(:,7) ./ ( N(7)-N(6) ) ) .* 100 ; 
 
Class_rate_test = sum(diag(Test_Conf_matrix)) / 7 ; 
 
% Test the (60-40-7) network on "kill_noise" and "right_outside" on which it was not  
% trained. 
 
% Construct the new testing set from "kill_noise" and "right_outside". 
 
test_cell_2(20,2) = {[]} ; 
 
for i=1:20 
    XX = MFCC_Feature_cell{i,8} ; XX(1,:) = [] ; 
    test_cell_2(i,1) = { XX } ; 
    XX = MFCC_Feature_cell{i,9} ; XX(1,:) = [] ; 
    test_cell_2(i,2) = { XX } ; 
end 
 
m = 1 ; n = size(test_cell_2{1,1},2) ; 
 
for i=1:2 
    if i ~= 1 
        m = n + 1 ; n = n + size(test_cell_2{1,i},2) ; 
    end 
    for j=1:20 
        test_mtx_2(:,m:n) = test_cell_2{j,i} ; 
        if j ~= 20 
           m = n + 1 ; n = n + size(test_cell_2{j+1,i},2) ; 
        end 
    end 
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    NN(i) = n ; 
end 
 
% Make the new testing set zero mean and unit variance. 
 
for i=1:14         
    test_mtx_2(i,:) = test_mtx_2(i,:) - mean(test_mtx_2(i,:)) ; 
    test_mtx_2(i,:) = test_mtx_2(i,:)./std(test_mtx_2(i,:)) ; 
end 
 
AA = sim(net,test_mtx_2) ; % Test the network. 
 
% Convert the network outputs obtained from testing to binary outputs. 
 
A_bin_out2 = zeros(size(AA)) ; 
 
for i=1:7 
    for j=1:size(test_mtx_2,2) 
        if AA(i,j)==max(AA(:,j)) 
           A_bin_out2(i,j)=1; 
        else A_bin_out2(i,j)=0; 
        end 
    end 
end 
 
% Construct the confusion matrix for the testing set obtained from "kill_noise" and  
% "right_outside". 
 
M_tst2 = zeros(7,2) ; 
[II,JJ] = find(A_bin_out2) ; 
 
for i=1:size(A_bin_out2,2) 
    if ( i <= NN(1) ) 
       if II(i)==1, M_tst2(7,1)=M_tst2(7,1)+1; end 
       if II(i)==2, M_tst2(6,1)=M_tst2(6,1)+1; end 
       if II(i)==3, M_tst2(5,1)=M_tst2(5,1)+1; end 
       if II(i)==4, M_tst2(4,1)=M_tst2(4,1)+1; end 
       if II(i)==5, M_tst2(3,1)=M_tst2(3,1)+1; end 
       if II(i)==6, M_tst2(2,1)=M_tst2(2,1)+1; end 
       if II(i)==7, M_tst2(1,1)=M_tst2(1,1)+1; end 
    end 
    if ( i > NN(1) ) & ( i <= NN(2) ) 
       if II(i)==1, M_tst2(7,2)=M_tst2(7,2)+1; end 
       if II(i)==2, M_tst2(6,2)=M_tst2(6,2)+1; end 
       if II(i)==3, M_tst2(5,2)=M_tst2(5,2)+1; end 
       if II(i)==4, M_tst2(4,2)=M_tst2(4,2)+1; end 
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       if II(i)==5, M_tst2(3,2)=M_tst2(3,2)+1; end 
       if II(i)==6, M_tst2(2,2)=M_tst2(2,2)+1; end 
       if II(i)==7, M_tst2(1,2)=M_tst2(1,2)+1; end 
    end 
end 
 
Test_Conf_matrix_2(:,1) = ( M_tst2(:,1) ./ NN(1) ) .* 100 ;  
Test_Conf_matrix_2(:,2) = ( M_tst2(:,2) ./ ( NN(2)-NN(1) ) ) .* 100 ; 
 
% Store the confusion matrices obtained for each iteration in a cell array. 
 
results(trial,1) = { Train_Conf_matrix  } ; 
results(trial,2) = { Test_Conf_matrix   } ; 
results(trial,3) = { Test_Conf_matrix_2 } ; 
 
end 
 
% Save all the confusion matrices obtained for 80 iterations. 
 
save_loc = [ Main_loc '\' 'Results_MEL_64.mat' ] ;  
save(save_loc,'results') ; 
 
% This section computes the overall average confusion matrices, and related average  
% classification performances. 
 
conf_train = results{1,1}  ; 
conf_test = results{1,2}  ; 
conf_test2 = results{1,3}  ; 
 
for i=2:80 
    conf_train = conf_train + results{i,1} ; 
    conf_test = conf_test + results{i,2} ; 
    conf_test2 = conf_test2 + results{i,3} ; 
end 
 
conf_train = conf_train ./ 80 ; 
conf_test = conf_test ./ 80 ; 
conf_test2 = conf_test2 ./ 80 ; 
 
Conf_all(1,3) = { [] } ; 
 
Conf_all(1,1) = { conf_train } ; 
Conf_all(1,2) = { conf_test  } ; 
Conf_all(1,3) = { conf_test2 } ; 
 
% Save the overall average confusion matrices. 
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save_loc_2 = [ Main_loc '\' 'Conf_MEL_64.mat' ] ;  
save(save_loc_2,'Conf_all') ; 
 
% Overall classification rates for the training and testing sets. 
 
Overall_Class_train = sum(diag(conf_train)) / 7 ; 
Overall_Class_test = sum(diag(conf_test)) / 7 ; 
 
clc, 
 
disp(' Overall Average Classification Rate for Training = ') ;  
disp(Overall_Class_train) ; 
disp(' Overall Average Classification Rate for Testing = ') ;  
disp(Overall_Class_train) ; 
 
% *********************** END OF MAIN PROGRAM ********************** 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



158 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 
 



159 

LIST OF REFERENCES 

Black, R. D., “Ear-insert microphone,” Journal of the Acoustical Society of America, Vol. 
29, No. 2, pp. 260-264, 1957. 
 
Bogert, B., Healy, M., and Tukey, J., “The quefrency analysis of time series for echos,” 
In Rosenblatt, M., editor, Proceedings of Symposium on Time Series Analysis, Chapter 
15, pp. 209-243, Wiley, New York, 1963. 
 
Brookes, M., Voicebox: A Matlab Toolbox for Speech Processing, 1997, 
[http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html], last accessed on 
November 05, 2005. 
 
Davis, S. B., and Mermelstein, P., “Comparison of parametric representations of 
monosyllabic word recognition in continuously spoken sentences,” IEEE Transactions on 
Acoustics, Speech, and Signal Processing, Vol. ASSP-28, No. 4, pp. 357-366, August 
1980. 
 
Deller, J. R., Proakis, J. G., and Hansen, J. H. L, Discrete-Time Processing of Speech 
Signals, Macmillan, New York, 1993. 
 
Demuth, H. B., and Beale, M. H., Neural Network Toolbox User’s Guide, Version 4, The 
MathWorks, 2005. 
 
Deng, L., and O’Shaughnessy, D., Speech Processing, Marcel Dekker, New York, 2003. 
 
Duda, R. O., Hart, P. E., and Stork, D. G., Pattern Classification, 2nd Edition, Wiley-
Interscience, New York, 2001. 
 
Gold, B., and Morgan, N., Speech and Audio Signal Processing, Wiley, New York, 2001. 
 
Graciarena, M., Franco, H., Sonmez, K., and Bratt, H., “Combining standard and throat 
microphones for robust speech recognition,” IEEE Signal Processing Letters, Vol. 10, 
No. 3, pp. 72-74, March 2003. 
 
Hagan, M. T., Demuth, H. B., and Beale, M. H., Neural Network Design, Campus 
Publishing Service, University of Colorado, Boulder, Colorado, 1996. 
 
Hopfield, J. J., “Neural networks and physical systems with emergent collective 
computational abilities,” Proceedings of The National Academy of Sciences, Vol. 79, pp. 
2554-2558, 1982. 
 
Huang, L-S., and Yang, C-H., “A novel approach to robust speech endpoint detection in 
car environments,” Proceedings of The IEEE International Conference on Acoustics, 
Speech, and Signal Processing, Vol. 3, pp. 1751-1754, June 2000. 



160 

 
Junqua, J-C., “Robustness and cooperative multimodel man-machine communication 
applications,” Proceedings of Second Venaco Workshop and ESCA ETRW, pp. 101-112, 
September 16-20, 1991. 
 
Kaiser, J. F., “On a simple algorithm to calculate the ‘energy’ of a signal,” Proceedings 
of The IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 
1, pp. 381-384, April 1990. 
 
Knowles Acoustics, “FG Series Microphone Specifications,”  
[www.knowlesacoustics.com], last accessed on February 15, 2006. 
 
Lamel, L. F., Rabiner L. R., Rosenberg, A. E., and Wilpon J. G.,“An improved endpoint 
detector for isolated word recognition,” IEEE Transactions on Acoustics, Speech, and 
Signal Processing, Vol. ASSP-29, No. 4, pp. 777-785, August 1981. 
 
Mitra, S. K., Digital Signal Processing: A Computer-Based Approach, 3rd Edition, 
McGraw-Hill, New York, 2006. 
 
Morgan, N., and Bourlard, H. A., “Neural networks for statistical recognition of 
continuous speech,” Proceedings of The IEEE, Vol. 83, No. 5, pp. 742-770, May 1995. 
 
Newton, M., M.S. Electrical Engineering Thesis, Naval Postgraduate School, Monterey 
California, 2006 (to be completed in 2006).  
 
O’Neill, J., “A comparison of mouth, ear, and contact microphones,” The Journal of The 
Acoustical Society of America, Vol. 30, No. 7, p. 682, July 1958. 
 
Oppenheim, A. V., “Generalized linear filtering,” In Gold, B., and Rader, C. M., editors, 
Digital Processing of Signals, Chapter 8, pp. 233-264, McGraw-Hill, New York, 1969. 
 
Picone, J. W., “Signal modeling techniques in speech recognition,” Proceedings of The 
IEEE, Vol. 81, No. 9, pp. 1215-1247, September 1993. 
 
Qiang, H., and Youwei, Z., “On prefiltering and endpoint detection of speech signal,” 
Proceedings of The Fourth International Conference on Signal Processing, Vol. 1, pp. 
749-752, October 1998. 
 
Rabiner, L. R., and Sambur, M.R., “An algorithm for determining the endpoints of 
isolated utterances,” The Bell System Technical Journal, Vol. 54, pp. 297-315, February 
1975. 
 
Rabiner, L. R., and Schafer, R. W., Digital Processing of Speech Signals, Prentice-Hall, 
New Jersey, 1978. 
 



161 

Rafaely, B., and Furst, M., “Audiometric ear canal probe with active ambient noise 
control,” IEEE Transactions on Speech and Audio Processing, Vol. 4, No. 3, pp. 224-
230, May 1996. 
 
Rosenblatt, F., “The perceptron: A probabilistic model for information storage and 
organization in the brain,” Psychological Review, Vol. 65, pp. 386-408, 1958. 
 
Rumelhart, D. E., and McClelland, J. L., Parallel Distributed Processing: Explorations 
in the Microstructure of Cognition, Vol.1, Cambridge, MA: MIT Press, 1986. 
 
Shahina, A., and Yegnanarayana, B., “Language identification in noisy environments 
using throat microphone signals,” Proceedings of 2005 International Conference on 
Intelligent Sensing and Information Processing, pp. 400-403, January 4-7, 2005. 
 
Shen, J. L., Hung, J. W., and Lee, L. S., “Robust entropy-based endpoint detection for 
speech recognition in noisy environments,” Proceedings of The International Conference 
on Spoken Language Processing, November-December 1998. 
 
Taboada, J., Feijoo, S., Balsa, R., and Hernandez C., “Explicit estimation of speech 
boundaries,” IEE Proceedings – Science, Measurement, and Technology, Vol. 141, No. 
3, pp. 153-159, May 1994. 
 
Teager, H. M., “Some observations on oral air flow during phonation,” IEEE 
Transactions on Acoustics, Speech, and Signal Processing, Vol. 28, No. 5, pp. 599-601, 
October 1980. 
 
Vaidyanathan, R., Gupta, L., Chung, B., Allen, T. J., Quinn, R. D., Tabib-Azar, M., 
Zarycki, J., and Levin, J., “Human-machine interface for tele-robotic operation: mapping 
of tongue movements based on aural flow monitoring,” Proceedings of The IEEE/RSJ 
International Conference on Intelligent Robots and Systems, Vol. 1, pp. 859-865, 
September-October 2004. 
 
Vaidyanathan, R., Kook, H., Gupta, L., and West, J., “Parametric and non-parametric 
signal analysis for mapping air flow in the ear-canal to tongue movement: a new strategy 
for hands-free human-machine interface,” Proceedings of The IEEE International 
Conference on Acoustics, Speech, and Signal Processing, Vol. 5, pp. 613-616, May 2004. 
 
Vergin, R., O’Shaughnessy, D., and Farhat, A., “Generalized mel frequency cepstral 
coefficients for large-vocabulary speaker-independent continuous-speech recognition,” 
IEEE Transactions on Speech and Audio Processing, Vol. 7, No. 5, pp. 525-532, 
September 1999. 
 
Westerlund, N., Dahl, M., and Claesson, I., In-Ear Microphone Techniques for Severe 
Noise Conditions, Research Report, November 2005. 
 



162 

Westerlund, N., Dahl, M., and Claesson, I., “Speech recognition in severely disturbed 
environments combining ear-mic and active noise control,” Proceedings of The 2002 
International Congress and Exposition on Noise Control Engineering, Dearborn, MI, 
August 2002. 
 
Westerlund, N., Dahl, M., and Claesson, I., “In-ear microphone hybrid speech 
enhancement,” Proceedings of SIP, Kauai, Hawai, USA, August 2002. 
 
Wu, B. F., and Wang, K. C., “Robust endpoint detection algorithm based on the adaptive 
band-partitioning spectral entropy in adverse environments,” IEEE Transactions on 
Speech and Audio Processing, Vol. 13, No. 5, pp. 762-775, September 2005. 
 
Ying, G. S., Mitchell, C. D., and Jamieson, L. H., “Endpoint detection of isolated 
utterances based on a modified Teager energy measurement,” Proceedings of The IEEE 
International Conference on Acoustics, Speech, and Signal Processing, Vol. 2, pp.732-
735, April 1993. 
 
Zhang, Y., Zhu., X., Hao, Y., and Luo, Y., “A robust and fast endpoint detection 
algorithm for isolated word recognition,” Proceedings of The IEEE International 
Conference on Intelligent Processing Systems, Vol. 2, pp. 1819-1822, October 1997. 
 
Zhu, Q., and Alwan, A., “Non-linear feature extraction for robust speech recognition in 
stationary and non-stationary noise,” Computer Speech and Language, Vol. 17, No. 4, 
pp. 381-402, October 2003. 



163 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia 
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California 
 

3. Professor Jeffrey B. Knorr 
Chairman, Department of Electrical and Computer Engineering 
Naval Postgraduate School 
Monterey, California 
 

4. Professor Monique P. Fargues 
Department of Electrical and Computer Engineering 
Naval Postgraduate School 
Monterey, California 
 

5. Professor Ravi Vaidyanathan 
Department of Systems Engineering 
Naval Postgraduate School 
Monterey, California 
 

6. Gokhan Bulbuller 
Yildiz Mah. 223 Sokak Yalcin Apt. No:16/2 
Antalya 07050 
TURKEY 
 


