
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2006-06

A teamwork-oriented air traffic control simulator

Sidhom, Mounir

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/2716

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

A TEAMWORK-ORIENTED AIR TRAFFIC CONTROL
SIMULATOR

by

Mounir Sidhom

June 2006

 Thesis Advisor: Arnold Buss
 Second Reader: Don McGregor

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: A Teamwork-oriented Air Traffic Control Simulator

6. AUTHOR(S) Mounir Sidhom

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
 Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Air Traffic Control (ATC) is a complicated domain in which many specialists should

collaborate and communicate with each other in order to guarantee safe and efficient air traffic.
A significant number of air traffic control errors are associated with either faulty coordination
between ATC actors, or a failure of some kind of team coordination. These errors are likely to
increase in the future as aircraft density increases. Many researchers suggest that the
introduction of team and teamwork concepts during the training phase of the ATC actors will
be in help to reduce the amount of these errors.

 The objective of this research is to conceive, design, and implement a teamwork-

oriented Air Traffic Control simulator that can be easily installed and used in ATC schools.
The product of this thesis will be a complete software package that allows trainees in the
different ATC specialties to work together in the same manner as they do “on-the-job” in order
to collaboratively manage an air traffic situation. This type of simulator should allow air traffic
control trainees to acquire more robust coordination skills and reduce the amount of traffic
control errors caused by lack of teamwork in actual ATC training situations.

15. NUMBER OF
PAGES 117

14. SUBJECT TERMS
Air Traffic Control, Teamwork, Pilot, En-route controller, Approach Controller, Tower Controller,
XML, OOP, RMI, Simulation.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

A TEAMWORK-ORIENTED AIR TRAFFIC CONTROL SIMULATOR

Mounir Sidhom
Major, Tunisian Air Forces

Engineering Degree, Universita degli Studi Frederico II, Naples, Italy 1992
Master in Computer Science, ENSICA, France 1996

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN
MODELING, VIRTUAL ENVIRONMENTS, AND SIMULATION

from the

NAVAL POSTGRADUATE SCHOOL
June 2006

Author: Mounir Sidhom

Approved by: Arnold Buss

Thesis Advisor

Don McGregor
Second Reader

Rudy Darken
Chair, MOVES Academic Committee

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Air Traffic Control (ATC) is a complicated domain in which many specialists

should collaborate and communicate with each other in order to guarantee safe and

efficient air traffic. A significant number of air traffic control errors are associated with

either faulty coordination between ATC actors, or a failure of some kind of team

coordination. These errors are likely to increase in the future as aircraft density increases.

Many researchers suggest that the introduction of team and teamwork concepts during

the training phase of the ATC actors will be in help to reduce the amount of these errors.

 The objective of this research is to conceive, design, and implement a teamwork-

oriented Air Traffic Control simulator that can be easily installed and used in ATC

schools. The product of this thesis will be a complete software package that allows

trainees in the different ATC specialties to work together in the same manner as they do

“on-the-job” in order to collaboratively manage an air traffic situation. This type of

simulator should allow air traffic control trainees to acquire more robust coordination

skills and reduce the amount of traffic control errors caused by lack of teamwork in

actual ATC training situations.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

II. BACKGROUND AND RELATED WORK ..5
A. SIMULATION IN ATC ..5
B. BENEFITS OF SIMULATION IN ATC ...6
C. ATC SIMULATORS ...8

1. The Tower Research Simulator..10
2. The Total Airspace and Airport Modeler (TAAM)........................11
3. SIMMOD ..12
4. Re-organized ATC Mathematical Simulator (RAMS)...................13

D. IMPORTANCE OF TEAMWORK IN ATC ..14
E. ATC AS A BIG TEAM..16
F. CONCLUSION ..16

III. GENERAL ISSUES AND USE CASES OF AIR TRAFFIC CONTROL............17
A. INTRODUCTION..17
B. A BRIEF HISTORY OF AIR TRAFFIC CONTROL17
C. AIR TRAFFIC CONTROL ..19

1. Tower Control ..21
2. Approach/TRACON Control..23

a. Departure Aircraft...23
b. Arrival Aircraft..23
c. Over-flight Aircraft ...24
d. VFR Aircraft ...24
e. IFR aircraft ...25

3. En-route Control..25
D. USE CASES OF AIR TRAFFIC CONTROL SIMULATOR26

1. Tower Controller Use Cases ...29
2. Approach Controller Use Cases ...30
3. En-route Controller Use Cases ...30
4. Pilot Use Cases..31
5. Instructor Use Cases ..32

E. CONCLUSION ..33

IV. SYSTEM SPECIFICATION AND DESIGN ..35
A. INTRODUCTION..35
B. SPECIFICATION..36

1. Specification for the Approach Part ..36
2. Specification for the En-route Part ..41
3. Tower Control Specification ...43
4. Pilot Specification...43
5. Instructor Specification...45

C. APPLICATION DESIGN ...46

 viii

1. Overall Application Design ...46
2. The Communication Module ..48
3. The Instructor Module ..53
4. The Approach Module...56
5. The Tower Module...58
6. The Pilot Module..58

D. CONCLUSION ..60

V. IMPLEMENTATION OF THE ATC SIMULATOR ..61
A. MAP REPRESENTATION ..61
B. THE SERVER/INSTRUCTOR MODULE ...62
C. THE PILOT MODULE...64

1. The Cockpit Module ..65
2. The Ground Module ..66

a. Aircraft Mover...68
b. The Takeoff Processor ..69

D. THE TOWER MODULE..70
1. Placing Algorithm ..71

E. APPROACH MODULE..72
1. Coordinate Conversion..75
2. Runway Representation ..76

F. THE EN-ROUTE MODULE..78

VI. CONCLUSIONS AND FURTHER WORK..79
A. CONCLUSION ..79
B. FUTURE RESEARCH..80

1. Usability Study ...80
2. Design of Experiments...81
3. Rebuilding the Tower Module ..81

LIST OF REFERENCES..83

APPENDIX A. GLOSSARY AND ABBREVIATIONS ...87

APPENDIX B. THE SERVICES’ INTERFACES..91

APPENDIX C. SCENE AUTHORING INTERFACE (SAI)99

INITIAL DISTRIBUTION LIST ...101

 ix

LIST OF FIGURES

Figure 1. The ATC Loop...6
Figure 2. The Different Categories of Air Traffic Control..21
Figure 3. Tower Controller Use Cases ..29
Figure 4. Approach Controller Use Cases...30
Figure 5. En-route Controller Use Cases...31
Figure 6. Pilot Use Cases ..31
Figure 7. Instructor Use Cases ..32
Figure 8. The Waterfall Life Cycle Model..36
Figure 9. Typical PSR output ..37
Figure 10. Typical SSR output ..39
Figure 11. Aircraft separation in en-route control...42
Figure 12. The overall application design ...47
Figure 13. Client/Server interaction in CORBA ...49
Figure 14. CORBA communication architecture ..50
Figure 15. RMI Client/Server architecture..51
Figure 16. The ATC user service ..53
Figure 17. Headings in ATC ...55
Figure 18. Overall approach module design ...57
Figure 19. The Pilot Module Design ...59
Figure 20. Bitmap and XML representation of the map ...61
Figure 21. The XML schema of a map ...61
Figure 22. Visualization of the xml data in the Approach and En-route application........62
Figure 23. UML diagram of the server module...63
Figure 24. XML schema of the flight plan..63
Figure 25. The server module GUI ...64
Figure 26. Cockpit GUI of the pilot package ..66
Figure 27. The UML diagram of the cockpit module ...66
Figure 28. The ground GUI of the pilot package ..67
Figure 29. The UML diagram of the ground part..68
Figure 30. The takeoff verification process...70
Figure 31. The UML diagram of the tower module ..71
Figure 32. The placing algorithm..72
Figure 33. The UML diagram of the approach module ..73
Figure 34. The approach workstation GUI..74
Figure 35. A simple geographic area representation...75
Figure 36. Runway extensions ..77
Figure 37. 3D model of the Tower module ...82
Figure 38. 3D model of Tunis airport rendered by SAI ..100

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Common ATC Simulators’ Techniques...9
Table 2. Main ATC specialist Categories and their Tasks...28
Table 3. Special purpose SSR codes and their uses...46
Table 4. A typical instructor’s event display GUI ...54
Table 5. Interpretation of the pseudo-code used in the Instructor GUI55

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

This research would not have been possible without the encouragement of my

wife Faten, my children Seif and Sirine, my father Mokhtar, and my mother Fatma.

Thanks a lot from all my heart for your moral support. My family means the world to me

and without them I would be nothing. I would like to publicly acknowledge the great

sacrifice that my family has endured for the past two years while I conducted research in

the United States. Thank you.

This research was conducted in coordination with the MOVES Institute at the

Naval Postgraduate School. This institute is comprised of many professional experts in

modeling, simulation, and web-based development. I would be remiss if I did not

mention a few individuals whose support and knowledge was extremely helpful in the

completion of this simulation model. The first person I would like to thank is my thesis

supervisor, Professor Arnie Buss. I have known Professor Buss during the classes that he

is teaching, and I discovered that he is a caring professor with full of wisdom and

experience. From him I learned a lot of skills that certainly will be useful in my life. I am

really glad that I came to have him as a teacher, and as an advisor for my thesis.

Furthermore, I would like to thank Professors Don Brutzman and Don McGregor, whose

knowledge of web-based services and development was absolutely critical to the success

of this research. Finally, I would like to thank Professor Rudy Darken and CDR Joseph

Sullivan for their efforts in leading the institute. Their expert management and guidance

helped ensure my success along the way.

 In conclusion, many of my classmates and country mates supported me and

encouraged me in implementing this work. In particular, Jon Ellis was in great help in the

scheduling and the reorganization of my thesis. Travis Rauch is always happy to

participate in executing and debugging the application. Many thanks for them and any

other who supported me.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Air Traffic Control (ATC) is a network of facilities whose purpose is to organize

aircraft movements in airspaces in order to guarantee safe and efficient air traffic. ATC

contains many kind of specialists (ATCS) commonly grouped in three main categories:

tower, approach and en-route. To meet the required skills necessary to manage an ever-

increasing air traffic density, these specialists should be trained continuously. However,

often the training method consists of using separate modules for each air traffic control

category. The most critical deficiency of such training method is the lack of the concept

of teamwork.

According to some researchers, a significant number of air traffic control errors

are associated with either faulty coordination between ATC specialists, faulty

coordination between ATCSs and pilots, or a failure in some kind of team coordination.

Much research emphasizes the importance of teamwork in ATC. Lintner and Buckles

(Lintner & Buckles, 1992) found in their study that more than 30% of operational errors

(violations of aircraft separation minima) are associated to some kind of communication

deficiency between the ATC actors. In an analysis sponsored by the Federal Aviation

Administration's Office of the Chief Scientific and Technical Advisor for Human Factors

(Federal Aviation Administration [FAA], 2002), based on a sample of 386 Aviation

Safety Report System (ASRS). The results of this analysis show that 90% of the errors

are attributed to some category of communication errors. According to a study by Rogers

and Nye, coordination between controllers was considered a causal factor in 15% of

1,038 low to moderate severity operational errors from 1988-1991 (Bailey, Broach,

Thompson, Enos, 1999).

It is clear, from the examples shown above, that the lack of coordination between

the different actors of the air traffic is a direct cause of a non-negligible number of

incidents that could have grave consequences. Hence, the concept of team coordination

 2

and teamwork are keys to a successful air traffic management. One obvious way to

acquire the necessary teamwork skills is through On the Job Training (OJT). However, as

stated by O’Hare and Roscoe (O’Hare & Roscoe, 1990), the stress of live performance

and the difficulty of providing immediate and accurate feedback makes OJT a less-than-

ideal learning environment.

Recent advances in computation and communication technologies can be easily

used to expand the options for a training design and methodologies in ATC by producing

a simulated system that mimics the real working environment. Simulations can be

developed with a great degree of realism and fidelity; hence, they can allow the OJT

phase to be avoided or at least reduced. Even though ATC simulators are quickly

expanding in number, they still suffer deficiencies, including lack of portability,

incompleteness, and in general they are closed systems. In addition, the most accurate

simulators require a high cost of production and maintenance, which may not be

affordable for many countries. Many developing countries are actually using different

applications for their ATC trainees, and often these applications are either incompatible

with each other or they do not allow exchange of data. In such conditions, it is difficult, if

not impossible, to implement the concept of team work.

The work in this thesis consists of designing and implementing a teamwork-

oriented air traffic control simulator that could be used in ATC schools. The goal is to

allow different ATCSs to work together, in the same conditions as the job environment,

in order to manage an air traffic situation in a collaborative way. A simulator like this

should allow ATCSs to acquire further coordination skills, and hence, reduce the amount

of air traffic faults due to a lack of teamwork in the actual ATC training system.

A teamwork ATC simulator is a flexible training tool for both trainees and

instructors. A simulator like this will help in obtaining a low cost solution that can

 3

substitute buying simulators for each category of ATCSs. In addition, the main training

advantages of this simulator could be summarized as:

1. Decreasing the OJT time.

2. Help to increase teamwork performance, and hence, reduce air traffic

errors.

3. Give insight into teamwork requirements for Air Traffic Control

Simulators.

This work is organized in six chapters, the first of which is this introduction. The

second chapter reviews the most related works about the objective of this thesis.

Particularly, it emphasizes the role of simulation in ATC and lists the most important

drawbacks about some examined ATC simulators. The end of the chapter illustrates the

importance of teamwork and its impact in the ATC activities. The third chapter gives a

general overview about the air traffic control domain, including some historical events

and the most important concepts of ATC relevant for the scope of the thesis. Since a

waterfall model will be adopted as the software development methodology of this work,

this chapter is viewed as the acquisition phase of this model. The end of the chapter

illustrates the different use cases of the ATC simulator. The fourth chapter is dedicated to

the specification and the design phases of the project. It will examine the capabilities and

constraints of the intended product. The fifth chapter contains the development phase of

the simulator. During this chapter, the different technical aspects of the different modules

constituting the developed software will be examined. The sixth chapter concludes this

thesis by a summary of the most important benefits of this work. This chapter also

illustrates some future steps of the produced simulator such as how it can be used to

evaluate trainees, and how it can be used in a designed experiment to demonstrate

training improvement.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND AND RELATED WORK

With advances in computer graphics and simulation techniques, many private and

governmental companies interested in Air Traffic Control (ATC) have produced very

sophisticated ATC simulators. With today’s ATC simulators, air traffic control specialists

have the opportunity to practice their skills in a simulated environment exactly as they

would use a real environment (as in On-the-Job Training (OJT)). As Smolensky and Stein

(Smolensky & Stein, 1998) mentioned, the simulated environment can offer samples of

any desired density of simulated aircraft that can be “flown” and presented to the

controller subjects using scenarios that have fully definable and experimentally controlled

levels of complexity.

This chapter is divided into three parts. The first part (the first two sections)

discusses the relationship between the real ATC world and ATC simulators and gives

some important aspects of simulation in ATC. The second part is a summary of some

ATC simulators. Particularly, it illustrates some aspects of ATC simulators, giving their

most important characteristics and their limitations. The third part is a collection of ideas

and opinions about the importance of team and teamwork in ATC.

A. SIMULATION IN ATC

As stated in the introduction, ATC is an evolving domain with rules and

technological mean that change continuously in order to achieve a better degree of safety

and to optimize further airflow. Since training should be correlated to the real world, any

changes in the real world rules, procedures, or technologies should have a direct impact

in the way training is conducted. At the beginning of the ATC era, training was

accomplished in two main phases. The first phase is an illustration of the theoretical

concepts of the ATC in general and the specific concepts related to a given category of

ATC. The second phase is based on the use of some models that represents a specific

category of the ATC. For example, in the case of the tower control, often the model

 6

consists of a room containing a tower-like shape, and small model of the airport with

aircraft figurines with position that can be updated by the trainees themselves. As

technology has increased, the figurines of the second phase have been replaced

simulation models. Figure 1 shows how simulation is integrated into the ATC loop.

Generally new concepts and rules in ATC (e.g., new international accords, flying rules,

and human factor concepts) have a direct impact in how the real ATC will be conducted.

At this point, simulation techniques could be useful as a means to represent, integrate,

and test the new situation. Once a simulation is implemented and tested, it can be used as

a training tool and allow controllers to acquire the required skills necessary for the real

ATC.

Figure 1. The ATC Loop

B. BENEFITS OF SIMULATION IN ATC

Recent revolutions in computer technologies have made it possible to simulate the

ATC process with a level of realism that is far beyond what was envisioned even a few

 7

years ago by the most vivid imaginations. It is now possible to present experienced

controllers with simulated ATC scenarios that are virtually indistinguishable from the

real world to which they are accustomed (Smolensky & Stein, 1998). The National

Research Council expressed that simulation can be especially useful in support of

investigating how multiple systems do or do not harmonize and of the impacts of new

systems on teamwork (National Research Council, 1998). Many research studies have

shown the benefits of ATC simulation as a training tool and as a studying environment

especially for human behaviors and human factor issues in ATC.

According to Smolensky and Stein there are at least three benefits using

simulation in ATC. First, simulation is a cost-effective training solution. Today, even

though commercial ATC simulators have a relatively high cost, they often reduce the

training time and enhance the Time of Transfer (TOT). In addition, many companies

offer a game-like ATC simulator that has a low cost, and these simulators can be useful at

least in the pre-training or during the selection phases of ATC. Secondly, ATC simulation

is a safe and a well-controlled environment to test, examine, or conduct evaluation

studies of new air traffic operational concepts, new international navigation rules, new

hardware or software used to automate some parts of the ATC, or simply to test an airport

capacity. The third benefit of simulation in ATC is its capability to train the controller

and/or controller team. Neophyte controllers can be given the chance to develop without

any attendant fear of the potential hazards that could be the result of their inexperience if

they were operating within the real world (Smolensky & Stein, 1998). The fourth benefit

of ATC simulators is that they can be characterized with a high fidelity with respect to

the real operational system. They can mimic most aspects of the real world in detail,

provided that all components are well designed and implemented. This capability is very

important since it can minimize or even eliminate the OJT phase.

The ATC loop exposed in Figure 1 has another benefit. It can indirectly reduce

the total air traffic cost if the different controllers are well trained and integrated in it.

According to a document of the Federal Aviation Administration (FAA), the modern

 8

transportation system is characterized by a large amount of congestion and delay. The

FAA long range forecasts have projected nearly 50% growth in commercial aircraft

operations (domestic and international carriers) between now and the year 2025. The U.S.

Department of Transportation (DOT) stated that commercial aviation delays are

estimated to cost airlines over $3 billion per year. Passengers are directly affected by

missed flight connections, missed meetings, and loss of personal time. There are

approximately 20 congested airports, each averaging over 20,000 hours of flight delay

per year (DOT, 2002). Obviously, reducing aviation time delay isn’t a matter of only air

traffic controllers; it requires a conjoint effort from all aviation sectors. However, well-

trained air traffic controllers will significantly reduce the cost of air delay. In this case,

simulation appears to be an ideal solution because it can generate any hypothetical traffic,

and trainers will gain insight and skills to deal with such congested traffic.

C. ATC SIMULATORS

Today’s ATC simulators both governmental and commercial offer a myriad of

options and settings, allowing coverage of the major parts of training requirements. First,

it is possible to control the density of aircraft and their relative characteristics such as the

speed and the flying level to meet the trainees’ needs. Secondly, in some cases it is

possible to switch from one airport to another, which is helpful for the user to gain insight

about a particular airport such as number of runways, type of communication devices,

navigation facilities, and airport conditions (wind, visibility, etc.). Thirdly, most ATC

simulators offer the possibility to introduce some unexpected events and abnormal

aircraft conditions. Although such events have generally low frequency in a normal air

situation, all ATC trainees should know their symptoms and how to handle them. These

anomalies may include one or more of the following patterns:

- Unexpected changes in weather conditions

- Communication failure between controller and aircraft

- Communication failure between controllers

 9

- In-flight emergencies (such as aircraft hijack, communication failure, engine

failure, or fire). These anomalies are generally signed out to the controller by

a change of the aircraft Secondary Surveillance Radar (SSR) code.

The various ATC simulators differ by the category or type of air traffic control

they simulate (VFR, IFR, ILS, etc) as well as in their implementation method and

technology. Table 1 gives a summary of the most important ATC categories and their

possible implementation techniques.

ATC simulator Visualization Implementation techniques

Tower Control - 2D screen

- 3D environment

- cave technology

-Virtual environment (VE)

Approach Control - 2D screen

En-route Control - 2D screen

- simple simulation

- expert systems

- agent based systems

- neural network

- voice recognition

- blackboard systems

Table 1. Common ATC Simulators’ Techniques

Air traffic simulators also differ in costs and in the modes in which they operate.

For example, some of them require a pseudo-pilot or a real pilot, and others require the

installation of a voice recognition module to interpret the controller commands and

provide an adequate response to these commands. Even though the limitation of the

operational modes can be overcome, the cost still remains a significant issue, especially

for developing countries. In an article of Canadian Business (McCleam, 2003), Matthew

McCleam wrote, “Until recently, technology has not offered a viable solution. Previous

simulators required human ‘pseudo-pilots’ to interact with trainees and fly the virtual

aircraft according to their instructions. Three or more could be required to generate

enough traffic for just one student, adding considerably to operating costs. Moreover,

owing to a lack of processing power and crude video display technologies, the simulated

 10

scenarios didn't even begin to look real. Add in a sticker price often in the millions of

dollars, and it's no wonder few organizations could afford a single simulator, let alone

deploy them at every facility”. To further understand the world of ATC simulators, the

next paragraphs give some ideas about some commercial ATC versions of them. It will

also be seen that price is one of the major drawbacks of commercial ATC simulators.

1. The Tower Research Simulator

In the domain of tower control simulators, The National Aerospace Laboratory

NLR of the Netherlands operates a real-time Tower Research Simulator (TRS) for

advanced research and development on airport control tower operations and systems

under a variety of meteorological conditions. The TRS1 is capable of simulating Tower

Control and Apron Control activities at airports under nearly realistic operational

conditions, with air traffic controllers and pilots in the control loop. The outside visuals,

provided with a projection screen of 13 by 4 m, supports daylight and nighttime

situations, winter conditions including snow and a variety of meteorological phenomena.

This simulator offers a multitude of features such as (NLR, 2006):

- Validation of Surface Movement Guidance and Control Systems (SMGCS),

including strategic and tactical support tools and associated controller

procedures.

- Validation of Human Machine Interfaces for controller working position

design.

- System integration studies on industrial SMGCS equipment, reducing

implementation risk.

- Studies of airport capacity, safety and efficiency under dense traffic and

marginal visibility.

- Testing and optimization of future tower procedures and airport

infrastructures, including legislation and safety assessment.

1 http://www.nlr.nl/eCache/DEF/250.html, accessed date January 2006.

 11

- Development and validation of ATM automation tools, including data link

applications, by Collaborative Decision Making (CDM) and Gate-to-Gate

operations.

- Studies and training of airport emergency situations, including rescue

operations.

- Safety critical runway operations, for example taxiway/runway crossings with

heavy traffic and low visibility.

TRS is one of the most prominent tower simulators, and can be used as a training

or research tool for testing controllers’ workload, tower team coordination, and airport

capabilities. However, it is not clear that TRS can be used in full scale ATC teamwork

training or analysis. Furthermore, no information is available about its technical aspects

or financial terms.

2. The Total Airspace and Airport Modeler (TAAM)

Another commercial simulator widely used in ATC is the Total Airspace and

Airport Modeler (TAAM)2. TAAM is developed by the Preston Aviation Solutions in

Australia. TAAM was described by its company as a system that can simulate traffic at

an extremely detailed level from the departure gate of one airport to the arrival gate of

another airport in the same city or midway across the globe. The scale of simulation can

vary, ranging from local to national to inter-continental. In one seamless application,

TAAM can model an entire airside and airspace environment, taking into consideration

gates, terminals, pushback, taxiways, runways, terminal airspace, en-route and oceanic

airspace. However, Plaettner-Hochwarth, Zhao, and Robinson (2000) reported that one of

the major drawbacks of this software is the price tag. In 1997 a single site license cost

about $350,000. In addition to its high price, TAAM also lacks stochastic options and

does not cover all ATM components. The rule set it uses is fixed and thus cannot be used

for testing new ATM algorithms or concepts. Because of its complexity it requires

2 http://www.preston.net/Documents/taambrochure.pdf, accessed date January 2006.

 12

substantial resources and training to set up (Plaettner-Hochwarth, Zhao & Robinson,

2000). In a work dedicated to improve TAAM performances, Sood and Wieland wrote

that conflict detection in TAAM has the slowest running algorithm compared to the other

ATC simulator of the same category. It comprises almost 50% of the total run time. Also

they mentioned that another TAAM bottleneck resides in the aircraft navigation

algorithm (Sood & Wieland, 2003).

3. SIMMOD

SIMMOD is a discrete event based model developed by the Federal Aviation

Administration (FAA). It can be categorized by its main feature as an airfield and

terminal area airspace model. The personnal edition of SIMMOD is offered with an

affordable price (around $6,000 plus additional basic annual support fee of $3,000 for a

single user license). The professional edition, SIMMOD PRO, includes an advanced

simulation engine that greatly expands the simulation capabilities and enhances the

graphical user interface. SIMMOD PRO is offered with a price around $60.0003.

SIMMOD is described by Aviation Test and Analysis Corporation4 (ATAC) as a system

that was designed to "play out" airport and airspace operations within the computer and

calculate the real-world consequences of potential operating conditions. It has the

capability and flexibility to address a wide range of "what if" questions related to airport

and airspace capacity, delay, and efficiency, including questions associated with:

• Existing or proposed airport facilities (e.g., gates, taxiways, runways,

pads)

• Airport operating alternatives (e.g., taxi patterns, runway use, departure

queuing)

• Existing or proposed airspace structures (e.g., routes, procedures, sectors)

• Air traffic management/control technologies, procedures, and policies

3 http://www.dlr.de/esug/meetings/25th/minutes.pdf. (page 7), accessed date January 2006.
4 http://www.atac.com, accessed date January 2006.

 13

• Aircraft separation standards parameters (e.g., weather, aircraft type, flight

state)

• Airline operations (e.g., flight schedule, banking, gate use and service

times)

• Current and future traffic demand (e.g., volume, aircraft mix, new aircraft

types).

The major drawback of this model is that it uses a node-link system on which all

the aircraft move, as opposed to a 3D simulation like in TAAM (Plaettner-Hochwarth et

al., 2000). Because of this implementation type, it is inflexible and cannot be used to

simulate new concepts like free flight.

4. Re-organized ATC Mathematical Simulator (RAMS)

Another example of ATC simulator is the Re-organized ATC Mathematical

Simulator (RAMS). RAMS is a fast-time, discrete-event computer simulation model

developed and supported by the Model Development Group (MDV) at Eurocontrol,

France. RAMS is distributed in many versions. The RAMS Plus is the most popular

version. The vendor is currently licensing RAMS Plus as a community-supported tool. There

is an initial licensing fee, and yearly continuing support fees which allow access to support

and new releases/patches. In 2003 the price was $15,000 for a single-machine license, and

includes the ATM Analyzer. Continuing support is currently priced at $5000 per year. In

their work, Plaettner-Hochwarth and his companions described RAMS as a General

purpose ATC modeling environment for en route and terminal airspace as well as

controller workloads. They added, “Since this software is only available through

Eurocontrol and since it uses a closed structure, its assumptions are basically unknown”

(Plaettner-Hochwarth et al., 2000).

In conclusion, the majority of ATC simulators generally offer good features such

as the possibility to play training exercises according to the International Civil Aviation

Organization (ICAO) standards, the possibility to record and playback the exercises, and

 14

the possibility to develop new scenarios. However, the majority of ATC simulators

present some drawbacks on one or more of the following categories:

- Difficult to be adapted to new scenarios.

- They are confined to a specific category of ATC.

- Difficult to be used and maintained.

- Not designed initially to support teamwork coordination.

- Portability issues.

- High prices.

D. IMPORTANCE OF TEAMWORK IN ATC

The idea that some kind of coordination or communication between the different

ATC actors (controllers and pilots) is not a new concept. Attempts to develop

international air traffic control (ATC) rules addressing language and pilots’ needs to

communicate date back to 1922 (Ruiz, 2004). Nowadays, it is quite common when

reading any book about air traffic control or surfing the net looking for articles related to

safety and human factors issues in ATC, to discover that teamwork is an important factor

in the success of the overall air traffic. It is also not hard to determine that the lack of

training methodologies in it generally lead to the increase in the number of air incidents

and errors. The following sections give an illustration of the work of some researchers in

the domain of team and teamwork in ATC, and the statistical conclusions of their

analyses.

Serious studies about communication, coordination, and teamwork in ATC date

back nearly two decades. Adams and Lynn conducted an analysis of operational errors

between 1985 and 1988 and found that more than half of the errors were associated with

either faulty communication between air traffic controllers or with faulty coordination

between controllers and pilots (Smolensky & Stein, 1998). Almost in the same period,

Lintner and Buckles (1992) concluded that the ATC system can not work correctly unless

pilots and controllers can communicate effectively and understand each other (Ruiz,

2004).

 15

The FAA’s long range forecasts have projected nearly 50% growth in commercial

aircraft operations (domestic and international carriers) between now and the year 2025.

This will cause much preoccupation for all air traffic service providers as to how to meet

the forecast demand. This problem and others were discussed during a workshop

organized by the European Organization for the safety of Air Navigation in 1998. Prior to

this meeting, the European Air Traffic Control Harmonization and Integration Program

(EATCHIP) was charged to analyze this problem and suggest recommendations. The

EATCHIP recognized that increasing capacity in European airspace while maintaining a

high level of safety is not simply a technical solution but also should involves human

factor concepts. EATCHIP concluded that ATS providers could produce some rapid and

efficient results by taking into consideration the human resource issues, and teamwork is

one of these issues (EUROCONTROL, 1998).

The same conclusion and recommendation were also mentioned by Smolensky

and Stein in their book where they mentioned that ATC is likely to benefit most from a

coordination training intervention that is specifically tailored to enhance the teamwork

skills incumbent in ATC tasks. They also added that without training on the specific

coordination skills that constitute effective ATC team coordination, Air Traffic Control

Specialists (ATCSs) are likely to develop coordination patterns that are less than optimal

(Smolensky & Stein, 1998).

Controllers themselves are aware of the importance of teamwork and coordination

skills in ATC. In 2001, D’Arcy and Della Rocco conducted a survey study with the

participation of 103 ATCSs. In their executive summary, they mentioned that many

participants' reports emphasized the collective nature of ATC. In particular, the

participants declared that controllers must coordinate their actions and plans with many

other actors, such as pilots and controllers working with and around them. Also, their

results suggest that controller situation awareness generally includes knowledge of the

skills and preferences of the other controllers. The importance of teamwork was also

emphasized when participants reported fighting boredom by watching other sectors and

 16

protecting other controllers. Helping without a specific request corresponds to the highest

level of team coordination (D’Arcy & Della Rocco, 2001).

E. ATC AS A BIG TEAM

All the examples shown in the previous section emphasized how important

teamwork is in ATC. This appears somewhat obvious since air traffic controllers are not

alone in their daily routine, but each of them is a critical element of a big chain

representing the ATC Team. Each of them makes decisions based on the situation of

other team members. This fact can help immensely to compensate for differences in

performance between the team members; hence teamwork skills lead to a more efficient

and safer management of the air situation.

One safe and efficient way to acquire teamwork skills in ATC can be achieved

through the use of ATC simulators. Stimulating teamwork via ATC simulators has many

benefits. The most important of them is the reduction or even the elimination of the OJT

phase of the ATC training cycle.

F. CONCLUSION

In this chapter, it was shown that team and teamwork are important concepts in

air traffic control. These concepts can be easily embedded in a simulation-based ATC

training system. Unfortunately, existing simulators have some limitations, and none of

them is teamwork-oriented.

 17

III. GENERAL ISSUES AND USE CASES OF AIR TRAFFIC
CONTROL

A. INTRODUCTION

Air Traffic Control (ATC) is a set of rules and facilities having roots that extend

to the first decade of the last century. Today, ATC is a huge domain headed by the

International Civilian Aeronautical Organization (ICAO) and it is represented in each

country by a local organization. ACT contains many specialists to cover the control of the

airspace at any time and in any circumstance. Among these specialists, there are three

categories of interest: the tower, approach, and en-route specialists. The description of

these specialists and the aspect of their tasks will be explained in section D below.

However, first a brief history of the ATC will be presented. The objective of this history

is to give an idea in how the ATC evolved form the first decades of the last century until

the present. It will also help by defining and understanding some concepts in the

requirement phase of this work. It is not a complete story; however, it cites the most

important milestones and events having a great influence in today’s ATC situation. Next,

the different parts and rules of ATC will be explained. The end of this chapter will be

dedicated to use cases of the projected simulator.

B. A BRIEF HISTORY OF AIR TRAFFIC CONTROL

When the Wright brothers made their brief successful flight, nobody thought that

the aviation domain would become one of the world’s most powerful “team” with

millions and millions of dependents and aircraft. Furthermore, everyone thought that the

sky was so vast there was little or no risk for one aircraft to collide with another.

However, this belief was short-lived. Only seven years after the Wright’s experiment,

many countries realized the necessity to regulate the aviation domain by introducing

some navigation rules and some ground facilities to guide pilots from their departure to

 18

their destination location in a safe and efficient way. This necessity becomes more urgent

after four mid-air collisions in 1910 and six in 1912 (National Air Traffic Service, 2005).

As a consequence of all these events and the increasing use of the shared airspace,

especially in Europe where the density of industrialized countries is high and the shared

airspace is relatively small, the International Commission for Air Navigation (ICAN) was

created in Paris in 1919. Among the main purposes of ICAN were the establishment of

uniform rules and standards for aircraft registration and identification, personnel

licensing, maps and charts, and most importantly, for the ATC domain, establishing rules

and giving solutions for air and flying procedures.

The first reported solution to control air navigation was a very simple one,

consisting of some arrows drawn on the ground to help pilots correct their direction. In

addition, flights were restricted to daytime operation with good weather conditions and

sufficient visibility. In these cases, given the technological level of the aircraft (limited

speed and altitude), the pilot was generally able to distinguish the relevant landmarks

(such as big plants, roads, railway lines, and rivers), and it was fairly straightforward for

him to successfully guide his plane from one point to another. In such low density air

traffic, the only limitations on safe flight, excluding mechanical problems, were bad

weather or darkness. A first important step to reduce these limitations was the use of

simple ground signaling lamps to communicate to the pilot information such as the limit

of the runway, the landing direction, and permission of takeoff or landing. The lamp-

based signaling solution was a significant milestone in the world of ATC, and it still is

used in all regulated airports around the world. Even though today a pilot can navigate

without the necessity of looking outside his or her cockpit, the signaling system remains

the ultimate backup system in case of communication device failure or a total electricity

blackout.

The next step in the advance of ATC was the use of the electromagnetic waves.

These waves can carry much information by changing one or more of their characteristics

such as the frequency, the phase, or the amplitude. This concept was first proved by

 19

Marconi on December 1894, and was successively used as an ATC facility in the 1930’s

when Marconi Company first installed a single-channel radio at Croydon, UK (Aviation

Sri Lanka, 2005). Although the main purpose of this radio communication was not to

serve the ATC, it turned out that it is indeed an efficient solution to regulate air traffic. In

fact, it was easy for pilots, with this new facility, to communicate precious information

such as position, estimated arrival time, weather conditions, and any other information

relevant for the flight safety.

Another important milestone was the invention of the radar, which not only made

it possible for the pilot to know his position, but for Air Traffic Controllers also to know

the aircraft's position as well. It is clear that, especially to prevent air-crashes, this was a

very important invention. Although the radar was invented in 1922 by Marconi, it took

many years before it became an essential hardware piece in the Air Traffic Control. It

was only after the Second World War that the radar and other communication devices

were made available to the civil aviation for air traffic regulation and management. The

international flight rules and regulations were further finalized in 1947 after the

establishment of the ICAO. After that date the sky became a regulated space with well

defined airways, Flight Instruction Regions (FIR), and many other rules to facilitate

navigation and air control.

Nowadays, the ATC contains a complicated set of communication, detection, and

visualization equipments making it a highly automated domain. However this automation

does not come for free. It requires a large amount of knowledge and practice from the

specialists of ATC, and often automation implies the introduction of new skills, and new

training methodologies, as explained in the paragraph “ATC simulator.”

C. AIR TRAFFIC CONTROL

After this brief history of ATC, the next logical step is to present the basic ideas

about air traffic control activities. Since the aim of this thesis is to develop simulation

software that can be used in ATC training phases with emphasis on the concept of

 20

teamwork, the following paragraphs describing the different categories of ATC that can

be retained as part of the requirement and specification phases of the software. The

overall development of the simulator will follow the waterfall model. Requirement and

specification are the first two steps of this model. This model was preferred to other

approaches (prototype, spiral, extreme programming, etc) because of its simplicity as

well as ease of understanding and implementation. In addition, the waterfall model forces

a verification activity in between each two adjacent steps which guaranties a high degree

of fidelity and robustness to the final software.

Air Traffic Control (ATC) is the organization of aircraft movements in airspace,

including methods and procedures used to manage and safeguard air traffic. Since air

traffic is shared by all countries in the world, it is obvious that flight rules and

organization should be standardized in some way so all the pilots in the world follow the

same procedures independently of the country or the region in which they are flying. The

International Civil Aviation Organization (ICAO), mentioned earlier, is the official

worldwide center responsible for this standardization. In addition, within each country,

there is an organization that works in collaboration with the ICAO to produce the

necessary air documents and specific rules for that country. In the United States, for

example, that organization is the Federal Aviation Administration (FAA).

The actors in ATC (which will be described in detail in paragraph D) are the crew

of the aircraft and the different air controllers. ATC is a collaborative domain and it is

based on the cooperation between the crew and the specific air traffic controller. An

essential part of it is the exchange of communication and data. The objectives of ATC

can be summarized as following:

- Maintaining in any circumstance a reasonable separation between all aircraft

in a given air domain.

- Preventing collision between aircraft.

- Preventing aircraft from crashing into obstacles on the operating ground of the

controlled domain.

 21

- Maintaining a reasonable and orderly air traffic flow.

There are three main interdependent cooperative activities or areas of responsibilities

in ATC. Each area is operated by a set of controller category and has a set of specific

rules. These areas (shown in Figure 2) are:

- Tower control Area.

- Approach or Terminal Radar Control (TRACON) area.

- En-route Area.

The next three paragraphs give the most important characteristics of each area,

such as its specific definition, and the some of its rules.

Figure 2. The Different Categories of Air Traffic Control

1. Tower Control

Tower control is the set of activities and procedure to control any movement

(ground vehicles or flying objects) within the area of the airport. This area includes the

airport itself and the surrounding space. It is generally defined as an airspace volume with

a radius of 2 to 30 miles and a height of 1,500 to 2,000 feet centered in the airport. The

main facility for the tower control is the control tower from which the tower control

60

feet

10000

500

30

Tower

Approach/
TRACON

En-route

NM

 22

specialists conduct their control activities. Control towers are typically higher than other

structures at the airport in order to give air traffic controllers a view of aircraft moving

about on the ground and in the air around the airport. They usually have windows that

circle the entire top floor, giving 360 degrees of viewable area. Larger airports usually

have space for several controllers to work and operate 24 hours a day, 365 days a year.

Small airports may have only one person staffing the control tower, and may not even

keep the tower open 24 hours per day. Control Towers usually contain the following

equipment:

- Communication devices allowing internal (between controllers) and external

(with the aircraft crew) communications.

- A light gun for signaling certain events to aircraft crew in the event of a radio

failure.

- One or more radar systems that controllers use to track aircraft.

- A land-line telephone or possibly even a direct line to fire and ambulance

services.

Airport Tower Controllers regulate a specific airport's traffic. They use two-way

radios to give pilots permission to take off and land. They also direct ground traffic,

which includes taxiing aircraft, vehicles, and airport workers. Outside the Tower Control

area aircraft is subject to either Approach or En-route Control. There are several

categories of ATCS in the tower including:

- Flight Data Controller

- Clearance Delivery Controller

- Ground Controller

- Local Controller

Later, in the user case analysis, more details about different ATCSs, their tasks,

and their needs will be given.

 23

2. Approach/TRACON Control

In ATC, often Approach Control is used interchangeably with TRACON, an

acronym for for Terminal Radar Approach Control. Approach Control is usually located

within the vicinity of a large airport (a tower control with the coordination with en-route

control is sufficient for a small airport with very low traffic). Typically, the TRACON

controls aircraft within an airspace defined by a radius of 30-50 nautical miles (56 to 93

km) from the center of the airport, and a height between the surface and 10,000 feet

above the airport. Approach Control is responsible for providing all ATC services within

the above airspace. Generally, there are four types of traffic flows controlled by

TRACON controllers (Wikipedia, 2005). These are departures, arrivals, overflights, and

aircraft operating under Visual Flight Rules (VFR) or Flight Instrument Rules (IFR). The

following paragraphs give some clarifications about these categories of air control.

a. Departure Aircraft

Departure aircraft are handed off from the tower to the TRACON when

they are between 1,000 feet to 2,000 feet high, climbing to a pre-determined altitude. The

TRACON controller working this traffic is responsible for clearing all other TRACON

traffic and, based on the route of flight, placing the departing aircraft on a track and in a

geographical location (sometimes referred to as a "gate") that is pre-determined through

agreements for the en-route center controller. This positioning is designed to allow the

en-route center to integrate the aircraft into its traffic flow easily.

b. Arrival Aircraft

Arrival aircraft are handed off from the en-route center in compliance with

pre-determined agreements on routing, altitude, speed, spacing, etc. to the TRACON

center. The TRACON controller working this traffic will take control of the aircraft and

 24

handle it with other aircraft entering the TRACON from other areas or "gates" into a

single file or final for the runway. This spacing is critical to ensure the aircraft can land

and clear the runway prior to the next aircraft touching down on the runway. The tower

may also request expanded spacing between aircraft to allow aircraft to depart or to cross

the runway in use.

c. Over-flight Aircraft

Over-flight aircraft are aircraft that enter the TRACON airspace at one

point and exit the airspace at another without landing at an airport. They must be

controlled in a manner that ensures they remain separated from the climbing and

descending traffic that is moving in and out of the airport. Their route may be altered to

ensure this is possible. When they are returned to the en-route center, they must be on the

original routing unless a change has been coordinated.

d. VFR Aircraft

VFR or Visual Flight Rules are a set of aviation regulations under which a

pilot may operate an aircraft, providing weather conditions are sufficient to allow the

pilot to visually control the aircraft's attitude, navigate, and maintain separation with

obstacles such as terrain and other aircraft. Pilots flying VFR aircraft assume

responsibility for their separation from all other aircraft (IFR & VFR) and do not have set

routes and altitudes. They fly on their own using a "see and be seen" separation criteria.

In certain airspaces, VFR aircraft are required to have a transponder. This amplifies the

radar signal, as well as broadcasting altitude level and SSR code, and is used to allow

controllers to warn IFR aircraft of any potential conflict. Governing agencies establish

strict VFR "weather minima" for visibility, distance from clouds, and altitude to ensure

that VFR pilots can see far enough.

 25

VFR pilots can request, and ATC can elect to provide "VFR Advisory

Services" if traffic permits. In this environment, the controllers will use radar to identify

the VFR aircraft and provide traffic information and weather advisory services for the

VFR pilot. Controllers do not provide any instructions concerning direction of flight,

altitude, or speed to the VFR pilot receiving advisory services, and they do not provide

separation services. This is an optional service and may be discontinued by ATC or the

pilot at any time. It is important to mention that VFR rules are different among countries,

but, in any case, pilots should have a VFR certificate to be eligible for VFR flight.

e. IFR Aircraft

Pilots flying under IFR must file a flight plan with ATC and accept any

revisions ATC requests to their route or altitude. In return, controllers ensure that pilots

flying IFR are separated from all other IFR aircraft and terrain by the appropriate

minimum separation. The IFR pilot, however, must maintain a close watch for VFR

aircraft since ATC has no control over these aircraft. For this reason, VFR aircraft are

restricted to altitudes below 18,000 ft. and must have an operating transponder in

congested airspace. Once an IFR aircraft is above 18,000 ft (FL 180) the aircraft is

considered in "Positive Control Airspace" where only IFR aircraft are allowed.

3. En-route Control

En-route Control is exercised when the aircraft leaves the TRACON volume and

reaches its cruising speed and altitude. En-route Air Traffic Controllers issue clearances

and instructions to any aircraft as needed, and pilots are required to comply with these

instructions. Controllers adhere to a set of separation standards that define the minimum

distance allowed between aircraft; these distances vary depending on the equipment and

procedures used in providing ATC services.

 26

En-route air traffic controllers work in facilities called Area Control Centers

(ACCs). Each ACC is responsible for many thousands of square miles of airspace known

as the Flight Information Region (FIR). ACCs are responsible for climbing the aircraft to

their requested altitude while, at the same time, ensuring that all aircraft are properly

separated from each other at all time. Additionally, the aircraft must be placed in a flow

consistent with the aircraft's route of flight. This effort is complicated by cross traffic,

severe weather, special missions that require large airspace allocations, and traffic

density. As an aircraft reaches the boundary of an ACC control area it is "handed-off" to

the next Area Control Center. This "hand-off" process is simply a transfer of

identification between controllers so that air traffic control services can be provided in a

seamless manner. Once the "hand-off" is complete, the aircraft is given a frequency

change and begins talking to the next controller.

D. USE CASES OF AIR TRAFFIC CONTROL SIMULATOR

The use cases technique provides a simple and efficient way to begin many

software projects. It quickly gives an overview of the intended product by the mean of

simple diagrams called use cases diagrams. These diagrams are not only very simple, but

are also an efficient and effective means of communicating with users and other

stakeholders about the system and what it is intended to do (Bennett, Skelton & Lunn,

2001). The use cases presented in this section can also be used as the basis of the

specification and design phases of the project (Chapter IV).

As stated in Chapter I, the air traffic control environment contains many users

who work together in order to maintain a safe and efficient air situation; that is, all

aircraft in the area of interest should accomplish their flight plan while avoiding any

conflict with other traffic that may endanger their safety. Moreover air traffic control

should also take into consideration some other parameters to enhance the quality of the

air traffic management system by avoiding unnecessary actions that can cause flight

delay (each flight delay will cause the company owning the aircraft a large loss of

 27

money), and by keeping a high degree of fluidity in the air traffic and all the other

servitude and safety equipment in the airport.

Air traffic control is a heterogeneous environment that contains many specialists

or actors. Table 1 gives a detailed list of these specialists. However, for the purposes of

this thesis, and since many of these specialists are using almost the same working

environment, it is better to treat them as groups or categories of specialists. This

simplification will help to focus more in the design of the simulator, and gain a high level

view of the environment to be simulated. This decision was also made because not all the

air traffic control specialists illustrated in Table 2 require a specific computer

environment to carry out their specific tasks. In fact, many ATCS are executing many of

their tasks manually or they are using a common software tool to facilitate their decision

and job requirements. As consequence, and for the purposes of this thesis, only four

modules were designed and implemented (see the first column of Table 2): Tower

Control (TC), Approach Control (AC), En-route Control (EC), and Pilot Interface (PI).

One additional module will be added for the instructor. Although the simulator developed

in this thesis runs only for the four actors mentioned earlier, the instructor module is very

important since it helps the instructor control the progress of his or her students and

customize the simulation exercises in a way that best fits the trainees’ needs. The

following sections give a summary of all actors of the simulator. This information will be

the base of the requirement phase of this project, and they are presented as use case

diagrams.

ATCS

Category

Specialist Responsibilities Type of tasks &

equipments

Clearance Delivery

Controller (CDC)

- issue IFR or VFR clearances

- direct the initial aircraft

movement

- cooperate with GC

- elaborate the initial flight strips

- manual (Strips)

- communication devices

- computer software

Tower Control

Ground Controller

(GC)

- control all movement in the

airport

- manual (Strips)

- communication devices

 28

- position aircraft in the correct

runway

-clear runway for arrival

- computer software

Local Controller

(LC)

- establish a correct sequence of

aircraft flow (landing, takeoff)

- collaborate with GC to clear

runway for approaching traffic

- respect aircraft timing

- managing the flight strips

- manual (Strips)

- communication devices

- computer software

Flight Data

Controller (FDC)

- communicate all flight plans

- insure links with other ATCS

- keeps record of flight strips

same as above

Radar Controller - maintain at every moment an

adequate aircraft separation

- assign approach sequences.

- decides the departure route for

every aircraft

same as above

Approach

Control

Supervisor - monitor the activities of all

approach control specialists

- solve communication problems

- acts as backup controller

- makes decisions regarding some

crucial air situations

no special equipments

FIR Controller (FC) - maintain safe aircraft separation

- updates and keeps record of flight

strips

- manual (Strips)

- communication devices

- computer software

En-route

Control

Air Space Controller - supervise all activities in the

national airspace

- identify every aircraft in the

national airspace

- gives alert and pursuit instruction

about any non-identified flight

- manual (Strips)

- communication devices

- computer software

Table 2. Main ATC specialist Categories and their Tasks

 29

1. Tower Controller Use Cases

The role of a Tower Controller (TC) is to watch over all plane movement in the

airport’s airspace. This includes all ground traffic (aircrafts and other airport vehicles) in

the proper airport space, and all aircraft traffic during their final approach. The main

responsibility of a TC is to organize the flow of aircraft into and out of the airport. Their

tasks are highly related on the field of view from their position in the tower, and on the

general traffic situation visualized in a radar screen. A tower controller should closely

monitor each plane in the airport and in the final approach area to ensure a safe distance

between all aircraft, give clearances for landing and takeoff, give directions to the pilots

for any movement of the aircraft between the airport facilities (boarding are, hangar,

maintenance area, etc...). The TC is also responsible for directing any other vehicle traffic

within the airport area (such as boarding bridges, baggage tractors, baggage loaders,

aircraft tractors, fuel trucks, etc.). Finally, the TC should keep pilots informed about

changes in weather conditions such as wind shear (a sudden change in the velocity or

direction of the wind that can cause the pilot to lose control of the aircraft), and other

weather parameters such as the visibility, local atmospheric pressure, and clouds. The use

cases of the TC are given in Figure 3.

Figure 3. Tower Controller Use Cases

TC

Airport Situation

Aircraft plan

Weather Situation

Approach Situation

 30

2. Approach Controller Use Cases

Aircraft are handed-off to the approach/TRACON controller either from the tower

controller or from the en-route controller. To accomplish his or her tasks, the approach

controller should have a graphical interface depicting a radar scope and different kind of

communication systems. When it is appropriate, AC communicates with any aircraft

ordering a change in aircraft parameter (altitude, speed, or heading). Figure 4 illustrates

the use cases of the approach controller.

Figure 4. Approach Controller Use Cases

3. En-route Controller Use Cases

The en-route controller (EC) operates almost in the same conditions as the

approach controller. In particular, the EC has a graphical user interface depicting one or

more sectors of the air situation. Within this interface, the EC can visualize the route of

each aircraft and can order each aircraft to change part or all of its flying parameters. In

addition, the EC has of a set of navigation maps and can collaborate with other EC of

other FIR in order to maintain a safe situation at all times. Figure 5 gives the use cases of

the en-route controller.

AC

Approach Situation

Aircraft Parameters

Holding Patterns

Aircraft Plan

 31

Figure 5. En-route Controller Use Cases

4. Pilot Use Cases

In most simulators, the pilot’s part is generally a pseudo-pilot or voice-recognition

based pilot. In other terms, the pilot appears as a passive actor. In this project the pilot is

an active part in the simulation, which make the overall simulation more realistic and the

concept of team and teamwork more concrete.

Figure 6. Pilot Use Cases

Pilot

Local Radar

Takeoff

Landing

Aircraft Parameters

EC

En-route Situation

Aircraft Route

Aircraft Parameters

Aircraft Plan

 32

A modern aircraft cockpit has many instruments that aid the pilot in overall

situational awareness of the aircraft and the airspace around it. However, since the scope

of this thesis is to provide a synthetic environment that helps emphasis the teamwork

concept, a completely realistic model of the cockpit is not be represented, instead there is

a simplified model of the cockpit displays that best fits the requirement of the pilot’s

functionality and the teamwork capabilities. This interface will presents the aircraft’s

most important navigational instruments such as the altimeter, the speedometer, the

heading indicator, and other flight parameters. In addition, the display will contain any

necessary controls to execute any controller order. Figure 6 gives the use cases of the

pilot in the simulator.

5. Instructor Use Cases

The instructor is the controller of the simulation exercise and oversees each

student’s progress. For these purposes he or she utilizes of a complete set of tools

allowing him or her to follow all the simulation events. Figure 8 gives the use cases of the

instructor.

Figure 7. Instructor Use Cases

Instructor

Choice of Exercise

Simulation Events

Students’ Progress

Modify Parameters

 33

The main activities that the instructor requires from the system are shown in the

use case diagram of Figure 7. Particularly, the instructor should be able to choose or

modify any simulation exercise, have access to the simulation events as they are

occurring, and to consult each student’s progress database.

E. CONCLUSION

In this chapter, many concepts related to the air traffic domain have been

illustrated. It was also shown that a complete air traffic control simulator contains five

main categories of actors which are:

- tower control

- approach control

- en-route control

- pilot

- instructor

These concepts along with the definition and the use cases of each actor of air

traffic control constitute the requirement of the simulation.

 34

THIS PAGE INTENTIONALLY LEFT BLANK

 35

 IV. SYSTEM SPECIFICATION AND DESIGN

A. INTRODUCTION

In Chapter III, it was mentioned that a waterfall model (Figure 8) will be followed

to develop the Teamwork Air Traffic Control Simulator (TATCS). The most important

points of the requirement phase of this project have already been illustrated in the

previous chapter. In this chapter we will continue defining and exploring the next step of

the waterfall life cycle model which is called the specification phase. The specification

phase constitutes a formal document that explicitly describes the functionality of the

product, that is, precisely what the product is supposed to do along with any constraints

that the product must satisfy. As can be inferred, the specification is an important phase

in the sense that it constitutes a contract between the developer and the client or the

intended user. This is why it should be accomplished with precision by exploring in depth

what was mentioned in the requirement phase.

After completely specifying the different parts of the product, the next step will be

the design phase. The design phase is a technical description of the specification. In other

words, it describes how the product should be implemented to ensure the functionalities

of the whole software. The design phase begins with the determination of the internal

structure of the product which is a set of modules connected with each other. It is

important in this phase to precisely specify the modules’ interfaces, that is, the arguments

passed to each module and the arguments returned by each one (Schach, 2002). This will

help to gain insight about the whole project and help detect some design errors in the

earliest steps of the software development life cycle. When an error is detected at this

level it will not propagate to the other phases where any error correction becomes

difficult and time consuming.

 36

Figure 8. The Waterfall Life Cycle Model

B. SPECIFICATION

1. Specification for the Approach Part

Before going in depth of the approach specification, it is important to clarify two

issues. First, the term approach control is used interchangeably with the term Terminal

Radar Control (TRACON). This is because the controllers use local radar to control the

terminal phase of the flight. Second, no distinction will be made between the simulator

(as a software) used by the controller in the after takeoff, pre-landing phase, and in

between the space in which the aircraft reaches its cruising speed and altitude. This is

Requirements
phase

Verification

Specification
phase

Verification

Design phase

Verification

Implementation
phase

Testing

Integration phase

Testing

Maintenance
phase

Changed

Verification

Retirement

Development

Maintenance

 37

because the different controllers working in these phases usually use the same computer

tools. Hence this thesis will specify only one simulation module for all these specialists.

The approach part used in the TATCS is a software module capable of visualizing

simulated air traffic in the vicinity of the airport. The vicinity of the airport can be

defined as a cylindrical volume around the central point of the airport. This volume may

have different specification according to the airport location and constraints. However,

for the purpose of this thesis it will be about 30 nautical mile (56 km) radius from the

center of the airport and the height will be about 10,000 ft (about 3,050 m) from the

surface of the airport.

Figure 9. Typical PSR output

To correctly visualize the different aircraft positions in this module, radar

capabilities should be implemented in order to refresh the screen in the same manner as

the real radar scope. In ATC, the main radar is called primary radar detection or Primary

Surveillance Radar (PSR). Primary radar is a pulsed beam of ultrahigh frequency radio

waves in a circle from a rotating aerial. If the radar beam 'illuminates' an object, some of

the energy is reflected back. The amount of the reflected energy depends on many

PSR Center

Distance

Azimuth

Object

 38

parameters such as the illuminated object’s size, shape and material. The main output of

the PSR is a spot representing the illuminated object which will be placed in the screen

according to its distance and azimuth with respect to the center of the radar. Figure 9

shows a typical PSR output. The Primary radar is capable of detecting small or large

aircraft, ULM, clouds, as well as passing birds and other non-desired objects. However,

in this application, the PSR is supposed detecting only the aircraft of engaged in the

simulation.

As can be seen, the PSR does not provide all the information needed by the ATC

specialists in order to handle the air traffic situation such as the indicative, the altitude,

the speed and other information regarding each aircraft. This can be done using the

secondary radar or Secondary Surveillance Radar (SSR). The SSR is an antenna attached

to the PSR that emits a special signal called interrogation signal to any illuminated object

by the PSR. If the illuminated object is equipped by a special device called

“Transponder”, a special signal called “Response” will be sent from the transponder to

the SSR. Once these responses are picked up by the secondary radar antennas they will be

analyzed and processed electronically to be displayed on the screens of the air traffic

controllers. The data displayed for the secondary surveillance radar includes the

following information regarding the aircraft (see Figure 10):

- The flight ID

- The aircraft registration or the SSR code

- The aircraft flight level (FL)

- Aircraft’s speed

- Aircraft’s position

Another fundamental part in the approach module is the map in which the air

situation is evolving. The map is important because it gives immediate visual cues about

the position of all aircraft and the relative positions between aircrafts or between an

aircraft and a landmark. There are a number of ways in which a map may be integrated

into a TRACON application.

 39

Figure 10. Typical SSR output

One obvious solution consists in using a bitmap map as a background image and

scale all traffic to it. Even though this solution presents the advantage of being simple to

implement, it is not useful for the purpose of this thesis. First of all, a bitmap image is a

heavy component for an application that should frequently refresh an already complicated

screen containing all air traffic symbols and the air traffic situation. Secondly, any scaling

operation of the map (operation frequently used during a normal job of the ATCS) will

produce a poor looking image in addition to the time consumption of the scaling

algorithm that generally decreases the application performances. Finally, since the air

Traffic GUI deals with human factor issues, it is generally difficult to change a map’s

appearance (such as the contours’ colors and their intensity) to meet the controller’s

preferences. Further more a bitmap image will not allow the controller the possibility to

select or hide the different map symbols that may create some visual confusion with the

real air traffic.

A better solution to all the above problems consists in using a digitalized version

of the bitmap image. This will allow the separation of all the map symbols in different

PSR Center

Distance

Azimuth

Object

AZ446
46 128
332 H

 40

independent categories. Each category, or layer, can be represented independently with

its own appearance and can be stored within a data structure. In this way the user can add

or change the properties of a layer whenever he or she needs without compromising the

entire application performance. In addition, any scaling operation will be easy to

implement without a sophisticated, heavy algorithm; it simply requires a multiplication

with a scaling factor and a simple translation whenever the origin of the map is changed.

These layers can be easily represented using an XML (Extensible Markup

Language) representation. XML is an industry-standard, system-independent way of

representing data. The most important capability in XML resides in its portability, which

allows data to be shared between different applications with little effort. All that is

needed is an XML parser on the client side to correctly read the desired data file. Hence

the map layers can be reused without much complication in any other application.

In conclusion, the specification phase of the approach module is the realization of

a user-friendly interface that allows the controller the best view of the air traffic during

the approach or takeoff phases. The following are the most important capabilities and

characteristics of the approach module:

- A layered air traffic map of a desired approach area is depicted allowing the

controller to see all sets of operations that are normally executed in any electronic

map. These operations include, but are not limited to, the following commands:

 scaling the map (zoom in, zoom out)

 navigation

 distance measurement

 hiding or visualizing any map layer

 personalized layers (by changing its appearance)

- Visualizing the air traffic data of the primary radar.

- Visualizing the air traffic data of the secondary radar.

- Changing the position of each aircraft SSR data in order to get a better visual

situation of the air traffic.

 41

- Refreshing the screen according to the radar revolution.

- Rapid access to the weather data in the approach zone.

2. Specification for the En-route Part

En-route ATC is a facility established to provide air traffic control service to

aircraft operating on IFR flight plans within controlled airspace. This includes all traffic

of class A (flying altitude is above FL 18 and FL 600) as well as Jet flight level (from FL

18 to FL 450). The en-route control and certain advisory or assistance services can be

extended to VFR flights when equipment capabilities and controller workload permit.

An aircraft flying from point A to point B generally follows a well pre-established

route defined in its flight plan. Each route can be viewed as a set of flight segments. The

en-route control begins just after the airplane reaches the end of its takeoff phase and

starts following its first route segment. The TRACON controller notifies the en-route

controller of this event, who will then take care of that particular flight.

En-route controllers work in teams of up to three members. Depending on how

heavy traffic is, each team is responsible for a section of the center’s airspace. One team,

for example, might be responsible for all planes that are between 30 and 100 miles north

of an airport and flying at an altitude between 6,000 and 18,000 feet. These teams should

collaborate with each other in order to guaranty a safe flight and good flying conditions

for all aircraft under their control. In order to accomplish their task, en-route controllers

utilize a highly sophisticated computerized radar system allowing them a complete view

of the air situation. In addition, they maintain a two-way radio communication with

aircraft in their controlling sector. These are the main devices used by the en-route

controllers to ensure an adequate air separation between aircrafts at all times. Air

separation for en-route controller is shown in Figure 11 below, in which the lateral

separation is always 5 NM, and the vertical separation depends on the altitude of the

aircraft. For aircraft below the FL 29, the vertical separation is 1,000 ft, and it is 2,000 ft

for those flying above the FL 29 (Air Traffic Management System, 2005).

 42

Figure 11. Aircraft separation in en-route control

The controllers can accomplish this separation by issuing instructions to the pilots

of the aircraft involved. Altitude assignments, speed adjustments, and radar vectors are

examples of instructions that might be issued to aircraft.

In conclusion, the en-route specification is another version of the TRACON

specification with some additional capabilities. These capabilities include the possibility

for the controller to obtain a large view of the air space with the possibility to query in

real time the planned route for each airplane. In addition, the controller will have the

possibility to visualize some other information on the map such as the Area of Minimum

Altitude (AMA), the Flight Information Region (FIR) and all established routes in it with

their respective entry point.

Sea Level

5 NM

10
00

 ft

10
00

 ft

5 NM

20
00

 ft

20
00

 ft

A
lti

tu
de

29,000 ft

 43

3. Tower Control Specification

The tower control is the part of the entire application dedicated to the ATCSs

responsible for the ground and tower control. Even though there are many air traffic

control specialists operating as airport controllers, no distinction between them will be

made in realizing the tower control software. This is because the application can be used

by any controller in the tower regardless his or her specific task. In addition, the main

objective of this thesis is not to create applications for any specific air traffic controller,

but to create a global application environment that allows all ATCSs to deal with the

same air situation in order to increase the concept of teamwork among them.

In the application, the tower control part is a software module that can be

integrated with the rest of the ATC modules, and can be operated by the tower control

specialists. This module has the following characteristics and features:

- Visualization of the airport and its vicinity in 2d.

- Possibility to navigate easily in the airport space.

- Visualization of all aircraft paths in the airport.

- Real time rendering of aircraft and other vehicles’ movement in the airport.

- Possibility of switching between day and night environments.

In addition to these characteristics, this module integrates some other capabilities

such as the labeling of each moving object in the airport, consulting the weather database

in order to inform the pilot about the airport conditions, and other traditional operation

such as scaling the airport and personalizing the working environment.

4. Pilot Specification

The pilot part is an independent software application that can be integrated with

the other parts of the entire application by some means of communication. As mentioned

 44

earlier, some other ATC simulators use a synthetic pilot, that is, a special software

module, based on voice recognition technology that plays the role of the pilot in the

whole ATC training loop. This works well for individual training purposes, or to

accelerate the training period and help reducing procedural errors and expedite

controllers’ qualification, as mentioned in an article about modern training systems on the

USAF Traffic Controllers (National Defense, 2006). However it is not suitable for an

application in which the emphasis is on the fundamental concept of teamwork in which a

human is in the loop in every part of the simulation. It can be argued that in real air traffic

schools, it is hard to find real pilots to play the pilot part of the ATC loop. This can be

true in pure air traffic control school. However, in many cases ATC training programs are

part of a general aviation school, and in this case it is not hard to find some pilot students

to play the role of the pilot as part of their training program. In addition, even in pure

ATC schools, where there are no pilots on staff, it is important that the pilot part be

played by an individual (some times called pseudo-pilot) instead of a software module. In

such ways we can at least insure that the communications errors between controller and

pilot are some kind of “human errors”, and this is what we want to reduce by this work.

Returning to the fundamental specification of the pilot part, the pilot application

consists of a GUI from which the pilot or the pseudo-pilot can easily visualize the most

important data regarding any aircraft participating in the air traffic exercise. The pilot has

a list containing some assigned aircraft (identified by their flight ID) from the exercise.

By clicking on a particular flight ID, the pilot’s work station automatically switches to

the pseudo-cockpit of the related aircraft. It is called pseudo-cockpit because it is not as

complicated as the cockpit of a real aircraft. However it contains the most important

information that a pilot needs to have awareness about that particular flight, and to

correctly execute the orders of the controller. This information includes all data about that

particular flight such as aircraft type, heading, speed, SSR code, etc. In addition, there are

the most important navigation instruments of the aircraft: the altimeter, the speedometer,

and the cap indicator. These graphical instruments help give the pilot a quick and

accurate vision about the aircraft situation. The GUI also contains some other buttons that

 45

can be manipulated to create an emergency event in the aircraft (communication failure,

fire, and other anomalies) according to the instructor directives.

5. Instructor Specification

The instructor application is another independent module allowing the instructor

to gain full control of a particular air traffic control exercise. The instructor application is

loaded into a particular workstation, called “the instructor workstation”. From this

workstation, the instructor has access to all possible settings for any air traffic control

exercise. These settings include the following operations:

- The choice of the ATC exercise that will be applied to all application’s

workstations.

- Enabling the time period of the exercise (day or night).

- Changing some flight parameters of an exercise in real time. These changes will

be updates automatically in all workstations.

- Keeping track of all controller progress in a particular exercise. This is done by

implementing a database containing records for each trainee. Each record

contains, other than the trainee identification, the starting and the end of his or her

session, the start and end of each air warning (AW), and the start/end of each air

conflict period.

- Keeping track of all trainees’ progress during their entire training program. In

such way, the instructor can consult at any time the evaluation history for each

student.

In addition to these possibilities, the instructor can collaborate with the pilot or the

pseudo-pilot to insert any emergency that may be encountered during a normal flight.

These emergencies include communication failure, a fire aboard the aircraft, a hijack

situation of the aircraft, or any other situation in which the pilot needs particular care.

Any of these setting will be reflected in all workstations instantly and all controllers will

see a particular SSR code that reflects that emergency. For example if the pilot is losing

 46

control of his or her aircraft, an SSR code of 7700 denoting 'Mayday' will be displayed in

all controllers’ workstations. Table 3 gives a summary of all aircraft emergencies and

their relative SSR codes (ICAO, 2006) used in this application.

SSR code Use

0000 Available as a general purpose code for local use by any State.

1000 Reserved for use as a conspicuity code for Mode S.

2000 Used by flight crew in the absence of any ATC instructions or

regional agreements unless the conditions for the use of codes:

7000, 7500, 7600 and 7700 apply.

7000 Used by flight crew not receiving ATS service in order to

improve detection of suitably equipped aircraft in areas specified

by States, unless otherwise instructed by ATS.

7500 Reserved for use in the event of unlawful interference.

7600 Reserved for use in the event of radio communications failure.

7700 Reserved for use in the event of emergencies and interception.

7776 Reserved for SSR ground transponder monitoring.

7777 Reserved for SSR ground transponder monitoring.

Table 3. Special purpose SSR codes and their uses

C. APPLICATION DESIGN

1. Overall Application Design

As mentioned in the requirement and specification phases, the overall application

consists of five modules:

- The Approach Module

- The En-route Module

- The Pilot Module

 47

- The Tower Module

- The Instructor Module

These modules are connected via a communication layer to ensure that all

information is synchronized among them. In addition, a server application keeps track of

all air traffic exercises and the different students’ outputs. The overall design of the

application is shown in Figure 12. It can be seen that the different modules interact with

each other by the means of the communication layer. Note that the controller can change

any the local workstation settings, but will not have any privileges to change any exercise

data such as aircraft status. All the controllers can do is sending a voice order to the pilot,

who will execute the order. Although the vocal infrastructure is not implemented in this

thesis, it is part of the normal equipment that is normally used by the controller to

communicate with the pilots.

Figure 12. The overall application design

The design of the overall application in Figure 12 shows that the different

modules are independent entities that can be easily implemented using the Object

Communication Layer

Approach
Module

Enroute
Module

Tower
Module

Pilot
Module

Instructor
Module

Server
Module

 48

Oriented paradigm. The only means of interaction between these modules is the

communication layer which is also implemented using the object oriented techniques.

Before examining in depth the design of each module, it is convenient to take a look at

the communication module since it is the basic one.

2. The Communication Module

As mentioned above, the communication module (CM) insures the interaction

between the different modules of the application. This module is designed to support the

particular constraints of the entire application and its different modules. The

communication module acts as middleware between the different modules. In fact the

data representation can be heterogeneous between the different modules, and the CM

should be the place in which each piece of information is “packed” according to the

needs of the destination module. Secondly, all the modules of the application are

remotely located to each other and can use a wide range of network protocols as a

physical means of communication, and the CM should be architected to support this

network’s diversity. Thirdly, there is no guaranty that the future modules will operate on

the same platform using the same operating system. Finally, different implementations

using different programming languages can be envisaged and the CM should be able to

work correctly with those implementations. All these constraints can be solved at least in

part using a Common Object Request Broker Architecture (CORBA).

CORBA is the Object Management Group's answer to the need for

interoperability among the rapidly proliferating number of hardware and software

products available today. CORBA allows applications to communicate with one another

no matter where they are located or who has designed them. CORBA is not a language,

but a specification for how objects will interact. Thus, it is not limited to a single

language. CORBA services and clients can be written in a variety of languages such as

Java, C++, or ADA. CORBA is made up of a collection of objects and software modules

that cooperate together in a networked environment. The main component in the CORBA

architecture is the Object Request Broker (ORB).

 49

The ORB provides a mechanism for transparently communicating client requests

to target object implementations. The ORB simplifies distributed programming by

decoupling the client from the details of the method invocations. This makes client

requests appear to be local procedure calls. When a client invokes an operation, the ORB

is responsible for finding the object implementation, transparently activating it if

necessary, delivering the request to the object, and returning any response to the caller

(CORBA & RMI, 2006). In other words, the ORB acts as a middleware handling all

requests from the client’s side about an object’s services located at the server side, as well

as sending the client’s responses to some queries from the server. Figure 13 provides an

illustration in how client and server interact with each other using the ORB.

Figure 13. Client/Server interaction in CORBA

Even though remote objects are treated as local objects using a proxy (by

invoking their methods as if they are in the client site), there is communication between

the two objects’ representations. This communication is supervised by the ORB via the

Internet Inter-ORB Protocol (IIOP) as shown in Figure 14 (Reilly & Reilly, 2002).

Client

ORB

Local
Object

Remote
Object

Server

 50

Figure 14. CORBA communication architecture

Within the CORBA architecture, software services are described by a schema and

implemented by a servant, a special piece of software that registers itself with a lookup

service so that other CORBA software can locate and access its services. Typically, a

CORBA server will create a CORBA servant, and is then responsible for creating an

ORB for the servant and registering the service for access by other clients (Reilly &

Reilly, 2002). All registered services in CORBA architecture will be kept in a special

registry known as CORBA Name Service.

As previously mentioned, a CORBA-compliant application can be implemented

using a wide variety of programming languages. However, since all modules of this

application will be implemented in Java, it is convenient to look at a Java implementation

of the distributed objects architecture, a Java package called Remote Method Invocation

(RMI). RMI enables the programmer to create distributed Java technology-based to Java

technology-based applications, in which the methods of remote Java objects can be

invoked from other Java virtual machines (JVM), possibly on different hosts. A Java

object make a call on a remote object once it obtains a reference to the remote object,

either by looking up the remote object in the bootstrap naming service provided by RMI

or by receiving the reference as an argument or a return value. A client can call a remote

Client Server

IIOP

ORB ORB

TCP/IP

Method
Request

Method
response

 51

object in a server, and that server can also be a client of other remote objects. RMI uses

object serialization to marshal and unmarshal parameters and does not truncate types,

supporting true object-oriented polymorphism (CORBA & RMI, 2006).

In the RMI architecture, the developer designs servers with some specified

services available for clients. These services should be named (using common strings),

and registered in a special independent process called “rmiregistry”. The client needs

these names to lookup at their related services in the registry. In RMI the server does not

have to be located on any specific machine. It can be activated from any computer in the

network in a complete transparent way to the client which does not have to change any

parameter in his or her application. Other essential components in the RMI architecture

are the stub and the skeleton for each service offered by the server (Figure 15). Both

components are obtained by a special compilation, called RMI compiler, which accepts

as arguments classes that have been compiled successfully with the JVM compiler.

Figure 15. RMI Client/Server architecture

The stub objects each implement a remote interface and are responsible for

marshalling and unmarshalling the data and managing the network connection to the

server in a way totally transparent to the client. So stubs act like proxies to the client, and

an instance of them is required on each client. Whenever a client object invokes a method

on the remote object, the call will be directed to the stub, and a service request will be

RMI Client

Stub-1

Stub-i

Stub-n

N
et

w
or

k

Client
Object-1

Client
Object-i

Client
Object-n

RMI Server

Skeleton-1

Skeleton-i

Skeleton-n

Service
Object-1

Service
Object-i

Service
Object-n

 52

sent on the network to the corresponding skeleton object. The skeleton object is located

on the server side and acts as a listener for incoming service requests.

In this work, two main RMI services will be provided to any module of the

application. The first service, the most important, is related to the air situation. At any

moment, any client module can ask about the number of aircraft actually engaged in the

simulation exercise, as well as other related information such as the speed, the heading,

or the altitude of any desired aircraft. In addition, this service includes all the commands

that can be given to an aircraft such as changing altitude, or turning left or right to face a

given heading. Operations such as the timing of the insertion of an aircraft in the exercise

or eliminating it from the exercise are reserved for the instructor who acts from the server

side. Therefore there is no need to implement them as services; they can be directly

invoked by the instructor as local methods.

The second service offered by the RMI server is the user’s service. This service is

responsible for the identification of any user of the system, and keeps track of the

different user’s activities. In this application, each user has a name and an ID string.

When the user first connects to the server, he or she will be asked to enter his or her name

and ID string. The local application will automatically add to this information the URL

identification of the current workstation. After that, an identification request will be sent

to the remote server via the user’s stub object, and the user can then continue using his or

her module if the answer was positive. The other important operation offered by this

service is the ability to register all users’ activities. This is done by the local application

and is transparent to the user. Every time the user performs any operation via the

network, the local module will send an event registration request to the user’s service,

and that activity will be saved in the server database for future consultation and analysis.

This service therefore acts mainly as an event listener for the clients’ application, and

event delivery on the server side as shown in Figure 16.

 53

Figure 16. The ATC user service

3. The Instructor Module

The instructor is the local user of the simulator server. He or she has access to all

resources of the exercise and can also see in real time the different trainees’ activities. To

facilitate his tasks, the instructor module has an intuitive GUI that is easy to use and

contains all the necessary activators. These activators are implemented as menu items and

as action buttons on a specific toolbar.

The instructor module is divided into three graphical interfaces. The first one

contains all the basic operations for the server, such as starting or stopping the different

services, and other operations related to the kind of exercise that will be RMI-broadcasted

in the network. The second module is a list of all aircraft participating in the exercise.

From this interface, the instructor will have access to the “global aircraft commands”.

These commands include starting or stopping any aircraft, and removing aircraft from the

exercise. This will help to implement many different kinds of exercises based on the

initial loaded exercise file. This interface allows the instructor to customize the exercises

User’s Service
Stub

Any Module
Application

e

Client Side

Network Transport Layer

User’s Service
Skeleton

User’s Service

e

Server Side

Server
DB

 54

in a manner that best fit the level of the trainees. Finally, the third interface will allow the

instructor to control the different students’ activities. These activities are the output of the

event handler described in the previous paragraph. An example of what the instructor

might see in this interface is depicted in Table 4 below.

Date 03/26/2006

Exercise Fp123

Instructor John Smith

Starting 10:05:00

Stopping 11:30:22

Time D Qualif. URL Event

10:05:55 s01 Pilot 130.121.99.50 AZ340 TL 90

10:10:40 a04 En-route 130.121.99.51 AW AZ340 TU787

10:10:55 s01 Pilot 130.121.99.50 AZ340 L 280

10:50:05 c05 Tower 130.121.99.30 AS234 LD 11

11:03:28 a02 Approach 130.121.99.40 AC TU423 AF200

Table 4. A typical instructor’s event display GUI

In Table 4, the different columns are all self-explanatory except the “Event”

column. Each event is described using a pseudo-language. For example, the event

“AZ340 TL 90” means that the aircraft with flight ID AZ340 received an order to turn

left (TL) and faces the heading 90 degree (see Figure 17 for the heading interpretation

adopted in Air Traffic). The event “AW AZ340 TU787” means that there is an air

warning between AZ340 and TU787. The field of such event is colored in yellow to alert

the instructor. An air conflict (AC) event is a more dangerous situation and is colored in

red as shown in the last row of Table 4. Table 5 gives a summary of all symbols of this

pseudo-language. Note that an air warning or an air conflict is raised by the controller to

the pilots if a group of aircraft is going to violate separation minima considering their

current or future situation. These separation minima are generally subjected to changes

 55

by the ICAO. In the application’s design, these parameters will be read from a data file

and the instructor can change them at any desired time.

Symbol Interpretation

AW x-1 x-2... x-n Air Warning among the aircraft x-1 x-2... x-n

AC x-1 x-2... x-n Air Conflict among the aircraft x-1 x-2... x-n

TL x Turn Left to face x degree

TR x Turn Right to face x degree

L x Change to Level x

LD x Landed in runway x

TK Takeoff from runway x

S x Change Speed to x Knots/Hour

SSR x Change in SSR code to x

Table 5. Interpretation of the pseudo-code used in the Instructor GUI

Figure 17. Headings in ATC

North

EastWest

South

 56

4. The Approach Module

The approach module has a GUI that helps the controller gain good situational

awareness of the air traffic that he or she is controlling. Since the controller spends most

of his or her time manipulating this GUI, it is crucial that the controller can personalize

this GUI in any desired manner. For this reason, as mentioned in the specification part of

this module, all data regarding the GUI is stored in XML format within a particular

directory of this module (the data directory).

The reason for the use of XML files for all the data of the simulator is not only in

the portability and interoperability of XML, but also in the possibility to “extract” real

Objects from an XML file. That is, it is possible to add some accessory methods to these

objects such as changing their color, or their position. As a result the user can manipulate

all aspects of this object with the minimum computational cost. In addition, since the

instructor can theoretically run a simulation in any geographic region, the software

includes a tool to extract XML information from a given map that can be easily used in

the ATC simulator.

The overall design of the Approach application is shown in figure 18. The first

step that the application does is load the map, navigation data, and any other symbols

used in ATC from a package containing the related XML files. Since the meta-data

enclosed in these files aren’t the same, there is a different XML parser for each category

of data. The next step consists in passing the parsed data to the “Updater Thread”. This

class is the core object of the approach application. It first constructs a collection of

objects based on this data, and then provides an update of the “Approach Frame” which is

a simple GUI to display and manipulate graphical symbols. Among the graphical

symbols that are displayed are the aircraft representations. However these reside in the

server part and the only way to access them is via the server’s aircraft services. For this

reason, the updater uses one stub to access this service, and another stub to access the

user service for user identification and event handling purposes, as explained in the

previous paragraph.

 57

Figure 18. Overall approach module design

The approach frame contains all the necessary tools that allow the user to interact

with it. When the user issues a command, it passes to the “Command processor” which

plays the role of command interpreter for the updater thread. At this point, the updater

thread will prepare another screen containing all previous data and the results of the user

commands, and will finally provide an update of the approach frame. In this way the

graphics- heavy interface of the approach frame is made easy to draw and update. In fact

it has only to draw the same image size, regardless of the quantity of information on it, at

every refresh rate (depending on the radar revolution). Furthermore, the approach frame

will not spend any additional computation once it is launched, since all image

preparations are made off-screen by the updater thread.

The design of the approach module is versatile and can be applied as it is or with

small modification for the en-route module. In fact the main difference between the two

modules resides in the visualization and not in the functionality. Such differences will be

directly detailed in the implementation phase.

XML data
package

XML parser Command
Processor

Updater Thread

User Service
Stub

Aircraft
Service Stub

Approach Frame

Network

 58

5. The Tower Module

The tower module is a 2D environment representing an airport and its vicinity

which we denote with “tower working zone”. Within this zone the tower specialist has

the task to control the activities of all moving vehicles in order to insure safety and

reasonable aircraft flow from and to the airport. All the information regarding the tower

working zone will be parsed from an XML file. Thus, there is complete independence

between data representation and information processing. For the purpose of this thesis,

only two tower working zone will be presented; the international airport of Tunis-

Carthage (DTTA), and the international airport of Monastir (DTMB).

In this design, the tower working zone is a collection of objects including the

runways, the taxiways, and the stationing area presented in an adequate GUI. This GUI

offers to the user (the tower controller) the following capabilities:

- Easy navigation.

- Showing or hiding airport data.

- Scaling the airport.

- Centering the viewpoint.

However, this module cannot interact directly with an aircraft (for example to

change its position or heading). Interaction with an aircraft will only be allowed via a

voice communication to the pilot module, examined in the next section.

6. The Pilot Module

The pilot module is an independent module of the ATCS offering to the pilot all

the necessary tools to control the aircraft situation during flight conditions or whenever

the aircraft is in the ground. Since the operation conditions of the aircraft in flight or

ground are not the same, two sub-modules are included within this module. The first sub-

module mainly controls the aircraft during flight conditions. It contains a pseudo-cockpit

depicting the main cockpit instruments which are the speedometer, the altimeter and the

heading indicator. In addition to these instruments, and in order to make the pilot gain

 59

situation awareness about the surrounding traffic, a radar screen is provided. Finally, a

panel of buttons is also added to this module. This panel will be used by the pilot under

the order of the instructor to cause an abnormal event in the aircraft as specified in the

specification part.

The second sub-module exclusively controls the aircraft in the ground (once the

aircraft is in the airport). The operations that are allowed in this module are the following:

- Parking the aircraft in a given position.

- Taxiing the aircraft to a point specified by the tower controller.

- Positioning the aircraft in the runway.

- Make the aircraft takeoff.

- Make the aircraft landing.

The overall design of the pilot module is shown in Figure 19 which shows the

complete independence between the two sub-modules.

Figure 19. The Pilot Module Design

Cockpit GUI

Aircraft Parameters

Services’ Stubs

Network

Ground GUI

Aircraft Parameters

 60

D. CONCLUSION

In this chapter a detailed specification for each of the five modules constituting

the air traffic control simulator are given. During the specification phase, some concepts

related to air traffic control, such as the separation volume, SSR code, and heading

convention, are explored and made clear. Also, since the communication module is an

important link between all modules of the application, an ample space is dedicated to it.

Particularly, many concepts of RMI architecture is given.

As specified by the waterfall model, these specifications are the input of the

design phase with is the argument of the second part of this chapter. In this phase, each

module is detailed in depth and, for each module, an architectural design is given. This

helps to ease the implementation phase which is the topic of the next chapter.

 61

V. IMPLEMENTATION OF THE ATC SIMULATOR

A. MAP REPRESENTATION

All the graphics representations in this application are vector images extracted

from real maps or real spatial photos. The module named “MapEditor” allows the user to

extract the data from an aeronautical map. The user has only to click the mouse on

contours of that map to create a vector of points corresponding to those contours. These

points are then saved to an XML file. Figure 20 illustrates the module “MapEditor” and

Figure 21 gives the XML schema of the saved data.

Figure 20. Bitmap and XML representation of the map

Figure 21. The XML schema of a map

Once the data is prepared, it can be used by the approach and en-route modules.

Note that each xml file containing map data is viewed as a map layer which will be stored

in an appropriate data structure within the latter modules. These layers can be easily

 62

accessed by the user either to show or hide them or personalize their appearances. Figure

22 shows the approach GUI with a special control panel allowing the user to select the

layers that he or she wants to visualize. The use of the control panel is very intuitive.

When a layer is selected, the corresponding button will be highlighted; otherwise it is in a

dark color.

Figure 22. Visualization of the XML Data in the Approach and En-route Applications

B. THE SERVER/INSTRUCTOR MODULE

As stated in the previous chapter, the RMI server module and the instructor

module constitute a single package that can be accessed and manipulated only by the

instructor. The main reason behind this is to simplify the implementation of these two

modules. The overall UML diagram of this module is shown in Figure 23. The main

remote service offered by this module is the aircraft service (see Appendix B for a

complete services’ listing). This service is represented by the class “AcVector” which is

the implementation of the interface “IAcVector”. Particularly, the latter interface offers a

set of methods to get or set any parameter of the aircraft such as the speed, the altitude,

the cap, and etc. All services in this module are made available to any other module via

the class “RegistryStarter”. Since a reference of this class exists in the main class

“ATCServer”, the instructor will be able to start or shutdown any service at any moment

if required.

 63

Figure 23. UML diagram of the server module

All the flight plans are stored in a specific directory within this module package

(data directory). A Document Object Model (DOM) parser named “DOMParser” is used

to parse the flight plans’ files. Each of these files is a valid XML document according to

the XML schema of Figure 24. Once they are parsed, the “DOMParser” object constructs

an array of instances of “SimpleFlightPlan” class which is passed to the main class in

order to build up the remote service class (AcVector).

Figure 24. XML schema of the flight plan

 64

The server module presents a user-friendly interface (see Figure 25 below). The

instructor has only to click few buttons to make the services available to the other

module. The instructor first selects the exercise to play and then clicks on the “Start

Services” button. He or she can then start all aircraft of the exercise at once or only select

a group of them to be part of the current simulation.

Figure 25. The server module GUI

C. THE PILOT MODULE

The pilot package contains two distinct modules. The first one represents the

aircraft cockpit, and the second one is the ground module. The cockpit module in

normally used to control the flying aircraft, and the ground module is only used to

manipulate the aircraft within the airport. The following paragraphs describe in depth

each of these modules.

 65

1. The Cockpit Module

The cockpit module, shown in Figure 26, allows the pilot to control the aircraft

once it is flying. This module is a GUI containing all the display and control devices that

the pilot needs to gain situational awareness about the current flight and the overall air

situation. Particularly, the first row of this GUI presents the most important devices that

help the pilot obtain a quick look assessment of the situation and the flight parameters of

the aircraft. The second row contains more parameters about the flight, and allows the

pilot to interact with the aircraft.

The pilot can switch between one aircraft and another by simply clicking on the

desired aircraft flight ID, and instantly the GUI will change to that aircraft cockpit. When

the pilot received an order from any controller, he or she can execute it by typing the new

flight parameters in the appropriate fields of the aircraft manipulator panel. In addition,

when directed by the instructor, the pilot can simulate the most common anomalies in an

aircraft by clicking in the appropriate button of the anomalies panel situated in the right

lower corner of the cockpit GUI.

This module, as all other client modules of the simulator, has a stub for each

remote service. These stubs are used by a thread named “ControllerThread” to update the

aircraft situations. At every loop, this thread checks the server for an update in the aircraft

list and for an update for each of the aircraft situation. The new list with the new aircraft

situation is then passed to the main class which provides an update about the different

devices and panels of the GUI. The complete UML diagram of the cockpit module is

shown in Figure 27. In this diagram, it is easy to see that each panel of this module has its

own independent class, and that the ControllerThread has a reference to each of these

classes.

 66

Figure 26. Cockpit GUI of the pilot package

Figure 27. The UML diagram of the cockpit module

2. The Ground Module

The second module of the pilot package is the ground module. This module

allows the pilot to manipulate the aircraft on the ground. Such manipulations include the

 67

positioning of the aircraft in a given parking position, the taxiing, and the takeoff of the

aircraft. The use of this GUI is made easy by a set of control buttons in four groups. The

first group is used to connect to the server and to choose the airport in service. The

second group allows the pilot to personalize the airport appearance, by allowing the pilot

to hide or show the most common graphical component in the airport. The third group

allows the pilot to show or hide the aircraft or their current path within the airport. The

fourth is the most important group since it directly manipulates the aircraft position and

parameters. This group is normally inactive until the pilot selects an aircraft (by double-

clicking on it), at which time this group will be highlighted, indicating the possible

actions that can be undertaken at that time. These actions are either stopping the aircraft

from moving, taxiing the aircraft in the pre-established path or initiating the takeoff. The

last group of buttons is reserved for manipulating the view by changing the center or the

scale. All active parameters of the airport are shown in a panel situated at the top of the

ground module GUI. A complete ground GUI is shown in the Figure 28 below.

Figure 28. The ground GUI of the pilot package

 68

The UML diagram of the ground module is shown in Figure 29. As it will be seen

later in the Tower section, the ground module of the pilot part is simply an extended

version of the tower module, which explains why the main class of the UML diagram is

named “Tower”. The UML diagram shows that all the graphical objects (those using a

graphical context to depict some kind of shape or symbols) inherit one root object which

is the “GraphicalShape” class. This class is an abstract class containing the most common

methods shared by all its children classes. Some of the methods of this class are rendered

abstract allowing the children to implement more personalized ones. Among the most

important methods that are implemented by the children is the draw method of the super

class. The UML diagram shows also the presence of two classes specific to this module:

the Mover class, and the “TakeoffProcessor” class. The following sections give some

details about these two classes.

Figure 29. The UML diagram of the ground part

a. Aircraft Mover

Within the ground module the movement of aircraft is controlled by a

thread named “Mover”. This thread looks at the selected aircraft and verifies that it has a

 69

path assigned to it. If so, a linear movement process is applied to that aircraft’s position.

The mover moves the aircraft at a constant speed (v) according to the following

equations:

x(t) = x(t0) + vx(t-t0)

y(t) = y(t0) + vy(t-t0)

where vx = v.cos(θ), vy = v.sin(θ), and θ is the arctangent of the current segment

of the path assigned to the aircraft. These equations are converted in numerical form in

the following way:

x(n + 1) = x(n) + vx.∆t

x(n + 1) = x(n) + vx.∆t

and if ∆t = 1, we simply obtain x = x + vx, and y = y + vy.

The change from one segment to another is made possible using the intersection

of the current position of the aircraft and a rectangular area centered in the endpoint of

the current segment. This rectangular area has a width, respectively a high, equal to 2vx,

respectively 2.vy. In such way it is guaranteed that the intersection will occur.

b. The Takeoff Processor

The takeoff processor is a thread responsible of the takeoff phase of the

aircraft. It guides the aircraft with the correct orientation along the runway. At every step

the thread increases the power of the aircraft gradually until its maximum is reached. The

increase of power causes an increase in speed, and once the aircraft reaches its takeoff

speed (for simplification, all aircraft have the same takeoff speed), the thread increases its

altitude until it reaches 1,500 feet (as mentioned in chapter II, this is the height limit of

the tower control). After that point the thread dies and the aircraft is left alone to follow

its pre-established route or be subject to further pilot actions.

Before takeoff however, the “TowerCanvas”, which is the running process

of the main class, executes a series of verifications to ensure that the aircraft is in fact

 70

ready for takeoff. First it gets the current aircraft position and orientation (the selected

aircraft is marked with a yellow diamond shape). Then it asks the runway in service

whether or not the selected aircraft is within its limit and has an acceptable orientation

(the class runway has a specific method to calculate the orientation tolerance). If all these

conditions are met, the class modifies the route of the aircraft in the following way. The

current aircraft’s position becomes the first waypoint, and the end of the runway becomes

its second waypoint. The rest of waypoints remain unchanged. The final step is to launch

the TakeoffProcessor class, and the aircraft will behave as explained earlier in the first

paragraph of this section. Figure 30 shows a flowchart that summarizes the major steps of

the takeoff process.

Figure 30. The takeoff verification process

D. THE TOWER MODULE

The tower module is very similar to the ground module of the pilot package. The

main difference between the two modules is that the tower module does not contain any

means to manipulate the aircraft. In addition this module contains a placing algorithm to

park the aircraft in the airport. Figure 31 shows the UML diagram of this module.

-Get aircraft position
-Get aircraft orientation

Aircraft within
runway?

Aircraft oriented
correctly?

No takeoff

Get the runway endpoint

Reconstruct aircraft path

Takeoff clearance

yes

no

yes

no

 71

Figure 31. The UML diagram of the tower module

1. Placing Algorithm

One important task of the tower module is determining the initial position of

every ground aircraft at the beginning of the simulation exercise. In fact, all the ground

aircraft at the beginning of the exercise have as initial location the center of the airport.

Without any intervention all the ground aircraft would occupy the same position within

the airport. To solve this problem a placing algorithm is applied to the list off all aircraft

on the ground. The placing algorithm, depicted in Figure 32, simply chooses a parking

position in the airport and assigns it to the first non-positioned aircraft in the filtered list.

This process continues until all aircraft are positioned. Then the algorithm updates the

remote service with the new position of the aircraft. This algorithm operates only once at

the beginning of every simulation. If the aircraft received an order to taxi, its parking

position is made free so the parking algorithm can assign it to another aircraft. For the

arrival aircraft, the pilot will receive instruction from the tower controller about where to

place the aircraft.

 72

Figure 32. The placing algorithm

E. APPROACH MODULE

The approach module is used by the ATCSs either during the approach phase or

after the takeoff and before the aircraft reaches its cruising speed and altitude. The GUI

of this module is similar to many real approach screens. The approach module is

articulated according to the UML diagram of Figure 33. The diagram shows two main

classes that are the center of gravity of the approach application.

The first class, “ControllerWS”, represents the controller GUI. It contains all the

necessary menus and option panels to allow the controller manipulating it to gain the best

awareness of the air situation. The use of this class is similar to all the other GUIs of the

simulator. The controller has only to connect to the available server and customize the

interface.

All aircraft list

In ground list Flying list Parking position list

Get aircraft[i] Get free position

Assign position to aircraft i

Update server

i = i + 1

 73

Figure 33. The UML diagram of the approach module

The second most important class in this module is the “Cartev” class. This class

represents the running process of the class “ControllerWS”. At every loop, Cartev checks

the controller settings and draws all the required components. It also updates the aircraft

situation and represents them in the correct position. In order to make it easy to represent

the many graphical components, this class uses a double buffering technique. While an

image is presented to the user, another one is prepared for the next loop. In this way, the

user will not observe any noticeable discontinuity in the GUI. Figure 34 shows the

overall approach workstation GUI. Figure 34 also shows the control panel used by the

controller to quickly manipulate the GUI. This control panel is an instance of the class

“ControlPanel” shown in Figure 33.

Even though these two classes are the most important classes in this module, there

are many others that play a role for the controller and the overall simulation. The class

“Controller” is one example. This class is responsible for detecting any situation that may

 74

lead to an air conflict. As explained in chapter III, there are two air conflict situations,

both occurring when two or more aircraft volumes intersect with each other. The

difference between the two types of air conflict resides only in the extent of the aircraft

volumes. To keep track of the air conflict situation, this class has two bi-dimensional

boolean arrays. If the element [i][j] of a particular array is true, this means that the

aircraft [i] is in some air conflict form with the aircraft [j]. All the parameters of the air

conflict are exposed in this class and can be changed by the instructor when required.

Figure 34. The approach workstation GUI

The approach module is the largest module of the ATCS. Its description alone is

quite lengthy, so only an overview will be given here. Many variables and method of this

module are either self-explanatory or well commented and can be reviewed in the module

documentation part. The following sections will provide extra clarifications about some

mathematical concepts used in this module. These concepts are related to the coordinate

conversion and runways representation.

 75

1. Coordinate Conversion

In a real aeronautical map the intersections between the longitudes and latitudes

form a quasi rectangular shape delimiting a geographic area. During the process of

preparing the data for the application, the upper left corner (in terms of longitude and

latitude) of each of these areas are acquired. These data along with the pixel coordinates

of the four corners are used as arguments to construct the object “Area” (Figure 35).

Figure 35. A simple geographic area representation

These area objects are used to determine the approximate x-y coordinate of a

given point expressed in universal geographic coordinate. This is done in two steps. First,

the data structure containing all Area objects is checked to identify that particular area

having the same longitude and latitude as the given point. Second, once the area is

identified, a simple interpolation formula is used to calculate the corresponding x-y

coordinates of the given point. The portion of code doing such operation is the following:

if(area.getNorth()==nord && area.getEast()==est){

x1 =(double)(xpoints[0]+xpoints[3])/2;

x2 = (double)(xpoints[1]+xpoints[2])/2;

y1 = (double)(ypoints[0]+ypoints[1])/2;

y2 = (double)(ypoints[3] + ypoints[2])/2;

x = x1+ (((x2-x1)*(me*6000.0+se*100.0+ce))/360000.0);

(x0, y0) (x1, y1)

(x3, y3)

North, East

(x, y)

(x2, y2)

 76

y= y2 - (((y2- y1)*(mn*6000.0+sn*100.0+cn))/360000.0);

break;

}

2. Runway Representation

The runways are represented differently within each module of ATC simulator for

two reasons. The first reason is that not all modules require the same details and

precision. The second reason is that in the normal aeronautical maps, runways are not

represented due to their small dimensions. To solve this problem, two approaches were

adopted. For the TRACON and en-route modules, each runway is represented as a line

segment. The endpoints of this segment are directly obtained from the geographical

coordinates of the runway. The tower module utilizes the XML representation since the

spatial photo of the airport is sufficiently clear to acquire all data required for the airport

(mainly the runways, the taxiways, and the parking areas). The following paragraphs

explain how the end points of each runway are obtained, and how other important

components are computed, such as the runways’ extensions which are important

especially in the landing phase of the aircraft.

By using the method described in the previous section, it is easy to convert the

geographical coordinates of the runways into the corresponding x-y coordinates of the

simulator. For example the geographical coordinates of the runway 01 of Tunis-Carthage

airport (code DTTA) are 36° 50' 20.87"N and 010° 13' 25.52"E which give X=

1079.47316805, Y= 809.49381944. This method was also useful in determining the

center of the airport which is very important in the entire application. In fact to obtain a

perfect conservation of the coordinates in all modules, it is mandatory that the center is

the same in all modules. This is because the center of the airport plays the role of the

origin of a local coordinate system, and obviously every object is designed around the

origin of this coordinate system.

 77

The same process is used to calculate the runway extensions which are virtual

lines extending each endpoint of the runway. These extension lines are important since

the help a lot the controller to approximately align the aircraft with the runway in service

during the approach phase. They are depicted as dashed lines in the Approach GUI. To

determine the low and high point of each runway extension (see Figure 36), we first used

the endpoints of the runway to compute its slope. The low and high points are,

respectively, the intersection of the runway and the circle with radius rl , and radius rh,

centered on one of the runway extremity.

Figure 36. Runway extensions

In mathematical terms, each point is the solution of the following equations:

(x – x0)2 + (y –y0)2 = r2 (equation 1)

(y – y0) = m(x – x0) (equation 2)

In the above equations, (x0, y0) is the extremity of the runway, r is either of the radius rl

and rh, and m is the slope of the runway. The solution of these equations is:

mxx r 2

0
1/ +±= (equation 3)

To decide which x is needed, the center of the runway is used as a reference point.

If the x-coordinate of the runway extremity is greater than the x-coordinate of the runway

center, then the correct x will be obtained with the plus sign in equation 3, otherwise the

minus sign will be used.

runway high high low low

rh

rl

 78

F. THE EN-ROUTE MODULE

One of the most important advantages in using the Object-Oriented Programming

(OOP) is the usability of the produced classes and code. This concept was fully applied

during the implementation of the tower module. In fact, as mentioned, the tower module

was only a modified version of the ground sub-module of the pilot module. The same

concept is used to implement the en-route part. The en-route module is simply a modified

version of the approach module.

Unlike the approach controller who should dispose only of the air situation around

particular airport, the en-route controller should have access to all controlled airspace

(precisely, the airspace within the Flight Instruction Region (IFR)). This was done in the

implementation by centering the map and all the other objects around any point chosen

by the en-route controller (see Figure 37 below).

Figure 37. The en-route GUI

 79

VI. CONCLUSIONS AND FURTHER WORK

A. CONCLUSION

Air Traffic Control (ATC) is a network of facilities whose purpose is to organize

aircraft movements in airspaces in order to guarantee safe and efficient air traffic. ATC

contains many kind of specialists (ATCS) commonly grouped in three main categories;

tower, approach and en-route. To meet the required skills necessary to manage an

incessant evolving air traffic density, these specialists should be trained continuously.

However, often the training method consists in using separated modules for each air

traffic control category. The most important deficiency of such training method is the

lack of the concept of teamwork.

The work in this thesis consists of conceiving and implementing a teamwork air

traffic control simulator that does not suffer the previously mentioned drawbacks, and

that could be easily used in ATC schools. The goal is to allow the different ATCSs to

work together, in the same conditions as in the job environment, in order to manage in a

collaborative way an air traffic situation. A simulator like this should allow ATCSs to

acquire further coordination skills, and hence, reduce the amount of air traffic faults due

to a lack of teamwork in the actual ATC training system.

The product of this thesis was developed using a waterfall software development

life cycle model. This model was preferred to other approaches (prototype, spiral,

extreme programming, etc) because of its simplicity as well as ease of understanding and

implementation. In addition, the waterfall model forces a verification activity in between

each two adjacent steps which guaranties a big degree of fidelity and robustness to the

realized software.

The resulted simulator is a flexible training tool for both trainees and instructors.

A simulator like this will help in obtaining a low cost solution that can substitute buying

 80

simulators for each category of ATCSs. In addition, the main training capabilities of this

simulator could be summarized as:

1. Decreasing the OJT time.

2. Help to increase teamwork performances, and hence, reduce air traffic faults.

3. Give some insights in teamwork requirements for Air Traffic Control Simulators.

B. FUTURE RESEARCH

This study’s goal was to design, develop, implement, test, and evaluate a novel air

traffic control simulator that offer a low-cost solution to enhance the concept of

teamwork in ATC design, but it raised many interesting questions than are beyond its

scope.

Possible future research includes questions about design improvement and the

influence of assumptions made in the model. Other questions may include: Do the

modules of this simulator meet their requirements and specifications? How much can the

model be simplified? This software can also be the subject or the tool for many

specialized studies related to the ergonomic and human factor issues such as the usability

study, or can be used as a tool for assessing and evaluating training methods. The

following sections briefly discuss some of these studies.

1. Usability Study

Modernization of Air Traffic Control (ATC) display systems includes increased

use of color to code information. While colors can enhance display designs, human

factors issues like legibility and salience manipulation are still problematic. In

implementing this simulator, no particular considerations about the choice of the different

used colors were made. Some researchers argue that color palettes that are not

specifically designed for layered data and a large number of objects can create legibility

and salience problems (Ahlstrom & Arend, 2005). Even though all modules of this

 81

application (except the instructor module) contain tools allowing the user some degree of

freedom to customize the GUI, it is recommended to apply a usability study for all

modules in order to detect:

- Human factor limitations about the GUI layout.

- Influences of the color palette in the overall controller’s activities and awareness.

- Influence of brightness and contrast in the controller awareness.

- Legibility, salience manipulation (clutter avoidance), and color recognition.

2. Design of Experiments

As stated previously, this software is a versatile and can be used for a multitude of

purposes such as:

- General ATC training.

- Rehearsal is some ATC issues.

- Emphasize team and teamwork skills in ATC.

- Improvement of the Time Of Transfer (TOT) rate.

However, none of these capabilities were tested or analyzed using this software.

Hence, it is recommended to design experiments about one or more of the above aspects

in order to demonstrate potential training improvements. This can be done using two

groups of trainees: a control group, whose member are trained using the traditional tools,

and a second group that uses this software as the main training tool. A statistical analysis

at the end of the training period could identify the differences, if any, between the two

approaches.

3. Rebuilding the Tower Module

The tower module was designed using a 2D projection. Even though this does not

compromise the objective of this thesis, it would be a good idea to implement it by a 3D

 82

model. Many 3D authoring tools allow an easy development of a 3D model provided that

the user possesses all the data of the intended model. These tools include X3D, Visx3D,

Wings3D, SwirlX3D, etc. The author has already developed a 3D model of the Tunis-

Carthage International Airport (see Figure 37) however this model is not integrated in the

overall application.

Figure 38. 3D model of the Tower module

Once the 3D model is completed, the tower module can be implemented using

any Java package that supports 3D scene, such as Java3D or the Scene Access Interface

(SAI). The reader can refer to Appendix C for a short description of SAI.

 83

LIST OF REFERENCES

Ahlstrom, U., Arend, L. (2005). Color Usability on Air Traffic Control Displays:
Proceedings of the Human Factors and Ergonomics Society 49th Annual Meeting-2005.
Federal Aviation Administration, Atlantic City International Airport, NJ, USA, NASA
Ames Research Center, Moffett Field, CA, USA.

Air Traffic Management System. Safe Separation Standards. Foud at
http://virtualskies.arc.nasa.gov/ATM/tutorial/tutorial6.html, Jan 2005.

Aviation Sri Lanka. Air Traffic Control History. Found in
http://atcsl.tripod.com/air_traffic_control_history.htm, Dec 2005.

Bailey, L.L., Broach, D.M., Thompson, R.C. & Enos, R.J. (1999). Controller teamwork
evaluation and assessment methodology: A scenario calibration study (DOT/FAA/AM-
99/24). Washington, DC: Federal Aviation Administration.

Bennett, S., Skelton, J. & Lunn K. (2001). UML. McGraw Hill.

Brutzman, P. D. (2003). Web-based 3D Graphics Rendering of Dynamic Deformation
Structures in Large-scale Distributed Simulation. Naval Postgraduate School, Monterey,
CA.

CORBA & RMI. Found at http://www.dalmatian.com/corba.htm. Jan 2006.

D’Arcy, J.F., Della Rocco, S. P. (2001). Air Traffic Control Specialist Decision Making
and Strategic Planning – A Field Survey. (DOT/FAA/CT-TN01/05). U.S. Department of
Transportation. Federal Aviation Administration. Found in
http://www.hf.faa.gov/docs/508/docs/wjhtc/tn0105.pdf. Jan 2006.

EUROCONTROL, European Organization for the Safety of Air Navigation. (1998).
Proceedings of the Second EUROCONTROL Human Factors Workshop Teamwork in Air
Traffic Services. (HUM.ET1.ST13.000-REP-02). EUROCONTROL.

Federal Aviation Administration. (2002). Research was sponsored by the Federal
Aviation Administration's Office of the Chief Scientific and Technical Advisor for Human
Factors. http://www.hf.faa.gov/docs/508/docs/volpe/volpe_9817.pdf. Dec 2005.

ICAO. SSR Code Allocation List for the EUR Region. 2003. Found at
http://www.paris.icao.int/documents/pdf/CAL_Ed2_Amd3_PartA.pdf. Jan 2006.

Li, J., Yang, J. 2006. Xj3D, Architecture of Xj3D Browser. Found at
http://wiki.cs.uiuc.edu/cs427/Xj3D#sai. Mar 2006.

 84

Lintner, T. & Buckles, J. (1992). Why can’t we talk to each other? In Proceeding of the
37th Annual Air Traffic Control association Conference, Atlantic City, NJ.

McCleam M. Clear skies ahead. (2003). Canadian Business. Found in
http://www.adacel.com/press/innews/5_26_2003.pdf, Dec 2005.

National Research Council. (1998). The Future of Air Traffic Control, Human Operators
and Automation. National Academy Press.

National Air Traffic Service. The History of Air Traffic Control. Found in
http://www.nats.co.uk/library/history1.html, Dec 2005.

National Aerospace Laboratory of the Netherlands (NLR). TRS: the NLR Tower Research
Simulator. Found in http://www.nlr.nl/documents/flyers/f172-06.pdf, Jan 2006.

National Defense. Modern Trainers on the Way for USAF Traffic Controllers. Found at
http://www.nationaldefensemagazine.org/issues/2002/Nov/Modern_Trainers.htm,
Jan 2006.

O’Hare D. & Roscoe S. N. (1990). Flightdeck Performance: The Human Factor. Iowa
State University Press.

Plaettner-Hochwarth, K. J., Zhao K. Y. & Robinson, E. J. (2000). A Modularized
Approach for Comprehensive Air Traffic System Simulation. American Institute of
Aeronautics and Astronautics.

Ruiz L. E. (2004). Perception of Communication Training Among Collegiate Aviation
Flight Educators. Aviation Institute, University of Nebraska at Omaha.

Schach, R. S. Object Oriented and Classical Software Engineering. (2002). Mc Graw
Hill.

Reilly D. Reilly M. (2002). Java Network Programming and Distributed Computing.
Adisson Wesley.

Smolensky, M. W. & Stein, E. S. Human Factors in Air Traffic Control. (1998).
Academic Press.

Sood, N. & Wieland, F. (2003). Total Airport and Airspace Model (TAAM)
Parallelization Combining Sequential and Parallel Algorithms for Performance
Enhancement. Center for Advanced Aviation System Development. Found in
http://www.informs-sim.org/wsc03papers/210.pdf, Jan 2006.

 85

U.S Department of Transportation. (2002). Aviation Delay. Found in
http://www.dot.gov/PerfPlan2004/mobility_delay.html, Dec 2005.

Wikipedia. Terminal Control Center. Found in http://en.wikipedia.org/wiki/TRACON,
Dec 2005.

 86

THIS PAGE INTENTIONALLY LEFT BLANK

 87

APPENDIX A. GLOSSARY AND ABBREVIATIONS

ACC: Area Control Centre.

ACC is an ATC unit that provides ATC service to aircraft operating within a

flight information region (FIR). See FIR and ATC for complete information.

AMA: Area Minimum Altitude.

The lowest altitude to be used under instrument meteorological conditions (IMC)

that will provide a minimum vertical clearance of 1000 ft or, in designated

mountainous terrain, 2000 ft above all obstacles located in the area specified,

rounded up to the nearest 100-ft increment.

ATC: Air Traffic Control.

ATCS: Air Traffic Control Specialist.

ATS: Air Traffic Service.

ATS is a global term used to denote a set of services that includes ATC services,

flight services and alerting service.

CORBA: Common Object Request Broker Architecture.

Specification for how different objects of some application will interact. CORBA

has been designed from the beginning to support a wide range of network,

operating system, and programming languages. In our days CORBA is viewed as

the “elegant” solution to ensure interoperability and communication between

heterogeneous objects.

CTA: Control Area.

The CTA is a controlled airspace extending upwards vertically from a specified

height above the surface of the earth.

 88

CTR: Control Zone.

A controlled airspace of defined dimensions extending upwards from the surface

of the earth up to and including 3000 ft AAE unless otherwise specified. The

shape of that zone is a cylinder with a radius of about 50 km. The height of this

zone amounts 3000 feet (1000m).

FAA: Federal Aviation Administration

The FAA is federal authority in the United States of America responsible for civil

aviation.

FIS: Flight Information Service

The FIS is a controlled part of an airspace in which the following services are

offered:

o the dissemination of aviation weather information and aeronautical

information for departure, destination and alternate aerodromes along a

proposed route of flight.

o the dissemination of aviation weather information and aeronautical

information to aircraft in flight.

o the acceptance, processing and activation of flight plans (FP) and flight

itineraries, amendments to FPs and flight itineraries, and cancellations of

FPs and flight itineraries.

o the exchange of FP information with domestic or foreign governments or

agencies or foreign ATS units.

o the provision of known information concerning ground and air traffic.

FIR: Flight Information Region

An airspace of defined dimensions extending upwards from the surface of the

earth within which flight information service (FIS) and alerting service are

provided.

 89

FL: Flight Level.

The altitude expressed in hundreds of feet indicated on an altimeter set to

29.92 in. of mercury or 1013.2 mb. For example an FL of 300 indicates a flying

altitude of 30,000 feet.

MRSA: Mandatory Radar Service Area.

PSR: Primary Surveillance Radar.

Radar equipment used to determine the position of an aircraft in range (distance

between the antenna and the illuminated object) and azimuth (angle between the

horizontal antenna plane and the horizontal plane containing the aircraft).

SSR: Secondary Surveillance Radar.

The SSR is an antenna (interrogator) attached to the primary radar emitting

special signal called interrogation signal and wait for the “answer” from a

particular antenna mounted in the aircraft of other vehicle generally known as

transponder. Once receives the interrogation signal, the transponder generates a

coded reply signal that includes a lot of information about the aircraft status. This

information includes the aircraft identification, speed, cap, and any other anomaly

such as communication failure, fire, and aircraft hijacked.

SSR code

A four-digit octal number received from the aircraft transponder when it is

interrogated by secondary surveillance radar (SSR). This code could be changed

by the pilot or automatically when some abnormal conditions happen in the

aircraft such as communication failure, fire, and aircraft hijacked. In such way the

SSR code is a valuable piece of information for the controller since it gives

additional information about the aircraft status.

TCA: Terminal Control Area.

 90

A controlled airspace of defined dimensions that is normally established in the

vicinity of one or more major aerodromes and within which ATC service is

provided based on the airspace classification.

TMA: Terminal Control Area.

The TMA is the ICAO abbreviation for TCA (see TCA). The TMA starts between

1500 ft and 2500ft, that depends on the height of the highest obstacles in the

surroundings of the airport and goes on in the CTA sector till 10500 ft.

 91

APPENDIX B. THE SERVICES’ INTERFACES

The code of the Air Traffic Control Simulator (ATCS) consists of approximately

25,000 lines of code. The reader can refer to the download site5 for a complete code

listing and documentation. However, in order to have an idea about the services offered

by the server module, the following are the listings of the aircraft service and the student

service explained in Chapters IV and V.

package rmiServer;

/**
 * class IAcVector.java is an interface for the remote aircraft service
 * of the air traffic control simulator.
 * @version $Id: IAcVector.java,v 1.3 2006/03/30 17:23:53 msidhom Exp $.
 * @author Mounir Sidhom
 **/

 import java.rmi.*;
 import java.awt.Point;
 import java.awt.geom.*;
 import java.util.Vector;

 public interface IAcVector extends Remote {

 /**
 * this method echoes the connected client via the RMI service.
 * It is only used for testing purposes.
 * @return a string representing the connected client.
 */
 public String getConnectedClient() throws RemoteException;

 /**
 * add an aircraft to the list of aircraft.
 * @param ac an instance of AircraftBody.
 */
 public void addObjectAircraft(AircraftBody ac) throws RemoteException;

 /**
 * add an aircraft to the list of aircraft.
 * @param indicatif the aircraft's flight ID.
 * @param codeSSR the aircraft's SSR code.
 * @param speed the aircraft's speed.
 * @param cap the aircraft's heading.
 * @param svertical the aircraft's altitude.
 * @param ptsDest an array of waypoints coordinates.
 * @param pointsLbls an array of waypoints labels.
 * @param depTime a string representing the departure time.
 */
 public void addAircraft(String indicatif,String codeSSR,

float speed,float cap, float alt,float svertical,
Point [] ptsDest,String [] pointsLbls,

5 http://diana.cs.nps.navy.mil/~msidhom/

 92

String depTime) throws RemoteException;

 /**
 * remove the given aircraft from the active aircraft list.
 * @param indicatif the aircraft's flight ID.
 */
 public void removeAircraft(String indicatif) throws RemoteException;

 /**
 * get the last removed aircraft.
 * @return the flight ID of the last removed aircraft.
 */
 public String getRemovedFltID() throws RemoteException;

 /**
 * remove all aircraft from the aircraft list.
 */
 public void removeAllAircrafts() throws RemoteException;

 /**
 * start the given aircraft.
 * @param indicatif the aircraft's flight ID.
 */
 public void startAircraft(String indicatif) throws RemoteException;

 /**
 * start all aircraft in the aircraft list.
 */
 public void startAllAircrafts() throws RemoteException;

 /**
 * freeze the given aircraft. This will cause the thread moving
 * the aircraft to momentarily stop running.
 * @param indicatif the aircraft's flight ID.
 */
 public void freezeAircraft(String indicatif) throws RemoteException;

 /**
 * freeze all aircraft of the exercise.
 */
 public void freezeAllAircrafts() throws RemoteException;

 /**
 * unfreeze the given aircraft. This will cause the thread associated
 * to the aircraft to continue running.
 * @param indicatif the aircraft's flight ID.
 */
 public void unFreezeAircraft(String indicatif) throws RemoteException;

 /**
 * unfreeze all aircraft.
 */
 public void unFreezeAllAircrafts() throws RemoteException;

 /**
 * get the size of the actual aircraft list.
 * @return the size of the aircraft list.
 */
 public int getAcVectorSize() throws RemoteException;

 /**

 93

 * get the aircraft's flight ID.
 * @param index the index of the aircraft in the list of aircraft.
 * @return the aircraft's flight ID.
 */
 public String getAcID(int index) throws RemoteException;

 /**
 * get all aircraft's flight ID.
 * @return a array of flight ID.
 */
 public String [] getAcsID() throws RemoteException;

 /**
 * get the aircraft location.
 * @param indicatif the aircraft's flight ID.
 * @return a point representing the aircraft location.
 */
 public Point getAcXY(String indicatif) throws RemoteException;

 /**
 * get the aircraft location.
 * @param indicatif the aircraft's flight ID.
 * @return the aircraft location as an array of double values.
 */
 public double[] getLocation(String indicatif) throws RemoteException;

 /**
 * set the aircraft location.
 * @param indicatif the aircraft's flight ID.
 * @param x the x-coordinate of the aircraft location.
 * @param y the y-coordinate of the aircraft location.
 */
 public void setLocation(String indicatif,

 double x, double y) throws RemoteException;

 /**
 * set the aircraft parking name.
 * @param indicatif the aircraft's flight ID.
 * @param parking the aircraft parking name.
 */
 public void setParkingName(String indicatif,

 String parking)throws RemoteException;

 /**
 * get the aircraft parking name.
 * @param indicatif the aircraft's flight ID.
 * @return the parking name of the given aircraft.
 */
 public String getParkingName(String indicatif)throws RemoteException;

 /**
 * set the aircraft route waypoints.
 * @param indicatif the aircraft's flight ID.
 * @param ptDest an array of waypoints.
 */
 public void setRoutePoints(String indicatif,

Point[] ptDest)throws RemoteException;

/**
 * get all aircraft positions.
 * @return an array of positions.

 94

 */
 public float [][] getAcsXY() throws RemoteException;

 /**
 * set the heading of the aircraft.
 * @param indicatif the aircraft's flight ID.
 * @param cap the new heading.
 */
 public void setCap(String indicatif, double cap) throws RemoteException;

 /**
 * make the aircraft reach a given point.
 * @param indicatif the aircraft's flight ID.
 * @param x the x-coordinate of the point to be reached.
 * @param y the Y-coordinate of the point to be reached.
 */
 public void reachPoint(String indicatif, int x, int y)

throws RemoteException;

 public void setSegment(String indicatif, int segment)
throws RemoteException;

 public Point getAcSpeedXY(String indicatif) throws RemoteException;

 public float [][] getAcsSpeedXY() throws RemoteException;

 /**
 * get the aircraft speed.
 * @param indicatif the aircraft's flight ID.
 * @return the aircraft speed.
 */
 public float getAcSpeed(String indicatif) throws RemoteException;

 /**
 * get all aircraft speeds.
 * @return an array containing all aircraft speeds.
 */
 public float [] getAcsSpeed() throws RemoteException;

 /**
 * get the aircraft heading.
 * @param indicatif the aircraft's flight ID.
 * @return the aircraft heading.
 */
 public int getAcCap(String indicatif) throws RemoteException;

 /**
 * get all aircraft's headings.
 * @return an array containing all aircraft headings.
 */
 public int [] getAcsCap() throws RemoteException;

 /**
 * get the aircraft altitude.
 * @param indicatif the aircraft's flight ID.
 * @return the aircraft altitude.
 */
 public float getAcLevel(String indicatif) throws RemoteException;

 /**
 * get all aircraft's altitudes.
 * @return an array containing all aircraft altitudes.

 95

 */
 public float [] getAcsLevel() throws RemoteException;

 /**
 * increase the altitude of a given aircraft.
 * @param indicatif the aircraft's flight ID.
 * @param alt the new altitude to reach.
 * @param rate the climbing rate.
 */
 public void upAc(String indicatif,float alt,float rate)

throws RemoteException;

 /**
 * decrease the altitude of a given aircraft.
 * @param indicatif the aircraft's flight ID.
 * @param alt the new altitude to reach.
 * @param rate the climbing rate.
 */
 public void downAc(String indicatif,float alt, float rate)

throws RemoteException;

 /**
 * set the speed of the given aircraft.
 * @param indicatif the aircraft's flight ID.
 * @param newSpeed the aircraft's new speed.
 */
 public void setAcSpeed(String indicatif, float newSpeed)

throws RemoteException;

 /**
 * change the aircraft's heading.
 * @param indicatif the aircraft's flight ID.
 * @param sens the direction of the turn (left = false, right = true).
 */
 public void acTurn(String indicatif,boolean sens, short cap,float rate)

throws RemoteException;

 /**
 * get all SSR code of the aircraft list.
 * @return an array of all SSR codes
 */
 public String [] getAcsCodeSSR()throws RemoteException;

 /**
 * get the SSR code of the given aircraft.
 * @param indicatif the aircraft's flight ID.
 * @return a string representing the SSR code of the aircraft.
 */
 public String getAcCodeSSR(String indicatif)throws RemoteException;

 /**
 * set the SSR code of the given aircraft.
 * @param indicatif the aircraft's flight ID.
 * @param newCodeSSR the new SSR code.
 */
 public void setAcCodeSSR(String indicatif, String newCodeSSR)

throws RemoteException;

/**

 * get the category code of the given aircraft.
 * @param indicatif the aircraft's flight ID.

 96

 * @return a string representing the category of the aircraft.
 */
 public String getAcCodeSpec(String indicatif) throws RemoteException;

 /**
 * get the category code of all aircraft.
 * @return a array of strings representing the category of the aircraft.
 */
 public String [] getAcsCodeSpec() throws RemoteException;

 /**
 * set the category code of the given aircraft.
 * @param indicatif the aircraft's flight ID.
 * @param newCodeSpec the new aircaft's category code.
 */
 public void setAcCodeSpec(String indicatif, String newCodeSpec)

throws RemoteException;

 /**
 * get all aircraft status.
 */
 public boolean [] getAcsStatus() throws RemoteException;

 /**
 * get the aircraft's waypoints labels.
 * @param indicatif the aircraft's flight ID.
 * @return an array of the aircraft's waypoints labels.
 */
 public String [] getAcRouteLabels(String indicatif)

throws RemoteException;

 /**
 * get the aircraft's waypoints.
 * @param indicatif the aircraft's flight ID.
 * @return an array of the aircraft route's waypoints.
 */
 public Point [] getAcRoutePoints(String indicatif)

throws RemoteException;

 /**
 * get the current route segment of the given aircraft.
 * @param indicatif the aircraft's flight ID.
 * @return an int representing the current segment.
 */
 public int getCurrentAcSegment(String indicatif) throws RemoteException;

 /**
 * get departure times of all aircarft.
 * @return an array of depature times.
 */
 public int [] getAcsDepTime() throws RemoteException;

 /**
 * get the departure time of the given aircraft.
 * @param indicatif the aircraft's flight ID.
 * @return a string representing the deaprture time of the aircraft.
 */
 public String getAcTime(String indicatif) throws RemoteException;

}

 97

package rmiserver

/**
 * class StudentServiceInterface is a remote service interface to keep track
 * of all activities in the Air Traffic Control Simulator.
 * @version $Id: StudentServiceInterface.java,v 1.1 2006/02/03 17:16:57$
 * @author Mounir Sidhom
 ***/
 import java.rmi.*;

 public interface StudentServiceInterface extends Remote {

 /**
 * get the student's identification string.
 * @param name the student's name.
 * @return a string representing the student ID.
 */
 public String getStudentID(String name) throws RemoteException;

 /**
 * get the student's nam.
 * @param studentID the student ID.
 * @return a string representing the student name.
 */
 public String getStudentName(String studentID) throws RemoteException;

 /**
 * get the time stamp of the student's connection.
 * @param studentID the student ID.
 * @return a string representing the time stamp of the connection.
 */
 public String getTimeStamp(String studentID) throws RemoteException;

 /**
 * insert the given event in the studens' database.
 * @param studentID the student ID.
 * @param event the given event.
 */
 public void insertEvent(String studentID, String event)

throws RemoteException;
 }

 98

THIS PAGE INTENTIONALLY LEFT BLANK

 99

APPENDIX C. SCENE AUTHORING INTERFACE (SAI)

The X3D Scene Authoring Interface (SAI) is an application programming

interface (API) for the Extensible 3D Graphics (X3D) scene graph. The SAI combines

the old external authoring interface and scripting interface (EAI) from the VRML97

specification and provides a single programming interface for either internal or external

programming. SAI scripts will work for Script nodes inside the scene, external applets

outside the scene in a Web page, Java and EcmaScript (i.e. JavaScript), and for language-

independent scripting via XML's Document Object Model (DOM) (Li & Yang, 2006).

By using SAI, applications are able to create instances of browsers and manage

the contents of the browser. External interactions form a separate code path from their

close relative the scripting interactions. The principle difference is that an external

interaction is not a direct part of the scene graph, where the scripting is. This component

contains all of the implementation work needed to provide external access to the scene

graph.

This thesis was first projected to use the SAI package to implement a 3D model of

the tower module. The process was eased by the use of Visx3D6 as a framework

application. First, a 3D model of Tunis-Carthage International Airport was developed.

Second, an early version of an aircraft 3D model7 developed by the author was inserted in

the airport (see Figure 38). However, this idea was discarded fro the following reasons:

- The SAI package is still in development phase, and changes in its implementation

are frequent which make its users uncertain about their software especially if it is

a large one like the air traffic control simulator.

- It is difficult to dynamically insert new 3D objects in an already running X3D

scene.

6 Web site is at www.vizx3d.com
7 Available at http://web.nps.navy.mil/~brutzman/Savage/AircraftFixedWing/C130-Hercules-Tunisia

 100

- The environment setting to use SAI is complicated and not yet standardized. It

requires many modifications to the application’s class path.

- The event delivery in SAI isn’t deterministic. Don Brutzman wrote “the precise

timing of event delivery (i.e. the event model) within X3D SAI scripts is no

longer deterministic within the time bounds of a single event cascade.”

(Brutzman, 2003).

Figure 39. 3D model of Tunis airport rendered by SAI

When SAI reaches maturity, it will be a valuable asset to implement 3D models,

such as the tower control module for the air traffic control simulator.

 101

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Tunisian Minister of Defense
Tunisian Ministry of Defense
Tunis, Tunisia

4. Arnie Buss
MOVES Institute
Monterey, California

5. Don McGregor
MOVES Institute
Monterey, California

6. Rudy Darken
MOVES Institute
Monterey, California

