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ABSTRACT 
 
 
 
Air Traffic Control (ATC) is a complicated domain in which many specialists 

should collaborate and communicate with each other in order to guarantee safe and 

efficient air traffic. A significant number of air traffic control errors are associated with 

either faulty coordination between ATC actors, or a failure of some kind of team 

coordination. These errors are likely to increase in the future as aircraft density increases. 

Many researchers suggest that the introduction of team and teamwork concepts during 

the training phase of the ATC actors will be in help to reduce the amount of these errors. 

 

 The objective of this research is to conceive, design, and implement a teamwork-

oriented Air Traffic Control simulator that can be easily installed and used in ATC 

schools. The product of this thesis will be a complete software package that allows 

trainees in the different ATC specialties to work together in the same manner as they do 

“on-the-job” in order to collaboratively manage an air traffic situation. This type of 

simulator should allow air traffic control trainees to acquire more robust coordination 

skills and reduce the amount of traffic control errors caused by lack of teamwork in 

actual ATC training situations. 
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I. INTRODUCTION 

Air Traffic Control (ATC) is a network of facilities whose purpose is to organize 

aircraft movements in airspaces in order to guarantee safe and efficient air traffic. ATC 

contains many kind of specialists (ATCS) commonly grouped in three main categories: 

tower, approach and en-route. To meet the required skills necessary to manage an ever-

increasing air traffic density, these specialists should be trained continuously. However, 

often the training method consists of using separate modules for each air traffic control 

category. The most critical deficiency of such training method is the lack of the concept 

of teamwork. 

 

According to some researchers, a significant number of air traffic control errors 

are associated with either faulty coordination between ATC specialists, faulty 

coordination between ATCSs and pilots, or a failure in some kind of team coordination. 

Much research emphasizes the importance of teamwork in ATC. Lintner and Buckles 

(Lintner & Buckles, 1992) found in their study that more than 30% of operational errors 

(violations of aircraft separation minima) are associated to some kind of communication 

deficiency between the ATC actors. In an analysis sponsored by the Federal Aviation 

Administration's Office of the Chief Scientific and Technical Advisor for Human Factors 

(Federal Aviation Administration [FAA], 2002), based on a sample of 386 Aviation 

Safety Report System (ASRS). The results of this analysis show that 90% of the errors 

are attributed to some category of communication errors. According to a study by Rogers 

and Nye, coordination between controllers was considered a causal factor in 15% of 

1,038 low to moderate severity operational errors from 1988-1991 (Bailey, Broach, 

Thompson, Enos, 1999). 

 

It is clear, from the examples shown above, that the lack of coordination between 

the different actors of the air traffic is a direct cause of a non-negligible number of 

incidents that could have grave consequences. Hence, the concept of team coordination 
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and teamwork are keys to a successful air traffic management. One obvious way to 

acquire the necessary teamwork skills is through On the Job Training (OJT). However, as 

stated by O’Hare and Roscoe (O’Hare & Roscoe, 1990),  the stress of live performance 

and the difficulty of providing immediate and accurate feedback makes OJT a less-than-

ideal learning environment.  

 

Recent advances in computation and communication technologies can be easily 

used to expand the options for a training design and methodologies in ATC by producing 

a simulated system that mimics the real working environment. Simulations can be 

developed with a great degree of realism and fidelity; hence, they can allow the OJT 

phase to be avoided or at least reduced. Even though ATC simulators are quickly 

expanding in number, they still suffer deficiencies, including lack of portability, 

incompleteness, and in general they are closed systems. In addition, the most accurate 

simulators require a high cost of production and maintenance, which may not be 

affordable for many countries.  Many developing countries are actually using different 

applications for their ATC trainees, and often these applications are either incompatible 

with each other or they do not allow exchange of data. In such conditions, it is difficult, if 

not impossible, to implement the concept of team work. 

 

The work in this thesis consists of designing and implementing a teamwork-

oriented air traffic control simulator that could be used in ATC schools. The goal is to 

allow different ATCSs to work together, in the same conditions as the job environment, 

in order to manage an air traffic situation in a collaborative way. A simulator like this 

should allow ATCSs to acquire further coordination skills, and hence, reduce the amount 

of air traffic faults due to a lack of teamwork in the actual ATC training system. 

 

A teamwork ATC simulator is a flexible training tool for both trainees and 

instructors. A simulator like this will help in obtaining a low cost solution that can 
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substitute buying simulators for each category of ATCSs. In addition, the main training 

advantages of this simulator could be summarized as:  

1. Decreasing the OJT time. 

2. Help to increase teamwork performance, and hence, reduce air traffic 

errors. 

3. Give insight into teamwork requirements for Air Traffic Control 

Simulators. 

 

This work is organized in six chapters, the first of which is this introduction. The 

second chapter reviews the most related works about the objective of this thesis. 

Particularly, it emphasizes the role of simulation in ATC and lists the most important 

drawbacks about some examined ATC simulators. The end of the chapter illustrates the 

importance of teamwork and its impact in the ATC activities.  The third chapter gives a 

general overview about the air traffic control domain, including some historical events 

and the most important concepts of ATC relevant for the scope of the thesis. Since a 

waterfall model will be adopted as the software development methodology of this work, 

this chapter is viewed as the acquisition phase of this model. The end of the chapter 

illustrates the different use cases of the ATC simulator. The fourth chapter is dedicated to 

the specification and the design phases of the project. It will examine the capabilities and 

constraints of the intended product. The fifth chapter contains the development phase of 

the simulator. During this chapter, the different technical aspects of the different modules 

constituting the developed software will be examined. The sixth chapter concludes this 

thesis by a summary of the most important benefits of this work. This chapter also 

illustrates some future steps of the produced simulator such as how it can be used to 

evaluate trainees, and how it can be used in a designed experiment to demonstrate 

training improvement.     
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II. BACKGROUND AND RELATED WORK 

With advances in computer graphics and simulation techniques, many private and 

governmental companies interested in Air Traffic Control (ATC) have produced very 

sophisticated ATC simulators. With today’s ATC simulators, air traffic control specialists 

have the opportunity to practice their skills in a simulated environment exactly as they 

would use a real environment (as in On-the-Job Training (OJT)). As Smolensky and Stein 

(Smolensky & Stein, 1998) mentioned, the simulated environment can offer samples of 

any desired density of simulated aircraft that can be “flown” and presented to the 

controller subjects using scenarios that have fully definable and experimentally controlled 

levels of complexity.  

 

This chapter is divided into three parts. The first part (the first two sections) 

discusses the relationship between the real ATC world and ATC simulators and gives 

some important aspects of simulation in ATC. The second part is a summary of some 

ATC simulators. Particularly, it illustrates some aspects of ATC simulators, giving their 

most important characteristics and their limitations. The third part is a collection of ideas 

and opinions about the importance of team and teamwork in ATC.  

 

A. SIMULATION IN ATC 
 

As stated in the introduction, ATC is an evolving domain with rules and 

technological mean that change continuously in order to achieve a better degree of safety 

and to optimize further airflow. Since training should be correlated to the real world, any 

changes in the real world rules, procedures, or technologies should have a direct impact 

in the way training is conducted. At the beginning of the ATC era, training was 

accomplished in two main phases. The first phase is an illustration of the theoretical 

concepts of the ATC in general and the specific concepts related to a given category of 

ATC. The second phase is based on the use of some models that represents a specific 

category of the ATC. For example, in the case of the tower control, often the model 
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consists of a room containing a tower-like shape, and small model of the airport with 

aircraft figurines with position that can be updated by the trainees themselves. As 

technology has increased, the figurines of the second phase have been replaced 

simulation models. Figure 1 shows how simulation is integrated into the ATC loop. 

Generally new concepts and rules in ATC (e.g., new international accords, flying rules, 

and human factor concepts) have a direct impact in how the real ATC will be conducted. 

At this point, simulation techniques could be useful as a means to represent, integrate, 

and test the new situation. Once a simulation is implemented and tested, it can be used as 

a training tool and allow controllers to acquire the required skills necessary for the real 

ATC. 

 

 
Figure 1. The ATC Loop 

 

 

B. BENEFITS OF SIMULATION IN ATC 
 

Recent revolutions in computer technologies have made it possible to simulate the 

ATC process with a level of realism that is far beyond what was envisioned even a few 
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years ago by the most vivid imaginations. It is now possible to present experienced 

controllers with simulated ATC scenarios that are virtually indistinguishable from the 

real world to which they are accustomed (Smolensky & Stein, 1998). The National 

Research Council expressed that simulation can be especially useful in support of 

investigating how multiple systems do or do not harmonize and of the impacts of new 

systems on teamwork (National Research Council, 1998). Many research studies have 

shown the benefits of ATC simulation as a training tool and as a studying environment 

especially for human behaviors and human factor issues in ATC. 

 

According to Smolensky and Stein there are at least three benefits using 

simulation in ATC. First, simulation is a cost-effective training solution. Today, even 

though commercial ATC simulators have a relatively high cost, they often reduce the 

training time and enhance the Time of Transfer (TOT). In addition, many companies 

offer a game-like ATC simulator that has a low cost, and these simulators can be useful at 

least in the pre-training or during the selection phases of ATC. Secondly, ATC simulation 

is a safe and a well-controlled environment to test, examine, or conduct evaluation 

studies of new air traffic operational concepts, new international navigation rules, new 

hardware or software used to automate some parts of the ATC, or simply to test an airport 

capacity. The third benefit of simulation in ATC is its capability to train the controller 

and/or controller team. Neophyte controllers can be given the chance to develop without 

any attendant fear of the potential hazards that could be the result of their inexperience if 

they were operating within the real world (Smolensky & Stein, 1998). The fourth benefit 

of ATC simulators is that they can be characterized with a high fidelity with respect to 

the real operational system. They can mimic most aspects of the real world in detail, 

provided that all components are well designed and implemented. This capability is very 

important since it can minimize or even eliminate the OJT phase.  

 

The ATC loop exposed in Figure 1 has another benefit. It can indirectly reduce 

the total air traffic cost if the different controllers are well trained and integrated in it. 

According to a document of the Federal Aviation Administration (FAA), the modern 
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transportation system is characterized by a large amount of congestion and delay. The 

FAA long range forecasts have projected nearly 50% growth in commercial aircraft 

operations (domestic and international carriers) between now and the year 2025. The U.S. 

Department of Transportation (DOT) stated that commercial aviation delays are 

estimated to cost airlines over $3 billion per year. Passengers are directly affected by 

missed flight connections, missed meetings, and loss of personal time.  There are 

approximately 20 congested airports, each averaging over 20,000 hours of flight delay 

per year (DOT, 2002). Obviously, reducing aviation time delay isn’t a matter of only air 

traffic controllers; it requires a conjoint effort from all aviation sectors. However, well-

trained air traffic controllers will significantly reduce the cost of air delay. In this case, 

simulation appears to be an ideal solution because it can generate any hypothetical traffic, 

and trainers will gain insight and skills to deal with such congested traffic. 

 

C. ATC SIMULATORS 
 

Today’s ATC simulators both governmental and commercial offer a myriad of 

options and settings, allowing coverage of the major parts of training requirements. First, 

it is possible to control the density of aircraft and their relative characteristics such as the 

speed and the flying level to meet the trainees’ needs. Secondly, in some cases it is 

possible to switch from one airport to another, which is helpful for the user to gain insight 

about a particular airport such as number of runways, type of communication devices, 

navigation facilities, and airport conditions (wind, visibility, etc.). Thirdly, most ATC 

simulators offer the possibility to introduce some unexpected events and abnormal 

aircraft conditions. Although such events have generally low frequency in a normal air 

situation, all ATC trainees should know their symptoms and how to handle them. These 

anomalies may include one or more of the following patterns: 

 

- Unexpected changes in weather conditions 

- Communication failure between controller and aircraft 

- Communication failure between controllers 
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- In-flight emergencies (such as aircraft hijack, communication failure, engine 

failure, or fire). These anomalies are generally signed out to the controller by 

a change of the aircraft Secondary Surveillance Radar (SSR) code. 

 

The various ATC simulators differ by the category or type of air traffic control 

they simulate (VFR, IFR, ILS, etc) as well as in their implementation method and 

technology. Table 1 gives a summary of the most important ATC categories and their 

possible implementation techniques.  

 

ATC simulator Visualization Implementation techniques 

Tower Control - 2D screen 

- 3D environment 

- cave technology 

-Virtual environment (VE) 

Approach Control - 2D screen 

En-route Control  - 2D screen 

- simple simulation 

- expert systems 

- agent based systems 

- neural network 

- voice recognition 

- blackboard systems 

 

Table 1. Common ATC Simulators’ Techniques 

 

Air traffic simulators also differ in costs and in the modes in which they operate. 

For example, some of them require a pseudo-pilot or a real pilot, and others require the 

installation of a voice recognition module to interpret the controller commands and 

provide an adequate response to these commands.  Even though the limitation of the 

operational modes can be overcome, the cost still remains a significant issue, especially 

for developing countries.  In an article of Canadian Business (McCleam, 2003), Matthew 

McCleam wrote, “Until recently, technology has not offered a viable solution. Previous 

simulators required human ‘pseudo-pilots’ to interact with trainees and fly the virtual 

aircraft according to their instructions. Three or more could be required to generate 

enough traffic for just one student, adding considerably to operating costs. Moreover, 

owing to a lack of processing power and crude video display technologies, the simulated 
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scenarios didn't even begin to look real. Add in a sticker price often in the millions of 

dollars, and it's no wonder few organizations could afford a single simulator, let alone 

deploy them at every facility”. To further understand the world of ATC simulators, the 

next paragraphs give some ideas about some commercial ATC versions of them. It will 

also be seen that price is one of the major drawbacks of commercial ATC simulators. 

 

1. The Tower Research Simulator 
 

In the domain of tower control simulators, The National Aerospace Laboratory 

NLR of the Netherlands operates a real-time Tower Research Simulator (TRS) for 

advanced research and development on airport control tower operations and systems 

under a variety of meteorological conditions. The TRS1 is capable of simulating Tower 

Control and Apron Control activities at airports under nearly realistic operational 

conditions, with air traffic controllers and pilots in the control loop. The outside visuals, 

provided with a projection screen of 13 by 4 m, supports daylight and nighttime 

situations, winter conditions including snow and a variety of meteorological phenomena. 

This simulator offers a multitude of features such as (NLR, 2006): 

 

- Validation of Surface Movement Guidance and Control Systems (SMGCS), 

including strategic and tactical support tools and associated controller 

procedures. 

- Validation of Human Machine Interfaces for controller working position 

design. 

- System integration studies on industrial SMGCS equipment, reducing 

implementation risk. 

- Studies of airport capacity, safety and efficiency under dense traffic and 

marginal visibility. 

- Testing and optimization of future tower procedures and airport 

infrastructures, including legislation and safety assessment. 

                                                 
1 http://www.nlr.nl/eCache/DEF/250.html, accessed date January 2006. 
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- Development and validation of ATM automation tools, including data link 

applications, by Collaborative Decision Making (CDM) and Gate-to-Gate 

operations. 

- Studies and training of airport emergency situations, including rescue 

operations. 

- Safety critical runway operations, for example taxiway/runway crossings with 

heavy traffic and low visibility. 

 

TRS is one of the most prominent tower simulators, and can be used as a training 

or research tool for testing controllers’ workload, tower team coordination, and airport 

capabilities. However, it is not clear that TRS can be used in full scale ATC teamwork 

training or analysis. Furthermore, no information is available about its technical aspects 

or financial terms. 

 

2. The Total Airspace and Airport Modeler (TAAM) 
 

Another commercial simulator widely used in ATC is the Total Airspace and 

Airport Modeler (TAAM)2. TAAM is developed by the Preston Aviation Solutions in 

Australia. TAAM was described by its company as a system that can simulate traffic at 

an extremely detailed level from the departure gate of one airport to the arrival gate of 

another airport in the same city or midway across the globe. The scale of simulation can 

vary, ranging from local to national to inter-continental. In one seamless application, 

TAAM can model an entire airside and airspace environment, taking into consideration 

gates, terminals, pushback, taxiways, runways, terminal airspace, en-route and oceanic 

airspace. However, Plaettner-Hochwarth, Zhao, and Robinson (2000) reported that one of 

the major drawbacks of this software is the price tag. In 1997 a single site license cost 

about $350,000. In addition to its high price, TAAM also lacks stochastic options and 

does not cover all ATM components. The rule set it uses is fixed and thus cannot be used 

for testing new ATM algorithms or concepts. Because of its complexity it requires 

                                                 
2 http://www.preston.net/Documents/taambrochure.pdf, accessed date January 2006. 
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substantial resources and training to set up (Plaettner-Hochwarth, Zhao & Robinson, 

2000). In a work dedicated to improve TAAM performances, Sood and Wieland wrote 

that conflict detection in TAAM has the slowest running algorithm compared to the other 

ATC simulator of the same category. It comprises almost 50% of the total run time. Also 

they mentioned that another TAAM bottleneck resides in the aircraft navigation 

algorithm (Sood & Wieland, 2003). 

 

3. SIMMOD 
 

SIMMOD is a discrete event based model developed by the Federal Aviation 

Administration (FAA). It can be categorized by its main feature as an airfield and 

terminal area airspace model. The personnal edition of SIMMOD is offered with an 

affordable price (around $6,000 plus additional basic annual support fee of $3,000 for a 

single user license). The professional edition, SIMMOD PRO, includes an advanced 

simulation engine that greatly expands the simulation capabilities and enhances the 

graphical user interface. SIMMOD PRO is offered with a price around $60.0003. 

SIMMOD is described by Aviation Test and Analysis Corporation4 (ATAC) as a system 

that was designed to "play out" airport and airspace operations within the computer and 

calculate the real-world consequences of potential operating conditions. It has the 

capability and flexibility to address a wide range of "what if" questions related to airport 

and airspace capacity, delay, and efficiency, including questions associated with: 

• Existing or proposed airport facilities (e.g., gates, taxiways, runways, 

pads)  

• Airport operating alternatives (e.g., taxi patterns, runway use, departure 

queuing)  

• Existing or proposed airspace structures (e.g., routes, procedures, sectors)  

• Air traffic management/control technologies, procedures, and policies  

                                                 
3 http://www.dlr.de/esug/meetings/25th/minutes.pdf. (page 7), accessed date January 2006. 
4 http://www.atac.com, accessed date January 2006. 
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• Aircraft separation standards parameters (e.g., weather, aircraft type, flight 

state)  

• Airline operations (e.g., flight schedule, banking, gate use and service 

times)  

• Current and future traffic demand (e.g., volume, aircraft mix, new aircraft 

types).  

The major drawback of this model is that it uses a node-link system on which all 

the aircraft move, as opposed to a 3D simulation like in TAAM (Plaettner-Hochwarth et 

al., 2000). Because of this implementation type, it is inflexible and cannot be used to 

simulate new concepts like free flight. 

 

4. Re-organized ATC Mathematical Simulator (RAMS) 
 

Another example of ATC simulator is the Re-organized ATC Mathematical 

Simulator (RAMS). RAMS is a fast-time, discrete-event computer simulation model 

developed and supported by the Model Development Group (MDV) at Eurocontrol, 

France. RAMS is distributed in many versions. The RAMS Plus is the most popular 

version. The vendor is currently licensing RAMS Plus as a community-supported tool. There 

is an initial licensing fee, and yearly continuing support fees which allow access to support 

and new releases/patches. In 2003 the price was $15,000 for a single-machine license, and 

includes the ATM Analyzer. Continuing support is currently priced at $5000 per year. In 

their work, Plaettner-Hochwarth and his companions described RAMS as a General 

purpose ATC modeling environment for en route and terminal airspace as well as 

controller workloads. They added, “Since this software is only available through 

Eurocontrol and since it uses a closed structure, its assumptions are basically unknown” 

(Plaettner-Hochwarth et al., 2000). 

 

In conclusion, the majority of ATC simulators generally offer good features such 

as the possibility to play training exercises according to the International Civil Aviation 

Organization (ICAO) standards, the possibility to record and playback the exercises, and 
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the possibility to develop new scenarios. However, the majority of ATC simulators 

present some drawbacks on one or more of the following categories: 

- Difficult to be adapted to new scenarios. 

- They are confined to a specific category of ATC. 

- Difficult to be used and maintained. 

- Not designed initially to support teamwork coordination. 

- Portability issues. 

- High prices. 

 

D. IMPORTANCE OF TEAMWORK IN ATC 

 
The idea that some kind of coordination or communication between the different 

ATC actors (controllers and pilots) is not a new concept. Attempts to develop 

international air traffic control (ATC) rules addressing language and pilots’ needs to 

communicate date back to 1922 (Ruiz, 2004). Nowadays, it is quite common when 

reading any book about air traffic control or surfing the net looking for articles related to 

safety and human factors issues in ATC, to discover that teamwork is an important factor 

in the success of the overall air traffic. It is also not hard to determine that the lack of 

training methodologies in it generally lead to the increase in the number of air incidents 

and errors. The following sections give an illustration of the work of some researchers in 

the domain of team and teamwork in ATC, and the statistical conclusions of their 

analyses. 

 

Serious studies about communication, coordination, and teamwork in ATC date 

back nearly two decades. Adams and Lynn conducted an analysis of operational errors 

between 1985 and 1988 and found that more than half of the errors were associated with 

either faulty communication between air traffic controllers or with faulty coordination 

between controllers and pilots (Smolensky & Stein, 1998). Almost in the same period, 

Lintner and Buckles (1992) concluded that the ATC system can not work correctly unless 

pilots and controllers can communicate effectively and understand each other (Ruiz, 

2004). 
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The FAA’s long range forecasts have projected nearly 50% growth in commercial 

aircraft operations (domestic and international carriers) between now and the year 2025. 

This will cause much preoccupation for all air traffic service providers as to how to meet 

the forecast demand. This problem and others were discussed during a workshop 

organized by the European Organization for the safety of Air Navigation in 1998. Prior to 

this meeting, the European Air Traffic Control Harmonization and Integration Program 

(EATCHIP) was charged to analyze this problem and suggest recommendations. The 

EATCHIP recognized that increasing capacity in European airspace while maintaining a 

high level of safety is not simply a technical solution but also should involves human 

factor concepts. EATCHIP concluded that ATS providers could produce some rapid and 

efficient results by taking into consideration the human resource issues, and teamwork is 

one of these issues (EUROCONTROL, 1998).  
  
The same conclusion and recommendation were also mentioned by Smolensky 

and Stein in their book where they mentioned that ATC is likely to benefit most from a 

coordination training intervention that is specifically tailored to enhance the teamwork 

skills incumbent in ATC tasks. They also added that without training on the specific 

coordination skills that constitute effective ATC team coordination, Air Traffic Control 

Specialists (ATCSs) are likely to develop coordination patterns that are less than optimal 

(Smolensky & Stein, 1998).  

Controllers themselves are aware of the importance of teamwork and coordination 

skills in ATC. In 2001, D’Arcy and Della Rocco conducted a survey study with the 

participation of 103 ATCSs. In their executive summary, they mentioned that many 

participants' reports emphasized the collective nature of ATC. In particular, the 

participants declared that controllers must coordinate their actions and plans with many 

other actors, such as pilots and controllers working with and around them. Also, their 

results suggest that controller situation awareness generally includes knowledge of the 

skills and preferences of the other controllers. The importance of teamwork was also 

emphasized when participants reported fighting boredom by watching other sectors and 
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protecting other controllers. Helping without a specific request corresponds to the highest 

level of team coordination (D’Arcy & Della Rocco, 2001).  

E. ATC AS A BIG TEAM 

All the examples shown in the previous section emphasized how important 

teamwork is in ATC. This appears somewhat obvious since air traffic controllers are not 

alone in their daily routine, but each of them is a critical element of a big chain 

representing the ATC Team. Each of them makes decisions based on the situation of 

other team members. This fact can help immensely to compensate for differences in 

performance between the team members; hence teamwork skills lead to a more efficient 

and safer management of the air situation. 

One safe and efficient way to acquire teamwork skills in ATC can be achieved 

through the use of ATC simulators. Stimulating teamwork via ATC simulators has many 

benefits. The most important of them is the reduction or even the elimination of the OJT 

phase of the ATC training cycle.  

 

F. CONCLUSION 
 

In this chapter, it was shown that team and teamwork are important concepts in 

air traffic control. These concepts can be easily embedded in a simulation-based ATC 

training system. Unfortunately, existing simulators have some limitations, and none of 

them is teamwork-oriented. 
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III. GENERAL ISSUES AND USE CASES OF AIR TRAFFIC 
CONTROL 

 

A. INTRODUCTION 
 

Air Traffic Control (ATC) is a set of rules and facilities having roots that extend 

to the first decade of the last century. Today, ATC is a huge domain headed by the 

International Civilian Aeronautical Organization (ICAO) and it is represented in each 

country by a local organization. ACT contains many specialists to cover the control of the 

airspace at any time and in any circumstance. Among these specialists, there are three 

categories of interest: the tower, approach, and en-route specialists. The description of 

these specialists and the aspect of their tasks will be explained in section D below. 

However, first a brief history of the ATC will be presented. The objective of this history 

is to give an idea in how the ATC evolved form the first decades of the last century until 

the present. It will also help by defining and understanding some concepts in the 

requirement phase of this work. It is not a complete story; however, it cites the most 

important milestones and events having a great influence in today’s ATC situation. Next, 

the different parts and rules of ATC will be explained. The end of this chapter will be 

dedicated to use cases of the projected simulator.     
 

B. A BRIEF HISTORY OF AIR TRAFFIC CONTROL 

 

When the Wright brothers made their brief successful flight, nobody thought that 

the aviation domain would become one of the world’s most powerful “team” with 

millions and millions of dependents and aircraft. Furthermore, everyone thought that the 

sky was so vast there was little or no risk for one aircraft to collide with another. 

However, this belief was short-lived. Only seven years after the Wright’s experiment, 

many countries realized the necessity to regulate the aviation domain by introducing 

some navigation rules and some ground facilities to guide pilots from their departure to 
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their destination location in a safe and efficient way. This necessity becomes more urgent 

after four mid-air collisions in 1910 and six in 1912 (National Air Traffic Service, 2005). 

As a consequence of all these events and the increasing use of the shared airspace, 

especially in Europe where the density of industrialized countries is high and the shared 

airspace is relatively small, the International Commission for Air Navigation (ICAN) was 

created in Paris in 1919. Among the main purposes of ICAN were the establishment of 

uniform rules and standards for aircraft registration and identification, personnel 

licensing, maps and charts, and most importantly, for the ATC domain, establishing rules 

and giving solutions for air and flying procedures. 

 

The first reported solution to control air navigation was a very simple one, 

consisting of some arrows drawn on the ground to help pilots correct their direction. In 

addition, flights were restricted to daytime operation with good weather conditions and 

sufficient visibility. In these cases, given the technological level of  the aircraft (limited 

speed and altitude), the pilot was generally able to distinguish the relevant landmarks 

(such as big plants, roads, railway lines, and rivers), and it was fairly straightforward for 

him to successfully guide his plane from one point to another. In such low density air 

traffic, the only limitations on safe flight, excluding mechanical problems,   were bad 

weather or darkness. A first important step to reduce these limitations was the use of 

simple ground signaling lamps to communicate to the pilot information such as the limit 

of the runway, the landing direction, and permission of takeoff or landing. The lamp-

based signaling solution was a significant milestone in the world of ATC, and it still is 

used in all regulated airports around the world. Even though today a pilot can navigate 

without the necessity of looking outside his or her cockpit, the signaling system remains 

the ultimate backup system in case of communication device failure or a total electricity 

blackout. 

 

The next step in the advance of ATC was the use of the electromagnetic waves. 

These waves can carry much information by changing one or more of their characteristics 

such as the frequency, the phase, or the amplitude. This concept was first proved by 
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Marconi on December 1894, and was successively used as an ATC facility in the 1930’s 

when Marconi Company first installed a single-channel radio at Croydon, UK (Aviation 

Sri Lanka, 2005). Although the main purpose of this radio communication was not to 

serve the ATC, it turned out that it is indeed an efficient solution to regulate air traffic. In 

fact, it was easy for pilots, with this new facility, to communicate precious information 

such as position, estimated arrival time, weather conditions, and any other information 

relevant for the flight safety. 

 

Another important milestone was the invention of the radar, which not only made 

it possible for the pilot to know his position, but for Air Traffic Controllers also to know 

the aircraft's position as well. It is clear that, especially to prevent air-crashes, this was a 

very important invention. Although the radar was invented in 1922 by Marconi, it took 

many years before it became an essential hardware piece in the Air Traffic Control. It 

was only after the Second World War that the radar and other communication devices 

were made available to the civil aviation for air traffic regulation and management.  The 

international flight rules and regulations were further finalized in 1947 after the 

establishment of the ICAO. After that date the sky became a regulated space with well 

defined airways, Flight Instruction Regions (FIR), and many other rules to facilitate 

navigation and air control. 

 

Nowadays, the ATC contains a complicated set of communication, detection, and 

visualization equipments making it a highly automated domain. However this automation 

does not come for free. It requires a large amount of knowledge and practice from the 

specialists of ATC, and often automation implies the introduction of new skills, and new 

training methodologies, as explained in the paragraph “ATC simulator.” 

 

C. AIR TRAFFIC CONTROL 

 

After this brief history of ATC, the next logical step is to present the basic ideas 

about air traffic control activities. Since the aim of this thesis is to develop simulation 

software that can be used in ATC training phases with emphasis on the concept of 
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teamwork, the following paragraphs describing the different categories of ATC that can 

be retained as part of the requirement and specification phases of the software. The 

overall development of the simulator will follow the waterfall model. Requirement and 

specification are the first two steps of this model. This model was preferred to other 

approaches (prototype, spiral, extreme programming, etc) because of its simplicity as 

well as ease of understanding and implementation. In addition, the waterfall model forces 

a verification activity in between each two adjacent steps which guaranties a high degree 

of fidelity and robustness to the final software. 

 

Air Traffic Control (ATC) is the organization of aircraft movements in airspace, 

including methods and procedures used to manage and safeguard air traffic. Since air 

traffic is shared by all countries in the world, it is obvious that flight rules and 

organization should be standardized in some way so all the pilots in the world follow the 

same procedures independently of the country or the region in which they are flying. The 

International Civil Aviation Organization (ICAO), mentioned earlier, is the official 

worldwide center responsible for this standardization. In addition, within each country, 

there is an organization that works in collaboration with the ICAO to produce the 

necessary air documents and specific rules for that country. In the United States, for 

example, that organization is the Federal Aviation Administration (FAA). 

 

The actors in ATC (which will be described in detail in paragraph D) are the crew 

of the aircraft and the different air controllers. ATC is a collaborative domain and it is 

based on the cooperation between the crew and the specific air traffic controller. An 

essential part of it is the exchange of communication and data. The objectives of ATC 

can be summarized as following: 

- Maintaining in any circumstance a reasonable separation between all aircraft 

in a given air domain. 

- Preventing collision between aircraft. 

- Preventing aircraft from crashing into obstacles on the operating ground of the 

controlled domain. 
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- Maintaining a reasonable and orderly air traffic flow. 

There are three main interdependent cooperative activities or areas of responsibilities 

in ATC. Each area is operated by a set of controller category and has a set of specific 

rules. These areas (shown in Figure 2) are: 

- Tower control Area. 

- Approach or Terminal Radar Control (TRACON) area. 

- En-route Area. 

The next three paragraphs give the most important characteristics of each area, 

such as its specific definition, and the some of its rules.  

 

   

Figure 2. The Different Categories of Air Traffic Control 
 

1. Tower Control 

 

Tower control is the set of activities and procedure to control any movement 

(ground vehicles or flying objects) within the area of the airport. This area includes the 

airport itself and the surrounding space. It is generally defined as an airspace volume with 

a radius of 2 to 30 miles and a height of 1,500 to 2,000 feet centered in the airport. The 

main facility for the tower control is the control tower from which the tower control 
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specialists conduct their control activities. Control towers are typically higher than other 

structures at the airport in order to give air traffic controllers a view of aircraft moving 

about on the ground and in the air around the airport. They usually have windows that 

circle the entire top floor, giving 360 degrees of viewable area. Larger airports usually 

have space for several controllers to work and operate 24 hours a day, 365 days a year. 

Small airports may have only one person staffing the control tower, and may not even 

keep the tower open 24 hours per day. Control Towers usually contain the following 

equipment: 

- Communication devices allowing internal (between controllers) and external 

(with the aircraft crew) communications. 

- A light gun for signaling certain events to aircraft crew in the event of a radio 

failure. 

- One or more radar systems that controllers use to track aircraft. 

- A land-line telephone or possibly even a direct line to fire and ambulance 

services.  

Airport Tower Controllers regulate a specific airport's traffic.  They use two-way 

radios to give pilots permission to take off and land.  They also direct ground traffic, 

which includes taxiing aircraft, vehicles, and airport workers. Outside the Tower Control 

area aircraft is subject to either Approach or En-route Control. There are several 

categories of ATCS in the tower including:  

- Flight Data Controller 

- Clearance Delivery Controller 

- Ground Controller 

- Local Controller 

Later, in the user case analysis, more details about different ATCSs, their tasks, 

and their needs will be given. 
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2. Approach/TRACON Control 
 

In ATC, often Approach Control is used interchangeably with TRACON, an 

acronym for for Terminal Radar Approach Control. Approach Control is usually located 

within the vicinity of a large airport (a tower control with the coordination with en-route 

control is sufficient for a small airport with very low traffic). Typically, the TRACON 

controls aircraft within an airspace defined by a radius of 30-50 nautical miles (56 to 93 

km) from the center of the airport, and a height between the surface and 10,000 feet 

above the airport. Approach Control is responsible for providing all ATC services within 

the above airspace. Generally, there are four types of traffic flows controlled by 

TRACON controllers (Wikipedia, 2005). These are departures, arrivals, overflights, and 

aircraft operating under Visual Flight Rules (VFR) or Flight Instrument Rules (IFR). The 

following paragraphs give some clarifications about these categories of air control. 

 

a. Departure Aircraft 
 

Departure aircraft are handed off from the tower to the TRACON when 

they are between 1,000 feet to 2,000 feet high, climbing to a pre-determined altitude. The 

TRACON controller working this traffic is responsible for clearing all other TRACON 

traffic and, based on the route of flight, placing the departing aircraft on a track and in a 

geographical location (sometimes referred to as a "gate") that is pre-determined through 

agreements for the en-route center controller. This positioning is designed to allow the 

en-route center to integrate the aircraft into its traffic flow easily. 

 

b. Arrival Aircraft 
 

Arrival aircraft are handed off from the en-route center in compliance with 

pre-determined agreements on routing, altitude, speed, spacing, etc. to the TRACON 

center. The TRACON controller working this traffic will take control of the aircraft and 
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handle it with other aircraft entering the TRACON from other areas or "gates" into a 

single file or final for the runway. This spacing is critical to ensure the aircraft can land 

and clear the runway prior to the next aircraft touching down on the runway. The tower 

may also request expanded spacing between aircraft to allow aircraft to depart or to cross 

the runway in use.   

 

c. Over-flight Aircraft 
 

Over-flight aircraft are aircraft that enter the TRACON airspace at one 

point and exit the airspace at another without landing at an airport. They must be 

controlled in a manner that ensures they remain separated from the climbing and 

descending traffic that is moving in and out of the airport. Their route may be altered to 

ensure this is possible. When they are returned to the en-route center, they must be on the 

original routing unless a change has been coordinated.   

 

d. VFR Aircraft 
 

VFR or Visual Flight Rules are a set of aviation regulations under which a 

pilot may operate an aircraft, providing weather conditions are sufficient to allow the 

pilot to visually control the aircraft's attitude, navigate, and maintain separation with 

obstacles such as terrain and other aircraft. Pilots flying VFR aircraft assume 

responsibility for their separation from all other aircraft (IFR & VFR) and do not have set 

routes and altitudes. They fly on their own using a "see and be seen" separation criteria. 

In certain airspaces, VFR aircraft are required to have a transponder. This amplifies the 

radar signal, as well as broadcasting altitude level and SSR code, and is used to allow 

controllers to warn IFR aircraft of any potential conflict. Governing agencies establish 

strict VFR "weather minima" for visibility, distance from clouds, and altitude to ensure 

that VFR pilots can see far enough. 
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VFR pilots can request, and ATC can elect to provide "VFR Advisory 

Services" if traffic permits. In this environment, the controllers will use radar to identify 

the VFR aircraft and provide traffic information and weather advisory services for the 

VFR pilot. Controllers do not provide any instructions concerning direction of flight, 

altitude, or speed to the VFR pilot receiving advisory services, and they do not provide 

separation services. This is an optional service and may be discontinued by ATC or the 

pilot at any time. It is important to mention that VFR rules are different among countries, 

but, in any case, pilots should have a VFR certificate to be eligible for VFR flight. 

 

e. IFR Aircraft 
 

Pilots flying under IFR must file a flight plan with ATC and accept any 

revisions ATC requests to their route or altitude. In return, controllers ensure that pilots 

flying IFR are separated from all other IFR aircraft and terrain by the appropriate 

minimum separation. The IFR pilot, however, must maintain a close watch for VFR 

aircraft since ATC has no control over these aircraft. For this reason, VFR aircraft are 

restricted to altitudes below 18,000 ft. and must have an operating transponder in 

congested airspace. Once an IFR aircraft is above 18,000 ft (FL 180) the aircraft is 

considered in "Positive Control Airspace" where only IFR aircraft are allowed. 

 

3. En-route Control 
 

En-route Control is exercised when the aircraft leaves the TRACON volume and 

reaches its cruising speed and altitude. En-route Air Traffic Controllers issue clearances 

and instructions to any aircraft as needed, and pilots are required to comply with these 

instructions. Controllers adhere to a set of separation standards that define the minimum 

distance allowed between aircraft; these distances vary depending on the equipment and 

procedures used in providing ATC services. 
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En-route air traffic controllers work in facilities called Area Control Centers 

(ACCs). Each ACC is responsible for many thousands of square miles of airspace known 

as the Flight Information Region (FIR). ACCs are responsible for climbing the aircraft to 

their requested altitude while, at the same time, ensuring that all aircraft are properly 

separated from each other at all time.  Additionally, the aircraft must be placed in a flow 

consistent with the aircraft's route of flight.  This effort is complicated by cross traffic, 

severe weather, special missions that require large airspace allocations, and traffic 

density. As an aircraft reaches the boundary of an ACC control area it is "handed-off" to 

the next Area Control Center.  This "hand-off" process is simply a transfer of 

identification between controllers so that air traffic control services can be provided in a 

seamless manner.  Once the "hand-off" is complete, the aircraft is given a frequency 

change and begins talking to the next controller.   

 
D. USE CASES OF AIR TRAFFIC CONTROL SIMULATOR 

 

The use cases technique provides a simple and efficient way to begin many 

software projects. It quickly gives an overview of the intended product by the mean of 

simple diagrams called use cases diagrams. These diagrams are not only very simple, but 

are also an efficient and effective means of communicating with users and other 

stakeholders about the system and what it is intended to do (Bennett, Skelton & Lunn, 

2001). The use cases presented in this section can also be used as the basis of the 

specification and design phases of the project (Chapter IV).  

 

As stated in Chapter I, the air traffic control environment contains many users 

who work together in order to maintain a safe and efficient air situation; that is, all 

aircraft in the area of interest should accomplish their flight plan while avoiding any 

conflict with other traffic that may endanger their safety. Moreover air traffic control 

should also take into consideration some other parameters to enhance the quality of the 

air traffic management system by avoiding unnecessary actions that can cause flight 

delay (each flight delay will cause the company owning the aircraft a large loss of 
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money), and by keeping a high degree of fluidity in the air traffic and all the other 

servitude and safety equipment in the airport. 

  

Air traffic control is a heterogeneous environment that contains many specialists 

or actors. Table 1 gives a detailed list of these specialists. However, for the purposes of 

this thesis, and since many of these specialists are using almost the same working 

environment, it is better to treat them as groups or categories of specialists. This 

simplification will help to focus more in the design of the simulator, and gain a high level 

view of the environment to be simulated. This decision was also made because not all the 

air traffic control specialists illustrated in Table 2 require a specific computer 

environment to carry out their specific tasks. In fact, many ATCS are executing many of 

their tasks manually or they are using a common software tool to facilitate their decision 

and job requirements. As consequence, and for the purposes of this thesis, only four 

modules were designed and implemented (see the first column of Table 2): Tower 

Control (TC), Approach Control (AC), En-route Control (EC), and Pilot Interface (PI). 

One additional module will be added for the instructor. Although the simulator developed 

in this thesis runs only for the four actors mentioned earlier, the instructor module is very 

important since it helps the instructor control the progress of his or her students and 

customize the simulation exercises in a way that best fits the trainees’ needs. The 

following sections give a summary of all actors of the simulator. This information will be 

the base of the requirement phase of this project, and they are presented as use case 

diagrams.  

   
ATCS 

Category 

Specialist Responsibilities Type of tasks & 

equipments 

Clearance Delivery 

Controller (CDC) 

- issue IFR or VFR clearances 

- direct the initial aircraft 

movement 

- cooperate with GC 

- elaborate the initial flight strips 

- manual (Strips) 

- communication devices 

- computer software 

Tower Control 

Ground Controller 

(GC) 

- control all movement in the 

airport 

- manual (Strips) 

- communication devices 
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- position aircraft in the correct 

runway 

-clear runway for arrival 

- computer software 

Local Controller 

(LC) 

- establish a correct sequence of 

aircraft flow (landing, takeoff) 

- collaborate with GC to clear 

runway for approaching traffic 

- respect aircraft timing 

- managing the flight strips 

- manual (Strips) 

- communication devices 

- computer software 

Flight Data 

Controller (FDC) 

- communicate all flight plans 

- insure links with other ATCS 

- keeps record of flight strips 

same as above 

Radar Controller - maintain at every moment an 

adequate aircraft separation 

- assign approach sequences. 

- decides the departure route for 

every aircraft 

same as above 

Approach 

Control 

Supervisor - monitor the activities of all 

approach control specialists 

- solve communication problems 

- acts as backup controller 

- makes decisions regarding some 

crucial air situations 

no special equipments 

FIR Controller (FC) - maintain safe aircraft separation 

- updates and keeps record of flight 

strips 

- manual (Strips) 

- communication devices 

- computer software 

En-route 

Control 

Air Space Controller - supervise all activities in the 

national airspace 

- identify every aircraft in the 

national airspace 

- gives alert and pursuit instruction 

about any non-identified flight 

- manual (Strips) 

- communication devices 

- computer software 

 

Table 2. Main ATC specialist Categories and their Tasks 
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1. Tower Controller Use Cases 
 

The role of a Tower Controller (TC) is to watch over all plane movement in the 

airport’s airspace. This includes all ground traffic (aircrafts and other airport vehicles) in 

the proper airport space, and all aircraft traffic during their final approach. The main 

responsibility of a TC is to organize the flow of aircraft into and out of the airport. Their 

tasks are highly related on the field of view from their position in the tower, and on the 

general traffic situation visualized in a radar screen. A tower controller should closely 

monitor each plane in the airport and in the final approach area to ensure a safe distance 

between all aircraft, give clearances for landing and takeoff, give directions to the pilots 

for any movement of the aircraft between the airport facilities (boarding are, hangar, 

maintenance area, etc...). The TC is also responsible for directing any other vehicle traffic 

within the airport area (such as boarding bridges, baggage tractors, baggage loaders, 

aircraft tractors, fuel trucks, etc.). Finally, the TC should keep pilots informed about 

changes in weather conditions such as wind shear (a sudden change in the velocity or 

direction of the wind that can cause the pilot to lose control of the aircraft), and other 

weather parameters such as the visibility, local atmospheric pressure, and clouds. The use 

cases of the TC are given in Figure 3. 

 

 
Figure 3. Tower Controller Use Cases 
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2. Approach Controller Use Cases 
   

Aircraft are handed-off to the approach/TRACON controller either from the tower 

controller or from the en-route controller. To accomplish his or her tasks, the approach 

controller should have a graphical interface depicting a radar scope and different kind of 

communication systems. When it is appropriate, AC communicates with any aircraft 

ordering a change in aircraft parameter (altitude, speed, or heading). Figure 4 illustrates 

the use cases of the approach controller. 

 

 
Figure 4. Approach Controller Use Cases  
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other FIR in order to maintain a safe situation at all times. Figure 5 gives the use cases of 

the en-route controller. 
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Figure 5. En-route Controller Use Cases 

 

4. Pilot Use Cases 
 

In most simulators, the pilot’s part is generally a pseudo-pilot or voice-recognition 

based pilot. In other terms, the pilot appears as a passive actor. In this project the pilot is 

an active part in the simulation, which make the overall simulation more realistic and the 

concept of team and teamwork more concrete. 

  

 
Figure 6. Pilot Use Cases 
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A modern aircraft cockpit has many instruments that aid the pilot in overall 

situational awareness of the aircraft and the airspace around it. However, since the scope 

of this thesis is to provide a synthetic environment that helps emphasis the teamwork 

concept, a completely realistic model of the cockpit is not be represented, instead there is 

a simplified model of the cockpit displays that best fits the requirement of the pilot’s 

functionality and the teamwork capabilities.  This interface will presents the aircraft’s 

most important navigational instruments such as the altimeter, the speedometer, the 

heading indicator, and other flight parameters. In addition, the display will contain any 

necessary controls to execute any controller order. Figure 6 gives the use cases of the 

pilot in the simulator.  

 

 

5. Instructor Use Cases 
 

The instructor is the controller of the simulation exercise and oversees each 

student’s progress. For these purposes he or she utilizes of a complete set of tools 

allowing him or her to follow all the simulation events. Figure 8 gives the use cases of the 

instructor. 

                         

 
Figure 7. Instructor Use Cases 
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The main activities that the instructor requires from the system are shown in the 

use case diagram of Figure 7. Particularly, the instructor should be able to choose or 

modify any simulation exercise, have access to the simulation events as they are 

occurring, and to consult each student’s progress database. 

 

E. CONCLUSION 
 

In this chapter, many concepts related to the air traffic domain have been 

illustrated. It was also shown that a complete air traffic control simulator contains five 

main categories of actors which are: 

- tower control 

- approach control 

- en-route control 

- pilot 

- instructor 

These concepts along with the definition and the use cases of each actor of air 

traffic control constitute the requirement of the simulation. 
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 IV.  SYSTEM SPECIFICATION AND DESIGN 

A. INTRODUCTION 
 

In Chapter III, it was mentioned that a waterfall model (Figure 8) will be followed 

to develop the Teamwork Air Traffic Control Simulator (TATCS). The most important 

points of the requirement phase of this project have already been illustrated in the 

previous chapter. In this chapter we will continue defining and exploring the next step of 

the waterfall life cycle model which is called the specification phase. The specification 

phase constitutes a formal document that explicitly describes the functionality of the 

product, that is, precisely what the product is supposed to do along with any constraints 

that the product must satisfy. As can be inferred, the specification is an important phase 

in the sense that it constitutes a contract between the developer and the client or the 

intended user. This is why it should be accomplished with precision by exploring in depth 

what was mentioned in the requirement phase.  

 

After completely specifying the different parts of the product, the next step will be 

the design phase. The design phase is a technical description of the specification. In other 

words, it describes how the product should be implemented to ensure the functionalities 

of the whole software. The design phase begins with the determination of the internal 

structure of the product which is a set of modules connected with each other. It is 

important in this phase to precisely specify the modules’ interfaces, that is, the arguments 

passed to each module and the arguments returned by each one (Schach, 2002). This will 

help to gain insight about the whole project and help detect some design errors in the 

earliest steps of the software development life cycle. When an error is detected at this 

level it will not propagate to the other phases where any error correction becomes 

difficult and time consuming. 
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Figure 8. The Waterfall Life Cycle Model 
 

B. SPECIFICATION 

 

1. Specification for the Approach Part 
 

Before going in depth of the approach specification, it is important to clarify two 

issues. First, the term approach control is used interchangeably with the term Terminal 

Radar Control (TRACON). This is because the controllers use local radar to control the 

terminal phase of the flight. Second, no distinction will be made between the simulator 

(as a software) used by the controller in the after takeoff, pre-landing phase, and in 

between the space in which the aircraft reaches its cruising speed and altitude. This is 

Requirements 
phase 

Verification 

Specification 
phase 

Verification 

Design phase 

Verification 

Implementation 
phase 

Testing 

Integration phase 

Testing 

Maintenance 
phase 

Changed 
 

Verification 

Retirement 

Development 

Maintenance 



 37

because the different controllers working in these phases usually use the same computer 

tools. Hence this thesis will specify only one simulation module for all these specialists. 

 

The approach part used in the TATCS is a software module capable of visualizing 

simulated air traffic in the vicinity of the airport. The vicinity of the airport can be 

defined as a cylindrical volume around the central point of the airport. This volume may 

have different specification according to the airport location and constraints. However, 

for the purpose of this thesis  it will be about 30 nautical mile (56 km) radius from the 

center of the airport and the height will be about 10,000 ft (about 3,050 m) from the 

surface of the airport. 

 

 
Figure 9. Typical PSR output 
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parameters such as the illuminated object’s size, shape and material. The main output of 

the PSR is a spot representing the illuminated object which will be placed in the screen 

according to its distance and azimuth with respect to the center of the radar. Figure 9 

shows a typical PSR output. The Primary radar is capable of detecting small or large 

aircraft, ULM, clouds, as well as passing birds and other non-desired objects. However, 

in this application, the PSR is supposed detecting only the aircraft of engaged in the 

simulation. 

 

As can be seen, the PSR does not provide all the information needed by the ATC 

specialists in order to handle the air traffic situation such as the indicative, the altitude, 

the speed and other information regarding each aircraft. This can be done using the 

secondary radar or Secondary Surveillance Radar (SSR). The SSR is an antenna attached 

to the PSR that emits a special signal called interrogation signal to any illuminated object 

by the PSR. If the illuminated object is equipped by a special device called 

“Transponder”, a special signal called “Response” will be sent from the transponder to 

the SSR. Once these responses are picked up by the secondary radar antennas they will be 

analyzed and processed electronically to be displayed on the screens of the air traffic 

controllers. The data displayed for the secondary surveillance radar includes the 

following information regarding the aircraft (see Figure 10): 

- The flight ID 

- The aircraft registration or the SSR code 

- The aircraft flight level (FL) 

- Aircraft’s speed 

- Aircraft’s position 

Another fundamental part in the approach module is the map in which the air 

situation is evolving. The map is important because it gives immediate visual cues about 

the position of all aircraft and the relative positions between aircrafts or between an 

aircraft and a landmark. There are a number of ways in which a map may be integrated 

into a TRACON application.  
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Figure 10. Typical SSR output 
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independent categories. Each category, or layer, can be represented independently with 

its own appearance and can be stored within a data structure. In this way the user can add 

or change the properties of a layer whenever he or she needs without compromising the 

entire application performance. In addition, any scaling operation will be easy to 

implement without a sophisticated, heavy algorithm; it simply requires a multiplication 

with a scaling factor and a simple translation whenever the origin of the map is changed. 

 

These layers can be easily represented using an XML (Extensible Markup 

Language) representation. XML is an industry-standard, system-independent way of 

representing data. The most important capability in XML resides in its portability, which 

allows data to be shared between different applications with little effort. All that is 

needed is an XML parser on the client side to correctly read the desired data file. Hence 

the map layers can be reused without much complication in any other application. 

 

In conclusion, the specification phase of the approach module is the realization of 

a user-friendly interface that allows the controller the best view of the air traffic during 

the approach or takeoff phases. The following are the most important capabilities and 

characteristics of the approach module: 

- A layered air traffic map of a desired approach area is depicted allowing the 

controller to see all sets of operations that are normally executed in any electronic 

map. These operations include, but are not limited to, the following commands: 

 scaling the map (zoom in, zoom out) 

 navigation 

 distance measurement 

 hiding or visualizing any map layer 

 personalized layers (by changing its appearance) 

- Visualizing the air traffic data of the primary radar. 

- Visualizing the air traffic data of the secondary radar. 

- Changing the position of each aircraft SSR data in order to get a better visual 

situation of the air traffic. 
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- Refreshing the screen according to the radar revolution. 

- Rapid access to the weather data in the approach zone. 

 

2. Specification for the En-route Part 
 

En-route ATC is a facility established to provide air traffic control service to 

aircraft operating on IFR flight plans within controlled airspace. This includes all traffic 

of class A (flying altitude is above FL 18 and FL 600) as well as Jet flight level (from FL 

18 to FL 450). The en-route control and certain advisory or assistance services can be 

extended to VFR flights when equipment capabilities and controller workload permit. 

 

An aircraft flying from point A to point B generally follows a well pre-established 

route defined in its flight plan. Each route can be viewed as a set of flight segments. The 

en-route control begins just after the airplane reaches the end of its takeoff phase and 

starts following its first route segment. The TRACON controller notifies the en-route 

controller of this event, who will then take care of that particular flight.  

 

En-route controllers work in teams of up to three members. Depending on how 

heavy traffic is, each team is responsible for a section of the center’s airspace. One team, 

for example, might be responsible for all planes that are between 30 and 100 miles north 

of an airport and flying at an altitude between 6,000 and 18,000 feet. These teams should 

collaborate with each other in order to guaranty a safe flight and good flying conditions 

for all aircraft under their control. In order to accomplish their task, en-route controllers 

utilize a highly sophisticated computerized radar system allowing them a complete view 

of the air situation. In addition, they maintain a two-way radio communication with 

aircraft in their controlling sector.  These are the main devices used by the en-route 

controllers to ensure an adequate air separation between aircrafts at all times. Air 

separation for en-route controller is shown in Figure 11 below, in which the lateral 

separation is always 5 NM, and the vertical separation depends on the altitude of the 

aircraft. For aircraft below the FL 29, the vertical separation is 1,000 ft, and it is 2,000 ft 

for those flying above the FL 29 (Air Traffic Management System, 2005). 
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Figure 11. Aircraft separation in en-route control 

The controllers can accomplish this separation by issuing instructions to the pilots 

of the aircraft involved. Altitude assignments, speed adjustments, and radar vectors are 

examples of instructions that might be issued to aircraft. 

In conclusion, the en-route specification is another version of the TRACON 

specification with some additional capabilities. These capabilities include the possibility 

for the controller to obtain a large view of the air space with the possibility to query in 

real time the planned route for each airplane. In addition, the controller will have the 

possibility to visualize some other information on the map such as the Area of Minimum 

Altitude (AMA), the Flight Information Region (FIR) and all established routes in it with 

their respective entry point. 

Sea Level

5 NM 

10
00

 ft
 

10
00

 ft
 

5 NM 

20
00

 ft
 

20
00

 ft
 

A
lti

tu
de

 

29,000 ft



 43

3. Tower Control Specification 
  

The tower control is the part of the entire application dedicated to the ATCSs 

responsible for the ground and tower control. Even though there are many air traffic 

control specialists operating as airport controllers, no distinction between them will be 

made in realizing the tower control software. This is because the application can be used 

by any controller in the tower regardless his or her specific task. In addition, the main 

objective of this thesis is not to create applications for any specific air traffic controller, 

but to create a global application environment that allows all ATCSs to deal with the 

same air situation in order to increase the concept of teamwork among them.  

 

In the application, the tower control part is a software module that can be 

integrated with the rest of the ATC modules, and can be operated by the tower control 

specialists. This module has the following characteristics and features: 

 

- Visualization of the airport and its vicinity in 2d. 

- Possibility to navigate easily in the airport space. 

- Visualization of all aircraft paths in the airport. 

- Real time rendering of aircraft and other vehicles’ movement in the airport. 

- Possibility of switching between day and night environments. 

 

In addition to these characteristics, this module integrates some other capabilities 

such as the labeling of each moving object in the airport, consulting the weather database 

in order to inform the pilot about the airport conditions, and other traditional operation 

such as scaling the airport and personalizing the working environment. 

 

 

4. Pilot Specification 
  

The pilot part is an independent software application that can be integrated with 

the other parts of the entire application by some means of communication. As mentioned 
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earlier, some other ATC simulators use a synthetic pilot, that is, a special software 

module, based on voice recognition technology that plays the role of the pilot in the 

whole ATC training loop. This works well for individual training purposes, or to 

accelerate the training period and help reducing procedural errors and expedite 

controllers’ qualification, as mentioned in an article about modern training systems on the 

USAF Traffic Controllers (National Defense, 2006). However it is not suitable for an 

application in which the emphasis is on the fundamental concept of teamwork in which a 

human is in the loop in every part of the simulation. It can be argued that in real air traffic 

schools, it is hard to find real pilots to play the pilot part of the ATC loop. This can be 

true in pure air traffic control school. However, in many cases ATC training programs are 

part of a general aviation school, and in this case it is not hard to find some pilot students 

to play the role of the pilot as part of their training program. In addition, even in pure 

ATC schools, where there are no pilots on staff, it is important that the pilot part be 

played by an individual (some times called pseudo-pilot) instead of a software module. In 

such ways we can at least insure that the communications errors between controller and 

pilot are some kind of “human errors”, and this is what we want to reduce by this work. 

 

Returning to the fundamental specification of the pilot part, the pilot application 

consists of a GUI from which the pilot or the pseudo-pilot can easily visualize the most 

important data regarding any aircraft participating in the air traffic exercise. The pilot has 

a list containing some assigned aircraft (identified by their flight ID) from the exercise. 

By clicking on a particular flight ID, the pilot’s work station automatically switches to 

the pseudo-cockpit of the related aircraft. It is called pseudo-cockpit because it is not as 

complicated as the cockpit of a real aircraft. However it contains the most important 

information that a pilot needs to have awareness about that particular flight, and to 

correctly execute the orders of the controller. This information includes all data about that 

particular flight such as aircraft type, heading, speed, SSR code, etc. In addition, there are 

the most important navigation instruments of the aircraft: the altimeter, the speedometer, 

and the cap indicator. These graphical instruments help give the pilot a quick and 

accurate vision about the aircraft situation. The GUI also contains some other buttons that 
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can be manipulated to create an emergency event in the aircraft (communication failure, 

fire, and other anomalies) according to the instructor directives.  

 

5. Instructor Specification 
 

The instructor application is another independent module allowing the instructor 

to gain full control of a particular air traffic control exercise. The instructor application is 

loaded into a particular workstation, called “the instructor workstation”. From this 

workstation, the instructor has access to all possible settings for any air traffic control 

exercise. These settings include the following operations: 

 

- The choice of the ATC exercise that will be applied to all application’s 

workstations. 

- Enabling the time period of the exercise (day or night). 

- Changing some flight parameters of an exercise in real time. These changes will 

be updates automatically in all workstations. 

- Keeping track of all controller progress in a particular exercise. This is done by 

implementing a database containing records for each trainee. Each record 

contains, other than the trainee identification, the starting and the end of his or her 

session, the start and end of each air warning (AW), and the start/end of each air 

conflict period. 

- Keeping track of all trainees’ progress during their entire training program. In 

such way, the instructor can consult at any time the evaluation history for each 

student. 

 

In addition to these possibilities, the instructor can collaborate with the pilot or the 

pseudo-pilot to insert any emergency that may be encountered during a normal flight. 

These emergencies include communication failure, a fire aboard the aircraft, a hijack 

situation of the aircraft, or any other situation in which the pilot needs particular care. 

Any of these setting will be reflected in all workstations instantly and all controllers will 

see a particular SSR code that reflects that emergency. For example if the pilot is losing 
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control of his or her aircraft, an SSR code of 7700 denoting 'Mayday' will be displayed in 

all controllers’ workstations. Table 3 gives a summary of all aircraft emergencies and 

their relative SSR codes (ICAO, 2006) used in this application. 

 

SSR code Use 

0000 Available as a general purpose code for local use by any State. 

1000 Reserved for use as a conspicuity code for Mode S. 

2000 Used by flight crew in the absence of any ATC instructions or 

regional agreements unless the conditions for the use of codes: 

7000, 7500, 7600 and 7700 apply. 

7000 Used by flight crew not receiving ATS service in order to 

improve detection of suitably equipped aircraft in areas specified 

by States, unless otherwise instructed by ATS. 

7500 Reserved for use in the event of unlawful interference. 

7600 Reserved for use in the event of radio communications failure. 

7700 Reserved for use in the event of emergencies and interception. 

7776 Reserved for SSR ground transponder monitoring. 

7777 Reserved for SSR ground transponder monitoring. 

 
Table 3. Special purpose SSR codes and their uses 

 

 

C. APPLICATION DESIGN 

 

1. Overall Application Design 
 

As mentioned in the requirement and specification phases, the overall application 

consists of five modules: 

- The Approach Module 

- The En-route Module 

- The Pilot Module 
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- The Tower Module 

- The Instructor Module 

 

These modules are connected via a communication layer to ensure that all 

information is synchronized among them. In addition, a server application keeps track of 

all air traffic exercises and the different students’ outputs. The overall design of the 

application is shown in Figure 12. It can be seen that the different modules interact with 

each other by the means of the communication layer. Note that the controller can change 

any the local workstation settings, but will not have any privileges to change any exercise 

data such as aircraft status. All the controllers can do is sending a voice order to the pilot, 

who will execute the order. Although the vocal infrastructure is not implemented in this 

thesis, it is part of the normal equipment that is normally used by the controller to 

communicate with the pilots.  

 

   
 

Figure 12. The overall application design 
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Oriented paradigm. The only means of interaction between these modules is the 

communication layer which is also implemented using the object oriented techniques. 

Before examining in depth the design of each module, it is convenient to take a look at 

the communication module since it is the basic one. 

 

2. The Communication Module 
 

As mentioned above, the communication module (CM) insures the interaction 

between the different modules of the application. This module is designed to support the 

particular constraints of the entire application and its different modules. The 

communication module acts as middleware between the different modules. In fact the 

data representation can be heterogeneous between the different modules, and the CM 

should be the place in which each piece of information is “packed” according to the 

needs of the destination module. Secondly, all the modules of the application are 

remotely located to each other and can use a wide range of network protocols as a 

physical means of communication, and the CM should be architected to support this 

network’s diversity. Thirdly, there is no guaranty that the future modules will operate on 

the same platform using the same operating system. Finally, different implementations 

using different programming languages can be envisaged and the CM should be able to 

work correctly with those implementations. All these constraints can be solved at least in 

part using a Common Object Request Broker Architecture (CORBA). 

 

CORBA is the Object Management Group's answer to the need for 

interoperability among the rapidly proliferating number of hardware and software 

products available today. CORBA allows applications to communicate with one another 

no matter where they are located or who has designed them. CORBA is not a language, 

but a specification for how objects will interact. Thus, it is not limited to a single 

language. CORBA services and clients can be written in a variety of languages such as 

Java, C++, or ADA. CORBA is made up of a collection of objects and software modules 

that cooperate together in a networked environment. The main component in the CORBA 

architecture is the Object Request Broker (ORB).  
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The ORB provides a mechanism for transparently communicating client requests 

to target object implementations.  The ORB simplifies distributed programming by 

decoupling the client from the details of the method invocations.  This makes client 

requests appear to be local procedure calls.  When a client invokes an operation, the ORB 

is responsible for finding the object implementation, transparently activating it if 

necessary, delivering the request to the object, and returning any response to the caller 

(CORBA & RMI, 2006). In other words, the ORB acts as a middleware handling all 

requests from the client’s side about an object’s services located at the server side, as well 

as sending the client’s responses to some queries from the server. Figure 13 provides an 

illustration in how client and server interact with each other using the ORB. 

 

 
 

Figure 13. Client/Server interaction in CORBA 
 

Even though remote objects are treated as local objects using a proxy (by 

invoking their methods as if they are in the client site), there is communication between 
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Figure 14. CORBA communication architecture 

 

Within the CORBA architecture, software services are described by a schema and 
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object in a server, and that server can also be a client of other remote objects.  RMI uses 

object serialization to marshal and unmarshal parameters and does not truncate types, 

supporting true object-oriented polymorphism (CORBA & RMI, 2006).  

 

In the RMI architecture, the developer designs servers with some specified 

services available for clients. These services should be named (using common strings), 

and registered in a special independent process called “rmiregistry”.  The client needs 

these names to lookup at their related services in the registry. In RMI the server does not 

have to be located on any specific machine. It can be activated from any computer in the 

network in a complete transparent way to the client which does not have to change any 

parameter in his or her application.  Other essential components in the RMI architecture 

are the stub and the skeleton for each service offered by the server (Figure 15). Both 

components are obtained by a special compilation, called RMI compiler, which accepts 

as arguments classes that have been compiled successfully with the JVM compiler. 

 

 
Figure 15. RMI Client/Server architecture 
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sent on the network to the corresponding skeleton object. The skeleton object is located 

on the server side and acts as a listener for incoming service requests. 

 

In this work, two main RMI services will be provided to any module of the 

application. The first service, the most important, is related to the air situation. At any 

moment, any client module can ask about the number of aircraft actually engaged in the 

simulation exercise, as well as other related information such as the speed, the heading, 

or the altitude of any desired aircraft. In addition, this service includes all the commands 

that can be given to an aircraft such as changing altitude, or turning left or right to face a 

given heading. Operations such as the timing of the insertion of an aircraft in the exercise 

or eliminating it from the exercise are reserved for the instructor who acts from the server 

side. Therefore there is no need to implement them as services; they can be directly 

invoked by the instructor as local methods.  

 

The second service offered by the RMI server is the user’s service. This service is 

responsible for the identification of any user of the system, and keeps track of the 

different user’s activities. In this application, each user has a name and an ID string. 

When the user first connects to the server, he or she will be asked to enter his or her name 

and ID string. The local application will automatically add to this information the URL 

identification of the current workstation. After that, an identification request will be sent 

to the remote server via the user’s stub object, and the user can then continue using his or 

her module if the answer was positive. The other important operation offered by this 

service is the ability to register all users’ activities. This is done by the local application 

and is transparent to the user. Every time the user performs any operation via the 

network, the local module will send an event registration request to the user’s service, 

and that activity will be saved in the server database for future consultation and analysis. 

This service therefore acts mainly as an event listener for the clients’ application, and 

event delivery on the server side as shown in Figure 16. 
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Figure 16. The ATC user service 

 

3. The Instructor Module 
 

The instructor is the local user of the simulator server. He or she has access to all 

resources of the exercise and can also see in real time the different trainees’ activities. To 

facilitate his tasks, the instructor module has an intuitive GUI that is easy to use and 

contains all the necessary activators. These activators are implemented as menu items and 

as action buttons on a specific toolbar.  

 

The instructor module is divided into three graphical interfaces. The first one 

contains all the basic operations for the server, such as starting or stopping the different 

services, and other operations related to the kind of exercise that will be RMI-broadcasted 

in the network. The second module is a list of all aircraft participating in the exercise. 

From this interface, the instructor will have access to the “global aircraft commands”. 

These commands include starting or stopping any aircraft, and removing aircraft from the 

exercise. This will help to implement many different kinds of exercises based on the 

initial loaded exercise file. This interface allows the instructor to customize the exercises 
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in a manner that best fit the level of the trainees. Finally, the third interface will allow the 

instructor to control the different students’ activities. These activities are the output of the 

event handler described in the previous paragraph. An example of what the instructor 

might see in this interface is depicted in Table 4 below. 

  
Date 03/26/2006 

Exercise Fp123 

Instructor John Smith 

Starting 10:05:00 

Stopping 11:30:22 

  

Time D Qualif. URL Event 

10:05:55 s01 Pilot 130.121.99.50 AZ340 TL 90 

10:10:40 a04 En-route 130.121.99.51 AW AZ340 TU787 

10:10:55 s01 Pilot 130.121.99.50 AZ340 L 280 

10:50:05 c05 Tower 130.121.99.30 AS234 LD 11 

11:03:28 a02 Approach 130.121.99.40 AC TU423 AF200 

 

Table 4. A typical instructor’s event display GUI 
 

In Table 4, the different columns are all self-explanatory except the “Event” 

column. Each event is described using a pseudo-language. For example, the event 

“AZ340 TL 90” means that the aircraft with flight ID AZ340 received an order to turn 

left (TL) and faces the heading 90 degree (see Figure 17 for the heading interpretation 

adopted in Air Traffic). The event “AW AZ340 TU787” means that there is an air 

warning between AZ340 and TU787. The field of such event is colored in yellow to alert 

the instructor. An air conflict (AC) event is a more dangerous situation and is colored in 

red as shown in the last row of Table 4. Table 5 gives a summary of all symbols of this 

pseudo-language. Note that an air warning or an air conflict is raised by the controller to 

the pilots if a group of aircraft is going to violate separation minima considering their 

current or future situation. These separation minima are generally subjected to changes 
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by the ICAO. In the application’s design, these parameters will be read from a data file 

and the instructor can change them at any desired time.  

 

Symbol Interpretation 

AW x-1 x-2... x-n Air Warning among the aircraft x-1 x-2... x-n 

AC x-1 x-2... x-n Air Conflict among the aircraft x-1 x-2... x-n 

TL x Turn Left to face x degree 

TR x Turn Right to face x degree 

L x Change to Level x 

LD x Landed in runway x 

TK Takeoff from runway x  

S x Change Speed to x Knots/Hour 

SSR x Change in SSR code to x 

 
Table 5. Interpretation of the pseudo-code used in the Instructor GUI 
 

 
Figure 17. Headings in ATC 
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4. The Approach Module 
  

The approach module has a GUI that helps the controller gain good situational 

awareness of the air traffic that he or she is controlling. Since the controller spends most 

of his or her time manipulating this GUI, it is crucial that the controller can personalize 

this GUI in any desired manner. For this reason, as mentioned in the specification part of 

this module, all data regarding the GUI is stored in XML format within a particular 

directory of this module (the data directory).  

 

The reason for the use of XML files for all the data of the simulator is not only in 

the portability and interoperability of XML, but also in the possibility to “extract” real 

Objects from an XML file. That is, it is possible to add some accessory methods to these 

objects such as changing their color, or their position. As a result the user can manipulate 

all aspects of this object with the minimum computational cost. In addition, since the 

instructor can theoretically run a simulation in any geographic region, the software 

includes a tool to extract XML information from a given map that can be easily used in 

the ATC simulator. 

 

The overall design of the Approach application is shown in figure 18. The first 

step that the application does is load the map, navigation data, and any other symbols 

used in ATC from a package containing the related XML files. Since the meta-data 

enclosed in these files aren’t the same, there is a different XML parser for each category 

of data. The next step consists in passing the parsed data to the “Updater Thread”.  This 

class is the core object of the approach application. It first constructs a collection of 

objects based on this data, and then provides an update of the “Approach Frame” which is 

a simple GUI to display and manipulate graphical symbols. Among the graphical 

symbols that are displayed are the aircraft representations. However these reside in the 

server part and the only way to access them is via the server’s aircraft services. For this 

reason, the updater uses one stub to access this service, and another stub to access the 

user service for user identification and event handling purposes, as explained in the 

previous paragraph. 
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Figure 18. Overall approach module design 

 

The approach frame contains all the necessary tools that allow the user to interact 

with it. When the user issues a command, it passes to the “Command processor” which 

plays the role of command interpreter for the updater thread. At this point, the updater 

thread will prepare another screen containing all previous data and the results of the user 

commands, and will finally provide an update of the approach frame. In this way the 

graphics- heavy interface of the approach frame is made easy to draw and update. In fact 

it has only to draw the same image size, regardless of the quantity of information on it, at 

every refresh rate (depending on the radar revolution). Furthermore, the approach frame 

will not spend any additional computation once it is launched, since all image 

preparations are made off-screen by the updater thread.  

 

The design of the approach module is versatile and can be applied as it is or with 

small modification for the en-route module. In fact the main difference between the two 

modules resides in the visualization and not in the functionality. Such differences will be 

directly detailed in the implementation phase. 
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5. The Tower Module 
 

The tower module is a 2D environment representing an airport and its vicinity 

which we denote with “tower working zone”. Within this zone the tower specialist has 

the task to control the activities of all moving vehicles in order to insure safety and 

reasonable aircraft flow from and to the airport. All the information regarding the tower 

working zone will be parsed from an XML file. Thus, there is complete independence 

between data representation and information processing. For the purpose of this thesis, 

only two tower working zone will be presented; the international airport of Tunis-

Carthage (DTTA), and the international airport of Monastir (DTMB). 

 

In this design, the tower working zone is a collection of objects including the 

runways, the taxiways, and the stationing area presented in an adequate GUI. This GUI 

offers to the user (the tower controller) the following capabilities: 

- Easy navigation. 

- Showing or hiding airport data. 

- Scaling the airport. 

- Centering the viewpoint. 

However, this module cannot interact directly with an aircraft (for example to 

change its position or heading). Interaction with an aircraft will only be allowed via a 

voice communication to the pilot module, examined in the next section. 

  

6. The Pilot Module 
 

The pilot module is an independent module of the ATCS offering to the pilot all 

the necessary tools to control the aircraft situation during flight conditions or whenever 

the aircraft is in the ground. Since the operation conditions of the aircraft in flight or 

ground are not the same, two sub-modules are included within this module. The first sub-

module mainly controls the aircraft during flight conditions. It contains a pseudo-cockpit 

depicting the main cockpit instruments which are the speedometer, the altimeter and the 

heading indicator. In addition to these instruments, and in order to make the pilot gain 
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situation awareness about the surrounding traffic, a radar screen is provided. Finally, a 

panel of buttons is also added to this module. This panel will be used by the pilot under 

the order of the instructor to cause an abnormal event in the aircraft as specified in the 

specification part. 

 

The second sub-module exclusively controls the aircraft in the ground (once the 

aircraft is in the airport). The operations that are allowed in this module are the following: 

- Parking the aircraft in a given position. 

- Taxiing the aircraft to a point specified by the tower controller. 

- Positioning the aircraft in the runway. 

- Make the aircraft takeoff. 

- Make the aircraft landing. 

The overall design of the pilot module is shown in Figure 19 which shows the 

complete independence between the two sub-modules.  

 
Figure 19. The Pilot Module Design 
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D. CONCLUSION 
 
In this chapter a detailed specification for each of the five modules constituting 

the air traffic control simulator are given. During the specification phase, some concepts 

related to air traffic control, such as the separation volume, SSR code, and heading 

convention, are explored and made clear. Also, since the communication module is an 

important link between all modules of the application, an ample space is dedicated to it. 

Particularly, many concepts of RMI architecture is given. 

 

As specified by the waterfall model, these specifications are the input of the 

design phase with is the argument of the second part of this chapter. In this phase, each 

module is detailed in depth and, for each module, an architectural design is given. This 

helps to ease the implementation phase which is the topic of the next chapter. 
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V. IMPLEMENTATION OF THE ATC SIMULATOR 

A. MAP REPRESENTATION 
 

All the graphics representations in this application are vector images extracted 

from real maps or real spatial photos.  The module named “MapEditor” allows the user to 

extract the data from an aeronautical map. The user has only to click the mouse on 

contours of that map to create a vector of points corresponding to those contours. These 

points are then saved to an XML file. Figure 20 illustrates the module “MapEditor” and 

Figure 21 gives the XML schema of the saved data. 

 

         
Figure 20. Bitmap and XML representation of the map 

 

 
Figure 21. The XML schema of a map 

 

Once the data is prepared, it can be used by the approach and en-route modules. 

Note that each xml file containing map data is viewed as a map layer which will be stored 

in an appropriate data structure within the latter modules.  These layers can be easily 
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accessed by the user either to show or hide them or personalize their appearances. Figure 

22 shows the approach GUI with a special control panel allowing the user to select the 

layers that he or she wants to visualize. The use of the control panel is very intuitive. 

When a layer is selected, the corresponding button will be highlighted; otherwise it is in a 

dark color.  

 
Figure 22. Visualization of the XML Data in the Approach and En-route Applications 

 

B. THE SERVER/INSTRUCTOR MODULE  
 

As stated in the previous chapter, the RMI server module and the instructor 

module constitute a single package that can be accessed and manipulated only by the 

instructor. The main reason behind this is to simplify the implementation of these two 

modules. The overall UML diagram of this module is shown in Figure 23. The main 

remote service offered by this module is the aircraft service (see Appendix B for a 

complete services’ listing). This service is represented by the class “AcVector” which is 

the implementation of the interface “IAcVector”. Particularly, the latter interface offers a 

set of methods to get or set any parameter of the aircraft such as the speed, the altitude, 

the cap, and etc.  All services in this module are made available to any other module via 

the class “RegistryStarter”. Since a reference of this class exists in the main class 

“ATCServer”, the instructor will be able to start or shutdown any service at any moment 

if required.   
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Figure 23. UML diagram of the server module 

 

All the flight plans are stored in a specific directory within this module package 

(data directory). A Document Object Model (DOM) parser named “DOMParser” is used 

to parse the flight plans’ files. Each of these files is a valid XML document according to 

the XML schema of Figure 24. Once they are parsed, the “DOMParser” object constructs 

an array of instances of “SimpleFlightPlan” class which is passed to the main class in 

order to build up the remote service class (AcVector). 

 
Figure 24. XML schema of the flight plan 
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The server module presents a user-friendly interface (see Figure 25 below). The 

instructor has only to click few buttons to make the services available to the other 

module. The instructor first selects the exercise to play and then clicks on the “Start 

Services” button. He or she can then start all aircraft of the exercise at once or only select 

a group of them to be part of the current simulation. 

 

 
Figure 25. The server module GUI 

 

 

C. THE PILOT MODULE 
 

The pilot package contains two distinct modules. The first one represents the 

aircraft cockpit, and the second one is the ground module. The cockpit module in 

normally used to control the flying aircraft, and the ground module is only used to 

manipulate the aircraft within the airport. The following paragraphs describe in depth 

each of these modules. 
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1. The Cockpit Module 
 

The cockpit module, shown in Figure 26, allows the pilot to control the aircraft 

once it is flying. This module is a GUI containing all the display and control devices that 

the pilot needs to gain situational awareness about the current flight and the overall air 

situation. Particularly, the first row of this GUI presents the most important devices that 

help the pilot obtain a quick look assessment of the situation and the flight parameters of 

the aircraft. The second row contains more parameters about the flight, and allows the 

pilot to interact with the aircraft.   

 

The pilot can switch between one aircraft and another by simply clicking on the 

desired aircraft flight ID, and instantly the GUI will change to that aircraft cockpit. When 

the pilot received an order from any controller, he or she can execute it by typing the new 

flight parameters in the appropriate fields of the aircraft manipulator panel. In addition, 

when directed by the instructor, the pilot can simulate the most common anomalies in an 

aircraft by clicking in the appropriate button of the anomalies panel situated in the right 

lower corner of the cockpit GUI. 

 

This module, as all other client modules of the simulator, has a stub for each 

remote service. These stubs are used by a thread named “ControllerThread” to update the 

aircraft situations. At every loop, this thread checks the server for an update in the aircraft 

list and for an update for each of the aircraft situation. The new list with the new aircraft 

situation is then passed to the main class which provides an update about the different 

devices and panels of the GUI. The complete UML diagram of the cockpit module is 

shown in Figure 27. In this diagram, it is easy to see that each panel of this module has its 

own independent class, and that the ControllerThread has a reference to each of these 

classes.  
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Figure 26. Cockpit GUI of the pilot package 

 

   
Figure 27. The UML diagram of the cockpit module 

 

2. The Ground Module 

 

The second module of the pilot package is the ground module. This module 

allows the pilot to manipulate the aircraft on the ground. Such manipulations include the 
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positioning of the aircraft in a given parking position, the taxiing, and the takeoff of the 

aircraft. The use of this GUI is made easy by a set of control buttons in four groups. The 

first group is used to connect to the server and to choose the airport in service. The 

second group allows the pilot to personalize the airport appearance, by allowing the pilot 

to hide or show the most common graphical component in the airport. The third group 

allows the pilot to show or hide the aircraft or their current path within the airport. The 

fourth is the most important group since it directly manipulates the aircraft position and 

parameters. This group is normally inactive until the pilot selects an aircraft (by double-

clicking on it), at which time this group will be highlighted, indicating the possible 

actions that can be undertaken at that time. These actions are either stopping the aircraft 

from moving, taxiing the aircraft in the pre-established path or initiating the takeoff. The 

last group of buttons is reserved for manipulating the view by changing the center or the 

scale. All active parameters of the airport are shown in a panel situated at the top of the 

ground module GUI. A complete ground GUI is shown in the Figure 28 below. 
 

 

Figure 28. The ground GUI of the pilot package 
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The UML diagram of the ground module is shown in Figure 29. As it will be seen 

later in the Tower section, the ground module of the pilot part is simply an extended 

version of the tower module, which explains why the main class of the UML diagram is 

named “Tower”. The UML diagram shows that all the graphical objects (those using a 

graphical context to depict some kind of shape or symbols) inherit one root object which 

is the “GraphicalShape” class. This class is an abstract class containing the most common 

methods shared by all its children classes. Some of the methods of this class are rendered 

abstract allowing the children to implement more personalized ones. Among the most 

important methods that are implemented by the children is the draw method of the super 

class. The UML diagram shows also the presence of two classes specific to this module: 

the Mover class, and the “TakeoffProcessor” class. The following sections give some 

details about these two classes. 

 
Figure 29. The UML diagram of the ground part 

 

a. Aircraft Mover 
 

Within the ground module the movement of aircraft is controlled by a 

thread named “Mover”. This thread looks at the selected aircraft and verifies that it has a 
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path assigned to it. If so, a linear movement process is applied to that aircraft’s position. 

The mover moves the aircraft at a constant speed (v) according to the following 

equations: 

x(t) = x(t0) + vx(t-t0) 

y(t) = y(t0) + vy(t-t0) 

where vx = v.cos(θ),  vy = v.sin(θ), and θ is the arctangent of the current segment 

of the path assigned to the aircraft. These equations are converted in numerical form in 

the following way:  

x(n + 1) = x(n) + vx.∆t 

x(n + 1) = x(n) + vx.∆t 

and if ∆t = 1, we simply obtain x = x + vx, and y = y + vy. 

 

The change from one segment to another is made possible using the intersection 

of the current position of the aircraft and a rectangular area centered in the endpoint of 

the current segment. This rectangular area has a width, respectively a high, equal to 2vx, 

respectively 2.vy. In such way it is guaranteed that the intersection will occur. 

 

b. The Takeoff Processor 
 

The takeoff processor is a thread responsible of the takeoff phase of the 

aircraft. It guides the aircraft with the correct orientation along the runway. At every step 

the thread increases the power of the aircraft gradually until its maximum is reached. The 

increase of power causes an increase in speed, and once the aircraft reaches its takeoff 

speed (for simplification, all aircraft have the same takeoff speed), the thread increases its 

altitude until it reaches 1,500 feet (as mentioned in chapter II, this is the height limit of 

the tower control). After that point the thread dies and the aircraft is left alone to follow 

its pre-established route or be subject to further pilot actions.  

 

Before takeoff however, the “TowerCanvas”, which is the running process 

of the main class, executes a series of verifications to ensure that the aircraft is in fact 
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ready for takeoff. First it gets the current aircraft position and orientation (the selected 

aircraft is marked with a yellow diamond shape). Then it asks the runway in service 

whether or not the selected aircraft is within its limit and has an acceptable orientation 

(the class runway has a specific method to calculate the orientation tolerance). If all these 

conditions are met, the class modifies the route of the aircraft in the following way. The 

current aircraft’s position becomes the first waypoint, and the end of the runway becomes 

its second waypoint. The rest of waypoints remain unchanged. The final step is to launch 

the TakeoffProcessor class, and the aircraft will behave as explained earlier in the first 

paragraph of this section. Figure 30 shows a flowchart that summarizes the major steps of 

the takeoff process.   

 
Figure 30. The takeoff verification process 

 

 

D. THE TOWER MODULE 
 

The tower module is very similar to the ground module of the pilot package. The 

main difference between the two modules is that the tower module does not contain any 

means to manipulate the aircraft. In addition this module contains a placing algorithm to 

park the aircraft in the airport. Figure 31 shows the UML diagram of this module. 
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Figure 31. The UML diagram of the tower module 

 

 

1. Placing Algorithm 
 

One important task of the tower module is determining the initial position of 

every ground aircraft at the beginning of the simulation exercise. In fact, all the ground 

aircraft at the beginning of the exercise have as initial location the center of the airport. 

Without any intervention all the ground aircraft would occupy the same position within 

the airport. To solve this problem a placing algorithm is applied to the list off all aircraft 

on the ground. The placing algorithm, depicted in Figure 32, simply chooses a parking 

position in the airport and assigns it to the first non-positioned aircraft in the filtered list. 

This process continues until all aircraft are positioned. Then the algorithm updates the 

remote service with the new position of the aircraft. This algorithm operates only once at 

the beginning of every simulation. If the aircraft received an order to taxi, its parking 

position is made free so the parking algorithm can assign it to another aircraft. For the 

arrival aircraft, the pilot will receive instruction from the tower controller about where to 

place the aircraft.  
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Figure 32. The placing algorithm 

 

 

E. APPROACH MODULE 

 

The approach module is used by the ATCSs either during the approach phase or 

after the takeoff and before the aircraft reaches its cruising speed and altitude. The GUI 

of this module is similar to many real approach screens. The approach module is 

articulated according to the UML diagram of Figure 33. The diagram shows two main 

classes that are the center of gravity of the approach application.  

 

The first class, “ControllerWS”, represents the controller GUI. It contains all the 

necessary menus and option panels to allow the controller manipulating it to gain the best 

awareness of the air situation. The use of this class is similar to all the other GUIs of the 

simulator. The controller has only to connect to the available server and customize the 

interface. 
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Figure 33. The UML diagram of the approach module 

 

The second most important class in this module is the “Cartev” class. This class 

represents the running process of the class “ControllerWS”. At every loop, Cartev checks 

the controller settings and draws all the required components. It also updates the aircraft 

situation and represents them in the correct position. In order to make it easy to represent 

the many graphical components, this class uses a double buffering technique. While an 

image is presented to the user, another one is prepared for the next loop. In this way, the 

user will not observe any noticeable discontinuity in the GUI. Figure 34 shows the 

overall approach workstation GUI. Figure 34 also shows the control panel used by the 

controller to quickly manipulate the GUI. This control panel is an instance of the class 

“ControlPanel” shown in Figure 33. 

 

Even though these two classes are the most important classes in this module, there 

are many others that play a role for the controller and the overall simulation. The class 

“Controller” is one example. This class is responsible for detecting any situation that may 
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lead to an air conflict. As explained in chapter III, there are two air conflict situations, 

both occurring when two or more aircraft volumes intersect with each other. The 

difference between the two types of air conflict resides only in the extent of the aircraft 

volumes. To keep track of the air conflict situation, this class has two bi-dimensional 

boolean arrays. If the element [i][j] of a particular array is true, this means that the 

aircraft [i] is in some air conflict form with the aircraft [j]. All the parameters of the air 

conflict are exposed in this class and can be changed by the instructor when required. 

 

 
 

Figure 34. The approach workstation GUI 
 

The approach module is the largest module of the ATCS. Its description alone is 

quite lengthy, so only an overview will be given here. Many variables and method of this 

module are either self-explanatory or well commented and can be reviewed in the module 

documentation part. The following sections will provide extra clarifications about some 

mathematical concepts used in this module. These concepts are related to the coordinate 

conversion and runways representation.    



 75

1. Coordinate Conversion 
 

In a real aeronautical map the intersections between the longitudes and latitudes 

form a quasi rectangular shape delimiting a geographic area. During the process of 

preparing the data for the application, the upper left corner (in terms of longitude and 

latitude) of each of these areas are acquired. These data along with the pixel coordinates 

of the four corners are used as arguments to construct the object “Area” (Figure 35).  

 

 
Figure 35. A simple geographic area representation 

 

These area objects are used to determine the approximate x-y coordinate of a 

given point expressed in universal geographic coordinate. This is done in two steps. First, 

the data structure containing all Area objects is checked to identify that particular area 

having the same longitude and latitude as the given point. Second, once the area is 

identified, a simple interpolation formula is used to calculate the corresponding x-y 

coordinates of the given point. The portion of code doing such operation is the following: 
 

if(area.getNorth()==nord && area.getEast()==est){ 

x1 =(double)(xpoints[0]+xpoints[3])/2; 

x2 = (double)(xpoints[1]+xpoints[2])/2; 

y1 = (double)(ypoints[0]+ypoints[1])/2; 

y2 = (double)(ypoints[3] + ypoints[2])/2; 

x = x1+ (((x2-x1)*(me*6000.0+se*100.0+ce))/360000.0); 

(x0, y0) (x1, y1) 
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y= y2 - (((y2- y1)*(mn*6000.0+sn*100.0+cn))/360000.0); 

break; 

} 

 

2. Runway Representation 
 

The runways are represented differently within each module of ATC simulator for 

two reasons. The first reason is that not all modules require the same details and 

precision. The second reason is that in the normal aeronautical maps, runways are not 

represented due to their small dimensions. To solve this problem, two approaches were 

adopted. For the TRACON and en-route modules, each runway is represented as a line 

segment. The endpoints of this segment are directly obtained from the geographical 

coordinates of the runway. The tower module utilizes the XML representation since the 

spatial photo of the airport is sufficiently clear to acquire all data required for the airport 

(mainly the runways, the taxiways, and the parking areas).  The following paragraphs 

explain how the end points of each runway are obtained, and how other important 

components are computed, such as the runways’ extensions which are important 

especially in the landing phase of the aircraft. 

 

By using the method described in the previous section, it is easy to convert the 

geographical coordinates of the runways into the corresponding x-y coordinates of the 

simulator. For example the geographical coordinates of the runway 01 of Tunis-Carthage 

airport (code DTTA) are 36° 50' 20.87"N and 010° 13' 25.52"E which give X= 

1079.47316805, Y= 809.49381944. This method was also useful in determining the 

center of the airport which is very important in the entire application. In fact to obtain a 

perfect conservation of the coordinates in all modules, it is mandatory that the center is 

the same in all modules. This is because the center of the airport plays the role of the 

origin of a local coordinate system, and obviously every object is designed around the 

origin of this coordinate system. 
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The same process is used to calculate the runway extensions which are virtual 

lines extending each endpoint of the runway. These extension lines are important since 

the help a lot the controller to approximately align the aircraft with the runway in service 

during the approach phase. They are depicted as dashed lines in the Approach GUI. To 

determine the low and high point of each runway extension (see Figure 36), we first used 

the endpoints of the runway to compute its slope. The low and high points are, 

respectively, the intersection of the runway and the circle with radius rl , and radius rh, 

centered on one of the runway extremity. 

 

 
Figure 36. Runway extensions 

 

In mathematical terms, each point is the solution of the following equations: 

(x – x0)2 + (y –y0)2 = r2 (equation 1) 

(y – y0) = m(x – x0)  (equation 2) 

In the above equations, (x0, y0) is the extremity of the runway, r is either of the radius rl 

and rh, and m is the slope of the runway. The solution of these equations is: 

mxx r 2

0
1/ +±=   (equation 3) 

To decide which x is needed, the center of the runway is used as a reference point. 

If the x-coordinate of the runway extremity is greater than the x-coordinate of the runway 

center, then the correct x will be obtained with the plus sign in equation 3, otherwise the 

minus sign will be used. 
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rh 

rl 
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F. THE EN-ROUTE MODULE 
 

One of the most important advantages in using the Object-Oriented Programming 

(OOP) is the usability of the produced classes and code. This concept was fully applied 

during the implementation of the tower module. In fact, as mentioned, the tower module 

was only a modified version of the ground sub-module of the pilot module. The same 

concept is used to implement the en-route part. The en-route module is simply a modified 

version of the approach module.  

 

Unlike the approach controller who should dispose only of the air situation around 

particular airport, the en-route controller should have access to all controlled airspace 

(precisely, the airspace within the Flight Instruction Region (IFR)). This was done in the 

implementation by centering the map and all the other objects around any point chosen 

by the en-route controller (see Figure 37 below). 

 
Figure 37. The en-route GUI 
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VI. CONCLUSIONS AND FURTHER WORK 

A. CONCLUSION 
 

Air Traffic Control (ATC) is a network of facilities whose purpose is to organize 

aircraft movements in airspaces in order to guarantee safe and efficient air traffic. ATC 

contains many kind of specialists (ATCS) commonly grouped in three main categories; 

tower, approach and en-route. To meet the required skills necessary to manage an 

incessant evolving air traffic density, these specialists should be trained continuously. 

However, often the training method consists in using separated modules for each air 

traffic control category. The most important deficiency of such training method is the 

lack of the concept of teamwork. 

 

The work in this thesis consists of conceiving and implementing a teamwork air 

traffic control simulator that does not suffer the previously mentioned drawbacks, and 

that could be easily used in ATC schools. The goal is to allow the different ATCSs to 

work together, in the same conditions as in the job environment, in order to manage in a 

collaborative way an air traffic situation. A simulator like this should allow ATCSs to 

acquire further coordination skills, and hence, reduce the amount of air traffic faults due 

to a lack of teamwork in the actual ATC training system. 

 

The product of this thesis was developed using a waterfall software development 

life cycle model. This model was preferred to other approaches (prototype, spiral, 

extreme programming, etc) because of its simplicity as well as ease of understanding and 

implementation. In addition, the waterfall model forces a verification activity in between 

each two adjacent steps which guaranties a big degree of fidelity and robustness to the 

realized software. 

 

The resulted simulator is a flexible training tool for both trainees and instructors. 

A simulator like this will help in obtaining a low cost solution that can substitute buying 
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simulators for each category of ATCSs. In addition, the main training capabilities of this 

simulator could be summarized as:  

1. Decreasing the OJT time. 

2. Help to increase teamwork performances, and hence, reduce air traffic faults. 

3. Give some insights in teamwork requirements for Air Traffic Control Simulators. 

 

B. FUTURE RESEARCH 
 

This study’s goal was to design, develop, implement, test, and evaluate a novel air 

traffic control simulator that offer a low-cost solution to enhance the concept of 

teamwork in ATC  design, but it raised many interesting questions than are beyond its 

scope. 

Possible future research includes questions about design improvement and the 

influence of assumptions made in the model. Other questions may include: Do the 

modules of this simulator meet their requirements and specifications? How much can the 

model be simplified? This software can also be the subject or the tool for many 

specialized studies related to the ergonomic and human factor issues such as the usability 

study, or can be used as a tool for assessing and evaluating training methods. The 

following sections briefly discuss some of these studies. 

 

1. Usability Study 
 

Modernization of Air Traffic Control (ATC) display systems includes increased 

use of color to code information. While colors can enhance display designs, human 

factors issues like legibility and salience manipulation are still problematic. In 

implementing this simulator, no particular considerations about the choice of the different 

used colors were made. Some researchers argue that color palettes that are not 

specifically designed for layered data and a large number of objects can create legibility 

and salience problems (Ahlstrom & Arend, 2005). Even though all modules of this 
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application (except the instructor module) contain tools allowing the user some degree of 

freedom to customize the GUI, it is recommended to apply a usability study for all 

modules in order to detect: 

- Human factor limitations about the GUI layout. 

- Influences of the color palette in the overall controller’s activities and awareness. 

- Influence of brightness and contrast in the controller awareness. 

- Legibility, salience manipulation (clutter avoidance), and color recognition.  

 

2. Design of Experiments 
 

As stated previously, this software is a versatile and can be used for a multitude of 

purposes such as: 

- General ATC training. 

- Rehearsal is some ATC issues. 

- Emphasize team and teamwork skills in ATC. 

- Improvement of the Time Of Transfer (TOT) rate. 

However, none of these capabilities were tested or analyzed using this software. 

Hence, it is recommended to design experiments about one or more of the above aspects 

in order to demonstrate potential training improvements. This can be done using two 

groups of trainees: a control group, whose member are trained using the traditional tools, 

and a second group that uses this software as the main training tool. A statistical analysis 

at the end of the training period could identify the differences, if any, between the two 

approaches. 

 

3. Rebuilding the Tower Module 
 

The tower module was designed using a 2D projection. Even though this does not 

compromise the objective of this thesis, it would be a good idea to implement it by a 3D 
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model. Many 3D authoring tools allow an easy development of a 3D model provided that 

the user possesses all the data of the intended model. These tools include X3D, Visx3D, 

Wings3D, SwirlX3D, etc. The author has already developed a 3D model of the Tunis-

Carthage International Airport (see Figure 37) however this model is not integrated in the 

overall application. 

 

Figure 38. 3D model of the Tower module 
 
Once the 3D model is completed, the tower module can be implemented using 

any Java package that supports 3D scene, such as Java3D or the Scene Access Interface 

(SAI). The reader can refer to Appendix C for a short description of SAI. 
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APPENDIX A. GLOSSARY AND ABBREVIATIONS 

 
ACC: Area Control Centre. 

ACC is an ATC unit that provides ATC service to aircraft operating within a 

flight information region (FIR). See FIR and ATC for complete information. 

 

AMA: Area Minimum Altitude. 

The lowest altitude to be used under instrument meteorological conditions (IMC) 

that will provide a minimum vertical clearance of 1000 ft or, in designated 

mountainous terrain, 2000 ft above all obstacles located in the area specified, 

rounded up to the nearest 100-ft increment. 

ATC: Air Traffic Control. 

ATCS: Air Traffic Control Specialist. 

ATS: Air Traffic Service. 

ATS is a global term used to denote a set of services that includes ATC services, 

flight services and alerting service. 

 

CORBA: Common Object Request Broker Architecture. 

Specification for how different objects of some application will interact. CORBA 

has been designed from the beginning to support a wide range of network, 

operating system, and programming languages. In our days CORBA is viewed as 

the “elegant” solution to ensure interoperability and communication between 

heterogeneous objects.  

 

CTA: Control Area. 

The CTA is a controlled airspace extending upwards vertically from a specified 

height above the surface of the earth. 

 



 88

CTR: Control Zone. 

A controlled airspace of defined dimensions extending upwards from the surface 

of the earth up to and including 3000 ft AAE unless otherwise specified. The 

shape of that zone is a cylinder with a radius of about 50 km. The height of this 

zone amounts 3000 feet (1000m). 

FAA: Federal Aviation Administration 

The FAA is federal authority in the United States of America responsible for civil 

aviation. 

 

FIS: Flight Information Service 

The FIS is a controlled part of an airspace in which the following services are 

offered: 

o the dissemination of aviation weather information and aeronautical 

information for departure, destination and alternate aerodromes along a 

proposed route of flight. 

o the dissemination of aviation weather information and aeronautical 

information to aircraft in flight. 

o the acceptance, processing and activation of flight plans (FP) and flight 

itineraries, amendments to FPs and flight itineraries, and cancellations of 

FPs and flight itineraries. 

o the exchange of FP information with domestic or foreign governments or 

agencies or foreign ATS units. 

o the provision of known information concerning ground and air traffic.  

FIR: Flight Information Region 

An airspace of defined dimensions extending upwards from the surface of the 

earth within which flight information service (FIS) and alerting service are 

provided. 
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FL: Flight Level. 

The altitude expressed in hundreds of feet indicated on an altimeter set to 

29.92 in. of mercury or 1013.2 mb. For example an FL of 300 indicates a flying 

altitude of 30,000 feet. 

MRSA: Mandatory Radar Service Area. 

PSR: Primary Surveillance Radar. 

Radar equipment used to determine the position of an aircraft in range (distance 

between the antenna and the illuminated object) and azimuth (angle between the 

horizontal antenna plane and the horizontal plane containing the aircraft).  

 

SSR: Secondary Surveillance Radar. 

The SSR is an antenna (interrogator) attached to the primary radar emitting 

special signal called interrogation signal and wait for the “answer” from a 

particular antenna mounted in the aircraft of other vehicle generally known as 

transponder. Once receives the interrogation signal, the transponder generates a 

coded reply signal that includes a lot of information about the aircraft status. This 

information includes the aircraft identification, speed, cap, and any other anomaly 

such as communication failure, fire, and aircraft hijacked. 

 

SSR code 

A four-digit octal number received from the aircraft transponder when it is 

interrogated by secondary surveillance radar (SSR). This code could be changed 

by the pilot or automatically when some abnormal conditions happen in the 

aircraft such as communication failure, fire, and aircraft hijacked. In such way the 

SSR code is a valuable piece of information for the controller since it gives 

additional information about the aircraft status. 

TCA: Terminal Control Area. 
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A controlled airspace of defined dimensions that is normally established in the 

vicinity of one or more major aerodromes and within which ATC service is 

provided based on the airspace classification. 

TMA: Terminal Control Area. 

The TMA is the ICAO abbreviation for TCA (see TCA). The TMA starts between 

1500 ft and 2500ft, that depends on the height of the highest obstacles in the 

surroundings of the airport and goes on in the CTA sector till 10500 ft. 
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APPENDIX B. THE SERVICES’ INTERFACES 

The code of the Air Traffic Control Simulator (ATCS) consists of approximately 

25,000 lines of code. The reader can refer to the download site5 for a complete code 

listing and documentation. However, in order to have an idea about the services offered 

by the server module, the following are the listings of the aircraft service and the student 

service explained in Chapters IV and V. 
 
package rmiServer; 
 
/************************************************************************ 
 * class IAcVector.java is an interface for the remote aircraft service 
 * of the air traffic control simulator. 
 * @version $Id: IAcVector.java,v 1.3 2006/03/30 17:23:53 msidhom Exp $. 
 * @author Mounir Sidhom 
 ************************************************************************/ 
 
   import java.rmi.*; 
   import java.awt.Point; 
   import java.awt.geom.*; 
   import java.util.Vector; 
 
    public interface IAcVector extends Remote { 
    
   /** 
    * this method echoes the connected client via the RMI service. 
    * It is only used for testing purposes. 
    * @return a string representing the connected client. 
    */ 
       public String getConnectedClient() throws RemoteException; 
    
   /** 
    * add an aircraft to the list of aircraft. 
    * @param ac an instance of AircraftBody. 
    */   
       public void addObjectAircraft(AircraftBody ac) throws RemoteException; 
    
   /** 
    * add an aircraft to the list of aircraft. 
    * @param indicatif the aircraft's flight ID. 
    * @param codeSSR the aircraft's SSR code. 
    * @param speed the aircraft's speed. 
    * @param cap the aircraft's heading. 
    * @param svertical the aircraft's altitude. 
    * @param ptsDest an array of waypoints coordinates. 
    * @param pointsLbls an array of waypoints labels. 
    * @param depTime a string representing the departure time. 
    */ 
    public void addAircraft(String indicatif,String codeSSR, 

float speed,float cap, float alt,float svertical, 
Point [] ptsDest,String [] pointsLbls, 

                                                 
5 http://diana.cs.nps.navy.mil/~msidhom/  
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String depTime) throws RemoteException; 
 

    
   /** 
    * remove the given aircraft from the active aircraft list. 
    * @param indicatif the aircraft's flight ID. 
    */ 
       public void removeAircraft(String indicatif) throws RemoteException; 
    
   /** 
    * get the last removed aircraft. 
    * @return the flight ID of the last removed aircraft. 
    */ 
       public String getRemovedFltID() throws RemoteException; 
    
   /** 
    * remove all aircraft from the aircraft list. 
    */ 
       public void removeAllAircrafts() throws RemoteException; 
    
   /** 
    * start the given aircraft. 
    * @param indicatif the aircraft's flight ID. 
    */ 
       public void startAircraft(String indicatif) throws RemoteException; 
    
   /** 
    * start all aircraft in the aircraft list. 
    */ 
       public void startAllAircrafts() throws RemoteException; 
    
   /** 
    * freeze the given aircraft. This will cause the thread moving  
    * the aircraft to momentarily stop running. 
    * @param indicatif the aircraft's flight ID. 
    */  
       public void freezeAircraft(String indicatif) throws RemoteException; 
    
   /** 
    * freeze all aircraft of the exercise. 
    */ 
       public void freezeAllAircrafts() throws RemoteException; 
    
   /** 
    * unfreeze the given aircraft. This will cause the thread associated 
    * to the aircraft to continue running. 
    * @param indicatif the aircraft's flight ID. 
    */ 
       public void unFreezeAircraft(String indicatif) throws RemoteException; 
    
   /** 
    * unfreeze all aircraft. 
    */ 
       public void unFreezeAllAircrafts() throws RemoteException; 
    
   /** 
    * get the size of the actual aircraft list. 
    * @return the size of the aircraft list. 
    */ 
       public int getAcVectorSize() throws RemoteException; 
 
   /** 
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    * get the aircraft's flight ID. 
    * @param index the index of the aircraft in the list of aircraft. 
    * @return the aircraft's flight ID. 
    */ 
       public String getAcID(int index) throws RemoteException; 
    
   /** 
    * get all aircraft's flight ID. 
    * @return a array of flight ID. 
    */ 
       public String [] getAcsID() throws RemoteException; 
    
   /** 
    * get the aircraft location. 
    * @param indicatif the aircraft's flight ID. 
    * @return a point representing the aircraft location. 
    */ 
       public Point getAcXY(String indicatif) throws RemoteException; 
        
   /** 
    * get the aircraft location. 
    * @param indicatif the aircraft's flight ID. 
    * @return the aircraft location as an array of double values. 
    */ 
       public double[] getLocation(String indicatif) throws RemoteException; 
        
   /** 
    * set the aircraft location. 
    * @param indicatif the aircraft's flight ID. 
    * @param x the x-coordinate of the aircraft location. 
    * @param y the y-coordinate of the aircraft location. 
    */    
       public void setLocation(String indicatif,  

    double x, double y) throws RemoteException; 
  

   /** 
    * set the aircraft parking name. 
    * @param indicatif the aircraft's flight ID. 
    * @param parking the aircraft parking name. 
    */ 
       public void setParkingName(String indicatif,  

 String parking)throws RemoteException; 
 

   /** 
    * get the aircraft parking name. 
    * @param indicatif the aircraft's flight ID. 
    * @return the parking name of the given aircraft. 
    */     
       public String getParkingName(String indicatif)throws RemoteException;    
    
   /** 
    * set the aircraft route waypoints. 
    * @param indicatif the aircraft's flight ID. 
    * @param ptDest an array of waypoints. 
    */      
       public void setRoutePoints(String indicatif,  

Point[] ptDest)throws RemoteException; 
 
 

/** 
    * get all aircraft positions. 
    * @return an array of positions. 
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    */ 
       public float [][] getAcsXY() throws RemoteException; 
        
   /** 
    * set the heading of the aircraft. 
    * @param indicatif the aircraft's flight ID. 
    * @param cap the new heading. 
    */    
       public void setCap(String indicatif, double cap) throws RemoteException; 
        
   /** 
    * make the aircraft reach a given point. 
    * @param indicatif the aircraft's flight ID. 
    * @param x the x-coordinate of the point to be reached. 
    * @param y the Y-coordinate of the point to be reached. 
    */     
       public void reachPoint(String indicatif, int x, int y) 

throws RemoteException; 
    

       public void setSegment(String indicatif, int segment) 
throws RemoteException; 
 

       public Point getAcSpeedXY(String indicatif) throws RemoteException; 
    
       public float [][] getAcsSpeedXY() throws RemoteException; 
    
   /** 
    * get the aircraft speed. 
    * @param indicatif the aircraft's flight ID. 
    * @return the aircraft speed. 
    */ 
       public float getAcSpeed(String indicatif) throws RemoteException; 
    
   /** 
    * get all aircraft speeds. 
    * @return an array containing all aircraft speeds. 
    */    
       public float [] getAcsSpeed() throws RemoteException; 
       
   /** 
    * get the aircraft heading. 
    * @param indicatif the aircraft's flight ID. 
    * @return the aircraft heading. 
    */ 
       public int getAcCap(String indicatif) throws RemoteException; 
    
   /** 
    * get all aircraft's headings. 
    * @return an array containing all aircraft headings. 
    */    
       public int [] getAcsCap() throws RemoteException; 
    
   /** 
    * get the aircraft altitude. 
    * @param indicatif the aircraft's flight ID. 
    * @return the aircraft altitude. 
    */ 
       public float getAcLevel(String indicatif) throws RemoteException; 
    
   /** 
    * get all aircraft's altitudes. 
    * @return an array containing all aircraft altitudes. 
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    */ 
       public float [] getAcsLevel() throws RemoteException;    
    
   /** 
    * increase the altitude of a given aircraft. 
    * @param indicatif the aircraft's flight ID. 
    * @param alt the new altitude to reach. 
    * @param rate the climbing rate. 
    */  
       public void upAc(String indicatif,float alt,float rate)  

throws RemoteException; 
 

   /** 
    * decrease the altitude of a given aircraft. 
    * @param indicatif the aircraft's flight ID. 
    * @param alt the new altitude to reach. 
    * @param rate the climbing rate. 
    */ 
       public void downAc(String indicatif,float alt, float rate) 

throws RemoteException; 
 

   /** 
    * set the speed of the given aircraft. 
    * @param indicatif the aircraft's flight ID. 
    * @param newSpeed the aircraft's new speed. 
    */ 
       public void setAcSpeed(String indicatif, float newSpeed) 

throws RemoteException; 
 

   /** 
    * change the aircraft's heading. 
    * @param indicatif the aircraft's flight ID. 
    * @param sens the direction of the turn (left = false, right = true). 
    */    
       public void acTurn(String indicatif,boolean sens, short cap,float rate) 

throws RemoteException; 
 

   /** 
    * get all SSR code of the aircraft list. 
    * @return an array of all SSR codes 
    */ 
       public String [] getAcsCodeSSR()throws RemoteException; 
    
   /** 
    * get the SSR code of the given aircraft. 
    * @param indicatif the aircraft's flight ID. 
    * @return a string representing the SSR code of the aircraft. 
    */ 
       public String getAcCodeSSR(String indicatif)throws RemoteException; 
    
   /** 
    * set the SSR code of the given aircraft. 
    * @param indicatif the aircraft's flight ID. 
    * @param newCodeSSR the new SSR code. 
    */ 
       public void setAcCodeSSR(String indicatif, String newCodeSSR) 

throws RemoteException; 
 

    
/** 

    * get the category code of the given aircraft. 
    * @param indicatif the aircraft's flight ID. 
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    * @return a string representing the category of the aircraft. 
    */ 
       public String getAcCodeSpec(String indicatif) throws RemoteException; 
    
   /** 
    * get the category code of all aircraft. 
    * @return a array of strings representing the category of the aircraft. 
    */ 
       public String [] getAcsCodeSpec() throws RemoteException; 
 
   /** 
    * set the category code of the given aircraft. 
    * @param indicatif the aircraft's flight ID. 
    * @param newCodeSpec the new aircaft's category code. 
    */ 
       public void setAcCodeSpec(String indicatif, String newCodeSpec) 

throws RemoteException; 
 

   /** 
    * get all aircraft status. 
    */ 
       public boolean [] getAcsStatus() throws RemoteException; 
    
   /** 
    * get the aircraft's waypoints labels. 
    * @param indicatif the aircraft's flight ID. 
    * @return an array of the aircraft's waypoints labels. 
    */ 
       public String [] getAcRouteLabels(String indicatif)  

throws RemoteException; 
 

   /** 
    * get the aircraft's waypoints. 
    * @param indicatif the aircraft's flight ID. 
    * @return an array of the aircraft route's waypoints. 
    */ 
       public Point [] getAcRoutePoints(String indicatif) 

throws RemoteException; 
    
   /** 
    * get the current route segment of the given aircraft. 
    * @param indicatif the aircraft's flight ID. 
    * @return an int representing the current segment. 
    */         
       public int getCurrentAcSegment(String indicatif) throws RemoteException; 
    
   /** 
    * get departure times of all aircarft. 
    * @return an array of depature times. 
    */    
       public int [] getAcsDepTime() throws RemoteException; 
    
   /** 
    * get the departure time of the given aircraft. 
    * @param indicatif the aircraft's flight ID. 
    * @return a string representing the deaprture time of the aircraft. 
    */ 
       public String getAcTime(String indicatif) throws RemoteException;  
    
} 
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package rmiserver 
 
/**************************************************************************** 
 * class StudentServiceInterface is a remote service interface to keep track 
 * of all activities in the Air Traffic Control Simulator. 
 * @version $Id: StudentServiceInterface.java,v 1.1 2006/02/03 17:16:57$ 
 * @author Mounir Sidhom 
 ***************************************************************************/ 
    import java.rmi.*; 
 
    public interface StudentServiceInterface extends Remote { 
    
   /** 
    * get the student's identification string. 
    * @param name the student's name. 
    * @return a string representing the student ID. 
    */ 
       public String getStudentID(String name) throws RemoteException; 
        
   /** 
    * get the student's nam. 
    * @param studentID the student ID. 
    * @return a string representing the student name.  
    */ 
       public String getStudentName(String studentID) throws RemoteException;   
    
   /** 
    * get the time stamp of the student's connection. 
    * @param studentID the student ID. 
    * @return a string representing the time stamp of the connection.  
    */ 
       public String getTimeStamp(String studentID) throws RemoteException; 
    
   /** 
    * insert the given event in the studens' database. 
    * @param studentID the student ID. 
    * @param event the given event. 
    */ 
       public void insertEvent(String studentID, String event) 

throws RemoteException; 
   } 



 98

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 99

APPENDIX C. SCENE AUTHORING INTERFACE (SAI) 
 

 
The X3D Scene Authoring Interface (SAI) is an application programming 

interface (API) for the Extensible 3D Graphics (X3D) scene graph. The SAI combines 

the old external authoring interface and scripting interface (EAI) from the VRML97 

specification and provides a single programming interface for either internal or external 

programming. SAI scripts will work for Script nodes inside the scene, external applets 

outside the scene in a Web page, Java and EcmaScript (i.e. JavaScript), and for language-

independent scripting via XML's Document Object Model (DOM) (Li & Yang, 2006). 

 

By using SAI, applications are able to create instances of browsers and manage 

the contents of the browser. External interactions form a separate code path from their 

close relative the scripting interactions. The principle difference is that an external 

interaction is not a direct part of the scene graph, where the scripting is. This component 

contains all of the implementation work needed to provide external access to the scene 

graph. 

 
This thesis was first projected to use the SAI package to implement a 3D model of 

the tower module. The process was eased by the use of Visx3D6 as a framework 

application. First, a 3D model of Tunis-Carthage International Airport was developed. 

Second, an early version of an aircraft 3D model7 developed by the author was inserted in 

the airport (see Figure 38). However, this idea was discarded fro the following reasons: 

- The SAI package is still in development phase, and changes in its implementation 

are frequent which make its users uncertain about their software especially if it is 

a large one like the air traffic control simulator. 

- It is difficult to dynamically insert new 3D objects in an already running X3D 

scene. 

                                                 
6 Web site is at www.vizx3d.com 
7 Available at http://web.nps.navy.mil/~brutzman/Savage/AircraftFixedWing/C130-Hercules-Tunisia  
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- The environment setting to use SAI is complicated and not yet standardized. It 

requires many modifications to the application’s class path. 

- The event delivery in SAI isn’t deterministic. Don Brutzman wrote “the precise 

timing of event delivery (i.e. the event model) within X3D SAI scripts is no 

longer deterministic within the time bounds of a single event cascade.” 

(Brutzman, 2003).  

 

 
Figure 39. 3D model of Tunis airport rendered by SAI 

 
When SAI reaches maturity, it will be a valuable asset to implement 3D models, 

such as the tower control module for the air traffic control simulator. 
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