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ABSTRACT 

Shallow water bathymetry is important for both safe navigation and natural 

resource management purposes.  Extracting depth information from spectral imagery 

allows identification of benthic features and characterization of coral reef habitats, 

especially in remote islands. Techniques have been developed to extract water depth from 

multispectral imagery (Lyzenga, 1978; Philpot, 1989). These techniques can be difficult 

to apply in optically shallow waters with heterogeneous bottom types and varying albedo, 

and require tuning of multiple parameters.  An improved algorithm to extract water depth 

from multispectral satellite imagery was proposed by Stumpf et al. (2003) to generate 

bathymetric maps with limited a priori information.  The algorithm is based on the ratios 

of transformed reflectance values in the visible bands, retrieving greater depths than 

previous algorithms and compensating for variable bottom type and albedo. This method 

requires fewer tunable parameters and can be applied to low-albedo features. Although 

Stumpf et al. (2003) conclude that the method is robust and works well over variable 

bottom types, recent studies have pointed out limitations, mostly attributable to varying 

albedo (Clark, 2005; Densham, 2005). This research attempts to quantify the contribution 

of variable benthic substrates to the algorithm’s accuracy by classifying the scene into its 

main bottom types and tuning the coefficients separately.  The algorithm is evaluated 

using a QuickBird high resolution multispectral image of the remote Midway Atoll, in the 

Northwestern Hawaiian Islands.  Classifying the image into two main bottom types and 

tuning the coefficients separately produced a small improvement in the accuracy of the 

bathymetric estimates when bottom reflectance is included as a factor.  This result 

indicates that Stumpf et al. (2003)’s ratio method is not insensitive to variable bottom 

type, and that knowledge of the distribution and extent of different benthic substrates in 

optically shallow waters has the potential to improve bathymetric derivation in remote 

coastal areas such as coral reef environments in the Pacific.  
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I. INTRODUCTION  

A. PURPOSE OF RESEARCH  
This research focuses on bathymetric mapping techniques in remote islands using 

satellite-deployed spectral imagery.  Remote sensing from satellite platforms continues to 

be an essential tool to measure and study terrestrial, atmospheric, and oceanic properties. 

Spectral imagery of marine environments collected from satellite platforms has been used 

to augment current navigational charts (Busheuv, 1991; Chauhan, 2005), study coral reef 

features (Mumby, 2002; Lubin, 2001), monitor the health of coastal vegetation (Green et 

al., 2000; Kogan, 2001), and study ocean surface characteristics (Barton, 1995). The 

routine availability of information from satellite sensors has greatly bolstered the 

advancement of habitat mapping techniques and capabilities, including bathymetric 

derivation.  Determination of water depth using traditional ship-based techniques has 

been disproportionately concentrated to areas that encompass high marine traffic, densely 

populated regions, and that are typically easy to access. Portions of the ocean that are 

remote and isolated have been spared extensive bathymetric mapping, typically due to 

high costs and logistics. Satellite-based remote sensing can remedy this problem by 

providing data on remote locations that would otherwise be hard to reach by ship or 

airborne sensors. Bathymetric information from remote Pacific islands and atolls is 

required for safe navigation and for monitoring benthic marine resources (Mumby, 2002; 

Stumpf et al., 2003).  Although measuring the ocean from space is only one of many 

applications for optical remote sensing, this field is rapidly evolving and has been 

effectively used in shallow marine environments to determine water depths, identify 

benthic substrates, and estimate the biomass of submerged vegetation (Green et al., 

2000).   

 Some of the early methods of mapping bathymetry were conducted using 

instruments mounted on glass-bottom boats or aircraft to analyze ocean radiances 

(Duntley, 1963).  Other techniques ranged from basic aerial photography (Tewinkel, 

1963) to more advanced analysis of multispectral satellite images (Polcyn, 1973; 

Weidmark, 1981). Bathymetry derivation from spectral imagery has been pursued for 

over five decades now by numerous researchers, among them Tewinkel (1963), Duntley 
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(1963), Rosenshein (1977), Philpot (1989), Maritorena (1994). In particular, a seminal 

paper by Lyzenga (1978) presented an empirical method to extract water depth and 

bottom type information.  Lyzenga provided the foundation for subsequent algorithms 

and is still widely cited in the optical oceanography literature. Stumpf et al., (2003) 

expanded on Lyzenga’s (1978) original water depth derivation.  Stumpf et al. (2003) 

proposed an algorithm that uses a ratio of reflectances (hereby referred to as the “ratio 

method”) claiming that it retrieves accurate depths over variable bottom types and low-

albedo environments. 

 While the spatial resolution of traditional satellite-deployed optical sensors such 

as LANDSAT is often not sufficient for navigational use or fine-scale benthic 

classifications of ocean environments, the advent of high resolution (2-4m), multispectral 

satellite imagery has allowed higher accuracy in deriving water depth, mapping coral 

reefs benthic features, and study other ecological properties of marine environments.   

This shift first occurred in 1999 with the launch of IKONOS 2 by Space Imaging, which 

sent into orbit the first commercial 4-meter, multispectral imager.  In 2002, the QuickBird 

satellite was launched by DigitalGlobe, providing an improved 2.4 meter field-of-view 

for multispectral and sub-meter resolution for panchromatic imagery.  The increased 

spatial resolution makes it possible to better discriminate benthic substrates, improve 

water depth derivation, and obtain marine habitat maps with higher accuracy (Mumby 

2002).   

B. SPECIFIC OBJECTIVES 
The objective of this study is to test the potential of deriving bathymetry over 

variable substrates at Midway Atoll, Northwestern Hawaiian Islands, using QuickBird 

multispectral imagery.  In particular, building on work by Clark (2005) and Stumpf et al. 

(2003), this work will: 

1) Use a QuickBird multispectral image to categorize benthic substrates 

at Midway Atoll based on their spectral characteristics, and 

groundtruth data collected in situ 

2) Use the ratio method to extract depth separately over these variable 

substrates  
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3) Compare the bathymetric results derived over separate bottom types 

with bathymetric results derived over the whole image (irrespective of 

bottom type)   

The motivation for this work originates from a limitation pointed out by Clark 

(2005) who found the ratio method for bathymetry derivation is altered by varying 

albedos and produces inaccurate results for different substrates. Clark (2005) suggested 

that the accuracy of the ratio method might be improved through pre-classification of 

bottom substrate.  Using the 2004 QuickBird satellite image acquisition for Midway 

Atoll, this hypothesis will be tested by classifying the scene into the main bottom types, 

and tuning the bathymetry separately for each class.  

A previous data collection of Midway Atoll was conducted with the IKONOS 

multispectral imager (4m pixel resolution) in 2000. The 2004 QuickBird multi-spectral 

image used in this study provides an almost two-fold increase in spatial resolution 

(2.4m), affording the additional benefit of obtaining more detailed bathymetric 

information for Midway Atoll than is currently available. 
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II. PRINCIPLES OF RADIATIVE TRANSFER IN THE OCEAN 
AND ATMOSPHERE  

Optical remote sensing is playing an increasingly important role in assessing and 

monitoring marine environments.  It is important to understand the principles of light, its 

transmission through different mediums, and the optical systems designed to collect the 

imagery.  In passive remote sensing, the sensor detects incoming solar radiation reflected 

or scattered from the surface of the earth, while active remote sensing uses artificially- 

generated energy sources, such as radar, to receive information reflected back from 

objects.  Understanding the interactions of light energy with the atmosphere and the water 

column is essential to retrieving bathymetry from satellite-deployed, passive optical 

sensors such as the QuickBird imager. The following is a summary of the principles 

governing these interactions. 

A. PRINCIPLES OF RADIATIVE TRANSFER  
Optical remote sensing uses the visible, near-infrared (NIR), and shortwave 

infrared (SWIR) portions of the electromagnetic spectrum to observe the radiation that is 

emitted or reflected from targets on the ground or water column. The reflected energy 

received by the optical remote sensor is the result of interactions from the air-sea 

interface, atmospheric absorption and scattering, and the biological constituents in the 

water column (Morel, 1977). The portion of the electromagnetic spectrum sensed by a 

spectral imager and the pathways of light from the sun to the ocean and back to the 

sensor are relevant topics to bathymetric studies from remotely sensed data and are 

addressed below.  

1. Electromagnetic Spectrum 

The electromagnetic spectrum is classified into several spectral regions.  Optical 

remote sensors typically exploit the visible portion of the electromagnetic spectrum when 

conducting bathymetric studies from space based sensors: its ability to penetrate water 

makes it the most favorable for extracting water depth information. The visible portion of 

the electromagnetic spectrum extends from about 400nm (blue-violet light) to 700nm 

(red light).  Additionally, solar radiation that is reflected in the near-infrared band (above 

700nm) from surfaces above sea water is often used when analyzing multispectral images 
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of coastal environments (Robinson, 2004).  Although the water column in the near 

infrared wavelengths absorbs most of the solar radiation before it returns to the sensor, 

this band is typically exploited in the preprocessing portion of image analysis (Robinson, 

2004). Figure 1 depicts the portions of the electromagnetic commonly used for 

bathymetric studies.  

 
Figure 1.   Visible portions of the electromagnetic spectrum (From University of 

Arkansas at Little Rock 2006). 
 

2. Transmittance, Absorption, and Reflection 
The basic interactions of light with matter involve absorption, reflection, 

scattering, or transmittance (Martin, 2004).  The particular type of interaction will depend 

on the wavelength of incident light, the frequency, and the angle of incidence (Olsen, 

2006).  Figure 2 illustrates these interactions.  

Radiation emitted from the sun must traverse the atmosphere twice before being 

collected back by a sensor orbiting in space. This translates in solar radiation being 

absorbed, scattered, and reflected two-fold before reaching the sensor.  As will be 

detailed later in Chapter V, these interactions must be accounted for through a series of 

image analyses. Furthermore, these interactions are compounded when attempting to 

retrieve data from benthic environments, due to the influence of the water column. 
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Reflection of energy from the earth’s surfaces is the specific interaction that allows 

information to be collected by a spectral imager from land or marine targets. 

 
Figure 2.   Possible interactions of light matter (From Avery and Berlin, 1992). 

 

3. Spectral Signatures 
Spectral signatures are the variations in reflected or absorbed electromagnetic 

radiation at varying wavelengths, which may identify particular objects. For any given 

material, the amount of reflectance, absorption, or scattering will depend on wavelength 

(Olsen, 2006). The relationship between the energy that is reflected, absorbed, or 

transmitted is used to determine the spectral signature of an object on the ground or in the 

water.  Spectral signatures make it possible to either positively identify certain substrates 

(Short, 2006), as in the case of certain minerals using hyperspectral imagery (Lillisand 

and Kiefer, 2004), or distinguish them from other substrates as in the case of vegetation 

types illustrated in Figure 3.  Each substrate type has spectral characteristics that can be 

used to distinguish it from other objects.  Substrates in marine benthic environments (e.g. 

coral reefs) can also be characterized by their spectral signatures (Lubin et al., 2001).  

Sand for example, has a much higher reflectance at visible wavelengths than do other 

objects, such as coral or algae.  Figure 4 illustrates some common coral reef benthic 

substrates.  
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Figure 3.   Spectral signatures of common terrestrial objects (From Short, 2006). 

 
Figure 4.   Albedo values for different forms of algae and coral (From Maritorena et al., 

1994). 

 

B. INTERACTIONS OF LIGHT WITH THE ATMOSPHERE 
Electromagnetic radiation traveling through the atmosphere undergoes several 

changes based on its wavelength.  Primary effects are absorption and scattering.   
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1. Atmospheric Absorption 
The atmosphere absorbs incoming energy primarily due to water, carbon dioxide, 

and ozone (Lillesand and Kiefer, 2004).  Atmospheric absorption is highly dependant on 

wavelength.   The atmosphere will absorb most of the energy transmitted at wavelengths 

below 350nm and above 10 microns. At these wavelengths, the atmosphere is considered 

opaque: most of the energy is not transmitted.  However in the visible and near infrared 

portions of the spectrum, most of the incoming energy is transmitted through the 

atmosphere.  This is commonly referred to as a spectral window (Thomas and Stamnes, 

1999) and is illustrated in Figure 5.  Since the majority of energy is transmitted through 

the atmosphere in the visible/near infrared bands, optical remote sensors often exploit 

these regions of the spectrum.   

 

 
Figure 5.   Absorption spectrum (From http://rst.gsfc.nasa.gov/Into/Part2_3.html). 
 
 

2. Atmospheric Scattering 
Atmospheric scattering results from the interaction of radiation with gas 

molecules and aerosols (suspended particles).  Such is the magnitude of this interaction 

that in a oceanic image, only 8 – 10 percent of the signal corresponds to oceanic 

reflectance, the rest due to scattering (Mishra et al., 2005). There are two primary 

consequences of atmospheric scattering: 1) radiant energy is reduced, and 2) there is 

unwanted gain at the sensor (Martin, 2004).  Scattering can be subdivided in Rayleigh 

and Mie scattering.   Rayleigh scattering is the scattering of energy by particles that are 

smaller than the wavelength of energy. Since Rayleigh scattering is inversely 
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proportional to the fourth power of wavelength, shorter wavelengths are scattered more 

than longer wavelengths (Lillisand and Kiefer, 2004).  This type of scattering is most 

noticeable in the visible wavelengths.  Mie scattering occurs when the diameter of 

atmospheric particles is similar to the wavelength of the energy being radiated.  Common 

examples of Mie scattering are smoke, dust, and water vapor.  Atmospheric gases and 

particles are also responsible for radiance that is scattered and reaches the sensor without 

contacting the earth’s surface.  This is referred to as path radiance (Green et al., 2000). 

Path radiance is therefore also defined as the radiance recorded at the senor resulting 

solely from the downwelling solar and sky radiation (Jenson, 2000). 

3. Atmospheric Correction for Spectral Imagery 
The effects of the atmosphere on incoming radiation can be expressed 

mathematically.  Figure 6 details the primary interactions of energy within the 

atmosphere as it radiates the ocean surface and returns to the sensor.  Mishra (2005) 

divides the radiance ( )t iL λ  received by the sensor at a particular wavelength iλ  into 

several components:  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )t i r i a i i g i i w iL L L T L t Lλ λ λ λ λ λ λ= + + +  (1) 

where ( )r iL λ and ( )a iL λ are radiances gathered in the atmosphere by scattering, T is 

direct transmittance, ( )g iL λ is the contribution from specular reflectance of sunlight from 

the sea surface, t  is the diffuse atmospheric transmittance of the atmosphere, and ( )w iL λ  

is the water leaving radiance.  The last component contains the data that is needed to 

derive bathymetric data.  Once the atmospheric effects can be corrected for, the equation 

is simplified, and bathymetric retrieval is dependent solely on light interactions with the 

water column.   
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Figure 6.   Interactions of energy with the atmosphere (After Green et al., 2000). 

 
 

C. INTERACTIONS OF LIGHT AND WATER 
Optical processes in the water column must be accounted for to successfully 

derive information about benthic environments from remotely sensed data,  and they are 

considered more complex than atmospheric interactions due to the variety of interactions 

that take place (Robinson, 2004). Since light is readily absorbed by water, optical remote 

sensing is usually confined to shallow clear waters, where light can penetrate up to 30 or 

40m.  Sea water contains an abundance of dissolved and particulate matter.  These 

particles are optically important and their concentration varies in the water column both 

spatially and temporally (Mobley, 1994). The optical properties of the water column have 

been traditionally divided into two distinctive classes: the inherent and apparent optical 

properties (Smith and Baker, 1981). 

1. Inherent Optical Properties (IOPs) 
Inherent optical properties are those properties that depend only upon the medium 

and are independent of the ambient light field within the medium (Mobley, 1994).  When 

sunlight enters the water column, it will interact with the particles in the water.   These 

particles will cause the incident light to be altered by scattering or absorption (Thomas 

and Stamnes, 1999). The scattering and absorption characteristics are defined as inherent 

optical properties of water (IOPs). The two fundamental IOPs are the absorption and 

scattering coefficient.  These can be specified by the spectral absorption coefficient, 

spectral scattering coefficient, and spectral beam attenuation coefficient (Mobley, 1994).  

The spectral beam coefficient can be used to determine the light loss due to 

absorption by dissolved and particulate matter as well as scattering in pure water by 
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particulates (Mobley, 1994). Figure 7 illustrates the dependence on wavelength for the 

absorption and scattering coefficients.  Absorption increases below 400nm and above 

600nm wavelength range. Moreover, the scattering coefficient is at its minimum at 

visible wavelengths and increases rapidly in the lower wavelengths. The graph 

demonstrates how visible wavelengths are ideal to carry out remote sensing in oceanic 

environments.    

 
Figure 7.   Water absorption and scattering (From University of California Santa Barbara 

Department of Geography 2006). 
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2. Apparent Optical Properties (AOPs) 
An optical property is apparent if it is dependent on the medium and on the 

directional structure of the ambient light field (Mobley, 1994).  Much like inherent 

optical properties, apparent optical properties (AOPs) are also dependent on the dissolved 

particles and sediment in the water column.  Unlike IOPs, these properties cannot be 

measured in situ since they depend on the ambient radiance (Mobley, 1994). The 

following AOPs are most relevant to bathymetric studies for retrieving estimates of the 

water parameter concentrations: average cosines, reflectance, and diffuse attenuation 

coefficients (Mobley, 1994; Robinson, 2004).    

The average cosine,u , is a useful characterization of the angular distribution of 

the light field in the water body at given point.  This can be regarded as the average 

cosines of photons in the water column at a particular point shown by 

 ( ) ( ) ( ); ;
;

( ; )
d u

o

E z E z
z

E z
λ λ

µ λ
λ

−
=  (2) 

where the values of ,d oE E and oE  are the downward, upward, and scalar irradiances 

(Mobley, 2004).   

 The spectral irradiance reflectance ( );R z λ is defined as the ratio of spectral 

upwelling to downwelling plan irradiances (Mobley, 2004).  The downwelling irradiance, 

dE  is measured just above the surface and the upwelling irradiance, uE  is measured just 

below the surface: 

 ( ) ( )
( )

;
;

;
u

d

E z
R z

E z
λ

λ
λ

=  (3) 

This parameter is often evaluated immediately below the water surface at depth 

z at a particular wavelength. 

The spectral remote sensing reflectance, rsR , is defined as the ratio of water 

leaving radiance wL , to the downwelling irradiance, dE  (Doxaran, 2006). This relationship 

can be calculated just above the water’s surface: 
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( )
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θ φ λ

θ φ λ
θ φ λ

=  (4) 

The remote sensing reflectance is important in that it calculates the amount of 

downwelling light incident on the water’s surface that is returned though the surface in a 

particular direction to the collecting sensor.  

Light is attenuated exponentially with depth due to absorption and scattering 

properties of the water column.  This decrease in intensity of light as a function of depth 

is expressed mathematically by Beer’s law as:  

 ( ) ( ) ( )0 KzE z E e −=  (5) 

( )E z  and ( )0E  are the irradiances at a given depth and the surface.  K  is the 

attenuation coefficient and z is depth.  Beer’s law can then be modified to take into 

account changing sun illumination and downwelling irradiance at several depths: 

 ( ) ( )
( )' '

0

;

; 0;

z

dK z dz

d dE z E e
λ

λ λ
−∫

=  (6) 

One of the most important optical properties of sea water is the diffuse attenuation 

coefficient, ( )( )1,dK z mλ − .  This AOP provides a direct measure of penetration of 

radiant energy in the water column and is expressed as: 

 ( ) ( );1;
( ; )

d
d

d

dE z
K z

E z dz
λ

λ
λ

= = −  (7) 

Although this coefficient is classified as an apparent optical property, it is 

principally determined by the IOPs in the water column and not so much to the ambient 

light field (Kirk, 1994; Mishra, 2005).   

Finally, it is important to mention that Jerlov (1976) developed a classification 

scheme of oceanic waters based on the spectral profile of dK , and that this scheme is still 

widely used today in the optical oceanography community.  According to Jerlov, Type I 

waters are extremely clear waters: Type II waters have greater attenuation and greater 

amounts of organic constituents in the water column: Type III waters are more turbid and 
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have much less clarity.  Coral reef environments like Midway Atoll generally fall 

between Type I and Type II waters since they are generally very clear and light 

penetrates farther than in other coastal waters. For this reason, coral reef environments 

are particularly ameneable to optical remote sensing studies. 

Figure 8 illustrates the basic interaction of lights as it propagates through the 

water column. 

 
Figure 8.   Interaction of energy with the water column (After Green et al., 2000). 

 

D. OPTICALLY SIGNIFICANT CONSTITUENTS OF NATURAL WATERS 

The composition of the water column directly influences the level of absorption 

and scattering of photons.  As mentioned, absorption and scattering properties in the 

water column itself will considerably modify the spectral reflectance of an object at depth 

(Lyzenga, 1981).   In addition, the abundant organic and inorganic compounds in the 

water will increase the attenuation in the visible wavelengths.   The primary substances in 

ocean waters that significantly alter the light entering the water column are dissolved 

substances and particulate matter.  

1. Dissolved Matter 

Ocean water contains numerous dissolved substances.  The substances increase 

scattering in the ocean and have limited effects on the absorption of light in the visible 

wavelengths. The predominant dissolved substance in the ocean is salt. The ocean 

average salinity is about 35 parts per million and significantly increases scattering of 

incoming irradiance (Mobley, 1994).   

Colored dissolved organic material (CDOM) or yellow matter is associated with 

decayed phytoplankton and consists mostly of humic and fulvic acids (Robinson, 2004). 



16 

These compounds are highly absorbent within ultra violet-blue wavelengths and decrease 

at the longer wavelengths, and are most dominant in coastal waters where runoff can flow 

into rivers and lakes.  In remote ocean locations, CDOM plays a much smaller role and 

other constituents, such as particulate matter,  may be more prevalent.   

2. Particulate Matter 
Particulate matter in the oceans is a major contributor to absorption.  Organic 

particulate matter is primarily represented by phytoplankton, whose highest absorption is 

in the blue and red wavelengths.  The amount of chlorophyll a, a dominant 

photosynthetic pigment, will proportionally increase the amount of light absorption in a 

body of water.   

Inorganic particles enter the water as dust, soil, or river runoff into coastal areas.  

When suspended sediment is present in the water column, much of the reflected energy 

returned to the sensor is from the sediment and not from the benthic environment 

(McCoy, 2005).  In shallow oceanic environments, suspended sediments are often present 

due to wave and wind action.    

E. ALGORITHMS FOR BATHYMETRY DERIVATION FROM SPECTRAL 
IMAGERY 
For depth to be retrieved using spectral imagery, the light reflected from the 

surface of the ocean, the contributions from the water column, and the atmospheric 

effects all have to be removed (Zhongping et al., 1999).  There are several radiative 

transfer equations that are used to derive water depth from remotely sensed data.  

Numerous methods for deriving bathymetric data are based on several implicit 

assumptions and range in complexity (Lyzenga, 1978, 1981; Benny and Dawson, 1983; 

Philpot, 1989).  Some algorithms calculate bottom reflectance assuming that water 

properties are homogeneous and light is attenuated exponentially with depth (Lyzenga, 

1978, 1981; Philpot, 1989).  These are referred to as “linear methods”. Other radiative 

transfer equations that have been developed (Stumpf et al., 2003) are based on the ratio of 

two or more bands (“ratio method”).  

1. Linear Method 

There are two primary assumptions made by linear methods discussed in this 

section: i) light is attenuated exponentially with depth in the water column.  ii) water 
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quality is consistent within the particular image (the attenuation coefficient, K , remains 

constant) (Louchard, 2003; Green et al., 2000). Several of the variables in this section 

have been modified for consistency. 

a. Lyzenga (1978, 1985) Method 
Lyzenga (1978) derived a linear relationship to determine water depth 

applying the two assumptions mentioned above.  Lyzenga (1985) developed a technique 

that could use one or more wavelengths depending on the water column.  If the optical 

properties of the water and the bottom reflectance are uniform, a single wavelength band 

can be used to describe the relationship between water depth and radiance.  The 

fundamental principle for this technique is derived from Beer’s law (eq. 8).  The 

relationship between the radiance to depth and bottom reflectance can be expressed as: 

 ( ) ( )gz
rs bR A R e R−

∞ ∞= − +  (8) 

where bA  is the irradiance reflectance of the bottom (albedo), R∞  is the reflectance of the 

water column, and g  is a function of the diffuse attenuation coefficient for upwelling and 

downwelling light.  This equation can be solved for depth and expressed as: 

 ( ) ( )1 ln lnb rsz A R R R
g ∞ ∞⎡ ⎤= − − −⎣ ⎦  (9) 

Lyzenga (1985) further developed a technique to determine water depth if the optical 

properties are not uniform.  In this case, two or more bands are applied to the equation 

(above) and a linear solution is derived:   

 o i i j jZ a a X a X= + +  (10) 

where , ,o i ja a a  are derived constants for the waters optical properties and X is the 

transformed radiance at a particular band.  This method provides a solution for bottom 

albedo and does not assume the reflective properties of bottom substrates are constant 

throughout the scene.  Since the intensity of light is assumed to be decaying 

exponentially with depth, radiance can be linearised using natural logarithms.  If iX  is 

the transformed radiance, the equation can be written as: 

 ln[ ( ) ( )]i w i iX R Rλ λ∞= −  (11) 
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 This method is difficult to implement due to the complexity of having to 

solve for five variables.  Furthermore, to derive accurate depth from this method, the 

substrates must be identified and depth indices for each substrate have to be calibrated 

individually (Hedley, 2005). 

b. Benny and Dawson (1983) Method 
Benny and Dawson (1983) provide another method of predicting 

bathymetry.  This method makes the additional assumption that the reflective properties 

(or albedo) remain constant throughout the scene. This method assumes the light received 

at the sensor follows a certain path through the water column.   Depth can be determined 

through an algorithm that takes into account the light path from the sea surface to the 

bottom and back up to the sea surface (Green et al., 2000).  Additionally, specular 

reflection from the sea surface and atmospheric scattering are taken into account.  This 

method is given by: 

 ( ) ( )
( )( )'

log log
( )

1 cos
e x d e o dL L L L

z depth
k ec E

− − −
=

− +
 (12) 

where xL  is the signal receive at the sensor from water depth x , dL  is the signal received 

by the senor from deep water, oL  is the signal receive by the sensor for shallow water, 

and 'E is the sun elevation angle that is corrected for the water column.  The light path to 

calculate the sun angle elevation is described in detail in Figure 9. 

 
Figure 9.   Radiation path in the water column to determine sun angle elevation (From 

Green et al., 2000). 
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c. Jupp (1988) Method 

Jupps’ method makes the same assumptions as Benny and Dawson (1983).  

This method is composed of three parts to determine water depth.  These are: (1) the 

calculations of depth of penetration zones (DOP) (2) the interpolation of depths within 

penetration zones (3) and the calibration of depths within the zones (Green et al.,  2000).  

This method is based on the fundamental principle that radiation is attenuated at different 

rates as it penetrates the water column.  Different wavelengths will be attenuated until 

they becomes extinct at a certain depth.  The maximum depth that each band can 

penetrate will be recorded as a depth penetration zone for that band. Each DOP will 

essentially be assigned a maximum floor.  Furthermore, each DOP must be calibrated in 

order to obtain the most realistic values for the algorithm.   This is usually performed 

over a homogenous substrate, such as sand.  After these steps are performed, the depth 

can be calculated with the expression: 

 
( ) ( )

1 1

ln ln
( )

2 2

N N
e bi i

i ii i

L L
z depth

k N k N= =

= −
− −∑ ∑  (13) 

where eL is the measured radiance at the sensor, N is the number of spectral bands, and 

bL  is the radiance at the seabed or albedo.  Figure 10 depicts the DOPs for Landsat 

Thematic Mappper bands 1-4.  As shown, the maximum penetrating depths for each 

bands is indicated by 1 4z z− .  The blue band has the maximum depth of penetration while 

the NIR has the lowest.  These values are used to identify the boundaries for each DOP 

zone.   
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Figure 10.   Depth of Penetration Zones (DOP) for Landsat bands 1-4 (From Green et al., 

2000). 
 

d. Philpot (1989) Method 

Philpot (1989) developed an expression to derive depth that incorporated 

the effects of the water column and atmospheric properties. This expression includes 

factors such as the air-sea interface, atmospheric effects, and illumination.  This is 

expressed by: 

 ( )( ) ( )( ) 0 0gz
d d b d sg pathL z CE A CE L Lρ ρ−

∞ ∞= − − + − + +  (14) 

dL  is the radiance received at the sensor over water depth z , C  is a 

transmission factor for the atmosphere and water surface, ( )0dE −  is the downwelling 

irradiance just below the water surface, R∞  is the irradiance reflectance of optically deep 

water, and sgL  is the sun glint.  Melsheimer and Liew (2001) express this equation after 

the measured radiance is converted to apparent reflectance R .  If apparent reflectance for 
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deep water, as well as the surface and attenuation coefficients are known, depth can be 

retrieved through the expression: 

 ( ) ( ) ( ) ( )( )1 log log 0z R z R R R
g

⎡ ⎤ ⎡ ⎤= − − ∞ − − ∞⎣ ⎦ ⎣ ⎦  (15) 

The apparent reflectance can be determined with high resolution 

multispectral images, but the attenuation coefficients must be determined through other 

means (Mobley, 1994).  

2. Ratio Method  
The accuracy of the above methods of predicting water depth varies due to the 

variation in bottom albedo and the reflective properties of bottom substrates (Green et al., 

2000).  Much of the errors are due to failure of the algorithms to discern between 

different albedos.  Furthermore, dense substrates, such as sea grass may be confused with 

deep water. The lack of ability to map bottom features with lower reflectance than 

adjacent deep waters was the initial motivation for Stumpf et al. (2003) to develop a new 

technique.    

This ratio method is based on absorption rates of different wavelengths.  Different 

bands will be attenuated at different rates as energy penetrates the water column.  As 

depth increases, the band with a higher absorption rate will decrease proportionally faster 

than the band will a lower absorption rate.  Consequently, the ratio between the two 

bands will increase as depth increases.  This concept effectively removes the error 

associated with varying albedo since both bands are affected in the same way.  

Accordingly, the change in the ratio between the bands will affect the higher absorption 

band more with increasing depth: therefore, as depth increases, the change in ratio 

between the two bands will be affected more by depth than by bottom albedo.  With these 

premises, varying bottom reflectances at the same depth will have the same change in 

ratio. Depth can then be approximated independently from bottom albedo with:  

  

 
( )( )
( )( )1 0

ln

ln
w i

w j

nR
z m m

nR

λ

λ
= −  (16) 
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where 1m  is a tunable constant to scale the ratio depth, n is affixed constant for all areas 

to assure that the algorithm is positive under all circumstances, and om  is the offset for a 

depth of 0m. 

 In contrast to the linear method, the ratio method contains only two tunable 

parameters and can be applied quickly and effectively over large areas with clear water.  

This method claims to be more robust and applicable in waters with different bottom 

substrates.   
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III. PREVIOUS WORK AT THE NAVAL POSTGRADUATE 
SCHOOL 

Bathymetric studies have been extensively pursued by the Navy.  Stuffle’s (1996) 

thesis used hyperspectral imagery to derive shallow water depth estimates over a small 

region of Lake Tahoe, California. This was accomplished by identifying different 

substrates and estimating the reflectance values for each substrate type.  Depth was then 

determined for each region separately using their respective values of bottom reflectance.  

The results demonstrated that it was possible to derive depth from remotely sensed 

hyperspectral data.  As a follow-on, Fisher (1999) assessed the applicability of the 

method used by Stuffle (1996) using a different hyperspectral sensor and covering a 

much larger area of Lake Tahoe.  Additionally, the author had a priori knowledge of one 

bottom type and was able to use this known bottom reflectance in a computer algorithm 

to derive depth. The results obtained by Fisher (1999) determined that improved accuracy 

can be obtained with limited a prior knowledge of bottom type.  In particular, this thesis 

follows previous work by Clark (2005) and Densham (2005).   

A. CLARK (2005)’S STUDY 
Clark (2005) compares several different methods to derive water depths. The 

author used the Veridian Multi-Spectral Toolkit (VMST) software and Stumpf et al. 

(2003)’s ratio method to obtain depth measurements.  This was performed using high 

resolution data acquired from the QuickBird and IKONOS satellite sensors. Each method 

was applied to two multi-spectral images provided by the two satellite sensors at Looe 

Key, Florida.  The results were then compared to data obtained from a LiDAR survey.   

The tests were conducted over the clear waters of Looe Key which consisted of 

highly variable depth and bottom substrates.   Several transects were selected because of 

variability in substrates and depth.  The criteria for each transect was to select locations 

that had variable depth but homogenous substrate, variable substrate but homogenous 

depth, and variable depth and variable substrate.    

The results demonstrated that the ratio method proved sensitive to bottom type.   

It produced shallower depths over bottom types with low albedo and deeper depths over 

bottom types with high albedo.  This is in contrast to Stumpf’s claim that this method is 
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independent of bottom substrate.  Another trend noted by the author was that sun glint 

has some affect on the overall results.  Furthermore, the ratio method failed completely in 

this study at depth less than 1 meter over sand and coral.  Finally, the maximum depth 

obtainable using the ratio method was 15 meters.  This was caused by the absorption of 

the green band at depth.  

As demonstrated in Clark’s thesis, the ratio method is affected by variable bottom 

types.  This method was altered by the varying reflectances of sea grass, coral, and sand.  

Clark 2005 concluded that both algorithms used in his paper would benefit from more 

consideration for bottom substrate in the scene.  The incorrect outputs of depth for 

different substrates indicate that this technique could be potentially improved through 

pre-classification of bottom substrate.   

B. DENSHAM (2005) STUDY 

This thesis focused on two methods in which to derive water depth, the ratio 

method and the Stratified Genetic Algorithm.  The objective was to compare the 

performance of these methods when calculating depth in different water conditions and 

clarity.  This was performed using high resolution data acquired from the QuickBird 

satellite sensor.  The test areas selected were based on the water clarity and turbidity of 

the water column.  The areas chosen were the clear waters of Looe Key, FL and the 

turbid waters Plymouth Sound, UK.  Atmospheric correction was performed using the 

NPS Aerosol Model and over-water dark object approach.  Sea surface correction was 

conducted using Hochberg et al. (2003) method to remove glint from the image.  Water 

column corrections were performed using the HYDROLIGHT program to determine the 

attenuation coefficient, dk .  Additionally, HYDROLIGHT requires a value for the amount 

of chlorophyll in the water column, so a chlorophyll analysis was conducted to input into 

the program.  Once these parameters were corrected, they were inputted into the depth 

deriving algorithms and the results were compared.   

The results obtained by Densham (2005) determined that variable bottom types, 

light attenuation, surface waves, and non-homogenous water influenced each method.  
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Specifically, variable bottom types affected the ratio method significantly.  This was 

primarily caused by misinterpretation of dark finger coral with deep water when 

performing the ratio method. 

Densham (2005) also recommended that variable bottom type should be analyzed 

individually for a potential improvement to depth outputs.   

The logical next step from these results is to test the hypothesis that the ratio 

method is sensitive to bottom type. This hypothesis will be tested by producing a 

classification of the benthic habitats, and use it to subset the imagery into different 

substrates. The ratio method of bathymetry derivation will be applied to the whole image 

and again to the subsetted images representing different substrates, and compared the 

accuracy of the depth retrieval against nautical chart depths. 
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IV. TEST SITE 

A. NORTHWESTERN HAWAIIAN ISLANDS MARINE NATIONAL 
MONUMENT  
The Northwestern Hawaiian Islands Marine National Monument (NWHI) is the 

largest marine conservation area in the world and consists of dozens of islands, atolls, 

reefs and shoals (Figure 11). This designation was established by Presidential Executive 

Order as recently as June 15, 2006, and replaced an earlier designation as Coral Reef  

Ecosystem Reserve established in 2000. The NHWI archipelago is located northwest of 

the main Hawaiian Islands with its southeastern extreme approximately 120 nautical 

miles from the island of Kauai and its northwestern most point at Kure Atoll (28.4N, 

178.5 W).  The NWHI National Monument extends more than 2,000 km in length and is 

over 180 km wide.  The area covers more than 13,000 square kilometers of coral reefs 

and is home to thousands of land and marine species.  The archipelago is mostly 

uninhabited and is surrounded by some of the most extensive coral reefs in the world 

(Eilperin 2006).  Unlike the main Hawaiian Islands and most of the world’s remaining 

coral reefs, the archipelago boasts some of the healthiest and least disturbed coral reef 

ecosystems on earth.   Notably, the NWHI represents nearly 70 percent of all coral reefs 

located in U.S. waters (Siciliano, 2005).  Its clear waters, diverse substrates, and 

abundance of healthy coral make it an ideal environment to perform bathymetric studies. 



28 

 
Figure 11.   Northwestern Hawaiian Island Marine National Monument (From 

http://www.hawaiireef.noaa.gov). 
 
 

B. MIDWAY ATOLL 

Midway Atoll is the most recognizable of all the NWHI due to the strategic 

importance of the island during WWII.  Midway Atoll is located at approximately 28°N 

and 177°W and about 2,300 km west-northwest of Honolulu.  Midway Atoll consists of 

over 1500 acres of land and its nearly circular rim is approximately 6 miles in diameter 

(Morris, 2005). The atoll consists of the three main Islands of Sand, Eastern, and Spit.  

Sand Island is the largest of the three islands and measures 1.8 miles by 1.2 miles wide or 

about 1200 land acres (Morris, 2005).  Eastern Island is located approximately 1 mile east 

of Sand Island and occupies approximately 334 acres (Morris, 2005).  Spit Island is a 

small unvegetated islet and covers only about 6 land acres.  An encircling submerged rim 

protects the lagoon waters of Midway Atoll. The depth of the atoll ranges significantly 

from emerging reefs to a maximum depth of approximately 25m near the center of the 

lagoon. Outside the atoll, the depth ranges from 3m in the near fore reef and quickly 

increases to about 30m just seaward from the atoll’s rim in a dramatic drop-off typical of 

oceanic atolls. Figure 12 shows the locations of the main islands and coral rim. There are 

currently 51 reported species of stony coral found in the atoll along with sea grass, 
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urchins, sponges, sand channels, and algae (Maragos et al., 2004)  There are two large 

benthic categories found inside the reef at Midway Atoll: (1) areas of bare sand and 

rubble, and (2) reef habitats of coral and algae species.  

Midway Atoll was home to the United States Navy and has fairly reliable 

navigational charts and soundings. The United States Navy altered the atoll significantly 

during WWII to accommodate seaplanes and a functional harbor. The lagoon was 

dredged and the southern portion of the atoll was cleared to create a passage into the 

lagoon.  The navigational charts were revised in 2000 and provide fairly accurate depths 

inside the atoll. 

 
Figure 12.   The 2004 QuickBird image of Midway Atoll used in this study, with 

annotated habitats. 
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V. MATERIALS AND METHODS 

A high resolution multispectral image of Midway Atoll was acquired by the 

QuickBird satellite on October 12, 2004 at 22:34:29 GMT.  

A. MATERIALS 

1. QuickBird Satellite Sensor 
A product of DigitalGlobe, Inc., the QuickBird satellite system (Figure 13) was 

launched in 2001 and is currently the highest resolution sensor available commercially, 

boasting a panchromatic band with a 60cm spatial resolution and a multispectral system 

with a 2.4m resolution.  The sensor acquires data in four spectral bands covering the blue, 

green, red, and near-infrared wavelengths, plus a panchromatic band. The swath width of 

the sensor is 16.5km at nadir, or a strip at 16km by 165km.  The nominal ground sample 

distance (GSD) at nadir is .61m panchromatic and 2.44m for multispectral imaging.  The 

sensor is also capable of a 30 degree off nadir viewing angle, which ultimately affects the 

GSD.   Table 1 provides a summary of the characteristics of the QuickBird satellite 

system.  

Launch Date 18-Oct-01 
Orbit Altitude 450 Km 

Orbit Inclination 97.2º, sun-synchronous 
Equator Crossing Time 10:30 a.m. (descending node) 

Orbit Time 93.5 minutes 
Revisit Time 1-3.5 days depending on Latitude (30º off-nadir) 
Swath Width 16.5 Km x 16.5 Km at nadir 

Metric Accuracy 23-meter horizontal (CE90%) 
Digitization 11 bits 

Pan: 61 cm (nadir) to 72 cm (25º off-nadir) 
Resolution 

MS: 2.44 m (nadir) to 2.88 m (25º off-nadir) 
Pan:     450 - 900 nm 
Blue:    450 - 520 nm 
Green:  520 - 600 nm 
Red:     630 - 690 nm 

Image Bands 

Near IR 760 - 900 nm 
Table 1.   QuickBird data (From DigitalGlobe, 2004) 
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Figure 13.   QuickBird Satellite (From Prasert, 2005). 

 

2. Software 

a. Environment for Visualizing Images 4.2  (ENVI)  
Environment for Visualizing Images 4.2 was used as the computational 

utility to analyze the image of Midway Atoll for this research.  ENVI 4.2 is an image 

processing system designed for multispectral and hyperspectral data analysis and 

information extraction.  ENVI 4.2 is written in the Interactive Data Language (IDL), 

which is a programming language that provides integrated image processing and display 

capabilities (Research Systems, 2004).  ENVI 4.2 was used to process the QuickBird 

imagery for application of the radiometric conversion algorithms, sea surface correction, 

masking of features, water column correction technique, and benthic image 

classifications.  Furthermore, ENVI 4.2 was used to apply the ratio method to retrieve 

bathymetry and extract depth profiles.  

b. ATCOR 8.7 
ATCOR 8.7 is a software add-on package to the digital imagery-

processing package ERDAS IMAGINE. Produced by Leica Geosystems Geospatial 

Imaging, ATCOR 8.7 removes the effects of scattering and absorption caused by the 

earth’s atmosphere.  ATCOR 8.7 contains two variants for processing: ATCOR2 for flat 

terrain (2 dimensional) and ATCOR 3 (3 dimensional) for rough terrain.  ATCOR 2 was 

used in this thesis for atmospheric correction because of the low relief that characterizes 

coral atolls.  The program has several functionalities, such as haze removal, atmospheric 

correction, and the capability of viewing reference spectra of selected targets (Leica 
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Geosystems, 2006).  Although this program has the ability to perform haze removal for 

an image, this function was not used in this research due to the algorithm’s inability to 

remove haze over water.     

B. METHODS  
 An important part of image analysis is the pre-processing involving radiometric 

radiance conversion of the image from digital numbers to spectral radiance, atmospheric 

correction, glint removal, and correction for the water column.  Once these process have 

been complete, classifications for the image can be performed with subsequent 

application of the ratio method for bathymetry derivation.  

1. Spatial Subsetting 

A spatial subset was performed on the original image of Midway Atoll to remove 

portions of the image that are unnecessary for analysis, and reduce processing time.  The 

subset aimed at removing the deep water pixels on the outer regions of the image and a 

large number of cloud pixels and cloud shadows also in the outer regions of the image.   

2. Radiance Conversion 
The QuickBird satellite sensor records the intensity of electromagnetic radiation 

as digital numbers (DN).  The range of values of digital numbers depends on the 

particular sensor and the environmental conditions, so these values are arbitrary 

(DigitalGlobe, 2003). The radiometric corrected pixels are specific to the QuickBird 

sensor and must be converted into radiance (L) to perform spectral analysis or 

comparison to other images (DigitalGlobe, 2003).  The calibration information provided 

by DigitalGlobe in the image metadata file (found in appendix A) was used to convert 

DN to top-of-atmosphere spectral radiance. As specified by Digital Globe (DigitalGlobe 

technical file, Radiometric use of QuickBird data, 2005), the process for converting 

images depend on both the bit depth and the generation time of the image.  To convert to 

spectral radiance, the radiometrically corrected image pixels are multiplied by the 

absolute radiometric calibration factor, K .  This step is defined in equation 17. 

 , ,*Pixel Band Band Pixel BandL absCalFactor q=  (17) 

The band-specific, absolute radiometric calibration factor, K, is located in the 

image metadata file.  The results are then divided by the effective bandwidth to obtain 
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spectral radiance in units of 2/ / / .W m sr mµ  The QuickBird effective bandwidths used 

are shown in Table 2.  The equation used is: 

 
( )

( ),

2 1
,

Pixel Band

Pixel Band

band

L W m sr
L

mλ λ µ

− −− −
=

∆
 (18) 

The QuickBird calibration utility employs the image metadata file to convert the 

relative radiance into absolute radiance.  This step was performed using a preprocessing 

utility in ENVI 4.2.  

 

 
Table 2.   QuickBird Effective Bandwidths ( λ∆ ) (From DigitalGlobe, 2003). 

 

3. Atmospheric Correction 

The atmospheric correction of high-resolution images is an important step to 

improve data analysis. ATCOR 8.7 was initially used to radiometrically and 

atmospherically correct the image.  The utility provided by ATCOR 8.7 resulted in 

overcorrected values for the image.  The program appeared to be overcorrecting the 

image in the red wavelengths, which produced erroneous negative values for many pixels 

in the red band.  Negative values in measured spectra are an indicator that one or more of 

the set parameters are not adequate (Leica Geosystems, 2006).  Additionally, the 

reflectance profiles in the corrected image were compared to the typical reflectance 

values found in Table 3 and were found not to be in the typical value ranges.  In an 

attempt to obtain reliable values, multiple iterations were performed by changing the set 

parameters in the program.  A range of aerosol concentration (or visibility) was adjusted 

to improve the reflectance values in the corrected image.  The value for visibility was 

initially set to 20km and adjusted accordingly to obtain improved image outputs.  The 

ATCOR atmospheric correction function also depends on the sensor view angle.  This 

value was calculated using the technique described in the calibration manual for 
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IKONOS (Leica Geosystems, 2006).  Another modifiable parameter in the program is the 

model for the solar region.  This selection takes into account the aerosol and atmosphere 

type.  A sample spectral profile of vegetation before and after atmospheric correction is 

shown in Figure 14.  Although the image produced many negative values in the red band, 

the corrected image was tested further to perform more analysis before being abandoned.  

The corrected image produced by ATCOR 8.7 was used to perform the sea surface 

correction, water column correction, and classification. However, the overcorrection error 

was compounded with each step: the sea surface correction output produced negative 

reflectance values in the red band over water.  This error was amplified when attempting 

to correct for the water column. As a result of the overcorrected values produced by the 

atmospheric correction algorithm in ATCOR 8.7, this step was removed in the analysis 

process. 

 
Figure 14.   Spectral profiles for vegetation before and after performing atmospheric 

correction with ATCOR 8.7. 
 

 
Table 3.   Typical reflectance values (%) in different parts of the spectrum (From Leica 

Geosystems, 2006). 
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4. Conversion to Top-of-Atmosphere Spectral Reflectance 

This step was performed due to our inability to use ATCOR 8.7 to output a 

functional corrected image.  The process outlined by DigitalGlobe (2005) was followed 

to convert the image from radiance to apparent reflectance.  The image is converted to 

apparent reflectance by correcting for Earth-sun distance, solar zenith angle, and the 

image acquisition Julian Day.  This information was extracted from the image metadata 

file.  Additionally, the solar geometry for the image was determined.  This is important 

since variations in the spectral irradiance are subject to the solar geometry for a particular 

image (DigitalGlobe, 2005).  The method used to obtain the top-of-atmosphere band-

averaged reflectance is given: 
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The band averaged solar spectral radiance,
BandSUNE

λ
, are in units of 

2 1W m mµ− −− −  and had to be converted to the proper units before implementation in 

ENVI 4.2.  The Earth-sun distance, ESd , uses the Julian Day acquisition time. The solar 

zenith angle is found by subtracting the sun elevation angle at the time of image 

acquisition (found in the image metadata file) from 90 degrees.  The values are then 

incorporated into the Band Math expression in ENVI 4.2 to obtain the converted image.   

5. Glint Removal: Hochberg et al. (2003) Method 
A common problem associated with high resolution imagery over water is the 

specular reflection of sunlight on ocean surfaces, due to wind generated waves.  This 

problem was addressed with a technique first described by Hochberg et al. (2003) and 

then by Hedley et al. (2005) to remove sunglint from remotely sensed imagery.  This 

method exploits the maximum absorption and minimal water leaving radiance of the NIR 

band, which was used to characterize the spatial distribution of relative glint intensity. 

The image was then scaled to absolute glint intensities which were subtracted from the 

visible bands, resulting in glint intensities that were reduced or eliminated in the 

outputted image.  The two working assumptions are (1) that water exhibits very strong 

absorption of NIR wavelengths (this is warranted by observing very low water leaving 

radiance values at NIR wavelengths, including at shallow depths where NIR water-
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leaving radiance is minimal regardless of bottom type - Hedley, 2005); (2) that the real 

index of refraction in the visible bands is nearly equal to the NIR band.  From these 

premises, a linear relationship exists between the NIR and visible bands given that the 

amount of light that is reflected from the water column in the NIR band is a good 

indicator of the amount of light reflected in the visible bands (Hochberg et al., 2003).   

In Hochberg et al. (2003), two independent pixels, the brightest and darkest, were 

used to establish a linear relationship between the visible and NIR bands. Hedley et al. 

(2005) on the other hand pointed out that a larger area of interest should be selected over 

optically deep water to obtain a linear relationship between the NIR and visible bands.  

This modification was used to select areas of interest over optically deep water in the 

QuickBird image of Midway Atoll.  

The step was performed after image subsetting and conversion to Apparent 

Reflectance. As pointed out by the authors, this method also performs a first order 

atmospheric correction. A sample area (Region of Interest, or ROI) was selected over 

optically deep water for the NIR band.  Several ROIs were selected around the atoll in 

areas exhibiting a range of sun glint, where the optically deep water appeared 

homogenous.  Pixels from these regions were used to regress the NIR band against each 

visible band.  Figure 15 shows an example output for the NIR band regressed against the 

red band. The slope of this regression was obtained using the expression: 1 2(.897* )b b− . 

In this case, 1b  is the red band and 2b is the NIR band.  Subsequently, all land and cloud 

features were masked using the NIR band values by thresholding the image to high 

reflectance values, since the water pixels are characterized by low reflectance while 

emergent features, such as land and cloud, exhibit higher returns.  This process masked 

most emergent features even though some manual fine tuning was necessary to remove 

any remaining emergent pixels.  The image is then redisplayed in true color with the 

effects of sun glint removed or reduced, as shown in Figure 16 and 17. 
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Figure 15.   Bi-plot of the NIR band and Red band for sea surface correction. 

 

 
Figure 16.   QuickBird image of Midway Atoll before sea surface correction was applied. 
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Figure 17.   Results of applying Hochberg et al., (2003) sea surface correction algorithm. 

 

6. Water Column Correction: Mumby et al. (1998) Method 
An important processing step when measuring underwater environments is to 

correct for the effects of the water column, to compensate for exponential light intensity 

decrease with increasing depth.  As mentioned in Chapter II (section C and D), this light 

attenuation is due to absorption and scattering in the water column. Additionally, 

attenuation is dependent on wavelength, with the red wavelengths attenuating more 

rapidly than the blue wavelengths.  This becomes important when attempting to identify 

benthic substrates: the spectral signature of sand at 15m, for example, may be similar to 

coral reflectance at 3m. The classification accuracy of underwater substrates has been 

shown to significantly increase by compensating for variable depths using this method 

(Mumby et al., 1998).   

The water column correction technique performed here is based on a model by 

Lyzenga (1978, 1981) and expanded upon by Mumby et al. (1998). This technique 
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produces a depth invariant band for each pair of visible spectral bands.  The visible 

bands' reflectance values were transformed using natural logarithms, following the steps 

outlined in Mumby et al. (1998).  Six random locations of uniform substrate (sand) over 

variable depths were selected in the Midway Atoll image, and regions of interests were 

created. Natural logarithm transform was applied to their pixel values. For 

atmospherically corrected images, this first step is written as: 

 ( )lni iX L=  (20) 

The transformed radiance of the pixel, iX , is the natural log of the pixel radiance, 

iL  in band i .  

The next step was to calculate ratios of attenuation coefficients, k , for band pairs. 

Pairs of spectral bands were chosen, and bi-plots created using the transformed radiances 

(Figure 18). The slope of the bi-plot is a representation of the attenuation coefficient for 

those bands.  The following equations (from Green et al., 2000) were used to calculate 

the ratio of attenuation coefficients, where iiσ is the variance of band i , and ijσ is the 

covariance between bands i and j : 

 ( )2 1i

j
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and 

 ( )ij i j i jX X X Xσ = − ×  (23) 

 

The bands plotted to calculate the attenuation coefficients were 3 different 

combinations of the visible bands (green vs. blue, red vs. blue and red vs. green).  Before 

the depth-invariant indexes were processed, the images were masked to exclude land, 
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clouds, and other emergent features.  Three depth invariant bands were created using the 

given equation: 

 ( ) ( )depth-invariant index ln lni
ij i j

j

kL L
k

⎡ ⎤⎛ ⎞
= − ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (24) 

Each pair of spectral bands produced a single depth-invariant band and these 

bands were used for classification and interpretation of the image instead of the original 

reflectance bands (Figure 19).   

 

 
Figure 18.   Bi-plot of log transformed pixel values from QuickBird blue and green bands.  

The pixel clusters represent sand pixels chosen from 5 different depth ranges. 
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Figure 19.   Water column corrected image of Midway Atoll.  The black regions are land, 

cloud, and emerging reef masks. 
 
 
 

C. FIELDWORK 
To insure a Random Stratified Sampling pattern for the fieldwork, a Iterative Self-

Organizing Data Analysis Technique (ISODATA) unsupervised classification was 

performed on the imagery.  Unsupervised classifications use computer generated 

algorithms to automatically classify pixels into a number of classes based on spectral 

similarity with no inputs of reference spectra from the user (Green et al., 2000).  This 

method is commonly used as a preliminary guide before conducting any field work.  

Using the output classes from the ISODATA classification, and the Random Stratified 

Sampling utility in ENVI 4.2, a total of 80 groundtruth locations over 5 substrates were 

generated. 

Groundtruth field work at these 80 sites at Midway Atoll was conducted over a 

period of 12 days between June 14-26, 2006.  The 2-persons team used an 18-foot Boston 

Whaler to reach each dive site inside the lagoon (the sites were limited to inside the atoll 

due to weather and logistical restrictions). The team conducted land and marine surveys 

with the goals of: 1) collect depth profiles at designated sites, 2) list substrate features for 
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classification using a hierarchical classification scheme (Appendix B), and 3) collect 

photographs in order to determine benthic composition. 

A total of 80 dive sites were surveyed inside the atoll’s marine environment over 

a 10 day period. The remaining 2 days were utilized to collect data for the other team 

member’s research.  Each survey site was located using a GPS handheld (Garmin 60CS).  

Selection of the dive sites was determined on a day by day basis and was based on 

weather, boating, and diving conditions.  The conditions over the 12-day period were 

poor due to sustained 20-knot winds, rain squalls, and rough sea state.  However, the 

team was fortunate to have two days of calm, clear weather to conduct boating and dive 

operations in the shallow back reef environments of the atoll. 

Most of the dives were carried out using SCUBA over deeper waters and a 

combination of SCUBA and snorkel over shallow waters.  The team located each dive 

site and took a GPS reading from the boat.  A handheld Sonar System (Hawkeye 

DF2200PX Portable Sonar System) took an initial depth from the boat over the GPS 

waypoint.  The team then located a safe location for anchorage and gear assembly.  A 

bearing and range was estimated from the anchorage site with the GPS handheld before 

entering the water.  This was sometimes difficult to estimate due to the distance of the 

anchorage point and the dive site (attempts were made to record GPS points in the water 

with the handheld unit, but the waterproof container for the GPS handheld failed so this 

was not possible). The team used the reef habitat classification scheme (Appendix B) to 

collect information on each dive site within a radius of 10m from the GPS waypoint.    At 

each dive site, another depth was taken from the water surface using the handheld sonar 

system.  The dive team then surveyed the area underwater and collected information for 

the atoll zone, the geomorphic habitat, bottom cover, and bottom cover abundance.  The 

bottom cover abundance was qualitatively estimated using the scale:  D=dominant, 

A=Abundant, C=Common, O=Occasional, and R=rare.  Additionally, a minimum of four 

photographs were taken of each site, including two panoramic photographs and several 

close up photographs of the biological and physical substrates.  

 

 



44 

D. BENTHIC CLASSIFICATION 

Categorization of the benthic substrates was performed by analyzing the field data 

collected at Midway Atoll.  A K-means classification was run on the water column 

corrected image in ENVI 4.2.  The desired number of output classes was set to 15-30, the 

maximum iteration count was set to 50, and the minimum number of pixels in each class 

was set to 100.  The classification process originally yielded 20 different classes 

throughout the atoll (Figure 20).  These were compared to groundtruthed GPS locations.  

Out of the 20 classes outputted, 8 were identified with the field data.  The rest of the 

classes remained unclassified because they lacked sufficient number of groundtruth 

points that fell on those classes.  The benthic classes defined a diverse range of bottom 

types, such as live coral, coral/algae mix communities, and turf algae and rubble (Figure 

21).  Some of these classes were then merged together to be assigned to 1 of 2 benthic 

categories: 1) different sand substrates and 2) coral/algae communities (Figure 22). 

 

 
Figure 20.   Original K-means classifications yielded 20 classes.  Different colors 

represent different classes. 
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Figure 21.   Illustrations representing the different categories used for classification: 

rubble and sand (left); algae covered coral (center); live coral (right). 
 
 
 

 
 

Figure 22.   Supervised classifications for sand (left) and coral/algae (right) bottom types.  
The different variations in color represent different classes in each image.  

 
 
E. BATHYMETRY DERIVATION 

1. Bathymetric Mapping over Entire Image 

Bathymetry derivation from spectral imagery is a 2 step process: first relative 

bathymetry is obtained from the imagery, then absolute bathymetric values are obtained 

by regressing relative bathymetry values against groundtruthed depth data. The relative 

bathymetry was calculated using the natural log transformed reflectance values in the 

blue and green bands on the deglinted reflectance image.  The relative bathymetric values 

for the image were extracted using the expression: 
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The constant, n, was set to 1000 to assure the algorithm was positive under all 

circumstances, as suggested by Stumpf et al. (2003). In the expression, 1b  is the blue 

band and 2b is the green band. This relative bathymetry was then scaled to absolute 

depths using depth measurements collected in situ at Midway Atoll.  To circumvent 

geospatial errors due to the use of depth values associated to single pixels, a 5x5 low pass 

kernel convolution was applied to the relative bathymetry values (Siciliano, 2005).  

Depth values obtained from the surveys at Midway Atoll were regressed against the 

relative bathymetry convoluted values to find the constant 1m  and 0m  of Stumpf et al. 

(2003)’s algorithm.  These tunable parameters were applied to the ratio algorithm to 

obtain absolute bathymetry values for the image.   

The constants 1m  and 0m  derived from in situ depth measurements resulted in the 

regression being biased toward shallow depths, as can be seen in Figure 23.  This 

problem is attributed to the limited number of deeper depths (>10m) collected inside the 

atoll, when only 6 points were collected in deep waters (>10m).  To obtain a more 

statistically robust regression, additional points with depth greater than 10m needed to be 

incorporated into the regression.  These additional points with depth values between 10-

20m were obtained from the nautical approach chart of Midway Atoll.  Care was 

exercised to insure that soundings from the nautical chart used for tuning were located in 

areas where the depth values remained relatively constant.  Ten additional depth values 

were used to compliment the groundtruth points collected and used in the regression. The 

addition of points from the deeper depth range resulted in small statistical improvement 

of the regression: the R-squared is increased from 0.853 to 0.88 (Figure 24).   
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Figure 23.   Regression bi-plot for tuning the ratio algorithm using convoluted relative 

bathymetry and depths from field data and only in situ measurements obtained 
with SCUBA surveys. 

 
Figure 24.   Regression bi-plot for tuning the ratio algorithm using convoluted relative 

bathymetry and depths measurements from both SCUBA surveys and the nautical 
chart soundings. 

 

2. Bathymetry over Variable Bottom Types 
The benthic classification process and the subsequent merge of similar substrates 

provided two main benthic classes that defined different sand classes (hereafter referred 



48 

to as “sand”), and a mixed coral/algae community (hereafter referred to as “coral/algae”).  

These two main classes were used to mask and subset the image, resulting in 2 Midway 

Atoll images representing (1) only the sand substrates, and (2) only the coral/algae 

substrates.   The bathymetry for the two classes was tuned separately using depth values 

from both the nautical chart and the groundtruth points, following the same process 

outlined in the previous section for the bathymetry over the entire atoll. A total of 21 

points were collected to perform the regression for the coral/algae class and 18 for the 

sand class. Figure 25 and 26 show the regression outputs for each, which were used to 

derive the absolute bathymetry for both the image subsets.  

 
Figure 25.   Regression bi-plot for tuning the ratio algorithm over sand substrates. 
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Figure 26.   Regression bi-plot for tuning the ratio algorithm over coral/algae substrates. 
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VI. RESULTS 

A total of three bathymetric maps were generated.  These were then assessed 

using depths obtained from the National Oceanic and Atmospheric Administration 

(NOAA) nautical approach chart of Midway Atoll.  Using the high-resolution satellite 

image of Midway Atoll, the bathymetry was produced by: (1) applying the ratio method 

over the entire atoll irrespective of bottom types, and (2) applying the ratio method 

separately over variable substrates.  The accuracy assessment was performed using root 

mean square (rms) error of the predicted depths compared to the depths obtained from 

atoll’s nautical approach chart.  

A. BATHYMETRY FROM ENTIRE IMAGE 
Absolute bathymetry was successfully obtained from the QuickBird multispectral 

imagery for the entire area of Midway Atoll (Figure 27). The major features in the atoll 

were accurately mapped, such as shallow and deep patch reefs, shallow sand, and coral 

dominated communities on the back reef.  Deeper portions of the lagoon are represented 

well, such as the deep narrow dredged channel entering the southern portion of the atoll. 

Figure 27 spans the areas of variable bottom type as well as a large range in depths.  

Patch reefs located in deeper waters are clearly visible, as well as the sand ripples located 

in shallow water.  The image also clearly details the drastic transition from deep to 

shallow waters observables in the central lagoon and fore reef environment.  The depth 

retrieved in this bathymetric image ranges from 0 to 22m.  This range is in agreement 

with expected light penetration depths in similar coral reef environments (Stumpf et al., 

2003). 
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Figure 27.   QuickBird derived bathymetry for Midway Atoll using the ratio method.  

Depths are shown in meters with scale bar at upper right.  The brown regions are 
land, cloud, and emerging reef masks.  A mask was also applied to the deep ocean 

areas seaward of the fore reef. 
 

The algorithm was unable to produce valid depths in very shallow waters, 

especially over highly reflective surfaces (e.g. sand). In these areas, the algorithm 

produced negative depth values (i.e. as emergent features above the sea surface). This 

mostly occurred in areas where the water depth was less than 2m.  The results indicate 

the algorithm failed particularly over surfaces that have high reflectance values.    

Approximately 10% of the total number of pixels in the image occurs in areas of bright 

shallow sand or coral, a significant portion of the eastern atoll and on the back reef.  The 

retrieved bathymetry for some of these areas contained negative depths.  The majority of 

the incorrect negative depth values occurred between 0-2.5m.  To correct for this, an 

offset of -2.5m was applied to the image.  Figure 28 displays the very shallow regions, 

where the algorithm ultimately failed to retrieve depth values.  
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Figure 28.   The red regions represent pixels in very shallow water that were excluded due 

to the high reflectance values and subsequent incorrect depth retrieval. 
 

Furthermore, deeper areas inside the atoll and on the fore reef may be 

overestimated. When the depth values are compared to the nautical chart, the algorithm 

produced deeper depth values over dark water pixels in the central lagoon and Wells 

Harbor than reported in the nautical charts.  This error can be attributed to the paucity of 

points in the deeper depth range collected in the central lagoon and fore reef and used in 

the regression shown in Figure 23.   

B. VARIABLE BOTTOM TYPES 
Two separate bathymetric images were produced by tuning the coefficients of the 

algorithm separately for the two main benthic classes.  Applying the ratio method to 

extract depth separately over variable substrates marginally improved the performance of 

Stumpf et al. (2003) method.  The improvement in resolving bathymetric features is 

demonstrated in numerous areas throughout the atoll (Figure 29 and 30). Figure 29 shows 

the shallow coral dominated communities on the back reef and reticulate reef areas.  Most 

noticeably, the depth variations on the back reef are well reproduced, detailing the 
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transition from deeper to shallower coral.  In the deeper waters of the central lagoon, the 

magnitude of the depth variations are reproduced detailing the transition of low albedo 

algae-covered coral patch reefs to adjacent sandy bottoms.  Sand waves are clearly visible 

throughout the atoll in Figure 30, despite the variations in depth.  Moreover, spatial 

details are tightly resolved in the two images.  The numerous patch reefs located north of 

the central lagoon are shown in more detail as well as the numerous line reefs inside the 

atoll.  Although both images generally produced effective bathymetric charts, some 

limitations still exist.  

 
Figure 29.   QuickBird derived bathymetry for Midway Atoll using the ratio method 

applied the coral/algae class.  Depths are shown in meters.  The brown regions are 
land, cloud, and breaking waves in the atoll’s rim.  
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Figure 30.   QuickBird derived bathymetry for Midway Atoll using the ratio method 

applied to sand classes.  Depths are shown in meters.  The brown regions are land, 
cloud, and breaking wave’s in the atoll’s rim. 

 

Both images produced erroneous, underestimated results over very shallow sand 

areas.  This error occurred in water depths of less then 2m and mainly over the bright 

sand in the eastern potion of the atoll and on the back reef.  In the coral/algae class 

bathymetry (Figure 29), approximately 11% of the total number of pixels in the scene 

contained erroneous depth values. Their distribution was mostly confined to areas of less 

than 1m in depth (about 8% of the pixels) so an offset of 1m was applied to the image to 

correct for this. The sand bathymetry image (Figure 30) produced erroneous 

(underestimated) depths values over shallow bright sand. Additionally, masks were 

applied to both images to the dark water pixels of the open ocean area surrounding the 

atoll where the water is too deep for the algorithm to perform successfully. 

 The depth range derived from the sand subset is 0-26m (Figure 30).  The deep 

portions of the lagoon in this subsetted image match the nautical chart soundings more 

accurately. The coral/algae class yielded a depth range of 0-11m (Figure 29). 
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C. COMPARISON BETWEEN IMAGES 

For the accuracy assessment, a limited choice of sounding reference data exists 

for Midway Atoll:  the only available reference was the nautical chart of Midway Atoll 

(Chart No. 19482, scale 1:10,000). Due to the finite amount of time available to carry out 

the in situ surveys, and the fact that the surveys ended up with a bias for shallower 

depths, the in situ data was used only for training purposes, and could not be used for 

accuracy assessment purposes as well.  The derived bathymetry was thus compared to 

soundings from the nautical chart.  In terms of overall accuracy, the ratio method applied 

over variable bottom types produced improved results when compared to the entire image 

bathymetry, although the improvement is marginal. The accuracy was tested using 25 

soundings from the nautical chart of Midway Atoll (a higher number of reference 

soundings from the nautical chart could not be used for the reasons outlined in Chapter 

V).  Thirteen points were collected from the sand class and 12 points from coral/algae 

class.  The predicted depths were correlated with the chart soundings as a measure of 

accuracy.  The correlation coefficients indicated that both methods yielded good results 

(> 80% accuracy). The correlation coefficient obtained using the ratio method over the 

entire image is 82% (Figure 31) compared to 86% (Figure 32) when the ratio method was 

applied over variable substrates.  It must be noted that the small improvement was 

achieved using only limited field data and reference (nautical chart) data and using only 

two main bottom types. 

 
Figure 31.   The absolute bathymetry when regressed against the chart depth explains 82% 

of the variation around the mean. 
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Figure 32.   The absolute bathymetry when regressed against the chart depth explains 86% 

of the variation around the mean. 

 

A direct comparison of the images in the depth range of shallow (< 2m) to 

intermediate and deep water (5-15m) revealed the average difference between predicted 

and chart depths ranged between 1.5 to 3m using the ratio algorithm over the entire 

scene.  The accuracy was improved to .65 to 2m using the ratio method over variable 

substrates.   

Both bathymetric outputs (entire image and variable substrates) generated 

erroneous depth values over the bright sandy regions in less than 2m of water depth. 

Additionally, both methods generally produced greater depths in deeper areas than those 

reported on the Midway nautical chart, although this was not quantitatively assessed.  

This is most likely caused by the paucity of field data used to tune the coefficients rather 

than by poor performance of the algorithm, discussed in the following section. 
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VII. DISCUSSION 

The bathymetry derived by pre-classifying the scene and tuning the coefficients 

separately for each bottom type represents an improvement over the original method 

described in Stumpf et al. (2003).  This research demonstrated both the effectiveness of 

the algorithm to map remote benthic environments, as well as the improvements to the 

current ratio algorithm when applied separately over variable substrates.  It also pointed 

out limitations of the algorithm not addresses by its authors. The ratio algorithm 

performed well using limited soundings, which demonstrates the resourcefulness of this 

method when applied to extensive areas such as Midway Atoll, with limited a priori data.  

Additionally, the hypothesis that the ratio method described by Stumpf et al. (2003) is 

improved by tuning the coefficients for the algorithm separately for each bottom type was 

here proved correct, although the difference, given that the data available for this study, 

was not statistically significant. Finally, this study confirmed limitations in the ratio 

algorithm for deriving depth values over areas of high reflectance in very shallow waters.  

A good correlation of 82% was obtained between predicted depth and actual 

depths from a nautical chart over the entire image. This result is remarkable given the 

limited number of  in situ surveys when the total area encompassed by the atoll is taken 

into consideration. Using merely 25 training points from a combination of field surveys 

and nautical soundings to tune the algorithms coefficients, a bathymetric file was 

produced that identified major coral structures, patch reefs, and the wide range in depth 

across the atoll.  Features shallower than 20 meters were mapped with good accuracy.  

Reticulate reef areas near the center of the lagoon are clearly discernable, as well as the 

multiple depth changes around the reefs and sand chutes surrounding the reefs. The 

numerous patch and line reefs throughout the atoll are also mapped with relative 

accuracy.  If the number of training points could have been increased (from 25 to 60, for 

example), the accuracy of the bathymetry would be greatly increased. 

Inclusion of bottom type information to tune the ratio algorithm improved the 

overall map accuracy in both vertical and horizontal detail. A correlation of 86.5% was 

obtained by tuning the coefficients separately, resulting in an improved accuracy 
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compared to the entire image bathymetry, although the difference cannot be deemed 

statistically significant.  Key benthic features are clearly reproduced, such as the pinnacle 

and patch reefs in northern lagoon area.  Sand ripples caused by wind generated waves 

are clearly mapped throughout the image. Additionally, the algorithm was reliable in 

retrieving features at greater depths.  Although it remains to be established if the retrieved 

absolute depths retain sufficient accuracy for navigational purposes, the analysis 

presented here demonstrate that the ratio method is a valuable tool to augment 

bathymetric information on remote coral reef locations.   

Although the method proved a sound technique to derive water depth in coral reef 

environments, several limitations become apparent with this research. One such 

limitation is the algorithm’s inability to produce accurate depth values in very shallow 

areas characterized by high reflectance values.  The algorithm failed to produce depths 

over the bright sand and coral located in less than 2m of depth. The high reflectance 

values caused the ratio algorithm to overestimate the depth values, which produced 

invalid results.  This can be attributed to the high values of apparent reflectance in the 

green band.  The algorithm places the green band in the denominator which causes the 

ratio method to produce results close to zero as albedo is increased.  This limitation has 

been observed in other studies (Clark, 2005; Densham, 2005) and creates problems in 

locations with extensive shallow coral and sand. This problem was partially addressed by 

offsetting the overestimated image values.  This was done assuming that they are linearly 

related to the rest of the image, which was deemed a realistic assumption by a quick 

comparison with nautical chart depths. 

An important limitation in this research was the inadequate number of data points 

collected from the fieldwork completed at Midway Atoll.  The survey campaigns for this 

research took considerable time and funding to complete.  Despite collecting over 80 data 

points over a period of 12 days at Midway Atoll, the field data collected did not represent 

the normal distribution of the depth values at Midway Atoll. The Random Sampling 

pattern strategy devised prior to the field work ensured that all the habitats were 

surveyed, but could not account for depth range.  This resulted in the groundtruth points 

being representative of all bottom types but biased toward shallower depths. A sufficient 

number of water depths were collected in shallow waters (<10m), but locations in the 
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deep portions of the lagoon and on the fore reef were not surveyed adequately (surveying 

deep sites means deeper dives, which increase the surface time interval required between 

dives, and therefore require more time to complete). In fact only a total of 6 dive sites 

were surveyed in water depths over 10m. This limited the range values available to 

calculate the regression coefficients. In an environment with multiple bottom types and 

depth variations, the standard error is amplified when limited data are collected.  Other 

researchers have suggested that at least 150 or more field surveys should be conducted to 

perform supervised classifications and accuracy assessments (Mumby, 2002; McCoy, 

2005; Congelton, 1999), and this number increases with increasing area. Finally, this 

limitation in groundtruth data also prevented a thorough accuracy assessment. McCoy 

(2005) and Congelton (1999) suggest dividing the field data in 2 sets:  the training dataset 

and the accuracy assessment dataset. In this study this was not possible because the 

deeper depth values collected in the field needed to be used in the training dataset. 

To summarize, many possible sources of error affect the accuracy of the 

bathymetric derivation presented in this study. Although merging similar classes from the 

benthic classification and creating two main bottom types allowed bathymetry derivation 

over variable substrates that produced improved results, some classes of the original 

classification (Figure 20) had to be omitted, because they lacked sufficient groundtruth 

data.  Although the depth values produced in this research are a good indicator of the 

actual bathymetry inside the atoll, future research or fieldwork is needed to fine tune the 

results and carry out a more extensive accuracy assessment.   

A limited amount of groundtruth points with respect to the area studied (> 100 

km2) made it necessary to augment the field data with soundings from a nautical chart for 

both training and assessing the bathymetry. Since no other depth reference, such as 

LiDAR, was available for Midway Atoll, the nautical chart depths were assumed 

sufficiently accurate, even though the nautical charts from this region were found to 

contain inaccuracies during fieldwork carried out by other researchers since 2000 

(Siciliano, pers. comm.). Additionally, soundings were obtained from the chart by the 

traditional method of using compass and ruler.  This simple method made it difficult to 

locate the exact point on the chart and on the digital image was difficult.  To compensate 

for possible geospatial error between the chart and digital QuickBird image, soundings 
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were selected over areas that encompassed major, recognizable structures, such as large 

patch reefs, and uniform areas of constant depth.      

As mentioned, another potential source of error was the application of an offset 

due to the algorithm’s failure over very shallow areas with high albedo.  The offset was 

applied by examining the Gaussian distribution of the overestimated depth values, 

omitting the tail end on the distribution. 

An important consideration for bathymetry derivation with spectral imagery is the 

cost and time required for the collection of an appropriate number of data points in the 

field.  Today any algorithm available for bathymetry derivation requires field data to 

scale relative bathymetry to absolute values.  Therefore, groundtruth work remains an 

important element of remote sensing analyses.  Remote locations, such as Midway Atoll, 

require several days of transit to reach the destination.  Unlike other remote atolls, 

Midway Atoll has an active runway, which greatly facilitates access and reduces travel 

time: other locations, such as the neighboring Kure Atoll or many other atolls in the 

central Pacific, are only accessible by ship, making this kind of work more difficult and 

expensive.  Additionally, any in situ assessments carried out on SCUBA ideally require 

experienced divers and some knowledge of marine environments, particularly, in this 

case, coral reef environments.  Our field team lacked extensive diving experience and had 

little or no prior knowledge of underwater environments, which inevitably slowed down 

the fieldwork process. Even though the team completed numerous surveys, the 

groundtruth data was scarce when compared to the extensive area (> 100km2) 

encompassed by the atoll’s environments. Moreover, typical weather and sea constraints 

further reduced the efficiency of field surveys.  Ideally, either more personnel or more 

time in the field would be required.  Furthermore, the travel cost to remote locations is 

usually high and cost constraints may prevent other research teams from collecting 

adequate field data to complete studies in remote locations.  
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VIII. CONCLUSION AND RECOMMENDATIONS 

The effectiveness of Stumpf et al. (2003) ratio method to resolve bathymetry with 

the ability to tune the coefficients with limited soundings demonstrate its resourcefulness. 

The results in this research indicate that improved bathymetric mapping can be obtained 

by subdividing the scene into its different bottom types and tuning the algorithm’s 

coefficients separately for each substrate. The ratio method applied to the entire scene 

produced accurate depth results with most major vertical features and depth variations 

represented.  Improved results were obtained by pre-classifying the imagery into its main 

bottom types.  Features over low-albedo substrates, such as coral and algae, were 

represented with greater accuracy. Additionally, sand substrates showed improved depth 

accuracy throughout the atoll.  This demonstrates that Stumpf et al. (2003)’s algorithm 

does not implicitly compensate for variable bottom type and albedo as was originally 

concluded by its authors and postulated by Clark (2005).  

 The study also confirmed the inability of Stumpf et al. (2003) ratio method to 

perform well over shallow, high albedo substrates, such as sand in waters less than 2m in 

depth. The algorithm consistently failed in those areas.  This limitation has been 

previously reported by other researchers, including Mumby (2004) and Clark (2005).  

There are numerous opportunities for improvements on the work presented here. 

In order to conduct a thorough accuracy assessment of the methods described in this 

paper, additional field data would have to be collected in deep waters inside and outside 

the atoll, unless an overflight with a system retrieving high accuracy depth, such as the 

LiDAR sensor become available.  LiDAR data could then be used as the reference dataset 

as in the study by Clark (2005).  A cost-benefit analysis for collecting in situ data in 

remote areas could also be useful. Most importantly, new research should focus on 

resolving the algorithm’s inability to estimate accurate depths over shallow areas with 

high albedo.   
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APPENDIX A. QUICKBIRD METADATA FILE 

version = "Q"; 
generationTime = 2004-12-13T18:02:01.000000Z; 
productOrderId = "000000174939_01_P001"; 
imageDescriptor = "Basic1B"; 
bandId = "Multi"; 
panSharpenAlgorithm = "None"; 
numRows = 7470; 
numColumns = 6876; 
productLevel = "LV1B"; 
radiometricLevel = "Corrected"; 
bitsPerPixel = 16; 
compressionType = "None"; 
BEGIN_GROUP = BAND_B 
 ULLon = -177.46451323; 
 ULLat =   28.29090703; 
 ULHAE =    -1.00; 
 URLon = -177.29454635; 
 URLat =   28.29004530; 
 URHAE =    -1.00; 
 LRLon = -177.29576290; 
 LRLat =   28.12599775; 
 LRHAE =    -1.00; 
 LLLon = -177.46542684; 
 LLLat =   28.12693010; 
 LLHAE =    -1.00; 
 absCalFactor = 1.604120e-02; 
END_GROUP = BAND_B 
BEGIN_GROUP = BAND_G 
 ULLon = -177.46451323; 
 ULLat =   28.29090703; 
 ULHAE =    -1.00; 
 URLon = -177.29454635; 
 URLat =   28.29004530; 
 URHAE =    -1.00; 
 LRLon = -177.29576290; 
 LRLat =   28.12599775; 
 LRHAE =    -1.00; 
 LLLon = -177.46542684; 
 LLLat =   28.12693010; 
 LLHAE =    -1.00; 
 absCalFactor = 1.438470e-02; 
END_GROUP = BAND_G 
BEGIN_GROUP = BAND_R 
 ULLon = -177.46451323; 
 ULLat =   28.29090703; 
 ULHAE =    -1.00; 
 URLon = -177.29454635; 
 URLat =   28.29004530; 
 URHAE =    -1.00; 
 LRLon = -177.29576290; 
 LRLat =   28.12599775; 
 LRHAE =    -1.00; 
 LLLon = -177.46542684; 
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 LLLat =   28.12693010; 
 LLHAE =    -1.00; 
 absCalFactor = 1.267350e-02; 
END_GROUP = BAND_R 
BEGIN_GROUP = BAND_N 
 ULLon = -177.46451323; 
 ULLat =   28.29090703; 
 ULHAE =    -1.00; 
 URLon = -177.29454635; 
 URLat =   28.29004530; 
 URHAE =    -1.00; 
 LRLon = -177.29576290; 
 LRLat =   28.12599775; 
 LRHAE =    -1.00; 
 LLLon = -177.46542684; 
 LLLat =   28.12693010; 
 LLHAE =    -1.00; 
 absCalFactor = 1.542420e-02; 
END_GROUP = BAND_N 
outputFormat = "NITF"; 
BEGIN_GROUP = IMAGE_1 
 satId = "QB02"; 
 CatId = "1010010003527201"; 
 SceneID = "1"; 
 TLCTime = 2004-10-12T22:34:39.565507Z; 
 numTLC = 2; 
 TLCList = ( 
 (0,  0.000000), 
 (7470,  4.330435) ); 
 firstLineTime = 2004-10-12T22:34:39.565507Z; 
 avgLineRate = 1725.00; 
 exposureDuration = 0.00057971; 
 collectedRowGSD =   2.434; 
 collectedColGSD =   2.425; 
 meanCollectedGSD =   2.430; 
 rowUncertainty =   34.00; 
 colUncertainty =   34.02; 
 sunAz = 155.4; 
 sunEl =  51.2; 
 satAz = 113.5; 
 satEl =  89.3; 
 inTrackViewAngle =  -0.0; 
 crossTrackViewAngle =   0.6; 
 offNadirViewAngle =   0.6; 
 cloudCover =   0.1; 
 PNIIRS = 3.0; 
 imageQuality = "Excellent"; 
 resamplingKernel = "CC"; 
 TDILevel = 13; 
 positionKnowledgeSrc = "R"; 
 attitudeKnowledgeSrc = "R"; 
 revNumber = 16775; 
END_GROUP = IMAGE_1 
END; 
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APPENDIX B. CLASSIFICATION GUIDE 

DATE: TIME: DIVE/SNORKEL #: GPS coords:
Dive dist. and bearing from boat: Photos #: Depth: 

REEF HABITAT CLASSIFICATION FRAMEWORK FOR MIDWAY ATOLL, NWHI 
ATOLL ZONES (select all that apply) REEF HABITATS (select all that apply)
A. LAND modifiers GEOMORPHIC: modifiers BOTTOM COVER: ecological modifiers

bare, vegetated 1. calcareous pavement- a. unconsolidated sediments- mud, sand,
ponds 2. simple patch reef- rubble, cobbles, boulders, etc.)
artificial (seawall, paving, 3. complex patch reefs- b. hard bottom (other than live coral)

bldgs., docks, etc.) 4. linear reef-
B. SHORELINE -INTERTIDAL modifiers 5. pinnacle reef- c. submerged vegetation-

sand/unconsolidated, artificial 6. hole or pool- turf algae
consolidated, tidepools 7. vertical wall- macro (fleshy) algae-

C. REEF CREST  (atolls, barrier reefs) 8. spurs and grooves- calcareous or coralline algae-
D. FORE REEF 9. pass or channel- d. live coral-
E. SHELF- TERRACE 10. secondary islet, rocks, mixed monospecific
F. DEEP ESCARPMENT seastack, etc.) massive encrusting
G. LAGOON e. other invertebrates- sea urchins, sponges
H. BACK REEF f. artificial-
I. REEF TOP (submerged reef) concrete, marine debris,

metal, wood, 
Bottom cover abundance rating: D = Dominant A = Abund C = CommO = Occasional R = Rare

 

 

 

 

 

 

 

 

 

 

 

 

 



68 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



69 

LIST OF REFERENCES 

Avery, T.E., and Berlin, G.L. 1992. Fundementals of Remote Sensing and Airphoto   
Interpretation.  Macmillan Publishing Company, New York, NY. 

 
Barton, I.J. 1995. Satellite derived sea-surface temperatures: current status.  Journal of 

Geophysical Research. 100: 8777–8790. 
 
Benny, A.H., and G.J. Dawson. 1983.  Satellite imagery as an aid to bathymetric charting 

of the Red Sea.  The Cartographic Journal.  20 (1): 5–16. 
 
Bushuev, A.V., and A.V. Turchin. 1991.  Operational use of sea ice remote sensing tools 

to support navigation in the Arctic and Antarctic. Geoscience and Remote Sensing 
Symposium, 1991. IGARSS '91. Remote Sensing: Global Monitoring for Earth 
Management. International, 797. 

 
Chauhan, P., and S. Nayak. 2005. Detection of submerged reef banks in the Lakshadweep 

Sea using IRS-P4 OCM satellite data.  Current Science.  89: 557–560. 
 
Clark, R. E. 2005. Naval satellite bathymetry: A performance assessment. Master’s 
    Thesis, Naval Postgraduate School, Monterey, California. 
 
Congalton, R.G., Green, K. 1999. Assessing the accuracy of remotely sensed data: 

principles and practices.  Boca Raton, Florida.  Lewis Publishers. 
 
Densham, M. 2005.  Bathymetric Mapping with QuickBird data.  Master’s Thesis, Naval 

Postgraduate School, Monterey, California. 
 
Digital Globe, Inc. 2004. QuickBird Imagery Products: Product Guide.  Longmont, 

Colorado: Digital Globe, Inc.  
 
Digital Globe, Inc., K. Krause. 2003. Radiance Conversion of Quickbird Data.  

Longmont, Colorado: Digital Globe, Inc.  
 
Digital Globe, Inc., K. Krause. 2005. Radiometric use of QuickBird Imagery.  Longmont, 

Colorado: Digital Globe, Inc.  
 
Doxaran, D., Nagur, C., and S.J. Lavendar. 2006. Apparent and inherent optical 

properties of turbid estuarine waters: measurements, empirical quantification 
relationships, and modeling.  Applied Optics. 45 (10): 2310–2324. 

 
Duntley, S.Q. 1963. Light in the Sea.  Journal of the Optical Society of America, 53: 

214–233.  
 



70 

Eilperin, J. 2006.  Hawaiian Marine Reserve to be Worlds Largest. Retrieved August 10, 
2006, from the Washington Post Web site: http://www.washingtonpost.com/wp-
dyn/content/article/2006/06/14/AR2006061402455.html 

 
Fisher, T.M. 1999.  Shallow water bathymetry at Lake Tahoe from AVIRIS data.      
    Master’s Thesis, Naval Postgraduate School, Monterey, California. 
 
Green, E.P, Mumby, P.J., Edwards A.J., Clark, C.D., (Ed. A.J. Edwards). 2000.  Remote 

sensing handbook for tropical coastal management.  Coastal Management Sourcebooks 
3, UNESCO, Paris. 

 
Hedely, J.D., Harborne, A.R., and P.J. Mumby. 2005. Simple and robust removal of sun 

glint for mapping shallow-water benthos.  International Journal of Remote Sensing. 26   
(1, part 2): 2107–2112. 

 
Hochberg, E.J., Adrefouet, S., and M.R. Tyler. 2003.  Sea surface correction of high 

special resolution IKONOS images to improve bottom mapping in near-shore 
environments.  IEEE Transactions on Geoscience and Remote Sensing. 41 (7): 1724–
1729. 

 
Jenson, J.R. 2000.  Remote Sensing of Water.  Retrieved August 10, 2006, from the 

University of South Carolina Web site: 
www.cas.sc.edu/geog/rslab/551/Lectures/Chapter11_Water.ppt 

 
Jerlov, N.G. 1976. Marine Optics.  Elsevier, Amsterdam. 
 
Jupp, D.L.P. 1988. Background and extensions to depth of penetration (DOP) mapping in 

shallow coastal waters.  Proceedings of the Symposium on Remote Sensing of the 
Coastal Zone, Queensland, September 1988, IV2.1–IV2.29. 

 
Kirk, J.T.O. 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge 

University Press, Cambridge. 
 
Kogan, F.M. 2001. Operational space technology for global vegetation assessment.  

Bulletin of the American Meteorological Society.  82: 1949–1964. 
 
Leica Geosystems Geospatial Imaging, LCC. 2006.  ATCOR for IMAGINE 9.0.  

Norcross, GA. 
 
Lillesand, T.M., Kiefer, R.W. and J.W. Chipman. 2004. Remote Sensing and Image 

Interpretation.  New York:  JohnWiley and Sons, Inc. 
 
Louchard, E. M., Reid, P. R., Stephens, C. F., Davis, C.O., Leathers, R. A., and V.T. 

Downes. 2003.  Optical remote sensing of benthic habitats and bathymetry in coastal 
environments at Lee Stocking Island, Bahamas: A comparative spectral classification 
approach.  Limnology and Oceanography. 48 (1, part 2): 511–521.  



71 

Lubin, D., W. Li, P. Dustan, C. Maxel, and K. Stamnes. 2001.  Spectral signatures of 
coral reefs: Features from space. Remote Sensing of the Environment. 75: 127–137. 

 
Lyzenga, D. R. 1978. Passive remote sensing techniques for mapping water depth and 

bottom features. Applied Optics. 17 (3): 379–383. 
 
Lyzenga, D. R. 1981. Remote sensing of bottom reflectance and water attenuation 

parameters in shallow water using aircraft and Landsat data. International Journal of 
Remote Sensing. 1: 71–82. 

 
Lyzenga, D. R. 1985. Shallow-water bathymetry using combined lidar and passive 

multispectral scanner data.  International Journal of Remote Sensing. 6 (1): 115–125. 
 
Maragos JE, Potts DC, Aeby GA, Gulko D, Kenyon J, Siciliano D, and D. 

VanRavenswaay. 2004. 2000–2002 Rapid Ecological Assessment of Corals 
(Anthozoa) on Shallow Reefs of the Northwestern Hawaiian Islands.  Part 1: Species 
and Distribution.  Pacific Science 58(2): 211–230. 

 
Maritorena, S., A. Morel, and B. Gentili. 1994. Diffuse reflectance of oceanic shallow 

waters: Influence of water depth and bottom albedo. Limnology and Oceanography. 39 
(7): 1689–1703. 

 
Martin, S. 2004. An Introduction to Ocean Remote Sensing.  Cambridge, UK: Cambridge 

University Press.  
 
McCoy, R.M. 2005.  Field Methods in Remote Sensing.  New York: The Guildford Press. 
 
Mishra, D.R., Narumalani, S., Rundquist, D., and M. Lawson. 2005.  Characterizing the 

vertical diffuse attenuation coefficient for downwelling irradiance in coastal waters:  
Implications for water penetration by high resolution satellite data.  Photogrammetry 
and Remote Sensing. 60: 48–64. 

 
Mobley, C.D.1994. Light and Water: Radiative Transfer in Natural Waters. Academic 

Press, San Diego. 
 
Morel, A., Prieur, L. 1977.  Analysis of variations of ocean color.  Limnology and 

Oceanography. 22 (4): 709–722. 
 
Morris, K. 2005.  Midway Atoll: National Wildlife Refuge and Battle of Midway 

National Memorial.  [Pamphlet].  U.S. Fish and Wildlife Serive. 
 
Mumby, P., Clark, C., Green, E., and A. Edwards. 1998. Benefits of water column 

correction and contextual editing for mapping coral reefs.  International Journal of 
Remote Sensing. 19 (1): 203–210. 

 



72 

Mumby, P.J.,  and A.J. Edwards. 2002. Mapping marine environments with IKONOS 
imagery: enhanced spatial resolution can deliver greater thematic accuracy.  Remote 
Sensing of Environment. 82 (2): 248–257. 

 
Mumby, P.J., Skirving, W., Strong, A.E., Hardy, J.T., LeDrew, E.F., Hochberg, E.J., 

Stumpf, R.P., and L.T. David. 2004.  Remote Sensing of coral reefs and their physical 
environment.  Marine Pollution Bulletin.  48: 219–228.  

 
Olsen, R.C. 2006. Remote Sensing from Air and Space.  In press, SPIE. 
 
Philpot, W. D. 1989. Bathymetric mapping with passive multispectral imagery. Applied 

Optics. 28 (8): 1569–1578. 
 
Polcyn, F.C., and D.R. Lyzenga. 1973.  Calculations of water depth from ERTS-MSS 

data.  Proceedings, Symposium on significant results from ERTS-1, NASA Spec. Publ. 
SP-327. 

 
Prasert, S. 2005. Multi angle imaging with spectral remote sensing for science 

classification. Master’s Thesis, Naval Postgraduate School, Monterey, California. 
 
Research Systems, Inc. 2004.  ENVI Tutorials.  Boulder, Colorado: Research Systems, 

Inc. 
 
Robinson, I.S. 2004. Measuring the Oceans from Space.  Chichester, UK:  Praxis 

Publishing LTD. 
 
Rosenshein, J.S., Goodwin, C.R., and A. Jurado. 1977. Bottom configuration and 

environment of Tampa Bay.  Photogrammetry and Remote Sensing. 43: 693. 
 
Short, N.M. 2006. The remote sensing tutorial.  Retrieved August 10, 2006, from the 

National Aeronautics and Space Administration Web site: http://rst.gsfc.nasa.gov/ 
 
Siciliano, D. 2005.  Latitudinal limits to coral reef accretion: testing the Darwin point 

hypothesis at Kure Atoll, Northwestern Hawaiian Islands, using new evidence from 
high resolution remote sensing and in-situ data.  Doctoral Dissertation, University of 
California Santa Cruz, 2005. 

 
Smith, R. C., and K. S. Baker. 1981. Optical properties of the clearest natural waters. 

Applied Optics. 20 (2): 177–184. 
 
Stuffle, L.D. 1996.  Bathymetry from hyperspectral imagery.  Master’s Thesis. Naval    
    Postgraduate School, Monterey, California. 
 
Stumpf, R.P., Holderied, K., and M. Sinclair. 2003. Determination of water depth with 

high-resolution satellite imagery over variable bottom depths. Limnology and 
Oceanography. 48 (1, part 2): 547–556. 



73 

Tewinkel, G.G. 1963. Water depths from aerial photographs. Photogrammetry and 
Remote Sensing. 29: 1037. 

 
Thomas, G.E. and K. Stamnes. 1999. Radiative Transfer in the Atmosphere and Ocean.  

Cambridge, UK:  Cambridge University Press. 
 
Weidmark, W.C., Jain, S.C., Zwick, H.H., and J.R. Miller. 1981. Passive bathymetric 

measurements in the Bruce Peninsula.  In:  Proceedings, Fifteen International 
Symposium on Remote Sensing of the Environment.  Environmental Research Institute 
of Michigan, Ann Arbor. 

 
Zhongping, L., Kendell, L. C., Mobley, C.D., Steward, R.G., and J.S. Patch. 1999. 

Hyperspectral remote sensing for shallow waters: Deriving bottom depths and water 
properties by optimization.  Applied Optics. 38 (18): 3831–3843. 



74 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



75 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 

3. Dr. Richard C. Olsen. Code PH OS 
Naval Postgraduate School 
Monterey, California 
 

4. Dr. Daria Siciliano, Code PH 
Naval Postgraduate School 
Monterey, California 
 

5. Angela Puetz, Code PH 
Naval Postgraduate School 
Monterey, California 
 

6. Barry Christenson 
U.S. Fish and Wildlife Service 
Honolulu, Hawaii 
 

7. John Klavitter 
U.S. Fish and Wildlife Service 
Honolulu, Hawaii 


