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ABSTRACT 

The purpose of this thesis is to make a clean sheet of paper approach to develop a 

platform for a future fiigateldestroyer size warship based on the operational requirements 

in the context of future crisis management and constrained resources. The envisioned 

timeframe is the beginning of the next decade, i.e. 2010 +. 

Basic operational requirements regarding the bare warship platform will be 

weighted and discussed. The study is concentrating on the hull and propulsion 

configuration to support the derived operational needs. All weapons and control systems 

will be handled as interchangeable modules, hence only spaces and interfaces will be 

discussed in this thesis. Special emphasis is given to Total Ownership Costs and the risk 

from incorporating not yet introduced technologies. 

In addition to the classical monohull approach, Catamaran, Trimaran, SWATH 

and the O’Neill hull form configurations will be investigated as well. In comparison to 

the Combined Diesel and Gas Turbine (CODAG) and Combined Diesel or Gas Turbine 

(CODOG) propulsion Diesel Electric, Gas Turbine Electric and possible combinations of 

these propulsion concepts will be evaluated. 
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I. INTRODUCTION 

A. PURPOSE 

In today’s fast changing political environment our current naval assets do not 

sufficiently meet current and future requirements, dictated by a full spectrum of possible 

crises in a global scenario, ranging from humanitarian help to full scale major conflicts. 

Current assets do not incorporate state of the art technologies and their support needs do 

not match current constraints due to declining resources. 

This thesis will outline today’s technically obtainable solutions to build and 

operate a future fiigate/destroyer size warship to replace current aging assets. The 

research will be based on current and future operational requirements and a market 

review of ship’s hull and propulsion concepts available to meet these requirements. High 

emphasis will be on the implementation of supportability and upgradeability concepts. 
- .  

The proposed vessel shall satisfy operational requirements expected in the years 

2010 + and shall be upgradeable in an efficient way to satisfy operational requirements 

evolving during their minimum 30 year service life. The study specifically concentrates 

on the hull and propulsion configuration to support the derived operational needs. All 

weapons and control systems will be handled as interchangeable modules, hence only 

spaces and interfaces will be discussed in this thesis. 

Total ownership costs will be one of the key focus areas during the whole 

selection and design process. 
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B. RESEARCH QUESTIONS 

The primary research question is: What are today’s possible solutions to design a 

warship platform that will satisfy the current and future operational requirements with 

special regard to all aspects of total ownership costs? 

This leads to the following secondary research questions: 

1. Hierarchical investigation of operational requirements. What performance 

characteristics does a battle space commander expect of a fiigate/destroyer size ship and 

how are they going to be ranked to each other? What operational requirements for future 

warships are defined and mandatory today? 

2. What configurations of hull shapes and propulsion systems would support the 

needs derived fiom question 1 ., utilizing materials, technologies and manufacturing 
- .  

processes, which will have matured by 2010? All solutions will be evaluated with regard 

to most efficient use of available resources, total ownership costs and a proposed program 

schedule. 

3. What are the elements of the total ownership costs for a naval warship? 

4. What would a hture naval combat vessel look like as a synthesis of the 

answers to these questions? 

2 



C. THESIS OUTLINE 

Operational requirements concerning the performance characteristics of a naval 

war-fighting platform will be derived from the current and expected future mission needs. 

These requirements will be weighted against each other to obtain a balanced hierarchy 

that will serve as a basis for the selection of possible hull and propulsion concepts. 

Basic ship hull, propulsion and warfare support concepts will be discussed. The 

feasibility and availability of innovative solutions for the hull type and the propulsion 

plant will be evaluated with the means of calculations and market survey. Warfare 

support concepts will be investigated with regard to survivability, supportability and 

upgradeability. One of the underlying concepts in the design will be the use and 

definition of modules and their required interfaces. The idea of replaceable modules will 

be used for all propulsion, auxiliary, weapon and control systems where possible. 

Total Ownership Costs (TOC), i.e. the cost incurred from acquisition including 

R&D through life-cycle support up to demilitarization and disposal, will be defined for a 

naval ship. These definitions will be used for the assessment of possible design solutions 

for the future warship. Major emphasis will be on the supportability and efficient 

operation during the vessel’s deployment. 

Possible candidate concepts for hull, propulsion and warfare support will be 

assessed by their ability to satis@ the derived operational requirements and their expected 

total ownership costs. 

A possible synthesis of the results to obtain a reliable, supportable and 

upgradeable platform for a future naval combat vessel will be presented and discussed. 

3 



D. METHODOLOGY 

The methodology used in this thesis research will consist of the following steps. 

1. Review German and U S .  Mission Need Information concerning future 

frigate/destroyer size warships. 

2. Review today’s available technologies for ship’s hulls, propulsion and support 

systems and search for innovative warfare system support concepts. 

3. Review all aspects of Total Ownership Costs. 

4. Evaluate operational requirements. 

5. Evaluate hull types, propulsion and warfare support systems. 

6 .  Estimate the impact of these concepts with regard to Total 0wnership.Costs. 

7. Analyze possible combinations of all appropriate candidate systems with 

special respect to their ability to satisfy the stated Mission Needs. 

8. Synthesize the results into a proposed design. 

9. Formulate conclusions of the findings and recommendations for the German 

Ministry of Defense and the U.S. Department of Defense. 

E. EXPECTED BENEFITS OF THIS THESIS 

The thesis will show possible solutions for the design of a future fiigateldestroyer 

size naval surface vessel to replace ow current aging assets. Due to the modular concepts 

employed, this might serve as the basic common platform for a whole family of efficient 
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future naval combat vessels for different missions. The focus on total ownership costs at 

the design stage is one of the key focus areas for all future military assets. 

This thesis will not provide the ultimate exactly defined solution to the design 

problem but it will show possible solutions derived from the requirements. One major 

focus within the thesis is the process applied to select, evaluate and synthesize 

components for a proposed ship design. The final design would be left to the 

contractor(s) based on defined performance specifications issued by the government. 

5 
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11. BACKGROUND 

A. INTRODUCTION TO A FUTURE MISSION NEED IN THE YEAR 2010 + 

1. 

Since the end of the Cold War era the global political environment has changed 

Change in the Global Environment 

significantly. Most of today’s crises occur affecting naval warfare in the littoral 

environment and they can happen virtually anywhere around the world. Compared to the 

bipolar scenario of the past, today’s conflicts are smaller in scale but they come at very 

short notice and require a flexible and precisely tailored response towards the individual 

crisis. Due to the fact that the composition of the forces with regard to their nationalities 

varies from conflict to conflict, interoperability becomes one of the key challenges for 

success. 

2. 

The navies of tomorrow will be confronted with the following missions: 

Future Missions for the Navy 

- Antisubmarine Warfare (ASW) 

- Above Water Warfare (AWW), i.e. Anti Air Warfare (AAW) + Anti Surface Warfare 

(ASuW) 

- Theater Air Defense (TAD) 

- Theater Ballistic Missile Defense (TBMD) 

Littoral Warfare / Naval Surface Fire support (NSFS) - 
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- Embargo Operations 

- Humanitarian Missions 

- Mine Warfare (MW) 

3. Assets Needed to Fulfill the Missions 

Looking at the current assets of the German Navy, the following missions are 

covered: Anti Submarine Wadare (ASW), Above Water Warfare (AWW), Embargo 

Operations, Humanitarian Missions and Mine Warfare (MW). Theater Air Defense 

(TAD) was partly covered by destroyers class 103 (“LUTJENS” class, similar to US 

“CHARLES F. ADAMS” class) which are being taken out of service. Littoral Warfare, 

especially Naval Surface Fire Support, is only covered by assets carrying a 76-mm gun. 

Theater Ballistic Missile Defense (TBMD) is presently not covered at all. Beginning in 

2002, the frigate class 124 will provide the TAD mission capabilities currently provided 

by the destroyer class 103. The. frigate class 122 (“BREMEN” class), which covers 

mainly ASW, AWW and Embargo Operations will be at the end of their 30 year service 

life in 2012 and the following years. Due to this development there will be a need to 

replace these eight frigates beginning in 2012. Since the roles of TBMD and NSFS 

particularly need to be created or enhanced and the capabilities of the “BREMEN” class 

need to be replaced, eight new ships are required to close the gap. A possible option is to 

design a primarily AWW version and a primarily ASW version on the basis of a common 

hull. The AWW version then has to be able to perform the TBMD and the NSFS role as 

well. 

8 



B. OPERATIONAL REQUIREMENTS 

1. The Following Operational Capabilities are Required to FulfiIl these 
Future Missions: 

- The ship shall be capable of detecting and tracking air, surface, and subsurface 

contacts in order to support the prescribed concept of operations in the defined 

operational environment. 

The ship shall provide command and control capability to support the concept of 

Network-Centric-Warfare [Ref. 11. 

The ship shall be fully interoperable with all forces at joint and combined levels. 

The ship shall employ advanced weapon systems to the highest extent possibIe while 

also using common NATO Standard ammunition to allow cross supplies within a 

multi-national force. 

The ship shall achieve or exceed the maneuverability, speed of advance and range 

required to keep up with combined naval forces, e.g., NATO Standing Naval Forces 

Atlantic (STANAVFORLANT). 

The ship shall be designed to meet Level I11 Survivability criteria specified in US. 

OPNAVINST 9070.1 or corresponding foreign national instructions. 

- 

- 

- 

- 

- 
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2. System Requirements Concerning the Platform: 

Requirement 

The design shall comply with 01 

exceed all relevant military anc 

commercial standards for ocean going 

ships at the time of lead ship deliveq 

with no exemption. 

State-of-the-art automation, built-in 

test systems and central computerized 

data logging system shall be provided. 

The ship shall have integrated - .  electric 

?ewer generation, distribution and 

~ropulsion system. 

Rationale 

Since the international standards, especial1 

those concerning safety, waste and emission 

are getting very tight, there would be hug( 

future costs for retrofitting the require( 

systems. The extensive use of commercia 

standards where applicable allows the use o 

commercial off-the-shelf (COTS) component: 

and subcomponents. 

Manpower is one of the major cost drivers ir 

the operation of a warship today and it will be 

in future. Any reasonable investment to 

reduce manpower up front will significantlj 

lower the total ownership costs. 

This ensures optimum load condition and 

ience efficiency for the prime movers. With 

in electric drive system more flexibility in 

nternal arrangement of all machinery is 

;ained. It increases the overall redundancy 

md versatility by automatic re-routing and re- 

tllocation of loads in emergency situations. It 

rovides the high electric power needs 

equired by future generations of weapon 

'ystems. 
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The high and low speed maneuvei 

ability in harbor and at sea shall b 

high. 

Modular design shall be implementec 

to the maximum extent possible. 

The design shall provide 10 YO margir 

For displacement growth. This shal 

nclude a‘0.5 m margin for the verticai 

:enter of gravity (KG). 

Zables, pipes and vents shall be 

lesigned to support the modular 

:oncept. The number of cables, pipes 

md vents has to be sufficient for a 

easonable future growth and to 

rovide redundancy in case of failure. 

:ommercial state of the art data 

lrocessing bandwidth shall be 

m plo yed . 

The ship has to be able enter or leave harbc 

and secure alongside without extern: 

assistance, i.e. tugs or personnel. Both migk 

not be available in a future crisis scenaric 

The ship has to keep up with combined nava 

forces in any threat environment. 

The benefits are the ease of replacement i i  

case of failure or battle damage, upgrade 

ability to accommodate future state-of-the-ar 

systems and capability for exchange system! 

to enable the ship to perform different roles. 

The ship has to have a service life allowance 

to permit displacement growth, in order tc 

3ccommodate weight increases, incl. top- 

weights, caused by future upgrades. 

The full benefits of a modular design can only 

ie utilized, if the ship’s technical infra- 

itructure supports a “plug-and-play” like 

)peration, hence requiring a standardized 

~ ~ p p l y  of electrical power, data transfer, 

fentilation and cooling water. 

h c e  all future combat systems rely on 

bermanent transfer of huge amounts of data, 

he ships must be provided with the maximum 

landwidth reasonable available. 
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The platform shall be prepared tc 

support an open architecture integrated 

computer network. 

Stealth technology has to be used to 

the maximum extent practicable. 

The damaged stability characteristics 

shall allow for flooding of at minimum 

three adjacent compartments without 

sinking. 

The platform shall survive medium 

caliber gunfire or one (EXOCET 

equivalent) missile hit. 

The ship shall have underwater 

acoustic detection capability suitable to 

the mission requirements. 

The system has to ensure compatibility witt 

all relevant IT standards at the time of leac 

ship delivery and has to allow for hture 

growth and updates. Hence the final decision 

about detail design of hardware and software 

has to be postponed until about three years 

before ship delivery. 

The key to “high tech” warfare is to avoid any 

detection and hence possible damage from 

enemy hits as long as possible. Therefore all 

emissions, including the magnetic, electro- 

magnetic, heat, radar, noise, visual and even 

the wake signatures of the ship have to be as 

small as possible. 

The loss of compartments can occur due to 

battle damage, grounding, collision or internal 

accidents. In all cases the ship and her crew 

shall survive without external assistance. 

Since the ship might be on its own it has to 

remain at least in a reduced mission capable 

status after a hit as long as possible. 

Even in the non-ASW role some capability 

similar to today’s sonar is required for self 

defense. For the deep-sea ASW role more 

advanced capability can be installed as one of 

the modules. 

12 



Support of a minimum of : 
helicopters, or 1 helicopter and twc 

UAVs shall be provided by thc 

Helicopters and or drones are required for rn 
platform. 

NATO standard RAS equipment 

automated means to handle all liquic 

and solid supplies as well as means tc 

deliver fuel shall be provided. 

rhere have to be two rigid boats rigged 

such that they can easily be deployed, 

me of which has to be equipped with a 

:abin. 

9n accommodation margin shall be 

Irovided for at least 30 personnel 

ibove ship's force level. 

;tate-of-the-art corrosion protection 

reconnaissance or as weapon carriers. At leas 

one helicopter is required for personnel an( 

casualty transfer in any kind of operation. 

The RAS capability is essential to ensure thc 

required operational endurance. An automatec 

supply handling system is required tc 

Lransport solid goods in a fast, safe and 

:fficient way within the ship with minimun 

3ersonnel. The fuel delivery capability is 

eequired to supply smaller units like Fast 

'atrol Boats (FPBs) and Corvettes during an 

)peration. This will be done alongside only. 

The boats are required for special forces 

)perations, evacuations, search and rescue and 

IS a means to commute between ship and 

hore if the ship cannot stay in a harbor. The 

overed boat is required for casualty transfers. 

Vithin the ships design roles, it has to be able 

3 deploy special forces, accommodate 

asualties, perform evacuations and serve as a 

Taining platform for officer candidates. 

Iesign flaws in the corrosion protection of the 

latform cause manpower intensive actions 

nd increase the total ownership costs 

ignificantly. 

13 
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- 
20 

- 

Operational availability for the system 

shall be 0.90 or greater. 

System supportability and upgrade- 

ability shall be possible via currently 

available infrastructure. 

The operational availability, which is a 

function of all system Mean Times Between 

Maintenance (MTBMs) and the respective 

down times, is a vital key to fulfill the mission 

need with a limited number of assets. 

The system has to be supported within the 

currently available infrastructure. Major 

module replacements either for repair, change 

of role or for upgrades shall be performed in 

any harbor with container handling 

capabilities. 

2. Key Performance Parameters: 

Acceleration (0 - 25 kn.) 90 sec. 60 sec. 

Maximum Range 4,000 nm. 7000 nm. 

Endurance 21 days 28 days 

High Speed Transit 4,000 nm @ 18 kn 5,000 nm @ 24 kn 

Max sea state for boat operation 6 7 

Max sea state for helicopter/UAV operation 8 9 
I I 

Min floodable length in adjacent compartments I 3 14 

Crew required to operate ship 180 120 
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C. TECHNOLOGY CONCEPTS 

1. HullTypes 

The following hull types could in theory be used to serve as a platform for a 

future warship: 

a. Monohull; b. Catamaran; c. Trimaran; d. SWATH; e. Combinations of these 

a. Monohull 

The conventional monohull is the basis for most military vessels at the 

moment. One of the major benefits is that there is a lot of expertise available concerning 

all aspects of hull design and construction. Another is the low wetted surface area to 

displacement ratio, which pays off with low skin friction that governs the majority of the 

resistance at lower speeds. There are advanced versions of monohulls that manage to 

reduce the wave making resistance by means of special shapes to the bow and stem of the 

vessel. A planning hull offers higher speed capability, but is presently not feasible for 

ship sizes discussed in this thesis at economical power levels. 

6. Catamaran 

The catamaran offers a large deck area but is restricted in the capability to 

accommodate large changes in weight. It is more efficient at high speeds due to lower 

wave-making resistance, but gets penalized by a higher wetted surface area to 

displacement ratio, which basically results in higher total ship’s resistance at low speeds 

compared to a monohull of similar displacement. The dynamic transverse stability of a 

15 



catamaran is better compared to a similar sized monohull. Enhanced seakeeping ability 

can be achieved by wave piercing bow designs. 

c. Trimaran 

In theory many facts relevant to the catamaran apply to the trimaran as 

well. Most trimarans have a center hull that is much larger than the side hulls, which 

results in some of the monohull features. In practice there hasn’t been any significant 

development in large-scale trimarans until quite recently. The first serious project in this 

direction is the British ‘RV Triton’. Since the total loss of one side hull due to battle 

damage may not necessarily be catastrophic for the ship survival, this design offers some 

not yet explored benefits in survivability. 

d. 

The SWATH ship has the advantage of minimum wave making resistance 

SWATH (Small Waterplane Area Twin Hull) 

but has a high wetted surface area and hence high skin friction at a given displacement. 

It’s primary benefits in seakeeping are that it shows relatively lower motions in waves, 

assuming a such that they won’t expose the lower hulls nor touch the bottom of the cross- 

structure connecting the upper hulls. Similar to the catamaran, this type offers a high 

amount of deck area but is even more limited in its capability to accommodate large 

weight changes. Most SWATH ships today need a stabilizer system to ensure sufficient 

dynamic longitudinal stability. 
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e. Combinations 

There are feasible combinations like the O’Neill design that basically 

consists of one fully submerged main hull and two additional side hulls to ensure the 

required transverse stability. This design attempts to lower the wetted surface area 

compared to a SWATH ship without loosing all the benefits of lower wave making 

resistance. 

Other hull form types such as hydro-foils, air cushion and surface effect vehicles 

are not likely to yield an efficient solution as a platform for a frigate / destroyer sized 

surface warship due to their inefficient power to weight ratio. 

2. Power Systems 

a. Mechanical Drive Systems 

Pure mechanical drive systems in this context are all propulsion systems 

that rely on a direct mechanical connection between the prime movers and the propellant 

systems. This might be single or multi shaft arrangement, as well as a Schottel or Voith- 

Schneider vertical axis propeller or even a water jet. The key element of all mechanical 

systems driven by more than one prime mover is a gearbox including the necessary 

coupling devices. The prime movers could be Diesel engines, gas turbines or any 

combination of both. For ships with mechanical drive systems, running their engines at a 

constant design load condition is the most efficient way of propulsion. An additional, 

separate electrical power generation system for ship service power is required. 
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6. Partial Eiectric Drive Systems 

In today’s warship design, there are two major varieties of partial electric 

drive systems. The first is the combination of an electric motor connected to the shaft for 

low speeds (some ships achieve up to 16 kn.) and a gas turbine connected to the same 

shaft for high speeds. There are different arrangements possible. The second one, 

especially used for smaller Mine Warfare Vessels, is the combination of a completely 

mechanical drive system with an electric-driven Schottel propeller to achieve noise-fiee 

propulsion at very low speeds (up to 5 kn.). As for the pure mechanical drive system, 

separate prime movers are required to power the electrical and the main propulsion 

system. 

c. FuIfy Electric Drive Systems 

In a fully electric drive system, any prime mover can be combined with 

any propelling system. There are no constraints about the physical locatioddistance of 

. prime mover and propeller. The electric drive metor can be placed completely external of 

the hull, as is done with podded drive systems. One of the benefits is the possibility of 

selecting the prime movers, which are connected to the power grid such that they are 

always running at a very efficient load. The resultant lower specific fuel consumption 

will compensate for efficiency losses due to energy transformations. For future designs in 

particular, the fdly electric drive approach provides the option of using fuel cells as the 

source of electric energy. The major benefits of an integrated electric power generation 

and propulsion system are the redundancy of prime movers and the versatility in load 

sharing for propulsion and non-propulsion purposes. 
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Any kind of conventional steam driven systems are not evaluated in this study because 

they are too manpower and maintenance intensive. The use of a nuclear propulsion 

system is neither an efficient nor a desired solution for displacements in the region of 

5,000- 6,000 tons. 

3. Warfare System Support Concepts 

For the purpose of this study the warfare system support concepts are split into 4 

generations by the author of this thesis. 

a 1'' Generation 

In the past most weapon, command and control systems were tailored for a 

specific use on a specific platform. Even if similar systems were used for different 

platforms via utilization of a configuration management and logistic support system, they 

were not interchangeable without assistance from specialists within a shipyard. 

b. Yd Generation 

Today's systems are designed such that a core system is common for all 

applications. The interfaces between the weapon, command or control system and the 

platform side have to be modified whenever a system gets updated or replaced by another 

system. 
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c. 3rd Generation 

All systems are completely modular. Interfaces are defined by standards. 

Ships crew is able to swap modules in a 'plug and play' like environment; i.e. all war- 

fighting modules comply with the interface standard and are replaceable or interchange- 

able with reasonable effort. The platform has to provide the interfaces in the form' of a 

central bus system to support all possible needs of the module concerning data transfer, 

power supply, 'cooling water as well as air pressure and ventilation. For guns, fire control 

and radar systems in particular, the platform provides an automatic (maybe laser based) 

alignment method. 

d. 4th Generation 

In the future, many close range rapid-fire weapon systems will be replaced 

by concentrated energy / laser weapons. These systems will probably have a need of 

electric energy that is far beyond the electric power generation capacity of most of 

today's surface combat ships. An efficient way to satisfy these high electric energy needs 

would be an integrated electric power generation and propulsion system. In such a 

configuration the hgh  but short period electric power needs by weapons could be 

provided easily by the power generation system without exceeding the ship's electric 

power generation capacity 
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D. TOTAL OWNERSHIP COST 

Especially in times of increasing needs and decreasing funds, Total Ownership 

Cost is the ‘‘bbuzzword” in all large system acquisitions. Today’s rapidly increasing 

operation and support costs are consuming the funds we need for investments in the 

modernization of our fleet. Before the cost impacts of a system’s design features can be 

evaluated later in this study, the individual components of the total ownership cost for a 

warship have to be identified. 

1. Development 

The expenditure of funds begins long before the actual procurement of a system. 

During the planning process for an acquisition program a program office is set up, studies 

have to be performed and with the evolving program the requirement for manpower 

increases. These are all indirect costs which are not necessary counted towards the budget 

of the program. Additional, relatively smaller expenses in the devzlopment phase 

frequently result in high payoffs later in the life cycle. 

2. Acquisition 

This includes all cost from the earliest design stage up to the deliveryhand over 

of the finished ship to the Navy. It covers costs like material, manufacturing (including 

overhead), an initial set of software, testing (from components up to sea trials) and a 

basic set of spares. 
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3. Manpower and Social Cost 

Manpower consists of two main cost drivers, salaries and training. Just the 

salaries of the crew for a German class 122 frigate (220 crewmembers) are in the order of 

at least $ 50,000,000 per year. Due to rotation, permanent training programs are required 

to keep a high operational readiness of the crew. In addition to the time spent in training 

by the crew, huge h d s  for training facilities including the teaching staff have to be 

allocated. Other secondary costs of personnel that cannot be neglected are health benefits 

and retirement payments. This study recognizes manpower as one of the key aspects for 

cost reduction, but does not determine those costs in detail. 

4. Maintenance 

For the purpose of this study maintenance has to be broken down further. The 

basic two categories are labor and materials. Labor has to be split down into three 

different levels, operational, intermediate and depot, with each having different 

capabilities, rates and overheads. It has to be decided whether a two-layer system, i.e. 

operational and depot level only is a cost effective alternative. Particularly for 

maintenance actions that require expensive test andor tool sets, a consolidation of these 

actions at a higher maintenance level could significantly reduce tool and maintenance 

costs. 

- .  
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5. Operating Consumables 

In today’s surface warships, consumption at unit level accounts for about 25 % of 

the total Operation and Support (O&S) cost. Petroleum, Oil and Lubricants (POL) 

account for more than 50 % of these, hence - 12.5 % of the total O&S cost. The other 

50% of the consumption at unit level are caused by repair parts, depot level support, 

training expendables and support services. 

6. Downtime 

It has to be realized that a reduction in total downtime, which translates into an 

increase in operational availability per unit, will enable the navy to satisfy the same 

mission need with fewer assets. To achieve the maximum operational availability, the 

cycle times for maintenance, modernization and training have to be optimized, i.e., the 

turn-around times in maintenance have to be minimized. A modular design will support 

shorter downtimes. Systems with high Mean Times Between Maintenance (MTBMs), 

either preventive or corrective, will support longer intervals between shipyard overhauls. 

All downtimes caused by maintenance, modernization or training have to be 

synchronized. 

7. Upgrades, Modernization 

With respect to the expected lifetime of a naval ship, which will be in excess of 

30 years, there is no way to avoid upgrades and modernization. Most of these will 

concern the payload, i.e. weapons and electronics. In the past, changes to the main 

platform, i.e. the hull, and the propulsion system have occurred only occasionally. 
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Command and control systems in particular in our current ships are often buried deep 

inside the hull. Replacement of parts that are too bulky andor heavy to be moved through 

the passageways requires an enormous effort in dismantling and reinstalling other 

installations. To avoid excessive downtimes and costs, all major command and control 

systems should be installed with adequate access routes to replace them with minimum 

effort. Most weapon systems are installed in an inherently more accessible location 

anyway. To further enhance the upgradeability, all systems should be provided with 

standardized interfaces that support a “plug-and-play” concept. 

8. Software Support 

The number of systems that work completely independent of any s o h a r e  is 

decreasing rapidly. Changes to the software in order to upgrade a system, to enhance the 

interoperability between systems or just to remove initial bugs and insufficiencies are 

very time consuming and expensive. The use of standard off-the-shelf versus customized 

software has to be evaluated for each individual application. 

9. Demilitarization, Disposal 

If the design process is oriented towards minimizing total ownership cost, the 

demilitarization and or disposal cost at the end of the service life can also be minimized. 

The major cost driver at the disposal stage is the initial choice of the materials. A high 

risk is caused by the chance that today’s non-hazardous materials may become hazardous 

materials in the future (Example: the use of asbestos in past systems). 
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111. EMPIRICAL STUDY 

A. HIERARCHICAL EVALUATION OF THE OPERATIONAL 

REQUIREMENTS 

Before discussing and evaluating proposed alternatives for hull designs, 

propulsion systems and power generation arrangements, all relevant system requirements 

and key performance parameters have to be ranked. Those requirements and performance 

parmeters with the highest ranking will be given the highest priorities in the evaluation 

of the proposed concepts. 

1. Ranking of System Requirements 

The weighing matrix in Appendix A was developed as follows. The 20 system 

requirements concerning the platform for future warship, as defined in the previous 

chapter, are compared to each other using a “painvise” approach, i.e. on a one to one 
- .  

basis. The result of this comparison is expressed in a scale of three possible results. 

- An entry of 1.0 means the requirement listed in the column is more important 

than the requirement listed in the matching row, i.e., if limited funds are 

available to support these two, the requirement listed in the column has 

priority over that in the row. 
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- An entry of 0.5 means both requirements are of equal importance or there is 

no conflict between these requirements. In the case of funding constraints 

available funds shall be split evenly among both. 

An entry of 0.0 means the requirement listed in the column is less important 

than that listed in the row. In this case the requirement listed in the row has 

higher priority in case of funding constraints. 

- 

", 
' i l9 j  Operational availability 4 
(3) Integrated electric power system 5 
(5) Modular design 6 
(9) Open architecture computer network 6 

The results in the lower triangle of the matrix are just a mirror image of the 

developed results in the upper triangle. This minor image is needed for the automatic 

EXCEL spreadsheet calculation of the totals. The column totals are calculated and 

divided by the sum of the totals to derive their percentage contribution. The final step is 

to assign priorities and to list the top 10 requirements according to their ranking. 

20) Supportability, Upgradeabilty 
14) Support of helicopters1UAVs 

6 
6 

Table 3.1 , Priorities of System Requirements 

The result of this weighting process clearly shows the high emphasis on stability 

and survivability. Thus there is a priority on the ability of the projected ship and her crew 

to survive severe damage either by military action, terrorist attack or in the form of any 
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kind of accident, without external help. The platform is to remain at least in a reduced 

mission capable state for as long as possible. In combination with the required Stealth 

capability, which got priority 4, these results show the need for some fundamental 

changes in the conceptual design of the ship compared to our current assets. 

Maneuverability on rank 3 and Stealth, which is kind of a measure for detectability, on 

rank 4, highlight the need to avoid hits. 

The next five requirements in the priority list (operational availability, integrated 

electric power system, modular design, open architecture computer network and 

supportability / upgradeability) are interrelated as well. Operational availability in 

essence means if the system works reliably for most of the time, than fewer backup or 

redundant systems are needed to fulfill the mission. To keep the operational availability 

at a high level the system must be supportable and upgradeable, which is enabled by 

modular design and the open architecture computer network. The integrated electric 

power system ensures the required design flexibility to support the modular concept. It 

also ensures a high thermal efficiency over a wide range of possible load conditions and 

it provides the resources for future growth in electrical power needs of future weapon 

systems. Also these five requirements underline the concept of controlling the total 

ownership costs early in the design stage. In past ship designs the neglect of these areas 

from the above priority list developed into huge life cycle cost drivers. 

The requirement to support helicopters and/or Unmanned Air Vehicles (UAVs) 

shows the dependency of modem combat platforms on these assets. Since there is a 

movement towards UAVs and even Unmanned Combat Air Vehicles (UCAVs), all 
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preparations for the special needs of UAVs, like launch and recovery facilities as well as 

ground control units, have to be incorporated in the design of the proposed combat ship. 

. .  
(5) High Speed Transit 
(3) Maximum Range 
(4) Endurance 
(1) Top Speed 
(6) Max sea state for boat operation 
(7) Max sea state for helicopter operations 
(2) Acceleration (0 - 25 kn.) 

2. Ranking of Key Performance Parameters (KPPs) 

3 
4 
4 
5 
6 
6 
7 

The method used to evaluate the KPPs is the same as described above for the 

system requirements. A total number of 9 KPPs are weighted against each other. The 

weighing matrix for the KPPs is shown in Appendix A Table 2 and the result is shown in 

Table 3.2. 

(8) Min floodable length in adjacent compartments 
(9) Reduction of crew required to operate shiD 

1 1  
1 2  

Table 3.2, Priorities of KPPs 

The result as shown in Table 3.2 sets the highest priority to the floodable length, 

which is consistent with the first priorities of the systems requirements evaluation, the 

design stability and the survivability. The next rank is given to the reduction of crew 

required to operate the ship. Manpower is the most expensive part of the total ownership 

costs. Automation and ergonomic design belong to the key criteria during the selection 

process of all systems for war fighting as well as for support purposes. 

The results for high-speed transit, maximum range and endurance are very close 

to each other. This underlines the need for global deployment within minimum 
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achievable transit times. A high range and endurance are required to perform single ship 

missions independent of support assets. Compared to the last three performance 

parameters, the top speed is of less importance. There is no desire to outperform any kind 

of fast coastal vessels. The acceleration of the vessel is of even less importance due to the 

same reasons. 

Especially in littoral crisis scenarios and in embargo operations, the deployment 

of boats and helicopters can be much more essential than the use of weapons. The values 

of these assets on board the platform and hence the value of the platform itself is close to 

zero, if they can’t be operated due to adverse weather conditions. 

B. EVALUATION OF HULL TYPES 

The study concentrates on the hull types previously described in Section 1I.C. 1. 

These hull types are evaluated on the basis of how suitable they are to support the 
-. 

previously derived and weighted performance parameters and system requirements. To 

compare the hull types, they are assumed to carry a similar payload, hence the actual 

displacements of the different hull types to function as a warship platform and to satisfy 

the stated requirements will vary. The individual designs are assigned a score according 

to the following scale: 

- An entry of 1.0 means, this design is extremely suitable to support the 

performance parametedsystem requirement. 

- An entry of 0.5 means, this design will adequately support the performance 

parameter/system requirement. 
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- An entry of 0.0 means, this design will not specifically support this 

performance parameter/system requirement. 

No entry means, this performance parameter or system requirement is of no 

relevance to the design. 

- 

The final scores are shown in Table 3.3. In the following paragraphs some of the 

strengths and weaknesses of the different hull types will be highlighted. 

Table 3.3 , Evaluation of Hull Types 
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1. Monohull 

The monohull is a proven standard hull type design. It scores an average 0.5 for 

most of the criteria. One of the obvious weaknesses is the behavior at low speed or when 

stationary in heavy sea conditions. Compared to a multi-hull of comparable displacement 

its roll and pitch motions at sea are such that, for example, the deployment and recovery 

of boats from its side can be very difficult and dangerous. 

The main advantage of the monohull is the ability to more easily accommodate 

relatively large weight changes. Due to the relatively high waterplane area, the change in 

draft for a given change in weight is within reasonable limits. Also the performance and 

behavior of a monohull is less dependent on the actual draft as it is for multi-hull designs. 

This is vital to provide a ship with the capability to accommodate enough stores and fuel 

to ensure the required endurance. 

2. Catamaran 

Looking at the performance parameters, the major strengths of catamarans are 

high speeds, acceleration and maneuverability especially in calm water. Wave piercing 

bow designs will enhance the rough water high-speed capabilities. The catamaran like all 

other multi hull designs offers a relatively larger main deck area, permitting the 

installation of systems beside each other on the same deck level with less need to stack 

them on top of each other in several layers as is sometimes necessary on monohulls. This 

arrangement is ideal for one layer of modules, containing all vital systems that are 

required to satisfy the operational requirements. In case of changes to the operational 
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requirements, or just for support purposes, the modules could be replaced without any 

need to cut through several deck layers. 
I 

Due to relatively small angles of rolling in adverse weather conditions, this design 

results in a much more stable platform to support boat and helicopterAJAV missions. 

However, even though the angles are small at the outer deck edges, high linear 

accelerations have to be considered, which can result in unfavorable working conditions. 

The weakest part of any kind of twin hull design is the ability to survive a hit in 

one of the hulls. Due the transverse distance between the center of the lost buoyancy and 

the center of the remaining buoyancy, which actually moves quiet significantly towards 

the intact, i.e. opposite hull, any flooding will cause extreme angles of heel. This would 

drastically reduce the maneuverability of the damaged platform. 

3. Trimaran 

Many features discussed for the catamaran, like high speeds, maneuverability and 

small roll angles, apply to the trimaran as well. The trimaran also provides a large main 
- .  

deck area to support the concept of relatively easily exchangeable and upgradeable 

modular systems. 

The major difference between most trimarans and any twin-hull design is the 

concentration of displaced volume in the center hull. The larger the center hull is in 

relation to the side hulls, the more some characteristics in the ships behavior will be along 

the lines of a monohull. Looking at survivability, the trimaran clearly outperforms the 

monohull as well as the twin-hull, i.e. catamaran and SWATH. 
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The high transverse stability of this design concept allows for a much greater 

topside weight growth margin compared to a monohull. This feature would support the 

upgradeability towards more sophisticated sensor and weapon modules to be installed at 

the mast or on the upper deck levels. Due to the combination of high transverse stability, 

even in higher sea states, and an increased deck area, this design would be an excellent 

platform for helicopter and UAV operations. 

Looking at the British “Triton” project, even though solid results from the first sea 

trials are not yet available, the designers expect a significant reduction of total overall 

hull resistance due to the narrow center hull, despite the added resistance of the two 

minimal side hulls. As a result less power needs to be installed compared to a similar 

sized monohull. They estimate the savings for an escort-sized vessel to be in the order of 

18% at a speed of 28 kn. [Ref. 21 

Since the RV “Triton” is the first large-scale trimaran demonstrator, there is very 

little data available about trimaran performance and behavior compared with that for 

monohulls and catamarans. 

4. SWATH 

Due its design, i.e. two fully submerged hulls and very narrow struts supporting 

the superstructure, the major advantage of a SWATH is the much better seakeeping 

ability. As proven with various SWATH ships, mainly ferries, oceanographic and 

military vessels, the pitch and roll angles as well as the associated accelerations for a 

small SWATH are similar to those of much bigger monohulls. A SWATH has the ability 

to maintain its normal cruising speed even with rough head seas, as long as the wave 
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height does not exceed the height of the struts, i.e. before cross structure slamming 

occurs. For this reason the SWATH, scores even better in the support of boats, 

helicopters and UAVs than the catamaran and the trimaran. 

Due to their reduced waterplane area, SWATH vessels have a reduced wave 

making resistance, which in combination with reduced motion (rolling and pitching) 

results in reduced rough water resistance at high transit speeds. On the other hand this 

design has a much higher wetted surface area compared to mono hull or conventional 

multi hull of equal displacement. This leads to a higher frictional resistance, which 

governs the total resistance in calm water conditions at lower speeds. 

Also as a result of the small waterplane area, the required transverse stability (the 

righting moment) can only be achieved by increasing the beam (the righting arm). As a 

result SWATH vessels need a greater beam than conventional multi-hulls and hence they 

are shorter in length, assuming similar displacements. This reduced length in turn causes 

increased dynamic longitudinal instability, which must be compensated for by some kind 

of fins or control surfaces. 

’ 

In general, the SWATH design is very sensitive to weight changes. Due to the 

small waterplane area, the adding or removal of weight will result in a high change in 

draft and any significant deviation from the design draft will reduce the SWATH-unique 

benefits in performance and behavior. Another problem is the high list caused by any off- 

center loading or flooding; hence this design is very vulnerable to any kind of hit in one 

of its side hulls. To use the submerged hulls for fuel and hence to increase range and 

endurance to the maximum possible extent, either a compensated fuel system or an 
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equivalent clean ballast capacity is required. If the latter option is selected, the ship will 

need to be relatively larger in size. 

5. O’Neill Design 

The last hull type in this study is a hybrid between the SWATH concept and a 

trimaran. The basic design consists of a fully submerged center hull supported by a small 

waterplane area strut and two small side hulls. The center hull contains about 80 to 90% 

of the displaced volume. By concentrating the majority of the underwater volume in one 

center hull the total wetted surface area and hence the fictional part of the resistance is 

much less than if the volume would be distributed over three hulls of equal volume. This 

design does not lose too much of the seakeeping abilities of a SWATH but gains 

longitudinal and transverse stability, which reduces the need for the installation of fins or 

other horizontal control surfaces. 

The concept of three long but narrow waterplane areas reduces the wave making 

resistance and results in a net decrease in total resistance at higher speeds. However there 

is not much information from model tests and no full-size ship trial data to make exact 

quantitative statements about the resistance of different shaped O’Neill designs. 

Like the SWATH the O’Neill design offers ideal storage for liquid loads in the 

submerged center hull. As previously discussed the use of this capability to its maximum 

extent requires the installation of a compensated fuel system or clean ballast system. 

Problems with such a system will be discussed later. 

The maneuverability of this hull type depends on the question of whether the side 

hulls have a propulsion unit installed or not. The installation of auxiliary propulsion units 
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in the side hulls would drastically increase maneuverability. For an O’Neill as well as for 

a SWATH vessel, the installation of a conventional, i.e. gas turbine or diesel engine main 

propulsion plant in the submerged hull will be difficult due to the reduced accessibility 

through the strut. This problem could be solved with a fully electric drive since there is 

no need for a direct mechanical connection between any kind of prime mover and the 

actual drive unit, i.e. cabling is all that is required. 

Similar to the trimaran, the O’Neill concept is tolerant of severe darnage to one of 

the side hulls. Due to the small contribution to the overall buoyancy, shifting liquid loads 

from the center hull into the intact side hull can relatively easily compensate for the 

opposite’s side damage or partial flooding. 

An essential consideration concerning the design stability is the question of 

docking. One alternative is to design the ship with sufficient structural strength such that 

the center hull alone can support the docking loads of the entire ship, including the side 

hulls. However, this would significantly increase the structural weight fraction of the 

ship. The other alternative is to provide separate supports for each side hull as well as for 

the center hull in drydock, which reduces the weight penalty but significantly complicates 

the doclung process. 

Most of the criteria to achieve maximum stealth capabilities can be achieved by 

all of the hull designs discussed so far. In addition the SWATH and the O’Neill design 

offer the chance for extremely quiet main propulsion system. With a large diameter, slow 

revolving, highly efficient propeller driven by an electric motor in the aft end of a fully 

submerged hull, the noise caused by propulsion could be reduced to a level currently not 

known to surface ships. 
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C. EVALUATION OF POWER SYSTEMS 

(3) Integrated electric power system 6.6 
(5) Modular design 5.2 
(9) Open architecture computer network 5.2 
(20) Supportability, Upgradeabilty 5.2 
(14) Support of helicopterslUAVs 5.2 

For the purpose of this study the power systems are divided into power generating 

systems and propulsion systems. These two categories will be evaluated first. The next 

step is the evaluation of power systems as part of a total ship power concept with primary 

0.5 3.3 0.5 3.3 1 6.6 
0.5 2.6 0.5 2.6 0.5 2.6 

0.5 2.6 0.5 2.6 0.5 2.6 

emphasis on propulsion needs. The use of electrical power for command, control and 

weapon systems will be discussed 

1. Power Generation 

in part D. of this chapter. 

Table 3.4, Evaluation of Power Generation Systems 
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a. Gas Turbine 

Looking at currently available systems, the gas turbine has the best power 

to weight ratio. Used for propulsion it provides maximum acceleration and top speeds 

and used for electrical power generation it can easily cope with rapid load changes. Gas 

turbines are available in proven, supportable and reliable designs, hence ensuring a high 

operational availability. 

The gas turbines currently in service have a relatively high specific fuel 

consumption, i.e. greater than 0.330 kg/kW and this fuel consumption is only achieved 

within a very narrow band around the design load condition. New developments like the 

Rolls Royce WR 21 regenerative cycle gas turbines reach significantly better fuel 

consumption, i.e. in the order of 0.250 kg/kW, and they provide this efficiency over a 

wider range of load conditions. The penalties for this increase in efficiency are increases 

in weight, size and procurement cost. 

b. Diesel Engines 

Compared to gas turbines, diesel engines are much more efficient over a 

much wider range of loads, i.e. in the order of 0.220 kg/kW. Some large, slow revolving 

two-stroke diesel engines, as used for commercial ships, are even more efficient, but due 

to their size and weight they are not a viable alternative for the use on a combat platform. 

Diesel engines are also readily available in proven, supportable and reliable designs, 

hence offering a high operational availability. The penalties associated with diesel 

engines are high weight and lower responsiveness to load changes compared to the gas 

turbine. 
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Looking at stealth capabilities of a diesel engine, it generates less emission 

and exhaust heat than a gas turbine, but still has an Infi-a Red (IR) signature detectable by 

some missile seekers. The emission of noise for diesel engines can be controlled to some 

extent by noise absorbing mounting and encapsulation, however, the under water noise 

signatures generally remain quiet significant. 

c. Fuel Cell 

The fuel cell seems to solve all problems with gas turbines and diesel 

engines, but it is not yet available in the required module size, at least in the weight range 

of a diesel engine and there is no experience about the supportability and reliability. 

Since there are nearly no moving parts inside the actual fuel cell and cooling can easily 

control the low reaction temperature, the reliability is expected to be high. Due to the 

basic concept of the fuel cell, there is no exhaust gas apart from steam, which can be 

discharged under water, without violating any emission regulations. This would 

drastically reduce the IR signature of the platform. 

Small-scale fuel cell modules, as designed for the German class 212 

submarine (300 kw), are available already. At a current price of about $ lO,OOO/kW, as 

quoted by Siemens in 1998 [Ref. 31, just the power generation system able to supply all 

electric power inclusive of propulsion for a fiigate size warship (- 50,000 kw) would 

result in procurement costs of about US $ 0.5 billion. At a current power to weight ratio 

of 5.6 kg/kW as quoted by Daimler Chrysler in 1997 [Ref. 41 this plant would have a 

total weight of 280 tons, which makes it impractical at this stage of development. 
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The fuel cell can only be used in combination with electric propulsion, 

since there is no mechanical, rotational output available to drive a shaft. 

2. Propulsion Systems 

I Shaft + Propeller 1 Podded Drive I Water Jet Key Performance Parameters : 
I Weight I Score I Weighted I Score I Weighted I Score I Weighted 

Table 3.5, Evaluation of Propulsion Systems 

a. Direct Shaft Propeller Arrangement 

The classic shaft propeller arrangement is still an efficient means of ship 

propulsion. A steam turbine, internal combustion engine or an electric motor could power 
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the shaft. The most efficient version would be one fixed blade large diameter propeller, 

driven by a shaft without gearbox, powered by low speed (< 120 rpm) large stroke 

volume 2-cycle diesel engine, as is done in large merchant ships. The drawbacks of this 

configuration would be that it is optimized and hence efficient only at its design load, i.e. 

cruising speed and the maneuverability is minimized in all its aspects. Also due to large 

weight and size, this is no feasible solution for naval surface combatants in the size of a 

frigate or destroyer. 

The use of two shafts and controllable pitch propellers at medium speeds, 

i.e. 100 to 250 rpm, increases the maneuverability significantly. The maneuverability of 

these designs also depends on the position, size and hydrodynamic effectiveness of the 

rudders. 

In this design there are two major sources of under water noise. The first is 

engine noise transmitted via the gearbox, shaft and propeller and the second is cavitation 

noise produced by the relatively small but high speed propellers. There are systems 

available and already in use to reduce the noise caused by cavitation with a bleed air 

system at the propeller blades. The optimum efficiency and noise characteristic could be 

achieved with large diameter propellers rotating at slow speeds, i.e. less than 100 rpm. 

b. Podded Drive 

The podded drive was developed fiom the purely mechanic Schottel drive, 

where the motor itself is mounted inside the hull and the rotational power is transferred 

via a vertical connection shaft into a propulsion unit, that can be turned to direct its 

horizontal thrust in any direction. In case of today’s podded drive system an electric 
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motor is inside an external pod underneath the hull, driving one or two propellers. Podded 

drive systems are currently available up to 20 MW per unit. 

The losses resulting from transformation of rotational energy into 

electrical power and back into rotational energy are more than offset by gains in 

hydrodynamic efficiency. This is achieved due to the unobstructed flow of water towards 

the podded drive unit. In case of a two-propeller unit, this enhances the hydrodynamic 

efficiency of the forward propeller. [Ref. 51 

The major benefits are the high maneuverability, no need for an additional 

rudder and a huge gain of space in the aft part of the ship, usually occupied by propulsion 

machinery. The modular design allows a quick exchange of the whole propulsion system 

for repairs or upgrades. The negative aspect is that any kind of support, like preventive or 

corrective maintenance has to be done when the ship is in dry dock. This can only be 

avoided when the unit itself has a reasonable high reliability. 

Since these systems have only been installed on commercial ships, there is 

not much data available concerning the noise transmitted into the water. The diameters of 

the propellers and the rotational speeds are in the range of those used for conventional 

shaft propeller arrangements. In theory a bleed air system could be installed as well to 

reduce cavitation and hence underwater noise. Also the reaction of the drive unit to shock 

loads from a close-to-the-ship weapon detonation, has not yet been tested. 

c. Waterjet 

The waterjet propulsion can be powered by any combustion engine or by 

an electric motor. It provides excellent responsiveness to power changes and 
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maneuverability. The waterjet unit itself has a lower diameter than a propeller delivering 

the same thrust, hence it can be installed when space is a limiting factor, i.e. it provides 

the ideal propulsion for low draft vessels in shallow water. 

The efficiency achieved by today’s waterjets is significantly lower than 

the efliciency of shaft propeller propulsions or podded drives. New developments of 

water-jets with greater impeller diameters and higher efficiencies are in development. 

These waterjet units will not be completely enclosed within the hull and hence increase 

the draft of the vessel. Ipef. 61 

Due to the extremely low diameter of the impeller and the high rotational 

speeds, the under water noise exceeds the values of noise generated by the conventional 

shaft propeller arrangement or the podded drive unit. Future concepts concerning linear 

electric propulsion in the form of a water jet, i.e. water would be accelerated by a 

magnetic field with no need for an impeller, would significantly enhance the efficiency 

and reduce the noise. This technology mainly depends on the development of 

superconducting wires at higher temperatures. Today these concepts are not mature 

enough to be included as an option in the study. 
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3. Power System Concepts 

Table 3.6, Evaluation of Power System Concepts 

a Mechanical Drive 

A common propulsion design used in today’s warships are two 

controllable pitch propellers, each driven by a shaft via a reduction gearbox, powered 

either by a medium to high speed diesel engine, i.e. 1000 - 1500 rpm, andor a gas 

turbine. These configurations are widely known as Combined Diesel or Gas Turbine 

(CODOG) and Combined Diesel and Gas Turbine (CODAG). There are also designs 

using two sizes of gas turbines, Combined Gas Turbine and Gas Turbine (COGAG). The 
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medium to high speed diesel engines as well as the gas turbines, especially when 

combined with a controllable pitch propeller, provide a reasonable responsiveness to 

power changes. In the two-shaft arrangement they achieve a fairly high maneuverability 

as well. 

With regard to modularity and hence supportability, the designer’s 

flexibility is constrained by a mechanical drive system. Prime mover, reduction gearbox 

and shaft including all the auxiliary and ancillary machinery in fiigate/destroyer sized 

platforms occupy the lower compartment levels from amidships nearly to the stem. 

Combustion air and exhaust gases have to be ducted over great distances from the outside 

to the prime movers. 

Perfect noise isolation between the prime movers and the drive train is 

nearly impossible. Hot exhaust gases exit the ship close to amidships, hence attracting 

missiles with IR seekers towards the center of the platform. 

A completely separate and independent set of prime movers is required for 

the electrical power generation. There is no possibility to feed excess power form the 

propulsion plant into the electrical grid and vice versa. 

b. Partial Electric Drive 

The partial electric drive configuration is a mechanical arrangement of 

combustion engines and electric motors to act either on the same or on separate shafts to 

drive the ship. A partial electric drive configuration, as, for example, used for the British 

“Duke” class (Type 23), allows an efficient and relatively silent cruise up to 15 kn. To 

reach the maximum speed of 28 kn the two gas turbines drive the ship via a mechanical 
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reduction gear and shaft system. One of the major benefits of this configuration is the 

avoidance of extreme low load conditions for the prime movers. These low load 

conditions would cause a very high specific fuel consumption. A gas turbine in a 

comparable size to the Rolls Royce SPEY SMlA can easily exceed lkgkW under 

unfavorable load conditions. Benefits from a possible integrated power system for 

propulsion and the general electric power supply will be discussed under “Fully Electric 

Drive”. 

Similar to the mechanical drive the partial electric drive system is still 

constrained in the location of most of its components. Only the prime movers used to 

generate the power for the electrical propulsion can be located independent of the drive 

shaft. Today, in all designs of frigate or destroyer sized ships, the mechanical and the 

electrical drive are combined on the same shafi(s). In theory it is possible, and it has 

already been done for smaller vessels like mine warfare vessels, to separate the electric 

propulsion unit completely from the mechanic propulsion unit, i.e. a conventional 

mechanical driven shaft propeller and a separate electric driven Schottel drive or podded 

drive. 

c. Fully Electric Drive 

In this design concept the propeller, podded drive or water jet is driven by 

an electric motor, which is located as close as possible to the propeller/impeller. The 

prime mover generating the required electric power can be located anywhere. 

There are two basic concepts for the hlly electric drive. In the past, 

electrically powered ships had one electric power grid with prime mover generator sets 
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for propulsion and a different one with its own prime movers to feed the ship’s electrical 

power distribution system. A more efficient way is to create an integrated electric power 

generation and distribution net that feeds the propulsion system and all other electric 

consumers as well. This allows a high flexibility in shifting the power allocation 

continuously between propulsion and, for example, weapons systems with regard to 

operational needs. The prime movers would always run very close to their design load 

conditions, which will significantly increase the overall efficiency. Since the total 

capacity for the power generation system will be largely determined by the propulsion 

requirements, this design offers an enormous growth potential for all other future 

electrical applications, as in, for example, directed energy weapons. 

The redundancy gained by a fully integrated electric system would 

significantly increase the operational availability. Since the amount of mechanical 

components in the propulsion system determines the maintenance, operation and hence 

manning requirements, electric propulsion offers real potential for crew reduction in the 

engineering department. 

The flexibility of internal arrangement of the components allows one to 

have a very quiet electric propulsion system, since no noise/vibrations will be transmitted 

fiom the prime mover or the gearbox to the propeller. In the mechanical drive 

arrangement, there was a limitation on the shock mountings due to alignment 

requirements between shaft, gearbox and the engines. In the electrical drive 

configuration, a much better sound insulation of the prime movers is possible, hence the 

total noise level is reduced. Positioning the gas turbine generator sets close to the stern of 
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the platform, and hence leading the hot exhaust gases aft of the ship can change the IR 

signature drastically. 

The fully electric propulsion concept facilitates a modular design of its 

components. A gas turbine generator set with self contained combustion air inlet and 

exhaust gas outlet, built into a container at the ship’s main deck level, would reduce the 

time to replace this module down to a few hours. 

A ship powered by an integrated electrical system offers the potential for a 

future upgrade to fuel cells. Industries involved in the development of fuel cells expect 

the technology to mature into efficient and reliable systems by the beginning of the next 

decade, or well within the service life of any ship built today or in the near future. 

D. EVALUATION OF WARFARE SYSTEM SUPPORT CONCEPTS 

A warship can be divided into two basic physical components, the platform and 

the payload. The boundary between these has to be defined as clearly as possible. The 

purpose of this section is to identify the interfaces between platform and payload. 

The payload are all systems on board the ship, required to satisfy the mission need 

as defined in Chapter 11. A. Such systems are any kind of weapon as well as command 

and control systems, any kind of manned or unmanned aircraft for reconnaissance, 

surveillance, combat or transport purposes, and any additional accommodation, catering 

or medical services in addition to those required by the ship’s crew. The payload is the 

reason for the existence of the ship. 
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In the past, platforms have been tailored around the desired payload. This is the 

efficient solution, if the ship is used for the originally specified purpose for its whole 

service life and no modifications or upgrades will be required. Since today’s development 

cycle for the technology in the weapon and control sector is much shorter than the 

expected service life of a naval platform, a design for upgradeability and supportability is 

vital. A completely modular configuration would also allow for fast changes of the 

payload in response to changes in the mission, and hence in the operational requirements. 

The ability to adapt the available assets to a variety of different missions can significantly 

reduce the total number of assets needed. 

There are two key design criteria to be examined with regard to a modular 

approach. The first is the physical arrangement, i.e. location of the modules and its 

accessibility, and the second is the required connections to the module. 
- .  

1. Physical Arrangement 

The location of a warfare system is a function of its interaction with the 

environment and the required accessibility. For example a towed array sonar system has 

to be located at the stem of the ship, all weapon, radar and antenna systems have be on or 

directly under the top surface of the ship’s hull, command and control systems have to be 

sufficiently sheltered and easily accessible for the operators. If too many modules are 

stacked on top of each other, it is very time-consuming to replace the bottom ones. The 

ideal arrangement is possible on platforms with a relatively Iarge deck area, as provided 
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by multi-hull ships. The size for the modules that contain the systems should be 

standardized to increase the flexibility in the physical arrangement of the required 

systems to satisfy the then cwrent operational requirements. If possible, commercial 

container standards should be used. 

To avoid time consuming adjustments, all systems/modules containing direction 

sensitive weapons or antennas should be fitted with an automatic alignment system. 

2. Module Connections 

The interfaces between the systems and the platform have to provide the means 

for data exchange between the systems as well as between a system and the platform. In 

addition, the systems have to be provided with electric power, ventilation, chilled water, 

high-pressure air and in case of power generating systems, fuel is needed as well. The 

location of the connections shall be at the same standardized position in all module 

spaces. There has to be enough redundancy to survive the loss of some of these 

connections as result of a hit. 
- .  

Data transfer cables should be installed with enough growth margin to cope with 

any fbture systems that might be installed during the service life of the platform. The 

module spaces should be pre-wired to provide point-to-point connections between the 

systems as well as a connection by a central data bus to support an open architecture 

computer network. The data bus system will be integrated into the platform, but the 

computer systems will part of the upgradeable payload. Detailed specifications for the 

required data connections still have to be developed in further studies. 
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All radar and communication systems shall be located such as to minimize the 

distance of high voltage cables between the transrnitterh-eceiver units and their antenna 

arrays. 

E. IMPACTS ON TOTAL OWNERSHIP COSTS (TOCs) 

1. HullType 

With regard to development and acquisition, any deviation from the conventional 

monohull will increase these costs. Any multi-hull structure, especially the SWATH and 

the O’Neill design require more material for the hull than a similar sized, i.e. comparable 

payload, monohull. During the construction there is more scaffolding required and the 

building dock has to be significantly wider than for a monohull of similar displacement. 

With regard to the maintenance of the underwater hull surface, the required effort is 

directly proportional to the total surface area of the vessel; hence the monohull would be 
- .  

the best choice. 

Looking at the POL part of the operating consumables, the use of an advanced 

multi-hull design could significantly reduce these costs. Even though the calm water 

resistance is still comparable to a monohull, the resistance for a SWATH or O’Neill in 

rough water will be lower. If the greater deck area of a multi hull is used to support a 

modular concept, which allows placement of the majority of systems beside each other 

instead of on top of each other, time and effort for the replacement of any system could 

be drastically reduced. As long as the hull is built from mild steel instead of aluminum, 

high tech alloys or composites, the risk is very low that it will cause significant costs for a 
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future demilitarization and disposal. Hazardous materials shall be avoided for 

installations in the ship’s hull, as well as for all internal and external coatings, i.e. paint. 

2. Power Generation and Propulsion 

Since manpower with all its associated costs is a great chunk of the Total Owner- 

ship Costs, the reduction of ship’s crew is one of the design priorities. Any mechanical or 

partial electric drive system requires significantly more personnel for operation and 

maintenance. Hence, the integrated electric power generation and propulsion system in 

combination with state-of-the art automation will achieve the greatest possible reduction 

in manning requirements for the engineering department on the platform. 

An integrated power generation and propulsion design also enhances the concept 

of modularity, which reduces time (labor and down time), effort and hence costs for any 

support actions, like corrective and scheduled maintenance as well as upgrades and 

modernization. 

Due to more efficient operation and less need for lubrication of moving parts, the 

POL consumption of the hlly electric drive and its associated costs will decrease as well. 

The best efficiency and hence lowest operating cost could be achieved with the fuel cell 

as power source. 

3. Warfare System Support 

If the platform provides the means to support a completely modular arrangement 

for warfare systems, future O&S costs can be reduced, due to shorter down times for 
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maintenance, upgrades and modernization. If the modularity enables fast role changes, 

just by swapping completely modular systems, either the total number of assets or the 

number of different systems as part of the payload for the individual platform could be 

reduced. By adopting the commercial container standard for the module size, the systems 

could be exchanged in any container terminal around the globe, assuming the necessary 

agreements to perform such actions in a foreign harbor are in place. The transfer could be 

arranged via commercial shipping lines at minimum cost. This would also reduce the 

need for the platform itself, to spend extended periods in naval shipyards. 

This concept will increase the operational availability at ship level, if there are 

sufficient additional replacement systems available. The number of the required 

replacement, i.e. spare systems depends on the number of assets requiring the systems, 

their turn-around times for maintenance, upgrade or modernization and on the system’s 

reliability. With regards to the TOC, this leads to the conclusion that a careful trade-off 

has to be done between the additional system cost and the savings from increased 

operational availability due to a much shorter turn-around time for the platform as a 

whole. 

One of the major problems concerning the disposal costs of today’s warships is 

the insulation and shielding for cables. Previously used materials have primarily been 

chosen to enhance the resistance against heat and fire. With regard to their disposal, the 

majority of these materials are hazardous. There are two ways to reduce this cost risk in 

the future. First, especially in a modular design, many wiring connections will be 

redundant, hence the conceptual design of the wiring harness has to be optimized to 
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minimize the total amount of wiring required, but still satisfying the needs to support the 

system modularity. 

The idea of demilitarization of the platform at the end of its service life is 

enhanced by a modular design, since sensitive equipment can easily be separated from 

the main hull. 

.. 
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IV. RESULTS 

This chapter discusses one possible design solution as a synthesis of the results 

from the evaluations in the previous chapter. The decision is based on the total scores 

derived from the weighing of the requirements and U P S ,  and the evaluation of hull 

types, power generation systems, propulsion systems and drive concepts based on those 

weight factors. The candidate platform will b’e a trimaran/O’Neill hull, powered by a mix 

of diesel and gas turbine powered generators with fully electric propulsion. Since there 

are many possible variations, fixher details will be derived and discussed in the 

following paragraphs. 

A. THEHULL 

There are many possible variations in hull shape between the conventional 

trimaran, as used for the British “Triton” project [Ref. 21, and the O’Neill hull form. 

I 

-. 

There are several parameters that can be varied for any three-hull semi submerged marine 

platform [see Figure 4.13. 

As for any other ship, one of the design targets for a modem combat platform is to 

minimize the fictional as well as the residuary resistance, i.e. mainly wave making 

resistance, and hence to reduce the amount of power that has to be installed to operate 

efficiently at the required speeds under specified load conditions. The design has to 

satisfy the requirements for longitudinal and transverse stability as well as for mechanical 

strength, for the intact and damaged platform. The platform has to be producible and 
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serviceable with reasonable effort, i.e. the designer shall think about docking and 

berthing as well. 

\ / Fee\ / * 

WL --VWL XJiH 

L B  d W 
A, Conventional Trimaran B , O'Neill with Small Waterplane Area Sidehulls 

:+-- BMCH ..-.< 

D , O'Neill with Small Waterplane Sidehulls 
and Medium Waterplane Center Hull 

C , O'Neill with conventional Sidehulls 

Figure 4.1, Basic Hull Cross Sections 

For further reference to discuss the hull shape parameters in this study, four basic -. 

cross-sections are shown in Figure 4.1. With regard to the cross sections, the following 

quantities are used to describe the dimensions: 

B = ship's beam in the design waterline 

BCH = center hull beam in the design waterline 

BSH = side hull beam in the design waterline 

BMCH = maximum breath of the center hull 

BMSH = maximum breath of the side hull 

T = center hull draft 

TSH = side hull draft 

TCC = Clearance between cross structure and waterline 
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1. 

The first parameter is the distribution of displacement among the center and the 

side hulls. Looking only at the total wetted surface area for a given displacement, a large 

center hull and minimal side hulls would be the optimum solution. Further reduction in 

Hydrodynamic Characteristics of the O’Neill Hull Form 

waterplane area is possible by just building the center hull without side hulls, but due to 

transverse stability concerns the waterplane area then had to be increased, which would 

result in a conventional monohull. 

The next parameter is the total waterplane area and its distribution among the 

three hulls. Specifically, the total waterplane area is a measure of the capability of the 

platform to accommodate weight changes, either caused by fuel consumption or by 

changes in the combat systems payload due to different mission requirements. For a 

given shape at a given speed the residuary resistance is a function of the waterplane area, 

i.e. the greater the waterplane area the higher is the residuary resistance. Relatively low 

waterplane area for the individual hulls results in reduced accessibility to the submerged 

part of the hull. Very thin struts would also cause problems in structural strength. The 

distribution of the waterplane area among and within the hulls governs the longitudinal 

and transverse stability of the platform. The higher the longitudinal and transverse 

moments of inertia of the waterplane area, the higher the stability will be. A low moment 

of inertia in longitudinal direction, combined with large submerged hulls will result in 

dynamic pitching, as experienced with initial SWATH designs without control surfaces 

close to the bow of the hulls [Ref. 71. A high longitudinal moment of inertia does not 

necessary mean three long struts, it can also be achieved by a high longitudinal setback of 

the outer hulls in relation to the center hull. A triangular arrangement of the three water- 
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plane areas would allow shorter struts and still ensure a high longitudinal and transverse 

stability. The end of the center hull and strut can be forward of the outer hull struts. 

Examples are the ARGO design study in 1989 [Ref. 81 and the studies and towing tank 

experiments performed at the David Taylor Research Center in 1988 [Ref9]. 

As shown by the towing tank experiments at the David Taylor Research Center, 

an outer hull setback has significant influence on the residuary resistance. The outer hulls 

should be behind the Kelvin wake zone, which was in this specific experimental setup 

within 19" 28' on either side of the stem of the center hull as shown in Figure 4.2. ~ 

& Kelvin Wake Zone 

Figure 4.2, Outer Hull Setback 

The ARGO design study, which was performed as a software based simulation, 

pointed out that the shape of the struts in the waterline is of less significance on the 

residuary resistance apart from speeds fiom 6 - 13 kn for their design, which equates to 

Reynolds numbers from 93*106 to '202*106. They examined different shapes for the 

underwater hulls as well and found a shape with two distinct maxima in cross-section 

achieved the best performance. [Ref. 8, page 5991 
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The response to sea state, also is a function of the waterplane area, especially at 

the outer ends of the platform. To be less affected by wave heights smaller than the 

clearance between cross-section and waterline, these areas should be minimized. Hence a 

tradeoff has to be done between the actual water plane areas of the various hull portions 

and their distance to each other to achieve the required longitudinal and transverse 

moments of inertia. With these parameters optimized, the O’Neill hull can outperform a 

similar sized monohull with regard to its seakeeping characteristics. 

For a notional O’Neill hull displacing 4328 tons [Ref.9, page 31, the results of the 

experiments at the David Taylor Research Center predicted a power requirement of 

30,440 kW at 30 kn in the most favorable condition, i.e. Model 5355-2 (New outer hulls 

in aft position) [Ref. 9, Table 61. This power requirement is comparable to a conventional 

fiigate hull like the German F-122 class. Calculations to equate the power requirements 

to the difference in displacement are attached in Appendix B. 

2. Physical Design Considerations 

A further benefit fiom a shorter center hull, i.e. a center hull that ends forward of 

the aft end of the platform, is the space gained to lower, operate and tow any equipment 

like a Variable Depth Sonar (VDS) or a Towed Array Sonar (TAS) without interfering 

with the rudder and propeller. 

A significant outer hull setback influences the main deck layout as well. The 

platform will have a fairly narrow bow that could accommodate a gun and a missile 

launch system, and a wide aft body to provide the space for warfare, power generation 

and supply systems/modules. The topside of the aft platform can serve as helicopter or 
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UAV/UCAV flight deck. The topside weight growth potential for future modifications 

and updates depends on the waterplane area of the side hulls. 

With a given limit in total draft and change in trim, the total waterplane area is 

one measure that determines the platform’s capability to compensate for weight changes. 

This may become a constraint for the amount of fuel that can be consumed before 

ballasting has to occur; hence it has significant influence on the range and endurance of 

the vessel. If this leads to a need for compensated fuel tanks, the design of these tanks has 

to ensure a reliable operation in compliance with environmental protection rules, e.g., a 

zero discharge policy. 

If the lower hulls are mainly loaded with POL, the beam of the side hulls BSH is 

governed by hydrodynamic and structural considerations in the first place; in addition 

there will be auxiliary propulsion units installed, which only require limited space and 

access. The beam of the center hull BCH is also governed by accessibility factors. Even 

with all power generating modules installed at main deck level, the main propulsion 

motor has to be accessible. If the required accessibility can’t be achieved for one large 

electric motor, an arrangement of several smaller motors could solve the problem. 

3. Proposed Hull Design 

Based on the results and discussion in the previous chapters, the 105 m 4,700 ton 

O’Neill hull as shown in Appendix C was designed. This is a first iteration that has to 

mature through several additional iterations to reach the final design stage. The following 

decisions were made for this design: 
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The width of the center strut is 4 m. This allows enough access to the lower center 

hull but still reduces the center hull's waterplane area significantly compared to a 

monohull of similar displacement. The flat bottom of the center hull reduces the draft at 

design displacement to 7 m, and is also beneficial for easier dry-docking. The nmow end 

of the center strut improves the degree of symmetrical flow towards the main propeller. 

The main purpose of the side hulls is to ensure sufficient transverse stability with 

a minimum of wetted surface area. This leads to the choice of a triangular cross-section 

with its maximum width in the waterline. The waterplane area and its transverse offset 

govern the transverse stability. Details about the dimensions are listed in Appendix D. 

Figure 4.3 shows the effect of increase in beam on the vertical position of the metacenter. 

12.5 13" 
12 I J I 

.113 11 3 
26 27 28 29 30 

Ship's Beam [m] 

Figure 4.3, Increase of WT with increase of B 

The outer hull setback ensures that these hulls stay within the Kelvin Wake Zone. 

The exact setback has to be determined in towing tank trials. The extension of the outer 

hulls aft of the center hull supports the main deck aft of the main propeller. This 
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configuration provides enough distance between the main propeller and any towed gear 

like VDS or TAS. The wave piercing bow design of the side hulls is a proven design 

feature from high-speed catamarans. 

To share the total buoyant volume among three fully submerged geometrically 

similar hulls would be disadvantageous with respect to the wetted surface area per ton 

displacement. The better solution is to concentrate most of the displaced volume in one 

small-waterplane center hull with two relatively small side hulls to provide the rest of the 

buoyancy and the required transverse stability. In the proposed design the center hull 

accounts for approximately 90 % and each side hull for 5% of the displacement. The 

wetted surface area for the proposed design is about 3,400 m2, which is in between the 

wetted surface area of a typical frigate monohull with 2,500 - 2,800 m2 and a SWATH 

with a approximately 4,000 - 4,200 m2 for an equivalent sized ship. 

A 4 m clearance between waterline and cross-structure provides an acceptable 

behavior up to sea state 6. Since the occurrence of cross-structure slamming depends on 

more than just the cross-structure clearance and, as mentioned before, there is no data 

from full size O’Neill hulls, results from a large scale demonstrator are vital to make 

valid predictions. The location of all living spaces and most working spaces in the center 

of the ship reduces the motion and acceleration to be experienced by the ship’s crew in 

adverse weather conditions. If the platform is used for any kind of floating hospital 

mission, this will greatly enhance the ability to perform complicated surgery on board. 

The depth of the cross-structure under the main deck supports the accommodation 

of standard 20-ft and 40-ft container modules up to a maximum non standard height of 11 

ft, i.e. 3.35 m, underneath the flight deck and up to 12 ft, i.e. 3.63 m in front of the 
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deckhouse. There will be at least one 40-ft container bay directly aft of the hangar 

reaching down into the lower center hull. Depending on the arrangement of the forward 

container bays, one additional ‘deep’ bay could be build in front of the deckhouse. These 

bays can be used for heavy machinery equipment or ammunition storage to lower the 

center of gravity. Boat access and torpedo storage and launch systems will be provided in 

the side hulls. Crew accommodation and support, hangar and all spaces required for CJ 

(Command, Control, Communication, Computing & Intelligence) will be provided within 

and underneath the deckhouse. Access to bulky modules in the deckhouse, e.g. switch 

boards, computer racks and operator stations, will be provided through the hangar. The 

deep container bay aft of the hangar will provide access to the decks underneath the 

deckhouse. All container bays have to be separated by suitable gastight and watertight 

bulkheads to ensure maximum capability to survive any damage by weapon hits or 

accidents. 

Since performance of the O’Neill hull, as for most other advanced multi-hull 

designs as well, suffers significantly when not operated at the design draft, the maximum 

lifetime allowance for growth in displacement is governed by a 0.6 m maximum increase 

in draft. With a waterplane area of 520 m2 this results in possible weight increase of - 
320 tons. Another option to compensate for later weight increases is to give up some of 

the - 1,245 tons initially assigned to POL. Every meter increase in length for the whole 

ship, i.e. center hull and side hulls, would increase the displacement at the original design 

waterline by 66 tons. 

To minimize the radar reflection signature all usually external installations such 

as boats, life rafts, capstans and guardrails have to be integrated or covered. All active 
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and passive antenna devices should be mounted as flat arrays on the surface or inside a 

composite shell. One of the benefits of the proposed O’Neill hull form is the possibility to 

enhance the stealth characteristic of the ship by a significant tumblehome beginning right 

at the waterline without decreasing the transverse stability. 

B. PROPULSION AND CONTROLS 

The power required for propulsion of an O’Neill hul, can be estimated roughly to 

be in the range of similar sized monohulls (see comparison of power requirements for a 

German class 122 fiigate and a notional O’Neill hull in Appendix B). If there is no 

appropriate information from towing tank tests available, this is a reasonable approach. 

Since there was some data available for an O’Neill hull model, which provides 

reasonable similarity to the proposed hull, the following approach was chosen. The 

residuary resistance coefficient was adopted from the O’Neill hull towing tank 

experiments at the David Taylor Research center [Ref. 91, the frictional resistance 

coefficient was derived from the wetted surface of the proposed O’Neill hull, and finally 

the total resistance and hence the required EHP for a given speed was calculated. The 

SHP for the required propulsion plant can be derived from the EHP via the efficiency of 

propulsion system. Figure 4.4 shows an approximation for EHP versus speed for an 

O’Neill hull as specified in Appendices C and D. Calculations and assumptions are 

attached in Appendix E. 
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A single large diameter propeller that rotates at relatively low speeds will achieve 

the most efficient and silent propulsion. This configuration would result in a very low 

maneuverability at slow ship speeds. To increase the maneuverability both side hulls 

have to be equipped with auxiliary propulsion units. 

Due to the shape of the center hull one large and efficient electric motor driving a 

single or two in-line counter-rotating propellers will be the best solution. The decision as 

to whether a single or a set of counter-rotating propellers is chosen depends on the 

effective horsepower required to drive the ship and the maximum diameter and rotational 

speed allowed for the propeller(s). Relatively compact electric propulsion motors are 

currently in development. A key technology to decrease size and increase efficiency is 

the high-temperature superconductor, or HTS, wire [Ref. 101. Assuming the total 

propulsive eficiency of the main propulsion to be at least 70% would result in a SHP 

requirement of 37 MW to achieve the threshold of 28 kn. A reasonably high but eficient 

transit speed would be 22 kn., requiring 11.5 MW of SHP. With an estimated specific 
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fuel consumption of 0.25 k&Wh a total of - 650 tons or - 780 m3 of Diesel fuel would 

be needed to achieve the objective of 5,000 NM. 

Suitable auxiliary propulsion for the side hulls could be provided by electrically 

powered waterjets with directed thrust capability. Even with a propulsive efficiency as 

low as 50% a total SHP of 6.6 MW would be sufficient to power both watejets for ship 

speeds up to 14 kn without use of the main propulsion system in the center hull [see 

Appendix El. Due to their high transverse moment arms, this propulsion power capability 

in the side hulls would provide a high maneuverability at low speeds and even when 

stationary. The auxiliary propulsion units can support the main propulsion plant during 

acceleration and deceleration of the ship. 

Instead of a rudder at or aft of the stem of the center hull, “spoilers” at the side 

hulls could be used as directional control surfaces. At low speeds the required 

maneuverability is ensured by the watejets. At higher speeds the spoilers would only be 

engaged when a course change is necessary, when not engaged the control surfaces 

would be fully retracted into the surface of the adjoining structure, and hence it would 
-. 

generate neither resistance nor noise. Due to the extension of the outer hulls aft of the 

center hull, the ship has a high degree of directional stability. To achieve a smaller turn 

radius at higher speeds, the waterjets could be used to supplement the spoilers. 

C. POWER GENERATION 

Since the vessel’s drive system will be electric, the power generation has to 

supply sufficient power for propulsion as well as for all other electrical requirements. As 
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previously discussed, there are three candidate systems for electrical power generation on 

board a future naval combat platform. Two of these are available in a variety of 

configurations today. These are the gas turbine that offers the best power to weight ratio 

and the diesel engine that offers the best efficiency. The fuel cell is in a very rapid 

development, so it might become a feasible alternative by the beginning of the next 

decade. Independent of today’s decision, the overall power generation concept of the 

future platform is structured to be as modular as possible to prepare for future upgrades 

and modifications. 

Before a decision is made on what size and what mix of power generator modules 

to choose, the power requirement has to be analyzed further. As derived in the previous 

paragraph, the total power requirement for propulsion to achieve the threshold of 28 kn is 

- 37 MW. Allowing maximum load on the main and on the auxiliary propulsion systems 

simultaneously at least 44 MW should be provided. Experience on the German class 122 

and 123 frigate show that the actual electrical power consumption for the ship at combat 

stations is in the range of 800 to 1,200 kW. The installation of 3,000 kW or 4,000 kW for 

the class 124 frigate was necessary to provide the required redundancy. This lead to the 

decision that a total of 48 MW installed SHP should be sufficient for today’s electrical 

power needs. Since the power generation is provide by exchangeable modules, later 

upgrades and modifications according to changes in power requirements can easily be 

adopted. 

The mix of different output capacities should be optimized with respect to partial 

load conditions, and the location depends on the actual module weights and ambient air 

requirements. Components that are used in current applications in the German fleet 
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should be used to enhance spare part and maintenance expertise consolidation. For the 

initial installation of power generation modules the following arrangement is chosen: 

0 Two MTU 20V 1163 TB93 diesel generator sets, each with a maximum rated 

SHP of 7.4 MW, to be placed at the bottom of the deep container bay(s) aft of 

the hangar, i.e. just above the POL tank top level. The combustion air will be 

supplied from intakes at the aft sides of the hangar, the exhaust will be 

discharged from the center strut underneath the cross-structure. 

Two GE 7 LM 2500 PFMLG gas turbine generator set, with a maximum 

rated SHP of 23.5 MW each, are to be placed in the port and starboard side 

outer container bays at the aft end of the flight deck. The combustion air 

intake for this module will be at the topside of the side hull, the exhaust will 

be discharged through the transom of the ship. 

0 Two MWM TBD 602 V 16 K diesel generator sets, each with a maximum 

rated SHP of 1.14 MW, one to be placed in the port and starboard container 

bays in front of the deckhouse. Combustion air intake will be at the side of the 

deckhouse, the exhaust will be discharged underneath the cross-structure. For 

use alongside in harbor or when at anchor, an alternate exhaust discharge for 

these diesel engines will be provided to the top of the deckhouse. 

This configuration provides sufficient power for all electrical needs including 

propulsion up to - 22 kn at a reasonable specific fuel consumption using the two main 

diesel engines only. One gas turbine alone would provide enough power to propel the 

ship at 24 kn and satisfy all other electrical needs at the same time. Both gas turbine 
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generator sets combined with the two main diesel engine generator sets would provide 

enough power for ship speeds up to 32 kn. 

The high flexibility in power generation provided by an integrated electric plant 

means the ship will be able to operate under all possible load conditions much more 

efficiently than currently available power generation systems. The fully integrated 

electrical power system combined with state-of the-art automation will also significantly 

reduce the manning requirements for the ship’s engineering department. 

D. IUSK ASSESSMENT 

Since the O’Neill hull-based platform will be a stand-alone development, there is 

a high risk, compared to the evolutionary development for the most recent fiigates in the 

German Navy, i.e. fiom the 122 class via the 123 class and finally to the 124 class. To 

reduce the risk, a final decision to choose the O’Neill hull for a fiigate-sized surface 

combatant should be preceded by fiuzher towing tank trials and the evaluation of a large 

scale demonstrator, i.e. ?4 to 2/j in linear dimensions of the proposed ship. The 

demonstrator would also provide data about the actual construction costs for this fairly 

complicated hull structure. After completion of the trials, the demonstrator could be used 

for training and support purposes. Since there is no data available from similar ships, 

effects of material aging caused by the dynamic loads, especially those that the cross- 

structure has to withstand throughout its planned 30-year service life, need to be assessed 

via finite element methods. Due to the “open systems” approach and highly modular 

concept of the platform, the risk concerning the choice of engine and warfighting systems 
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is low. Assuming an early and comprehensive interface specification is established and 

enforced, the decision about the individual systems can occw closer to the final delivery 

date than would be possible with a non modular approach. In case any system proves 

during the operational phase to be unsatisfactory, suboptimal, or a much better 

technology has emerged, a modification can still be done with limited effort. As shown in 

the stability calculations in Appendix D the initial GM of 4.75 m offers a high top-weight 

growth margin to accommodate future weapon and sensor systems. 

Rapid changes in the global political situation and hence in the mission and threat 

environment can be accommodated by exchanging the payload. For humanitarian 

missions, war-fighting modules could even be exchanged for medical treatment or 

accommodation units for casualties, hence creating a large capacity floating hospital. 

The overall dimensions, i.e. length, beam and draft, are still very conservative. An 

optimized design with much greater beam and hence more deck space area would be 

possible, but it would cause additional constraints with respect to berthing and to dry- 

docking. Choosing a circular cross-section could reduce the wetted surface area of the 
_ .  

center hull, but this would significantly increase the draft. Much greater draft and beam, 

like T = 10 m and B = 35 m or more, could result in significant operational constraints 

especially when operating in the littoral. The proposed dimensions of L0~=105 m, B=26 

m and T=7 m would still fit the existing shore-based support infrastructure, hence the 

investment into new infrastructure to support the ship could be minimized. 

Even though the propulsive power requirement will be in the same range as for 

similar sized monohulls in calm water, the performance in rough water will be superior as 

long as no cross-structure slamming OCCUTS. In the case of the proposed ship at the design 
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displacement of 4,700 tons, this will probably not occur until sea state 6 .  This leads to 

one of the major constraints of the design: best performance and behavior at sea will be 

achieved within a very small margin around the design displacement. As a consequence 

the ship has to be fitted with a compensated fuel system or sufficient clean water ballast 

tanks. Since a compensated fuel system based on current technology without mechanical 

separation between fuel and seawater does not comply with the zero discharge policy, 

this is not a feasible option. A clean water ballast system requires much more ship 

volume, therefore it would constrain the maximum fuel capacity and hence range and 

endurance of the ship. A clean compensated fuel system, based on either a membrane or 

bladder to separate seawater and fuel, has not yet been built in the required scale. Even 

though such a system is eventually expected to be possible, further development has to be 

performed. Since the initial POL capacity of the proposed design (see Appendix D) is 

more than sufficient to support the required range an endurance a clean water ballast 

system could be used until these technologies mature. 

The estimation of propulsive power, as shown in Appendix E, was done using the 

actual physical dimensions of the proposed design to derive the frictional resistance 

coefficient (CF). The residuary resistance coefficient (CR) was obtained fiom towing tank 

trials of a slightly different O’Neill hull, but with similar values for the wetted surface 

area and the length and relative positioning of the three hulls. The reason for adopting 

these values was simply that they were the only results available for a ship of the 

proposed size and shape. The risk concerning the validation of this CR for the proposed 

hull is to be assessed as medium. The true resistance and hence the EHP for the proposed 

hull is expected to be within an error margin of 12 %. 
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The choice for prime movers, as shown in the previous section, bears a very low 

risk. All these engines are currently available, matured designs. The maintenance and 

support infrastructure is readily available in the German Navy, hence the operational 

availability is expected to exceed the required 90%. Possible upgrades to a gas turbine 

generator set based on the Rolls Royce - Northrop Grumman WR 21 have still to be 

investigated. Even though the specific fuel consumption is lower than for the chosen GE 

turbine, the total ownership costs (TOC) will be increased significantly by the need to 

establish a new maintenance and support infrastructure in the German Navy. Additionally 

the WR 21 module is significantly greater in weight and volume. Looking at past 

operational profiles and the ability to operate the ship up to 22 kn by the more efficient 

diesel engines alone, the overall use of the gas turbines and hence the amount of fuel 

burned will be in an acceptable range. Hence it will probably be a better decision to use 

currently introduced engines, jump the generation of intercooled and recuperated gas 

turbines and replace the current engines by fuel cells when the technology is matured. 
-. 

E. DISCUSSION 

The proposed design offers many advantages as well as challenges. As previously 

discussed, the optimum performance of the vessel is achieved at points very close to 

design draft only and hence depends on a load compensating system such as a 

compensated fuel system or a clean ballast system. Also, due to the high sensitivity in 

draft changes, it is not feasible to provide a 10% or greater service life allowance for 

weight growth without any performance penalties. If a weight growth allowance is 
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required, the platform has to be designed to the maximum allowable displacement from 

the beginning and the missing weight has to be compensated by ballast. This ballast could 

be provided by additional fuel, such that the required minimum range is achieved with 

the amount of fuel left when the maximum allowable weight has been installed, i.e. at 

commissioning the ship would have a much greater range than required. As previously 

discussed, their is enough margin to trade initial POL capacity for later weight increases. 

Looking at the stability estimate in Appendix D, the calculated metacentric height 

of 4.75 m offers risks as well as options. The major risk will be that the ship becomes 

very stiff, i.e. crew and equipment will experience small amplitude motions but fairly 

high accelerations, increasing with the distance from the center of the ship. When this 

metacentric height is accepted it offers a high top-weight growth margin. If, based on a 

validation of these prediction with demonstrator trials, it is decided to reduce the 

metacentric height, it could be done by placing some of the existing modules, e.g. the 

main diesel engines at a higher location, or simply by reducing the length and hence the 

waterplane area of the side hulls. The later method would reduce the frictional and 

residuary resistance, which in turn could lead to reduced operating costs. 

The integrated electric power generation, distribution and drive system allows 

maximum flexibility in internal arrangement of its components and increases the overall 

redundancy of the electric power supply as well as the propulsion system in emergency 

situations. It also significantly reduces the required manning levels. The choice of the 

prime movers was made with high emphasis on currently available systems in the 

German Navy. This leads to easier Navy-wide configuration management and avoidance 

of costs for creating a new maintenance, support and training infrastructure. 

73 



The highly modular, “open systems” arrangement of all systems on board ensures 

simplified exchange of the modules, for the purpose of scheduled or corrective 

maintenance, modemizatiodupgrades or to prepare the ship for changes concerning its 

mission. To achieve a maximum flexibility in system transportation and handling, the 

components should comply with standard 20 ft or 40 ft container dimensions. 

From the perspective of helicopter and/or UAV handling this design provides a 

much more stable platform and a significantly larger flight deck compared to monohulls 

of similar displacement. The flight deck dimensions of 18 m by 42 rn would even allow 

one helicopter to take off or land while the second one is still on the flight deck, or handle 

helicopters with higher weight than could be done by today’s monohull frigates, 

assuming suitable structure to support the flight deck. Since nearly the whole area is used 

for container bays to accommodate machinery or war-fighting systems, the “lids” above 

the modules not only have to provide a watertight and fueltight seal with the flight deck, 

they also have to provide the structural strength and a flat continuous surface for 

helicopter operations. 

To realize a surface combatant based on such a radically different hull type, many 

problems and challenges have to be solved, including those that might not be known at 

the current stage of development. Since there isn’t much information, or even experience 

with O’Neill hulls, further towing tank trials and experiments with a large-scale 

demonstrator have to be performed. Looking at an envisioned delivery date of 2012 there 

is not much time left for experiments and their evaluation. Assuming a total construction 

time of 3 years, including the lead-time for some component manufacturing, and 4 years 

for detail design, the decision on proceeding with an O’Neill hull has to be made not later 
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than 2005. To allow at least 2 years for data collection and evaluation, a demonstrator has 

to be launched by 2003. This is only feasible if further in-depth studies of design details 

including towing tank tests are started straight away. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

This study provides a structured approach containing the necessary reasoning to 

select a concept that satisfies a given set of requirements based on technologies that are 

available today or will become available in the near future, i.e. within the next 10 years. It 

is not meant to be even a preliminary design level study for a frigate. Many assumptions 

were derived from the information available at the time of the study. It is expected that 

more data will become available from ongoing programs investigating advanced hull 

designs and powering concepts. To adapt to any changes in policy and requirements, the 

weighing matrices for system requirements and key performance parameters' can be 

revised, which may result in different weighed scores and priorities. 

Today's key concerns in warship design are Total Ownership Costs (TOC) and 

operational availability. Both aspects have to be addressed as early as possible in the 

conceptual design stage, well before any detail design and subsystem development. To 

avoid the use of components and systems that are obsolete at the time of ship delivery, 

due to fast paced technological development, the timing of critical decisions has to be 

optimized. On the other hand a trade-off has to be done, comparing advantages from new 

technologies with benefits fiom systems currently in use in the German Navy, i.e. with 

their support infrastructure already in place. As highlighted in Chapter IV, reliance on a 

late decision can significantly increase the overall program risk. 

- .  
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Since the proposed design, as described in Chapter IV, is radically different from 

a conventional monohull, the available tables for relationships between payload, 

displacement and power requirement could not be applied. At the time of this study, there 

was no experience-based data available for such estimates. The exact relationships have 

to be determined through several detailed iterations based on the actual payload 

requirements . 

The current development trends in existing programs for frigate / destroyer sized 

warships, like the U.S. Navy’s DD 21 and the Royal Navy’s Type 45 destroyer, show a 

general movement towards an integrated electrical power generation, distribution and 

propulsion system. This is made possible by developments in power electronic 

components during the past 10 to 15 years. Hence, with respect to the platform, other key 

decisions concern the hull type and shape, the propulsion arrangement and the choice of 

the prime movers. 

For the purpose of this study, all warfighting systems are viewed as variable 

payload. The modular approach to the arrangement of systems within the ship is the 

logical response to the rapid developments in weapon, sensor, communication and 

computing technology. To ensure a ‘plug and play’ like operation of interchangeable 

modular systems, high emphasis has to be put into exact and comprehensive interface 

specifications. One of the key parameters to support an open architecture systems 

approach is the initially installed bandwidth. 

In general, advanced multi-hull designs offer many performance features not 

provided by similar sized monohulls. Based on the available trials and evaluations, there 

is not much gain in total resistance compared to monohulls over a wide range of speeds in 
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calm water conditions. The major advantage is the superior performance at sea states up 

to the limit when cross-structure slamming occurs. Especially for combatant ships, any 

three-hull design is superior to twin-hulls due to the higher ability to compensate 

buoyancy losses caused by a hit on one side of the ship 

One major disadvantage of all advanced multi-hulls is their high sensitivity to 

draft and hence load changes. Means to compensate these load changes have to be 

provided in the design; otherwise the multi-hull’s overall performance would suffer 

significantly. The use of initial excess POL capacity for later weight increases, as 

discussed in Chapter IV, could solve this problem. 

B. RECOMMENDATIONS 

To deviate from the conventional monohull evolution to a radically different 

advanced multi-hull type requires significant lead times for exploratory design studies, 

towing tank tests and large scale demonstrators. The total lead:time, depending on the 

specific design, will be in the range of 10 to 12 years. 

The evaluations and discussions in this study show that an O’Neill hull is a 

- feasible design solution for a future frigate or destroyer. The final decision to use such a 

design clearly depends on the results of large-scale demonstrator sea trials. When a 

delivery date of 2012 is envisioned to deliver the first ship, preliminary design and 

towing tank tests have to commence immediately. 

A conventional trimaran would also provide a suitable platform for a future 

warship hull. Due to the relatively lower wetted sunFace area, the resistance at lower 
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speeds will be lower than that of the proposed O’Neill hull. Since the British RV “Triton” 

is currently the only large-scale trimaran, the results fiom the sea trials currently 

underway should be closely monitored. [Ref. 21 

C. SUGGESTIONS FOR FURTHER STUDIES 

Before concentrating only in the direction described in this study, basic studies 

exploring non-material solutions as well as completely different approaches to satisfy the 

stated mission needs have to be done. Another possible approach would be the 

consolidation of the naval assets within a multi-national force. This approach might be 

the most cost-effective solution, but results in decreased national independence in crisis 

decisions. 

During all studies of details and alternatives, as proposed later in this section, the 

cost implementations of design decisions have to be closely monitored. Factors like 

manpower and operating costs like POL are key areas when it comes to the selection of 

any system to be installed on board the platform as well as with respect to broad 

conceptual decisions. 

Further design studies have to be performed to optimize the internal arrangement 

of all necessary components and modules, and to finalize the outer structure, its 

dimensions and hence the final power requirements. These studies should be performed 

by a dedicated design team, with one team member will be responsible solely for keeping 

track of all weight added to the ship, its exact location and influence on the stability, due 

to the criticality of weight control to the success of the O’Neill hull form. Another vital 

80 



part of the study will be the structural strength calculation, which could be performed 

using finite element methods to model the complicated structure of an O’Neill hull form. 

A series of towing tank tests should be performed to validate the calculations of 

the power requirements attached in Appendix E. As part of these tests, the shape, size and 

relative location of the center hull and the side hulls including the struts should be varied 

to determine the optimum configuration. 

The design of the shipwide electrical power and data network, and the 

specification of all relevant interfaces have to be studied and evaluated in depth. This 

includes decisions about the physical and electromagnetic protection of the network, 

alternative routes for redundancy and an automatic re-routing control system to provide 

instant response in any emergency situation. The development of a fully automated 

alignment system would drastically reduce the time required for the exchange of weapon 

and sensor systems. 

Design studies and corresponding material tests have to be performed to find and 

evaluate possible solutions for a mechanical water-fuel separation systems, which can be 

used for ‘clean’ compensated fuel systems. This might be a membrane, a bladder or 

anything else suitable to keep both fluids permanently apart, allowing a maximum 

percentage of tank use for either one of them. 

A boat launch system has to be developed that can be integrated in the stealth 

structure without degrading the radar reflection signature. The system should provide safe 

boat launch and recovery up to sea state 6 ,  i.e. wave heights of up to 4 m. The design is 

not constrained to a sidebased system, it could as well be a sternbased system similar to 

those used on offshore search and rescue vessels. Similarly, the RAS gear for liquid and 
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solid replenishment at sea in compliance with current NATO standards has to be 

integrated into the surface as well. For the long-term, alternative ways to perform 

replenishment should be investigated. 

A study should be performed to investigate the required manning levels to 

perform the anticipated missions. This study should also define the required 

accommodation standards. The arrangement of all accommodations should be optimized 

with regard to quality of living and hctional aspects as well. Today on most naval ships 

the accommodation for the crew is according to the rank structure. The study should 

include the question whether a more functional or team-oriented arrangement of living 

spaces would be beneficial. This might include consideration about the effect of massive 

personnel losses due to an unexpected hit. 

Studies and trials could be performed on existing multi-hulls as to determine 

whether a spoiler system attached to the outer hulls could completely replace one or more 

conventional rudders. The benefit of a surface integrated spoiler would be that it does not 

generate any noise or resistance when no directional correction is necessary. 

82 



Table A.l, System Requirements Evaluation 

00 w 

Results from Rankincl: 

(1 1) Design stability I 
(12) Survivability 2 
(4) High maneuverability 3 
(10) Stealth technology 4 
(19) Operational availability 4 
(3) Integrated electric power system 5 

190.5 a 

rModu;rdesig; , 1 i 1 
(9) Open architecture com uter network 
(20) Sup ortabilit , Upgradeabilty 
(14) Sup ort of helico IerslUAVs 

I 

0.0 means vertical feature is less important than horizontal, 1.0 means it is more important and 0.5 means it 
is equally important or there is no conflict. Weights for columns are added at the bottom and normalized 
by dividing by the sum of all weights. 



00 
P 

(8) Min floodable length in adjacent compartments 

(51 Hiah Soeed Transit 
(9) Reduction of crew required to operate ship 

Table A.2, Key Performance Parameter Evaluation 

1 
2 
3 

Subtotal : 3.0 1.0 4.5 4.5 5.0 2.0 2.0 7.5 6.51 36.0 

Priority: 5 7 4 4 3 6 6 1 2 1  
Percentage : 8.3 2.8 12.5 12.5 13.9 5.6 5.6 20.8 18.11 100.0 

(1) Top Speed 
(6) Max sea state for boat oDerations 

Results from Rankina: 

5 
6 

l(3) Maximum Range 1 4 1  

(7) Max sea state for helicopter/UAV operations 1 6  
(2) Acceleration (0 - 25 kn.) . ' 1  7 

0.0 means vertical feature is less important than horizontal, 1 .O means it is more important and 0.5 means it 
is equally important or there is no conflict. Weights for columns are added at the bottom and normalized 
by dividing by the sum of all weights. 



APPENDIX B: POWER COMPARISON OF MONOHULL AND O’NEILL HULL 

Since the best results of the proposed O’Neill hull form in Ref. 3 were achieved 

with a new outer hull in far aft position, these results were used to compare the power 

requirements to a conventional monohull. Since the conventional monohull for which the 

exact powering data were available is the German F-122 class with a displacement of 

3,600 tons and the predictions derived from the trials at the David Taylor Research 

Center are for a displacement of 4328 tones the results have top be compared using a 

linear scaling factor (A). 

Vo~Neill 4,328tons 
V,,, 3,600tons 

= 1.2022 - a3 =-- 

A =  v E  = 1.06331 

The power is a function of the square of this scaling factor, hence the experienced 

power requirements for the 122 class frigate of SHP-3 1,000 kW at 30 kn (measured at 

the shaft between reduction gear and thrust bearing) has to be multiplied by h2 to obtain 

the power requirement at 30 kn of an equivalent monohull. To equate this t the effective 

horsepower a propulsive coefficient of 0.8 was assumed. 

A2 =1.13063 
EHP = 0.8 * 1.13063 * 3 1,000kFV = 28,040kW 

Comparing the 28,040kW for the monGllull with tle proposeL 7,190kV . ie 

O’Neill hull (see Ref. 3 page 17), it can be stated that the O’Neill hull will at least be in 

the same region of power requirement, maybe with some advantages in adverse sea state 

conditions. 
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APPENDIX C: DRAWINGS 
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APPENDIX D: CALCULATIONS 

1. CALCULATIONS OF HULL PARAMETER 

Basic linear Dimensions: 

Total Length of the Ship L, = 105 m 

Total Beam B = 2 6 m  

Center Hull Drafe T = 7 m  

Cross-Structure Clearance Tcc = 4 m  

Total Depth of the Hull D = 1 5 m  

Center Hull: 

Total Length = 9 5 m  

= 80 m Length at Waterline L, 

Beam at Waterline BCH = 4 m  

Max Breadth BMCH = 10m 

Depth of Center Float DCF = 6 m  

Length at Waterline (=Lo*) L, 

Beam at Waterline BSI-I = 2 m  

Side Hull Draft TSH = 4 m  

= 75 m 

Side Hull: 
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Displaced Volume ( y): 
~ 

VcH = -* 1 52.27m2 * 28m + 52.27m2 * 48m +-* 1 (52.27m2 + 28.27m2) * 20m + 250m2 * lm 
3 2 

VcH = 4,5052.21m3 

1 1 VsH =-*4m2 *10m+60m*4m2 +-*4m2 *5m 
I 3 3 

I VsH =260m3 I 

~ 

I V = 4,5052.21m3 + 2 * 260m3 = 4,572.21m3 

I Waterplane Area bw): 
i 

1 1 
2 2 

1 1 A ,  = 1 lm * -*  2m + 60m * 2m + 5m*-* 2m = 135m2 
2 2 

A, = 250m’ +2*135m2 = 520m2 

= 45m * 4m +-* 4m * 15m + -* 4m * 20m = 250m2 A ,  

Wetted Surface Area 0: 

S, = 362.52m2 + 1,288.8m2 + 444.74m2 + 28.27m2 + 160m2 - 250m2 = 2,034.33m2 

S, =2 * 75m * 4.47m = 670.50m2 

S = 2,034.33m2 + 2 * 670.5m2 = 3,375.33m2 

Displacement (A 
tons Assuming density of seawater p = 1.025 7 
m 

A = 4,572.21m3 * 1 . 0 2 5 7  = 4,686.52ton.s tons 
m 

Tons per Centimeter Immersion (pc) 

520m2 tons tons 
100 1 OOcm m em 

TpC = A,* p = - * 1 . 0 2 5 7  = 5.33- 
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2. CALCULATION OF TRANSVERSE STABILITY 

Transverse Metacenter (KM) 

I T  =TTcH + 2 *  (ITs,, +y2AV's,,) 

= 286.67m4 15m * 43 m3 45m * 43 m3 
48 12 48 

lOm*z3m3 60m*23m3 5m*23m3 + + 
48 12 48 

20m * 43 m3 + + ITcH = 

= 42.50m4 ITsH = 

I ,  = 286.67m4 -t- 2 * (42.50m4 + 122 m2 * 135m2 = 39,251 .67m4 

= 8.58m 39,251.67m4 
V 4,572.2lm' 

- I T  = BM=-  

= 3.49m - 15,974.83m4 KB= 
4,572.21m3 - - -  

KM = KB + BM = 8.58m +3.49m = 12.07m 

Effect of an Increase in Beam 

Table D.l, BM and KM versus Ship's Beam 
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Center of Gravity (KG)  

Thickness 

Imml 
Item 

Assumptions concerning the hull structure: 
All steel plating used for the estimation of the bare hull center of gravity is given an additional 40% weight margin for stiffeners. 
The density for steel is assumed to be 7.9 tons/m2. The location is the center height over keel. 

incl. Margin Area Volume Mass Location Moment 
[mml [mZl rm31 [tons] rm1 [tons x m] 

IHeight of Center of Gravity above Keel (KG) in [m] = I 9.34 
11148.41 

ISchaded cells are calculated automatically. I 

Table 0.2, Center of Gravity for Hull Structure 



Assumptions: 

Unless their exact center of gravity is known, all loads are applied at an average height of 1 meter above the respective deck level. 
Furnishings and fixed installations accounts for all minor equipment, cables, pipes and vents (S-Deck incl. auxiliary machinery). 
The container infrastructure accounts for the container basement as well as for all cable, pipe and vent interfaces. 

Item I Deck I Load I Area I Volume I Mass I Location I Moment 
I I " m 2 1  I [m21 I [m31 1 [tons] I [ml I [tonsxm] 

IHeight of Center of Gravity above Keel (KG) in [m] = I 6.66 

Table 0.2, Center of Gravity for Platform 



Assumptions concerning the payload: 

Item 

The platform provides all means of transportation, support and personnel. 
The exact payload is defmed by the exact mission requirements. 

Deck Mass Location Moment 
[tons] [ml [tons x m] 

Platform Total 
I I I 

War-fightinq Modules, Containers 1 Z 400 I 131 5200 

4070.9 I 6.661 27122.2 

- -  
(13x40ft+ 4x20ft)  
C41 Systems outside Containers C 20 21 420 

Z 50 13 650 

Height of Center of Gravity above Keel (KG) in [m] = I 7.32 

Hull mounted Bow Sonar 
Ammunition for Gun 
Torpedos in Side Hulls 
Helicopter / UAV / UCAV 

Table D.2, Center of Gravity for Total Ship 

I - - _  

S 10 3 30 
S 100 4 400 
P 12 8 96 
H 24 17 408 

With the calculated KM of 12.07m the final metacentric height GM is 4.75111. 
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APPENDIX E: CALCULATIONS OF POWER REQUIREMENTS 

Assumptions: 

At the time of this study there was no data available concerning the performance 

and power requirement data of a full size O’Neill hull and only limited data from model 

tests. To enable a rough estimate for power requirements, Froude similarity to an O’Neill 

hull model tested at the David Taylor Research Center was assumed. Their model gave 

the closest match to the proposed hull form with the original outer hulls in aft position; 

see Ref. 3 page 13 to15. Hence the residuary resistance coeficients fiom the table on 

page 15 in the Ref. 3 was chosen for the following calculations. For the calculation of the 

fiiction resistance the ITTC 1957 Line was used. The required dimensions for the ship 

are those derived in Appendix D. 

R, =C, *(-j-*p * V ’ * S )  L,  =80m 

v * L,  Re =- 
tons 
m3 

p = 1.025 - 

v = 14kn - 32kn 
I 

0.075 ~=1.18831*10-~ 
sec (log,, Re- 2)2 s = 3,375.33m’ 

C, =0.0005 
EHP=R,*v 
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Table E. 1, Speed versus Effective and Shaft Horse Power 

Including a safety margin of 10 % and a propulsive efficiency of 0.7 results in the 
following requirements for installed shaft horsepower (SHP).  

60000, I 

50000 t----fi 
40000 . / I 

z 
30000 n 

I 
u) 

~ O O O O  

10000 

o d , ,  , , , , , , , J 
14 16 18 20 22 24 26 28 30 32 

Speed [knl 

Figure E. 1, Speed versus Shaft Horse Power 
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GLOSSARY OF ACRONYMS, ABREVIATIONS AND DIMENSIONS 

A. ACRONYMS AND ABREVIATIONS 

AAW 

ASuW 

ASW 

AWW 

C4I 
CODAG 

CODOG 

COGAG 

COTS 

FPB 

IR 

IT 

KPP 

MTBM 

MW 

NATO , 

NSFS 

O&S 

POL 

RL4S 

R&D 

rpm 
SWATH 

STANAVFORLANT 

Anti Air Warfare 

Anti Surface Warfare 

Anti Submarine Warfare 

Above Water Warfare (incl. AAW and ASuW) 

Command Control Communication Computing Intelligence 

Combined Diesel and Gas Turbine 

Combined Diesel or Gas Turbine 

Combined Gas Turbine and Gas Turbine 

Commercial Off-The-Shelf 

Fast Patrol Boat 

Infrared 

Information Technology 

Key Performance Requirements 

Mean Time between Maintenance 

Mine Warfare 

North Atlantic Treaty Organization 

Naval Surface Fire Support 

Operation and Support 

Petrol Oil Lubricants 

Replenishment at Sea 

Research aqd Development 

Revolutions per Minute 

Small Waterplane Area Twin Hull 

Standing Naval Force Atlantic 
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TAD 

TAS 

TBMD 

TOC 

UAV 

UCAV 

VDS 

WL 

B. DIMENSIONS 

Theater Air Defense (Incl. AAW) 

Towed Array Sonar 

Theater Ballistic Missile Defense 

Total Ownership Cost 

Unmanned Air Vehicle 

Unmanned Combat Air Vehicle 

Variable Depth Sonar 

Waterline 

Waterplane area 

Ship's beam in the design waterline 

Center hull beam in the design waterline 

Height of metacenter above center of buoyancy 

.Maximum breath of the center hull 

Maximum breath of the side hull 

Side hull beam in the design waterline 

Correlation allowance 

Frictional resistance coefficient 

Center hull 

Residuary resistance coefficient 

Total resistance coefficient 

Depth of the hull 

Effective horsepower 

Height of metacenter above center of gravity 

Transverse moment of inertia 
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KB 

KG 

KM 

LO* 

LWL 

R r s  

Re 

S 

SH 

SHP 

T 

Tcc 

TSH 

TPC 

V 

V 

A 

h 

V 

P 

Conversions 

Length: l m  = 

Area: 1m* = 

Volume 1m3 = 

Mass: 1 ton = 

Power 1 w  = 

Speed 1 d s e c =  

Height of center of buoyancy above keel 

Height of center of gravity above keel 

Height of metacenter above keel 

Length over all 

Length at waterline 

Reynolds number 

Resistance of total ship 

Wetted surface area 

Side hull 

Shaft horsepower 

Center hull draft 

Clearance between cross-structure and waterline 

Tons per centimeter immersion 

Side hull draft 

Displaced volume 

Ship’s speed 

Displacement 

Scaling factor 

Kinematic viscosity 

Mass density 

3.281 ft 

10.76 f t 2  

35.32 ft3 

1,000 kg 

1 Ndsec  

1.944 kn 

0.984 LT - - - 2,205 Ibs. - 

1.341 * lO-3hp - - 
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