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ABSTRACT 

The purpose of this thesis was to develop an experimental methodology to 

determine the effects of electromigration on the aluminum microstructure of the railgun 

armature.  An experimental system which allowed simulation of an Al armature between 

two Cu rails with surface “skins” was devised. The system was designed small enough 

such that only small current (<10A) was necessary to produce the large current densities 

typically found in railguns, and was able to simulate the skin effect on both the Cu rails 

and Al armature under static, long-term testing conditions. In this method, the effects of 

electromigration were discerned clearly, in dissociation from various movement related 

damage phenomena. The aluminum from the armature quickly reached its melting point 

via Joule heating due to high contact resistance at the armature-rail contact. Once liquid 

aluminum was formed, it rapidly migrated along the copper rail towards the negative 

terminal. This transport of liquid aluminum along the copper rails was attributed to 

electromigration of the liquid under the influence of the direct electric field. Once the 

aluminum began to be transported along the rail towards the cathode terminal, it alloyed 

with the copper rails and the resistance steadily increased in the circuit. Electromigration 

is shown to be a contributing factor to the degradation of aluminum armatures 

performance and copper rails lifespan in the railgun. 
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I. INTRODUCTION 

A. RAILGUN 

The U.S. Navy currently employs conventional guns, missiles, and aircraft in 

conducting land attack operations. Conventional guns are very affordable and can be used 

repeatedly for long durations with little wear or damage to equipment on board ship. 

They are very effective in saturating targets near the shoreline. The down side to 

conventional guns is that their range is very limited compared to the battlespace 

geography encountered in today’s conflicts. Missiles and aircraft have the range needed 

to reach targets deep inland from the shore, but are extremely expensive to use and 

therefore cannot be employed in enough volume to saturate a battlespace with 

suppressive fire.  

The United States Navy has begun to commit substantial research efforts to the 

development of an electromagnetic (EM) railgun for use onboard ships. This railgun 

would ideally be capable of landing 60 kg projectiles 300 to 400 nautical miles 

downrange with an impact velocity of up 2.5 km/s [1].  This weapon would close the gap 

between conventional, low cost, guns and precision, long range, high cost, missiles and 

aircraft ordnance [2, 3].  

The railgun operates by passing a large pulsed current, likely in excess of several 

million amperes [2] depending on armature weight, along a rail which is usually made of 

copper. The current then flows in to an armature made of aluminum and out on to another 

copper rail that is set parallel to the first. The large current causes a Lorentz force to push 

the armature along the rails, see Figure 1. In laboratory experiments the armature has 

been ejected from the rail system at speeds up to 6 km/s [4, 5]. The Lorentz equation used 

to calculate the force on the armature is: 

2'
2
1 ILFEM =    Equation 1 

Where L’ is the inductance gradient of the barrel and I is the average current.  
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Figure 1.   A conceptual representation of the current and resulting force on a 
projectile (armature) in a railgun. ([From Ref. [6].) 

 

Several types of materials for the armature are being explored namely aluminum, 

copper, and alloys of the two. The most common armature composition for the 

experimental railgun is aluminum 7075.  

B. PROBLEMS WITH CURRENT RAILGUN TECHNOLOGY 

 There have been several obstacles in the development of an operational railgun 

system. These problems are in two areas; the first being power supply and the second is 

rail/armature damage. The primary concern with power supply is the associated 

equipment required to support the rapid electrical discharge required to launch a railgun 

armature. The support equipment requires ample power generation and storage facilities. 

This makes a small and portable system harder to implement.  

Damage to the rail and armature is another concern that has several components. 

As the armature is propelled along the rails several problems have been observed. 

Hypervelocity gouging of the rails from the aluminum armature has been observed [7, 8]. 

Also melt-wave erosion of the armature occurs from the joule heating and melting of the 

armature [9-11]. Viscous heating from the friction of the armature passing along the rails 

causes melting and deposition of the aluminum on the rails [12]. Also observed was crack 

propagation due to the large current density passing through the armature and 
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propagating existing crack initiation sites [13]. Lastly, electromigration and flow of the 

aluminum armature is an effect that will be discussed in this study.  

C. PURPOSE OF STUDY 

 As stated in the previous paragraphs there are several factors that result in damage 

to both the rails and armature. Examination of effects other than from movement of the 

armature has been difficult to observe and analyze due to the multiple artifacts that arise 

due to high velocity motion of the armature.  The purpose of this thesis was to utilize a 

small scale, static model of a rail gun to examine the effects of electromigration on the 

railgun armature. The testing examined the effects of passing a large current density 

along simulated copper rails and through an armature composed of 1100 Aluminum. The 

static model allowed for analysis of the effect of strictly the current flow through the rails 

and armature.  
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II. BACKGROUND 

A. LITERATURE REVIEW ON RAIL/ARMATURE DAMAGE IN RAILGUN 

 There are several issues involving the railgun armatures that have prevented the 

implementation of this technology. The most commonly observed problems are 

hypervelocity gouging, melt-wave erosion and viscous heating wear. The damage caused 

by these problems limits the useable lifespan of the rails and reduces the performance of 

the propulsion armature.  

 The most easily recognizable problem is gouge marks in the copper rails that are 

formed as the armature slides past the rail. This damage is often very severe and limits 

the lifespan of the rails. Several methods of gouging have been explored. 

Experimentation has shown the most likely cause of gouging results from particles 

resting on the rail in the path of the armature. The pressures developed by the speed of 

the armature exceed the yield strength of both armature and rail material and result in 

craters and bumps. These bumps then tear the soft rail material leaving a gouge in the 

rail. The initiation of the gouge leads to even more significant damage on subsequent 

shots. The most significant damage via gouging has been observed at armature speeds of 

1.5-2.5 km/s [7, 8]. 

 Another possible method of gouging that has seen little experimental observation 

is gouging by high velocity molten aluminum. It is possible that as molten aluminum 

from the armature falls and impacts the rails at high speed, it causes gouging. It has been 

difficult to correlate this type of gouging to molten aluminum since aluminum residue is 

not necessarily left behind at the gouge site. However, other methods of aluminum 

deposition on to the rails have been observed and will be discussed below. The deposition 

of aluminum gives future sites for “particle” gouging to initiate on subsequent shots [7]. 

 Another form of damage in railgun armatures is known as melt-wave erosion. This 

occurs as a result of a combination of high current densities passing through the armature 

edge and the high velocity of the armature along the rail. As the current moves from the 



6 

rail to the edge of the armature the current densities cause this armature material to melt. 

In a rail gun the armature is propelled forward along the rail and the molten armature is 

removed via viscous entrainment. As the armature is removed a gap is formed and the 

current is forced forward on the armature. The process repeats itself in a “wave” fashion 

until it reaches the front of the armature. Once the front of the armature is eroded the gap 

causes a spike in voltage and arcing occurs [9, 10]. This process reduces the efficiency 

and effectiveness of the armature. Experimental results have shown that with the right 

combination of metals and current density a single shot can yield up to 0.5 mm of melt-

wave erosion in the armature [11]. This form of erosion also leaves significant amounts 

of melted metal from the armature on the rails which will cause gouging damage on 

subsequent passes. 

 Melting of the armature also occurs via viscous heating. The friction of the 

armature sliding along the rail causes the armature to melt and form a molten film which 

is predominately left behind as the armature progresses along the rail [12]. This leads to 

problems similar to those noted above with melt-wave erosion. 

 The last form of damage that has been explored thus far is a result of pulsed 

electromagnetic loading in the armature. The damage is crack tip propagation that results 

in the armature from pulsed electromagnetic loading. It has been shown that at large 

current densities the cracks will propagate from initiation points in the microstructure. At 

even larger current loads small blowholes have been observed as a result of localized 

melting in the armature [13]. 

B. CURRENT CROWDING AND SKIN EFFECTS 

 The research conducted by Chen et al. [14] examined the effect of current crowding 

observed in the corner regions of armatures where the current first passes from the rail to 

the armature. The effect is reduced in situations where the armature is fixed and cannot 

move. However, as speed is introduced in to the characteristics of the armature current 

crowding becomes a significant issue. The current experiences a skin effect where it 

travels along the outer surface of the rail and crowds in the aluminum armature at the 
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corner where the rail and armature meet. This crowding is observed at both the inlet and 

outlet of the armature. The current crowding was observed to cause localized melting and 

crack propagation at crack initiation sites in the crowding region [14-17]. 

C. ELECTROMIGRATION 

The role of electromigration in railguns has not been investigated previously.  

Electromigration is the atomic transport of metals under the influence of an electric field. 

This phenomenon has been observed since as early as 1861 when Geradin first observed 

this movement in lead-tin and mercury-sodium alloys [18]. Systematic experimentation 

was begun in the early 1950s and by the late 1960’s research in the area of thin films was 

conducted by Blech [18-22] and the first real micro scale observation of electromigration 

damage was seen.  

In his research, Black [23] found that metal ions can be set free in their lattice by 

thermal activation. Once this occurs they will become subject to opposing forces; the 

“electric wind” force acted on the ion cores by electrons pushing the ions towards the 

anode, and the electric field, or “direct force”, induced by the positive current pushes the 

ions towards the cathode. The prevailing force is dependent on the type of metal, 

thickness, and current density. The result is the ability to quantify electromigration and 

the median time to failure in small scale semiconductors as expressed in the following 

formula [23]: 

kT
AJ

MTF
φ

−= exp1 2 Equation 2 

Where MTF is the median time to failure in hours, A is the cross sectional area of the 

device (cm2), J is the current density (A/cm2), φ is the activation energy (eV), k is the 

Boltzman’s constant (1.38x10-3J/K) and T is the temperature (oK). 
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Blech’s research in thin films showed that it was possible to model the atomic 

drift speed of atoms by using the following formula [20]: 

⎟
⎠
⎞

⎜
⎝
⎛ ∆
−==

kT
HjeZ

kT
D

N
Jv o exp*ρ Equation 3 

Where J is the atom flux (moles/m2s), N is the density of metal ions (moles/m2), DO is the 

frequency factor for diffusion (m2/s), k is the Boltzmann’s constant (1.38x10-3J/K), T is 

the absolute temperature, eZ* is the effective charge, ρ is the resistivity (Ω-cm), j is the 

current density (A/cm2), and ∆H is the activation energy (J) for moving defects in the 

metal. The most relevant part of the above equation is the atom flux, J, which can be 

calculated by: 

eEZ
kT
NDJ *=  Equation 4 

where is the electronic charge and E is the electric field. The diffusion coefficient, D, is 

given by:  

⎟
⎠
⎞

⎜
⎝
⎛ ∆
−=

kT
HDD o exp  Equation 5 

 Blech’s research determined that current densities must achieve at least 104 A/cm2 

in order for electromigration to occur in thin films. However, once the threshold of 

105~106 A/cm2 current densities is crossed electromigration becomes much more rapid 

and the effects much more severe. Blech determined that inputs from temperature, current 

density, specimen geometry, and material composition will all have some contribution to 

the magnitude of electromigration [19]. Blech’s research showed that the flow of thin 

film metals is always in the direction of electron flow since the influence of the “wind 

force” typically dominates over that of the “direct force”. 
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D. ELECTROMIGRATION RELATED DAMAGE IN MICROELECTRONIC 

CONTACTS 

 Another area of electromigration research, and where conceptual modeling for 

this thesis came from, has been in solder joints and interconnects [24]. In the research 

conducted by Lin et. al., it was observed that failure of flip-chip solders can occur under 

conditions with current densities as low as 104 A/cm2 due to their bulk properties [25]. 

The reason for degradation at low current densities is the high resistivity, small Young’s 

modulus and high effective charge of solders (eg. Pb or Sn) when compared with 

aluminum interconnects.  

The failure of these interconnects usually resulted from the formation and 

propagation of a void in the solder joint. The results of ref. 24 showed that current 

crowding played a large role in the formation of voids and degradation of the solder 

joints. Current crowding was affected by the current path which was influenced by the 

sample design. The current crowding in small cross sectional areas, such as corners, 

yielded high current densities which caused localized melting, due to Joule heating, 

formation and propagation of voids and resulted in joint failure. As the experiments 

progressed void propagation decreased the cross sectional area for current to pass which 

exacerbated the effects of electromigration and rapidly moved to sample to failure. The 

results of ref. 24 clearly showed the impact of high current densities and current 

crowding on metals. 

E. ELECTROMIGRATION IN LIQUIDS 

 Another aspect of electromigration that is of significant interest to this study is its 

characteristics in metals while in the liquid state. Research conducted by Anthony [26] 

addressed the electromigration of several liquid metal inclusions in single crystal silicon. 

Metal inclusions were embedded in the silicon by ultrasonically drilling a 0.75 mm 

diameter hole in the substrate. A 0.70 mm diameter metal wire was then place in the hole 

and the sample was placed in an annealing furnace at 1100o C for three hours in order to 

form the liquid alloy inclusion.  
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Inclusions in single crystal silicon were observed to migrate toward either the 

anode or cathode based on the influence of the electric current. The applied current 

caused the liquid metal inclusions to absorb dissolving silicon atoms which were then 

transported through the inclusion and deposited on the other side via flux. The cause of 

the flux is due a combination of the “electric wind” force, the electric field force, and 

thermal gradient migration. The predominant force acting in these samples was 

determined by the solubility of silicon in the metal inclusion and the charge of the silicon. 

 In this research it was observed that aluminum in the liquid state will migrate 

towards the cathode. It was observed that liquid aluminum is one of the easiest metals to 

initiate electromigration in this environment due to the high solubility of silicon in 

aluminum. The dissolved silicon was pushed by the “electric wind” force towards the 

anode and deposited. This allowed the aluminum to migrate towards the cathode aided by 

the direct electric field force.  

 Other research on electromigration in liquid alloys conducted by Epstein et al. 

[27] reinforced the influence of an “electron drag” force. This force is caused by the 

interaction of the electrons passing through, causing a “wind force”, but hitting the ions 

in the liquid which flow the opposite direction resulting in a resistance, or “drag”, on 

these ions. The research was conducted on alloys consisting of several metals, solutes, 

mixed with mercury, the solvent. The result is a drift velocity of the solute which is 

separated from the solvent based on the ion cross section in the liquid and determines the 

direction of flow for the solutes.  

 Previously stated research dealt with the electromigration of liquids in alloy 

metals or as interstitials. However, more relevant research was conducted by Regan et al. 

[28] on the use of carbon nanotubes as mass conveyors. The research investigated the 

movement of single element liquid balls of indium. The research was done at a nanoscale, 

however, its implications are far reaching and apply to this current study. The research 

placed nanoparticles of indium on carbon nanotubes and applied a current to the system. 

Joule heating quickly raised the temperature of the indium to above the melting 

temperature. Once molten the indium moved with the current in the direction of the 
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cathode. This result was confirmed by reversing the current and witnessing the indium 

move again towards the new cathode. The mass transfer rate could be controlled by 

varying the voltage applied. The transport of the indium particles, which are resting on 

top of the nanotubes, has been attributed to the “direct” force induced by the current. This 

seems to be the most plausible explanation; however, the authors state that more work 

needs to be done for a full understanding of the mechanisms involved in the mass 

transport.     

F. SURFACE ELECTROMIGRATION 

 Electromigration experiments on semiconductor surfaces have shown that the 

flow of metals in electromigration may, under certain conditions, be in either the 

direction of electron flow or against the electron flow. In a very thin layer of metal (a 

couple of monolayers), electromigration has been seen in a direction opposite to that of 

electron flow. This is called surface electromigration. Research conducted by Yasunga 

and Notori [29] showed a variety of results for surface electromigration on silicon 

substrates.   

 In these experiments sample metals were deposited on silicon substrates with a 

thickness between one and ten monolayers. Current was then applied to the substrate 

which heated the metal to near its melting temperature. This heating increased the 

mobility of the metal atoms and promoted the electromigration process. Surface 

electromigration occurs in the top layer of metals where the atoms are more loosely 

packed, and surface diffusion, which is much faster than grain boundary diffusion, 

dominates. The current densities required are therefore much less than in bulk of thin film 

electromigration experiments when considering the added mobility from Joule heating. 

Yasunga and Notori [29] showed that surface electromigration may occur at current 

densities as low as 10 A/cm2. 

In conventional electromigration, bulk or thin film, the electric wind component 

of the effective charge is a large negative value. The “direct” force value is near unity and 

thus the dominant driving mechanism is the “wind force”. Conventional electromigration 
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also requires large current densities to operate as previously discussed. However, on the 

surface layer of metals where the atoms are freer to diffuse than in the bulk, the driving 

mechanism may be switched. When a low current density is applied the force on the 

atoms by the “wind force” is small relative to that of the electrostatic “direct” force. 

When the mobility of the metal ions on the surface is increased due to Joule heating flow 

of metals ions will commence and tend towards the cathode [30-32].  

 The total force acting on an atom is comprised of the effective charge number, Z*, 

the elementary charge, q, and the electric field, E, shown in the following equation [29, 

32]: 

qEZF *= . Equation 6 

The effective charge number, Z*, is further broken in to the electrostatic, Zel, and wind, 

Zw, parts: 

wel ZZZ +=* . Equation 7 

As indicated in ref. 29, the direction of surface electromigration can vary for different 

metals, but the predominant tendency is for atom flow to be towards the cathode. The 

flow direction for different sample types is summarized in Table 1.  

Another difference in the mechanisms between conventional and surface 

electromigration is the resultant microstructure. Conventional electromigration causes 

pits and voids to form on the cathode side of the metal and hillocks to form towards the 

anode. This results in a damaged microstructure that is weakened structurally and has 

increased resistivity. The result of surface electromigration is the growth of a layer 

towards the cathode. The movement is more fluid in nature, transporting the top layer as 

a system and not in segments. Therefore, although there is structural change there is less 

in the way of microstructure damage.  
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 The conclusion of ref. 29 is that surface electromigration is the result of the 

“direct” force from an applied current that overcomes the effect of the “electron wind” 

force from the electron flow in situations where atoms are loosely attached to the bulk 

and therefore highly mobile.    

 

Properties Electromigration   
 

Direction of Flow 
In Bulk In Film Semiconductor 

Surface 
Al anode anode anode or cathode 
Ag anode anode cathode 
Au anode anode anode 
In anode anode cathode 
Sn anode anode cathode 
    
Current Density (A/cm2) 104 106 10 
Electric Field (V/cm) 10-2 1 10 

Table 1.    Comparison of electromigration properties (After Ref. [29])  
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III. OBJECTIVE 

 The objective of this thesis was to develop an experimental procedure to evaluate 

the effects of electromigration in railgun armatures. A model experimental system, which 

allows simulation of an Al armature between two Cu rails with surface “skins”, was 

devised to meet two key requirements. They are 1) the overall system must be small 

enough such that only small current (<10A) are necessary to produce the large current 

densities typically found in railguns, and 2) the system must enable simulation of the skin 

effect on both the Cu rails and Al armature even under static, long term testing 

conditions, so that the effects of electromigration can be discerned clearly, in dissociation 

from various movement related damage phenomena. The first step was to develop an 

apparatus with suitable environment control in which to conduct testing in. The second 

step was to integrate necessary wiring systems needed to meet power supply 

requirements and to record voltage and temperature measurements. The next step was to 

develop a fabrication process, which could easily be replicated, and to build suitable 

specimens for evaluation. Once the system and samples were fabricated the experiments 

were conducted to examine whether the armatures suffered any damage, and if so, if it 

was attributable to electromigration.  
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IV. EXPERIMENTAL PROCEDURE 

A. DESIGN OF SIMULATED STATIC RAILGUN FOR EM EXPERIMENTS 

 The experimental phase of this research was composed of system design, 

procurement, sample preparation and testing. It was imperative that the experiments be 

conducted in an atmosphere that would prevent oxidation of the copper rails in order to 

accurately gauge the effect of electromigration damage to the armature. As the 

electromigration damage progressed, the resistance of the armature increased and was 

measured. Initial testing was conducted placing sample copper rail in to the furnace and 

heating the sample to 480o C. The environment was washed with a constant positive 

pressure of Ar/H2 (98%/2%) gas to inert the environment. Results of this testing indicated 

that minor oxidation of the copper rails was still occurring and that a vacuum 

environment would be required for future experimentation. 

1. System Design and Components 

 The experimental system required a furnace that could be placed under vacuum. 

The system needed to have an electrical feedthrough which was capable of wiring to 

supply power and measure temperature and voltage. For this, a tube furnace with working 

dimensions of approximately six inches in diameter by four feet in length was utilized. It 

had a heated length of approximately 18 inches. The furnace controller was a Thermcraft 

type 815. It was capable of programming up to nine different dwell temperature rates and 

had controllable ramp rates. The tube furnace was modified to accept a vacuum pump. A 

Pfeifer-Balzers TPU 240 turbomolecular pump was integrated into the system. The 

turbomolcular pump was able to produce a vacuum of 4x10-4 torr.  

 An electrical feedthrough was installed on to the endcap of the furnace and fitted 

with connections for a power supply, nanovoltmeter, and thermocouple as shown in 

Figure 2. An Agilent E3632A power supply capable of producing up to 30 volts and 15 

amperes of current was integrated with the system. The power supply had a dual readout 

display which indicated both voltage and current applied. An Agilent 34420A 

nanovoltmeter with sensitivity to 100pV was also integrated into the system. The 
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thermocouple connection was connected to an Omega, K-type, thermocouple gauge.  On 

the opposite end cap of the electrical feedthrough and gas connection had been previously 

installed and was connected to the AR/H2 gas supply. This allowed the furnace to be 

filled with inert gas prior to turning on the vacuum pump and added an extra measure in 

purifying the environment inside the furnace. 

 

 

Figure 2.   Schematic of electrical feedthrough layout. 

 

The power supply and nanovoltmeter were connected to a desktop computer and 

interfaced with the Microsoft ExcelTM program. An ExcelTM toolbar specifically designed 

for the power supply enabled the output of the power supply to be controlled from the 

computer. The toolbar also setup a data logging spreadsheet which recorded the voltage 

and current output for the power supply at intervals as little as one second. Figure 3 is a 

picture of the vacuum furnace and the cart which held the computer, power supply, 

nanovoltmeter, and vacuum gauge controller. Figure 4 shows a schematic of the system 

design. 
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Figure 3.   Picture of tube furnace and associated data logging computer. 
 
 
 
 

 
 

Figure 4.   Schematic of furnace, power supply, vacuum and gas setup. 
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2. Armature and Rail Construction 

 The rail samples were constructed using a silicon wafer that had 1 µm of copper 

deposited on the surface. There was a 70 nm thick tantalum nitride barrier between the 

silicon and copper to prevent the copper from diffusing into the silicon substrate. The 

wafer was cut using a diamond blade and individual samples measuring 40 mm long by 

6.7 mm wide were made. The copper rails were then made by placing a 1 mm wide strip 

of 1mil (25 µm) Kapton tape along the long edge of copper samples as shown in Figure 5. 

This enabled the Kapton tape to mask the underlying copper from subsequent etching. 

The Kapton tape was placed on both long edges of the sample in order to produce two 

rails to compare the copper rails with and without current passed through. The copper 

samples were placed in a solution of 3 grams of Na2S2O8 and 3% H2SO4 in 1000 ml of 

H2O. The samples and solution were placed in agitation for approximately three minutes 

until the exposed copper had been etched off. The sample were rinsed in DI water and 

dried. The Kapton tape was removed and rail preparation was complete.  

 Armature samples were made using quartz blocks and aluminum 1100 foil. The 

foil thickness used for these experiments was approximately 76 micrometers. The foil 

was cut into 1 mm wide strips to match the approximate width of the copper rails. The 

foil was wrapped around three sides of the quartz block which measured 11 mm long and 

3 mm thick as shown in Figure 6. The length of the aluminum on the top and bottom 

sides of the quartz were not for conducting purposes, but simply for holding the foil 

between the two rails in place. Alternative methods of adhering just one side of 

aluminum between the two copper rails were attempted, but proved to be too difficult to 

work with on this scale. 

 



21 

 

Figure 5.   Etching of Copper plated Silicon plate using Kapton tape. 
 
 
 

 

Figure 6.   A Schematic of 100µm thick Al 1100 (Not to Scale) wrapped around a 
non-conducting Quartz block.  
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The armature test piece was then placed between two rail samples. The test pieces 

were placed in a manner such that the aluminum strip overlapped one of the copper rails 

on each silicon sample as depicted in Figure 7. The rails sandwiched the aluminum on the 

top and bottom of the quartz and held the test piece together via a compression clamp. 

The clamp used was an office supply binder clip from which the paint was stripped down 

to expose its steel core. The clips gave substantial compression force at room 

temperature. It was seen that after each experiment the clips became weakened because 

of the heat treatment. The clips still maintained adequate compressive force to maintain 

contact, but it was reduced and the clips could be used only once. 

 

Figure 7.   A schematic of the railgun static model setup. The Al 1100 foil was 
overlayed and pressed against the etched copper strips.  

 

The Agilent E3632A power supply was connected to the test sample via the 

electrical feedthrough on the vacuum furnace end cap. Inside the furnace the feedthrough 

was connected to copper wires with high temperature insulation, which was rated to an 

operating temperature of 450o C. Final operating temperatures at the middle of the 
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furnace would exceed the allowable 450o C capacity of the insulated wires. To alleviate 

the concern of scorching the insulation and damaging the samples the wires were cut 

before reaching the heated zone and attached to bare copper wires. To prevent the copper 

wires from touching high temperature ceramic thermocouple insulators were used to 

insulate the wire. These insulators were rated to 1950o C and were rated for use in 

vacuum.  

 The ends of the copper wires were affixed to pure copper alligator clips with 

smooth clamps to prevent damage to the test sample and maximize contact area. The 

clamping power of the spring inside the alligator clip became reduced at the high 

temperatures it was subjected to. To help maintain the clamping power screws were 

placed in the alligator clips to reinforce the clamps.  

3. Test Procedure 

 Once the test specimen was assembled it was placed inside the vacuum furnace. 

The system was washed thoroughly with the Ar/H2 gas and then sealed. The vacuum 

system was activated and time was given for the vacuum pressure to stabilize. Vacuum 

pressures would stabilize at approximately 4x10-4 torr in about 15 minutes. Once a stable 

vacuum was achieved the furnace was heated at 10o C per minute so as to not thermally 

shock any components. The furnace was set to 500o C which resulted in a measured 

internal tube temperature of 475o C. Once the temperature had stabilized the power was 

applied, as depicted in Figure 8, and data recording of the voltage and current was started. 

 A constant DC current of 4Amperes was applied to the test sample for a 

predetermined duration and the associated voltage was measured as a function of time. At 

the end of the experiment, the power was removed and furnace was turned off. Once the 

furnace had cooled sufficiently the vacuum pressure was relieved and test sample was 

removed for analysis.  
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Figure 8.    Schematic of Test Sample with Power Applied 

 
 

4. Characterization Methods (Optical, SEM, EDS) 

 Following the completion of the experiment, initial observations of the test 

sample were conducted optically. Obvious damage to the armature and rails was noted 

and any evidence of oxidation of the rails and copper wires was searched for. The sample 

was then observed under the stereomicroscope for further examination before being 

disassembled. The samples were photographed and labeled. 

 The next step in analysis came from observations in the Scanning Electron 

Microscope (SEM). The SEM allowed high magnification pictures to be taken and had 

good contrast in topography of the sample. In addition to the topographical observations, 

the microstructure was also observed in the SEM.  

 Further analysis was conducted using the Energy Dispersive Spectrometer (EDS); 

in order quantify the composition percentage of each element at specific points to 

understand the interaction of the metals in the system. 
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V. RESULTS AND DISCUSSION 

A. TEST RESULTS    

 Four tests were conducted with an initial internal tube temperature of 475o C and 

an applied current of 4 amperes. The dimensions of the armature with a thickness of 76 

microns and the copper rail width of 1mm gave a cross sectional area of 7.62x10-4 cm2. 

This gave a current density through the armature of 5.25x103 A/cm2. This current density 

matched well with other railgun experiments which achieved current densities of 4.8x103 

A/cm2 in the skin layer.  The current density was at the low end of the spectrum and 

significant electromigration by “electron wind” forces was not likely. The tests were 

conducted four different times: (1) 60 hours, (2) one hour, (3) 15 minutes and (4) two 

minutes. Since the furnace was sealed and there were no viewports it was not possible to 

see any visual changes to the test sample while the test was being conducted. The only 

observations which could be made during the test were the in situ changes in voltage. The 

voltmeter was programmed with the computer to record every 30 seconds for the 60-

hour, one-hour and 15-minute test. For the two-minute test, measurements were recorded 

every second. 

1. 60-Hour Test 

 The first test was conducted for a duration of 60 hours. This test sample had the 

aluminum foil covering the entire width of the substrate. This was a practice that was 

modified in later tests. The initial temperature of the tube furnace was 475o C and the 

current was set to 4 amperes. The voltmeter recorded a large jump in the voltage at the 

beginning of the test reaching a peak of 7.54 volts before falling to a low point of 3.57 

volts about 30 minutes in to the test. From that point the voltage oscillated, but increased 

steadily until the end of the test where a voltage of 7.72 volts was recorded at 65 hours as 

shown in Figure 9. After this point the contact was lost and the data recording stopped. It 

was observed that the alligator clip springs became weakened due to the heat treatment 

and failed.  
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Figure 9.   Voltage and Current vs. Time for 60-hr test 

 
 

Observation of the sample once removed from the furnace revealed that the 

aluminum armature had been severely damaged and fused with the copper rails and 

silicon substrate. Also observed was a flow of aluminum along the rail towards the 

negative terminal, see Figure 10. The flow of molten aluminum was confined to the 

copper rail and was not spread over the entire substrate, an indication that 

electromigration had likely occurred. It was also observed that the aluminum fused with 

the substrate of the entire contact area and not just where the current passed through. The 

fusing was due to the joule heating which must have raised the temperature of the sample 

to at least the solidus temperature of aluminum alloy.  
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Figure 10.   Rail Damage and aluminum Flow for 60-hr test 

  

The sample was place in the SEM for observation of the microstructure. 

Observations were made of the sample along the rail from the armature to the alligator 

clip at the negative terminal. It was observed that the aluminum had piled up significantly 

in the vicinity of the alligator clip at the cathode which indicates that the aluminum had 

moved to that region quickly and continued to flow resulting in a pile up. Analysis of the 

microstructure at the end of the flow (Region A in Figure 10) showed predominantly 

aluminum microstructure with little alloying, see Figure 11.  

In the region of the rail closer to the armature the layer of aluminum was much 

thinner and was alloyed with the copper from the rail, see Figure 12. This can be 

attributed to the longer duration in which this region had aluminum and copper in 

contact. It is also attributed to the fact that as the bulk of the aluminum moves along the 

rail it leaves only a thin coating of aluminum behind which can more easily mix with the 

copper from the rail. In the two-phase microstructure of Figure 12 (Region B in Figure 

10), EDS analysis shows that the light area (Region 1) consists of both aluminum and 

copper (probably CuAl2), see Figure 13, and that the dark area (Region 2) is primarily 

aluminum (α-solid solution), see Figure 14.  

 Another observation was the removal of the copper from the rail on the anode side 

of the test sample (Region C). This may likely have been the result of the thin layer of 

copper being subjected to surface electromigration and moving towards the armature. 
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Figure 11.   Aluminum pile under the alligator clip in region A of test sample.  

 
 
 

 
Figure 12.   SEM Micrograph of the two-phase Al/Cu microstructure (Region B) 

between the Armature and Alligator Clip on the Cathode side rail. The Dark 
Regions were mostly pure Aluminum. Light Regions were well alloyed Al/Cu. 
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Figure 13.   EDS Analysis of light area (Region 1) in Figure 12. Results show well 

alloyed Copper and Aluminum.  
 

 
Figure 14.   EDS Analysis of dark area (Region 2) in Figure 12. Results show the 

region is mostly pure Aluminum.  
 

2. One-Hour Test 

 Based on the massive aluminum transport seen during the 60-hour test a second 

test was conducted for only one hour. The goal was to conduct the test for a duration that 

would show less significant damage and transport than was observed in the 60-hour test. 

Another modification was to reduce the width of the aluminum foil strip to be just 
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slightly wider than the copper rail. The intention of reducing the foil width was to 

maximize the current density through the aluminum armature and to observe the 

secondary copper rail when not in contact with the armature.  

 Test parameters were carefully noted for this test. Initial tube temperature was 

475o C. The vacuum pressure was 3x10-4 torr and current was set to maintain 4 amperes.   

 The results of this test confirmed what was seen in the previous test and provided 

further insight in to the reactions seen previously. As shown in Figure 15, significant 

aluminum transport was observed towards the cathode. The aluminum from the armature 

that was in contact with the rail was fused and badly damaged, and the copper rail in 

contact with the aluminum was severely damaged, possibly because of arcing as well as 

alloying with liquid aluminum. The copper rail that was not in contact with the aluminum 

showed minor discoloration; the cause of this damage is unclear.  

 

 
Figure 15.   Test Sample after one-hour test. Less damage was observed to the copper 

on the anode side. Significant aluminum transport was still observed towards 
cathode.  

 
 The sample was observed in the SEM to characterize the microstructure and 

compare it with the previous test. It was observed that although the aluminum was 

transported all the way to the alligator clip at the cathode end of the rail the layer was 

thinner than on the 60-hour sample and a smaller pile was observed at the clip. Several 
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areas, outlined in Figure 16, were further analyzed with EDS to assess the composition. 

Also observed were cracks in the metal coating on the rail near the cathode end (Region 

A in Figure 16) as shown in Figure 17. The cracks appear to be the result thermal stress 

on the metal as it was cooled.  

 

 
  

Figure 16.   Montage of SEM micrographs of the cathode rail from the one-hour test.  
Solid outlined areas indicate further analysis was conducted with EDS. 

 

 
Figure 17.   SEM observation of the one-hour test sample (Region A in Figure 16). 

Sample shows significant alloying, but also damage from cracking. 
 
 EDS analysis of the rail in the region next to the cathode alligator clip showed 

well alloyed copper and aluminum on the rail. The region showed an alloy similar to that 

observed in the middle of the rail in the 60-hour test. The dark area (Region 1 in Figure 

17) was analyzed with EDS to be primarily silicon shown in Figure 18. This finding 

indicates that the copper coating has been moved in these regions by some form of 

transportation and that the coating in the surrounding area must be thin. The removal of 

the copper is likely due to the alloying with the aluminum in the surrounding area. The 
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thin nature of the surrounding area indicates that shorter duration of this test prevented a 

massive pile up of aluminum at the cathode terminal.    

 The gray area (Region 2 in Figure 17) was analyzed with EDS and was 

determined to be the well alloyed region of copper and aluminum. It was calculated that 

copper made up 46.21% of the composition and aluminum made up 41.67% of the 

composition, seen in Figure 19. The white dots (Region 3 in Figure 17) were also 

analyzed and the composition was found to be primarily tantalum nitride at 55.52% of the 

composition. The other large component of these areas was silicon at 22.07%, followed 

by copper at 9.47% and aluminum at 7.05%, see Figure 20. It appears these white dots 

are the consolidation tantalum nitride mixed with minor traces of copper and aluminum. 

The silicon detected by EDS is possibly attributed to the thinness of the layer, indicating 

that most of the copper has moved away from this region, and the penetration of the EDS 

beam in to the substrate.   

 

 
Figure 18.   EDS analysis of the dark area (Region 1) seen in Figure 17. The region is 

completely Silicon (84.94%), 15.06% O, and indicates the removal of the 
copper coating. Also verifies the thinness of the metal covering the rail in 

surrounding area.  
 



33 

 
Figure 19.   EDS analysis of the gray region (Region 2)seen in Figure 17. The region is 

a well alloyed containing 46.21% Copper and 41.67% Aluminum. 
 

 

 
Figure 20.   EDS analysis of the white dots (Region 3) seen in Figure 17. The region is 

primarily a consolidation of Tantalum Nitride (55.52%) on the Silicon 
(22.07%) substrate. Traces of Aluminum (7.05%) and Copper (9.47%) are 

mixed in to these areas. 
 

 
 The region in the middle area of Figure 16 (Region B) was analyzed further after 

seeing interesting cracking formations in the region, see Figure 21. Large area EDS 

analysis of two areas noted in Figure 21 was conducted. The overall outline of the 

original copper rail is seen in Figure 21 and a layer of alloy appears to be on top of the 

original layer. First EDS analysis was conducted on the bottom layer (Region 1) and it 

was surprisingly composed almost entirely of silicon, see Figure 22. This indicates that 

the copper from the rail in this region had been completely removed and transported.  
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Figure 21.   Middle area (Region B in Figure 16) of cathode rail region from one-hour 

test.  Regions outlined in red were further analyzed with EDS. 
 
 

 
Figure 22.   EDA analysis of bottom layer (Region 1) seen in Figure 21, indicated the 

smaller red boxed. The region is composed entirely of Silicon. 
 
 
 The second area of analysis from Figure 21, (Region 2), was the top layer that 

appeared to be a well alloyed microstructure, see Figure 23. The composition of this area 

was 54.22% aluminum and 21.67% copper, see Figure 24. This result again indicates that 

the aluminum and copper will diffuse in to each other and form an alloy.   
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Figure 23.   SEM micrograph of top layer (Region 2) seen in Figure 21.   

 
 

 
Figure 24.   EDS analysis of the top layer (Region 2) seen in Figure 20. The region is 

an alloy containing 54.22% Aluminum and 21.67%% Copper. 
 

 The final area that was examined on this test sample was in the region close to the 

armature on the cathode rail (Region C), indicated in Figure 16. This region would have 

had the largest amount of aluminum flow over it and had the longest time period to alloy 

with copper from the rail. The microstructure appears similar to that seen in the middle of 

the rail; see Figure 25, indicating that the aluminum flowed over the rail in bulk leaving a 

consistent residual thickness on the rail. The amount that remained is what alloyed with 

the copper from the rail. EDS analysis was conducted on both the dark and light areas 
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seen in Figure 25 to determine its composition. The dark area (Region 1) was primarily 

aluminum with 87.13% of the composition and copper consisting of just 9.72%, see 

Figure 26. The light area (Region 2) however, was well alloyed consisting of 48.04% 

copper and 42.07% aluminum, see Figure 27. 

 Figure 28 shows a plot of the voltage and current measured in the circuit during 

the test. Similar to what was seen in the 60-hour test, see Figure 9, the voltage peaks 

initially and the drops steadily for several minutes at the beginning of the test. Upon 

reaching a low point the voltage slowly increases, indicating an increase in resistance, 

until the test was terminated. Again, it appears that contact resistance is responsible for 

the initial voltage spike. Melting and fusing of the armature and rails improves contact 

and reduces resistance resulting in a drop in voltage until equilibrium is reached. Finally, 

the electromigration and alloying effects begin to take effect and resistance increases for 

the remainder of the test. 

 

 
 

Figure 25.   SEM micrograph of area (Region C) in close proximity to the armature 
on the cathode rail.  
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Figure 26.   EDS analysis of the dark area (Region 1) seen in Figure 25. 

 
 
 

 
Figure 27.   EDS analysis of the light area (Region 2) seen in Figure 25. The region is 

an alloy containing 42.07% Aluminum and 48.04%% Copper. 
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Figure 28.   Voltage and Current versus time for one-hour test. 

 
 
 

3. 15-Minute Test 

 The third test conducted was for a duration of 15 minutes. This was done in an 

attempt to further reduce the amount of metal transport and alloying of copper and 

aluminum. The parameters for the test were the same as the one-hour test. The furnace 

was set to an initial internal temperature of 475o C, the vacuum pressure was 3x10-4 torr 

and 4 amperes of current were run through the sample. Again the aluminum foil was cut 

so as to not cover the entire substrate and thus leave the secondary rail untouched.  

 In Figure 29 the aluminum flow, as seen in the previous tests, is present. Also 

observed was a cooled molten ball of aluminum on the anode rail and in contact with the 

armature. Observation of this region reveals that the aluminum appears to have melted 
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due to Joule heating and flowed on to the anode rail due to gravity. It is expected that this 

metal would have been transported to the cathode side given adequate time with current 

applied. It was also observed that the rails that were not in contact with the aluminum 

suffered no damage confirming that the Joule heating of the sample was not elevating the 

sample to the melting point of copper. 

 

 
 

Figure 29.   The 15 minute test sample showing the flow of aluminum along the 
cathode rail. Melted aluminum in on the anode rail in a molten ball, but does 

not appear to have been transported. 
 
 The rails from third test were placed in the SEM for observation. Two areas were 

evaluated with EDS for composition analysis. These areas are outlined in red boxes in 

Figure 30 and are similar in relative position as the regions analyzed in the one- hour test.  

 

 

 
Figure 30.   SEM micrograph of the cathode rail from the 15 minute test. Solid 

outlined areas indicate further analysis was conducted with EDS. 
 
 The area closest to the alligator clip (Region A in Figure 30) on the cathode rail 

would have the least time exposure to the aluminum since it is the furthest area from the 

armature and this was the shortest test. It was observed that the aluminum was still 
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transported across the entire rail in the short time period. The microstructure, however, 

was different than seen previously, see Figure 31. The microstructure had a feather, or 

frostlike, appearance which indicated that perhaps this section was not well alloyed yet. 

EDS analysis was conducted on the region and the dark areas (Region 1 in Figure 31) 

were observed to be predominately silicon, composing 94.56% of the area, see Figure 32. 

The light areas (Region 2 in Figure 31) were composed of 53.52% copper and 42.78% 

aluminum indicating the area is well alloyed, see Figure 33. The combination of these 

observations indicates that the copper coating on the silicon was transported and mixed 

with the aluminum in the alloy regions. Observation of Figure 31 shows that the 

conducting alloy is broken and does not present a clean path for the current to flow. This 

is a likely cause of increasing resistivity of the rail and results in the rise in voltage, see 

Figure 34, needed to supply the steady 4 amperes programmed in to the power supply.  

 

 
Figure 31.   SEM micrograph of the cathode rail section near the alligator clip. New 

lines and featherlike microstructure seen here. 
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Figure 32.   EDS analysis of the dark area (Region 1) in Figure 31 on the cathode rail 

near the alligator clip. The region is predominantly Silicon. 
 
 

 
Figure 33.   EDS analysis of the light area (Region 2) in Figure 31 on the cathode rail 

near the alligator clip.  The region is an alloy containing 42.78% Aluminum 
and 53.52%% Copper. 
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Figure 34.   Voltage and Current versus time for 15 minute test. 

 
 

4. Two-Minute Test 

 The final test was conducted for a period of 130 seconds. The duration of this test 

was not predetermined; instead it was determined by watching the value of the voltage 

during the test. The voltage peak was observed and the test was allowed to continue until 

the low point of voltage was reached. Once the voltage began to increase the test was 

terminated, see Figure 35.  



43 

 
Figure 35.   Voltage and Current versus time for two minute test. 

 

 The two minute test proved to be very successful and showed results not observed 

in the previous tests. The primary difference for this test was that the electromigration 

transport of the aluminum did not reach the alligator clip on the cathode terminal. This 

allowed measurement of the actual distance the aluminum covered during the test, see 

Figure 36.  The measured distance of aluminum coverage was 5.14 mm. This meant that 

on average the aluminum movement was approximately 0.039 mm/sec.  

 Also observed from this test were the characteristics of the aluminum at the early 

stages of melting and movement. Unlike previous test the aluminum of the armature 

retained its shiny luster appearance. Previously that aluminum had been blacked and 

brittle, possibly due to a reaction with silicon from the substrate. The condition of the 

aluminum allowed closer observation of the armature bridge between the two rails. The 
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thickness of the bridge was measured at approximately 400 microns. This meant that the 

thickness of the bridge increased during the duration of the test. This increase must have 

resulted from the movement of molten aluminum from the region compressed between 

the rail and quartz to the bridge.    

 Analysis of the microstructure from this test sample also showed new 

characteristics. The characteristics of the metal at the leading edge region of the flow 

were significantly different from what had been seen before. Figure 37 shows the large 

gray areas (Region 1) that form at the lead of the flow. EDS analysis shows the 

composition of the large gray areas of this flow to be 59.17% aluminum and 40.83% 

copper, see Figure 38. The areas (Region 2) in between the large gray areas were similar 

in microstructure to the well alloyed areas seen in previous tests. It can be concluded that 

the large gray areas are in the initial stages of the alloying process and are largely a 

coating of aluminum covering the copper rail.  

 Figure 39 shows the microstucture of the cathode rail near the armature. It has 

already become a well developed alloy in less than two minutes. There are also some 

feather-like characteristics in the figure which are similar to those seen near the cathode 

alligator clip in Figure 31 during the 15 minute test. The feather-like characteristics are 

not present in the other test which represents that this is also a transitory characteristic of 

the microstructure which is not fully developed like those seen in Figure 23 and 25. 
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Figure 36.   The two-minute test sample showing the flow of aluminum along the 

cathode rail. The aluminum of the armature has melted and fused with the 
substrate, but is largely undamaged.  

 
 
 

 
Figure 37.   SEM Micrograph of the leading edge of the flow (Region A in Figure 36) 

on the cathode rail. 
 
 



46 

 
Figure 38.   EDS analysis of the large gray areas (Rregion 1) seen in Figure 37. 

Analysis shows the region is 59.17% Aluminum and 40.83% Copper. 
 

 
Figure 39.   SEM micrograph of the rail in the two-minute test near the armature. 

The sample has already become a well developed alloy. 

B. DISCUSSION OF METAL FLOW AND MICROSTRUCTURE 

The flow of aluminum was much more significant and much quicker than 

originally expected. Based on the background study of surface and liquid metal 

electromigration a mass transport of aluminum towards the cathode would be expected at 

the low current density and high temperatures in these tests. However, the result was 

more dramatic than expected. The Joule heating from the applied current raised the 

temperature of the test sample above the melting point of aluminum almost 
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instantaneously. This is most likely due to the high contact resistance of the copper-

aluminum interface. The molten aluminum then quickly began migrating along the 

cathode rail in the direction of the current flow.  

The rate of flow was so much larger than expected that it was not until the two 

minute test that the flow was stopped before reaching the alligator clip at the cathode 

terminal. Being able to analyze the leading edge of the flow was crucial to understanding 

the development of alloying observed in all the samples. Figure 37 shows that even at the 

leading edge of the flow, alloying between copper and aluminum, which was observed 

after large durations in the other tests, were already starting to form.  The microstructure 

development includes the formation of feather-like formations, see Figure 39, and then 

the fully developed alloy, see Figure 25.  

 The rapid transport and alloy development of the test samples seen in this testing 

has serious implications if they carry over to the full scale railgun. The degradation of the 

armature is significant and begins almost instantaneously. The melting point of aluminum 

is quickly reached once current is applied and the transport of molten aluminum begins 

immediately. The degradation of the armature causes increased resistance, poor 

performance and severe damage to the copper rails. 

 The alloying of aluminum with the copper has not been studied in detail for full 

size railguns, except by Persad [33] who used aluminum rails and a copper armature in a 

laboratory railgun. In his research, Persad observed solidified droplets of CuAl2 which 

had formed at the copper-aluminum interface. The molten droplets were then jetted out 

behind the armature as it moved along the rail. The characteristics of the newly formed 

CuAl2 are that of an alloy which is harder and more resistive than pure metals. This alloy, 

which is similar to what has been seen in this study, will certainly cause severe wear on 

subsequent armature shots and will reduce the efficiency of the electrical circuit, resulting 

in poor performance of the projectile. Although other methods in which molten 

aluminum can form and come in contact with the copper rails has been discussed earlier, 

at least some of this alloying is quite likely due to the electromigration effects observed 

here.  
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C. DISCUSSION OF VOLTAGE AND CURRENT OBSERVATIONS 

 The current in the power supply was set to maintain 4 amperes for the duration of 

the experiments. This forced the power supply to alter the voltage level to maintain 

desired current. In all of the tests the voltage spiked upon initiation and then quickly 

decreased until a low point was reached. This indicates that resistance initially peaks and 

then decreases steadily for several minutes. The voltage then began a slow and steady 

increase until the test was terminated indicating an increasing resistance in the circuit. 

The resistivity is due to several factors; the interaction between the aluminum armature 

and copper rails, and the alloying of the copper and aluminum on the rails. Neither of 

these can be monitored directly during the experiment. However, several conclusions 

could be drawn about the resistance changes after observing the test samples upon 

removal from the furnace.  

 It appeared that the initial spike in voltage was caused by the arcing and high 

contact resistance between the armature and rails after test initiation. The high resistance 

in the test sample quickly raised the temperature of the sample via Joule heating and the 

aluminum began to melt. Once the melting occurred the molten aluminum provided 

intimate contact with the copper rails, decreasing the contact resistance between the two 

pieces. Also, as aluminum from the long “mounting” sections of the armature melted they 

were forced out by the pressure from the mounting clips. Some of this molten aluminum 

was forced on to the bridge joining the two rails. This increased the cross sectional area 

which decreased the resistance in the circuit. This process carried on until equilibrium 

was reached with the aluminum being transported along the rail via electromigration. At 

this point the aluminum supply became less than the amount being transported away and 

the resistance began to slowly increase again, as seen in all the voltage versus time 

figures. 

 Additionally once the aluminum came in to contact with the copper on the rails 

they began to form an alloy. The resistance of the copper/aluminum alloy is greater than 

that of pure copper and as the alloying increased the resistance increased as well. The 

alloying process also stripped the copper away from the substrate in some areas, see 

Figure 31 and 32. The removal of the copper decreased the direct path for the current to 

flow also increasing resistivity.  
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VI. CONCLUSIONS AND RECOMMENDATIONS 

 Observations of surface electromigration of liquid aluminum were made on a 

scaled down static railgun model developed for this study. The development of this 

experimental method for investigating damage of the aluminum armature due to 

electromigration was successful. The current in the armature reached a density of 5x103 

A/cm2. The aluminum from the armature was found to quickly reach its melting point via 

Joule heating due to high contact resistance at the armature-rail contact. Once liquid 

aluminum was formed, it rapidly migrated along the copper rail towards the cathode (i.e. 

negative) terminal. Initial indications are that the molten aluminum flowed along the rail 

at a minimum velocity of 0.04 mm /sec at the applied current of 4 A. 

 Resistance in the circuit initially spikes due to arcing at the aluminum-copper 

contact after the current is applied. The melting of the aluminum reduces the contact 

resistance and the resistance of the circuit reduces for a short period. Once the aluminum 

begins to be transported along the rail towards the cathode terminal, it alloys with the 

copper and the resistance steadily increases in the circuit. 

 This transport of liquid aluminum along the copper rails was attributed to 

electromigration of the liquid under the influence of the direct electric field. This 

direction of electromigration of the liquid is opposite to the direction of conventional 

electromigration solids, where matter moves in the direction of electron flow under the 

influence of the electron wind force. 

 Testing for this study was conducted under vacuum. It is reasonable to expect that 

the environmental circumstances acting on the armature of an actual railgun will be much 

more severe. There were no dynamic contact pressure or friction forces that needed to be 

taken in to account in this test. Higher current density, dynamic contact resistance, 

friction and current crowding are to be expected on the full scale railgun. Therefore the 

possible effects of electromigration on the development of a sustainable railgun system 

require serious consideration.  
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Future study should be undertaken to further understand the kinetics of the liquid 

aluminum. The kinetics, once fully understood, can then be scaled to the size of current 

railgun prototypes to model damage potential. The damage on current railgun prototypes 

can be observed and correlated to the scaled damage seen in this study. If the results are 

matched, then electromigration is a significant challenge and steps can be taken to 

mitigate the problem. 
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