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ABSTRACT 

The concept of employing ground swarm robotics to accomplish tasks has been 

proposed for future use in humanitarian de-mining, plume monitoring, searching for 

survivors in a disaster site, and other hazardous activities.  More importantly in the 

military context, with the development of advanced explosive detectors, swarm robotics 

with autonomous search and detection capability could potentially address the improvised 

explosive device (IED) problem faced by foot patrols, and aid in the search for hidden 

ammunition caches and weapons of mass destruction (WMDs).  The intent of this 

research is to leverage on agent based simulation to model a ground robotic swarm on a 

search and detection mission in a semi-urban environment rigged with stationary IEDs.  

Efficient design of experiment (DOE) techniques and data farming are engaged to help 

identify controllable factors and capabilities that have the most impact on overall 

effectiveness. The focus of this thesis is to explore agent based simulation applied to 

swarm robotics; the technological and algorithmic aspects are not delved on.  Results 

from the simulations provide several insights on the impact of both decision and noise 

factors on the performance of the swarm.  Incorporation of virtual pheromones as a 

shared memory map is modeled as an additional capability that is found to enhance the 

robustness and reliability of the swarm. 
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EXECUTIVE SUMMARY 

The concept of employing ground swarm robotics to accomplish tasks has been 

proposed for future use in humanitarian de-mining, plume monitoring, searching for 

survivors in a disaster site, and other hazardous activities.  More importantly in the 

military context and with the development of advanced explosive detectors, swarm 

robotics with autonomous search and detection capability could potentially address the 

improvised explosive device problem faced by foot patrols, and aid in the search for 

hidden ammunition caches and weapons of mass destruction.   

Swarm robotics can be defined as the study of how a swarm of relatively simple 

physically embodied agents can be constructed to collectively accomplish tasks that are 

beyond the capabilities of a single one (Sahin, 2005).  The origins of swarm robotics can 

be traced back to nature, where ant and termite colonies have demonstrated the ability to 

accomplish complex tasks by means of their collective emergent behavior while 

following simple sets of rules.  Swarm robots have the characteristics of being simplistic 

and low cost, so that they could be manufactured and deployed in mass without being 

overly concerned about their survivability.  

The intent of this research is to leverage on agent based simulation (specifically, 

Map-Aware Non-uniform Automata, or MANA) to model a ground robotic swarm on a 

search and detection mission in a semi-urban environment rigged with stationary IEDs.  

The technological aspects are not delved on in this thesis.  Primarily, this research 

explores the following. 

• How can agent based simulation be used to model a ground robotic swarm 

that searches and detects IEDs? 

• What are the capabilities and characteristics of a ground robotic swarm that 

are critical to a search and detect mission? 

The research in this thesis has the following objective in mind – to provide 

insights to swarm robotic engineers and developers on where they should invest their 

efforts on in the development of swarm robotics to be used in a military scenario. 



 xxii

Efficient DOE techniques and data farming are engaged to help identify 

controllable factors and capabilities that have the most impact on overall effectiveness.  

Results from the simulations provide several insights on the impact of both decision and 

noise factors on the performance of the swarm.  The findings are summarized as follows: 

• The number of robots, speed, and sensor (detector) range are the three main 

factors in determining the performance of the swarm. 

• Possible quadratic effects are observed in number of robots, speed, and 

detector capability (time on target requirement). 

• The results strongly suggest that a minimum threshold is required for the 

number of robots and speed.  These thresholds are found to be realistic levels 

from the perspective of currently available technologies. 

• Drastic failures are attributed to low speed settings. 

The model is then extended to incorporate the capability of using virtual 

pheromones as a shared memory map that serves to enhance the spread and coverage of 

the robots (Wagner, 1999).  Results from the simulations suggest significant 

improvement in performance.  The proportion of mission completions increased from 

approximately 0.74 to 0.83, a 12% improvement over all scenarios in the experiment.  

More importantly it is found that virtual pheromones enhance the robustness and 

reliability of the swarm, making it more predictable with fewer dominant terms. 

As for the modeling, there are certainly limitations to the capturing of all aspects 

of swarm robots and its technicalities in the simulation.  The “weakest link” of the 

simulation seems to be modeling the movement of robots and emergent behavior of 

continuous coverage and spread, due to MANA’s hard-coded movement algorithm.  This 

can only be approximated in MANA with the presence of some artificiality.  There are 

fewer difficulties in the modeling of robot capabilities, which are then varied to 

investigate their impact on the effectiveness of the swarm.  There are currently no known 

prior efforts in using MANA to investigate swarm robotics, so this research also serves as 

an attempt to validate such an approach.   



 xxiii 

It is worthwhile to highlight that the insights from this research are applicable 

largely to a robot swarm with this type of algorithmic setup and detection routine.  It is 

acknowledged by the author that there are many possible rules and routines that a swarm 

may adopt, but it is hoped that the one captured in this research is a general representation 

of a ground robotic swarm that is used for a search and detect mission.    

In a nutshell, agent based simulation is found to have huge potential as a means to 

investigate swarm robotics and obtain insights on the impact of various factors on the 

overall effectiveness.  Swarm robots produce much uncertainty in terms of its emergent 

behavior from multiple dynamic interactions, which is what agent based simulations were 

designed to examine.  With the incorporation of an efficient DOE and data farming 

methodologies, roboticists and engineers should consider leveraging on this tool to assist 

in the development and progress of swarm robots to be employed in the real world.  
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I. INTRODUCTION  

A. PROBLEM STATEMENT 

U.S. and coalition forces involved in the ongoing military operations in Iraq and 

Afghanistan have had their hands full in dealing with roadside bombings and, in general, 

Improvised Explosive Devices (IEDs).  Since the commencement of the offensive on Iraq 

in Mar 2003, there have been over 2,600 U.S. troop fatalities
1
, of which approximately 

one-third are classified as IED fatalities
 
(http://icasualties.org).  In response, tremendous 

efforts have been invested by military, academic and commercial research organizations 

alike, to harness the latest technology available to come up with a viable solution to 

counter the IED problem.   

For troops conducting foot patrols and door-to-door “flushing” operations, the 

problem lies in the inability to detect the presence or the location of IEDs in the vicinity 

of their operations, until a trooper stumbles onto one, or gets close enough that the IED is 

remotely detonated by the adversary.  To solve the IED problem, it is vital that we equip 

our ground forces with the capability to search and detect IEDs effectively and efficiently 

without being exposed to the risks. 

In general, the search and detect problem is not confined only to IEDs on the 

battlefield. Critical deficiencies exist in the ability to find hidden materials such as 

weapon caches, ammunition and explosives stashes, as well as mines buried 

underground.  The basis of this thesis research is to explore a concept that can be 

developed to carry out search and detection in both wartime and peacetime, addressing 

the problem of uncovering the location of such targets as shown in Figure 1.  For 

simplicity, the search and detection problem in this thesis will be discussed in the context 

of IEDs, but the reader should bear in mind that this is an overarching concept that can be 

extended to searching for other targets that are similar in type or class. 

                                                 
1
 As of Sep 2006 
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Figure 1.   Munitions rigged for an IED discovered by Iraqi police in Baghdad, Nov 

2005 (http://en.wikipedia.org/wiki/Improvised_explosive_device) 

The concept explored in this thesis for search and detection of IEDs delves into 

the field of swarm robotics, i.e., a multiple robot system made up of small and simple 

robotic platforms mounted with “sniff-type” detectors.  Imagine the deployment of a 

swarm of low-cost autonomous ground robots out in the field that are able to detect IEDs 

and transmit the suspected location to the commander prior to the deployment of his 

troops.  This could have a significant impact in reducing IED fatalities. 

B. BACKGROUND 

Swarm robotics can be defined as the study of how a swarm of relatively simple 

physically embodied agents can be constructed to collectively accomplish tasks that are 

beyond the capabilities of a single one (Sahin, 2005).  In reality, the use of swarm 

robotics to perform military tasks is only a concept in the research and development 

(R&D) stage.  However, there have been many efforts and proofs of concept done on 

various aspects that will play a key role in the realization of swarm robotics being used 

on the battlefield, especially in the domains of mobile robots, autonomous cooperative 

robots, sensors and explosive detectors.  These will be laid out further in Chapter II.   

Swarm robotics has attracted much attention because of the numerous key 

advantages it brings, such as simplicity, autonomy, redundancy and ability to produce a 

desired emergent behavior without the need for a “human in the loop.”  Researchers and 

scientists, such as James McLurkin
 
of MIT and iRobot Corporation, have successfully 
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experimented with hundreds of small swarm robotic vehicles that could produce low-

level emergent behaviors such as cluster, disperse etc., by pre-programming these entities 

to merely follow a few simple rules (http://people.csail.mit.edu/jamesm/swarm.php).  On 

the detection front, leading R&D corporation ICx Nomadics
 
(www.icxt.com) has recently 

developed a sub-3lb device that is able to detect explosive vapor and particles “as low as 

a few femtograms.
2
  They have compared this capability to dogs.   

Assuming that the various fields of technology could advance to a stage where 

swarm robots mounted with miniaturized navigational sensors and explosive detectors 

could traverse across real-life terrain autonomously, a swarm be employed to overcome 

the IED problem, which is expected to persist for many years to come with no imminent 

solution in sight.  Nevertheless, if the advancement of these respective fields eventually 

does take longer than the persistence of the IED problem, search and detection using 

swarm robotics are still be applicable to many other scenarios such as humanitarian de-

mining (Cassinis, 1998) and searching for survivors in a disaster site
 
(Stormont, 2003). 

C. MOTIVATION AND OBJECTIVE OF RESEARCH 

Undoubtedly, the realization of such an idea will not occur without the 

development and integration of the various fields of technology.  However, whether the 

different aspects attribute equally in terms of their importance to such a concept is an 

interesting question that, if answered, could save efforts and expedite the realization 

process.  For example, a faster robot will provide good coverage in a shorter time, but if 

the detector requires a long time-on-target requirement, then the effectiveness will be 

hampered by the fact that the robot moves too fast and thus misses targets.  In another 

instance, the lack of speed or mobility of a single robot may be compensated by 

increasing the number of robots, or vice versa.  In fact, one factor of the robot or detector 

may enhance the overall effectiveness of the search much more than another factor, while 

some factors may not contribute significantly beyond a certain level; cases where “more 

is not more,” or “more is not better.”  Such insights can be extremely useful to the 

developers and shorten the process needed to eventually produce such a capability. 

                                                 
2
 A femtogram is equivalent to a quadrillionth of a gram or 10

-15
g 



 4 

Thus, it is imperative that exploration with modeling and simulation proceeds 

alongside the technological development, to provide insights on what the critical decision 

factors (particularly technological capabilities), noise factors and other environmental 

factors are, in the employment of ground swarm robotics to search and detect IEDs.  This 

is the primary goal of the thesis research. 

On a different note, agent based simulation has become an increasingly popular 

tool to investigate various battlefield scenarios and military skirmishes.  However, agent 

based simulations, particularly with MANA (Map-Aware Non-uniform Automata 

v3.2.1), have not been utilized as much to model autonomous robots or swarm robotics.  

The basis of swarm robotics lies in its complex adaptivity to produce a collective 

emergent behavior, which is precisely what Cellular Automation models like MANA 

were built to model and analyze, i.e., uncertain outcomes via interaction of agents 

(MANA Users Manual v3.0, Jul 2004).  A brief survey of the literature reveals that 

simulations that have been used to model swarm robotics include Player/Stage 

(developed at the USC Robotics Research Lab and used by Batalin and Sukhatme (2002), 

Morlok and Gini
 
(2004) and Rekleitis et al.

 
(2004), MARSS (developed as part of Alistair 

Dickie’s NPS thesis) and Extend (primarily a process simulation package, used by 

Dudenhoeffer and Jones (2000)
 
from INEEL to model multi robot systems).  Screen shots 

from Player/Stage and MARSS are provided in Figure 2. While little assessment has been 

documented on the appropriateness and flexibility of these simulation packages for the 

purpose of swarm robotics, it is certainly interesting to see how alternatives like MANA 

(and even Pythagoras
3
) measure up to the calling. 

If indeed MANA has rarely been dedicated to model swarm robotics, then a 

valuable by-product of this research is the supplemental insights on the suitability of 

MANA to model this class of problems.  Without going into the intricacies and dissecting 

the movement algorithms, some discussion and pointers will be put up as part of this 

thesis to provide any follow-on students with the strengths and limitations of modeling 

swarm robotics with MANA. 

                                                 
3
 Pythagoras is an agent based simulation package developed by Northrop Grumman 
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Figure 2.   Simulation packages used to models robot swarms.  Left: Multiple target 

localization problem environment setup by DSO National Laboratories in 

Player/Stage (Picture credited to a DSO National Laboratories report)  Right: A 

3D view from the MARSS software (Dickie, 2002) 

 

D. APPROACH 

In short, agent based simulation is chosen for its fundamental origins in modeling 

entities that produce an emergent behavior, much like the robotic swarm.  Leveraging on 

DOE and data farming methodologies, a thorough analysis can then be performed using 

statistical analyses that will meet the objectives of this thesis research.  

The decision variables of interest are the main robot and detector capabilities, 

specifically the number of robots, sensor range (detector range)
4
, speed of robots, 

detector capability (TOT requirement) and detector reset time.  The noise factors to be 

modeled are repulsion from fellow robots (for spread and coverage), repulsion from 

obstacles (obstacle avoidance) and precision of movement (an approximate 

representation of how much a robot deviates from the intended and supposed moves).  

These factors reflect the basic nature of autonomous robotic movement algorithm 

experimented by Batalin and Sukhatme (2002) as well as those examined by Morlok and 

Gini (2004).  Different levels of terrain difficulty will be incorporated to investigate the 

impact of terrain on swarm effectiveness.  The model is then extended to incorporate the 

usage of virtual pheromones as a shared memory map that strives to enhance the 

coverage and spread of the swarm.  This idea has been experimented and advocated by at 

least three researchers who worked on the autonomous robot coverage problem (Wagner 

et al., 1999; Payton et al., 2004; Sauter et al., 2005).  

                                                 
4
 Sensor range and detector range are used interchangeably in this thesis 
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The scenarios are created in MANA which is an agent based simulation package 

written by New Zealand’s Defense Technology Agency, DTA.  DOE methodology 

(Sanchez, 2005) and a data farming tool (the Tiller provided by Referentia Systems) are 

utilized to set up a DOE to be run automatically on a high performance computer cluster 

in Maui (MHPCC).  Analysis on the results is done using the statistical package, JMP 

(JMP: The Statistical Discovery Software
TM

 v5.1).  In addition, prior to the statistical 

analyses, some data extraction will have to be performed using batch files and scripts.  

E. SCOPE AND THESIS ORGANIZATION 

The goals of this thesis research are mainly to explore the concept of employing 

swarm robotics for search and detection of IEDs and to provide insights on the critical 

factors that influence most on the success of such a concept.  Indeed, the scope will cover 

the attempts at modeling such a scenario, the procedures of the experiments and 

simulation runs, as well as the application of various simulation output analytical tools.  

With regards to identifying and spelling out of the details of the enabling technologies, 

this will be beyond the scope of this thesis.  In addition, it is not the intention of the 

research to define the technological challenges we have at hand, and how such a 

“capability package” can be realized, which the author acknowledges.  Rather, the 

motivation of this thesis lies in the hope that this research can help shorten the process of 

developing such a capability by providing insights such as “what’s important and what’s 

not” and “what’s needed and what’s not.”   

Overall, the thesis is divided into three main portions.  The first portion will touch 

on a literature survey of swarm robotics and other related enabling technologies which 

will form the basis of how the swarm robotic agents are modeled in MANA.  A detailed 

discussion on the scenario to be modeled and the formulation of Measures of 

Effectiveness (MOEs) will be made.  There will be a discussion about how decision and 

noise factors are captured in the model and how accurately or inaccurately they are being 

modeled.  This is all part of the scenario building and modeling. 

The second portion of the thesis will describe how the DOE is set up and the data 

farming procedure.  This will include how the MOEs are extracted from the output files 

generated and imported into the statistical package.  This will be followed by an in-depth 
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data analysis using tools like data plots, curve fitting, regression trees, analysis of 

variance (ANOVA) and other analytical methods. 

The final portion of the thesis will encompass a summary of the limitations and 

conclusions, including the suitability of MANA to model swarm robotics.  This will be 

followed by some proposed future work and possible spin-offs from this thesis research. 

Specifically, the above-mentioned is laid out in as follows. 

Chapter II includes a literature survey on swarm robotics and other related fields 

of enabling technology that form the basis of the agents in the scenario. 

Chapter III describes the scenario in detail and contains a discussion of the MOEs 

we attempt to draw conclusions from.  There will also be a discussion on how various 

aspects of the swarm robots and the detector are being captured in the model, along with 

the qualitative factors of interest.  Most importantly, the assumptions of the model will be 

listed and deliberated. 

Chapter IV will involve the formulation of the DOE and the data farming 

methodology, which is followed by the treatment of output to extract the relevant MOEs. 

In Chapter V, the data are summarized, the analysis tools are introduced, and 

analyses are performed using data plots, curve fitting, regression trees and other 

simulation output analysis methods. 

 In Chapter VI, the overall conclusions from the analysis are presented, including a 

short assessment of the suitability of MANA as a simulation package to model swarm 

robotics.  This chapter also briefly discusses future research opportunities and spin-offs 

based upon the current work done and extensions that could be explored. 
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II. BACKGROUND  

A. ROBOTICS ON THE BATTLEFIELD 

In recent years, robotics has taken a huge step toward getting involved on the 

battlefield.  According to Col. Edward M. Ward, logistics chief of the Robotic Systems 

Joint Project Office (RS JPO) at Redstone Arsenal, U.S. military forces in Afghanistan 

and Iraq were operating over a total of 2,400 combat robots in 2005 

(www.decaturdaily.com, 11 Apr 2006).  The impact of employing robotics in the 

battlefield is irrefutable.  Military robotic platforms are now frequently employed by 

troops to perform highly dangerous tasks such as bomb disposal and site reconnaissance, 

functioning to take the man out of the loop.  Instances have been reported where remote 

controlled robotic platforms used by troops for reconnaissance were blown off by booby 

traps (illustrated in Figure 3), proving the extent of risk mitigation these robots have 

provided (FY2005 JRP Master Plan). 

 

Figure 3.   A robot destroyed by an IED in Iraq. (FY2005 JRP Master Plan) 

A robot employed by the U.S. military that has enjoyed much success is the 

MARCbot (shown in Figure 4), which is now in its fourth variant.  It is used to help 

dismounted soldiers who are performing IED sweeps to remotely interrogate suspicious 

objects.  The MARCbot IV is able to provide remote observation of over 100m and 

traverse across challenging terrain and obstacles.  It was reported in Aug 2005 that over 

300 MARCbot IVs were procured and will be deployed by end of 2006 

(www.estripes.com, 19 Aug 2005).  In an interview with Director of Rapid Equipping 
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Force, Col. Gregory Tubbs (www.defenseindustrydaily.com, 1 Jun 2006), it was revealed 

that there had been a one-week period where MARCbots interrogated 32 potential IEDs, 

of which 26 turned out to be actual IEDs. 

 

Figure 4.   The MARCbot IV in action (www.defenseindustrydaily.com) 

According to the JRP Master Plan, it is acknowledged by the Services that current 

and future unmanned ground systems play a “critical warfighting role.”  Particularly, the 

integration of robotics into the Army is demonstrated in the Future Combat System (FCS) 

as part of its Future Force Warrior (FFW) program as shown in Figure 5.  It is projected 

that unmanned systems, in the form of UAVs and UGVs from man-packable, sub-30lbs 

ones like the SUGV to vehicular platform systems over 30,000lbs like the MULEs, will 

be heavily leveraged upon to address the spectrum of potential threats that any adversary 

pose in tomorrow’s battlefields (www.globalsecurity.org).  

 

Figure 5.   Overview of U.S. Army’s FCS Program 

(www.globalsecurity.org/military/systems/ground/fcs.htm) 
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The Master Plan lays out the four key technological thrusts, namely man-portable 

robots, intelligent tactical behaviors, innovative platforms and autonomous mobility.  In 

addition, an evolution roadmap was charted out as depicted in Figure 6, with plans for 

robot autonomy being featured on the battlefield by 2020.  UGV applications listed in the 

Master Plan include minefield detection and neutralization, reconnaissance of unexploded 

ordnance, and search and rescue operations in peacetime. 

 

Figure 6.   Robotic evolution (FY2005 JRP Master Plan) 

Of closer relevance to the type of robots explored in this thesis is a program in the 

Master Plan to acquire the ThrowBot (the latest variant is known as the COTS-M by 

ReconRobotics).  The ThrowBot (as seen in Figure 7) was conceived at the University of 

Minnesota and is designed to provide additional situational awareness to dismounted 

troops.  It is a small, cylindrical, robotic platform that is designed to be thrown into 

potential areas of interest by soldiers, who then remotely operate it to search the area 

before they enter.  The ThrowBot measures less than six inches in length, weighs under 

12 ounces, and is equipped with a video camera that transmits streaming video to the 

controller.  The first ThrowBots were evaluated in Jun 2004 with several deficiencies 

identified, but since then improvements have been made to it continuously (Kratochavil 

et al., 2003).  Essentially, one could think of swarm robots as being an advanced variant 
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of the ThrowBot, except in greater numbers and capable of self-organized autonomous 

movement and target-detection.   

   

Figure 7.   Left: A recent ThrowBot variant called the COTS-Scout.  Right. A larger 

ThrowBot variant, the “MegaScout” with actuated-wheels (Kratochvil, 2003) 

 

On another front, the Defense Advanced Research Projects Agency (DARPA) has 

actively funded projects in the field of swarm robotics and distributed robotics.  The 

agency sponsored the Centibots Project in 2004 (www.ai.sri.com/centibots), which aimed 

to deploy up to 100 autonomous robots for missions such as urban surveillance, searching 

and tracking.  In 2003, Icosystems was funded to develop ways to carry out missions 

such as minesweeping and search and rescue with minimum intervention from human 

operators using a squad of 120 robots fitted with swarm intelligence software 

(www.newscientist.com, 25 Apr 2003).  Leading swarm roboticist James McLurkin, who 

created a swarm of 100 robots running on swarm algorithms, was similarly sponsored by 

DARPA from 2002-2004.  His work continues to be developed at iRobot as part of the 

R&D program; it is an integral stepping stone to the goal set in the National Defense 

Authorization Act of 2001 to have one-third of the operational ground combat vehicles of 

the U.S. Armed Forces to be unmanned by 2015 (NDA Act, 2001). 

The preceding section is a brief overview of how swarm robotics is slowly 

coming online in several military related initiatives.  The following section will focus on 

the characteristics of swarm robotics and some accompanying technologies that are being 

explored and modeled in this research. 
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B. SWARM ROBOTICS 

Swarm robotics can be defined as the study of how a swarm of relatively simple 

physically embodied agents can be constructed to collectively accomplish tasks that are 

beyond the capabilities of a single one (Sahin, 2005).  The pioneer of the concept of 

integrating robotics with swarm intelligence is Professor Gerardo Beni who, together 

with Professor Jing Wang, coined the term “swarm intelligence” in 1989 (Sahin, 2005; 

Kennedy and Eberhart, 2001).  Beni strived to make a distinction between swarm 

robotics and multiple robot systems, a term which was already in existence.  Where 

multiple robot systems are appropriate whenever several robotic platforms are used to 

achieve a mission, swarm robotics emphasizes self-organization and emergent behavior, 

and focuses on issues of scalability and robustness.  The concept of swarm robotics is 

envisaged to involve the use of huge numbers of low-level robots that are cheap and 

hence dispensable.  Decentralized control strategies are made possible by individual 

robotic platforms having localized sensing abilities and scalable communication means 

(Beni, 2004). 

A set of criteria that distinguishes swarm robotics research was promulgated by 

Erol Sahin during the Swarm Robotics International Workshop in 2004 (Sahin, 2005).  

The following are the main criteria, along with are some examples for better illustration.   

1. Large Number of Robots 

A robotic swarm should consist of large numbers of robots with the population 

size varying anywhere between the order of 10
2
 to 10

<<23
.  James McLurkin, who back in 

2003 invented the world’s smallest self-contained autonomous robot (measuring a little 

over one inch on each side as shown in Figure 8), built a fleet of over 100 of such robots 

to investigate swarm behavior as part of his doctoral research and study for iRobot.  His 

software and programming techniques are scalable to swarms in the 10 to 10,000 range 

(www.irobot.com). 
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Figure 8.   McLurkin’s Swarm Robots 

(http://people.csail.mit.edu/jamesm/swarm.php) 

2. Homogeneous Robots 

The system should consist of one, or relatively few homogeneous groups of 

robots, and that the number of robots in each group should be large.  Where McLurkin’s 

experimental swarm robots “fit the bill,” a good counter-example is that of a robo-soccer 

team found in Robocup competitions (D’Andrea, 2003) as shown in Figure 9.  In general, 

various roles are assigned to sets of robotic platforms in robo-soccer, such as goalkeeper, 

attacker, etc.  In such an environment where many small groups of homogeneous robotic 

platforms exist, it will not be considered as a robotic swarm although they are 

autonomous in operation. 

  

Figure 9.   Robo-soccer platforms built by Cornell University in 2003 

(www.cornell.edu) 

Conversely, in a scenario where a large number of robots are deployed primarily 

to search and detect targets in a hostile environment, there may be a strong motivation to 

deploy two sets of homogenous robots, e.g., one that only does search and detect of 

targets and another that defends against and eliminate hostilities.  This concept would 

probably be deemed more “swarm robotic” in nature than the robo-soccer robots. 
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3. Simple Platforms, Incapable Individually, Capable Cooperatively 

Swarm robotic members should be relatively simple and incapable such that 

accomplishment of tasks requires the cooperation of robots.  Part of a key characteristic 

of swarm robotics is the emergent behavior that results from the individual platforms’ 

conformance to a simple set of overarching rules, which have no direct causal 

relationship to the behavior.   

The inspiration of this originates from nature, where low-level organisms such as 

ants deposit chemicals called pheromones along the path of its movement.  If a swarm of 

ants is put in an environment of multiple alternative routes to the target (more often than 

not, a food source), it turns out that the swarm will eventually figure out the shortest path 

to the target and converge on this path over all alternatives.  This phenomenon happens 

because the pheromone deposit evaporates over time, and the intensity of pheromones 

remains stronger on shorter paths than longer paths if each path starts off being equally 

utilized.  The solitary golden rule of “go to the path that has the highest concentration of 

pheromone” hence causes the ant to converge on using the shortest path over time, a 

remarkable end-product as a result of individual conformity to a simple rule.  The 

scientific term of this process is known as Ant Colony Optimization or ACO (Bonabeau, 

1999) as depicted in Figure 10. 

 

Figure 10.   Time-snapshot illustration of Ant Colony Optimization (Tarasewich, 

2002) 

Recently, a project sponsored by the European Commission called SWARM-

BOTS was headed by swarm intelligence guru Marco Dorigo to study a novel approach 

to the design and implementation of self-organizing and self-assembling artifacts 
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(Dorigo, 2004).  The objective was to construct a number of simple robots with cheap 

components, that together they are able to self-organize and cooperate to adapt to the 

environment.  One of the graphical simulations from the project precisely illustrates the 

idea of “incapability of individual robots achieving a task, but cooperatively they are able 

to”.  This is shown in Figure 11, which depicts the swarm-bots making use of their 

gripper arms to grip onto one another to cross over a gap that is wider than any individual 

platform.  This is a simple concept that requires these robotic entities to merely follow a 

set of rules, i.e., gap detected---form line---grip fellow robot---move towards gap---cross 

gap.  It is not clear in their report if this particular task was achieved by the physical 

platforms that were constructed, but the project team was successful in getting the robots 

to cooperatively transport an object that cannot be moved by a single swarm-bot.      

 

Figure 11.   Swarm-bot project simulation of concept of crossing gaps (Dorigo, 2004) 

 

4. Localized and Limited Sensing and Communication Abilities  

The swarm robots should only have localized and limited sensing and 

communication abilities.  This characteristic can be seen as a by-product of keeping the 

robot entities simple and cheap.  However, with technological advances, there should be 

no limit on the robots’ sensing and communication abilities as it does not increase 

complexity or cost, or eliminate any key characteristic of swarm robotics such as 

scalability.   

There have been some recent successes by Yamauchi in getting man-portable 

UGVs to perform autonomous reconnaissance in urban terrain that could build a grid-

map of its surrounding terrain and feedback to the user in near to real-time as shown in 
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Figure 12 (Yamauchi, 2006; www.robotfrontier.com).  While such technology may lie 

beyond the boundaries of “limited sensing” and overly-complex to be fitted on a swarm 

robot in current context, this may not be true in the future. 

 

Figure 12.   Mapping of exterior and interior of vicinity using pure odometery 

(Yamauchi, 2006) 

An example of the sensing and communication capability of swarm robots is 

taken from the research of Bruemmer and Dudenhoeffer from INEEL, who worked on 

using robotic swarms for spill finding and perimeter formation (Bruemmer, 2002).  Their 

research is in line with the concept of swarm robotics, “deploying and tasking of a real-

world collective of cost-effective, small mobile robots and to escape the limitations of 

centralized control”.  The robotic entities (as shown in Figure 13) in their experiments 

use multi-modal communication architecture including acoustical chirping, infrared (IR) 

and radio frequency (RF) transmissions.  Specifically, each robotic entity is comprised of 

two processors, one for communication and the other for navigation.  The sensors 

equipped include a spill detection sensor, two bump sensors, two whisker-like light 

sensors, four IR sensors for obstacle avoidance, a ring of IR for local communication, a 

piezoelectric speaker and two directional hearing aid microphones.  This is probably a 

good representation of how well sensing and communication abilities can be currently be 

packaged into a swarm robot. 
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Figure 13.   The “GrowBot” built by the INEEL research team (Bruemmer, 2002)   

 

5. Key Advantages of Swarm Robots 

There are plenty of advantages that arise from the preceding criteria for swarm 

robots that were proposed by Sahin.  Some of these have been proclaimed by Beni; that 

swarm robots could be, in principle, mass produced, modularized, interchangeable and 

disposable.  A swarm’s high reliability and robustness comes from its inherent 

redundancy collectively, which allows it to adapt dynamically to the working 

environment.   

In conclusion, swarm intelligence addresses the problems of computational 

intensive, single point of failure and heavy communication requirements that arise with 

other types of robotics.  Each robot is an independent entity that acts on information that 

is available via its sensors.  Cooperation emerges through individual behaviors and cross-

interactions.  This distributed form of approach allows for fast response to ever-changing 

conditions and reduces dependency on communications requirement.  Little computation 

is needed since each robot only needs to execute its own activities.  Overall, the system is 

more robust and is scalable to larger numbers of robots.  

C. CHOOSING A SWARM ROBOTIC BASIS FOR MODELING 

From the brief survey of swarm robotics, it is revealed that even within this 

specific field, there exist numerous variants and levels of swarm algorithms that have 

been researched and experimented.  



 19 

At the higher end of complexity is the type of swarm robot that closely mimics 

swarms found in nature.  The group of Wagner, Lindenbaum and Bruckstein investigated 

the ability of a group of robots to communicate by leaving traces, in order to perform the 

task of cleaning the floor of an un-mapped building, or any task that requires coverage of 

unknown areas.  Their experiments involved robots that leave chemical odor traces that 

evaporate with time.  Through the ability to evaluate the strength of smell at every point, 

the robots are able to select paths to go on, resulting in an overall desired emergent 

behavior of the swarm (Wagner et al., 1999).  This novel approach to induce exploration 

and coverage in swarm robots is inspired from stigmergy (exhibited in insects like the 

ACO illustration in the previous section), and is highly sophisticated as far as modeling 

the algorithmic aspect of it is concerned.  

McLurkin’s robots also take inspiration from swarms in nature.  His objective was 

to use local interactions between nearby robots to produce large-scale group behaviors 

from the entire swarm.  He has formulated, using standard C functions, a vast array of 

“group behavior building blocks” of code that can be combined to form larger, more 

complex applications.  They range from simple tasks like dispersing and clustering, to 

complex tasks like temporal synchronization and gradient tree navigation. 

On a simpler level in terms of function and algorithm is the Growbot (Bruemmer 

et al., 2002) that implements social potential fields using a combination of IR, obstacle 

avoidance, light sensing and audible chirping.  Through these behaviors, each robot is 

able to exert attractive and repulsive force fields, which then control the dispersion and 

coverage of the swarm. 

Last but not least, Batalin and Sukhatme (2002) focused specifically on the 

problem of multi-robot coverage, in an environment where there is no prior map or 

information.  The motivation of their problem stems from the exploration problem of 

unknown environments such as Mars and in the urban search and rescue domains. 

It is timely to reiterate here that the emphasis of this research is not on optimizing 

swarm robotic movement algorithms.  Rather the intent is to model a desired emergent 

swarm robotic behavior that can be approximately replicated in agent based-simulation, 
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and from there, investigate what decision factors or capabilities, such as number of 

robots, speed, sensor range, etc., would impact the effectiveness of the swarm in 

searching and identifying IEDs in an unknown environment.  However, if the reader 

seeks the basis which to which the simulations in this research are built and modeled 

upon, then Batalin’s Molecular approach algorithm would probably be the closest.  As 

will be elaborated, the robots modeled as agents in the simulations will only given a 

propensity to repel from each other when a neighboring robot is sensed.  In some sense, 

this is similar in principle to Batalin’s proposed algorithms (to be discussed in the next 

section), which produce good global coverage.  However, it is more appropriate to treat 

the robotic movement algorithm modeled in MANA as a blackbox, on the premise that 

the emergent behavior of good swarm coverage does manifest in the simulations. 

The next section provides a brief overview for readers who would like to gain a 

better understanding of Batalin’s proposed algorithms. 

D. BATALIN’S ALGORITHMS 

The robots that are being modeled in the agent based simulation follow the 

principles of the robots that Batalin and Sukhatme discuss in their published article 

“Spreading Out: A Local Approach to Multi-Robot Coverage.”  The choice of adopting 

the principles of Batalin’s robots is two-fold.  Firstly, it is attributed to the fact that his 

system seeks to achieve natural global coverage based on simple, local interactions 

between robots.  Secondly, the simplicity of the principles behind Batalin’s algorithm 

allows it to be captured on MANA up to a satisfactory level of accuracy.   

Batalin’s research is motivated by the general exploration problem such as 

exploring the Mars surface as well as urban search and rescue missions, where maps, 

blueprints, and mapping devices such as Global Positioning System (GPS) are 

unavailable or inaccessible.  This is similar to the problem in context, where a swarm of 

robots are being deployed to search and detect for IEDs in an urban environment where 

the operator has no prior knowledge of the layout.  From his findings, the premise of 

good coverage of a multi-robot system was found to be that of local dispersion.  This was 

realized from his simulations of three different proposed approaches, which he termed 

Informative, Molecular and Basic.  Batalin found that the Informative and Molecular 
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techniques attained within five to seven percent of the (manually generated) optimal 

solution and significantly outperformed the Basic technique.  Moreover, the Molecular 

approach did slightly better than the Informative approach. 

Batalin defined the Informative approach to incorporate the exchange of identities 

of interacting robots when robots are within each other’s sensor range.  This approach 

relies on ephemeral identification, local identities and mutual relative location 

information to cooperatively spread out in a coordinated manner.   

The Molecular approach is simpler than the Informative, in the sense that there is 

no communication between robots and no local identities are created.  Each robot simply 

gets repelled from all its neighbors that it senses at any time and there is no concerted 

effort to coordinate dispersion.  The robots in both approaches are able, however, to tell 

the difference between a fellow agent, a target, and obstacles by their array of sensors.   

The Basic approach is simply a degraded form of Molecular; there is no 

distinction made between fellow agents and obstacles.  In general, the three levels of 

approaches can be viewed along a continuum of being able to communicate and share 

information with each other to not being able to do so; and subsequently from being able 

to differentiate between fellow robots and obstacles to not being able to do so.  

Batalin’s objective for his multi-robot system is to attain maximum global 

coverage (i.e., maximum spread), in a scenario where a team of robots is thrown into a 

catastrophic site and activated.  The system will act as a communication network to be 

used by rescue workers to find humans and casualties.   It was not clear if the robots 

would end up in a stable state where each will wander about a position, or whether they 

would continue moving throughout the environment while still maintaining the spread 

that has been achieved.  However, Batalin did mention that his simulations terminate 

either when a pre-specified time threshold is exceeded, or if the locations of the robots 

have not changed for a certain amount of time (which may not be attainable if we have a 

small number of robots and limited sensor range). 

Batalin stated in his paper that “the proposed techniques are adaptive”—a key 

characteristic of swarm behavior.  The techniques proposed by Batalin are behavior 
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based, meaning the robots follow a predetermined set of prioritized rules.  These include 

obstacle avoidance, walk, observe and dance, in that order of priority as shown in Figure 

14.  The execution of each level of function is based on sensor information input at all 

times. 

 

Figure 14.   System architecture of Batalin’s robots (Batalin, 2002)  

The movement algorithm in MANA is based on a “best move choice,” i.e., 

calculating the penalty functions of all its possible next moves and then making a choice 

at every time step.  The intention here is not to implement exactly the algorithm 

formulated by Batalin or any other swarm robotic algorithm.  The objective here is to 

incorporate the basic principles of Batalin’s algorithm in the effort to replicate the 

emergent behavior.  It is found in the simulations created that, with the incorporation of 

these principles, we are able to produce a behavior that closely resembles Batalin’s 

robots.  Our robots spread out in the attempt to attain the maximum coverage. 

Another interesting point that Batalin makes is that the reason why the Molecular 

approach outperforms the Informative approach was hypothetically due to the additional 

overhead of passing additional information and attempting coordinated local coverage 

analysis whenever the robots could sense one another.  Batalin further emphasized that 

the ability of the robots to tell each other apart from obstacles is critical, as illustrated by 

the superiority of Informative and Molecular approach over the Basic approach. 
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Batalin went on to question the definition of steady state and whether a static state 

needs to be achieved before steady state can be attained.  Interestingly, he acknowledges 

that different problems or scenarios may require a different steady state.  In Batalin’s 

simulation, the desire was to achieve a steady state where the robots do not move much 

relative to their positions after spreading out.  However, there may be other scenarios 

where the desire is to have continuous movement throughout the environment, which he 

terms as “patrolling steady state.”  In fact, this is exactly the scenario in our context as 

our aim is for the swarm robotic agents not only to achieve a spread, but also to be 

moving constantly throughout the environment in order to detect IEDs in both explored 

and unexplored areas.  Our MOE in the scenario depends on this patrolling behavior, i.e., 

more patrols equate to multiple detections by different robots.  This different aspect of 

“coverage” is in fact “exploration,” and this is what Batalin intends to focus his efforts in 

his future work.                         

E. OTHER ENABLING TECHNOLOGIES 

Clearly, the deployment of intelligent swarm robots to search and detect IEDs in a 

real environment is only half the battle won.  Nothing can be achieved without other 

requirements such as mobility and IED detection capability.  The following section 

addresses these technological aspects to give the reader some idea of where we currently 

stand. 

1. Mobility of Mini-Whegs, by CWRU 

The concept of swarm robots revolves primarily on its characteristic of simplicity 

and ability to produce an emergent behavior.  However, the realization of this concept 

will not happen if a swarm does not possess the physical ability and speed to move 

autonomously across difficult terrain and negotiate around unknown obstacles.  This is 

probably the most challenging technological aspect that faces researchers dealing with 

any type of autonomous robot that need to be deployed in real-life terrain.  This problem 

is further amplified for the case of swarm robots because of the criterion that they be 

small and simple.  For swarm robots to overcome the problem of autonomous mobility, a 

possible direction is to look into biologically-inspired robots. 
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Biologically-inspired robots are basically robotic platforms that are designed and 

built to resemble systems found in nature such as insects.  Some researchers try to 

reverse-engineer living things in nature to solve problems.  One of them is Otto H. 

Schmitt, who coined the term biomimetics back in 1969, which means “the subject of 

copying, imitating and learning from biology.”  For billions of years, nature has been the 

laboratory to everything that existed.  The challenges it posed to all living things results 

in survival of the fittest and natural selection.  Mimicking nature and its functional 

morphology could lead us to find efficient ways of how we go about performing certain 

tasks.  Robots have been built based on the neuromechanics of animals such as 

cockroaches, crickets, snakes and even lobsters (Ayers et al., 2002).  Each of these 

species is highly efficient in mobility in their own domains.  For example, the lobster is 

able to efficiently navigate and crawl along the sandy bottoms through turbulent and 

murky waters near shore.  A robot that successfully mimics this morphology could be the 

solution for automated searching and disarming mines along shorelines.  

In our context, one particular platform that could address the mobility problem in 

ground swarm robots is the Mini-Whegs, built by the Biologically Inspired Robotics Lab 

at Case Western Reserve University (CWRU) directed by Dr. Roger Quinn (Schroer et 

al., 2004; http://biorobots.cwru.edu).  The Mini-Whegs robot (as seen in Figure 15) is a 

small and simple, highly mobile robot that takes advantage of a movement mechanism 

called a “wheel-leg.”  This design combines the advantages of wheels and legs, allowing 

the platform to climb obstacles higher than that of a wheeled platform.  The robot 

measures approximately 8-9cm (~0.1m) and can run over 10 body lengths per second 

(~1m/s).  

 

Figure 15.   Mini-Whegs™ 1 (http://biorobots.cwru.edu)  
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A modified version of the robot (seen in Figure 16) has been developed that can 

overcome a step of up to two or three body lengths high.  This variant is similar in terms 

of its normal mobility, but boasts a spring loaded mechanism that extends a retracted 

device to enable the jump to be made. 

 

Figure 16.   Jumping Mini-Whegs™ 1 (http://biorobots.cwru.edu) 

The Mini-Whegs possess the basic mobility that swarm robots require.  In fact, 

for challenging terrains, the platform may well have to be more advanced than this in 

terms of its mobility.  The ultimate goal is to create a swarm robotic platform that 

combines mobility with the intelligence and autonomy of robots such as those 

experimented by Batalin, McLurkin and Wagner.  The resulting robotic platform from the 

combination is what the agents modeled in the simulation experiments are based on. 

Whether the technology could support the realization of this “combo-platform,” is 

beyond the scope of the thesis.  However, it is hoped that the results and analysis in this 

thesis could shed some light on where engineers and researchers should invest their 

efforts on the concept of swarm robotics in a search and detect mission. 

2. Explosive Detector – FIDO XT by ICx Nomadics Inc 

The U.S. military currently has no robust solution in looking for explosives 

materials such as IEDs, roadside bombs and munitions caches.  Employment of remotely-

operated robots is fast becoming a popular option among troops to interrogate suspected 

sites because it completely removes the risks faced by troops.  Unfortunately, without 

detection abilities, swarm robots will be ineffective as we will have no idea where to 

employ them.  The only way of employment would be to send the robots into suspect 
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sites and inspect by visual links, which is the current conventional method of bomb 

disposal and IED interrogation.   

The FIDO XT that is used by U.S. military (shown in Figure 17) is claimed to be 

able to detect explosive vapors through bomb casings and landmines buried six inches 

underground (www.icxt.com).  The device can also be used at checkpoints to detect 

traces of explosive residues on the skin of bomb makers.  A second generation of this 

detector has been claimed to be at least 30 times more sensitive and could be available 

within one to two years (www.forbes.com, 3 Mar 05).  The detecting process is done 

real-time; after an explosive detection, the sensor refreshes itself (resets to baseline) in a 

few seconds to perform the next detection.  This current model weighs less than three 

pounds and is suitable for robot-mounted operations. 

 

Figure 17.   FIDO XT by ICx Nomadics Inc (FIDO XT Brochure) 

The modeling of the detection capability of the swarm robots in the agent based 

model will take after this type/category of detector, with the assumption that there will be 

a miniaturized version that can be mounted onto a swarm robotic platform without 

impeding its mobility and intelligence.  Again, the technological aspect and possibility of 

incorporating this “future” version of detector is beyond the scope of the thesis.  

However, it is hoped that some inference on how detection capability (TOT) and 

characteristic (such as detector reset time) impact mission success could be drawn from 

the analyses. 
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III. SCENARIO AND MODEL DEVELOPMENT 

A. SCENARIO INTRODUCTION 

The scenario is based on a swarm of robots mounted with an IED detector and an 

array of sensors, deployed in an unexplored area of operations to search for IEDs planted 

by the adversary in unknown locations, prior to troops being sent in to conduct flushing 

operations or gather intelligence materials.  Once any detection is made, the information 

is sent back via the communications link to the operator, who is situated just outside the 

area of operations in a safe location.  There will be no requirement for operator command 

and control during the search process.  After a 30min (equivalent to 18,000 time steps 

simulation time) search window, the commander concludes the locations of the IEDs and 

will determine the next step to be carried out.  In the agent based simulation, the focus 

will only be on modeling the search and detection process.  Each time step of the 

simulation is assumed to represent 0.1sec of mission time. 

B. CHOOSING AN AGENT BASED SIMULATION SOFTWARE 

The software used to model the scenario is MANA v3.2.1 (Map-Aware Non-

uniform Automata), which is an agent based simulation package written by New 

Zealand’s Defence Technology Agency, DTA, to look into implications of chaos and 

complexity theory for combat and other military operational modeling (MANA Users 

Manual v3.0, Jul 2004).  A large part of the inspiration of investigating swarm robotics 

for this thesis is attributed from initial observations of existing MANA scenario models.  

MANA is typically used to model large numbers of agents with personalities manifested 

in the form of movement propensities.  Furthermore, the capabilities of agents in the 

sensor, weaponry and communication departments can be captured with significant 

fidelity in the model.  What is powerful about MANA is that it incorporates stochasticity 

in its simulation by using a random seed generator, allowing for probabilistic events to be 

factored in such as detections of target and movement disparities from intention.  During 

the simulation, the continuous interactions of agents and the dynamics of personality and 

capability settings result in an emergent behavior and outcome.  This is, in fact, the core 

principle of swarm robotics; a mass of simple robots given a set of rules to follow 
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autonomously that will produce a desired emergent behavior.  It is felt that MANA is a 

tool that was highly suitable in modeling the concept of swarm robotics and could deliver 

excellent insights. 

  MANA is also relatively more well-established in the agent based simulation 

arena than other modeling platforms.  It is a popular package utilized in the NPS SEED 

Center as well as the military research arm in Singapore, particularly DSO National 

Laboratories.  With the incorporation of an efficient DOE and the access to high 

performance computers, we are able to data farm over a variety of variables 

simultaneously and quickly, each with several replications, something that deterministic 

models are unable to do. 

C. TERRAIN 

 The types of environment and terrain where swarm robots will operate are as vast 

as where troops operate in both the modern and future battlefield, ranging from multiple 

story buildings with stairwells and vertical climbs to plain flat open terrain with little 

obstacles and hazards.  Just as robots are currently phased into the battlefield, it is 

expected that swarm robotics will probably be deployed in less challenging terrains in the 

beginning, in vicinities with easy access throughout and few obstacles.  A terrain file is 

picked that is based on a semi-urban residential area (mostly one to two story houses) in 

the Jolan District in Fallujah, Iraq.  This was created by Capt Mike Babilot, USMC, as 

part of his NPS thesis (Babilot, 2005) on distributed operations in urban combat.  

Babilot’s terrain file is based approximately on a 200m by 200m portion of the Jolan 

District as shown in Figure 18. 
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Figure 18.   200m by 200m of Jolan District of Fallujah, Iraq converted to MANA 

terrain file.  Blocked in red is the 50m by 50m extract shown in Figure 19 

(Babilot, 2005) 

Preliminary test simulation runs reveal a terrain of this size proves too challenging 

for a manageable (from the agent based software perspective) robot swarm with a 

common starting point.  Decent coverage within the pre-defined 30min mission time is 

only attained using immensely more or faster robots, or having the swarm split into 

multiple starting locations.  Since the findings from a simulation based on a smaller area 

are scalable to a larger area given that the setup of robots can be replicated (i.e., using 

two similar setups of robots will give similar results if area is doubled), the terrain size is 

scaled down to 50m by 50m as shown in Figure 19. 

 

Figure 19.    50m by 50m extract of Jolan District 

The terrain settings are then adjusted to accommodate the context of the scenario 

as tabulated in Table 1.  Cover is adjusted to zero (except for walls) but this does not 

matter in the final model as weapons are not involved in the modeling.  Concealment is 
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set to zero (except for walls) so that any IED detection is attributed solely to the 

capability of the detector.  In other words, the capability of detecting an IED inside or 

outside a house is similar, if the detector capability is unchanged.  This is also done to 

ensure no detection can be made through walls.  The rest of the terrain settings are left at 

default values.  The implication is that the dark green terrain represents higher movement 

impedance, taking into account the obstacles faced by the robotic entities within the 

houses as compared to the exterior environment.  (Note: the different shades of green 

in the terrain can only be viewed in the soft copy version of this thesis.)  Grey simply 

represents the walls of the houses.  Yellow represents the road and provides slightly 

better mobility than the light green area exterior of the houses. 

 

Table 1.   Terrain settings for Going, Cover and Concealment in MANA 

Three different terrains with increasing levels of difficulties are also incorporated 

to investigate the impact of terrain on the performance of the swarm.  The baseline terrain 

used is shown in Figure 19.  The second terrain incorporates, to a certain extent, 

aggregated objects and obstacles within houses, with additional patches of difficult 

terrain in the exterior of the houses that can be thought of as rough grass patches and 

debris.  The third terrain is similar to the second except that there are additional sealed 

doorways, allowing investigation of the impact of limited access in and out of the houses.  

The second and third levels of terrain are as shown in Figure 20.     
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Figure 20.   Two additional difficulty levels of terrain modeled in MANA 

To ensure the scaling compatibility of terrain size and speed range explored, 

200pixels by 200pixels is chosen as the battlefield pixel setting to represent the 50m by 

50m area of operations.  This works out as 1 pixel representing 0.25m, which is 

equivalent to the resolution of the scenario. 

D. MODELING FACTORS 

This section will address the factors that are modeled and investigated in the agent 

based model.  The factors can be divided into decision and noise factors, identified to 

potentially have an influence or impact on the response.  The difference between decision 

and noise factors lies in whether the user has any control over the particular factor.  In 

this context, factors governing the characteristic of the robot and the detector are 

considered to be decision factors, while terrain is considered a noise factor.  The 

movement propensity of a robot is considered a noise factor, although we have some 

control of it in reality.  This will be discussed in detail in the movement propensity 

parameter sub-sections.  Figure 21 is a depiction of what an agent in the simulation 

entails—a swarm robot integrated with the required sensor, detector and actuator to 

search and detect IEDs autonomously and cooperatively. 
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Figure 21.   An agent represents a swarm robot that integrates intelligence, mobility, 

detection capability and miniaturized sensors and actuators.  Clockwise from top 

left: iRobot Swarm Robot, CWRU Mini-Whegs, MIT’s 1 cubic inch Fingrant 

mounted with 17 emitters and sensors, ICx Nomadics FIDO XT explosive 

detector 

 

1. Number of Robots 

This decision factor is an important element to determine prior to deploying a 

robotic swarm on a search and detect mission.  Although these platforms are envisaged to 

be low cost entities so there is not much concern about their survivability and 

accountability, there will certainly still be a limitation on the number of robots that could 

be deployed.  Preliminary test simulation runs show that 200 robots seem to provide more 

than adequate coverage to facilitate multiple detections within the 30min mission time, 

while a swarm with 20 or fewer robots seems to fare badly.  The range of interest for the 

number of robots is hence decided to be 20 to 200. 

2. Sensor Range (Detector Range) 

The IEDs in the scenario have been modeled as stationary enemies, so that the 

sensor meant to detect and classify an enemy is essentially used to model the IED 

detector.  Using the FIDO detector as a baseline, it is not clear what its operational 

standoff distance is, but it claims to have “demonstrated under field conditions the 

detection of landmines with performance approaching that of canines” (www.icxt.com).  

A conservative estimate will be to model the detector to have a standoff distance of at 

least 0.5m.  The upper bound of the sensor range experimented in the simulations is 
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chosen to be a rather optimistic 10m, but it should be noted that according to iRobot CEO 

Colin Angle, who recently unveiled the integration of the FIDO detector onto the Packbot 

(ICx Nomadics press release on 25 Sep 2006), the new FIDO could detect explosive 

residues from 80ft away (approx. 25m). 

Unfortunately, a limitation of MANA is its inability to provide separate sensor 

ranges for different types of agents.  In this case, setting the sensor range parameter will 

also imply that the sensor range for detection of fellow robots (e.g., the sensor range of its 

IR and acoustic sensors) will be pegged to the same value.  This is a significant limitation 

that is discussed later.  The range of 0.5m to 10m corresponds to 2 pixels to 40 pixels in 

the MANA scenario. 

3. Speed of the Robot 

Based on the current speed capability of the Mini-Whegs discussed in the 

previous section, the range of speed for the swarm robot modeled is 0.1m/s to 2m/s.  The 

speed of the Mini-Whegs falls roughly in the middle of this range 

(http://biorobotics.cwru.edu).  A general recommendation for MANA is that the speed 

setting of agents does not exceed 100 pixels per 100 time steps (1 pixel per time step).  

This speed range, which corresponds to 4 pixels per 100 time steps to 80 pixels per 100 

time steps, adheres to the recommendation.  This is especially important for modeling 

ground agents, as it ensures that situations where agents “skip” or “jump” over walls will 

not occur during the simulation. 

4. Detector Capability 

The detector capability is modeled to capture the probability of detection of the 

IED detector mounted on each robot.  Taking reference to the FIDO detector, the 

sampling of its surrounding environment is done in real time.  This translates to a higher 

probability of detection should the detector be near to the target for a longer duration.  It 

turns out that MANA is able to model this aspect quite accurately by using the parameter 

of camouflage per turn of the enemy (modeled as the IED).  Figure 22 illustrates the 

interpretation of personal concealment per turn to the probability of detection over time. 
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Detector Capability
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Figure 22.   Modeling probability of detection over time 

Each curve in Figure 22 represents a different camouflage per turn assigned to the 

IED.  A 0.98 camouflage per turn implies that the IED has a 2% chance of being detected 

per time step.  With the probability being compounded over time, the IED has a 95% 

chance of being detected if it is within the sensor range of the detector (mounted on the 

robot) for 145 time steps (approx 15sec).  Alternatively, we can say that the detector has a 

95% chance of detecting the IED if it is within range for 15sec.  On the other hand, if the 

camouflage per turn is 0.95, this will correspond to a more capable detector.  In fact, this 

gives the detector a 95% chance of detecting the IED if it is within range for 6sec.  A 

range of camouflage per turn from 0.74 to 0.98 basically means that we are modeling a 

detector that needs a time on target (TOT) from 1 sec to 15 sec to achieve a 95% chance 

of detecting the IED.  A conversion equation from camouflage per turn (CPT) to TOT is 

as follows: 

( )
CPT

TOT
lg10

05.0lg
sec = . 

5. Detector Reset Time 

Another aspect that can be modeled quite accurately in MANA is the detector 

reset time when an IED is detected.  The FIDO detector has a sensing element that has a 

reversible response once an actual detection of explosive materials occurs, allowing it to 
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be reused many times.  Upon detection of a target, it takes seconds for the sensing 

element to return to baseline for the subsequent detection.  In MANA, this reset time can 

be modeled by incorporating a trigger state of the robotic agents; such that when a 

detection is made, a robot gets triggered into a state where its sensors are switched off for 

the duration.  This is basically the trigger state time, after which the robot automatically 

reverts back to its original state and continues to seek out other IEDs.  The range of 

detector reset time is varied from 0.1 sec to 10 sec (1 time step to 100 time steps) 

6. Repel Uninjured Friends 

As stated in the previous chapter, the attempt is made to replicate the emergent 

behavior of swarm robotics by applying the principles of a swarm robotic algorithm.  

Batalin’s Molecular approach is modeled by having each agent repel from all its 

neighbors that it senses at any time, without any concerted effort to coordinate dispersion.  

There is no communication between robots and no local identities are created.   However, 

the robots are able to differentiate between fellow robots and obstacles. Batalin’s 

algorithm for his robots was a set of clear, prioritized rules.  MANA’s movement 

algorithm determines the best move choice at every time step based on the penalty 

function calculated for all possible moves, including staying put (Gill and Greiger, 2003; 

MANA Users Manual, 2004).  The argument here is that by assigning the agents a 

negative movement propensity with respect to each other, it captures the rule that the 

robots repel each other.  To quantify this parameter, e.g., selecting a value like -100, -50, 

-1, etc. and fixing it for a run, may not produce the desired emergent behavior that 

Batalin obtained from his experiments.  From a series of preliminary test runs, a range of 

-60 to -25 is observed to produce coverage from the swarm.  However, this is treated as a 

noise factor.  We have no direct interpretation of the quantity, except that it should be a 

negative value. 

7. Repel Cover 

The parameter repel cover is varied to reflect the autonomous obstacle avoidance 

and navigational ability of the robot.  For example, laser range finder (LRF) and 

ultrasonic range sensors mounted on the robot will cause the robot to steer clear of any 

obstacles it detects.  Since only walls have the element of cover in the model, it is valid to 
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assign the robotic agents a negative value in this aspect to represent their reaction to 

obstacles.  In addition, it is observed from preliminary test runs that repulsion from cover 

produces fewer instances of agents getting stuck in corners (an inherent phenomenon in 

MANA under certain parameter combinations).  The range that is observed to produce 

good coverage, in conjunction with repulsion from uninjured friends, is from -50 to -10.  

Again, this is treated as a noise factor because we have no direct interpretation of the 

quantity, except that it should be a negative value. 

8. Precision Move 

This parameter is a noise factor that is incorporated to model uncertainties of 

movements, e.g., disparities between movement choices of a robot from its intention due 

to random instances such as bumps in terrain, malfunctions of sensors or actuators, etc.  

This parameter is not expected to cause an impact on the performance of the swarm as 

long as it is not too high (1000 being Brownian motion) or too low (which tends to get 

agents stuck).  From initial simulation test runs, a range of 100 to 300 produces good 

coverage. 

In summary, the eight factors are displayed in Table 2 for the 50m by 50m 

scenario.  It should be noted that terrain is also a noise factor but with three discrete 

levels. 

50m by 50m Terrain

Decision Factors Low High

1 No of Robots 20 200

2 Sensor 2 (0.5m) 40 (10m)

3 Speed of Robot 4/100 (0.1m/s) 80/100 (2m/s)

4 Detector Capability, continuous function (95% detection after x seconds) 0.74 (1sec) 0.98 (15sec)

5 Detector Reset Time 1 (0.1sec) 100 (10sec)

Noise Factors Low High

1 Uninjured Friends -60 -25

2 Cover -50 -10

3 Precision Move 100 300  

Table 2.   Summary of the 8 factors and their ranges.  Not listed are the 3 discrete levels of 

terrain 

 

E. TARGET RANDOMIZATION AND SWARM STARTING LOCATION 

In an operational environment, the location of IEDs is uncertain. We seek to 

capture this uncertainty in the model as well.  The approach taken in the modeling is to 

pick 30 candidate IED locations across the terrain, including both the interiors and 



 37 

exteriors of the houses, and have the simulation utilize its random seed to randomly pick 

10 out of the 30 possible locations at the start of every run (Figure 23).  This is achieved 

by using a “super agent” with a universal sensor range (unchecked option for terrain 

affects LOS) and a “runstart” trigger state, enabling the super agent to randomly pick 20 

out of the 30 IEDs and kill them off within the first five time steps of every simulation.  

The super agent is given 20 rounds and 100% probability of kill to ensure exactly 10 

IEDs remain in the scenario after five time steps.  This also requires the 30 IEDs to have 

0% camouflage per turn for the first five time steps by means of the runstart trigger state.  

The 10 IEDs remaining will revert to the camouflage per turn as dictated in the setting for 

that particular run.  This is an effort to model the uncertainty of IED placements in a 

terrain, but one can argue that it is still not truly random as the initial 30 candidate IED 

location are still required to be fixed and may be biased.  However, this method is still a 

significantly better representation than fixing 10 locations right from the start and 

ignoring location uncertainty.   

 

Figure 23.   The 30 candidate IED location.  Bottom right shows the starting location 

of the swarm robots.  The truck icon is the super agent that kills 20 of the 30 

agents at the start of each run 

In addition, the swarm is set to always begin its movement from the lower right 

corner of the area of operations.  This starting location will apply for all scenarios, though 
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it is expected that multiple starting locations will definitely enhance the performance of 

the swarm.  In fact, this is proposed as one of the possible factors to investigate for future 

work. 

F. ASSUMPTIONS OF THE MODEL 

This section addresses the assumptions made in the modeling of the scenario.  

They are listed below; some have been mentioned in the preceding sections. 

1. In general, the agents follow two basic movement propensity rules; i.e., 

avoiding obstacles and avoiding other robots within their sensor range.  The agents have 

no waypoints and their behavior arises purely from interactions with each other and the 

surroundings.  There certainly exists the “inner workings” behind MANA’s movement 

algorithm (the Stephen Algorithm was selected) and movement settings such as 

“Diagonal Motion Correction,” “Navigate Obstacles (momentum),” and “Squad Moves 

Together.”  However, the overall movement effects on the agents are dominated by the 

two basic movement propensity settings.  The option of “Navigate Obstacles 

(momentum)” also play a key role in causing the agents to move somewhat in a general 

direction when external influences are absent, to replicate robots moving in a straight line 

when its sensors do not capture anything. 

2. Robots are modeled not to require GPS or positional knowledge for 

navigation.  However they will still need this capability for transmitting the positional 

information when a target is detected.  Whether this is achieved with GPS, or with a 

combination of compass/odometry and laser range finder instruments, will not be 

explicitly defined.    

3. The swarm robots do not stray out of the area of interest.  This implies that 

they have been programmed accordingly and have the ability to know that an option that 

brings them beyond the perimeter will not be considered.  One possible solution is to 

place “virtual wall units” along the sides and corners of the area of interest, causing an 

invisible infrared barrier that robots will not cross, similar to the concept used by the 

iRobot Roomba vacuum cleaners as shown in Figure 24. 
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Figure 24.   iRobot Virtual Wall Unit (www.irobot.com) 

4. The robots have the communication means to transmit positional data back 

to the commander, regardless of whether they are indoors or outdoors.  Conventional 

direct radio frequency links such as Wi-Fi is one possible way, but the presence of walls 

and range requirements may pose problems.  Again, this will not be explicitly defined, 

but there has been at least one suggestion in the literature (Howard et al., 2001) that the 

robotic swarm itself could form a wireless communication network domain that links 

unreachable robots in buildings to the operator on the outside.  It should be noted that the 

communication of detection information from the robots back to the operator will not be 

modeled, but is assumed to exist. 

5. The IED detector on the robot operates continuously, i.e., the detector is in 

fulltime operation while the robot is moving, and is continuously sampling the 

environment for explosive content.  Once a detection is made, the robot automatically 

transmits a message back to the operator on its position.  The detector will take a finite 

amount of time to reset back to baseline, during which it is inactive and incapable of 

performing any sampling or detection.  The implication of the preceding is that the longer 

a robot happens to be around an IED, the higher the probability of detection.  This 

implies that there may be instances where a robot that moves too fast may miss out the 

detection of IEDs.  Speed may impede the number of detections made by the swarm! 

6. Robots are capable of overcoming basic obstacles like a single step, 

uneven ground, grasslands, curbs, etc.  This assumption also implies that the general 

layout of the terrain is restricted to obstacles that these robots could overcome.  

Implicitly, the buildings are single-floor houses with rooms and open doors.   This 
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assumption is made to balance the realism of robotics mobility technology attainable in 

the near future, and operational requirements in a real-life environment.  The interiors of 

the houses have been modeled to incorporate an aggregated movement inhibition that is 

higher compared to the exteriors.  This is an effort to reflect the generalization that the 

insides of houses have tables, chairs, appliances, hence making it more difficult to move 

around than exteriors, which tend to be roads, gardens, paths, etc. 

7. It is assumed that the mission time is 30min (equivalent to 18,000 

simulation time steps), therefore the runs will be terminated after this duration regardless 

of the status of the detections.  This maximum allowable time reflects the fact that time 

constraints typically exist for clearing an area of interest.  The simulation could be termed 

as a time-terminating one. 

G. MEASURE OF EFFECTIVENESS (MOE) 

The first-cut MOE that can be used is the measure of the time it takes for all 10 

IEDs to be detected.  However, this measure alone is not enough to give us a full picture 

in practice because of the following reasons. 

1. A faulty detector may malfunction and transmit a “detection made” signal 

when there is none. 

2. False alarms may occur due to the inherent probability of false alarms of 

any type of detectors (the probability of false alarm of the FIDO is five percent according 

to the FIDO XT brochure).  This implies that we need more than one detection to reduce 

the number of false alarms. 

In reality, the positional data that is transmitted back is in fact the positional data 

of the robot itself, as there is no way to pinpoint the location of the IED since the 

sampling is done on its surrounding environment.  For cases where the sensor range 

capability of the robot is relatively large, the position reported of the robot when the 

detection is made may not give an adequately accurate position of the IED.  One way to 

mitigate this is to shorten the sensor range of the detector.  A better option is to increase 

the requirement for the number detections made, in the hope that the aggregate of all 

those detections made of a particular IED will give us a better representation of where its 
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actual location is as illustrated in Figure 25).  This implicitly assumes that IEDs are 

located relatively far apart, so that a cluster of detections in a general neighborhood can 

reasonably be considered to be the detections of the same IED.  We set this number of 

detections to be three. 

Detection 1

Detection 3

Detection 2

Actual IED 

location

Aggregate IED 
location based on 

3 x detections

Detection 1

Detection 3

Detection 2

Actual IED 

location

Aggregate IED 
location based on 

3 x detections

 

Figure 25.    The aggregate of more detections will mitigate the inaccuracy of position 

reported 

We would like to measure the time taken for all 10 IEDs to be detected at least 

three times.  However, there is one more issue.  There may be instances where a single 

robot with a faulty detector remains in a general vicinity, and transmits more than three 

detections.  To prevent this from qualifying as an “official detection,” the following 

adjustment is made.   

MOE 1 = Time taken for all 10 IEDs to be detected 3 times* 

*(of which the 3 detections are made by unique robots/detectors) 

This MOE is deemed to be stringent enough to provide an accurate measure of 

how effective the swarm is based on any set of factor settings.   

In an operational scenario, the number of targets is unknown.  One way of 

classification is to consider those with more than or equal to three detections to be 

“confirmed” IEDs, while those with less than three are “suspect” IEDs.  With this 

classification logic, it is then up to the commander to decide the course of action, 

particularly with “suspect” IEDs, based on time constraint and overall objective (he may 

choose to ignore and skip “suspect” IEDs).  

Alternate MOEs are needed to take into account simulation runs that did not have 

all 10 IEDs detected by the end of 30min.  These cases will reflect a mission complete 
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time of the 30min for MOE 1, when in fact they may take much longer.  To take these 

cases into account, we define the two additional MOEs: 

MOE 2 = 






→

⋅⋅⋅→

otherwise

underedaccomplishmission

0

min301
 

MOE 3 = Number of IEDs Detected in 30min 

MOE 2 is a binary response variable that will require logistic regression modeling while 

MOE 3 is a continuous response variable.  Both MOEs give better insights for runs that 

did not complete within the mission time. 

H. MODELING OF VIRTUAL PHEROMONES 

An additional feature is also incorporated in the model to enhance the 

performance of the swarm robots.  The concept of using “virtual pheromones” was 

suggested in at least two papers on swarm robots (Wagner et al., 1999 and Van Dyke 

Parunak et al., 2002). 

Wagner derived this concept from ants and some insects found in nature that are 

known to use chemicals called pheromones for communication and coordination tasks.  

This is briefly mentioned in Chapter II: recall that ants are able to eventually find the 

shortest path to the food source by using a shared memory built by depositing 

pheromones which evaporate over time.  Wagner investigated the ability of a group of 

robots that are able to communicate by leaving chemical odor traces to perform the task 

of cleaning the floor of an unmapped building or any tasks that requires the coverage of 

an unknown region (seen in Figure 26).  These odor traces evaporate over time and the 

robots are able to evaluate the intensity of the traces at every point they traverse.  Hence, 

robots are able to compare trace levels and differentiate locations that are visited more 

recently.  Wagner further proposed that this concept could be extended to deployment of 

swarm robots in hazardous environment clean-up and surveillance patrols in hostile 

environments.    Wagner’s simulations were coded in the C programming language; he 

mathematically spelled out the equations as part of the algorithms. 



 43 

 

Figure 26.   A pictorial illustration of cleaning robots in a system of rooms.  Two 

cleaning robots are shown using smell traces that degrade over time (Wagner, 

1999) 

In this thesis, we attempt to utilize agent based simulation to explore such a 

concept, by setting up a shared memory that can be built and dissipated over time during 

the simulation, with agents reacting to in a certain manner.  This memory map can be 

created by establishing an outbound communication link of the entire swarm (or squad) 

to itself, which sends information on all the positions of the robots at any time as shown 

in Figure 27.  This memory map is manifested as the swarm’s inorganic situational 

awareness map (Inorg SA Map).  If the inorganic contact persistence of the swarm is set 

to a finite value, say 1000 time steps, then the old positions occupied by the robots will 

persist on the Inorg SA Map for 1000 time steps.  This is the basis of how a pheromone 

shared memory map is modeled.  A snapshot of this map is shown in Figure 28.    
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Figure 27.   Comms link to itself to create pheromone shared memory map 

 

 

Figure 28.   Snapshot of Inorganic SA Map during a simulation run 
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The next step will be to input a desired movement propensity of the robot to the 

Inorg SA.  Altogether, the introduction of virtual pheromone requires additional three 

factors to be farmed over. 

1. Repel Friends under Inorganic SA 

This parameter states the movement propensity with respect to fellow robots that 

appear on the Inorganic SA map.  In our context, this represents the movement propensity 

with respect to virtual pheromones.  Since the objective is to enhance spread and 

coverage, this parameter should be negative.  However, there is no direct interpretation of 

the magnitude of this value.  We decided to peg the range to Repel Uninjured Friends in 

the Agent SA since we can treat repulsion from a fellow robot to be roughly the same 

magnitude as repulsion from a pheromone to encourage spread and coverage.  The range 

is -60 to -25. 

2. Max Inf for Friends under Inorganic SA 

This represents the influence distance of the above parameter, which can be 

thought of as the sensor range of the pheromone detector/sniffer.  We decided to peg this 

range to the capability of the sensor range of the robot, for lack of a better proposed 

range.  The range is 2 to 40 pixels, or 0.5 to 10m in real world measurements. 

3. Inorganic Contact Persistence for Inbound Inorganic Information  

The inorganic contact persistence governs how long a contact stays on the shared 

memory map.  In this case, this represents the persistence of the virtual pheromones once 

it is being deposited.  We explore the range of 10sec to 100sec (100 time steps to 1000 

time steps).  In MANA, 1000 is the maximum inorganic contact persistence possible, 

which seems adequate to examine the impact of virtual pheromones that evaporate 

slowly.   

Table 3 summarizes the ranges for the additional factors. 

Additional Factors for Pheromone Capable Robots Low High

1 Repel pheromones -60 -25

2 Pheromone sensor range 2 (0.5m) 40 (10m)

3 Pheromone persistence 100 (10sec) 1000(100sec)  
Table 3.   Factor settings for pheromone capable robots 
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There are, however, a few limitations of this method of modeling the virtual 

pheromones: 

1. A virtual pheromone disappears when its inorganic time persistence time 

is up.  There is no gradual decrease of intensity over time and the robot does not compare 

the intensity of pheromones between locations.  The only differentiation a robot can make 

is whether or not a location has a pheromone. 

2. Using the Max Influence parameter to simulate the sensor range for 

pheromones implies that pheromones can be detected through walls.  This is because this 

parameter in MANA does not take LOS into account.  As long as it is on the Inorg SA 

Map and it is within Max Inf, the robot will see it.  One could argue that this can lead to 

optimistic conclusions.  If this is a concern, conclusions can still be drawn from the 

results of lower ranges of Max Inf, which results in fewer (if any) occurrences of 

pheromone detection through walls. 
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IV. DESIGN OF EXPERIMENT AND TREATMENT OF OUTPUT 

A. DESIGN OF EXPERIMENT 

The previous chapter discusses the factors being modeled in the simulation.  The 

number of factors that are of interest totals up to eight, excluding three levels of terrain.  

A full factorial design that is able to incorporate all possible combinations of the high and 

low settings of each factor will take 256 (2
8
) design points or runs.  This approach is 

straightforward and simple, but inadequate.  First of all, it fails to provide insights of the 

response in regions within the range of each factor.  In addition, to investigate the impact 

of stochasticity, more than one replication is required for each design point.   

To increase the efficiency of the experiment, the Nearly Orthogonal Latin 

Hypercube (NOLH) is utilized (Cioppa, 2002; Cioppa and Lucas, 2006).  Using the 

NOLH will provide a design of experiment that can give us the fidelity to get insights on 

responses from the entire range of each factor.  In fact, the NOLH requires fewer design 

points than a full factorial design of high and low settings, because of its high efficiency 

and space filling property.  With eight continuous factors, only 33 design points are 

required to construct the NOLH, using the Microsoft Excel spreadsheet created by 

Professor Susan M. Sanchez (Sanchez, 2005).  To investigate stochastic responses from 

uncertain and probabilistic events such as movements and detections, 100 replications are 

performed for each design point, giving a total of 3,300 runs.  Figure 29 shows the 

NOLH for the 8-factor design, while Figure 30 shows the space filling property of the 

NOLH design.  It should be emphasized here that the savings that the NOLH design bring 

are tremendous.  To achieve the same extent of fidelity using a full factorial design, it 

will easily take much more than 25,600 runs (assuming 100 replications), versus the 

3,300 runs that is performed here.   



 48 

20 2 4 74 1 -60 -50 100

200 40 80 98 100 -25 -10 300

0 0 0 0 0 0 0 0

No of agents Sensor range Speed of robot Det capab Trigger duration Repel friends Repel cover Precision movt

200 6 37 79 88 -38 -23 194

183 40 14 83 47 -53 -20 163

178 19 73 78 4 -39 -21 106

121 35 80 84 94 -55 -18 113

189 3 40 79 69 -35 -34 213

194 38 28 81 44 -52 -44 275

144 20 78 80 1 -37 -35 281

116 28 75 82 91 -51 -41 300

138 12 21 87 72 -49 -50 138

155 27 25 91 23 -41 -46 175

149 10 61 97 35 -58 -45 131

161 29 54 97 75 -26 -31 181

127 8 18 88 60 -56 -11 256

172 25 33 95 16 -40 -13 244

133 9 68 96 38 -60 -24 250

166 26 49 98 81 -28 -28 231

110 21 42 86 51 -43 -30 200

20 36 47 94 13 -47 -38 206

37 2 71 89 54 -32 -40 238

43 23 11 94 97 -46 -39 294

99 7 4 88 7 -30 -43 288

31 39 44 93 32 -50 -26 188

26 4 56 91 57 -33 -16 125

76 22 6 92 100 -48 -25 119

104 14 9 90 10 -34 -19 100

82 31 63 85 29 -36 -10 263

65 15 59 82 78 -44 -14 225

71 32 23 75 66 -27 -15 269

59 13 30 76 26 -59 -29 219

93 34 66 85 41 -29 -49 144

48 17 52 77 85 -45 -48 156

88 33 16 76 63 -25 -36 150

54 16 35 74 20 -57 -33 169  
Figure 29.   The 8-factor NOLH DOE is used that only requires only 33 design points 
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Figure 30.   Space-filling property of the 8-factor NOLH 

There is still the need to integrate the three levels of terrain in the design of 

experiment (Figure 31).  A simple method to do this is to use a crossed design, where the 

three different terrains are crossed with the 8-factor NOLH design.  An alternative way is 

to input the three discrete levels (0, 1 and 2) numerically into the NOLH, which then 

becomes a 9-factor NOLH design.  The former method is chosen for ease of 

interpretation because terrain is a qualitative factor with only three levels.  The DOE thus 

requires the 3,300 runs to be performed for all three terrains, resulting in 9,900 runs that 

need to be executed. 
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Figure 31.   Terrain settings 0, 1 and 2 from left to right 

A separate DOE is required to investigate the pheromone capable robots, which 

requires three additional quantitative factors to be varied.  It turns out that an 8-factor 

NOLH and an 11-factor NOLH use the same number of design points.  The intuitive way 

is to add these three factors into the original NOLH, which becomes an 11-column matrix 

with 33 design points.  It should be noted that the settings of the initial 8-factors in the 8-

factor NOLH and in the 11-factor NOLH are identical since the columns are not 

swapped.  One could decide to swap the columns of the initial 8-factors in the 11-factor 

NOLH to get different settings but this approach is not taken as there is no added 

significant benefit to do so
5
.  This DOE requires another 9,900 runs to be performed, 

taking into account the 100 replications and the three levels of terrain.  The 11-factor 

NOLH is shown in Figure 32 and the space filling property of the design is shown in 

Figure 33. 

                                                 
5
 Swapping columns to produce different design points will give more fidelity to the insights on 

quadratic behavior and interactions 
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20 2 4 74 1 -60 -50 100 -60 2 100

200 40 80 98 100 -25 -10 300 -25 40 1000

0 0 0 0 0 0 0 0 0 0 0

No of 

agents

Sensor 

range

Speed of 

robot

Prob 

Det

Trigger 

duration

Repel 

friends

Repel 

cover

Precision 

movt

Repel 

pheromones

Pheromone 

sensor range

Pheromone 

persistence

200 6 37 79 88 -38 -23 194 -25 28 634

183 40 14 83 47 -53 -20 163 -28 19 859

178 19 73 78 4 -39 -21 106 -49 39 438

121 35 80 84 94 -55 -18 113 -45 6 297

189 3 40 79 69 -35 -34 213 -58 7 719

194 38 28 81 44 -52 -44 275 -59 22 775

144 20 78 80 1 -37 -35 281 -29 2 353

116 28 75 82 91 -51 -41 300 -41 38 269

138 12 21 87 72 -49 -50 138 -39 25 156

155 27 25 91 23 -41 -46 175 -30 9 128

149 10 61 97 35 -58 -45 131 -47 26 691

161 29 54 97 75 -26 -31 181 -52 8 606

127 8 18 88 60 -56 -11 256 -48 13 100

172 25 33 95 16 -40 -13 244 -51 32 213

133 9 68 96 38 -60 -24 250 -35 15 916

166 26 49 98 81 -28 -28 231 -32 31 578

110 21 42 86 51 -43 -30 200 -43 21 550

20 36 47 94 13 -47 -38 206 -60 14 466

37 2 71 89 54 -32 -40 238 -57 23 241

43 23 11 94 97 -46 -39 294 -36 3 663

99 7 4 88 7 -30 -43 288 -40 36 803

31 39 44 93 32 -50 -26 188 -27 35 381

26 4 56 91 57 -33 -16 125 -26 20 325

76 22 6 92 100 -48 -25 119 -56 40 747

104 14 9 90 10 -34 -19 100 -44 4 831

82 31 63 85 29 -36 -10 263 -46 17 944

65 15 59 82 78 -44 -14 225 -55 33 972

71 32 23 75 66 -27 -15 269 -38 16 409

59 13 30 76 26 -59 -29 219 -33 34 494

93 34 66 85 41 -29 -49 144 -37 29 1000

48 17 52 77 85 -45 -48 156 -34 10 888

88 33 16 76 63 -25 -36 150 -50 27 184

54 16 35 74 20 -57 -33 169 -53 12 522  
Figure 32.   11-factor NOLH design to investigate pheromone capable robots 
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Figure 33.   Space-filling property of the 11-factor NOLH 

 

B. DATA FARMING 

Overall, 19,800 runs are executed and the outputs of the detections from every run 

are recorded and generated.  On average, each run of the scenario with non-pheromone 

robots takes approximately 15min to complete on a personal computer.  As expected, the 

runs with design points that have a large number of robots take longer than average.  For 

the scenario with pheromone robots, each run takes a significantly longer time than the 

previous scenario.  This is due to the modeling of virtual pheromones, which makes use 

of a communication link that updates the positions of all robots at every time step.  This 
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requires a considerably larger computational effort at every time step and hence slows 

down the simulation.  Such a run can easily take up to more than an hour on a personal 

computer. 

The computational power that is required to data farm over the DOE within a 

reasonable time is provided by the MHPCC.  There is also the requirement to incorporate 

the NOLH design into XML-format as part of the XML code of the relevant MANA 

scenario.  This is done with the Tiller, which is a tool provided by Referentia Systems 

that sets up a folder with the basecase and study file with the corresponding terrain files.  

The Tiller converts the NOLH design into XML format as part of the study file and 

constructs the replications setup as defined by the user.  This folder is then zipped and 

forwarded as a job submission to MHPCC, where the simulations are run in batch 

automatically.  At the end of each run, the output files are generated and transferred to a 

downloadable site accessed by the user.  The 9,900 runs for the scenario with non-

pheromone robots take about a full day to run.  The other 9,900 runs for the scenario with 

pheromone robots take about four to five days. 

C. TREATMENT OF OUTPUT 

The information that is required from the output of each run includes the 

detections made in the entire history of each simulation.  It turns out that one of the 

output file option provided by MANA, i.e., “Record Multiple-Contact Detections,” 

records all detections that are made in chronological order.  This is shown in Figure 34. 
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# MANA Multi-Contact Detection Results File

# Version: 3.2.1

# Machine Name: C21N19

# Run Started at 9/13/2006 1:20:20 PM

RandSeed= 123

Step Squad of Detector  Squad of Classified Agt  Detector Agent Classified Agent x y Range Detector Deadtime

1 2 1 230 212 60 142 141 0

1 2 1 230 204 20 81 176 0

1 2 1 230 224 122 159 93 0

1 2 1 230 228 28 164 178 0

1 2 1 230 214 90 83 107 0

1 2 1 230 219 160 78 42 0

1 2 1 230 223 105 147 101 0

1 2 1 230 225 122 128 77 0

1 2 1 230 218 162 62 52 0

1 2 1 230 213 81 76 117 0

1 2 1 230 226 98 135 102 0

1 2 1 230 210 41 146 160 0

1 2 1 230 229 13 13 203 0

1 2 1 230 202 61 18 158 0

2 2 1 230 216 115 68 87 0

2 2 1 230 205 96 31 122 0

2 2 1 230 209 50 119 146 0

2 2 1 230 208 20 109 175 0

2 2 1 230 201 41 37 167 0

2 2 1 230 207 55 82 141 0

460 0 1 175 220 150 91 6 0

468 0 1 192 220 150 91 6 0

497 0 1 48 220 150 91 5 0

527 0 1 94 216 115 68 5 0

550 0 1 198 220 150 91 6 0

595 0 1 141 220 150 91 5 0

607 0 1 7 220 150 91 5 0

638 0 1 198 220 150 91 6 0

646 0 1 135 217 167 51 5 0

670 0 1 129 220 150 91 5 0

701 0 1 31 217 167 51 6 0

742 0 1 135 217 167 51 4 0 
Figure 34.   A truncated sample detection output file generated at the end of a run 

Unfortunately, output files in MANA are not easy to manipulate to output exactly 

what the user requires.  In the above truncated sample output file, it can be seen that some 

work still needs to be done in order to extract the MOEs that are of interest.  For example, 

time step one and two register detections that are an artifact of modeling target 

randomization.  The detections are made on the first 30 IEDs by the super agent, which 

goes on to eliminate 20 of them.  The first detection by a swarm robot does not happen 

until time step 460, therefore the detections made before this time step have to be 

discounted. 

The next issue involves filtering out the unique detections.  It can be seen from 

the sample output file that IED 220 (Classified Agent 220) gets uniquely detected by 

three different swarm robots by time step 497; subsequent detections of this agent are of 

no interest.  As for IED 217, it is detected three times by time step 742, however two of 

the detections are not unique (it is detected by Robot 135 twice).  Thus, the detection at 
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time step 742 needs to be discounted, and this IED should not be considered as detected 

until the third unique detection occurs later on.  It is possible for one to do this filtering 

process manually to track the time taken for all 10 IEDs to be uniquely detected more 

than three times, but it would be an arduous task (prone to human error) to manually 

process all 19,800 output files.  It is clear that a script needs to be written to automate the 

process of reading in all the output files and siphon out the MOE that is needed. 

The required script file is written in Ruby with much assistance from Professor 

Paul Sanchez.  The Ruby script is able to filter out all detections made by the super agent 

that occur in the first five time steps (refer to section on Target Randomization), and then 

track all detections made on each of the 10 remaining IEDs.  Repeated detections by the 

same robot on a particular IED are filtered, and the time is recorded when three unique 

detections are reached for that IED.  The core of the script lies in the usage of the “hash 

table,” which is able to store all robot ID numbers that detect an IED, for each IED.  

When the hash table fills up to three, the time step is noted and is classified as a 

confirmed detection of that IED.  The script also reads in the corresponding design point, 

producing an output file (in text format) that matches the design point with the 

corresponding confirmed detection times for each IED.  This text file can be read directly 

into the statistical package, JMP.  For each run, the maximum of the 10 confirmed 

detection times is the time taken to accomplish mission (MOE 1).  For runs that do not 

complete within the 30min mission time, their MOE 1 values are assigned 30min 

automatically.  Such runs will also record less than 10 confirmed detection times, and are 

assigned a zero for mission accomplishment or one otherwise (MOE 2).  The number of 

confirmed detection times recorded indicates the number of IEDs detected (confirmed 

detection), which is MOE 3.  The Ruby script is attached in Appendix A.  All the MOE 

compilations mentioned are done manually by inserting the formulae in JMP. 

   It turns out that a batch file is also essential in order for the Ruby script to read 

in the output files in order to match the design points correctly.  This problem arises 

because of the nature of how scripts recognize sequences of numerical characters.  

Initially, output files are read in the order of 0, 1, 10, 11, ..., 19, 2, 20, 21, …, 29, 3, 30, 

31, 32, when the intended order is 0, 1, 2, …, 9, 10, 11, …, 19, 20, …, 29, 30, 31, 32.  
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This problem can be resolved either by manipulating the Ruby script, or by renaming all 

the output files into the form of 000, 001, 002, …, 032, so that the intended sequence is 

read in correctly by the script.  The latter option is chosen in view of the simplicity in 

constructing a batch file that automates the process of renaming multiple files.  A 

truncated portion of this batch file is extracted and depicted in Figure 35. 

copy  multi_detect.0.0.csv  multidetect.000.000.csv 

copy  multi_detect.0.1.csv  multidetect.000.001.csv 

copy  multi_detect.0.2.csv  multidetect.000.002.csv 

copy  multi_detect.0.3.csv  multidetect.000.003.csv 

copy  multi_detect.0.4.csv  multidetect.000.004.csv 

copy  multi_detect.0.5.csv  multidetect.000.005.csv 

copy  multi_detect.0.6.csv  multidetect.000.006.csv 

. 

. 

. 

Figure 35.   Batch file to rename all output files 
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V. RESULTS AND ANALYSIS 

A. NON-PHEROMONE ROBOTS 

1. Overview of MOEs  
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Figure 36.   Distribution of MOE 1 

Overall, not all runs registered a mission accomplishment.  Some runs are 

terminated at the end of the 30min pre-defined mission time with less than 10 IEDs 

detected
6
.  The distribution in Figure 36 shows a spike at 30min, which represents all the 

runs with mission failures. 
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Figure 37.   Distribution of MOE 1 (conditioned on mission accomplishment) 

Out of 9,900 runs, 7,304 runs have accomplished missions, with the distribution 

of the time taken as shown in Figure 37.  Essentially, this is a distribution of MOE 1, 

conditioned on mission accomplishment.  The mean turns out to be about 10.26min with 

standard deviation of 6.95min, with the median at a more optimistic 7.75min. 

                                                 
6
 For the analysis, “detected” implies the “at least 3 unique detections” status. 
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Figure 38.   Distribution of MOE 2 

Figure 38 summarizes the proportion of mission accomplishment; an overview of 

MOE 2.  The proportion of mission accomplishment over for the non-pheromone robots 

is 0.738. 

0 1 2 3 4 5 6 7 8 9 10

100.0%

99.5%

97.5%

90.0%

75.0%

50.0%

25.0%

10.0%

2.5%

0.5%

0.0%

maximum

quartile

median

quartile

minimum

 10.000

 10.000

 10.000

 10.000

 10.000

 10.000

  9.000

  7.000

  0.000

  0.000

  0.000

Quantiles

Mean

Std Dev

Std Err Mean

upper 95% Mean

lower 95% Mean

N

9.1525253

2.0399507

0.0205023

9.1927139

9.1123366

     9900

Moments

No of IEDs Detected

 
Figure 39.   Distribution of MOE 3 

Figure 39 summarizes the response of MOE 3.  The mean of MOE 3 turns out to 

be approximately 9.15 IEDs with standard deviation of 2.04.  It is observed that there are 

some runs which did not register a single IED detection.  A subset of the data is created 

to investigate the cause. 

2. Analysis of Ineffective Robotic Swarms 

A “first-cut” subset of the data is extracted for the more “drastic” mission failures 

(with less than half the IEDs detected), which narrows the data down to 570 observations. 

Histograms of the factor levels corresponding to these drastic mission failures appear in 

Figure 40.  There are no obvious trends except that the swarm is very ineffective in 

detecting IEDs whenever the speed is low (below 0.3m/s). 
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Figure 40.   Subset of data with <=5 IEDs detected 

 

The occurrences of the number of IEDs detected is monotonically decreasing as 

the number of IEDs detected decreases, with the exception of zero where there is a large 

number of occurrences as shown in Figure 41.  This implies a behavior, sometimes called 

“falling off the cliff,” where a particular setting of a parameter causes a drastic 

degradation in performance. 
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Figure 41.   Distribution of MOE 3 with 5 IEDs detected or less 

A further subset is extracted for runs without a single IED detection, which leaves 

288 observations.  It is observed that they belong to the same design point where speed is 

Mission failures 

tend to occur 

whenever speed 

is low 

Relatively large number of 

observations for zero IEDs 

detections  
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at a minimum setting of 0.1m/s, over the three types of terrain.  This is an indication that 

a swarm with speed setting of 0.1m/s is most likely unable to even detect a single IED, 

regardless of other factor settings. 

 
Figure 42.   Snapshot of end of simulation for design point which failed to acquire a 

single IED detection 

Verification of this design point is done in MANA by running and watching the 

simulation, input with the corresponding parameters.  It is observed that the swarm barely 

makes it to the center of the area of operations by the end of the 30min and has even 

more trouble moving within the houses because of its speed.  One replication of this is 

shown in Figure 42.  It is also noted that the swarm has trouble spreading out, due to a 

relatively short sensor range (1.75m) for this particular design point.  More insights can 

be obtained using regression fits and trees, to be discussed in analyses later in this 

chapter. 

3. Logistic Regression of Mission Accomplishment (MOE 2) 

A stepwise logistic regression fit of the response mission accomplishment (MOE 

2) is performed on the data using all factors, shown in Appendix B.  This gives us an R-

square of 0.662 over the 9,900 observations.  In the previous chapter, repel cover, repel 

friends, precision movement and terrain were described as noise factors that are difficult 

to determine quantitatively.  What is known is that repel cover and repel friends are 

negative, based on the principles of the swarm algorithm being incorporated.  Precision 
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movement has no direct interpretation in the physical sense, except that it is incorporated 

to introduce noise to the movement selection process of the agents and to prevent agents 

from getting stuck in the simulation.  As for terrain, it is observed that it has an impact on 

the MOE but there is no control over this factor in practice.   
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Figure 43.   Logistic regression of MOE 2 without noise factors 

It is desired to leave these factors out of the regression fit as they have no direct 

correspondence to a quantity in the real world and hence are unable to provide much 

practical guidance to someone seeking to plan an IED clearing mission.  A new stepwise 

logistic regression of MOE 2 is performed with just the decision factors as shown in 

Figure 43.  Fortunately, the regression fit does not degrade R-square much (down to 

0.623. 

R-square is 0.623, degraded 

from 0.662 from the full 

model with all factors 
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From the logistic model, the main effects for number of robots, sensor range and 

speed are the most influential.  Det capab and Det Reset Time (DRT) appear as main 

effects mainly due to their interactions with other factors. 

Significant interaction terms include number of robots*speed, number of 

robots*det capab, sensor range*det capab, sensor range*DRT and speed*DRT.  

Quadratic terms that turn out to explain a significant part of the model variability include 

sensor range and det capab. 
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Figure 44.   Logistic regression of MOE 2 with only Number of Robots, Speed and 

Sensor Range 

An interesting follow up to the regression of MOE 2 is to only include the three 

main factors that are deduced previously as shown in Figure 44.  The R-square degrades 

slightly to 0.603 and all interactions and quadratic terms become significant.  Although 

this model is not preferred over the previous one with all decision factors included, it is 

interesting to note that the number of robots comes up significant as a quadratic term.  

This is counter-intuitive at first glance, but further observations of simulations revealed 

that having an extremely high robot density within an area can be counter-productive.  

This is because as the area gets more crowded with robots, the repulsions from one 

another hinder continuous movement from the robot’s point of view, such that it makes it 

more difficult for IEDs to be detected by different robots.  For instance, a robot moving 

towards a building can be repelled from entering if there already is another robot roaming 
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in it.  Further research will need to be done on this hypothesis of optimal swarm robot 

density.  More insights on quadratic and interaction terms will be discussed in subsequent 

sections. 

4. Regression Tree of MOE 2 
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Figure 45.   Regression tree of MOE 2 with all factors 

A more intuitive analysis to get insights on the importance of factors on the 

response is by using the regression tree.  A regression tree with MOE 2 as the response 

and includes all factors (both decision and noise factors) is shown in Figure 45. 

It is apparent from the regression tree that speed is the single most important 

factor in determining mission accomplishment.  Out of 9,900 runs, swarms with speed 

settings less than 0.35m/s have a probability of 0.015 for mission accomplishment, while 

swarms with speed settings more than 0.35m/s have a probability of 0.838.  The next 

most important factor is the number of robots, indicating a probability of 0.961 of 

mission accomplishment if this is more than 65. Speed turns out to again be important 

even for this subset, since it determines the next split.  From the graph, deploying more 

than 65 units of robots with speeds of up to 0.575m/s will yield a probability of mission 

accomplishment of 0.989.  This conclusion is critical to decision makers who are 

concerned about making sure all IEDs are detected before the allowable time is up. 

Swarm with >=65 robots and 

speeds >= 0.575m/s will yield a 

probability of mission 

accomplishment of almost 99%  
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5. Regression of Time taken to Accomplish Mission (MOE 1) 

MOE 1, which is the time taken to accomplish mission, is an important indicator 

for search and detect missions in view of time constraints.  A commander may not have 

the full 30min at his disposal and may need more than just having the swarm complete its 

search successfully within this time.  MOE 1 is a continuous response variable, thus more 

analyses can be done on interactions that may provide further substantiation from 

previous findings (interactions are more challenging to deduce from logistic regressions). 
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Figure 46.   Regression of MOE 1 without noise factors 

A regression fit over the full 9,900 runs give an R-square of 0.806 with several 

interaction and quadratic terms shown in Appendix B.  As discussed earlier, it is desired 

to leave the noise factors out.  The model is narrowed down to just the decision factors, 

with a slight degradation in R-square to 0.777 shown in the Figure 46 (details in 

Appendix B). 
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The first inference made from this model (specifically, from the F-ratios) is that 

the most influential main effects for determining mission completion time are number of 

robots, sensor range and speed.  Det capab and DRT are significant only in interactions 

and quadratic terms.  Several interaction terms surfaced, including number of 

robots*sensor range, number of robots*det capab, sensor range*speed, sensor range*det 

capab, speed*det capab, speed*DRT, det capab*DRT.   Speed, det capab and DRT 

appear to have a quadratic effect on the response. 

In the experiments that consist of 9,900 runs for non-pheromone robots, only 

7,304 runs achieved mission accomplishment within 30min.  The regression in Figure 46 

takes into account of all the mission failures as well, which is recorded as having mission 

completion time of 30min.  This basis suggests that the model may be skewed by the 

30min ceiling imposed on the response of MOE 1 and hence unsuitable for missions that 

completed considerably less than 30min.  A new regression fit is performed on MOE 1 

conditioned on mission completion (7,304 points, see Figure 47). 
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Figure 47.   Conditional regression of MOE 1 without noise factors 

The conditioned regression model of MOE 1 gives a considerably worse R-square 

(0.619) as compared to the model regressed over the entire 9,900 runs (0.777).  However, 
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it can be seen that the Root Mean Square Error (RMSE) has dropped from 4.972 to 4.294.  

While the previous regression may explain a higher proportion of the variability in 

mission completion time with the mission failure observations in the model, the 

unexplained variability has decreased in the new regression.  A likely implication is that 

the previous model is only valid for missions with high completion times.  The model 

that gives a more accurate insight on MOE 1 is the latter, i.e., the one that leaves out the 

mission failure observations; but one has to bear in mind this only “tells the story” of the 

missions that are completed on time. 

A check on the signs of the main effects of the conditional regression model of 

MOE 1 shows consistency with the unconditional regression model.  The signs for the 

main effects for this regression and the logistic regression for mission accomplishment 

are also similar, implying that main effects have similar effect on MOE 1 (mission 

accomplishment time) and mission accomplishment (MOE 2).  The main effects, number 

of robots, sensor range and speed again play the main roles in terms of explaining the 

simulation’s behavior.  Fewer interaction terms show up as compared to the 

unconditional regression.  They are sensor range*speed and speed*det capab.  Quadratic 

terms that are significant include number of robots, speed and det capab.  The terms in 

this model can be thought of as being important in determining a short mission 

completion time, conditioned on a mission success.  This model is useful together with 

the deductions from the logistic regression that determine mission accomplishment.  It 

should not be used as a stand-alone model as it does not incorporate mission failures, 

though the main effects do have similar impact on both MOEs. 
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6. Regression tree of MOE 1 
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Figure 48.   Regression tree of MOE 1 with all factors 

A regression tree is performed on the data with MOE 1 as the response, shown in 

Figure 48.  It turns out that the number of robots is the most important factor in achieving 

a short mission completion time.  In fact, with more than 110 robots, the swarm can 

accomplish its mission with a mean of approximately 9min.  A lack in quantity of robots 

(<110) can be made up for by using a shorter TOT detector (det capab <88) and faster 

robots (speed at least 1.475m/s), but the mean mission time will be degraded to about 

20.9min if these speeds cannot be achieved.  In addition, the mean mission time can be 

further reduced for large robot swarms by using robots with a speed of more than 

0.625m/s and detection range of more than 4.75m. 
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Figure 49.   Conditional regression tree of MOE 1 with all factors 

It has been acknowledged that the simulation terminates when the mission time 

hits 30min.  Beyond this, the mission accomplishment time is recorded at the 30min 

ceiling even though there could be zero detections made.  As such, it is necessary to delve 

deeper to ensure this regression tree is not skewed by runs that saw mission failures.   An 

additional regression tree on MOE 1 is done in Figure 49, conditioned on mission 

accomplishment.   

It can be seen from this conditional regression tree that the most important factor 

for a short mission time is again the number of robots, followed by speed and sensor 

range.  The findings here are consistent with those from the unconditional regression tree 

for MOE 1, except that the number of robots here is lower (82 vs 110). 

7. Quadratic Terms Analyses 

a. Detector Capability (Time on Target) as a Quadratic Term 

Detector capability turns out as a quadratic term in at least one of the 

regressions performed.  For illustration of this behavior, the prediction profiler in Figure 

50 is taken from the logistic regression of MOE 2 with only decision factors.  When all 

factors are set approximately in the middle of the respective range, the probability of 

mission accomplishment approaches one as the speed of swarm increases, and as the 

detection capability approaches its middle setting.  Detection capability seems to have a 

quadratic behavior, i.e., the system does not perform so well when the detector requires a 
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low TOT or high TOT.  This is not expected as a detector with a low TOT should 

enhance the probability of mission success
7
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Figure 50.   Prediction profiler taken from logistic regression of MOE 2 without noise 

factors 

One possible explanation stems from the fact that a detector triggers into 

an inactive mode to reset itself whenever a detection is made.  If the TOT requirement is 

low, the detector will be triggered off frequently.  Due to the modeling limitation that the 

sensor responsible for detecting IEDs is also responsible for detecting other robots in the 

vicinity, the time taken for the detector to reset is also a duration when the robot is unable 

to sense fellow robots.  Hence, it will not repel from other robots for the duration of this 

triggered state.  This in turn lessens the ability to spread out for coverage.  Further 

investigations will be needed to confirm this theory.  It must also be noted that this 

observation should be substantiated further with evidence from other analyses, since the 

profiler shows only a snapshot of how the response vary with the factors. 

b. Speed as a Quadratic Term 
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Figure 51.   Prediction profiler from conditional regression of MOE 1 without noise 

factors 

A snapshot of the prediction profiler of the regression of MOE 1 with only 

decision factors is shown in Figure 51, which gives the graphical representation of how 

the response varies with each of the decision factors.  Although the number of robots 

                                                 
7
 Mission accomplishment and mission success are used interchangeably here. 
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shows up as being quadratic in the regression, this manifests as MOE 1 leveling off rather 

than fairing worse as it approaches its maximum value (possible quadratic behavior of 

number of robots is explained in Section 3 of Chapter V).  Speed and detector capability 

show degraded returns, rather than diminishing returns, via their quadratic behavior.  In 

the previous section, the logistic regression for MOE 2 also produced a quadratic detector 

capability term, with the ensuing discussion on possible detector TOT effect.  As for 

speed, its quadratic behavior can be explained more intuitively.  A swarm with slow 

robots will not help in achieving the coverage needed, but robots that are too fast may 

end up missing IEDs due to the TOT nature of the detector.  Therefore, some degradation 

in detection performance may be experienced with robots that are too fast. 

8. Interaction Terms Analyses 
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Figure 52.   Interaction plot taken from conditional regression of MOE 1 without noise 

factors 

Swarm robots 

with high speed 

capability are 

more robust to 

reduction in 

sensor range 

capability  

It is critical that swarm robots 

which need a high TOT requirement 

to detect IEDs are equipped with 

higher speed capability  
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Two-way interactions for the conditional regression of MOE 1 are plotted to 

explore the interaction effects between the decision factors as shown in Figure 52.  In the 

plot, only the significant interactions are shown as solid lines.  It can be observed for the 

sensor range and speed interaction, a swarm of robots with a high speed setting (2m/s) is 

more robust to a reduction in sensor range, as compared to having a low speed setting 

(0.225m/s).   

Between speed and detector capability, the interaction is not as straightforward.  

Speed does not seem to make much difference in enhancing mission completion time 

when the detector capability is at its lowest TOT setting, but for detectors that have high 

TOT, it is crucial that the swarm is capable of high speed (2m/s), else there may be a 

drastic deterioration of performance.  In addition, at high speeds, a detector with high 

TOT performs considerably better than a detector with a low TOT, with quadratic 

behavior in between.  This counter-intuitive behavior has been discussed in Section 7a of 

Chapter V on detector capability as a quadratic behavior. 

Contour plots are a useful way to explore interaction terms further as well as to 

depict the interaction behaviors better.  Contour plots involving interaction terms that 

have appeared more than once in different regression fits are constructed.  The complete 

series of contour plots done is in Appendix B.  The following (Figures 53-55), best 

viewed in color, are the more interesting ones.  Blue regions indicate short mission 

completion times, while red regions indicate long mission completion times. 
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Figure 53.   Contour plot for Number of Robots vs Detector Capability 
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Figure 53 shows that a large number of robots coupled with a capable 

detector (with a short TOT) work together for short mission completion times.  The 

response variable seems to go into a state of significant deterioration once the number of 

robots is less than 130 and the detector capability is more than 88 (=2.5sec TOT).  The 

quadratic behavior of detector capability can be observed here where the red region 

seems to intrude into the middle of two green/blue regions. 
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Figure 54.   Contour plot for Detector Capability vs Sensor Range 

Figure 54 suggests that the robotic swarm generally has a short-medium 

mission completion time when the sensor range is above 6m.  When the sensor range is 

less than 6m, then a high TOT degrades the effectiveness of the swarm tremendously.  

Some quadratic behavior can also be observed for TOT. 
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Figure 55.   Contour plot for Speed vs Detector Capability 
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Figure 55 shows speed as being slightly more important than sensor range.  

As long as speeds are over 1.2m/s, the mission can be completed in a short time as long 

as sensor range is over 2m.  The performance becomes more erratic when speed is less 

than 1.2m/s. 

9. Summary of Findings for Non-Pheromone Robots  

Non Pheromone Robots

Number of 

Robots

Sensor 

Range (m)

Speed 

(m/s)

Det Capab 

TOT (sec)

Det Reset 

Time (sec)

Mean Mission 

Time (min)

Std Dev Mission 

Time (min)

Setting 1 82 7.75 1.575 1.843 2.9 6.760 2.566

Setting 2 110 5.25 1.05 1.986 5.1 7.464 3.034

Setting 3 116 7 1.875 1.51 9.1 5.255 3.273

Setting 4 121 8.75 2 1.718 9.4 4.780 2.441

Setting 5 133 2.25 1.7 7.339 3.8 8.146 4.213

Setting 6 144 5 1.95 1.343 0.1 4.591 1.512

Setting 7 155 6.75 0.625 3.176 2.3 6.442 2.322

Setting 8 161 7.25 1.35 9.835 7.5 4.543 1.929

Setting 9 166 6.5 1.225 14.83 8.1 5.063 1.807

Setting 10 172 6.25 0.825 5.84 1.6 6.032 1.658

Setting 11 178 4.75 1.825 1.206 0.4 3.813 1.487

Setting 12 194 9.5 0.7 1.422 4.4 5.572 2.025  
Table 4.   Swarm settings for non-pheromone robots that produce 100% mission 

accomplishments 

Table 4 shows the design points that produce 100% mission accomplishment for 

all 100 replications.  This gives a direct reference as to which settings for the robot 

swarm are likely to yield mission completion times within the 30min, as well as how fast 

(on average) the mission will be completed.  The standard deviation of mission 

completion time is also provided to assist in understanding the range of potential 

outcomes. 
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Figure 56.   Parallel plot of mission completion times of design points with 100% 

successful mission (blue and red lines are dummy lines for bounds) 

Another overview of the swarm settings with 100% mission accomplishment is 

shown in the parallel plot in Figure 56.  It can be seen that the number of robots and 

speed clearly have a minimum threshold for the occurrence of these responses.  Sensor 

range has a minimum threshold as well, except for one particular instance with a low 

sensor range setting that was made up for by having good speed and a large number of 

robots. 

In summary, the behaviors and impacts of various decision factors on the 

performance of the non-pheromone robots has been explored.  It would be misleading to 

propose optimal factor setting levels, as the settings will only be good for a swarm with 

this type of algorithm for movement and this type of routine in detection.  The main 

qualitative conclusion drawn is that number of robots, sensor range and speed are the 

three main decision factors.  It is also observed that one has to be wary of possible 

quadratic effects of number of robots, speed and TOT on the performance of the swarm.  
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Earlier in this section, it is also determined that instances of drastic failures where very 

few IEDs are detected are attributed to low speed settings.  In addition, it is important to 

realize that while some factors seem to be more forgiving and can be made up for by 

having other factors at their high levels, the number of robots and speed have a minimum 

threshold that must be crossed before the swarm becomes reliable.  It turns out that these 

thresholds are realistic levels from the perspective of currently available technologies. 

Further analysis using clustering and outlier techniques are performed and are 

found to agree with the findings here.  Details can be found in Appendix C. 

B. PHEROMONE ROBOTS 

There are two aspects that are of interest for the pheromone robots.  First and 

foremost, it is essential to determine whether swarm robots using virtual pheromones as a 

shared memory map are more effective than swarm robots without this capability.  The 

second is whether the terms that explain the behavior of the MOEs for the pheromone 

robots change after the incorporation of two new decision factors and one new noise 

factor.  The following analyses will focus on these aspects. 

1. Overview of MOEs 
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Figure 57.   Distribution of MOE 1 (conditioned on mission accomplishment) 

It can be seen that the time to accomplish the mission (given the mission is 

accomplished under 30min) is lower than that of the non-pheromone robot case.  The 

mean time to complete mission is now 8.55min, down from 10.26min previously (seen in 

Figure 57). 
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Figure 58.   Distribution of MOE 2 

The probability of mission accomplishment for pheromone robots has also 

improved, up from 0.738 to 0.831 (seen in Figure 58).  This difference of 0.0929 (roughly 

12%) is input into a two-sample proportion test to see if it is significantly different. 
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Figure 59.   Two-sample proportion test of MOE 2 

It can be seen from Figure 59 that MOE 2 for pheromone robots is statistically 

better than the non-pheromone robots, as the power approaches 1 at a sample size of 

around 1,600 (we have a sample size of 19,800). 
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Figure 60.   Distribution of MOE 3 
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The distribution of MOE 3 for the pheromone robots (seen in Figure 60) also 

shows evidence that the performance is enhanced; the mean number of IEDs detected is 

up from 9.15 to 9.41.  Even more interesting, the number of observations does not spike 

at zero IED detections, unlike the non-pheromone robots.  In another words, there is no 

clear “falling off the cliff” phenomenon here where drastic failures occur for a particular 

setting with the incorporation of pheromones.  

2. Logistic Regression of MOE 2 (over Non-Pheromone and Pheromone 

Robots) 

Difference

Full

Reduced

Model

  7392.851

  2932.568

 10325.418

-LogLikelihood

     29

DF

 14785.7

ChiSquare

  0.0000

Prob>ChiSq

RSquare (U)

Observations (or Sum Wgts)

 0.7160

  19800

Converged by Objective

Whole Model Test

 

No of Robots

Sensor Range(m)

Speed(m/s)

Det Capab

Det Reset Time(sec)

Repel Friends

Repel Cover

Precision Movt

Terrain{2-1&0}

Terrain{1-0}

Pheromones

No of Robots*Speed(m/s)

No of Robots*Pheromones

Sensor Range(m)*Repel Friends

Sensor Range(m)*Pheromones

Speed(m/s)*Det Reset Time(sec)

Speed(m/s)*Repel Cover

Speed(m/s)*Terrain{1-0}

Speed(m/s)*Pheromones

Det Capab*Pheromones

Det Reset Time(sec)*Precision Movt

Det Reset Time(sec)*Pheromones

Repel Cover*Terrain{2-1&0}

Repel Cover*Pheromones

Precision Movt*Pheromones

No of Robots*No of Robots

Sensor Range(m)*Sensor Range(m)

Speed(m/s)*Speed(m/s)

Det Capab*Det Capab

Source

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

Nparm

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

DF

405.790403

 489.22281

325.663591

32.4230776

0.15599327

0.98408813

 78.778362

 41.662432

296.438864

 84.733939

126.810876

78.6039014

40.1600689

  10.13825

5.83287744

12.1049385

122.971429

15.6329995

25.0221393

18.6958895

18.3857875

7.02562627

4.60974412

9.50280042

12.4647697

20.0008211

27.7759583

60.5034383

 12.183032

Wald ChiSquare

  0.0000

  0.0000

  0.0000

  0.0000

  0.6929

  0.3212

  0.0000

  0.0000

  0.0000

  0.0000

  0.0000

  0.0000

  0.0000

  0.0015

  0.0157

  0.0005

  0.0000

  0.0001

  0.0000

  0.0000

  0.0000

  0.0080

  0.0318

  0.0021

  0.0004

  0.0000

  0.0000

  0.0000

  0.0005

Prob>ChiSq

Effect Wald Tests

 
Figure 61.   Logistic regression of MOE 2 over non-pheromone and pheromone robots 

It can be seen from Figure 61 that the binary predictor variable “pheromones" 

turns out to be a significant main effect in the model when regressed over the entire data 
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set.  From this and the distribution plots, it can be inferred that virtual pheromone 

capability makes a difference in determining mission accomplishment.  This fit gives an 

R-square of 0.716. 

Now that the impact of pheromone capability is established, it is necessary to 

further explore the pheromone capable robots. 

3. Logistic Regression of MOE 2 for Pheromone Robots 
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Figure 62.   Logistic regression of MOE 2 without noise factors for pheromone robots 

The logistic regression for MOE 2 of the pheromone robots produces a model 

(seen in Figure 62) that is relatively simpler than that for the non-pheromone robots.  

With virtual pheromones incorporated, two decision factors are introduced, namely 

pheromone sensor range and pheromone persistence.  Many of the interaction and 

quadratic terms of the initial five decision factors do not appear in this model.  This is due 

to the behavior being dominated by the effects of virtual pheromones, such that the 

swarm has become more robust to small interactions between other decision factors.  

This is a key impact that the virtual pheromones are making to the system.  It can be seen 

that sensor range, speed, pheromone sensor range are the main effects that explain most 

part of the variability in performance.  Speed and pheromone persistence appear to have 

significant interaction as well. 
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4. Conditional Regression of MOE 1 for Pheromone Robots  
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Figure 63.   Regression of MOE 1 without noise factors for pheromone robots 

(conditioned on mission accomplishment) 

With the conditional regression of MOE 1, more interaction terms show up in the 

model (see Figure 63).  An attempt is then made to simplify the model in Figure 64.  
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Figure 64.   Simplified regression of MOE 1 without noise factors for pheromone 

robots (conditioned on mission accomplishment) 

It is found that the R-square of the regression does not degrade by much when the 

model is simplified by taking out all interaction terms (0.669).  It shows that the number 

of robots, speed and sensor range remain as the three main effects, with the number of 

robots and speed showing up as quadratic terms.  The explanation for the number of 

robots being quadratic is as before, i.e., overcrowding hinders robots to move around 

because of inherent repulsion from one another.  This phenomenon is more pronounced 

in the pheromone robots case because every robot leaves behind a trail that other robots 

repel.  When the entire area of operations is overcrowded with robots and their trails, it 

becomes an environment that discourages movement and in turn, multiple unique 

detections.  Finally, it can be observed that the pheromone-related factors do not appear 

to influence the response substantially, though we have established earlier on that the 

presence of pheromones is significant in the model.    
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5. Regression Tree of MOE 2 for Pheromone Robots 
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Figure 65.   Regression tree of MOE 2 for pheromone robots 

The regression tree of MOE 2 for the pheromone robots shows speed as being the 

most important factor, followed by the number of robots as shown in Figure 65.  It can be 

seen that for a swarm of more than 65 robots and speeds of more than 0.35m/s, the 

probability of mission accomplishment is almost 100%.  With the incorporation of 

pheromones, the requirements for other decision factors seem to be less stringent. 

6. Regression Tree of MOE 2 (over Non-Pheromone and Pheromone 

Robots) 
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Figure 66.   Regression tree of MOE 2 for non-pheromone and pheromone robots 
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As expected, in a regression tree over the entire data set as shown in Figure 66, 

speed turns out to be the most important factor in determining mission accomplishment 

followed by the number of robots.  The importance of virtual pheromones then kicks in 

“across the board,” suggesting that it provides a boost in performance for the robot 

swarm for all cases. 

7. Summary of Findings for Pheromone Robots 

Pheromone Robots

Number of 

Robots

Sensor 

Range (m)

Speed 

(m/s)

Det Capab 

TOT (sec)

Det Reset 

Time (sec)

Pheromone 

Sensor 

Range (m)

Pheromone 

Persistence  

(sec)

Mean 

Mission 

Time 

(min)

Std Dev 

Mission 

Time 

(min)

Setting 1 71 8 0.575 1.041 6.6 4 40.9 11.816 4.139

Setting 2 82 7.75 1.575 1.843 2.9 4.25 94.4 5.914 2.680

Setting 3 88 8.25 0.4 1.092 6.3 6.75 18.4 11.222 4.087

Setting 4 93 8.5 1.65 1.843 4.1 7.25 100 4.365 2.249

Setting 5 110 5.25 1.05 1.986 5.1 5.25 55 5.571 1.745

Setting 6 116 7 1.875 1.51 9.1 9.5 26.9 4.045 1.626

Setting 7 121 8.75 2 1.718 9.4 1.5 29.7 4.414 1.653

Setting 8 133 2.25 1.7 7.339 3.8 3.75 91.6 5.783 2.097

Setting 9 138 3 0.525 2.151 7.2 6.25 15.6 10.312 4.099

Setting 10 144 5 1.95 1.343 0.1 0.5 35.3 4.460 1.503

Setting 11 149 2.5 1.525 9.835 3.5 6.5 69.1 5.161 2.022

Setting 12 155 6.75 0.625 3.176 2.3 2.25 12.8 5.472 1.656

Setting 13 161 7.25 1.35 9.835 7.5 2 60.6 3.548 1.061

Setting 14 166 6.5 1.225 14.83 8.1 7.75 57.8 4.018 1.255

Setting 15 172 6.25 0.825 5.84 1.6 8 21.3 5.086 1.490

Setting 16 178 4.75 1.825 1.206 0.4 9.75 43.8 3.413 1.217

Setting 17 183 10 0.35 1.608 4.7 4.75 85.9 8.732 2.822

Setting 18 189 0.75 1 1.271 6.9 1.75 71.9 6.647 1.913

Setting 19 194 9.5 0.7 1.422 4.4 5.5 77.5 3.929 1.025

Setting 20 200 1.5 0.925 1.271 8.8 7 63.4 6.544 2.532  
Table 5.   Swarm settings for pheromone robots that produce 100% mission 

accomplishments 

Compared to the non-pheromone robots, eight more settings give 100% mission 

accomplishment (as shown in Table 5).  Pheromone sensor range and pheromone 

persistence seem to reveal no patterns in ranges or thresholds that must be met. 
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Figure 67.   Parallel plot of mission completion times of design points with 100% 

successful mission (blue and red lines are dummy lines for bounds) 

The parallel plot in Figure 67 shows that the minimum thresholds for each factor 

setting seem to have relaxed as compared to the non-pheromone robots.  Some design 

points with 100% mission accomplishments happen when sensor range is quite close to 

its lower bound.  The number of robots remains as the only factor that strongly suggests a 

minimum threshold.  
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Figure 68.   Effects of pheromones on different levels of terrain 

From the comparison of the distribution plots of MOE 2 broken down to the 

different levels of terrain in Figure 68, it is clear that virtual pheromones make a 

difference in all types of terrain in terms of effectiveness enhancement.  In fact, as the 

terrain gets more challenging, the incorporation of virtual pheromones makes a larger 

difference. 

Overall, the incorporation of virtual pheromones as part of the swarm robot 

capability improves the effectiveness of the swarm by about 12% in terms of mission 

completion.  The main factors that influence the system the most remain as number of 

robots, sensor range and speed, with indications of number of robots and speed being 

quadratic.  It is interesting that in general, the two new pheromone-related decision 

factors are not significant in the regression as main effects, which implies their presence 

alone is enough to make a difference, regardless of their setting levels.  Virtual 

pheromones enhance the robustness of the swarm by making it less sensitive to 

interactions between various decision factors, and the presence of virtual pheromones 
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tends to mitigate performance degradations that occur when other decision factors are set 

at low levels.  In general, the findings agree with those from the analysis using clustering 

and outlier techniques, in which the details are laid out in Appendix C. 
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VI. LIMITATIONS, CONCLUSIONS AND FUTURE WORK 

A. LIMITATIONS OF MODELING MOVEMENT AND DETECTION 

The methodology in the behavior and detection by the swarm robots can be 

summarized in the following. 

The movement and behavioral modeling is analogous to Batalin’s Molecular 

approach: 

• Repel from other robots to attain spread; 

• Avoid obstacles; and  

• Continuous movement and coverage is the desired emergent behavior. 

The biggest limitation in modeling the movement and behavior of a swarm is how 

MANA performs the movement algorithm, which is hard-coded into the software.  In 

swarm robotics, movements of robots are more definite and deliberate.  There is a pre-

defined reaction for each encounter with a fellow robot or an obstacle.  For instance, this 

reaction could be turning 90 degrees to the right every time it senses and obstacle, or 

turning 180 degrees every time it senses another robot.  When no objects are present 

within its sensor range, the robot simply moves in a straight line.   

The movement algorithm in MANA does not work in this way.  Rather, it models 

each agent (robot) deciding on its next move at every time step (Gill and Greiger, 2003).  

It calculates the penalty incurred of all nine possible moves (including staying put) it can 

make at every time step and eventually chooses the one with the least penalty.  If there is 

a tie, it will be stochastically broken by means of a generated random number.  

Occurrences of ties can be partially controlled by the Precision Move parameter.  A 

larger Precision Move value allows more ties to happen and hence the movement will be 

less predictable and vice versa.  The problem lies in instances when a robot has no 

encounter with any objects.  In practice, a robot moves in a straight line when there are 

no externalities.  Unfortunately in MANA, this is when the movement of the robot is 

most unpredictable because the penalties incurred in all the possible moves are exactly 

the same and hence will be determined randomly.  It is not possible to model a robot 
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moving in a straight line unless waypoints are given.  Waypoints will have to be pre-

planned by the operator, which goes against the principles of autonomous behavior of 

swarm robots.   

One way that is used to mitigate this is by activating the Navigate Obstacles 

(momentum) option in MANA, which encourages the robot to continue moving in its 

current direction.  It is observed that with this option unchecked, the robot does what 

some term as a “random walk” and does not move away much from its original location 

when there are no objects in its surroundings.  However, this option, as the name speaks, 

is designed to assist the agents in navigating around obstacles.  For example, if a robot 

encounters a wall, it will keep going along the wall until it ends so that it can turn 

towards where it originally desired to go.  MANA does some manipulation to the penalty 

function so the agent incurs a lower penalty if it keeps moving in the current direction.  

When this option is checked, the robot tends to sustain better in moving in a general 

direction, but still significantly deviates from a straight line. 

Another limitation in the modeling robotic movement algorithms is priority.  The 

method of putting tasks in order of priority whenever there is a conflict of interest is 

fundamental to all robotic movement algorithms.  For example, Batalin’s robots perform 

obstacle avoidance as first priority, followed by repelling from other robots and then 

moving in a straight line from the last chosen direction until its sensors pick up 

something again.  Swarm robots are also typically programmed to stay within a certain 

distance from one another to prevent any from straying and losing contact.  In MANA, 

priorities cannot be assigned and restrictions cannot be imposed on distances between 

robots; every move takes into consideration of everything a robot senses.  A robot in 

reality will also have other parameters like refresh rates and lag time between sensor and 

actuator.  These are not captured in the agent based model.  Every time step, assumed to 

be 0.1sec in the model, the robot makes a movement choice.  This is not a good 

representation of the actual behavior. 

Despite the above limitations, MANA is able to replicate the desired emergent 

behavior quite well.  With the right combination of parameter settings and movement 

options based on Batalin’s algorithm principles, the agents exhibit the effects of spread, 
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coverage, and ongoing patrol throughout the area so that multiple robots detect different 

IEDs.  This is ultimately what one strives to get out of swarm robots in a search and 

detect mission.  

The detection methodology is based approximately on how a FIDO detector 

works: 

• The detector is in continuous active state; 

• The IED is detected with a probability based on a time on target (TOT); 

• The detector triggers into a dormant state for a fixed duration as the device 

takes time to reset back to its baseline; 

• The coordinates where a detection occurs is sent to operator (not modeled); 

and 

• The mission ends in 30min. 

First and foremost, it should be highlighted that there are many ways that a 

detector can be modeled.   The detector modeled is switched on from the beginning and 

only triggers into a dormant state when it has just made a detection.  This is based on the 

FIDO. Other detection routines are possible, such as detectors that are good for only one 

detection, or detectors that require more than a few positive samples to acknowledge a 

detection.  A detector may not have a fixed TOT, but instead the TOT may be dependent 

on the explosive vapor level emanated from the IED.   

Furthermore, many enhancements can be introduced to the swarm to increase its 

effectiveness.  The ability for a robot (that just detected a target) to get neighboring 

robots to swarm towards a target and interrogate it further is one way to improve multiple 

detections.  However, this requires some form of communication ability, e.g., emitting an 

acoustic chirping to attract other robots when a detection is made.  Another possibility is 

a scenario where robots use a primary base detector that is on continuously, and a more 

powerful detector as a secondary means used to interrogate the target further when the 

base detector picks up any explosive content.   This requires the robot to stop in its track 

when the base detector is triggered; the secondary detector will then have to come online 
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to confirm the detection.  In this case, there may not be a requirement for multiple unique 

detections from different robots.  This enhancement would require some modification to 

the models in this thesis.   

The bottom line is, although every effort is made to setup the robot and detector 

routine as a general representation of how a robot swarm is envisaged to carry out a 

search and detect mission, the insights and findings are applicable only to this setup.  One 

should not directly draw the same conclusions on the impact of the decision factors and 

the effect of various settings if the setup of the robots and detector differ from the one in 

this research.  Modifications to the model will be necessary to get more accurate insights. 

B. OTHER LIMITATIONS OF THE MODELS 

There are other aspects of the models in this thesis that limit the extent of their 

generalization to the real world.  As mentioned in the analysis section, one aspect that 

could not be differentiated was the sensor suite of the robot.  The agents in MANA are 

limited to one set of sensor specification, when in practice up to three different types of 

sensors are equipped on the robot.  Ideally, the IED detector should be separately 

modeled from other sensors, including visual and acoustic sensors that detect the 

presence of other robots as well as obstacles.  One implication in the model is that both 

the IED detector and its sensor suite are triggered to the dormant state whenever a 

detection is made, which is not what is desired.   

Another limitation is with the modeling of pheromone sensor range.  Pheromone 

sensor range is not influenced by line of sight in the model.  This is not realistic because 

pheromone sensors should not be able to detect through walls.  In the simulation, because 

of the way it is modeled, there can be instances where the pheromone sensors pick up 

pheromone trails left behind by another robot that is on the other side of the wall.   

Next, the attempt to quantify a difficulty level for different terrains is not a 

straightforward issue.  In the terrain files, additional obstacles are added to the area of 

operations and this is quantified to be the “next level of difficulty.”  This is a subjective 

approach in quantifying levels of terrain difficulty, and by no means complies to any 

standards.  Another approach could be to zoom down on specific types of terrain of 
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interest, collect some data about robot mobility over these terrains, and convert them into 

a terrain files for the simulation to be run on. 

One aspect that the models did not explicitly capture is the communication of 

location information back to the operator whenever a detection is made by a swarm robot.  

This is a key capability that a swarm robot must be equipped with, and the timeliness, 

accuracy, and reliability of this communication should be captured as part of the model 

for a more complete analysis.  It should not just be assumed as a given. 

C. CONCLUSIONS 

The objectives of this research are to explore ground swarm robotics using an 

agent based simulation approach, as well as to investigate how various decision and noise 

factors impact its effectiveness in a search and detect mission, in the hope of providing 

these insights to swarm robotics researchers and engineers to help realize this concept 

earlier.  A by-product of the modeling is the assessment of the feasibility of using agent 

based simulation in modeling swarm robotics.  Both objectives have been given the 

respective analysis.  There are no definite quantitative conclusions from this research but 

qualitative ones are aplenty.   

For a robot swarm to be effective on a search and detect mission and assuming 

the presumed movement and detection routine is adopted, speed appears to be the 

most vital factor that has a minimum threshold.  It is encouraging to note that the results 

seem to suggest that this minimum threshold required of speed is attainable from the 

perspective of modern day technology.  A robot that moves as fast as the Mini-Whegs
TM

 

seems to be sufficient to do the job.  There also seems to be a minimum required number 

of robots needed.  Results point to a minimum threshold of approximately 80 for a 50m 

by 50m area, but one should bear in mind that when tactics and initial dispositions of 

robots are manipulated with, the number of robots required will drop further.  Sensor 

range (or detector range) seems to have a minimum threshold, but the threshold becomes 

be less stringent and can be compensated by other factors with the incorporation of 

virtual pheromones.  As for the time on target and reset time aspect of the detector, they 

are not as critical as the other decision factors as a main effect, but do contribute via 

interactions with some other factors.  Last but not least, equipping swarm robots with 
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virtual pheromones not only improves the swarm’s effectiveness, but also enhances its 

robustness and reliability.  It is strongly recommended that virtual pheromones be 

incorporated as a capability of the swarm robot. 

D. FUTURE WORK 

Perhaps the most fitting follow-up to this research is to investigate the tactics, 

techniques, and procedures (TTPs) used in the deployment of a swarm.  The scenarios in 

this research limit the starting location of the robot swarm to one possibility.  Some test 

runs show that the spread and coverage are attained much faster when multiple starting 

locations were used.  One should bear in mind that while the operator could choose to 

split the swarm into many different starting locations in an effort to gain an initial spread 

of the robots, the choices might be limited by the circumstances of the situation. 

Experiments can be done to find the optimal robot density given other decision 

factors are fixed.  Some results have suggested that the number of robots may have a 

quadratic effect on the performance of the swarm.  In addition, there may be diminishing 

returns in the performance of the swarm as more robots are added to it given the area is 

fixed.  The mix of TTPs and the knowledge of optimal robot density could provide the 

operator some flexibility and options in the deployment of the swarm robots. 

Further versions of modeling swarm robots may consider overcoming the 

limitations of the model as stated.  Analysis can also be done to find out combinations of 

parameters that give robustness to the swarm such that slight deviations from those 

settings do not produce large degradations.  In addition, robot failures and redundancy are 

definitely fascinating characteristics to explore on swarm robotics.  One could model 

robot failures or trapped robots in the progress of the mission, and assess how sensitive or 

robust the robot swarm is to these perturbations.  External disruptions by hostile elements 

could also be modeled. 

Other agent based software can also be explored to validate how well they are 

suited to model swarm robotics.  For example, in MANA, priorities cannot be assigned 

and restrictions cannot be imposed on distances between robots, but this can easily done 

in Pythagoras, an agent based software platform developed by Northrop Grumman.  
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As mentioned before, the model is not complete without modeling the actual 

communication that takes place between the robots and the operator.  This is an 

additional aspect to consider that will reveal more insights on the factors within 

communications such as message accuracy, comms link capacity and comms latency. 

As for the design of experiment, it is recommended that future experiments 

explore more fidelity in terms of the design points since the simulations do not take a 

long time to run on the high performance computers.  The NOLH for an 8-11 factor gives 

33 design points, but a simple re-arrangement of columns in the matrix will yield new 

design points that can be explored later on for better resolution within the ranges of each 

factor (especially for contour plots and quadratic, interaction analyses).  On another note, 

some of the analyses were hampered due to the simulation end time ceiling imposed at 

30min.  Relaxing this time limit can be to let the simulation to keep running until all IEDs 

are detected (with very high probability) so that conditional regressions do not need to be 

performed, and a single MOE of mission accomplishment time will be sufficient for 

analyses. 

In a nutshell, agent based simulation is found to have huge potential as a means to 

investigate swarm robotics and obtain insights on the impact of various factors on the 

overall effectiveness.  Swarm robots produce much uncertainty in terms of its emergent 

behavior from multiple dynamic interactions, which is what agent based simulations were 

designed to examine.  With the incorporation of an efficient DOE and data farming 

methodologies, roboticists and engineers should consider leveraging on this tool to assist 

in the development and progress of swarm robots to be employed in the real world.  
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APPENDIX A. RUBY SCRIPT FOR EXTRACTING MOE 

def detection(target_set,target_id,detector_id,det_time,finalhash) 

  target_set[target_id]=Hash.new unless target_set.has_key?(target_id) 

  old_size=target_set[target_id].size 

  target_set[target_id][detector_id]=1 unless 

target_set[target_id].has_key?(detector_id) 

  if target_set[target_id].size == 3 && target_set[target_id].size != 

old_size 

    finalhash[target_id.to_i]=det_time.to_i 

  end 

end 

 

f=File.new("S37boutput.txt","w") 

d=File.open("C:/Documents and Settings/Terence Ho/My 

Documents/NPS/Thesis/"+\ 

"Maui Results August/S37b/S37b_29Sep_2006_09_29_06_54_54.csv","r") 

d.gets 

f<<"Index,Excursion,No of Robots,Sensor Range,Speed,Det Capab,Det Reset 

Time,"+\ 

"Repel Friends,Repel Cover,Precision Movt,Repel Pheromones,Pheromone 

Sensor Range,Pheromone Persistence,B Kill,Red Kill,B Goal,R Goal,Time 

Steps,"+\ 

"Sqd1Kill,Sqd2Kill,Sqd3Kill,Sqd1Inj,Sqd2Inj,Sqd3Inj,Tgt1,Tgt2,Tgt3,Tgt4

,Tgt5,Tgt6,"+\ 

"Tgt7,Tgt8,Tgt9,Tgt10"+"\n" 

 

Dir["C:/Documents and Settings/Terence Ho/My Documents/NPS/Thesis/Maui 

Results August"+\ 

"/S37b/m_detect/multidetect.*"].each do |currentFile| 

  File.open(currentFile,"r") do |infile| 

    target=Hash.new 

    final=Hash.new 

    while line = infile.gets do 

      values = line.chomp.split(/,/) 

      time = values[0] 

      if time.to_i > 10 

        detection(target,values[4],values[3],time,final) 

      end 

    end 

  final2=final.to_a 

  final3=final2.flatten #.values_at(1,3,5,7,9,11,13,15,17,19) 

  designPt=d.gets.chomp #unless 

d.gets.chomp.split[0]=="random_index,Excursion_Number,Squad" 

  f<<designPt + final3[1].to_s + "," + final3[3].to_s + "," + 

final3[5].to_s + "," + final3[7].to_s + \ 

  "," + final3[9].to_s + "," + final3[11].to_s + "," + final3[13].to_s 

+ "," + final3[15].to_s + \ 

  "," + final3[17].to_s + "," + final3[19].to_s + "\n" 

  end 

end 
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APPENDIX B. OTHER REGRESSIONS 

Difference

Full

Reduced

Model

 3772.6503

 1923.4977

 5696.1480

-LogLikelihood

     18

DF

7545.301

ChiSquare

  0.0000

Prob>ChiSq

RSquare (U)

Observations (or Sum Wgts)

 0.6623

   9900

Converged by Gradient

Whole Model Test

Lack Of Fit

Saturated

Fitted

Source

    80

    98

    18

DF

   41.9844

 1881.5133

 1923.4977

-LogLikelihood

83.96871

ChiSquare

0.3590

Prob>ChiSq

Lack Of Fit

 

Intercept

No of Robots

Sensor Range(m)

Speed(m/s)

Det Reset Time(sec)

Repel Friends

Repel Cover

Precision Movt

Terrain{2-1&0}

Terrain{1-0}

(No of Robots-110.061)*(Speed(m/s)-1.05152)

(No of Robots-110.061)*(Precision Movt-200.121)

(Speed(m/s)-1.05152)*(Repel Cover+30.1212)

(Speed(m/s)-1.05152)*Terrain{1-0}

(Det Reset Time(sec)-5.05152)*(Repel Friends+42.5152)

(Det Reset Time(sec)-5.05152)*(Precision Movt-200.121)

(No of Robots-110.061)*(No of Robots-110.061)

(Sensor Range(m)-5.25758)*(Sensor Range(m)-5.25758)

(Speed(m/s)-1.05152)*(Speed(m/s)-1.05152)

Term

7.54104657

 -0.050358

-0.5680034

-3.8426623

-0.0558565

-0.0162937

-0.0695414

-0.0182713

0.60291883

0.34320854

 0.0413949

 -0.000103

-0.1177821

0.33400786

 -0.035501

-0.0017155

0.00036857

0.13218111

3.01794056

Estimate

0.9633634

0.0019583

0.0272916

0.2219552

0.0281064

0.0074215

0.0082295

0.0019818

0.0437775

0.0535031

0.0049566

0.0000437

0.0132347

0.1257864

0.0037312

0.0005686

0.0000411

0.0150334

0.5657881

Std Error

 61.27

661.29

433.16

299.73

  3.95

  4.82

 71.41

 85.00

189.68

 41.15

 69.75

  5.56

 79.20

  7.05

 90.53

  9.10

 80.41

 77.31

 28.45

ChiSquare

<.0001

<.0001

<.0001

<.0001

0.0469

0.0281

<.0001

<.0001

<.0001

<.0001

<.0001

0.0184

<.0001

0.0079

<.0001

0.0026

<.0001

<.0001

<.0001

Prob>ChiSq

For log odds of 0/1

Parameter Estimates

 

No of Robots

Sensor Range(m)

Speed(m/s)

Det Reset Time(sec)

Repel Friends

Repel Cover

Precision Movt

Terrain{2-1&0}

Terrain{1-0}

No of Robots*Speed(m/s)

No of Robots*Precision Movt

Speed(m/s)*Repel Cover

Speed(m/s)*Terrain{1-0}

Det Reset Time(sec)*Repel Friends

Det Reset Time(sec)*Precision Movt

No of Robots*No of Robots

Sensor Range(m)*Sensor Range(m)

Speed(m/s)*Speed(m/s)

Source

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

Nparm

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

DF

661.291948

433.155271

299.732503

3.94946656

 4.8200679

71.4073771

85.0038992

189.677371

 41.148957

69.7479728

5.56067945

 79.200507

7.05091918

90.5263952

9.10265108

80.4114366

77.3074951

28.4520572

Wald ChiSquare

  0.0000

  0.0000

  0.0000

  0.0469

  0.0281

  0.0000

  0.0000

  0.0000

  0.0000

  0.0000

  0.0184

  0.0000

  0.0079

  0.0000

  0.0026

  0.0000

  0.0000

  0.0000

Prob>ChiSq

Effect Wald Tests

 
 

Figure 69.   Logistic regression of MOE 2 with all factors for non-pheromone robots 
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Difference

Full

Reduced

Model

 3550.7055

 2145.4425

 5696.1480

-LogLikelihood

     19

DF

7101.411

ChiSquare

  0.0000

Prob>ChiSq

RSquare (U)

Observations (or Sum Wgts)

 0.6234

   9900

Converged by Gradient

Whole Model Test

Lack Of Fit

Saturated

Fitted

Source

     13

     32

     19

DF

  118.8872

 2026.5553

 2145.4425

-LogLikelihood

237.7744

ChiSquare

<.0001

Prob>ChiSq

Lack Of Fit

 

Intercept

No of Robots

Sensor Range(m)

Speed(m/s)

Det Capab

Det Reset Time(sec)

(No of Robots-110.061)*(Sensor Range(m)-5.25758)

(No of Robots-110.061)*(Speed(m/s)-1.05152)

(No of Robots-110.061)*(Det Capab-86.1212)

(No of Robots-110.061)*(Det Reset Time(sec)-5.05152)

(Sensor Range(m)-5.25758)*(Speed(m/s)-1.05152)

(Sensor Range(m)-5.25758)*(Det Capab-86.1212)

(Sensor Range(m)-5.25758)*(Det Reset Time(sec)-5.05152)

(Speed(m/s)-1.05152)*(Det Capab-86.1212)

(Speed(m/s)-1.05152)*(Det Reset Time(sec)-5.05152)

(Det Capab-86.1212)*(Det Reset Time(sec)-5.05152)

(No of Robots-110.061)*(No of Robots-110.061)

(Sensor Range(m)-5.25758)*(Sensor Range(m)-5.25758)

(Det Capab-86.1212)*(Det Capab-86.1212)

(Det Reset Time(sec)-5.05152)*(Det Reset Time(sec)-5.05152)

Term

0.31880694

-0.0458664

-0.5745866

-3.6164504

0.09045586

-0.0615535

-0.0078685

-0.3177235

-0.0123198

-0.0174263

1.44554492

0.12644839

0.94845113

0.70075613

-1.4562294

-0.0374135

-0.0003776

-0.2544672

0.07056569

0.11754178

Estimate

1.5801656

 0.001989

0.0360781

0.1861493

0.0158611

0.0529029

0.0022949

0.0375808

 0.001846

0.0034005

 0.241651

0.0160112

  0.10862

0.1655566

0.2025899

0.0148923

0.0001537

0.0518858

0.0131823

0.0478356

Std Error

  0.04

531.76

253.64

377.44

 32.52

  1.35

 11.76

 71.48

 44.54

 26.26

 35.78

 62.37

 76.24

 17.92

 51.67

  6.31

  6.04

 24.05

 28.66

  6.04

ChiSquare

0.8401

<.0001

<.0001

<.0001

<.0001

0.2446

0.0006

<.0001

<.0001

<.0001

<.0001

<.0001

<.0001

<.0001

<.0001

0.0120

0.0140

<.0001

<.0001

0.0140

Prob>ChiSq

For log odds of 0/1

Parameter Estimates

 

No of Robots

Sensor Range(m)

Speed(m/s)

Det Capab

Det Reset Time(sec)

No of Robots*Sensor Range(m)

No of Robots*Speed(m/s)

No of Robots*Det Capab

No of Robots*Det Reset Time(sec)

Sensor Range(m)*Speed(m/s)

Sensor Range(m)*Det Capab

Sensor Range(m)*Det Reset Time(sec)

Speed(m/s)*Det Capab

Speed(m/s)*Det Reset Time(sec)

Det Capab*Det Reset Time(sec)

No of Robots*No of Robots

Sensor Range(m)*Sensor Range(m)

Det Capab*Det Capab

Det Reset Time(sec)*Det Reset Time(sec)

Source

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

Nparm

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

   1

DF

531.756014

253.643246

377.435057

32.5241107

 1.3537723

11.7558749

 71.477179

44.5368248

26.2626556

 35.783768

62.3701127

76.2448241

17.9159998

51.6682806

 6.3114926

6.03662282

24.0528627

28.6551384

6.03785929

Wald ChiSquare

  0.0000

  0.0000

  0.0000

  0.0000

  0.2446

  0.0006

  0.0000

  0.0000

  0.0000

  0.0000

  0.0000

  0.0000

  0.0000

  0.0000

  0.0120

  0.0140

  0.0000

  0.0000

  0.0140

Prob>ChiSq

Effect Wald Tests

 
Figure 70.   Logistic regression of MOE 2 without noise factors for non-pheromone 

robots 
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4.655037

15.43701

    9900

Summary of Fit

Model

Error

C. Total

Source

  37

9862

9899

DF

  885365.8

  213703.3

 1099069.2

Sum of Squares

 23928.8

    21.7

Mean Square

1104.269

F Ratio

  0.0000

Prob > F

Analysis of Variance

 

Intercept

No of Robots

Sensor Range(m)

Speed(m/s)

Det Capab

Det Reset Time(sec)

Repel Friends

Repel Cover

Precision Movt

Terrain{0&1-2}

Terrain{0-1}

(No of Robots-110.061)*(Speed(m/s)-1.05152)

(No of Robots-110.061)*(Det Capab-86.1212)

(No of Robots-110.061)*(Repel Friends+42.5152)

(No of Robots-110.061)*(Repel Cover+30.1212)

(No of Robots-110.061)*(Terrain{0&1-2}-0.33333)

(No of Robots-110.061)*Terrain{0-1}

(Sensor Range(m)-5.25758)*(Det Capab-86.1212)

(Sensor Range(m)-5.25758)*(Repel Cover+30.1212)

(Speed(m/s)-1.05152)*(Det Reset Time(sec)-5.05152)

(Speed(m/s)-1.05152)*(Repel Cover+30.1212)

(Speed(m/s)-1.05152)*(Precision Movt-200.121)

(Speed(m/s)-1.05152)*Terrain{0-1}

(Det Capab-86.1212)*(Det Reset Time(sec)-5.05152)

(Det Capab-86.1212)*(Terrain{0&1-2}-0.33333)

(Det Capab-86.1212)*Terrain{0-1}

(Det Reset Time(sec)-5.05152)*(Repel Cover+30.1212)

(Det Reset Time(sec)-5.05152)*(Precision Movt-200.121)

(Repel Friends+42.5152)*(Terrain{0&1-2}-0.33333)

(Repel Friends+42.5152)*Terrain{0-1}

(Repel Cover+30.1212)*Terrain{0-1}

(Precision Movt-200.121)*Terrain{0-1}

(Sensor Range(m)-5.25758)*(Sensor Range(m)-5.25758)

(Speed(m/s)-1.05152)*(Speed(m/s)-1.05152)

(Det Capab-86.1212)*(Det Capab-86.1212)

(Det Reset Time(sec)-5.05152)*(Det Reset Time(sec)-5.05152)

(Repel Cover+30.1212)*(Repel Cover+30.1212)

(Precision Movt-200.121)*(Precision Movt-200.121)

Term

26.568224

-0.119816

-1.415914

-8.511497

0.1423648

-0.036452

-0.004215

-0.055508

-0.015754

-0.961914

-0.626704

-0.342027

-0.072291

0.0403751

-0.014354

0.0068972

0.0035203

-1.397037

0.0611827

 6.414086

 -1.46475

-0.144529

-0.360007

0.2761391

  0.04333

 0.016927

-0.265418

-0.022081

0.0170581

0.0142564

0.0097091

0.0019233

-1.484502

43.909967

0.2819723

0.6939603

0.0688716

-0.006817

Estimate

0.759206

0.000907

0.018358

0.084404

0.007798

0.017141

0.005027

 0.00555

0.000805

0.049623

  0.0573

0.062484

 0.00357

0.004009

0.000919

0.000927

 0.00107

 0.10405

  0.0052

0.487048

0.078219

0.011449

 0.10129

0.033992

0.006956

0.008032

0.019033

0.001125

0.004738

0.005474

0.004809

0.000963

0.142586

2.930587

0.015814

0.193006

0.004789

0.000626

Std Error

 34.99

  -132

-77.13

-100.8

 18.26

 -2.13

 -0.84

-10.00

-19.57

-19.38

-10.94

 -5.47

-20.25

 10.07

-15.62

  7.44

  3.29

-13.43

 11.77

 13.17

-18.73

-12.62

 -3.55

  8.12

  6.23

  2.11

-13.94

-19.64

  3.60

  2.60

  2.02

  2.00

-10.41

 14.98

 17.83

  3.60

 14.38

-10.88

t Ratio

<.0001

0.0000

0.0000

0.0000

<.0001

0.0335

0.4018

<.0001
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0.0010
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<.0001
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0.0003

0.0092

0.0435
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0.0003
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Prob>|t|

Parameter Estimates
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Det Reset Time(sec)
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  1
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  1
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  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

Nparm

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1
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Figure 71.   Regression of MOE 1 with all factors for non-pheromone robots 
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Figure 72.   Regression of MOE 1 without noise factors for non-pheromone robots 

 

10

20

30

T
im

e
 t

o
 A

c
c
o
m

p
 M

is
s
io

n
 (

m
in

) 
A

c
tu

a
l

10 20 30

Time to Accomp Mission (min) Predicted

P0.0000 RSq=0.62 RMSE=4.2944

Actual by Predicted Plot

RSquare

RSquare Adj

Root Mean Square Error

Mean of Response

Observations (or Sum Wgts)

0.618952

0.618272

4.294442

10.26101

    7304

Summary of Fit

Model

Error

C. Total

Source

  13

7290

7303

DF

 218382.46

 134443.88

 352826.34

Sum of Squares

 16798.7

    18.4

Mean Square

910.8794

F Ratio

  0.0000

Prob > F

Analysis of Variance

  

Intercept

No of Robots

Sensor Range(m)

Speed(m/s)

Det Capab

Det Reset Time(sec)

(No of Robots-126.004)*(Det Reset Time(sec)-5.0376)

(Sensor Range(m)-5.71985)*(Speed(m/s)-1.16514)

(Speed(m/s)-1.16514)*(Det Capab-85.3449)

(No of Robots-126.004)*(No of Robots-126.004)

(Sensor Range(m)-5.71985)*(Sensor Range(m)-5.71985)

(Speed(m/s)-1.16514)*(Speed(m/s)-1.16514)

(Det Capab-85.3449)*(Det Capab-85.3449)

(Det Reset Time(sec)-5.0376)*(Det Reset Time(sec)-5.0376)

Term

26.396328

-0.065682

-0.963412

-4.647512

-0.036194

0.1122617

 0.002669

0.5007533

-0.409879

0.0008048

 0.114081

 11.16551

0.0320816

-0.222202

Estimate

1.203779

0.002707

0.032116

0.221254

0.013054

0.024847

0.000723

0.080371

0.057711

0.000089

0.028055

0.770526

0.002529

0.029826

Std Error

 21.93

-24.26

-30.00

-21.01

 -2.77

  4.52

  3.69

  6.23

 -7.10

  9.08

  4.07

 14.49

 12.68

 -7.45

t Ratio

<.0001

<.0001

<.0001

<.0001

0.0056

<.0001

0.0002

<.0001

<.0001

<.0001

<.0001

<.0001

<.0001

<.0001

Prob>|t|

Parameter Estimates

 

No of Robots

Sensor Range(m)

Speed(m/s)

Det Capab

Det Reset Time(sec)

No of Robots*Det Reset Time(sec)

Sensor Range(m)*Speed(m/s)

Speed(m/s)*Det Capab

No of Robots*No of Robots

Sensor Range(m)*Sensor Range(m)

Speed(m/s)*Speed(m/s)

Det Capab*Det Capab

Det Reset Time(sec)*Det Reset Time(sec)

Source

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

Nparm

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

  1

DF

 10857.346

 16595.806

  8137.155

   141.772

   376.473

   251.337

   715.918

   930.284

  1519.470

   304.939

  3872.538

  2966.695

  1023.599

Sum of Squares

588.7218

899.8805

441.2239

  7.6874

 20.4136

 13.6284

 38.8195

 50.4431

 82.3908

 16.5348

209.9820

160.8642

 55.5030

F Ratio

  <.0001

  <.0001

  <.0001

  0.0056

  <.0001

  0.0002

  <.0001

  <.0001

  <.0001

  <.0001

  <.0001

  <.0001

  <.0001

Prob > F

Effect Tests

 
Figure 73.   Conditional regression of MOE 1 without noise factors for non-

pheromone robots 
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Figure 74.   Contour plot for Detector Capability vs Speed 

Figure 74 shows a large variance in performance.  Only with a large speed 

(>1.2m/s) and a low det capab of less than <86 (=2 sec TOT), are we confident of 

achieving mission completion in a short time. 
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Figure 75.   Contour plot for Detector Reset Time vs Speed  

Figure 75 shows that a combination of high speed (>1.2m/s) and low detector 

reset time (<3sec) is necessary to boost the chances of a short mission completion time of 

the swarm. 
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APPENDIX C. CLUSTERING AND OUTLIER ANALYSIS 

A. INTRODUCTION 

This appendix is a supplement to the statistical analysis done in the main section 

of the thesis, using the software package, Clustering & Outlier Analysis Data Mining 

Tool (COADM).  It is written by DSO National Laboratories in Singapore.  The bulk of 

the analysis is performed by the second reader of this thesis, Mr Choo Chwee Seng. 

B. OBJECTIVE 

The motivation behind the following analysis is to complement the statistical 

analysis and provide additional insights using COADM.  This analysis allows the user to 

have a quick overview of the “good” and “bad” clusters, as well as outliers within each 

cluster, grouped according to the MOEs.  This translates to the user having not only the 

ability to quickly identify the general trends of factor settings that attribute to good and 

bad performances in terms of MOEs, but also the ability to zoom down on the “bad” 

outliers in “good” clusters, input the parameters back into the simulation and examine 

what went wrong in those runs. 

C. CORRELATION PLOTS FOR NON-PHEROMONE ROBOTS 

 
Figure 76.   Overview of correlation plots for non-pheromone robots 

High number of IEDs detected + 

shorter mission accomplished time 

=> High mission accomplished rate 
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Figure 76 shows the overview of the factor settings in the DOE as well as the 

distribution of the MOEs over all runs.  It is expected that there is little correlation 

between the input factors, which can be observed from their different colored patterns 

from one another.  The MOEs show high correlation with each another, which is also 

expected as a high mission accomplishment rate translates to a high number of IEDs 

detected and a short time to accomplish mission. 

 
Figure 77.   High correlation between factors and MOEs for non-pheromone robots 

Figure 77 singles out the three factors that are observed to have high correlation 

with the MOEs, i.e., their patterns vary closely with the MOEs.  The factors identified are 

number of robots, sensor range and speed of robot, and are consistent with the findings 

from the statistical analysis that these factors form the main effects.  The other factors 

have no obvious trends or patterns and have no significant impact on the MOEs.  This is 

again consistent with previous findings from statistical analysis. 

D. CLUSTERING ANALYSIS FOR NON-PHEROMONE ROBOTS 

With consideration given to all three MOEs, the clustering tool generates a total 

of eight clusters, represented by the different colors as show in the following figure.  The 

figures in parentheses represent the number of design points in each cluster while the 

black hexagons are the outliers within the cluster.  Outliers are found in Cluster 4 and 8 in 

this case as shown in Figure 78. 
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Figure 78.   Clustering analysis for case of non-pheromone robots 

The cluster table shown in Table 6 summarizes the range of each factor and MOE 

that each cluster represents.  It can be observed that Cluster 1 and 7 are the best clusters 

in terms of overall performance of the three MOEs, while Cluster 4 and 8 are the worst 

clusters.  The cluster table provides some insight on the “optimal” settings for the non-

pheromone robots. 

 
Table 6.   Cluster table for non-pheromone robots 
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As shown earlier, the outliers fall in Cluster 4 and 8, which Table 6 reveals are the 

worst clusters.  Closer examination of the individual outliers reveals that these outliers 

perform worse than the mean of their respective clusters, i.e., “bad” outliers in “bad” 

clusters, which is of low value for our analysis.  However, it is both reassuring and 

important to note that there are no “bad” outliers in the “good” clusters, which implies 

that the robot swarm should maintain its effectiveness in most, if not all circumstances, if 

the factor settings are set appropriately.  

E. CORRELATION PLOTS FOR PHEROMONE ROBOTS 

 
Figure 79.   Overview of correlation plots for pheromone robots 

Similar to the non-pheromone robots case, the overview of the correlation plots 

for pheromone robots are provided in Figure 79.  Again, no correlation shows up between 

input factors, but high correlation shows up between the MOEs, as expected.   

 
Figure 80.   Comparison of mission accomplishment rate between non-pheromone 

(left) and pheromone robots (right) 
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A comparison between of the mission accomplishment rate for non-pheromone 

robots and pheromone robots made in Figure 80 reveals that there is more “redness” in 

the plot for the pheromone robots.  This translates to more design points accomplishing 

the mission in the case of the pheromone robots, i.e., pheromone robots perform better 

than non-pheromone robots in terms of mission accomplishment.  This is consistent with 

the findings from the statistical analyses in Chapter V. 

 
Figure 81.   High correlation between factors and MOEs for pheromone robots 

Figure 81 tells the same story as the non-pheromone robots case, that the number 

of robots, sensor range and speed, are highly correlated with the MOEs and hence have a 

significant impact on the MOEs.  With the introduction of pheromone capability, the 

main factors that determine the outcome remain unchanged.  In addition, it is observed 

that there is no obvious correlation for other factors with the MOEs.  

F. CLUSTERING ANALYSIS FOR PHEROMONE ROBOTS 

 
Figure 82.   Clustering analysis for case of pheromone robots 
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COADM generates a total of 7 clusters for the case of the pheromone robots when 

considering all three MOEs as shown in Figure 82.  The outliers found are in Cluster 6 

and Cluster 7. 

 

 
Table 7.   Cluster table for pheromone robots 

The cluster table in Table 7 for the pheromone robots shows that, when compared 

to the non-pheromone robots cluster table, there are more “best” clusters (Cluster 2, 3 and 

5) while there are fewer “worst” clusters (Cluster 7). Overall, the values of the MOEs of 

the clusters have improved as compared to the non-pheromone case, consistent with 

previous findings.  Figure 82 shows that the outliers for the case of pheromone robots are 

found in Cluster 6 and 7, which are the two worst clusters among all.  Further 

investigations reveal that these outliers are worse than the mean of their respective 

clusters.  This is again the case of “bad” outliers in “bad” clusters, which is of not much 

value for our purpose. 
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G. CONCLUSION 

COADM allows a swift analysis of the general behavior and trends of the factor 

inputs and MOEs.  It also allows the user to quickly identify correlations within factor 

inputs and within MOEs, as well as between them.  In addition, outliers are siphoned out 

right away and examined closely by re-entering the parameters and random seed back 

into the simulation to find out what went wrong.  This is an extremely important aspect to 

be investigated in instances of “bad” outliers in “good” clusters.  With closer examination 

of these outliers, insights can be gained out factor deviations or conditions that will cause 

a drastic impact on performance, especially when it is expected that the system will 

function well. 

Overall, the COADM analysis is meant to complement the statistical analysis 

performed in the main section of this thesis.  The findings gained from this clustering and 

outlier analysis agrees with those from the statistical analysis in Chapter V.  It is also 

revealed that the system has no instances of “bad” outliers in “good” clusters, perhaps 

suggesting the robustness of the performance of the robot swarm when it operates at the 

settings for it is expected to do well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 110 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 111 

LIST OF REFERENCES 

Ayers, J., Davis, J. and Rudolph, A., “Neurotechnology for Biomimetics,” MIT Press, 

2000. 

 

Babilot, M., “Comparison of a Distributed Operations Force to a Traditional Force in 

Urban Combat,” M.S. Thesis, Operations Research Department, Naval Postgraduate 

School, Monterey, CA, Sep 2005.  

 

Batalin, M. and Sukhatme, G., “Spreading Out: A Local Approach to Multi-robot 

Coverage,” Proceedings of the 6
th

 International Symposium on Distributed Autonomous 

Robotics Systems, pp 373.382, Fukuoka, Japan, Jun 25-27, 2002. 

 

Beni, G., “From Swarm Intelligence to Swarm Robotics,” SAB 2004 International 

Workshop, pp1-9, Santa Monica, CA, Jul 2004. 

 

Bonabeau, E., Dorigo, M. and Theraulaz, G., “Swarm Intelligence: From Natural to 

Artificial Systems,” Oxford University Press, 1999. 

 

Bruemmer, D., Dudenhoeffer, D., McKay, M. and Anderson, M., “A Robotic Swarm for 

Spill Finding and Perimeter Formation,” Spectrum, Aug 2002. 

 

Cassinis, R., “Landmines Detection Methods using Swarms of Simple Robots,” in: 

Pagello, E. et al. (Ed.), Intelligent Autonomous Systems 6, IOS Press, 2000. 

 

Centibot project website. http://www.ai.sri.com/centibots/index.html. Last accessed Nov 

2006. 

 

Cioppa, T., “Efficient Nearly Orthogonal and Space-filling Experimental Designs for 

High-dimensional Complex Models,” Ph.D. Dissertation, Operations Research 

Department, Naval Postgraduate School, Sep 2002. 

 

Cioppa, T. M. and Lucas, T. W., “Efficient Nearly Orthogonal and Space-filling Latin 

Hypercubes,” Technometrics, forthcoming, 2006. 

 

CWRU Mini-Whegs. http://biorobots.cwru.edu/projects/whegs/miniwhegs.html. Last 

accessed Nov 2006. 

 

D’Andrea, R., “The Cornell RoboCup Robot Soccer Team: 1999-2003,” Sibley School of 

Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 2003. 

 

Dickie, A. “Modeling Robot Swarms Using Agent Based Simulation,” M.S. Thesis, 

Operations Research Department, Naval Postgraduate School, Monterey, CA, Jun 2002. 

 



 112 

Dorigo, M., “The SWARM-BOTS Project,” Swarm Robotics, SAB 2004 International 

Workshop, pp70-83, Santa Monica, CA, Jul 2004. 

 

Dudenhoeffer, D. and Jones, M., “A Formation Behavior for Large-Scale Micro-Robot 

Force Deployment”, in: Joines, J. A., Barton, R. R., Kang, K. and Fishwick, P. A. (Eds.), 

Proceedings of the 2000 Winter Simulation Conference, Piscataway, NJ: Institute of 

Electrical and Electronics Engineers, pp972-982, 2000. 

 

FIDO detector integrated with Packbot news article.  

http://www.forbes.com/forbes/2005/0314/056_print.html. Last accessed Nov 2006. 

 

FIDO XT Series Explosives Detector Brochure. 

 

FCS website. http://www.globalsecurity.org/military/systems/ground/fcs.htm.  Last 

accessed Nov 2006. 

 

FY 2005 Joint Robotics Program Master Plan by OUSD (AT&L) Defense Systems/ Land 

Warfare and Munitions, 2005. 

 

Gill, A. and Greiger, D., “Comparison of Agent Based Distillation Movement 

Algorithms,” Military Operations Research, Vol 8 No 3, pp5-16, 2003. 

 

Howard, A., Mataric, A. J., Sukhatme, G., “Mobile Sensor Network Deployment using 

Potential Fields: A Distributed, Scalable Solution to the Area Coverage Problem,” 

Proceedings of the 6
th

 International Symposium on Distributed Autonomous Robotic 

Systems, pp299-309, Fukuoka, Japan, Jun 2002. 

 

Icosystems news article. http://www.newscientist.com/article.ns?id=dn3661. Last 

accessed Nov 2006. 

 

ICx Nomadics Inc. Website (FIDO detector website). http://www.icxt.com/products/. 

Last accessed Nov 2006. 

 

Interview with Col. Edward M. Ward, logistics chief of the Robotic Systems Joint Project 

Office. http://www.decaturdaily.com/decaturdaily/news/050927/robots.shtml. Last 

accessed Nov 2006. 

 

iRobot integration with FIDO. http://robotstocknews.blogspot.com/2006/08/irobot-

unveils-explosive-sniffing.html. Last accessed Nov 2006. 

 

iRobot swarm robotics website.  http://irobot.com/sp.cfm?pageid=149. Last accessed 

Nov 2006. 

 

iRobot Wayfarer project website.  http://www.robotfrontier.com/. Last accessed Nov 

2006. 



 113 

 

James McLurkin Personal Website. http://people.csail.mit.edu/jamesm/swarm.php. Last 

accessed Nov 2006. 

 

Kratochvil, B., Burt, I. T., Drenner, A., Goerke, D., Jackson, B., McMillen, C., Olsen, C., 

Papanikolopoulos, N., Pfeifer, A., Stoeter, S. A., Stubbs, K. and Waletzko, D., 

“Heterogeneous Implementation of an Adaptive Robotic Sensing Team”, Proceedings of 

the 2003 IEEE International Conference on Robotics and Automation, Taipei, Taiwan, 

Sep 2003. 

 

Kennedy, J. and Eberhart, R., “Swarm Intelligence,” Academic Press, 2001. 

 

MANA Users Manual v3.0, Jul 2004 

 

MARCBot news article. 

http://www.estripes.com/article.asp?section=104&article=30233&archive=true. Last 

accessed Nov 2006. 

 

MARCBot manufacturer website. 

http://www.exponent.com//practices/techdev/marcbot.html. Last accessed Nov 2006. 

 

MARCBot news article. http://www.defenseindustrydaily.com/2006/06/mighty-mites-

marcbots-add-exponent-to-ied-landmine-detection-updated/index.php#more. Last 

accessed Nov 2006. 

 

Morlok, R. and Gini, M., “Dispersing robots in an unknown environment,” DARS 2004, 

Toulouse, France, Jun 2004. 

 

National Defense Authorization Act for Fiscal Year 2001. H.R.4205, Sec. 217. 

 

Operation Iraqi Freedom Statistics. http://icasualties.org/oif_a/CasualtyTrends.htm. Last 

accessed Nov 2006. 

 

Payton, D., Estkowski, R., Howard, M., “Pheromone Robotics and the Logic of Virtual 

Pheromones,” Swarm Robotics, SAB 2004 International Workshop, pp45-57, Santa 

Monica, CA, Jul 2004. 

 

Rekleitis, I., Lee-Shue, V., New, A. P. and Choset, H., “Limited Communication, Multi-

Robot Team Based Coverage,” Proceedings of the 2004 IEEE International Conference 

on Robotics and Automation, New Orleans, LA, Apr 2004. 

 

Sahin, E., “Swarm Robotics: From Sources of Inspiration to Domains of Application,” 

Swarm Robotics, SAB 2004 International Workshop, Santa Monica, CA, Jul 2004. 

 



 114 

Sanchez, S., “Work Smarter, Not Harder: Guidelines for Designing Simulation 

Experiments”, in: Proceedings of the 2005 Winter Simulation Conference, Kuhl, M. E., 

Steiger, N. M., Armstrong, F. B. and Joines, J. A. (Eds), Piscataway, NJ: Institute of 

Electrical and Electronic Engineers, pp 69-82, 2005. 

 

Sauter, J., Matthews, R., Van Dyke Parunak, H. and Brueckner, S., “Performance of 

Digital Pheromones for Swarming Vehicle Control,” Proceedings of the 4
th

 International 

Joint Conference on Autonomous Agents and Multiagent Systems, The Netherlands, 

2005. 

 

Schroer, R. T., Boggess, M. J., Bachmann, R. J., Quinn, R. D., and Ritzmann, R. E. 

"Comparing Cockroach and Whegs Robot Body Motions," IEEE Conference on Robotics 

and Automation, New Orleans, LA, Apr 2004. 

 

Stormont, D., “Modeling a Swarm of Search and Rescue Robots using Star Logo,” 7
th

 

Annual Swarm Users/ Researchers Conference (SWARMFEST 2003), Notre Dame, IN, 

Apr 2003. 

 

Tarasewich, P. and McMullen, P., “Swarm Intelligence: Power in Numbers”, 

Communications of the ACM, Vol 45, No 8, pp62-67, Aug 2002. 

 

Van Dyke Parunak, H., Brueckner, S. and Sauter, J., “Digital Pheromone Mechanisms for 

Coordination of Unmanned Vehicles,” International Conference on Autonomous Agents, 

Bologna, Italy, Jul 2002. 

 

Wagner, I., Lindenbaum, M. and Bruckstein, A., “Distributed Covering by Ant-Robots 

Using Evaporating Traces,” IEEE Transactions on Robotics and Automation, Vol 15, No 

5, pp918-933, Oct 1999.  

 

Yamauchi, B., “Autonomous Urban Reconnaissance Using Man-Portable UGVs,” 

Proceedings of SPIE Vol. 6230: Unmanned Systems Technology VIII, Orlando, FL, Apr 

2006. 

 

 

 

 

 



 115 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 

Ft. Belvoir, Virginia  

 

2. Dudley Knox Library 

Naval Postgraduate School 

Monterey, California  

 

3. Professor Susan M. Sanchez 

Naval Postgraduate School 

Monterey, California 

 

4. Mr Choo Chwee Seng 

DSO National Laboratories 

Singapore 

 

5. Professor Yeo Tat Soon 

Director, Temasek Defence Systems Institute (TDSI) 

National University of Singapore 

Singapore 

 

6. Captain Sze-Tek Terence Ho 

Singapore Armed Forces 

Singapore 


