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ABSTRACT 
 
 
 

This thesis studies “the convoy-path interdiction problem” (CPIP) in which an 

interdictor uses limited resources to attack and disrupt road segments (“arcs”) or road 

intersections (“nodes”) in a road network in order to delay an adversary’s convoy from 

reaching its destination.  The convoy will move between a known origin node a and 

destination node b using a “quickest path.”   

We first show how to compute, using an A* search, the convoy’s quickest path 

under the assumptions that the convoy may occupy several arcs simultaneously, each arc 

may have a different speed limit, and the convoy maintains constant inter-vehicle spacing.  

The basic model assumes that the convoy moves in a single lane of traffic; an extension 

handles arcs that may have multiple lanes.  Using that algorithm as a subroutine, a 

decomposition algorithm solves the optimal interdiction problem.  Interdiction of a node 

or arc makes that node or arc impassable. 

Computational results are presented on grid networks with up to 629 nodes and 

2452 arcs with varying levels of interdiction resource.  Using Xpress-MP optimization 

software and a 2 GHz Pentium IV computer, the largest network problem solves in no 

more than 360 seconds given that at most 4 arcs can be interdicted. 
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EXECUTIVE SUMMARY 
 
 

This thesis studies “the convoy-path interdiction problem” (CPIP) in which an 

interdictor uses limited resources to attack and disrupt road segments (“arcs”) or road 

intersections (“nodes”) in a road network in order to delay an adversary’s convoy from 

reaching its destination.  The convoy will move between a known origin node a and 

destination node b using a “quickest path.”  The quickest a-b path requires the least 

amount of time for the full convoy to move from a to b, and takes into account the size of 

the convoy, and each road segment’s capacity (effective speed limit) and length.  The 

quickest path for a convoy may be quite different from the path that would be computed 

with a standard shortest-path algorithm.  That path, computed using arc transit times in 

place of arc lengths, would only be appropriate for a single, unaccompanied vehicle. 

The convoy is assumed to move in an “open-column formation” and maintains a 

constant inter-vehicle spacing of 100 meters.  If we suppose a battalion-to-brigade sized 

convoy consisting of 60-400 vehicles, its length may exceed 40 km.  And, if we assume 

that typical road segments extend 10-50 km, it is clear that the convoy may occupy up to 

five road segments simultaneously.  A standard shortest-path algorithm cannot identify 

the quickest path because the fact that the convoy must maintain constant inter-vehicle 

spacing implies that the convoy may not be able to use each road segment’s full capacity 

(effective speed limit).  In particular, the convoy’s speed depends on the lowest speed 

limit on the road segments it occupies at any given time.  For simplicity, we assume 

perfect coordination of the convoy so that it always moves as fast as possible.  We also 

ignore slowdowns that might arise from turning corners, but “turn constraints” could be 

added to our formulations, at least approximately, through simple modifications of the 

road-network model. 

We find no evidence that the quickest-path problem for a convoy has been 

modeled appropriately in the literature.  Therefore, this thesis begins by devising an 

implicit path-enumeration algorithm for solving this problem.  (This algorithm may be 

classified as a type of “A* search,” or “branch-and-bound algorithm.”)  The basic model 



 xvi

assumes that the convoy moves in “single file”; an extension allows the convoy to use as 

many traffic lanes as are available. 

We then use the quickest-path algorithm as a subroutine in a known 

decomposition algorithm to solve the optimal, budget-limited interdiction problem.  

Interdiction of an arc or node makes that arc or node impassable, and that interdiction 

consumes some given portion of a fixed budget. 

Computational results are presented on networks with up to 629 nodes and 2452 

arcs with varying levels of interdiction resource.  Using Xpress-MP optimization 

software and a 2 GHz Pentium IV computer, the largest network problem solves in no 

more than 360 seconds given that at most 4 arcs can be interdicted and made impassable. 
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I. INTRODUCTION  

This thesis studies “the convoy-path interdiction problem” (CPIP) in which an 

interdictor uses limited resources to attack and disrupt segments (“arcs”) or intersections 

(“nodes”) in a road network in order to delay an adversary’s convoy from reaching its 

destination.  The convoy will move between known nodes, origin a and destination b, 

using a “quickest path.”  The quickest a-b path requires the least amount of time for the 

full convoy to move from a to b, and takes into account the size of the convoy, and each 

segment’s length and “capacity,” which is the effective speed limit.  Interdiction of a 

node or arc is assumed to make that part of the road network impassable. 

The convoy is assumed to move in “open-column formation” and to maintain a 

constant inter-vehicle spacing of 100 meters, or some other distance defined by the 

convoy’s commander [FM 4-01-011 2002, Appendix C].  The convoy’s total length may 

exceed 40 km.  Given that the convoy can occupy several road segments simultaneously, 

and given constant inter-vehicle spacing, it is clear that the convoy’s quickest a-b path is 

more complicated to compute than a standard shortest a-b path.  Thus, CPIP looks like a 

standard “shortest-path network interdiction problem,” (Israeli and Wood, 2002), except 

that “shortest path” is replaced by “quickest path,” defined and computed by other means.   

Fulkerson and Harding (1977) create the first shortest-path interdiction model.  

The interdictor has limited interdiction resource with which to maximize the length of a 

network user’s shortest a-b path.  The authors assume that the length of any arc increases 

linearly with the amount of a single interdiction resource applied.  The resulting model 

converts into a simple, parametric linear-programming problem. 

Ball, Golden and Vohra (1989) consider a discrete version of Fulkerson and 

Harding’s problem in which the interdictor has a budget of k, the interdiction of an arc 

requires one unit of resource, and fractional interdictions are not allowed.  This is the “k-

most-vital-arcs problem.”  They solve this problem by using binary variables to 

determine whether an arc is destroyed or not. 

Israeli and Wood (2002) generalize the k-most-vital arcs problem to allow general 

interdiction-resource constraints.  They show how to solve this problem, denoted 
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“MXSP,” with several primal decomposition schemes including Benders decomposition, 

a decomposition using a set-covering master problem, and a hybrid of those two.  

Israeli et al. (2004) realize that MXSP is not an appropriate model for delaying a 

convoy, so they create a version of CPIP which looks like MXSP except that the quickest 

path for the convoy is computed using simple continuum traffic theory (SCTT) (e.g., 

Kuhne and Michalopoulos 1998).  They solve this version of CPIP, successfully, by 

replacing the shortest-path subroutine with a quickest-path subroutine in one of the 

decomposition algorithms for MXSP.  However, the SCTT model does not describe 

convoy movement with constant inter-vehicle spacing:  According to their model, the 

convoy may compress or stretch as it traverses a path with varying arc capacities. 

This thesis solves a more realistic version of CPIP by using a better quickest-path 

model, denoted “CQP-CS” (Convoy Quickest Path – Constant Spacing).  We first show 

how to compute the convoy’s quickest path under the assumption that the convoy may 

occupy several arcs simultaneously, each arc may have a different speed limit, and the 

convoy maintains constant inter-vehicle spacing.  (This implicit path enumeration may be 

viewed as a version of “A* search,” e.g., Russell and Norvig 1995, pp. 92-107.)  The 

speed of the convoy is assumed to be the minimum of the speed limits that some vehicle 

in the convoy must obey.  For simplicity, we assume perfect coordination among the 

vehicles in the convoy, no slowing for turns, and instantaneous acceleration and 

deceleration.  (Note that “turn constraints” are easily approximated through modifications 

of the road-network model, e.g., Caldwell 1961.) The basic model also assumes that the 

convoy moves in a single lane of traffic, but a simple extension handles arcs with 

multiple lanes.  Using that algorithm as a subroutine to solve CQP-CS, we solve CPIP 

using a decomposition algorithm developed by Israeli and Wood (2002). 

This thesis is organized as follows: Chapter II provides background on the 

problem of computing a convoy’s quickest path, compares alternatives, and describes an 

algorithm for solving a CQP-CS problem.  Chapter III provides background on the 

problem of interdiction a convoy’s path (CPIP), compares alternative models, and 

describes a generic algorithm.  Chapter IV provides computational results, and Chapter V 

presents conclusions. 
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II. A CONVOY’S QUICKEST-PATH 

This chapter provides background on quickest-path models for a convoy, 

describes the model we will use, and devises an implicit-path-enumeration algorithm to 

solve that model’s instances. 

 

A. BACKGROUND ON CONVOY MOVEMENT 
We imagine a convoy that must move, as quickly as possible, between nodes a 

and b in a road network.  What is the quickest path?  Because a convoy can be quite long 

and must move according to doctrine, this “convoy quickest path problem” (CQPP) is 

more complicated than a standard shortest-path problem.  To identify a reasonable model 

for this problem, we must first determine what a convoy actually looks like. 

A convoy is organized by three elements which are a “march column,” a “serial,” 

and a “march unit.”  A march unit is the smallest subgroup of a convoy and usually 

consists of 15-20 vehicles.  A serial consists of two to four march units and a march 

column consists of two to five serials.  [FM 4-01-011 2002, Appendix C].  The march 

column makes up the full convoy.  Table 1 specifies the dimensions of a convoy, and its 

subdivisions, for a brigade to battalion-sized element.  If the convoy moves in the 

common “open-column formation,” it will maintain an inter-vehicle spacing of 100 

meters   [FM 4-01-011 2002, Appendix C], and may thus have a length of up to 42 km. 
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 Lower Bound Upper Bound 

March Column 2 Serials 5 Serials 

Serial 2 Marches 4 Marches 

March Unit 15 Vehicles 20 Vehicles 

Total Number of Vehicles 60 Vehicles 400 Vehicles 

Vehicle Length 5 m 5 m 
Vehicle Interval (Open 

Column) 100 m 100 m 

Total Convoy Length 6.2 km 42 km 

Table 1. A Battalion-to-Brigade Sized Convoy 

 

If we assume that a convoy may be as long as 42 km and that road segments are 

typically 10-50 km in length, we see that the convoy may occupy up to five road 

segments simultaneously. 

Given that the convoy can occupy several road segments simultaneously, and the 

convoy must maintain constant inter-vehicle spacing, it is clear that the convoy’s quickest 

a-b path is more difficult to compute than a standard shortest a-b path.  

 

B. QUICKEST-PATH MODELS FOR CONVOYS 
We model the road network as a directed graph G = (N, A) where N is a set of 

nodes and A is a set of arcs.  An arc is an ordered pair of nodes ( , )i j  where ,i j N∈ .  

Nodes represent intersections or interchanges in the road network, the arcs represent road 

segments.  The convoy must move from node a to node b.  For simplicity, we assume the 

head of the convoy is at a at the start of the convoy’s movement, and the transit to b is 

not complete until the last vehicle in the convoy has cleared b. 

Each arc ( , )i j  has a length ijl  measured in kilometers (km), a speed limit ijs  

measured in kilometers per hour (km/hr), and the number of lanes available for use ijc .  

Note that the convoy’s commander may decide to move in single file, in which case ijc is 

always 1, or he (or she) may decide to use all lanes available up to 4, or may use some 



5 

other guidelines.  In any case, ijc is always known.  The transit time for the convoy along 

any path depends on all of those values, in addition to the convoy’s length, L (km).    

1. Convoy Quickest Paths as Shortest Paths (CQP-SP) 
We can approximate the movement of a convoy as a single vehicle moving along 

a standard shortest path where the “length” of each arc ( , )i j  is its traversal time 

ij ij ijt l s= .  This will lead to a very efficient method for finding a “quickest path,” but it 

may not represent the movement of a convoy accurately.    

If pA denotes the ordered set of arcs in the shortest path, the convoy’s total path-

transit time is estimated as 

( ),

/
p

P ij
i j A

z t L s
∈

′= +∑  

where s′  is the speed of the last arc in PA .  Thus, the term /L s′  estimates the clearing 

time for the convoy once its head reaches b.  The convoy’s quickest path under this 

model is approximated by solving a shortest-path problem between a and b with respect 

to arc “lengths”  ijt  and by then identifying s′  and adding /L s′ . 

2. Convoy Quickest Paths by Simple Continuum Traffic Theory (CQP-
SCTT) 

In solving their version of CPIP, Israeli et al. (2004) use a CQP model based on 

“simple continuum traffic theory” (SCTT).  We label this model as CQP-SCTT.  SCTT 

represents a stream of traffic as a fluid in which the flow rate cannot exceed the 

maximum capacity of a given arc.  Because of this model’s orientation toward “flow,” its 

data are defined differently than ours, but appropriate conversions will be given. 

Let ijf  denote the flow rate (capacity) on arc (i, j) in vehicles per hour.  SCTT 

represents a bottleneck as a junction between two arcs, ( , )i j  and ( , )j k , where ijf  

exceeds jkf .  The upstream mass on (i, j) flowing at a rate greater than jkf  is forced to 

decrease its speed and flow rate, and the flow (traffic) increases in density on arc (i, j).  

Meanwhile, the downstream mass continues to flow through (j, k) at rate jkf .  Whenever 

the bottleneck is encountered in a path, the maximum flow rate of the path is controlled 
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by the arc with the minimum capacity (Lighthill and Whitham 1955).  The data for this 

model are: 

ijt   travel time for a single vehicle traversing (i, j), ij ij ijt l s= , (hours), 
 ijf   peak rate of traffic flow over arc (i, j) (vehicles per hour), and 
 S   size of convoy  (vehicles)    
 

The transit time for a path PA  is therefore computed as 

( ),

/
p

p p ij
i j A

z S f t
∈

= + ∑ , where 
( ),
min

p
p iji j A

f f
∈

= , 

and thus the quickest-path time is simply 

 
( )

*

,

min /
p

p ijp P i j A

z S f t
∈

∈

⎧ ⎫⎪ ⎪= +⎨ ⎬
⎪ ⎪⎩ ⎭

∑ . 

The flow rate ijf  defines the effective speed of the “fluid” moving through (i, j),  

so we can compute this value from our basic data as ij ij ijf s c= .  Additionally, we define a 

constant, say α , that converts convoy length size S, i.e., total number of vehicles.  In our 

case,   1 vehicle / 0.105 kmα = α  has to be computed from the numerical data which 

implies that one vehicle takes up 105 meters, i.e., 0.105 km.  So, it has 1/0.105 vehicles 

per kilometer as a conversion factor.  Therefore, we can convert as follows:   

        
( ) ( )

*

, ,
min / min {( ) }

p p

p ij p ijp P p Pi j A i j A
z S f t L sc tα

∈ ∈
∈ ∈

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= + = +⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

∑ ∑ ,  where 
( ),

( ) min
p

p ij iji j A
sc s c

∈
= . 

We use A* search, based on this equation, to solve the CQP-SCTT in Chapter IV. 

The CQP-SCTT model violates our assumption of constant inter-vehicle spacing, 

however.  In particular, spacing is reduced on arcs with low ijf  arcs and increased on arcs 

with high ijf .  As the head of a convoy moves from arc ( , )i j  with high ijf  arc to ( , )j k  

with low jkf , vehicles bunch up, becoming easier targets for the enemy; when the 

transition is from low capacity to high capacity, the vehicles in the lead will “race ahead,” 

creating large inter-vehicle spaces which create the opposite problem:  Vehicles may be 

too far apart to help defend each other.  The CQP-SCTT model may be appropriate for a 
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group of vehicles moving independently along a single path, but it is inappropriate for a 

convoy in which vehicles move in a coordinated fashion. 

3. Convoy Quickest Paths with Constant Inter-vehicle Spacing (CQP-
CS)  

We wish to create a more appropriate quickest-path model for a convoy.  We first 

note that the convoy may be many kilometers long, and may therefore cover several 

different road segments, each with its own length and speed limit.  Given constant inter-

vehicle spacing, it is easy to see that the convoy’s speed is dictated by the slowest road 

segment the convoy currently occupies.  The real-world problem is somewhat more 

complicated because vehicles do not change speeds instantaneously and communications 

may be imperfect, but, for simplicity, we assume that the full convoy will instantaneously 

change speed, as necessary, to match the speed of the slowest segment it occupies.  Our 

solution methodology is quite flexible, and can easily accommodate variations such as 

different acceleration and deceleration rates. 

Figure 1 illustrates the basic concept of computing total path-transit time from 

node a to node b.  We assume that the convoy is initially lined up on an artificial arc 

( , )a a′  of length L; this arc has an arbitrarily high speed limit.  The convoy finishes its a-

b transit only when its last vehicle has reached b, i.e., the whole convoy has reached and 

cleared b.  We model this by creating an artificial arc ( , )b b′  having length L and an 

arbitrarily high speed limit, and by then defining the a-b transit to be complete when the 

head of the convoy reaches b′ .  The total transit time for a given path is broken down 

into the times ijT  that are required for the head of the convoy to move from node i to node 

j on arc ( , )i j .  Computing each such ijT  involves determining how the set of arcs the 

convoy is in contact with changes as its head moves forward. 
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1 1
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1
2bl

1
bbl ′

2
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Figure 1. Illustration of a convoy’s transit time through a simple path in a network.  
Tij represents the transit time for the convoy’s head to move from node i to node j.  Total 
transit times may consist of the sum of several “τ variables,” each representing the time 
the convoy is subject to the speed limits on a given set of arcs.  The overall speed limit 

for the convoy at any time is the minimum of the limits any vehicle in the convoy is 
subject to.  The total transit time here is Ta1 + T12+ T2b+ Tbb′ . 
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Algorithm 1, below, implements the ideas illustrated in Figure 1, and discussed 

above, to compute the transit time for a given a-b path with arc set PA . 

 

Definitions for Algorithm 1: 

Sets, Indices and Structural Data 

( , )G N A=  directed graph with node set N and arc set A 

,a b N∈  origin and destination nodes, respectively 

PA   ordered list of arcs on the a-b path P, 1 2 2 3 1{( , ), ( , ),..., ( , )}
p pP n nA i i i i i i +=  

Numerical Data [units] 

L  convoy length [km] 

ijl   length of arc ( , )  i j A∈  [km] 

ijs   capacity (speed) of arc ( , )  i j A∈  [km/hour] 

Variables (including sets) 

 T  total transit time for convoy [hour] 

A′   set of all arcs occupied currently by convoy, 

   1 2{( , ) , ( , ) , ( , ) , ..., ( , ) }back frontA i j i j i j i j′ =  

 h  counter for arc on the path AP  

frontδ   distance convoy has moved along the arc at the convoy’s front 

backδ   distance convoy has moved along the arc at the convoy’s back 

nextδ   incremental distance the convoy will move next 

 

Algorithm 1: Compute convoy transit time for a given path assuming constant inter- 

  vehicle spacing. 

Input:  A directed graph ( ,  )G N A=  with source node a, sink node b, arc 

lengths 0ijl ≥  and arc speeds 0  ( , )ijs i j A≥ ∀ ∈ , convoy length L, an 

ordered list of arcs PA  arcs that defines an a-b  path. 

Output:  Transit time on a-b path PA  for the convoy.  This time includes the time 

required to completely clear b. 



10 

{ 

  /* Add artificial nodes and arcs to G */ 

  max ( , )
max ;iji j A

s s
∈

←     

  { , };N N a b′ ′← ∪  

  {( , ), ( , )};A A a a b b′ ′← ∪  

  ;a al L′ ←  ;bbl L′ ←  
 max ;a as s′ ←  max ;bbs s′ ←  

 /* Initialize */ 

 0;T ←    

 {( , )};A a a′ ′←   

 0;h ←   /* arc at front of convoy will be ( , )hi j */ 

 back 0;δ ←  

 /* Main Algorithm */ 

 while ( {( , )}A b b′ ′≠ ) { 

  1;h h← +  

  Append ( , )hi j  to A′ ; 

  front 0;δ ←   /* distance along ( , )hi j  the convoy has moved */  

    while front( )ijlδ < { 

      min ( , )
min ;iji j A

s s
′∈

←  

      /* ( , ) = ( , )  and  ( , ) = ( , )  in  back fronti j i j i j i j A′ ′ ′′ ′′ ′  */ 

      next  min{ , };i j back i j frontl lδ δ δ′ ′ ′′ ′′← − −   

      next min/ ;T T sδ← +  

      front front next ;δ δ δ← +  back back next ;δ δ δ← +  
   if ( back i jlδ ′ ′= ){ 

   /* the last transition moved the convoy’s tail off of  back( , )i j  */ 

   delete back( , )i j  from A′  and define a new back( , )i j ; 

   back 0;δ ←  
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  } 

 }  

 /* after ending above “while-loop”, T  is the same as ijT  in Figure 1. */ 

 Print ( “Total transit time for the convoy is ”, T, “ hours.”); 

} 

 

4. A Comparison of Quickest-path Models 
Now that we have defined three alternatives for estimating a convoy’s transit 

time, we can illustrate the differences.  Figure 2 shows a small network with arcs having 

a single lane.  Speed limits and lengths are specified for each arc.  CQP-CS identifies 

Path 3 as the quickest path, CQP-SCTT identifies Path 1, and CQP-SP identifies Path 2.  

The estimated transit times for the three paths can be quite different.  We have argued 

that the CQP-CS model is more appropriate, and if we assume it is correct (even though it 

is oversimplified), it can be seen that the estimated transit times for the other two models 

can underestimate the true transit time substantially.  The example illustrates that the 

CQP-SP and CQP-SCTT models are not appropriate for describing convoy movement 

realistically and accurately, and CQP-CS is required. 
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Estimated Travel Time (hours)

8.338.338.333 : a-2-4-b

13.5013.506.832 : a-1-4-b
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Path

• Arcs are marked as length (km) / speed (km/h)
• All arcs have a single lane.
• Convoy length is 10 km

2

1

4

3

10/∞ 10/∞

3/3

5/10

6/3

3/3 6/3

2/2

a′ a b′b
0.5/1

 
Figure 2. An example of different quickest-paths and their estimated transit times.  
Bold times indicate the quickest path identified for the given model.  Note how the SP 
and SCTT models can substantially underestimate the “true” transit time as defined by 

the CS model. 

 

C. SOLVING BASIC MODEL OF CQP-CS  
We use an A* search to compute the solution to the CQPP.  To make this 

algorithm easier to understand, we first describe a simpler A* search that solves a 

“nonlinear shortest-path problem” for a single vehicle. 

1. General A* Algorithm for single vehicle shortest-path 

We want to compute min ( )pP
f A , the quickest a-b path for a single vehicle in G, 

where ( )f ⋅  is a known nonlinear function with certain properties.  In particular, each arc 

( , )  i j A∈  has nominal transit time 0ijt ≥ , but 
( , )

( )
P

P ij
i j A

f A t
∈

≥ ∑ , i.e., the “true length” of 

a directed, simple path (between any pair of nodes) exceeds the sum of the path’s arc 

lengths.  If ( )F i  denotes the true length of some a-i path iA , i.e., ( ) ( )iF i f A= , and if 

( )d j  denotes the minimum transit time from j to b computed with respect to the ijt , i.e., 
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the standard shortest-path “length” using the ijt  as lengths, then we know that any 

complete a-b path pA  path that is an extension of iA  must satisfy  

( ) ( ) ( )P ijf A F i t d j≥ + + .  This fact can be used in a standard A* search to compute 

min ( )pP
f A , as follows. 

 

Algorithm 2: General A* search for a single-vehicle, nonlinear, shortest-path 

problem 

 Solves min ( )PP
f A  where PA  is an a-b path in network G and ( )Pf A  is a 

given function that satisfies conditions described above. 

Input: A directed graph ( ,  )G N A=  with source node a, sink node b, arc 

lengths 0ijl ≥  for all ( , )i j A∈ ,  arc speeds 0ijs >  for all ( , )i j A∈ , for all 

j N∈ , ( )d j  computed as the minimum transit time from j to b with 

respect to function ( )if A  that satisfies the conditions described above for 

any a-i path iA . 

Output:  min ( )PP
f A  and argmin ( )P

P
f A . 

{ 

 /* Initialize */ 
 ;UB ←∞  

 * ;PA ←∅   /* Best path found */ 

 ;PA ←∅   /* Stack to keep track of the arcs in the current path */ 

 ;PN a←   /* Stack to keep track of nodes on the current path */ 

 ( ) 0;F a ←    /* “length” of the current, null path PA  from a to a */ 

 / ( , )ij ij ijt l s i j A← ∀ ∈ ; 

 for ( all  i N∈ ) nextArc( ) firstArc( );i i←  

 isOnPath( ) true;a ←   

 for ( all j N a∈ − ) isOnPath( ) false;a ←  

 /* Main Algorithm */ 
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 while ( PN ≠ ∅  ){ 

  node at top of ;Pi N←   

  if ( nextArc( ) NULL)i ≠  and )i b≠  ){  

   ( , )  arc pointed to by nextArc( );i j i←  

   increment nextArc( )i ; 

   if ( ( ) ( )ijF i t d j UB+ + < ) {  /* Test 1 */ 

    push j onto PN ; 

    push ( , )i j  onto PA ; 

    ( ) ( {( , )});PF j f A i j← ∪  

    if ( ( ) ( )F j d j UB+ < ) {  /* Test 2 */ 

     isOnPath( ) true;j ←  

     ;i j←  

    } else { 

     pop PN ;   

     pop PA ; 

    } 

   } 

  } 

  if ( i b=  )  * ;P PA A←   /* Best path found so far */ 

  isOnPath( ) false;i ←  

  nextArc( ) firstArc( );i i←  

  pop PN ; 

  pop PA ; 

 } 

 print(“Minimum time of an a-b path is ”, UB, “hours.”); 

 print(“Optimal a-b path is ”, *
PA ); 

} 
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2. Basic A* Search for the Convoy Quickest-Path Problem (CQP-CS) 

We now modify the A* search algorithm above to solve the CQP-CS.  In essence, 

the new algorithm, Algorithm 3, incorporates Algorithm 1 into the A* search of 

Algorithm 2.  It is assumed that the convoy moves in a single lane of traffic. 

To construct Algorithm 3, we first define ( )F i  in Algorithm 2 as the time required 

by the head of convoy to reach node i using the current a-i path iA   (as illustrated in 

Figure 1 and as defined precisely in Algorithm 1).  Then, we define ( )d j , for all j N∈ ,  

as a lower bound on the time required for a convoy whose head is at j to reach and clear 

b.  A reasonable lower bound is the minimum transit time with respect to /ij ij ijt l s= , from 

j to b, plus some lower bound on the amount of time the convoy will require to clear b.  

Such a lower bound is 
( , ) |

/ max iji j A j b
t L s

∈ =
′ = .  Thus, ( )d j  can be computed by running a 

single, backward shortest-path algorithm starting at b, using edge lengths /ij ij ijt l s= , and 

adding t′  to the calculated minimum transit time at each node j.  Given these definitions, 

the Algorithm-3 analogs of Test 1 and Test 2 from Algorithm 2 will be valid, and the full 

algorithm will be valid. 

Some additional notation for Algorithm 3 is: 

 

( )A′ ⋅    an array that gives the arcs on the current path to the head   

   of the convoy, used to define that path and the convoy’s   

   location, using additional pointers, described below 

pQfront   pointer to the arc at front of convoy on ( )A′ ⋅  

pQback   pointer to the arc at back of convoy on ( )A′ ⋅  

pQfrontAtNode( )i   array to track pQfront when the head of the convoy reaches  

node i on the current path PA  

pQbackAtNode( )i  array to track pQback  when the head of the convoy  

reaches node ion the current path PA  

dBackAtNode( )i  array to track backδ  when the head of the convoy reaches  

node i on the current path PA  
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Algorithm 3: Modified A* search for CQP-CS. 

Input:  A directed graph ( ,  )G N A=  with source node a, sink node b, arc 

lengths 0ijl ≥ , arc speeds 0ijs > , strict upper bound UB on minimum 

convoy transit time, ( )d j  computed as the minimum transit time from j to 

b with respect to /ij ij ijt l s=  plus a lower bound 
( , ) |

/ max iji j A j b
t L s

∈ =
′ =  on the 

clearing time at b. 

Output:  An a-b path that minimizes convoy transit time (with constant inter- 

  vehicle spacing), and that time. 

{  

/* Add artificial nodes and arcs to G */ 

{ , };N N a b′ ′← ∪  

{( , ), ( , )};A A a a b b′ ′← ∪  

;a al L′ ←  ;bbl L′ ←  

max ;a as s′ ←  max ;bbs s′ ←  

/* Initialize */ 
* ;PA ←∅   /* Best path found */ 

(1) ( , );A a a′ ′←  /* Array to keep track of the path being traversed and the  

arcs currently occupied by convoy */ 

;PN a←   /* Stack to keep track of nodes on the current path */ 

( ) 0;F a ←    /* “time” of the current, null path PA  from a to a */ 

pQfrontAtNode( ) 1;a′ ←    

pQbackAtNode( ) 1;a′ ←  /* Points to arc at back of convoy on ( )A′ ⋅  */ 

dBackAtNode( ) 0;a′ ←  

for ( all  i N∈ ) nextArc( ) firstArc( );i i←  

isOnPath( ) true;a ←   

for ( all j N a∈ − ) isOnPath( ) false;a ←  

/*Define ijt is the time for a single vehicle to traverse arc ( , )i j */ 
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for ( all ( , )  i j A∈ ) ;ij ij ijt l s←  

/* Main Algorithm */ 

while( PN ≠ ∅  ){ 

node at top of ;Pi N←   

 while ( nextArc( ) NULLi ≠  and i b′≠  ){  

  ( , )  arc pointed to by nextArc( );i j i←  

  increment nextArc( )i ; 

  if ( ( ) ( )ijF i t d j UB+ + < and  not isOnPath( )j ) { /* Test 1 */ 

   pQfront pQfrontAtNode( );i←   

pQback pQbackAtNode( );i←  

   back dBackAtNode( );iδ ←   

   pQfront pQfront+1;←  

   (pQfront) ( , );A i j′ ←  /*add arc(i, j) to front of A′*/ 

   front 0;δ ←  0;T ←  

   while front( )ijlδ < { 

    min ( , )
min ;iji j A

s s
′∈

←  

/* ( , ) is a back arc of  ,   ( , ) is a front arc of i j A i j A′ ′ ′ ′′ ′′ ′*/ 

    next min{ , };i j back i j frontl lδ δ δ′ ′ ′′ ′′← − −   /* Step 1a */ 

    next min/ ;T T sδ← +    /* Step 1b */ 

    front front next ;δ δ δ← +     /* Step 1c */ 

    back back next ;δ δ δ← +    /* Step 1d */ 

    if ( back i jlδ ′ ′= ){ 

    pQback pQback+1;←   /*delete a back arc in A′*/ 

    back 0;δ ←  

    } 

   } 

   ( ) ( ) ;F j F i T← +     
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   if ( ( ) ( )F j d j UB+ < ) {  /* Test 2 */ 

    push j onto PN ; 

    ;i j←  

    isOnPath( ) true;i ←  

pQfrontAtNode( ) pQfront;i ←  

pQbackAtNode( ) pQback;i ←  

    backdBackAtNode( ) ;i δ←  

   } 

  } 

 }  

 if ( i b′=  ) { 

  { }* (1), , (pQfront) ;PA A A′ ′← …  /* Best path found so far */ 

  ( );UB F i←  

 }   

 isOnPath( ) false;i ←  

 nextArc( ) firstArc( );i i←  

 pop PN ; 

 pop (pQfront)A′ ; 

} 

print(“Minimum convoy transit time of an a-b path is ”, UB, “hours.”); 

print(“Optimal a-b path is ”, *
PA ); 

} 

 

3. Enhanced A* Algorithm for the Convoy Quickest-Path Problem 

A* search is essentially a branch-and-bound algorithm, and such algorithms can 

often be improved by using a heuristic to identify a good starting solution and upper 

bound, UB.  We use the obvious heuristic:  Find the quickest path for a single vehicle 

using a shortest-path algorithm, and evaluate the true convoy-transit time for that path to 
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yield UB.  Rather than writing a special algorithm to compute that transit time, we simply 

use Algorithm 3 as a subroutine with modified data, as follows: 

 

Algorithm 3E: Enhanced A* search for solving the convoy quickest-path problem  

  (CQP-CS) 

Input:  Same as Algorithm 3. 

Output:  An a-b path that minimizes convoy traversal time (CS), and that time. 

{   

 Step 0:      ( , ) ;ij ij ijt l s i j A← ∀ ∈    /* Initialize */ 

 Step 1:    Compute ( )  d i i N∀ ∈  as the shortest transit time for a single vehicle  

      from  i to b plus 
( , ) |

/ max iji j A j b
t L s

∈ =
′ = ; 

      /* Solve one backward shortest-path prob. with respect to ijt  from b */ 

    Identify arcs on shortest-path sA ; 

 Step 2:    Modify data so that    ( , ) ;ij ij st l i j A A← ←∞ ∀ ∈ −  

 Step 3:    Call Algorithm 3 with modified ijt , UB = ∞ and with modified  

          Identify new UB ;  /* Clearly, only the arcs in sA  will be traversed */ 

 Step 4:    Reset original arc lengths and transit times ijl  and     

         ( , ) ;ij ij ijt l s i j A← ∀ ∈  

 Step 5:    Call Algorithm 3 with original data but with new UB , and   

    initialize *
PA  as sA  ; 

} 

 

D. EXTENDING CQP-CS TO MULTIPLE LANES 

The convoy quickest-path model in the previous section assumes that the convoy 

moves in a single lane of traffic.  However, it is certainly possible that a convoy could 

make use of, say, three out of four lanes on a highway, if such were available.  (The 

fourth lane might be set aside for repair and emergency vehicles.)  This section develops 

a quickest-path model and an algorithm that lets the convoy use a variable number of 
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traffic lanes defined by ijc .  These values can be fractional to represent inefficiencies in 

using extra lanes ijs .  For instance, vehicles will probably be staggered in the various 

lanes, and if each lane has an inter-vehicle spacing of 100 meters, the spacing that a 

strafing enemy aircraft might see would be less than 33 meters.  Thus, a commander 

might actually increase inter-vehicle spacing beyond 100 meters and thereby lose some of 

the capacity advantage afforded by multiple lanes.  For simplicity, we assume perfect 

coordination of lane changes so that no overhead is incurred. 

Algorithm 3EM, which solves the multi-lane model, is specified below.  It may be 

viewed as a simple variant of Algorithm 3 with a convoy whose length depends on the 

number of lanes it is operating on. 

 

Algorithm 3EM:  Multi-lane Convoy Quickest-Path Model 

Solves “CQP-CSML,” which is the same as CQP-CS except that multiple 

lanes of traffic may be used, if available. 

Input:  Same as Algorithm 3E except with the number of traffic lanes ijc  defined 

for each ( , ) ;i j A∈  Note that 1;a a bbc c′ ′≡ ≡  

Output:  An a-b path that minimizes convoy transit time (CS) when multiple lanes 

may be used, and that path’s transit time. 

{ 

 Step 0:    ( )   ( , ) ;ij ij ij ijt l s c i j A← × ∀ ∈     /* Initialize */ 

 Step 1:    Compute ( )  d i i N∀ ∈  as the shortest transit time for a single vehicle  

      from  i to b plus ( )( , ) |
max ij iji j A j b

t L s c
∈ =

′ = ; 

    /* Solve one backward shortest-path prob. with respect to ijt  from b */ 

    Identify arcs on shortest-path sA ; 

 Step 2:    Modify data so that    ( , ) ;ij ij st l i j A A← ←∞ ∀ ∈ −  

 Step 3:    Call Algorithm 3 with modified ijt , UB = ∞ and with steps 1a – 1d  

      replaced by;  
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  next  min{( ) , ( ) };i j back i j i j front i jl c l cδ δ δ′ ′ ′ ′ ′′ ′′ ′′ ′′← − × − ×   /* Step 1a */ 

  next min/( );i jT T s cδ ′′ ′′← + ×     /* Step 1b */ 

   front front next ;i jcδ δ δ ′′ ′′← +     /* Step 1c */ 

     back back next ;i jcδ δ δ ′ ′← +     /* Step 1d */ 

        Identify new UB ; /* Clearly, only the arcs in sA  will be traversed */ 

 Step 4:    Reset original arc lengths and transit times ijl   

      and ( )   ( , ) ;ij ij ij ijt l s c i j A← × ∀ ∈  

 Step 5:    Call Algorithm 3 with original data but with new UB , and   

     steps 1a – 1d replaced by;  

  next  min{( ) , ( ) };i j back i j i j front i jl c l cδ δ δ′ ′ ′ ′ ′′ ′′ ′′ ′′← − × − ×   /* Step 1a */ 

  next min/( );i jT T s cδ ′′ ′′← + ×     /* Step 1b */ 

   front front next ;i jcδ δ δ ′′ ′′← +     /* Step 1c */ 

     back back next ;i jcδ δ δ ′ ′← +     /* Step 1d */ 

        And with sA  initialized by *
PA ;  

} 
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III. CONVOY -PATH INTERDICTION 

This chapter provides general background on “path-interdiction problems,” 

defines the convoy-path interdiction problem precisely, and proposes basic and enhanced 

models for its solution.  

 

A. BACKGROUND ON CONVOY-PATH INTERDICTION 
This thesis describes the “convoy-path interdiction problem” (CPIP) in which an 

interdictor uses limited resources to attack and disrupt road segments (arcs) or road 

intersections (nodes) in a road network in order to delay an adversary’s convoy from 

reaching its destination.  We assume that the convoy commander has full knowledge of 

the state of the relevant road network after interdiction, and will move the convoy to its 

destination using use the quickest route available.  That is, he will plan his route using 

one of the quickest-path algorithms described in the previous chapter.  We also note that 

a node can be converted to an arc for the purposes of interdiction by using the standard 

technique of “node-splitting” (e.g., Ahuja et al. 1993, pp. 41-42), so we discuss 

interdiction of arcs only in the following. 

Since CPIP is NP-hard (Israeli and Wood 2002) and evidently has no simple 

formulation as a mixed-integer program, we use the set-partitioning decomposition and 

algorithm of Israeli and Wood to identify an optimal interdiction plan, and then attempt 

to improve that technique using ideas from Benders decomposition.  Before presenting 

algorithms, we require a few definitions, assumptions and notation: 

1) If an arc is interdicted, it is completely destroyed and becomes impassable. 

2) x denotes an interdiction plan (vector) such that 

1 if ( , ) is interdicted,
    

0 otherwise.ij

i j
x ⎧

= ⎨
⎩

 

3) r denotes a vector of ijr  required resource units to interdict arc ( , )i j . 

4) X denotes the set of feasible interdiction plans: 
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{ }{ }| |0,1 |AX R= ∈ ≤x rx  

5) y denotes an arc-path incidence vector for an a-b path p in G such that 

1 if ( , ) ,
    

0 otherwise.
p

ij

i j A
y

∈⎧
= ⎨
⎩

 

6) Y denotes a set of arc-path incidence vectors. 

7) The total amount of interdiction resource is R, each arc ( , )i j  requires ijr units 

of resource to interdict.  However, artificial arcs ( , )a a′  and ( , )b b′  cannot be 

interdicted, so we may assume a a bbr r R′ ′= > . 

 

B. QUICKEST-PATH INTERDICTION MODEL 

1. General Convoy Quickest-Path Interdiction Model 
We employ the second decomposition algorithm developed by Israeli and Wood 

(2002) to solve CPIP using the CQP-CS as a sub-problem.  The decomposition contains a 

master problem for solving the interdiction resource allocation problem and a sub-

problem for finding convoy quickest-path.  In its basic form, we begin with an arbitrary, 

resource-feasible interdiction plan.  The sub-problem then reveals the convoy’s quickest-

path given that interdiction plan.  The master problem then tries to identify a resource-

feasible interdiction plan that stops the convoy from using that quickest path.  (This 

should be trivial to accomplish in the first iteration.)  Then, given that interdiction plan, 

the subproblem identifies a new, restricted quickest path.  The master problem then tries 

to identify a feasible interdiction plan that stops the convoy from using either of its first 

two quickest paths.  This process repeats until the master problem cannot identify a 

feasible solution that stops the convoy from using one of the paths it has responded with 

during the course of the algorithm.  The best interdiction plan identified during the 

algorithm is then optimal.  The decomposition algorithm follows: 

 

Additional Definitions for Algorithm 4: 

Ŷ   a subset of all arc-path incidence vectors  

x̂   interdiction-plan vector derived from the master problem 
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ŷ   path-arc incidence vector for a quickest path derived from the subproblem 

z   lower bound on the time for convoy to travel the quickest path 

ˆzx   upper bound of the time for convoy to travel the quickest path 

CQPP( x̂ ) function that finds a convoy’s quickest-path given interdiction-plan x̂  

 

Algorithm 4:  A Covering Decomposition Algorithm for CPIP 

Maximize the minimized convoy quickest-path by using limited 

interdiction resources. 

Input:  An instance of the convoy quickest-path problem with network 

( , )G N A= , source node a, sink node b, ijl , ijs , ijc ( , )i j A∀ ∈ , r , and R. 

Output:  An interdiction plan *x  that maximizes the convoy’s quickest-path  

{ 

 Step 0:  Initialize: ˆ ;Y ←∅ ;z ← −∞  

 Step 1:  Solve the master problem: 

  [MP1(Ŷ )] :  * T
MP x

z min= r x  

                
T

|  |

ˆˆ ˆs.t     1
        {0,1}A

Y≥ ∀ ∈

∈

y x y
x

 

   If *
MPz R>  then go to Step 3; 

   /* If *
MPz R> , then it is impossible to find a resource-feasible  

   interdiction plan that covers all quickest paths seen in the   

   algorithm so far.  Thus, the “true master problem” is infeasible. */ 

  

 Step 2:  Solve the subproblem CQPP( x̂ ) for ŷ  with objective value ˆzx ; 

   ˆ ˆ ˆ{ };Y Y← ∪ y  

   If ˆz z< x  then ˆ′ ←x x  and ˆ ;z z← x  

   Go to Step 1;  

 Step 3:  * ;′←x x  Print *
ˆˆ,  ,  zxx y ;  

} 
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2. Enhanced Convoy Quickest-Path Interdiction Model 
Israeli and Wood (2002) note that any near-optimal path from their shortest-path 

version of CQPP( x̂ ) can be added to Ŷ as long as that path’s length is less than the 

current upper bound.  That is, if the interdictor is to do as well as he knows he can, or 

better, he must interdict every path that is shorter than the current lower bound.  He 

knows this is possible, but adding extra paths may make the master problem tighter and 

converge more quickly.  Because the CQPP subproblem is solved with an implicit-

enumeration algorithm, we can simply save some or all appropriate paths identified 

during the search, if any, in addition to the optimal path. 

The enhanced algorithm, Algorithm 4E, is thus created from Algorithm 4 follows: 

 

Algorithm 4E: An Enhanced Covering Decomposition Algorithm for CPIP 

{  

 Same as Algorithm 4 except that Step 2 is replaced by 

Step 2′: Solve the subproblem CQPP( x̂ ) for ŷ  with objective value ˆzx , but 

   save and order these paths identified during the course of the  

   algorithm, if any: 

   Ŷ ′= { ˆ ky  | ˆkz z<  and ordered subject to 1 2ˆ ˆ ˆ... Kz z z< < < }; 

   ˆ ˆ ˆ{ };Y Y← ∪ y  

   If ˆz z< x  then ˆ′ ←x x  and ˆ ;z z← x  

  If ( 1K > ) then 2 3
ˆ ˆ ˆ ˆ ˆ{ , ,..., }KY Y ′← ∪ y y y , for some K K′ ≤ ; 

 /* Because K could become quite large, we simply use 2K ′ = , in practice. */ 

} 
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IV. COMPUTATIONAL RESULTS 

This chapter presents computational results for convoy quickest-path models and 

their interdiction models.  Tests are carried out on artificially constructed grid networks.  

 

A. COMPUTATIONAL TEST BED 
We create artificial test networks for testing purposes using these assumptions: 

1) The network contains m rows and n columns of nodes, plus a source node, a 

sink node, an artificial source node and an artificial sink node so that 

| | 4N mn= + .   

2) Each node in the m n×  grid has an arc directed out of it to the “north,” 

“south,” “east” and “west,” if the destination node exists in the grid; the 

source node has one arc directed into it from the artificial source node and m 

arcs directed out to the first column of nodes in the grid; the sink node has one 

arc directed out of it going to the artificial sink and m nodes directed into it 

from the last column of nodes.  (See Figure 3.)  Thus, | A | = 

4(( 2)( 2)) +m n− − 3(2( 2)+2( 2))+2 +10.m n n− −  

3) All arcs can be interdicted except for the two artificial arcs, ( , )a a′  and ( , )b b′ . 

For simplicity, interdiction of arc ( , )i j  in the grid does not imply interdiction 

of arc ( , )j i . 
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Figure 3. Example of a 4 3× test network.  Nodes 1 and 16 are artificial source and 
sink nodes, a′  and b′ , respectively.  Node 2 is the source node a, while node 15 is the 

sink node b.   All arcs are subject interdiction except for the artificial arcs, (1, 2) and (15, 
16).  

 

4) The convoy has a length of 42 km (400 vehicles), and the lengths of arcs are 

distributed randomly as: 30% have length 10 km, 30% have length 20 km, 

20% have length 30 km, 10% have length 40 km and 10% have length 50 km.  

Effective speed limits are randomly selected, with equal probabilities, as 40 

km/h, 50 km/h, 55 km/h, 60 km/h, and 70 km/h. 

5) The number of lanes on all arcs is 1, or the number is selected randomly, with 

equal probabilities for 1 lane, 2 lanes, 3 lanes, and 4 lanes. 

6) For simplicity, we assume each interdictable arc ( , )i j  requires exactly 1ijr =  

unit of resource to interdict. 

7) All problems are solved to optimality, i.e., with a 0% relative optimality gap. 

8) We code all programs using the Mosel algebraic modeling language (version 

1.4.1) from Dash Optimization, and solve master problems using Dash’s 

Xpress-MP Optimizer software (version 15.25.03).  Computations are carried 
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out on a 2 GHz Pentium IV computer with 1 gigabyte of RAM, operating 

under the Windows 2000 Professional operating system. 

 

B. CONVOY PATHS 
The ability to solve CPIP will depend on how well we can solve the convoy 

quickest-path problem (CQPP).  Therefore, we first explore the size of CQPPs that we 

can solve, comparing the efficiencies of the basic and enhanced algorithms, Algorithms 3 

and 3E, respectively.  Recall that the enhanced algorithm adds a preliminary heuristic that 

attempts to find a good feasible starting solution. 

1. Convoy Quickest-Path  
We solve a variety of problem instances and display solution times and other 

statistics in the following tables and figures.  The listed solution times are averages of 10 

trials, with numerical data generated using different random-number seeds. 

To begin with, we experiment with the m n×  network grid structure as n 

increases for fixed m; Table 2 and Figure 4 display results.  The run time for Algorithm 3 

seems to be increasing linearly in n while the run time for Algorithm 3E is nearly 

constant over the range of n evaluated.  (It must increase at least linear, but these 

networks are not large enough to show that fact clearly.) 
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Alg. 3 for CQP-CS Alg. 3E for CQP-CS Network 
grid 
dimensions 

Number 
of nodes 

Number 
of arcs Avg. run 

time (sec.) 
Std. dev. 

(sec.) 
Avg. run 

time (sec.) 
Std. Dev. 

(sec.) 

10 10×  104 382 1.1 0.0 0.2 0.0

10 20×  204 782 2.2 0.0 0.0 0.0

10 30×  304 1182 4.0 0.0 0.1 0.0

10 40×  404 1582 6.4 0.1 0.1 0.0

10 50×  504 1982 7.9 0.1 0.1 0.0

10 60×  604 2382 10.5 0.0 0.0 0.0

10 70×  704 2782 10.5 0.1 0.0 0.0

10 80×  804 3182 10.3 0.1 0.1 0.0

10 90×  904 3582 13.1 0.0 0.0 0.0

10 100×  1004 3982 15.6 0.6 0.1 0.0

10 500×  5004 19982 75.3 0.7 0.2 0.0

10 1000×  10004 39982 181.0 2.2 0.2 0.0

10 2000×  20004 79982 414.2 1.2 0.3 0.0

10 2500×  25004 99982 568.3 1.9 1.5 0.2

Table 2. A comparison of Algorithm 3 and Algorithm 3E for CQP-CS.  As the 
value of n is increased in the m n× grid, Algorithm 3’s average run time appears to 

increase linearly while Algorithm 3E’s run time stays almost constant.  This table clearly 
shows that the enhanced algorithm, Algorithm 3E, is much faster. 
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Figure 4. A plot of the data from Table 2 comparing run times for Algorithm 3 and 
Algorithm 3E for solving CQP-CS. 

 

Figure 5 describes the results of an experiment in which m is increased for a fixed 

n in the m n× network.  As m increases, average run times for both algorithms increase 

rapidly.  Algorithm 3 requires more than 122 minutes, on average, to find the quickest 

path in the 50 10×  network while only requiring 7.9 seconds in the similarly sized 

10 50×  network.  Algorithm 3E requires more than 31 minutes, on average, to find the 

quickest path in the 60 10×  network while requiring less than 0.01 seconds in the 

10 60×  network.  Thus, it appears that networks that are narrow in the general direction 

of travel can be much easier to solve than “broad networks.” 
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Alg. 3 for CQP-CS Alg. 3E for CQP-CS Network 
grid 
dimensions 

Number 
of nodes 

Number 
of arcs Avg. run 

time (sec.) 
Std. dev. 

(sec.) 
Avg. run 

time (sec.) 
Std. dev. 

(sec.) 

10 10×  104 382 1.1 0.0 0.2 0.0

20 10×  204 762 32.8 1.1 1.9 0.0

30 10×  304 1142 1005.0 1.6 7.1 0.0

40 10×  404 1522 1261.9 2.9 15.3 0.0

50 10×  504 1902 7344.9 2.6 74.8 0.1

60 10×  604 2282 - - 1913.2 1.8

Table 3. A comparison of Algorithm 3 and Algorithm 3E for solving CQP-CS.  
This table shows that average run times increase superlinearly as m increases, for fixed n, 
in the m n×  network.  Comparable times for comparably sized n m×  networks are much 

shorter.  The table also clearly shows that Algorithm 3E is faster than the Algorithm 3. 
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Figure 5. A plot of the data from Table 3 comparing run times for Algorithm 3 and 
Algorithm 3E for solving CQP-CS. 

 

Table 4 and Figure 6 depict results for an experiment in which n increases for a 

square, n n×  grid.  Average run times for both algorithms increase quickly in | |N .  
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Alg. 3 for CQP-CS Alg. 3E for CQP-CS Network 
grid 
dimensions 

Number 
of nodes 

Number 
of arcs Avg. run 

time (sec.) 
Std. dev. 

(sec.) 
Avg. run 

time (sec.) 
Std. dev. 

(sec.) 

10 10×  104 382 1.1 0.0 0.2 0.0

20 20×  404 1562 77.8 1.0 0.6 0.0

25 25×  629 2452 437.2 1.3 10.5 0.1

30 30×  904 3542 2358.4 1.9 27.3 1.8

40 40×  1604 6322 - - 642.8 5.5

50 50×  2504 9902 - - 1042.8 3.9

55 55×  3029 11992 - - 4703.8 2.4

60 60×  3604 14282 - - 5292.5 3.1

Table 4. A comparison of both Algorithm 3 and Algorithm 3E for the CQP-CS 
model (see also Figure 6).  This table shows average run times for square grid networks.  
These times increase rapidly in | |N .  Again, Algorithm 3E appears to be the faster of the 

two algorithms. 
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Figure 6. A plot of the data from Table 4 comparing Algorithm 3 and Algorithm 3E 
for CQP-CS. 

 

All experiments clearly show that the Algorithm 3E is much more efficient than 

Algorithm 3.  Therefore, we use Algorithm 3E for solving all CQPPs in the rest of this 

thesis. 

2. Comparison of Convoy Quickest-Path Models 
This section demonstrates that, in fact, the CQP-CS model describes convoy 

movement more realistically than do the shortest-path and SCTT (simple continuum 

traffic theory) alternatives.  We can verify that difference do arise between the models by 

comparing path-transit times and actual “quickest” paths.   

We first compare our CQP-CS model to the CQP-SCTT model suggested by 

Israeli et al. (2004), assuming the convoy moves in a single lane of traffic; see Table 5.  

(Note:  The CQP-SCTT model is solve with a variant of Algorithm 3E.)  Only three of 

the ten quickest-paths are the same for the two models.  On average, the CQP-CS 

quickest path is 0.93 hours longer (8.67%) than the CQP-SCTT quickest path.  As should 

be expected, all transit times for the CQP-CS model are at least as long as those for CQP-

SCTT.  The table also gives the “true” transit time for the quickest path identified by the 

SCTT algorithm.  This time does not differ much from true transit time for the quickest 



35 

CS path, indicating that little error would be incurred by using the SCTT procedure.  

However, Table 9 will provide an instance where this is not the case. 

 

Transit time (hours)

Network 
grid dims. 

Num. of 
nodes 

Num. 
of arcs 

CQP-
SCTT, 
single-

lane 
(path A) 

CQP-CS 

(path B) 

Same 
path? 

Diff. 
(%) 

“True” 
transit 

time for 
path A 
(hours) 

10 10×  104 382 4.47 4.66 No 4.25 4.75

20 10×  204 762 7.07 7.60 Yes 7.50 7.50

10 30×  304 1182 4.25 4.43 No 4.24 4.58

40 10×  404 1522 14.80 16.66 No 12.57 17.01

20 20×  404 1562 7.99 8.50 Yes 6.38 8.50

25 25×  629 2452 9.42 10.37 Yes 10.08 10.37

20 40×  804 3162 6.88 7.44 No 8.14 7.82

30 35×  1054 4142 10.58 11.58 No 9.45 11.61

30 50×  1504 5942 11.17 12.29 No 10.03 12.35

50 50×  2504 9902 17.26 19.69 No 14.08 20.40

Table 5. Comparison of CQP-SCTT and CQP-CS models in single-lane networks.  
This table gives the transit times, indicates whether or not the quickest paths are the 

same, and specifies the percentage difference in transit times, specifically 100%×(CS 
time − SCTT time)/(SCTT time).  The average difference in transit times is about 0.93 
hours (8.67%).  Three of the ten quickest-paths are the same for the two models.  In all 
cases, the “true” transit time for the SCTT quickest path differs only a little from the 

“true” quickest path’s transit time. 

 

Table 6 shows the results of an experiment that compares the CQP-SP model to 

the CQP-CS model in which the convoy moves in a single lane of traffic.  CQP-SP 

assumes that a single vehicle moves from a to b, but adds a factor to estimate the clearing 

time for the convoy when its head reaches b.  Two of the ten quickest-paths are the same 

for the two models, but the transit times are always greater for CQP-CS.  On average, the 

CQP-CS quickest path is 1.24 hours (13.04%) longer than the CQP-SP quickest path. 
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Transit time (hours) Network 
grid 
dimensions 

Number 
of nodes 

Number 
of arcs CQP-SP CQP-CS 

Same 

path? 

Diff. 

(%) 

10 10×  104 382 4.09 4.66 No 13.94

20 10×  204 762 6.78 7.60 Yes 12.09

10 30×  304 1182 4.00 4.43 No 10.75

40 10×  404 1522 14.45 16.66 No 15.29

20 20×  404 1562 7.78 8.50 No 9.25

25 25×  629 2452 9.18 10.37 No 12.96

20 40×  804 3162 6.53 7.44 Yes 13.94

30 35×  1054 4142 10.29 11.58 No 12.54

30 50×  1504 5942 10.88 12.29 No 12.96

50 50×  2504 9902 16.87 19.69 No 16.72

Table 6. Comparison of CQP-SP and CQP-CS models.  Two of the ten quickest-
paths are the same for the two models, but the transit time is always greater for CQP-CS.  
The average difference in transit times, CS time − SP time,  is about 1.24 hours (13.04% 

of the mean transit time for CQP-SP). 

  

Table 7 compares the CQP-CS and CQP-CSML models.  This should show the 

improvement in transit time, if any, that can be achieved by having the convoy use 

multiple traffic lanes.  The table shows that four of the ten quickest-paths are the same for 

the two models, but the transit time is always less for CQP-CSML (it cannot be longer).  

On average, the multi-lane transit time is 0.73 hours (7.54%) faster than the single-lane 

transit time.  Note that the largest difference in transit times is quite large, however, 

26.83%.  This experiment shows that using multiple lanes can definitely speed up the 

movement of a convoy. 



37 

Transit time (hours) Network 
grid 
dimensions 

Number 
of nodes 

Number 
of arcs CQP-CS CQP-CSML

Same 

path? 

Diff. 

(%) 

10 10×  104 382 4.66 4.32 Yes 7.87

20 10×  204 762 7.60 7.37 Yes 3.12

10 30×  304 1182 4.43 4.21 Yes 5.23

40 10×  404 1522 16.66 15.80 No 5.44

20 20×  404 1562 8.50 8.26 No 2.91

25 25×  629 2452 10.37 9.79 No 5.92

20 40×  804 3162 7.44 7.00 No 6.29

30 35×  1054 4142 11.58 10.99 Yes 5.37

30 50×  1504 5942 12.29 9.69 No 26.83

50 50×  2504 9902 19.69 18.51 No 6.37

Table 7. Comparison of the CQP-CS and CQP-CSML models, i.e., constant inter-
vehicle spacing using a single lane or multiple lanes, respectively.  The average 

difference in transit time between the models, CS time − CSML time, is about 0.73 hours 
(7.54% of the mean transit time for CQP-CSML).  Four of the ten quickest-paths are the 

same for the two models, but the transit time for CQP-CS is always greater than for CQP-
CSML (it cannot be less). 

 

Table 8 displays results of an experiment that compares a multi-lane version of 

CQP-SP, denoted CQP-SPML, to the CQP-CSML.  CQP-SPML is created as a multi-

lane, heuristic variant of CQP-SP by simply replacing arc speed, ijs with ij ijs c .  Clearing 

time is estimated in the same way in the two models except that s′  becomes ib ibs c  for 

CQP-SPML.  With one exception, all quickest paths differ between the two models; 

transit time is always shorter for CQP-CSML (it cannot be longer).  On average, the 

CQP-SPML transit time is 4.22 hours (78.48%) shorter than the transit time for CQP-SP. 
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Transit time (hours) Network 
grid 
dimensions 

Number 
of nodes 

Number 
of arcs CQP-SPML CQP-CSML

Same 

path? 

Diff. 

(%) 

10 10×  104 382 3.06 4.32 No 41.18

20 10×  204 762 3.73 7.37 Yes 97.59

10 30×  304 1182 2.76 4.21 No 52.54

40 10×  404 1522 8.14 15.80 No 94.10

20 20×  404 1562 4.50 8.26 No 83.56

25 25×  629 2452 5.03 9.79 No 94.63

20 40×  804 3162 3.62 7.00 No 93.37

30 35×  1054 4142 5.05 10.99 No 117.62

30 50×  1504 5942 6.69 9.69 No 44.84

50 50×  2504 9902 11.19 18.51 No 65.42

Table 8. Comparison of CQP-SPML and CQP-CSML models.  The average 
difference in transit times, CSML time − SPML time, is about 4.22 hours (78.48% of the 
mean transit time for CQP-SP).  With one exception, the quickest paths differ in all trials.  

 

Table 9 compares convoy quickest paths derived from the CQP-SCTT and CQP-

CSML models.  On average, the CSML transit time is 0.64 hours (6.31%) longer than the 

SCTT transit time.  Nine of the ten problems yield different quickest paths for the two 

models.  Transit times for CQP-CS are longer except in one case, the 30 50×  grid 

network.  That instance can be explained as follows:  Both models are slowed down by 

an unavoidable, low-speed arc in the first part of their quickest paths.  Further along, 

CSML can take advantage of an arc with four high-speed lanes, while SCTT cannot. 

Table 9 also shows that all SCTT quickest paths but one have true transit times 

that are very close to the true, CS quickest-path transit time.  This means that, except in 

one case, one would not make a large error by using the SCTT procedure to find a 

quickest path.  However, for the one exception, the 30 50×  grid, the “true” (CS) quickest 

path is 100% × (11.63−9.69)/9.69 = 20.0% shorter than the SCTT-identified quickest 

path.  This seems like a large error that cannot be ignored.   
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Transit time (hours) 
Network 
grid 
dims. 

Num. 
of 
nodes 

Num. 
of arcs 

CQP-
SCTT 

(path A) 

CQP-
CSML 

(path B) 

Same 
path? 

Diff. 
(%) 

“True” 
transit 

time for 
path A 
(hours) 

10 10×  104 382 4.26 4.32 No 1.41 4.45

20 10×  204 762 6.78 7.37 Yes 8.70 7.37

10 30×  304 1182 4.04 4.21 No 4.21 4.56

40 10×  404 1522 14.53 15.80 No 8.74 15.98

20 20×  404 1562 7.92 8.26 No 4.29 8.37

25 25×  629 2452 9.21 9.79 No 6.30 9.97

20 40×  804 3162 6.88 7.00 No 1.74 7.02

30 35×  1054 4142 10.37 10.99 No 5.98 11.00

30 50×  1504 5942 11.10 9.69 No −14.55 11.63

50 50×  2504 9902 17.26 18.51 No 7.24 19.28

Table 9. Comparison of CQP-SCTT and CQP-CSML.  The average difference in 
transit time, CSML time − SCTT time, is about 0.64 hours (6.31% of the mean transit 
time for CQP-SCTT).  All quickest paths differ except in one trial, and all transit times 
for the CQP-CSML model exceed those for CQP-SCTT except in one case.  That last 

column evaluates the “true,” CSML transit time for path A, which was identified as the 
quickest path by SCTT.  This value is not too different from the CSML quickest-path 
time in most cases, except for the 30 50×  grid where these values differ by 100% × 

(11.63−9.69)/9.69 = 20.0%. 

 

The experiments described above show that the shortest-path and SCTT 

approximations of the quickest path can differ substantially from the “true” quickest path.  

We have argued how the CQP-CSML model must be more accurate than the alternatives, 

and we see that it is consistently more conservative.  Until even more accurate models are 

devised, we believe that CQP-CSML should be used, and we will use it within our 

algorithms for solving the convoy-path interdiction problem. 
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C. CONVOY PATH INTERDICTION 
This section explores the efficiency of the basic and enhanced algorithms, 

Algorithm 4 and 4E, respectively, for solving CPIP.  We use Algorithm 3E to solve the 

CQP-CSML subproblems in all cases.  Recall that the enhanced interdiction algorithm, 

Algorithm 4E, can add more than one constraint per iteration to the CPIP master problem, 

whereas Algorithm 4 will always add just one. 

1. Convoy Quickest-Path Interdiction with Constant Inter-vehicle 
Spacing and Multiple Lanes (CPIP-CSML)  
We solve a variety of network problems with Algorithm 4 and Algorithm 4E and 

display solution times in the tables below.  Recall that Algorithm 4E simply employs 

2K ′ = , which means that that up to two constraints are added to the master problem in 

each iteration rather than the single constraint of the basic algorithm.  Algorithm 4E may 

be able to improve run times compared to Algorithm 4 if, in at least one iteration, it finds 

two paths whose transit times are less than the current upper bound on a post-interdiction 

transit time.  The listed solution times are average values of 10 trials using different 

random-number seeds. 

We experiment with the m n× network structure as n increases for fixed m; Table 

10 displays results.  It appears that increases in the size of the network and in the amount 

of interdiction resource both increase run times.  The table shows that Algorithm 4E is 

faster than Algorithm 4. 
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Alg. 4 for CPIP-CSML Alg. 4E for CPIP-CSML Network 
grid 
dims. 

Interdict. 
resource Avg. run 

time (sec.) 
Std.dev. 

(sec.) 
Avg. run 

time (sec.) 
Std.dev. 

(sec.) 

Multiple 
optimal 
interdiction 
solutions? 

2 1.4 0.0 1.4 0.0 No 

3 2.7 0.1 2.4 0.0 No 10 10×  

4 4.2 0.2 3.9 0.1 No 

4 2.0 0.1 2.0 0.1 Yes 

5 2.2 0.1 2.2 0.1 Yes 10 20×  

6 3.9 0.3 3.7 0.3 Yes 

4 3.7 0.4 3.4 0.2 Yes 

5 6.8 0.9 6.3 0.9 Yes 10 30×  

6 7.7 1.3 7.6 1.5 Yes 

4 4.6 0.5 4.5 0.6 Yes 

5 7.5 1.4 6.2 0.7 Yes 10 40×  

6 12.2 1.0 11.6 1.7 Yes 

Table 10. Comparison of Algorithms 4 and 4E for CPIP-CSML as n increases in an 
m n×  grid network with m fixed.  Algorithm 4E is clearly faster than Algorithm 4. 

 

Table 11 displays results for an experiment in which m increases in the 

m n× network given fixed m.  As m increases, the run times for both algorithms increase 

rapidly as do the standard deviations; run times also increase with increasing interdiction 

resource.  As above, we clearly see that Algorithm 4E is faster than Algorithm 4. 
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Alg. 4 for CPIP-
CSML Alg. 4E for CPIP-CSML 

Network 
grid 
dims. 

Interdict. 
resource Avg. 

run time 
(sec.) 

Std.dev. 
(sec.) 

Avg. run 
time 
(sec.) 

Std.dev. 
(sec.) 

Multiple 
optimal 
interdiction 
solutions? 

2 1.4 0.0 1.4 0.0 No 

3 2.7 0.1 2.4 0.0 No 10 10×  

4 4.2 0.2 3.9 0.1 No 

2 8.9 1.8 8.9 1.8 Yes 

3 52.9 1.3 48.7 1.9 No 20 10×  

4 83.3 5.5 76.7 1.8 No 

30 10×  2 704.8 24.1 647.0 19.5 Yes 

40 10×  2 2521.5 121.1 2258.5 101.6 Yes 

Table 11. Comparison of Algorithm 4 and Algorithm 4E for CPIP-CSML as m 
increases in an m n×  grid network with n fixed.  Average run times increase much more 

rapidly in these “broad networks” than they do in the “narrow networks” of Table 10.  
Run times also increase with increasing interdiction resource.  As in the previous 

experiment, Algorithm 4E is clearly faster than Algorithm 4. 

   

Table 12 presents results for an experiment in n increases for a square n n×  grid.  

Run times for both algorithms appear to increase rapidly both as a function of n and as 

function of the amount of interdiction resource.  Again, Algorithm 4E is clearly faster 

than Algorithm 4. 
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Alg. 4 for CPIP-CSML Alg. 4E for CPIP-CSML Network 
grid 
dims. 

Interdict. 
resource Avg. run 

time (sec.)
Std.dev. 

(sec.) 
Avg. run 

time (sec.)
Std.dev. 

(sec.) 

Multiple 
optimal 
interdiction 
solutions? 

2 1.4 0.0 1.4 0.0 No 

3 2.7 0.1 2.4 0.0 No 10 10×  

4 4.2 0.2 3.9 0.1 No 

3 11.5 1.3 10.3 1.1 Yes 

4 17.8 1.9 16.7 2.8 Yes 15 15×  

5 34.0 7.0 31.7 5.2 Yes 

4 44.7 18.2 26.6 4.0 Yes 

5 57.2 11.0 54.2 19.4 Yes 20 20×  

6 297.6 33.5 237.8 27.1 Yes 

2 45.8 1.8 43.3 0.5 Yes 

3 137.9 1.6 136.9 3.6 No 25 25×  

4 363.3 89.9 359.7 46.2 Yes 

Table 12. Comparison of Algorithm 4 and Algorithm 4E for CPIP-CSML.  This 
table describes an experiment in which n increases in an n n× grid network.  Once again, 

run times increase rapidly with increasing network size, and increasing interdiction 
resource. Again, Algorithm 4E is somewhat faster than Algorithm 4. 

 

Algorithm 4E nominally uses 2K ′ = , which is the maximum number of 

constraints that can be added in each iteration.  Algorithm 4E is better than Algorithm 4, 

so it may be possible to improve performance by increasing K ′  beyond 2.  Table 13 

compares run times as K ′   is varied between 2 and 5.  The table clearly shows that 

2K ′ =  provides the best average run time, except in the case of the 20 20×  grid with 

interdiction resource set at 6. 

Ignoring random effects, using 2K ′ >  can reduce solution times only if it reduces 

the number of main iterations required in Algorithm 4E.  Table 14 shows that it does 

sometimes, but not consistently.  Furthermore, even if the number of iterations is 

reduced, this cannot guarantee a reduced run time because increased overhead. 
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Algorithm 4E 
Alg. 4 

2K ′ =  3K ′ =  4K ′ =  5K ′ =  Network 

grid 

dims.  

Interdict. 

resource Avg. 
run 
time 
(sec.) 

Avg. 
Iter. 

Avg. 
run 
time 
(sec.) 

Avg.
Iter. 

Avg. 
run 
time 
(sec.) 

Avg.
Iter. 

Avg. 
run 
time 
(sec.) 

Avg.
Iter. 

Avg. 
run 
time 
(sec.) 

Avg. 
Iter. 

5 5.4 23.0 4.9 20.0 4.9 20.0 4.9 20.0 4.9 20.0 

6 8.6 34.0 7.6 31.0 9.3 38.0 9.2 38.0 9.1 38.0 
10 10×

 
7 13.3 49.0 10.3 48.0 11.8 48.0 11.7 48.0 11.8 48.0 

5 32.5 22.4 35.3 34.5 37.1 34.0 36.6 34.0 35.1 34.0 

6 94.5 77.8 89.6 76.8 100.4 86.0 97.2 83.4 93.3 82.2 15 10×
 

7 150.6 129.4 122.0 116.0 155.4 125.4 147.7 116.4 139.4 103.2 

5 2.3 11.0 2.3 11.0 2.3 11.0 2.3 11.0 2.3 11.0 

6 3.8 16.6 3.7 16.0 3.8 16.0 3.8 16.0 3.8 16.0 10 20×
 

7 5.3 21.8 5.1 20.4 5.1 20.4 5.1 20.4 5.1 20.4 

4 49.1 25.5 45.5 24.0 45.6 24.8 45.6 22.8 45.7 21.9 

5 63.8 33.7 55.2 29.1 57.4 29.8 61.3 31.7 64.1 32.5 15 17×
 

6 111.2 60.9 81.0 45.6 91.6 48.0 88.0 46.0 90.0 46.8 

4 44.7 16.5 26.6 14.6 36.8 15.1 26.5 15.3 30.8 15.3 

5 57.2 24.9 54.2 24.8 58.5 25.0 58.9 26.0 57.4 25.0 20 20×
 

6 297.6 70.1 237.8 68.3 227.7 64.1 209.6 62.1 185.7 65.5 

Table 13. Comparison of run times solving CPIP-CS, for Algorithm 4 and 
Algorithm 4E as K ′  varies.  Note that all standard deviations for run times (not shown) 

are roughly 10% of the average run times.  This table shows that Algorithm 4E, with 
2K =′ , can improve run times over Algorithm 4 by reducing the number of master-

problem iterations.  Increasing K ′  beyond 2 can further reduce the number of iterations, 
and sometimes reduce run times, but the overhead must become too great for reduced 

iterations to guarantee a reduced run time. 

 
D. A POTENTIAL IMPROVEMENT FOR ALGORITHMS 3 AND 3E 

At the end of this research effort, we realized that Test 1 in Algorithm 3 and 3E 

could be strengthened.  If we compute backward distances from b starting at 0 rather than 

at t′  (recall that t′  is a lower bound on the clearing time once the convoy’s head reaches 

b), then Test 1 looks like: 

if ( ( ) ( )ijF i t t d j UB′+ + + <  and  not isOnPath( )j ) {   /* Test 1a */. 
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If we define it′′  as the amount of time that a single vehicle at the tail of the convoy 

would require to reach i given that the head of the convoy is at i (and the body of the 

convoy lets this vehicle pass without hindrance!), then another valid test would be 

if ( ( ) ( )ij iF i t t d j UB′′+ + + <  and  not isOnPath( )j ) {   /* Test 1b */. 

It follows that the following test is valid and stronger than either Test 1a or Test 

1b: 

if ( ( ) max{ , } ( )ij iF i t t t d j UB′ ′′+ + + <  and  not isOnPath( )j ) {   /* Test 1c */. 

Table 14 repeats part of Table 4 to explore the value of Test 1c.  We denote the 

potentially improved version of Algorithm 3E as Algorithm 3E′ and compare it to 

Algorithm 3E on some n n×  grids.  The results are clearly promising and indicate that 

larger problems instances of CPIP than we have been able to solve will, in fact, be 

solvable.   And, even stronger versions of Test 1c can be defined:  Only additional testing 

will be able to determine the extent of improvements that are possible. 

 

Alg. 3E for CQP-CS Alg. 3E′ for CQP-CS Network 
grid 
dims. 

Number 
of nodes 

Number 
of arcs Avg. run 

time (sec.) 
Std. dev. 

(sec.) 
Avg. run 

time (sec.) 
Std. dev. 

(sec.) 

10 10×  104 382 0.2 0.0 0.0 0.0

20 20×  404 1562 0.6 0.0 0.0 0.0

25 25×  629 2452 10.5 0.1 0.3 0.0

30 30×  904 3542 27.3 1.8 0.8 0.0

40 40×  1604 6322 642.8 5.5 23.2 0.4

50 50×  2504 9902 1042.8 3.9 36.8 1.8

Table 14. Comparison of Algorithm 3E for CQP-CS with Algorithm 3E′, which uses 
a stronger version of Test 1.  The table shows that the stronger test substantially reduces 

computation time.  This bodes well for solving larger instances of CPIP using our 
decomposition methodology. 
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V. CONCLUSIONS 

This thesis devised a method to solve “the convoy-path interdiction problem” 

(CPIP) in which an interdictor uses limited resources to attack and disrupt road segments 

(“arcs”) or road intersections (“nodes”) in a road network in order to delay an adversary’s 

convoy from reaching its destination.  The convoy moves between a known origin node a 

and destination node b using a “quickest path.”  The quickest a-b path requires the least 

amount of time for the full convoy to move from a to b, and takes into account the size or 

length of the convoy, and each road segment’s capacity (effective speed limit) and length.  

Because a convoy can be quite long and must move according to doctrine, this “convoy 

quickest path problem” (CQPP) is more complicated than a standard shortest-path 

problem. 

The analysis is divided to two parts.  The first part devises an algorithm to 

identify a quickest a-b path and determine that path’s transit time.  The second describes 

an algorithm to find an optimal allocation of limited interdiction resources to maximize 

the post-interdiction transit time of a quickest path. 

In the first part, we have reviewed one existing quickest path model, “CQP-

SCTT,” and have devised a simple extension of the standard shortest-path, “CQP-SP.”  

The first model is based on simple continuum traffic theory and violates our doctrinal 

assumption that the convoy will maintain constant inter-vehicle spacing.  We find that 

neither model is appropriate for describing such a convoy, and confirm this through later 

computational testing.  Therefore, we have developed the CQP-CS model (convoy 

quickest-path with constant spacing).  This model assumes that vehicles in the convoy 

move in a single lane of traffic and maintain constant inter-vehicle spacing;  thus, the 

speed of the convoy at any moment is dictated by the slowest speed limit that any vehicle 

is currently subject to. 

To solve CQP-CS, we have developed an implicit path-enumeration algorithm (a 

type of “A*-search” or “branch-and-bound algorithm”), and have enhanced it as 

Algorithm 3E, which uses a heuristic to find a good, initial, feasible solution.  Algorithm 

3E requires less than 20 minutes to solve CQP-CS on a 50 50× grid network (2504 nodes 
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and 9902 arcs).  We also extend the CQP-CS model to CQP-CSML, which models the 

convoy’s use of multiple and varying numbers of traffic lanes. 

In second part of this thesis, we have used the set-covering decomposition and 

algorithm of Israeli and Wood (2002), Algorithm 4, to identify an optimal interdiction 

plan.  We have also developed an enhanced version, Algorithm 4E, which tightens the 

master problem and converges more quickly.  Algorithm 4 requires about 6 minutes to 

solve a 25 25×  grid network problem (629 nodes and 2425 arcs) when the interdictor can 

interdict four arcs.  Algorithm 4E improves on the run time of Algorithm 4 by 10.8%, on 

average, with a maximum improvement of 68%.  
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