
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2001-09

Integrated Development Environment (IDE) for the

construction of a Federation Interoperability Object

Model (FIOM)

Young, Paul E.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/1739

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36695474?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)
FOR THE CONSTRUCTION OF A FEDERATION
INTEROPERABILITY OBJECT MODEL (FIOM)

by

Brent P. Christie
Paul E. Young

September 2001

 Thesis Advisor: Valdis Berzins
 Co-Advisor: Luqi

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2001

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

 4. TITLE AND SUBTITLE: Integrated Development Environment (IDE) for
 Construction of a Federation Interoperability Object Model (FIOM)
6. AUTHOR(S) Brent P. Christie and
 Paul E. Young

5. FUNDING NUMBERS
 ARO
 DMSO
 NAVSEA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Advances in computer communications technology, the recognition of common areas of functionality in related
systems, and an increased awareness of how enhanced information access can lead to improved capability, are driving an
interest toward integration of current stand-alone systems to meet future system requirements. However, differences in
hardware platforms, software architectures, operating systems, host languages, and data representation have resulted in scores
of stand-alone systems that are unable to interoperate properly.

Young’s Object Oriented Model for Interoperability (OOMI) defines an architecture and suite of software tools for
resolving data representational differences between systems in order to achieve the desired system interoperability. The
Federation Interoperability Object Model (FIOM) Integrated Development Environment (IDE) detailed in this thesis is a toolset
that provides computer aid to the task of creating and managing an interoperable federation of systems.

This thesis describes the vision and requirements for this tool along with an initial prototype demonstrating how
emerging technologies such as XML and Data Binding are utilized to capture the necessary information required to resolve
data representational differences between systems. The material presented in this thesis has the potential to significantly reduce
the cost and effort required for achieving interoperability between DoD systems.

15. NUMBER OF
PAGES

14. SUBJECT TERMS Command, Control, and Communications, Computing and Software

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Advances in computer communications technology, the recognition of common

areas of functionality in related systems, and an increased awareness of how enhanced

information access can lead to improved capability, are driving an interest toward

integration of current stand-alone systems to meet future system requirements. However,

differences in hardware platforms, software architectures, operating systems, host

languages, and data representation have resulted in scores of stand-alone systems that are

unable to interoperate properly.

Young’s Object Oriented Model for Interoperability (OOMI) defines an

architecture and suite of software tools for resolving data representational differences

between systems in order to achieve the desired system interoperability. The Federation

Interoperability Object Model (FIOM) Integrated Development Environment (IDE)

detailed in this thesis is a toolset that provides computer aid to the task of creating and

managing an interoperable federation of systems.

This thesis describes the vision and requirements for this tool along with an initial

prototype demonstrating how emerging technologies such as XML and Data Binding are

utilized to capture the necessary information required to resolve data representational

differences between systems. The material presented in this thesis has the potential to

significantly reduce the cost and effort required for achieving interoperability between

DoD systems.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PURPOSE...1
B. PROBLEM ...2
C. ROOT CAUSE ...3
D. USERS AND STAKEHOLDERS ...5
E. SOLUTION SYSTEM BOUNDARY...6
F. CONSTRAINTS TO BE IMPOSED ON THE SYSTEM8

II. OBJECTS, INTEROPERABILITY, AND MODELS, OOMI!...............................9
A. INTRODUCTION..9
B. OBJECTS ...9
C. INTEROPERABILITY...10
D. MODEL...14
E. OOMI..15

1. Capturing Real-World Entities and Views15
2. Capturing Federation Entity View Representations16
3. Sharing Information between Component Systems of the

FIOM...18
a. Resolving Differences in View Between Systems...................18
b. Resoving Differences in Representation................................20

F. CONSTRUCTING THE FIOM..21
G. USING FIOM TO RESOLVE REPRESENTATIONAL

DIFFERENCES BETWEEN HETEROGENEOUS SYSTEMS...............23

III. TECHNOLOGIC INTEROPERABILITY ENABLERS.......................................27
A. INTRODUCTION..27

1. Directives...27
2. OOMI’s Technology Needs ...27
3. Cost..28

B. XML THE NEW LINGUA-FRANCA ...28
1. XML basics ...29
2. Well-formedness...29
3. Validity ..30

C. CONSTRAINING CONTENT ...30
1. DTD ...30
2. XML Schema ..30

D. PROGRAMMATIC ACCESS..31
1. SAX..31
2. DOM..31
3. SAX vs. DOM ...31

E. TRANSLATIONS..32
F. XML DATA-BINDING...33

1. An object-oriented view...33
2. Why use data-binding? ..33

 viii

3. Definition...34
4. Implementations ...35

a. JAXB..35
b. Zeus..36
c. Castor...36
d. Breeze XML Studio...37

G. ALTERNATIVES AND CONCLUSION ..37

IV. VISION, REQUIREMENTS, AND PROTOTYPE..41
A. INTRODUCTION..41
B. VISION DOCUMENT...41

1. Product Features..41
2. Key Use Case ..42

C. SOFTWARE REQUIREMENTS SPECIFICATION (SRS).....................45
1. Use Case Model Survey ...45
3. Activity Diagrams ..46

D. FIOM IDE PROTOTYPE...49
1. Environment ...49
2. Functionality...49
3. Example of Data-binding using the FIOM IDE..............................55

V. CONCLUSION ..59
A. RESULTS OF THIS RESEARCH ...59
B. CRITICISMS OF THIS RESEARCH ...59
C. RECOMMENDATIONS...59

APPENDIX A. FIOM IDE SOURCE CODE AND REQUIRED FILES61
A. SOURCE CODE ..61

1. Babel.java..61
2. ConvenientFileFilter.java..62
3. ConvenientFileView.java...66
4. IDEOptions.java...69
5. MainFrame.java ...72
6. MainFrame_AboutBox.java ...76
7. Options.java..77
8. OptionsDescriptor.java ...79
9. Paths.java..81
11. Schema.java ..86
11. SchemaDocument.java ..91
12. XTree.java ..95

B. REQUIRED FILES ...99
1. options.xsl ...99
2. options.xml..99
3. xmlverbatim.xsl..99

LIST OF REFERENCES ..105

 ix

BIBLIOGRAPHY..109

INITIAL DISTRIBUTION LIST...111

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure I-1. Translations required with and without FIOM. ...5
Figure I-2. FIOM IDE perspective...6
Figure I-3. Translator perspective. ...7
Figure I-4. Black Box View of Component System..8
Figure II-1. Differing Views of Real-World Entity. From Ref. [YBGL01]11
Figure II-2. Differing Real-World Entity View Representations. From Ref. [YBGL01] ..13
Figure II-3. OOMI Real-World Entity Archetype...16
Figure II-4. Federation Entity View ..18
Figure II-5. Inheritance Relationships Within The FIOM ..20
Figure II-6. Translator Wrapper ..24
Figure III-1. Simple XML Document...29
Figure III-2. XML and Java Relationships. From Ref. [Sun01]...35
Figure III-3. Java vs. XSLT..38
Figure IV-1. Key Use Case Diagram..44
Figure IV-2. Add Component System Schema Activity Diagram47
Figure IV-3. Load Component System Schema Activity Diagram......................................48
Figure IV-4. Cascaded View of Menus ..51
Figure IV-5. Load Schema Dialog..51
Figure IV-5. Load Schema Dialog..52
Figure IV-6. Schema Tree View Display..52
Figure IV-7. Schema Text View Display..53
Figure IV-8. Package Dialog for Generating Classes...53
Figure IV-9. IDE Options Dialog ...54
Figure IV-10. About Information Display..54
Figure IV-11. options.xsd ...55

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table IV-1. Product Features...42
Table IV-2. Key Use Case ...44
Table IV-3. Use Case Model Survey...45
Table IV-4. Actor Survey..46
Table IV-5. Menu Functions ..51
Table IV-6. Generated Class Files...57

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF SYMBOLS, ACRONYMS, AND/OR ABBREVIATIONS

CCR Component Class Representation
COE Common Operating Environment
DII Defense Information Infrastructure
DISA Defense Information Systems Agency
DoD Department of Defense
DMSO Defense Modeling and Simulation Office
DTD Data Type Definition
FCR Federation Class Representation
FE Federation Entity
FEV Federation Entity View
FIOM Federation Interoperability Object Model
GMT Greenwich Mean Time
GNP Gross National Product
GUI Graphical User Interface
IE Interoperability Engineer
IDE Integrated Development Environment
LMT Local Mean Time
MGRS Military Grid Reference System
OOAD Object-Oriented Analysis and Design
OOMI Object Oriented Model for Interoperability
RWE Real-World Entity
SAX Simple API for XML
SRS Software Requirements Specification
TBD To Be Determined
TC Translation Class
UML Unified Modeling Language
USMC United States Marine Corps
USN United States Navy
W3C World Wide Web Consortium
XML Extensible Mark-up Language
XPath XML Path Language
XSL Extensible Stylesheet Language
XSL-FO XSL Formatting Objects
XSLT XSL Transformations

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

First, I would thank God for answering my prayers and truly blessing me here at

Monterey with my beautiful new daughter Alexandria and my Masters Degree. All my

knowledge and wisdom flows from him. Second, I thank my wife and best friend

Maggie for making life truly worth living. And lastly, I owe a debt of gratitude to my

fellow students and instructors who have made my time here at NPS a very pleasant and

memorable experience.

-- Brent P. Christie

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. PURPOSE

The purpose of this thesis is to develop the requirements and to build an initial

prototype of an integrated development environment (IDE) used to create an

interoperable federation of systems. This thesis advances the vision of Young et. al. for

Using an Object Oriented Model for Resolving Representational Differences between

Heterogeneous Systems proposed in [YBGL01]. Specifically, the objective of this thesis

is to develop the requirements for a tool that will be used to construct and maintain a

Federation Interoperability Object Model (FIOM) from a number of autonomous ly

developed systems. The FIOM produced by this IDE, hereafter termed the FIOM IDE,

will be used to automatically resolve representational differences between components of

the federation.

In this chapter we will analyze the problem and discuss the motivation behind our

effort, namely:

• Discuss the problem targeted by Young et. al.

• Ascertain the root causes of the problem.

• Identify the stakeholders and the users.

• Define the solution system boundary.

• And, recognize the constraints to be imposed on the solution.

Chapter II details Young’s Object Oriented Model for Interoperability (OOMI),

which provides the architectural components from which the FIOM is built. The

challenges of building a flexible, extensible, and scaleable middleware system that allows

efficient data integration and semantic interoperability are covered.

Chapter III contains a review of techniques and technologies proposed to

implement the FIOM IDE. The advantages and disadvantages of various state-of-the-art

technologies are detailed and commercially available tools are mentioned.

2

Chapter IV details the requirements process and focuses on the vision document

and the high- level software requirements specification (SRS) for the construction of the

FIOM IDE. The status of FIOM IDE prototype is also covered.

Chapter V provides concluding remarks about the current system state. Work to

be done and potential for further research is mentioned.

B. PROBLEM

How do we share information between two or more system specific

representations of the same real-world object? Furthermore, how do we extend the

object-oriented model to handle these representational differences while maintaining all

the benefits of the original model? And lastly, how do we connect the systems targeted

for integration in an efficient, scaleable, and manageable manner? The FIOM is the

answer to the first two questions and the FIOM IDE is the answers to the last.

The FIOM is an instance of the generic Object-Oriented Model for

Interoperability (OOMI) proposed by [YBGL01]. Formally, the OOMI solves the

interoperability problem by capturing the differences in representation used by

autonomously developed components to describe the real-world entities (RWEs) that

define the interoperation between systems. The OOMI also captures those translations

needed to resolve these differences in representation. This new model allows a simple,

scalable, and maintainable means to share information between system specific

representations that are contained within a single RWE or across multiple related RWEs.

The FIOM IDE is a tool that will provide a computer-aided methodology that will

automate the resolution of data representational differences between systems targeted for

integration. The inputs to this tool are the schemas that define the targeted system’s

external interface. Correspondences between different system’s external interfaces are

used to create a new, or add to an existing, FIOM. A middleware translator then uses the

information contained in the FIOM to enable interoperability between component

systems. The translator will process messages based on the schemas that were used as

input into the tool.

3

C. ROOT CAUSE

The Defense Information Infrastructure (DII) Master Plan states “Information

Technology infrastructure is composed of many disparate underlying computing

configurations, designed and implemented at different times to meet different

requirements.” Given the varying perceived service-specific requirements of DoD users

and the distributed execution authority within DoD, it is reasonable to assume that

heterogeneity of our systems will continue to be prevalent [DII98].

Heterogeneity, although not necessarily a negative, is something we must deal

with if we are to control costs and realize the full potential of our investments. Increased

costs are due to two factors. First, many of these systems unintentionally produce similar

or complementary information. Second, advances in computer communications and

networking technologies, a shrinking defense budget, and an increase in joint and

combined operations now make it possible and necessary to integrate. To be blunt, the

funding is simply not there to procure new integrated network-centric systems to replace

the thousands of DoD legacy systems currently operating and produced under the stand-

alone / closed-system paradigm.

The proliferation of these non-interoperable legacy systems has imposed delays,

costs, and friction in nearly every area of human endeavor. By conservative estimates,

about 2 percent of the gross national product (GNP) can be attributed to inefficiencies

such as redundant information entry, data conversion and system incompatibilities

[SB01]. The United States, having a GNP greater than 9.8 trillion dollars in 2000

[OECD01], wasted at least 197 billion dollars on these inefficiencies. To put this in

perspective, these inefficiencies amount to more than double the total same year budget

of the Navy and Marine Corps combined [DL99].

The cost of not integrating is overwhelmingly evident. As the defense budget

shrinks, these inefficiencies will take a larger slice of the total and result in less funding

needed to strengthen our warfighting capabilities. A history lesson on the reasons why

this came about is not appropriate for this paper nor would add any insight on a solution.

What is important is that the DoD must move to meet the computing goal of evolvability

4

and interoperability within this heterogeneous environment in the most intelligent and

cost efficient manner.

The current method for integration of legacy systems involves a careful, time-

intensive study of a producer system’s exported information. Using this study, the

system integrator then determines if this information is of value to a consumer system

and what formatting or transformations are required. After mapping the exported data

type to the imported data type, the system integrator then writes a software “wrapper”

which will perform a translation from the producer’s representation to the consumer’s.

Unfortunately, this process must be repeated for every new piece of information a

consumer or producer would like to make available to the system. Currently there is little

or no computer assistance for performing this task. [Lytt00]

The approach proposed by Young et. al. [YBGL01] is a more efficient means of

accomplishing systems interoperability and will allow the DoD to lower costs three ways.

First, by isolating the internal code of these systems with a “wrapper.” Viewing each

component system as a black box and only dealing with the interfaces allows connections

without understanding or modifying the internal components of a system. This interface

is the input to our tool and the development of it is outside the scope of this project.

Second, each component system only has a single interface (intermediate

representation) to the FIOM vice multiple interfaces (point-to-point) as with the current

method described above. For example, with two systems wanting to share one piece of

data each it takes at most 2 translations. But, when connecting N systems it takes at

most N2 – N translations. With the FIOM, that same scenario would only take at most

2N translations. Exponential savings is realized as the number of systems connected

grows. Also, if a component system changes, only one interface to the FIOM needs to be

updated vice up to N-1 interfaces with other component systems. This can be seen in

Figure I-1 below. This intermediate representation technique that the FIOM represents

will have an exponential savings effect when compared with the point-to-point method.

5

Figure I-1. Translations required with and without FIOM.

The benefits of this move toward interoperability and using a tool like the FIOM

IDE include:

• Reduction in operating costs, thus freeing monies and giving more

flexibility in making funding choices for other programs.

• More timely and efficient integration of an arbitrary legacy system into an

existing or newly created federation.

• Ability to easily add new systems to a federation without impacting

existing systems in the federation.

• A revolutionary and synergistic effect on how our systems and warfighters

communicate and share information.

• And ultimately, a leaner and stronger military to fight and win our next

war.

D. USERS AND STAKEHOLDERS

The main user of this tool is an interoperability engineer (IE). An IE is defined as

an individual that is an experienced Software Engineer that is responsible for integrating

DoD systems. It is assumed that the IE is not necessarily a domain expert in the

particular systems that are to be integrated. But, the IE is expert in the federation

6

namespace being used to create the FIOM. Once the FIOM is created it will be used

within a network to convert messages between component systems.

The main stakeholder of the system is the United States Department of Defense.

It is our intention to provide a proof of concept to allow evaluation, further research, and

possible implementation of our work.

E. SOLUTION SYSTEM BOUNDARY

A black box view of component systems is taken in creating a federation of

interoperable systems. All data that enters or exits a system via messages is eligible for

integration once it is formatted as an Extensible Markup Language (XML) document

with a corresponding XML Schema. Further discussion on what XML is and the choice

to have data in this format is discussed in chapter 3. A component system XML Schema

is taken as input into the FIOM IDE. It is then processed and matched to an existing or

newly created Federated Entity (FE) within the FIOM. FEs are descriptions of RWEs

within a particular FIOM. Figure 1-2 provides a simplified system perspective for the

Figure I-2. FIOM IDE perspective

7

FIOM IDE. The FIOM is the main output of the FIOM IDE and will be used by a

middleware translator application to allow interoperability of component systems as

shown in Figure 1-3.

Figure I-3. Translator perspective.

The translator can be located anywhere between systems that wish to share data.

The translator can be a wrapper around Component System A, around Component

System B, somewhere in between, or a variation of all three. Design of the FIOM IDE

must take into consideration the FIOM Translator to ensure no conflicting requirements

are developed.

8

F. CONSTRAINTS TO BE IMPOSED ON THE SYSTEM

All of our constraints are self- imposed to limit the scope of this project and are as

follows:

• Extensible Markup Language (XML) will be used for data integration.

Again, the merits of XML will be discussed in chapter 3.

• All component systems will be viewed as black boxes as seen in Figure I-

4 below. All data input and output targeted for integration will have an

XML Schema to be used as input into our tool. Once a component system

is integrated into the FIOM, the component system will pass messages in

the form of an XML document based on the corresponding input schema.

Figure I-4. Black Box View of Component System

• It is assumed that the XML Schemas for component systems will not have

to be developed by the IE. Consideration on how these schemas should be

developed can be found in [Young02].

• Java will be used to develop the prototype of the FIOM for two reasons.

First, Java is the best language for integration with XML. Second, most of

the open-source XML browsers, editors, parsers, validators, and data-

binding tools are written in Java. This wealth of open-source material will

expedite the building of the FIOM IDE prototype.

Component
System

XML Documents

9

II. OBJECTS, INTEROPERABILITY, AND MODELS, OOMI!

A. INTRODUCTION

This chapter provides a summary of the Object Oriented Model for

Interoperability (OOMI) introduced by Young et. al. in [YBGL01]. Knowing the OOMI,

and the theory behind it, will help in understanding the design issues of creating the tool

used to support the construction and maintenance of an OOMI instance, the Federation

Interoperability Object Model (FIOM). This knowledge will aid the reader in analyzing

the issues discussed in later chapters.

B. OBJECTS

In contemporary object-oriented modeling, an object is a software representation

of some real-world entity in the problem domain. An object has identity (i.e., it can be

distinguished from other objects by a unique identifier of some kind), state (data

associated with it), and behavior (things you can do to the object or that it can do to other

objects). In the Java Programming Language these characteristics are captured as the

name, member variables, and methods of a class, respectively. [YBGL01]

This view of objects and classes has proven valuable in the development of

countless systems in various problem domains encompassing all degrees of size and

complexity. However, one common characteristic of the majority of these object-

oriented developments is that they were produced by a development team that shared

common objectives and had a common view of the real-world entities being modeled.

Most projects also involve a common architecture implemented on a common target

platform, using the same implementation language and operating system. As a result, a

single scheme for depicting an entity’s name, attributes, and operations as well as the

means for representing these properties has been the norm. Therefore, capturing the

representation of these properties has not been an issue. The software representation of

the real-world entity should have the same name, attributes, and operations across all

elements of the architecture if the development team enforces consistency. [YBGL01]

10

This is not necessarily the case when integrating independently developed

systems. The different perspectives of the real-world entity being modeled by

independent deve lopment teams will most likely result in the use of different class names

as well as differences in the number, definition, and representation of attributes and

operations for that same real-world entity. These representation differences must be

reconciled if the systems are to interoperate. [YBGL01]

Young has developed an object-oriented model for defining the information and

operations shared between systems. The initial use of the model is targeted for

integration of legacy systems, which generally have not been developed using the object-

oriented paradigm. However, defining the interoperation between systems in terms of an

object model provides benefits in terms of the visibility and understandability of the

shared information and provides a foundation for easy extension as new systems are

added to an existing federation. The object model defined in this chapter can be easily

constructed from the external interfaces defined for most legacy systems (whether object-

oriented or not). [YBGL01]

Section C categorizes the representational differences that exist in autonomously

developed systems. Section D & E introduces the Object-Oriented Model for

Interoperability (OOMI) as a means for capturing the information required for resolving

these representational differences. Section F introduces an automated environment for

constructing an instance of the interoperability object model for a federation of systems,

the FIOM Integrated Development Environment (FIOM IDE). Section G presents an

overview of the use of the resultant by a wrapper-based translator for enabling

interoperability among legacy systems.

C. INTEROPERABILITY

Variations in the representation of a real-world entity on different systems can be

classified as falling into one of two general categories. The first difference is in the

information utilized by each component system to represent the entity. Termed

heterogeneity of scope, this refers to the fact that differing amounts and types of

11

information can be captured by various systems to represent the state and behavior of an

entity [Wie93].

For example, suppose a federation of four autonomously developed military

systems contained information about an enemy surface-to-surface missile launcher.

Because independent development teams created them, each system provides a different

perspective on what state and behavior information should be contained in a model of

that real-world entity. As can be seen from Figure II-1, each system includes different

aspects of the entity’s state. For instance, systems A and D include information about the

missile system’s type, position, and time. System B captures position, time and range

information on the entity, and System C utilizes type, position, time, and range to

describe the missile system. Similarly, each system could capture different aspects of the

behavior of an entity. These differences in the state and behavior used by a component

system to characterize a real-world entity can be thought of as providing different views

of the entity by the systems concerned. [YBGL01]

Figure II-1. Differing Views of Real-World Entity. From Ref. [YBGL01]

identifier
-type
-position
-time

System A

identifier
-position
-time
-range

System B

identifier
-type
-position
-time
-range

System C

Surface-To-Surface Missile

identifier
-type
-position
-time

System D

12

Even if two systems provide the same view of the entity being modeled, that is

they both contain the same state and behavior information about the entity, there may still

be differences in the representation of that information on different systems. This

heterogeneity of representation [Wie93] refers to differences in the terminology used,

format, accuracy, range of values allowed, and structural representation of the included

state and behavioral information [KM98]. This difference in representation is illustrated

in Figure II-2 by systems A and D. Even though these systems both have the same view

of our real-world entity, i.e., both capture the type, position and time for the entity; they

each represent the information comprising that view in a different manner. For example,

System A refers to our entity as a MissileSystem and names its type attribute

missileDesignation. System D refers to our entity as a MissileLauncher and names its

type attribute missileType. Additionally, System A captures the entity position in

latitude/longitude coordinates and time using Greenwich Mean Time (GMT) as the

reference, whereas System D records entity location using Military Grid Reference

System (MGRS) coordinates and records time using Local Mean Time (LMT). Figure II-

2 illustrates the different views of our example real-world entity and the various

representations provided for each view. [YBGL01]

13

Figure II-2. Differing Real-World Entity View Representations. From Ref. [YBGL01]

The goal of Young’s research is to provide a computer-aided methodology to aid

in the resolution of differences in the representation of data between systems targeted for

integration in order to enable system interoperability. Pitoura defines interoperability as

the capability of systems to exchange information and to jointly execute tasks [Pit97].

The information exchanged between interoperating systems consists of data associated

with the real-world entities being modeled by systems of the federation. The joint

execution of tasks reflects the capability of an entity on one system to employ the

services of an entity on another. Thus, interoperation can be characterized in terms of the

real-world entities whose state and behavior are shared between systems in a federation.

This thesis will only focus on Young’s work in the exchange of information. Young’s

research on the joint execution of tasks is still ongoing and therefore will not be

discussed. As stated previously, there can be differences in view and representation of

these real-world entities. In order to achieve interoperability, a means for resolving these

differences in view and representation is needed. [YBGL01]

MissileSystem
-missileDesignation
-position (latitude/longitude)
-time (GMT)

System A

TgtDesig
-tgtLocation (MGRS)
-observationTime (LMT)
-tgtRange (km)

System B

TOI
-tgtClass
-tgtPos (latitude/longitude)
-tgtObsTime (GMT)
-tgtRange (nm)

System C

SurfaceToSurface Missile MissileLauncher
-missileType
-location (MGRS)
-time (LMT)

System D

View 1
Name
Type
Position
Time

View 2
Name
Position
Time
Range

View 3
Name
Type
Position
Time
Range

14

D. MODEL

Young provides a means for resolving these differences in view and

representation with his simple, yet powerful, model. Principal objectives of the model

are:

• To clearly depict the real-world entities whose information are shared between

systems in a federation.

• To provide computer aid to the process of determining the differences in view and

representation of those entities.

• And, to provide automation support for defining the translations necessary to

resolve representational differences between systems.

In order to achieve the objectives outlined above, the model should:

• Provide an abstract representation of the real-world entities whose information is

shared between component systems, hiding the details of how that information is

represented on different systems.

• Capture the different views component systems might have of the real-world

entities that represent sha red information. In addition, the model should capture

differences in representation of those views among component systems.

• Contain information needed to aid the Interoperability Engineer (IE) by providing

computer assistance to the discovery of the real-world entities that define the

information being shared between systems in the federation.

• Enable identification of allowable information sharing between component

systems, and contain translations, where required, to resolve differences in

representation of information shared between systems.

• And, be extensible; adding new component representations of real-world entities

that define shared information or including new information to be shared between

systems should not affect contents or relationships in the existing model.

[YBGL01]

15

In evaluating the objectives and goals outlined above, Young determined that an

object-oriented approach offered the greatest promise for satisfying these requirements.

Object-Oriented Analysis and Design (OOAD) provides principles of abstraction,

information hiding, and inheritance that can be employed to meet the specified goals and

objectives [KA95, WCS00]. However, conventional use of these object-oriented

principles and techniques is not sufficient for resolving representational differences

between heterogeneous components of a system federation. Instead, a model-based

approach built on OOAD principles is presented to satisfy the requirements for

heterogeneous system interoperability [YBGL01]. The resulting model, the Object

Oriented Model for Interoperability (OOMI), is described next.

E. OOMI

1. Capturing Real-World Entities and Views

It is expected that for a federation of heterogeneous systems, a number of real-

world entities (RWEs) will be involved in the interoperation between systems. Under the

OOMI, the collection of RWEs used to define the interoperation of a specified federation

of systems is termed a Federation Interoperability Object Model (FIOM). All of the

normal relationships between classes, packages, interfaces, and other elements used in the

OOAD paradigm are available for use with federation entities in the FIOM.

Real-world entities within the FIOM are captured using the concept of a

Federation Entity (FE). The FE provides a level of abstraction representing the

information being shared between different but related component systems while hiding

the details of how that information is being represented on different systems. For each

FE, another level of abstraction, called a Federation Entity View (FEV), is used to

distinguish the variations in the information used for representing the same real-world

entity on different systems [YBGL01]. Figure II-3 illustrates the OOMI archetype for a

real-world entity (FE) which shows how it may contain several different views (FEVs).

16

Figure II-3. OOMI Real-World Entity Archetype

2. Capturing Federation Entity View Representations

As discussed earlier, different component system implementations of the same

RWE may result in variations in the terminology, definition, and representation of the

attributes defined for that RWE. In order to resolve these differences, the OOMI

provides two mechanisms to capture the possible alternative representations of an entity’s

view. The first mechanism, a Component Class Representation (CCR) is a special-

purpose class used to capture the alternative ways various component systems may

represent a view of a FE, i.e., a FEV. A CCR will be defined for a view only when a

class defined in the external interface of a component system exhibits a one-to-one

correspondence between the attributes of the component class and those properties

contained in the view. As will be shown later, there may be views defined for a FE that

do not have a corresponding CCR as well as views containing multiple CCRs.

It is reasonable to assume that most leagacy systems were not developed using

object-oriented design methodogy. Therefore, component system representations may

not necessarily be in a useable object-orientative form. If this is the case, a

transformation is required for proper correspondence. A transformation is taking a

component system representation of a RWE and creating a CCR, which contains all the

fe
(from fiom)

FE FEV
(from view)

1 1..n1 1..n

17

information, in object-orientative terms, of that RWE. The component system’s domain

expert should handle most, if not all, of the transformation process. In the case of our

current prototype of the FIOM IDE, the transformation is a two-part process. First, XML

Schemas, representing component system RWEs, are created and received from a domain

expert. Next, the schemas are transformed into CCR classes via data-binding. At

runtime, XML Documents, representing component system RWEs instances, are

transformed into CCR instances via unmarshal and marshal methods. These methods are

added to the CCR class as seen if Figure II-4. Unmarshal, marshal, and data-binding will

be discussed in detail in Chapter III.

In order to take advantage of the reduced number of translators required with the

use of the intermediate representation approach (see, chapter 1), the OOMI adds a second

special-purpose class to a FEV, the Federation Class Representation (FCR). The FCR is

used to encapsulate the “standard” representation used by the federation for a particular

view of a real-world entity. Each FEV will contain exactly one FCR representing this

“standard” representation of the view [YBGL01]. Figure II-4 provides a depiction of a

FEV with component FCR and CCR.

18

Figure II-4. Federation Entity View

3. Sharing Information between Component Systems of the FIOM

a. Resolving Differences in View Between Systems

Rarely will two different systems’ view of a federation entity be identical.

In order to share information between two systems that have different views of the

entity(s) defining the interoperation, these differences in view must be resolved.

Fortunately it is just as rare that different systems’ views of an entity are mutually

exclusive (otherwise they wouldn’t be able to interoperate). Generally, two or more

systems’ view of the same entity will have some areas of commonality. Two systems’

representations may capture the same core state of an entity with each including

additional characteristics as required by the specific application. In this situation a view

view
(from rwe)

TranslationClass

CCRtoFCR()
FCRtoCCR()

FEV

FCR

1

1

1

1

CCR

marshal()
unmarshal()

0..n

1

0..n

1

0..n1 0..n1

19

could be defined for the core state information, and separate views defined for the

extended information. The views containing the extended information can be considered

to be subtypes of the view containing the common core information. Commonalities in

view between component system entity implementations enable us to determine when a

supertype-subtype relationship exists between component system views. Then, through

exploitation of the Liskov and Wing notion of behavioral subtyping [LW94], we can

determine when the information contained in one system’s view of an entity is suitable

for use by another. As recapitulated by Wing and Ockerbloom, “If S is a subtype of T,

users of T objects cannot perceive when objects of type S are substituted for T objects.”

[WO00 p.579] When applied to the context of the OOMI, a component system can

always utilize objects that are an instance of the subtype of the federation entity view

defined for that component [Young02].

A FCR can share information via the FEV abstraction due to the extension

inheritance structure it is a part of. As seen in Figure II-5, this extension inheritance

structure allows a FCR to share information between itself and any ancestor it has.

Information can be shared “up” the inheritance hierarchy through promotion without loss.

In contrast, an ancestor’s information shared “down” through demotion will be

inadequate. Thus a system whose perspective of a Tank is reflected by FEV 0 in Figure

II-5 could utilize information from systems whose view of a tank was captured by any of

Tank FEVs 1 through 4. Young is currently working on way to remedy this “up only”

sharing. The research on the remedy is not complete but it involves determining if the

information that extends an ancestor within a child has default values or not.

20

Figure II-5. Inheritance Relationships Within The FIOM

Figure II-5 also shows how the FE allows sharing information between

related RWEs. As depicted by the figure, a Tank is a subtype of a Tracked Vehicle.

Therefore information about a Tank would be substitutable in a system expecting

information about a Tracked Vehicle. The relationship between FEs in the FIOM is

restricted to the root FEVs within each FE. The root FEV, and namely the FCR within it,

represents the minimum amount of information that describes an entity. Allowing only

inheritance relationships between root FEVs removes the possibility of multiple

inheritance and simplifies the model. This simplicity may equate to loss of information

but the gains in managing and understanding the relationships within the FIOM far

outweigh this loss.

b. Resoving Differences in Representation

The power of the relationship between a FCR and a CCR is that, when

translating representations between a FCR and a CCR from the same FEV, there is no

loss of information. This means the relationship between FCR and CCR is reflexive and

21

preserves “round tripping.” Although a FCR and CCR from the same FEV contain the

same information, they may represent that information differently, i.e. each may use

different terminology, data types, data accuracies, etc. These differences in

representation must be resolved. This is accomplished with an association class called a

Translation Class (TC), as seen Figure II-4. As the name implies, the TC is responsible

for taking the information encapsulated in a CCR and handling the functional translations

necessary to map the information, without loss, into a FCR, and vice versa. An example

of this translation can be seen in Figure II-2. The figure shows how System A and D are

mapped into View 1. Notice the difference in naming conventions and type information

of member variables contained in System A’s and D’s representation when compared to

View 1. Dealing with these differences is the most difficult aspect of interoperability.

This was the impetus in creating the FIOM IDE, which automates as much of this process

as possible. Further reading on the translation process can be found in [Young02].

To further simplify the FIOM model, the FCR representation is based on an

ontology containing the federation-sanctioned description of an entity’s meaning. This

ontology can be developed specifically for a federation of systems or it can be derived

from a domain-specific or industry-wide standard. Two possible standards to draw from

are the Defense Information Systems Agency’s (DISA's) Defense Information

Infrastructure Common Operating Environment (DII COE) XML Registry and the

Defense Modeling and Simulation Office’s (DMSO’s) Functional Description of the

Mission Space (FDMS) namespaces [DII01, FDM01]. While multiple namespaces may

be present within the FIOM, naming conventions, based on an ontology, must and will be

enforced within the FIOM. This will allow the sharing of information between different

FEVs within a FE, and between FEs themselves, using simple assignment operations.

F. CONSTRUCTING THE FIOM

Enabling a collection of related software systems to share information has the

potential for significantly enhancing the capability of the resultant federation of systems

over that of the individual components. The previously introduced OOMI is used to

enable information sharing among a federation of autonomously developed

22

heterogeneous systems. Using the information contained in the OOMI, computer aid can

be applied to the resolution of data representational differences between heterogeneous

systems. In order to apply computer aid, a model of the real-world entities involved in

the interoperation, termed a Federation Interoperability Object Model (FIOM), is

constructed for the specified system federation. Construction of the FIOM is done prior

to run-time by an Interoperability Engineer (IE) with the assistance of a specialized

toolset, called the FIOM Integrated Development Environment (FIOM IDE).

The Graphical User Interface (GUI) based FIOM IDE is used to:

• Discover the information and operations shared between federation components.

• Provide assistance in identifying the different representations used for such

information and operations by component systems.

• Define the transformations required to translate between different representations.

• And, generate system-specific information used to resolve representational

differences between component systems.

 The first task in FIOM construction is determining the real-world entities that are

shared between systems in the federation. In other words, one system has a real-world

entity to offer and another system wants it. Determination of the real-world entities that

define the interoperation of a federation is not merely a matter of identifying the classes

contained in the external interfaces of the component systems. Because of the

independently developed, heterogeneous nature of the systems in the federation, each

system may have a different representation for the real-world entities involved.

Identifying which of a component system’s classes are representations of the same real-

world entity is a key step in achieving interoperability between the component systems.

Correlation software is included as part of the FIOM IDE in order to assist the IE in this

effort. The correlation software searches the FIOM for a matching FCR to the

component system’s CCR. If none within the returned set of possible matches are

acceptable, the IE is given an opportunity to create a new FCR by adding a new FEV

and/or a new FE. The information that makes correlation possible is captured in the

23

syntax and semantic class of the FCR and CCR as seen in Figure II-5. A detailed

discussion on the correlation process can be found in [Pug01] and [Young02].

After identifying or creating a matching FCR for a CCR, the transformations

required to translate between the different representations must be defined. The FIOM

IDE assists the interoperability engineer in this task through the use of a GUI-based

matching process used to provide computer aid to translation development, and the

maintenance of a translation library to enable the reuse of common translation

algorithms.

Finally, class transformation and relationship information is extracted from the

FIOM for each component system. The system-specific information is used by a

wrapper-based translator to resolve representational differences between component

systems.

G. USING FIOM TO RESOLVE REPRESENTATIONAL DIFFERENCES
BETWEEN HETEROGENEOUS SYSTEMS

When information exchange takes place between heterogeneous systems, the

interoperability object model constructed during the pre-runtime phase for a specified

federation of component systems is used to derive a translator. Differences in view and

representation of information shared between interoperating systems are reconciled at

runtime by the translator, which serves as an intermediary between component systems.

The translation function is implemented as part of a software wrapper enveloping a

producer or consumer system (or both) in a message-based architecture, or alternatively

as part of the data store (actual or virtual) in a publish/subscribe architecture. A software

wrapper is a piece of software used to alter the view provided by a component’s external

interface without modifying the underlying component code [YBGL01]. Figure II-5

shows an overview of the use of software wrappers and the involvement of the Federation

Interoperability Object Model in the translation process.

24

Figure II-6. Translator Wrapper

Using Figure II-6 above, an example of how this process works is as follows:

• Component system A sends a RWE containing information needed by

System X.

• System A’s RWE must first be transformed into an object (CCR instance).

The transform mechanism is defined pre-runtime and is necessary to

ensure the RWE is described in object-oriented terms. This CCR will be

called CCR A.

• The CCR A is then translated into its corresponding FCR, called FCR A.

• Since System X’s CCR has a corresponding FCR, called FCR X, which is

an ancestor of FCR A, a simple assignment is made (FCR X = FCR A).

• FCR X is then translated to its corresponding CCR, called CCR X.

System A

Translator Wrapper

Tr
an

sf
or

m

CCR Instance

Tr
an

sl
at

io
n

FCR information moves within
inheritance hierarchy to proper
FEV node by simple assignment.
Ex) X = A.

Translation CCR Instance

Transform System X

System A's
view of
RWE Instance

System X's
view of
RWE Instance

25

• CCR X is transformed into System X’s representation of the RWE that

originated from System A.

As indicated above, the translator must be capable of transforming a component

system’s RWE into a CCR object and then translating it to its federation counterpart

(FCR), and visa versa. The information required to effect these transformations and

translations is captured as part of the FIOM during federation design. Then, at run-time,

the translator accesses the information contained in the model to resolve differences in

federation entity view and to effect the translation between component and standard

representations of a view.

26

THIS PAGE INTENTIONALLY LEFT BLANK

27

III. TECHNOLOGIC INTEROPERABILITY ENABLERS

A. INTRODUCTION

In this chapter we discuss the technologies that were selected to implement the

FIOM IDE. Each discussion will focus on a description of the technology, a comparison

of competing implementations of that technology, and why that particular technology was

chosen. But before we continue, there are 3 major factors that drove our choices in the

design of the FIOM IDE: constraints from our major stakeholder, the OOMI’s

technology needs, and reducing costs.

1. Directives

The DoD is counting on XML and XML-related technologies to enable

information dissemination management capabilities and to solve many interoperability

issues. DoD Directive 8320.1, DoD Data Administration [DoD91], authorizes the

establishment of and assigns responsibilities for DoD data administration to plan,

manage, and regulate data within the Department of Defense. The Defense Information

Systems Agency (DISA) is designated as the lead agency responsible for executing the

policy and procedures and making DoD Data Standards available to the community.

DISA is using XML as its common exchange data format in support of its Defense

Information Infrastructure Common Operating Environment (DII COE) data engineering

strategy. The bottom line is that XML will be used to pass information between DoD

systems.

 2. OOMI’s Technology Needs

The OOMI view of real-world entity representation demanded technologies that

fully supported an object-orientated approach. We quickly realized that XML and some

of its related technologies could not be used alone. Java with its strong typing,

properties, methods, interface inheritance, behavior inheritance, polymorphism,

reflection, and its compatibility with XML, made its use essential. Also, some XML

technologies like DTD and XSLT were found to be incompatible, too immature, or too

cumbersome. All choices had to pass the test, “Will this technology help us effectively

implement the FIOM and the FIOM IDE?”

28

3. Cost

Reducing the cost of doing business is one of the major benefits of this project. In

this vein we sought ways to reduce the cost of actually building the tool itself. The

biggest reduction is due to the liberal reuse of open-source software. Open-source

software reduces costs four ways. The first and most appealing aspect is that it’s free!

Second, the world can read, modify, and even redistribute this type of software. This

allows us to leverage and build on the work of others. This reduces the cost of labor in

producing our own code. Third, because of the second point we are assured that the

software we incorporate will continue to evolve while at the same time exposing the code

to testing by the masses. Again, this is a savings in labor with regard to testing and

maintenance. And lastly, the life cycle for this type of software is extremely compressed,

i.e., better software faster, when compared with proprietary software. It’s no wonder,

with so many companies and individuals all being able to contribute.

B. XML THE NEW LINGUA-FRANCA

XML stands for Extensible Markup Language, which is a meta-markup language

that became a World Wide Web Consortium (W3C) recommendation in January of 1999.

It is the new lingua-franca for structured documents and data on the Internet. It is

platform-independent, non-proprietary, customizable, self-describing and human

readable. It is not our intent to provide an in-depth discussion on XML. Further

information can be found at [W3C].

XML is a family of technologies. We will focus on a few members of this family,

namely: DTD, XML Schema, SAX, DOM, and XSLT. But before we begin, we would

like to give the reader a quick look at what XML is and discuss the key concepts of well-

formedness and validity.

29

1. XML basics

The best way to get a feel for XML is by viewing an example. Figure III-1 below

shows a simple XML document that is used to handle the persistent storage of options for

the FIOM IDE, displayed in Microsoft’s Internet Explorer Version 6.0.

Figure III-1. Simple XML Document

As you can see, XML looks a lot like HTML. The major difference is that XML

is a meta- language that offers no inherent clue as to how the information should look.

This frees XML from the static tag set of HTML and also separates the model created

from its view. All XML documents are properly nested (hierarchical) tree structures.

This example document contains a root element <options>, which contains one child

element <paths>, which contains two child elements called

<componentSystemSchemaPath> and <fiomPath>. Notice that the XML document

nicely describes the structure of the data but does not say much as to what the elements

mean, other than what can be inferred by the element names.

2. Well-formedness

A document is not an XML document unless it is well- formed, i.e., syntactically

correct, according to the W3C’s XML specification. This means that an ill- formed

document will not be accepted for processing. This simplifies the internal code of parsers

and also speeds up the processing of documents.

30

3. Validity

An XML document is valid if it has an associated schema, DTD or XML Schema,

and if the document complies with that schema. A schema further constrains the syntax

of the XML document and also adds semantics through documentation within the schema

itself.

C. CONSTRAINING CONTENT

1. DTD

A Document Type Definition (DTD) specifies the logical structure of the

document; it is a formal grammar describing document syntax and semantics. We will

not discuss DTD beyond this section because of this technology’s many flaws. The

DTD’s most crippling flaw is that it has no capability for strong typing. DTDs treat

almost all of its data as strings. Existing free text searches can’t differentiate between a

Marine, Marine Air Ground Task Force, Marine Corps Band, or a Marine Weather

Forecast. Strong typing is need if we are going to effectively match different

representations of the same RWE.

DTDs are not even XML. This disallows the use of many XML tools for

displaying and manipulating information within the DTD. This would make it difficult to

find open-source XML based APIs that support DTDs for use in our tool. These fatal

flaws make DTDs unsuitable for our purposes.

2. XML Schema

XML Schema is much more suited for our purposes. XML Schema can specify

actual data types for each element’s content within a document. This is essential if we

are going to have enhanced, efficient, and accurate searching capabilities within our tool.

Also, XML Schemas have built in elements to handle annotations to add semantics to the

types created. XML Schema can handle multiple namespaces allowing a means to

process homonyms, which is also essential in matching RWEs. A more detail discussion

of XML Schema can be found at [W3Csch].

31

D. PROGRAMMATIC ACCESS

1. SAX

Simple API for XML (SAX) and DOM (Document Object Model), which we will

discuss in the next section, were both created to serve the same purpose. Their purpose is

to provide access and modification capability to the information stored in XML

documents using any programming language. However, both of these techniques take

very different approaches in providing that access.

SAX provides access to documents as a sequence of events. It works as follows:

• A SAX parser sequentially processes an XML document, signaling an

event when a specified item such as an open tag or close tag is found.

• The programmer is responsible for interpreting these events by writing an

XML document handler class. This handler class is responsible for

specifying what action is required to be taken when a tag is encountered,

such as storing an element for future reference.

2. DOM

XML only supports “has a” or “parent-child” relationships, such as a <person>

may contain sub-elements of <name>, <social_security_number>, <height>, <weight>,

<eye_color>, etc. This hierarchical tree structure is preserved with the Document Object

Model (DOM). DOM creates a tree of nodes (based on the structure and information in

an XML document) and provides access to this information by interacting with this tree

of nodes. The DOM takes a generic approach, in that it will take any arbitrary XML

document and model it. Once a document object tree has been created (by the XML

parser, or your own code), you can access elements in that tree and you can also modify,

delete and create leaves and branches by using the interfaces in the API.

3. SAX vs. DOM

The choice of SAX or the DOM is dependent on how much of a document the

programmer wishes to access, ease of use, and performance concerns. The SAX treats a

document as a series of events, which means it efficiently and swiftly, analyzes large

XML documents. The drawback is that the programmer has to define the data structure

32

to hold element data. The DOM must load the entire document in-memory before one

has access. This takes more memory and time when compared to SAX. The DOM’s

strength is that the parser does almost everything, including reading the XML document

in, creating a Java object model on top of it, and then gives a reference to this object

model (a Document object) for manipulation. With the FIOM IDE speed and memory

should not be an issue so the DOM’s ease of use makes it the preferable choice to SAX.

E. TRANSLATIONS

Extensible Styles Language (XSL) is essentially three languages: a

transformation language (XSLT), an accessing language (XPath), and a formatting

language (XML-FO). Our research is only concerned with XSL Transformations (XSLT)

and the XML Path language (XPath) used for pattern matching within XSLT style sheets.

XSLT is a high- level, declarative, and XML-based language. It allows a

programmer to write XSLT code (style sheets) that transform an XML document into any

text-based document. XSLT behaves as follows:

• First, an XSL engine is used to convert the XML document into a tree

structure, which is composed of various types of nodes.

• Next, a style sheet is applied which transforms the XML document. The

transformation is accomplished by using pattern matching, via XPath

language notation, and then applying rules (templates) within the style

sheet.

• In the transformed document, the body of the template element replaces

the matched node in the source document.

XSLT does have a very limited, non-standardized, and awkward capability to do

functional transformations by escaping into another language such as JavaScript or Java.

The W3C’s XSLT Recommendation does not define any aspect of this mechanism nor

does it require that an XSLT processor should provide one at all. This should be

remedied in future versions of XSLT. Until this is done, XSLT is not suitable for our

33

purposes. Further discussion on extension functions can be found in [Kay00] on pages

122-124 and 632-637.

F. XML DATA-BINDING

1. An object-oriented view

The FIOM IDE uses XML Schema to represent the external interface of

component systems being integrated. XML Schema allows us to define entities shared

between systems. XML Schema also provides a mechanism for capturing information

used to establish correspondence between two component system representations of the

same real-world entity. The schema will define the structure, syntax, and to some extent,

the semantics of the component system external interface. The OOMI methodology for

resolving differences in view of real-world entities between component systems

necessitates use of an object-orientated approach. If we view an XML Schema in object-

oriented terms, a schema can be thought of as a class. Furthermore, an XML document,

which is described and constrained by a particular schema, can also be thought of as an

object. XML data binding is Java methodology, along with an API, allowing programs

to be written that access and manipulate the content of XML documents in an object

oriented fashion.

2. Why use data-binding?

 The parse trees of the W3C DOM API and parser events of SAX API are

primitive, constricting, and more focused on the structure vice the content of an XML

document. Also, the DOM and SAX APIs treat all data as strings requiring the casting of

data to a suitable type. In contrast, data binding facilitates the direct mapping

(transforming) of an XML document to objects while maintaining the constraints

imposed by its corresponding schema. Thus, all the benefits, power, and familiarity of

the object-oriented paradigm are available. In effect, the programmer does not have to

“reinvent the wheel” in gaining access to and updating the element content within a

document. The programmer receives all of this along with the confidence that any

resulting change in state will not violate well- formedness and validity of the resulting

XML document.

34

3. Definition

The Java Architecture for XML Binding (JAXB) Working Draft Specification

[Sun01] defines XML data-binding as a facility containing two components: A schema

compiler and a marshalling framework. The schema compiler binds components of an

input schema to derived lightweight classes. A lightweight class is conceptually the same

as a Java Bean providing access to the content of the corresponding schema component

via a set of accessor and mutator (i.e., get and set) methods. The derived lightweight

classes will maintain all the constraints described in its corresponding schema. This

ensures that when the class instance (i.e., object) is unmarshalled it will not only be well-

formed, but valid as well. The marshalling framework is a runtime API that, in

conjunction with the derived lightweight classes, supports three primary operations:

• The unmarshalling of an XML document into a Java object that is an instance

of a schema-derived class. This schema-derived class is composed of

interrelated instances of both existing and schema-derived classes.

• The marshalling of an object back into an XML document.

• And, the validation of member variables against the constraints expressed in

the schema.

In summary, the generated lightweight class will contain the following:

• Member variables representing the content of the input XML Schema.

• Get and set methods to access the generated member variables while

maintaining constraints of the original schema.

• The unmarshal, marshal, and validate methods to convert an XML document

into an instance object of the generated lightweight class and back.

35

Figure III-2. XML and Java Relationships. From Ref. [Sun01].

Figure III-2 above shows how XML Schemas, XML documents, Java classes, and

Java objects are related under this framework. As you can see, these relationships

preserve equivalence, i.e., round tripping. In other words, the unmarshalling of an XML

Document and then immediate marshalling of the Java object(s) produced should result in

an equivalent copy of the original XML Document.

4. Implementations

This “bleeding-edge” technology is still in development. While, all current

implementations support DTD schema, not one has yet to fully support all three parts of

the 2 May 2001 W3C XML Schema recommendation. As discussed earlier, DTD

specifications allow the validation of data structure, but do not allow the validation of

data content, i.e., strong typing. This strong typing is necessary to allow for the syntactic

and semantic matching in connecting different representations of the same real-world

entity. There are currently three somewhat competitive APIs and one tool available that

implement data binding: JAXB, Zeus, Castor, and Breeze XML Studio. We will discuss

the merits of each and which implementation we chose to incorporate into our tool.

a. JAXB

First, Sun Microsystems' Java Architecture for Data Binding (JAXB) is

being developed under the Java Community Process under Java Specification Request

(JSR-031) [JSR31]. JAXB is essentially the base for the other three implementations and

therefore the least developed. JAXB has an early access implementation available. This

36

implementation is far from being a useable technology and currently only supports DTD

schema. It also imposes some unreasonable restrictions on generated classes. For

example, generated classes must extend some base classes from Sun’s Java API for XML

Processing (JAXP). It also generates classes that contain parsing code. This means that

every change in your schema mapping requires code generation. So the only way to

retain the code you wish to add to the generated JAXB code is to subclass their classes.

This is probably a good idea regardless, but a constraint nonetheless. These constraints

and the fact that JAXB is hardly a Beta make it unsuitable for use in our tool.

b. Zeus

 Zeus is the open source brainchild of Brett McLaughlin, an Enhydra

strategist with Lutris Technologies and one of the most knowledgeable individuals in the

data-binding field. Much of McLaughlin’s impetus in starting Zeus was his frustration

with the complexity of the Castor project. Castor is more of a “Swiss-army knife”

approach, trying to provide JDO (Java Data Objects), LDAP mappings, SQL mappings,

etc., etc. This makes for a rather enormous code base, something McLaughlin was

explicitly aiming to avoid in starting Zeus. Unlike Castor, Zeus provides a tightly

focused XML to Java mapping in a very easy-to-use package. Zeus is quite a bit further

along, in terms of usability, when compared with JAXB. Even so, it still only has minor

support for XML Schema and none for data validation. [Zeus01]

c. Castor

Castor may be the “Swiss-army knife” of data binding API’s but it’s for

good reason. It is one of the most active open-source projects we have witnessed. While

all this individual input does adds to the complexity of the code, it does have the benefit

of being constantly tested, evaluated, and improved. It also has XML Schema support

along with data validation. This made Castor the clear winner for use in our tool.

Currently the generated Java source files that Castor’s Source Code Generator (schema

compiler) produces need to be compiled. This is important if our tool is to use reflection

in the viewing the structure of the generated classes. The Castor project will be adding

code to the API eventually to handle this automatically [Cas01].

37

d. Breeze XML Studio

Breeze XML Studio Release 2.5 Beta II supports the XML Schema

Recommendation of May 2, 2001 as well as support for XML Namespaces [Bre01].

Breeze Factor, LLC sits on the expert committee for JAXB JSR-031 and is committed to

providing support if and when JSR-031 is useable [JSR31]. Even with these positive

statements the negatives have far greater weight. The number one negative is that Breeze

XML studio is proprietary, with no commercial competition whatsoever, and the

company that owns it has the ability to radically affect the JSR-031. This is a very

dangerous combination indeed. Their product is stand-alone with no capability to plug

into another application. Also, although the Java classes generated are more compact and

readable than the other tools, they are non-editable and have a birth certificate, i.e., a

limited life that only Breeze LLC determines. This 2.5 Beta II was, for our project, a day

late and a dollar short. We had already developed our own prototype that essentially has

the same features of Breeze XML Studio using our own code and open source software.

G. ALTERNATIVES AND CONCLUSION

Can’t we just use XSLT to generate Java classes? Yes, but given the choice,

would you rather manually develop a style sheet for every document you need to

manipulate in Java or have the code generated for you? With data binding you can take

an arbitrary XML document and automatically generate the corresponding java classes.

Likewise, who wants to tediously update a style sheet when there is a change in the

schema? With data binding when a change is made in a schema, all that needs to be done

is to re-generate the code in question. This automation dramatically reduces the time and

effort to generate Java classes and thus reduces costs to develop and maintain code.

Why use data-binding at all? Can’t we use SAX or DOM to access the document

and XSLT to do the translations? The problems with this approach are as follows:

• Remember, with SAX the programmer has to design his own data model

to handle a specific XML Document. With data-binding the mapping to a

Java data model (class) is done automatically.

38

• DOM gives access to a document view as a tree structure. This involves

tree searches to find the particular node a programmer is seeking. With

data-binding all that is needed are simple get and set methods to access the

data members of an object.

• XSLT can be used to transform an XML document to another view of that

document. But, the problem is in scalability. Creating an XSLT style

sheet is a manual process. This involves creating templates that match a

certain element within an XML document and then describing what is to

be done. This is very inefficient as can be seen in Figure III-3, which

shows the effort required to retrieve the range of a missile in Java and in

XSLT.

Figure III-3. Java vs. XSLT

Data-binding is the technology best suited to implement the FIOM IDE. It

automatically maps an XML Schema into a Java class freeing the programmer from

learning and using the low-level and tedious SAX and DOM API’s. It allows for

functional translations using the power and vast resource libraries of the Java

programming language directly. It also automatically moves XML documents to Java

objects and back. There are no other technologies that give object-oriented access to

39

XML documents with no effort on the part of the programmer. This makes data-binding

the clear winner.

40

THIS PAGE INTENTIONALLY LEFT BLANK

41

IV. VISION, REQUIREMENTS, AND PROTOTYPE

A. INTRODUCTION

In this chapter we will briefly discuss the key aspects of the Vision Document,

Software Requirements Specification (SRS), and prototype for the FIOM IDE. The Java

source code and required files for the FIOM IDE can be found in appendix A. For the

sake of brevity and because much of the information from the Vision Document and the

SRS are already present in this thesis, they will not be included as appendices.

B. VISION DOCUMENT

The Vision document describes the application in general terms, including

descriptions of the target market, the system users, and the application features [Leff00].

Again, the bulk of this information can be found in this thesis (see, Chapter 1). However,

We would like to cover two important aspects of this document, the product features and

the key use case.

1. Product Features

Table IV-1 below shows the current, but by no means exhaustive, product features

for the FIOM IDE. These features provide a fundamental basis for product definition,

scope management, and project management [Leff00].

ID Feature Status Priority Effort Assigned Reason
1 Access of

component system
schema files

Incorporated Critical Low Christie

2 View schema files
in text only format

Incorporated Important Low Christie Used for text searches
of schema

3 View schema files
in graphical format

Incorporated Critical High Christie Help visualize
structure of schema

4 Transform
Component System
Schema to Java
Classes

Incorporated Critical High Christie Key to manipulating
component RWE in
Java

5 View FIOM
graphically as
hierarchy

Proposed Critical High TBD Help visualize
structure of FIOM and
manually find FEs
quicker

6 View FE in text
format

Proposed Important Med TBD

7 Search FIOM for Proposed Critical High Pugh Core of IDE

42

ID Feature Status Priority Effort Assigned Reason
FE that matches
selected object in
component system

8 Display probability
of match on
returned FE

Proposed Critical Med Pugh Help IE choose most
likely FE that matches
object from component
system schema while
not filtering out low
probability matches.

9 Split screen view of
an object from the
component system
and a selected FE

Incorporated Important Low Christie Help IE determine if
match a help with
mapping of attributes

10 Mapping of
attributes between
component system
object and FCR

Proposed Critical High TBD Choosing a
transformation
function will also be
included

11 Manually add FE to
FIOM

Proposed Critical Med TBD

12 Manually delete FE
from FIOM

Proposed Important Low TBD

13 Edit FE Proposed Important Med TBD
14 Print component

system schema text
format

Proposed Useful Low TBD

15 Print component
system schema
graphical format

Proposed Useful Med TBD

16 Print FE in text
format

Proposed Useful Low TBD

17 Print FIOM
hierarchy

Proposed Useful Med TBD

18 Save work as
current “snapshot”

Incorporated Useful Med Christie Keep current view of
files and FIOM to
allow quick return to
work.

Table IV-1. Product Features

2. Key Use Case

Table IV-2 below is the key use case for the FIOM IDE. Figure IV-1 shows the

exemplary use cases and actors along with their relationships.

Item Value

Use case name High-level system view

Brief description This use case describes how an interoperability engineer (IE)
loads a component system schema and what the system state is

43

Item Value

after this operation is finished. This is the heart of what this
tool is to provide.

Flow of events 1. IE identifies part of a component system to be integrated into

the federation by selecting its XML schema file. The XML
schema represents real world entities that are based upon the
inputs, outputs, and services of a component system.

2. IE utilizes a software tool that analyzes and parses the XML

schema. An XML data binding Java class generator
automatically maps the XML schema to light-weight Java
classes. This results in a "graph" of all the classes found in
the component system schema. Each node of the graph
represents member variable within the schema. A member
variable may be a class itself. If this is true, the class node
can be “clicked-on” and display its own member variables.

3. After selecting a class using the first software tool on the

system, the IE uses a second software tool, which conducts a
search to find the FIOM representation of the same real world
entity. If no matches are found, IE is given option to create a
new Federation Entity (FE). Else, a list of FE with a
probability of match for each is displayed.

4. The IE analyzes the output from Step 3, and determines

which member variables are appropriately mapped. The tool
helps this process by displaying both graphs of the
component system object and the FCR side by side. If the
object does not map completely, the IE is given the option to
add the current component system object to the FIOM
hierarchy as a new FCR. This new FCR may inherit the FCR
that was the closest match from the search.

5. The IE executes a fourth tool that sets the functional

transformations needed to map the component system object
to the correct FCR and vice versa

Exceptional flow of
events

TBD.

Preconditions A well- formed XML schema representing a real world entity to

be integrated into the federation is available.

44

Item Value

Postconditions The FIOM is updated with the addition of the XML schema
from the component system in question. The FIOM will now
be capable of taking an XML Document based upon the XML
schema previously integrated and transform it into another
XML Document based upon another integrated component
system’s XML schema. This is provided that the XML
schemas represent the same real world object.

Special
requirements

None.

Table IV-2. Key Use Case

Figure IV-1. Key Use Case Diagram

--- System
Boundry

FIOM IDE

Manage Ontology Ontology DatabaseOntology Librarian

Manage FIOM

<<search>>

Inteoperability Engineer

Request Ontology Update
<<communicate>>

Component System Schema

FIOM Database

Add Component System Schema
nn

<<include>>

45

C. SOFTWARE REQUIREMENTS SPECIFICATION (SRS)

The highlights of the SRS covered in this section are the Use Case Model Survey,

Actor Survey, and the Activity Diagrams describing the key use case in Table IV-2.

1. Use Case Model Survey

Name Description Actor(s)
Add Component
System Schema

Allows IE to open a component system XML
Schema file and display the objects contained
therein. Using a data-binding mechanism, the
file is transformed into a light-weight Java
class(es) . A search is then conducted to find
a matching FCR within the FIOM. The
results of the match are displayed. A FCR is
chosen, or one is created (see Manage
FIOM), and the relationship is made. The
translations between member variables are
made. Lastly, the relationship and
translation(s) are stored in the FIOM.

IE,
Component
System Schema,
FIOM Database

Manage FIOM Gives the IE the ability to create, modify, or

delete an FE, FEV view, FCR, or CCR.
Note: CCRs will not be modified.

IE,
FIOM Database,
Ontology Database

Manage Ontology Adds a new entity to the Ontology Database.

Not part of FIOM IDE.
Ontology
Librarian
Ontology Database

Table IV-3. Use Case Model Survey

2. Actor Survey

Actor Name Description
Component System
External Interface
Schema

XML schema file defining the component system’s external
interface and containing a representation of the real-world entity
it wishes to add to the FIOM.

FIOM Database The collection of Federation Entities (FE) containing the

relationships and translations necessary for component system
members to share information the members have registered using
the FIOM IDE.

46

Actor Name Description
Interoperability
Engineer (IE)

An individual that is an experienced Software Engineer that is
responsible for integrating DoD systems. It is assumed that the
IE is not necessarily a domain expert in the particular systems
that are to be integrated. But, the IE is expert in the federation
namespace being used to create the FIOM. Once the FIOM is
created it will be used within a network to convert messages and
services between component systems.

Ontology Librarian One who has the ability and authority to update the contents of

the Ontology Database.

Ontology Database The working model of entities and interactions in some particular

domain of knowledge or practices, such as Defense Information
Systems Agency’s (DISA's) Defense Information Infrastructure
Common Operating Environment (DII COE) XML Registry and
the Defense Modeling and Simulation Office’s (DMSO’s)
Functional Description of the Mission Space (FDMS)
namespaces [DII01, FDM01]. In artificial intelligence (AI), an
ontology is, according to Tom Gruber, an AI specialist at
Stanford University, "the specification of conceptualizations,
used to help programs and humans share knowledge." In this
usage, an ontology is a set of concepts - such as things, events,
and relations - that are specified in some way (such as specific
natural language) in order to create an agreed-upon vocabulary
for exchanging information [Whatis].

Table IV-4. Actor Survey

3. Activity Diagrams

Figures IV-2 and IV-3 describe the steps needed to implement the key use case

found in Table IV-3.

47

Figure IV-2. Add Component System Schema Activity Diagram

Load Component
System Schema

Search for
matching FCR

Add CCR to
FEV

Adjust Views in
FE

Add new FE to
FIOM

Map Attributes

Add Component
System Schema

48

Figure IV-3. Load Component System Schema Activity Diagram

Open Component
System Schema File

Open XML Schema
editor(read-only) and display file

Generate Java
Classes

Neural Net
Processing

Key-word map
generation

Display Namespace Class
Package Directory

Load Component
System Schema

49

D. FIOM IDE PROTOTYPE

The main goal of our work with the prototype was to build the base graphical user

environment and the data binding mechanism needed for follow-on work. In this section

we will to discuss the current features implemented and cover an example of exercising

the data-binding feature of the application.

1. Environment

The FIOM IDE will execute on a system running Java 2 runtime environment

1.3.0 with normal 800x600 resolution or greater monitor, keyboard, and mouse. All user

interface components are implemented using the Java Swing library. Upon program start

an 800x600 pixel window will open and be placed in the middle of the screen. The

application will have the “Look and Feel” of the operating system environment it is

running in. Figure IV-6 shows a typical window running under a Windows 2000

operating system environment. Anyone familiar with any Windows type environment

should find this application to be “user friendly.”

2. Functionality

There are four drop-down menus used to control the FIOM IDE. Table IV-5

describes their functions and submenus. These drop-down menus can be seen in Figure

IV-4.

Menu Sub-Menu Function

File Basic File Input/Output operations

 Load XML Schema File JFileChooser is displayed to allow user to load .xsd

file into tool. Figure IV-5 shows a sample dialog

box.

 Close XML Schema File Current schema file is closed along with associated

view XML Schema text or tree panes opened.

 Exit Closes all files and exits the application

View Displays different views of schema file loaded.

50

Menu Sub-Menu Function

 XML Schema Tree As seen in Figure IV-6, displays a JTree containing

the contents of the current schema file. This tree

also contains any <include> files within the

original schema file as well as the <include> files

themselves.

 XML Schema Text As seen in Figure IV-7, XHTML representation of

the original schema file only. <include> files are

not added.

Tools Handles different tools the application has.

 Generate Java Classes Takes the loaded XML Schema file and creates

lightweight Java classes and stores them in the

directory based on the package given by the user.

The package dialog can be seen in Figure IV-8.

 Options Displays application options and allows the user to

edit them. Currently path information for schema

location and FIOM location can be edited and

stored. Figure IV-9 shows an example of the

dialog. The information is stored in a XML

Document called options.xml. Note: This tool

actually helped in building itself! This operation

was created using the FIOM IDE. The options

XML Schema was created and then loaded into the

FIOM IDE. The classes were then generated and

then incorporated into the FIOM IDE code. This

gave the FIOM IDE the ability to manipulate an

options XML file.

51

Menu Sub-Menu Function

Help Handles any help or information screens.

 About Gives brief background on tool as seen in Figure

IV-10.

Table IV-5. Menu Functions

Figure IV-4. Cascaded View of Menus

52

Figure IV-5. Load Schema Dialog

Figure IV-6. Schema Tree View Display

53

Figure IV-7. Schema Text View Display

Figure IV-8. Package Dialog for Generating Classes

54

Figure IV-9. IDE Options Dialog

Figure IV-10. About Information Display

55

3. Example of Data-binding using the FIOM IDE

In this section we hope to demonstrate the power of data-binding by explaining

how the FIOM IDE actually helped in building itself. Feature 18 in Table IV-1 sought to

save work as a current “snapshot” in order to keep a current view of the component

system files and the FIOM to allow a quick return to work. Part of capturing the current

state of the application was the persistent storage and retrieval of path information for

component system XML Schema and FIOM files. To incorporate this feature the

following steps were taken:

• An XML Schema file called options.xsd, Figure IV-11, was developed to

define the logical structure of the document used to store user options for

the application. As can be seen below in Figure IV-11, XML documents

following this schema will have a root element called “options”, which has

a sequence of children. Currently, the “options” element has only one

child called “paths” also having a sequence of children called

“componentSystemSchemaPath” and “fiomPath”, both of which are

strings. This schema can be easily modified to add more options that

require persistent storage.

Figure IV-11. options.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="options">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="paths">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="componentSystemSchemaPath"
type="xsd:string"/>
 <xsd:element name="fiomPath" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

56

• The prototype FIOM IDE was then started and the options.xsd was loaded

by clicking on the File menu and then the Load XML Schema File sub-

menu.

• A JFileChooser dialog box then appears and the optio ns.xsd file is located

and chosen as seen in Figure IV-5.

• The file's content was then checked using the Schema Tree View and

Schema Text View, which are sub-menus under the View menu. See

Figure IV-6 and Figure IV-7.

• The Generate Java Classes sub-menu, which can be found under the Tools

menu, was then clicked on and the Package Dialog Box appeared. The

package for the FIOM IDE was then entered. Figure IV-8.

• Then FIOM generated four Java classes in background using the Castor

Source Generator API. The four files are:

o Options.java

o OptionsDescriptor.java

o Paths.java

o And, PathsDescriptor.java

• These generated files can be seen in Appendix A. The attributes and

methods contained in Options.java and Paths.java are listed in Table IV-6

below.
Class file Attributes Methods
Options.java Paths _paths public Paths getPaths()

public void setPaths(Paths paths)

public boolean isValid()

public void marshal(java.io.Writer out)

public static Options
unmarshal(java.io.Reader reader)

Paths.java String
_componentSystemSchemaPath

String _fiomPath

public String
getComponentSystemSchemaPath()

public void
setComponentSystemSchemaPath(String

57

Class file Attributes Methods
componentSystemSchemaPath)

public void setFiomPath(String fiomPath)

public java.lang.String getFiomPath()

public void setFiomPath(String fiomPath)

public boolean isValid()

public void marshal(java.io.Writer out)

public static Paths
unmarshal(java.io.Reader reader)

Table IV-6. Generated Class Files

• OptionsDescriptor and PathsDescriptor class serve a class reflection

mechanism to retrieve things such as class name, its super class,

namespace, etc.

• The methods in Table IV-6 are then used within the program to access the

options.xml file, see Figure III-1. This programmatic access can be seen

in the IDEOptions class constructor and display method in Appendix A.

58

THIS PAGE INTENTIONALLY LEFT BLANK

59

V. CONCLUSION

A. RESULTS OF THIS RESEARCH

This research effort has resulted in the beginnings a FIOM IDE prototype capable

of demonstrating the transformation process. This was originally not the focus of our

research. But, it became clear as work progressed, that a way to view real-world entities

in pure object-orientated terms was needed if the project was to move forward.

XML, and the family of technologies associated with it, are very immature at this

time. Most of the recommendations from the W3C are less than two years old and some

are still only candidates. We found that the XML Schema inheritance mechanism was

too crude and XSLT’s translation capabilities were insufficient to effect proper functional

translations. Our frustration grew as we tried to make XML “fit” in our object-orientated

model. Luckily, we stumbled across one of the newest XML technologies, data-binding.

Data-binding enabled the transformation of XML Schemas into pure Java classes, and

thus, freed us from trying to implement object-orientated techniques using other crude,

immature, and sometimes unusable XML technologies.

B. CRITICISMS OF THIS RESEARCH

The new capabilities that XML brings to interoperation between legacy systems

are a two-edged sword. XML now allows the world to define the structure and semantics

of data to suit its needs. But again, XML technologies are very immature and it will be

quite some time before data-binding, or any other XML technology, performs as

advertised.

C. RECOMMENDATIONS

Follow on work should focus on the following:

• The classes generated via data-binding need to be compiled if we are to

use reflection to view the contents of the classes. The Castor API will

60

eventually do this automatically but, until then, a manual solution is

needed.

• Pugh’s correlation techniques, see [Pug01], drew their discriminators from

XML Schema files only. Since the federation view of a real-world entity

is now described using Java Class only, his techniques must be modified.

• Lastly, a graphical, UML type, mapping interface is need to aid the

Interoperability Engineer in developing the translation methods necessary

to convert FCRs to CCRs, and visa versa. The University of California at

Irvine developed an open source Java library called the Graph Editing

Framework (GEF) that may drastically reduce the amount of work

necessary to accomplish this task [GEF01].

61

APPENDIX A. FIOM IDE SOURCE CODE AND REQUIRED FILES

A. SOURCE CODE

1. Babel.java
package mil.navy.nps.cs.babel;

import javax.swing.UIManager;
import java.awt.*;

/**
 * Title: Babel
 * Description: A Integrated Development Enviornment (IDE) for construction of
 * a Federation Interoperability Object Model (FIOM). This tool
 * will enable a Interoperability Engineer (IE) to design and
 * maintain a federation of real world entities (RWE) based on
 * component system representations.
 * Copyright: Copyright (c) 2001
 * Company: Naval Postgraduate School
 * @author Major Brent P. Christie USMC
 * @version 1.0
 */

public class Babel {

 // ***** DATA MEMBERS *****

 boolean packFrame = false;

 // ***** CONSTUCTORS *****

 /**Construct the application*/
 public Babel() {
 MainFrame frame = new MainFrame();
 //Validate frames that have preset sizes
 //Pack frames that have useful preferred size info, e.g. from their layout
 if (packFrame) {
 frame.pack();
 }
 else {
 frame.validate();
 }

 //Center the window
 Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
 Dimension frameSize = frame.getSize();
 if (frameSize.height > screenSize.height) {
 frameSize.height = screenSize.height;
 }
 if (frameSize.width > screenSize.width) {
 frameSize.width = screenSize.width;
 }
 frame.setLocation((screenSize.width - frameSize.width) / 2,
 (screenSize.height - frameSize.height) / 2);
 frame.setVisible(true);
 }//end Babel class constructor

 // ***** METHODS *****

 /**Main method*/
 public static void main(String[] args) {
 try {
 //UIManager.LookAndFeelInfo looks[];

62

 //looks = UIManager.getInstalledLookAndFeels();
 //0 - Metal, 1 - Motif, 2 - Windows
 //UIManager.setLookAndFeel(looks[0].getClassName());
 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 new Babel();
 }//end of main method

}//end of class Bable

//eof Babel.java

2. ConvenientFileFilter.java
/*
 * @(#)ExampleFileFilter.java 1.9 99/04/23
 *
 * Copyright (c) 1998, 1999 by Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

package mil.navy.nps.cs.babel;

import java.io.File;
import java.util.Hashtable;
import java.util.Enumeration;
import javax.swing.*;
import javax.swing.filechooser.*;

/**
 * A convenience implementation of FileFilter that filters out
 * all files except for those type extensions that it knows about.
 *
 * Extensions are of the type ".foo", which is typically found on
 * Windows and Unix boxes, but not on Macinthosh. Case is ignored.
 *
 * Example - create a new filter that filerts out all files
 * but gif and jpg image files:
 *
 * JFileChooser chooser = new JFileChooser();
 * ExampleFileFilter filter = new ExampleFileFilter(
 * new String{"gif", "jpg"}, "JPEG & GIF Images")
 * chooser.addChoosableFileFilter(filter);

63

 * chooser.showOpenDialog(this);
 *
 * @version 1.9 04/23/99
 * @author Jeff Dinkins
 */
public class ConvenientFileFilter extends FileFilter {

 private static String TYPE_UNKNOWN = "Type Unknown";
 private static String HIDDEN_FILE = "Hidden File";

 private Hashtable filters = null;
 private String description = null;
 private String fullDescription = null;
 private boolean useExtensionsInDescription = true;

 /**
 * Creates a file filter. If no filters are added, then all
 * files are accepted.
 *
 * @see #addExtension
 */
 public ConvenientFileFilter() {
 this.filters = new Hashtable();
 }

 /**
 * Creates a file filter that accepts files with the given extension.
 * Example: new ExampleFileFilter("jpg");
 *
 * @see #addExtension
 */
 public ConvenientFileFilter(String extension) {
 this(extension,null);
 }

 /**
 * Creates a file filter that accepts the given file type.
 * Example: new ExampleFileFilter("jpg", "JPEG Image Images");
 *
 * Note that the "." before the extension is not needed. If
 * provided, it will be ignored.
 *
 * @see #addExtension
 */
 public ConvenientFileFilter(String extension, String description) {
 this();
 if(extension!=null) addExtension(extension);
 if(description!=null) setDescription(description);
 }

 /**
 * Creates a file filter from the given string array.
 * Example: new ExampleFileFilter(String {"gif", "jpg"});
 *
 * Note that the "." before the extension is not needed adn
 * will be ignored.
 *
 * @see #addExtension
 */
 public ConvenientFileFilter(String[] filters) {
 this(filters, null);
 }

 /**
 * Creates a file filter from the given string array and description.
 * Example: new ExampleFileFilter(String {"gif", "jpg"}, "Gif and
 * JPG Images");
 *
 * Note that the "." before the extension is not needed and will be ignored.
 *
 * @see #addExtension

64

 */
 public ConvenientFileFilter(String[] filters, String description) {
 this();
 for (int i = 0; i < filters.length; i++) {
 // add filters one by one
 addExtension(filters[i]);
 }
 if(description!=null) setDescription(description);
 }

 /**
 * Return true if this file should be shown in the directory pane,
 * false if it shouldn't.
 *
 * Files that begin with "." are ignored.
 *
 * @see #getExtension
 * @see FileFilter#accepts
 */
 public boolean accept(File f) {
 if(f != null) {
 if(f.isDirectory()) {
 return true;
 }
 String extension = getExtension(f);
 if(extension != null && filters.get(getExtension(f)) != null) {
 return true;
 };
 }
 return false;
 }

 /**
 * Return the extension portion of the file's name .
 *
 * @see #getExtension
 * @see FileFilter#accept
 */
 public String getExtension(File f) {
 if(f != null) {
 String filename = f.getName();
 int i = filename.lastIndexOf('.');
 if(i>0 && i<filename.length()-1) {
 return filename.substring(i+1).toLowerCase();
 };
 }
 return null;
 }

 /**
 * Adds a filetype "dot" extension to filter against.
 *
 * For example: the following code will create a filter that filters
 * out all files except those that end in ".jpg" and ".tif":
 *
 * ExampleFileFilter filter = new ExampleFileFilter();
 * filter.addExtension("jpg");
 * filter.addExtension("tif");
 *
 * Note that the "." before the extension is not needed and will be ignored.
 */
 public void addExtension(String extension) {
 if(filters == null) {
 filters = new Hashtable(5);
 }
 filters.put(extension.toLowerCase(), this);
 fullDescription = null;
 }

 /**

65

 * Returns the human readable description of this filter. For
 * example: "JPEG and GIF Image Files (*.jpg, *.gif)"
 *
 * @see setDescription
 * @see setExtensionListInDescription
 * @see isExtensionListInDescription
 * @see FileFilter#getDescription
 */
 public String getDescription() {
 if(fullDescription == null) {
 if(description == null || isExtensionListInDescription()) {
 fullDescription = description==null ? "(" : description + "

(";
 // build the description from the extension list
 Enumeration extensions = filters.keys();
 if(extensions != null) {
 fullDescription += "." + (String)

extensions.nextElement();
 while (extensions.hasMoreElements()) {
 fullDescription += ", " + (String)

extensions.nextElement();
 }
 }
 fullDescription += ")";
 }
 else {
 fullDescription = description;
 }
 }
 return fullDescription;
 }

 /**
 * Sets the human readable description of this filter. For
 * example: filter.setDescription("Gif and JPG Images");
 *
 * @see setDescription
 * @see setExtensionListInDescription
 * @see isExtensionListInDescription
 */
 public void setDescription(String description) {
 this.description = description;
 fullDescription = null;
 }

 /**
 * Determines whether the extension list (.jpg, .gif, etc) should
 * show up in the human readable description.
 *
 * Only relevent if a description was provided in the constructor
 * or using setDescription();
 *
 * @see getDescription
 * @see setDescription
 * @see isExtensionListInDescription
 */
 public void setExtensionListInDescription(boolean b) {
 useExtensionsInDescription = b;
 fullDescription = null;
 }

 /**
 * Returns whether the extension list (.jpg, .gif, etc) should
 * show up in the human readable description.
 *
 * Only relevent if a description was provided in the constructor
 * or using setDescription();
 *
 * @see getDescription
 * @see setDescription
 * @see setExtensionListInDescription

66

 */
 public boolean isExtensionListInDescription() {
 return useExtensionsInDescription;
 }

}//end ConvenientFileFilter class

//eof ConvenientFileFilter.java

3. ConvenientFileView.java
/*
 * @(#)ExampleFileView.java 1.8 99/04/23
 *
 * Copyright (c) 1998, 1999 by Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

package mil.navy.nps.cs.babel;

import javax.swing.*;
import javax.swing.filechooser.*;

import java.io.File;
import java.util.Hashtable;

/**
 * A convenience implementation of the FileView interface that
 * manages name, icon, traversable, and file type information.
 *
 * This this implemention will work well with file systems that use
 * "dot" extensions to indicate file type. For example: "picture.gif"
 * as a gif image.
 *
 * If the java.io.File ever contains some of this information, such as
 * file type, icon, and hidden file inforation, this implementation may
 * become obsolete. At minimum, it should be rewritten at that time to
 * use any new type information provided by java.io.File
 *
 * Example:
 * JFileChooser chooser = new JFileChooser();
 * fileView = new ExampleFileView();
 * fileView.putIcon("jpg", new ImageIcon("images/jpgIcon.jpg"));
 * fileView.putIcon("gif", new ImageIcon("images/gifIcon.gif"));
 * chooser.setFileView(fileView);
 *

67

 * @version 1.8 04/23/99
 * @author Jeff Dinkins
 */
public class ConvenientFileView extends FileView {

 private Hashtable icons = new Hashtable(5);
 private Hashtable fileDescriptions = new Hashtable(5);
 private Hashtable typeDescriptions = new Hashtable(5);

 /**
 * The name of the file. Do nothing special here. Let
 * the system file view handle this.
 * @see #setName
 * @see FileView#getName
 */
 public String getName(File f) {
 return null;
 }

 /**
 * Adds a human readable description of the file.
 */
 public void putDescription(File f, String fileDescription) {
 fileDescriptions.put(fileDescription, f);
 }

 /**
 * A human readable description of the file.
 *
 * @see FileView#getDescription
 */
 public String getDescription(File f) {
 return (String) fileDescriptions.get(f);
 };

 /**
 * Adds a human readable type description for files. Based on "dot"
 * extension strings, e.g: ".gif". Case is ignored.
 */
 public void putTypeDescription(String extension, String typeDescription) {
 typeDescriptions.put(typeDescription, extension);
 }

 /**
 * Adds a human readable type description for files of the type of
 * the passed in file. Based on "dot" extension strings, e.g: ".gif".
 * Case is ignored.
 */
 public void putTypeDescription(File f, String typeDescription) {
 putTypeDescription(getExtension(f), typeDescription);
 }

 /**
 * A human readable description of the type of the file.
 *
 * @see FileView#getTypeDescription
 */
 public String getTypeDescription(File f) {
 return (String) typeDescriptions.get(getExtension(f));
 }

 /**
 * Conveinience method that returnsa the "dot" extension for the
 * given file.
 */
 public String getExtension(File f) {
 String name = f.getName();
 if(name != null) {
 int extensionIndex = name.lastIndexOf('.');
 if(extensionIndex < 0) {
 return null;

68

 }
 return name.substring(extensionIndex+1).toLowerCase();
 }
 return null;
 }

 /**
 * Adds an icon based on the file type "dot" extension
 * string, e.g: ".gif". Case is ignored.
 */
 public void putIcon(String extension, Icon icon) {
 icons.put(extension, icon);
 }

 /**
 * Icon that reperesents this file. Default implementation returns
 * null. You might want to override this to return something more
 * interesting.
 *
 * @see FileView#getIcon
 */
 public Icon getIcon(File f) {
 Icon icon = null;
 String extension = getExtension(f);
 if(extension != null) {
 icon = (Icon) icons.get(extension);
 }
 return icon;
 }

 /**
 * Whether the file is hidden or not. This implementation returns
 * true if the filename starts with a "."
 *
 * @see FileView#isHidden
 */
 public Boolean isHidden(File f) {
 String name = f.getName();
 if(name != null && !name.equals("") && name.charAt(0) == '.') {
 return Boolean.TRUE;
 }
 else {
 return Boolean.FALSE;
 }
 };

 /**
 * Whether the directory is traversable or not. Generic implementation
 * returns true for all directories.
 *
 * You might want to subtype ExampleFileView to do somethimg more
 * interesting, such as recognize compound documents directories; in such a
 * case you might return a special icon for the diretory that makes it look
 * like a regular document, and return false for isTraversable to not allow
 * users to descend into the directory.
 *
 * @see FileView#isTraversable
 */
 public Boolean isTraversable(File f) {
 if(f.isDirectory()) {
 return Boolean.TRUE;
 }
 else {
 return Boolean.FALSE;
 }
 };

}//end ConvenientFileView class

//eof ConvenientFileView.java

69

4. IDEOptions.java
package mil.navy.nps.cs.babel;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

import java.io.*;
import org.exolab.castor.xml.ClassDescriptorResolver;
import org.exolab.castor.xml.Unmarshaller;
import org.exolab.castor.xml.Marshaller;
import org.exolab.castor.xml.MarshalException;
import org.exolab.castor.xml.util.ClassDescriptorResolverImpl;

/**
 * Title: Babel
 * Description: Controls storage/retreval/updating of options for IDE
 * Copyright: Copyright (c) 2001
 * Company: Naval Postgraduate School
 * @author Major Brent P. Christie USMC
 * @version 1.0
 */

public class IDEOptions {

 // ***** DATA MEMBERS *****

 private Component parent;

 private JPanel topPanel;

 private JTabbedPane tabbedPane;
 private JPanel pathPanel;
 private JPanel pathPanelLeft;
 private JPanel pathPanelRight;
 private JTextField cssPath;
 private JTextField fiomPath;
 private JButton cssButton;
 private JButton fiomButton;

 private Options options = null;
 private String opFileLocation = "options.xml";
 private String[] actions = { "cssButton", "fiomButton" };

 //private File optionsFile;

 // ***** CONSTUCTORS *****

 public IDEOptions(Component parent) {

 this.parent = parent;

 try {
 options = Options.unmarshal(new FileReader(opFileLocation));
 }
 catch (Exception e) {
 e.printStackTrace();
 }

 buildDialog();

 //open stored options file

 }//end IDEOptions() constructor

70

 // ***** METHODS *****

 public void display() {

 String dialogTitle = "IDE Options";
 String dialogButtons[] = { "Update", "Cancel" };

 String lastCSSPath = cssPath.getText();
 String lastFIOMPath = fiomPath.getText();

 int result = JOptionPane.showOptionDialog(parent,
 topPanel, dialogTitle,
 JOptionPane.OK_CANCEL_OPTION,
 JOptionPane.PLAIN_MESSAGE,
 null,
 dialogButtons,
 dialogButtons[0]);

 if (result == JOptionPane.OK_OPTION && options != null) {

 options.getPaths().setComponentSystemSchemaPath(cssPath.getText());
 options.getPaths().setFiomPath(fiomPath.getText());

 try {
 options.marshal(new FileWriter(opFileLocation));
 }
 catch (Exception e) {
 e.printStackTrace();
 }

 }
 else {

 cssPath.setText(lastCSSPath);
 fiomPath.setText(lastFIOMPath);
 }

 }//end display method

 public String getCSSPath() {
 return cssPath.getText();
 }//end getCSSPath method

 public String getFIOMPath() {
 return fiomPath.getText();
 }//end getFIOMPath()

 private void buildDialog() {

 topPanel = new JPanel();
 tabbedPane = new JTabbedPane();
 pathPanel = new JPanel();
 pathPanelLeft = new JPanel();
 pathPanelRight = new JPanel();

 cssPath = new JTextField(15);
 fiomPath = new JTextField(15);

 if (options != null) {
 cssPath.setText(options.getPaths().getComponentSystemSchemaPath());
 fiomPath.setText(options.getPaths().getFiomPath());
 }

 cssButton = new JButton("...");
 fiomButton = new JButton("...");

71

 cssButton.addActionListener(new CSSPathHandler());
 fiomButton.addActionListener(new FIOMPathHandler());

 pathPanelLeft.setLayout(new GridLayout(0, 2));
 pathPanelRight.setLayout(new GridLayout(0, 1));

 pathPanelLeft.add(new JLabel ("Component System Schema(s) Location: "));
 pathPanelLeft.add(cssPath);
 pathPanelRight.add(cssButton);

 pathPanelLeft.add(new JLabel("FIOM Location: "));
 pathPanelLeft.add(fiomPath);
 pathPanelRight.add(fiomButton);

 pathPanel.add(pathPanelLeft);
 pathPanel.add(pathPanelRight);
 tabbedPane.add("Paths", pathPanel);
 topPanel.add(tabbedPane);

 }//end buildDialog method

 private class CSSPathHandler implements ActionListener {
 public void actionPerformed(ActionEvent e) {

 JFileChooser jfc = new JFileChooser();
 jfc.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY);

 if (options != null) {
 jfc.setCurrentDirectory(new File(
 options.getPaths().getComponentSystemSchemaPath()));
 }

 int result = jfc.showDialog(parent, "Update Path");
 if(result == JFileChooser.APPROVE_OPTION) {

 cssPath.setText(jfc.getSelectedFile().getPath());

 }

 }//end actionPerformed method
 }//end CSSPathHandler inner class

 private class FIOMPathHandler implements ActionListener {
 public void actionPerformed(ActionEvent e) {

 JFileChooser jfc = new JFileChooser();
 jfc.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY);

 if (options != null) {
 jfc.setCurrentDirectory(new File(
 options.getPaths().getFiomPath()));
 }

 int result = jfc.showDialog(parent, "Update Path");
 if(result == JFileChooser.APPROVE_OPTION) {

 fiomPath.setText(jfc.getSelectedFile().getPath());
 }

 }//end actionPerformed method
 }//end FIOMPathHandler inner class

}//end IDEOptions class
//eof IDEOptions.java

72

5. MainFrame.java
package mil.navy.nps.cs.babel;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * Title: Babel
 * Description: A Integrated Development Enviornment (IDE) for construction of
 * a Federation Interoperability Object Model (FIOM). This tool
 * will enable a Interoperability Engineer (IE) to design and
 * maintain a federation of real world entities (RWE) based on
 * component system representations.
 * Copyright: Copyright (c) 2001
 * Company: Naval Postgraduate School
 * @author Major Brent P. Christie USMC
 * @version 1.0
 */
public class MainFrame extends JFrame {

 // ***** DATA MEMBERS *****

 JPanel contentPane;

 //menu bar information
 JMenuBar jMenuBar = new JMenuBar();

 JMenu jMenuFile = new JMenu();
 JMenuItem jMenuFileLoad = new JMenuItem();
 JMenuItem jMenuFileClose = new JMenuItem();
 JMenuItem jMenuFileExit = new JMenuItem();

 JMenu jMenuView = new JMenu();
 JCheckBoxMenuItem jMenuViewXMLSchemaTree = new JCheckBoxMenuItem();
 JCheckBoxMenuItem jMenuViewXMLSchemaText = new JCheckBoxMenuItem();

 JMenu jMenuTools = new JMenu();
 JMenuItem jMenuToolsGen = new JMenuItem();
 JMenuItem jMenuToolsIDE = new JMenuItem();

 JMenu jMenuHelp = new JMenu();
 JMenuItem jMenuHelpAbout = new JMenuItem();

 BorderLayout borderLayout1 = new BorderLayout();

 JPanel statusBar = new JPanel();
 JLabel statusGeneralText = new JLabel();
 JLabel statusSchemaText = new JLabel();

 JSplitPane viewSearchSplit = new JSplitPane();
 JSplitPane schemaFiomSplit = new JSplitPane();

 JTabbedPane schemaTabbedPane = new JTabbedPane();

 IDEOptions ideOptions = new IDEOptions(this);
 Schema schema = new Schema(this, ideOptions);

 // ***** CONSTUCTORS *****

 /**
 * Construct the frame
 */
 public MainFrame() {
 enableEvents(AWTEvent.WINDOW_EVENT_MASK);
 try {

73

 init();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 }//end MainFrame constructor

 // ***** METHODS *****

 /**
 * Component initialization
 */
 private void init() throws Exception {
 this.setIconImage(Toolkit.getDefaultToolkit().createImage
 (MainFrame.class.getResource("images/babel.jpg")));

 this.setSize(new Dimension(800, 600));
 this.setTitle("Babel - Federation Management and Component System " +
 "Integration Tool");

 // Set up Menu bar
 jMenuFile.setText("File");
 jMenuFile.setMnemonic('F');
 jMenuFileExit.setText("Exit");
 jMenuFileExit.setMnemonic('x');
 jMenuFileExit.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 jMenuFileExit_actionPerformed(e);
 }
 });

 jMenuFileLoad.setText("Load XML Schema File");
 jMenuFileLoad.setMnemonic('L');
 jMenuFileLoad.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 jMenuFileLoad_actionPerformed(e);
 }
 });

 jMenuFileClose.setText("Close XML Schema File");
 jMenuFileClose.setMnemonic('C');
 jMenuFileClose.setEnabled(false);
 jMenuFileClose.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 jMenuFileClose_actionPerformed(e);
 }
 });

 jMenuView.setText("View");
 jMenuView.setMnemonic('V');
 jMenuViewXMLSchemaTree.setEnabled(false);
 jMenuViewXMLSchemaTree.setState(false);
 jMenuViewXMLSchemaTree.setText("XML Schema Tree");
 jMenuViewXMLSchemaTree.setMnemonic('S');
 jMenuViewXMLSchemaTree.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent e) {
 jMenuViewXMLSchemaTree_itemStateChanged(e);
 }
 });
 jMenuViewXMLSchemaText.setEnabled(false);
 jMenuViewXMLSchemaText.setState(false);
 jMenuViewXMLSchemaText.setText("XML Schema Text");
 jMenuViewXMLSchemaText.setMnemonic('X');
 jMenuViewXMLSchemaText.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent e) {
 jMenuViewXMLSchemaText_itemStateChanged(e);
 }

74

 });

 jMenuTools.setText("Tools");
 jMenuTools.setMnemonic('T');
 jMenuToolsGen.setText("Generate Java Classes");
 jMenuToolsGen.setMnemonic('G');
 jMenuToolsGen.setEnabled(false);
 jMenuToolsGen.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 jMenuToolsGen_actionPerformed(e);
 }
 });
 jMenuToolsIDE.setText("IDE Options");
 jMenuToolsIDE.setMnemonic('O');
 jMenuToolsIDE.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 jMenuToolsIDE_actionPerformed(e);
 }
 });

 jMenuHelp.setText("Help");
 jMenuHelp.setMnemonic('H');
 jMenuHelpAbout.setText("About");
 jMenuHelpAbout.setMnemonic('A');
 jMenuHelpAbout.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 jMenuHelpAbout_actionPerformed(e);
 }
 });

 jMenuFile.add(jMenuFileLoad);
 jMenuFile.add(jMenuFileClose);
 jMenuFile.add(jMenuFileExit);
 jMenuView.add(jMenuViewXMLSchemaTree);
 jMenuView.add(jMenuViewXMLSchemaText);
 jMenuTools.add(jMenuToolsGen);
 jMenuTools.add(jMenuToolsIDE);
 jMenuHelp.add(jMenuHelpAbout);
 jMenuBar.add(jMenuFile);
 jMenuBar.add(jMenuView);
 jMenuBar.add(jMenuTools);
 jMenuBar.add(jMenuHelp);

 this.setJMenuBar(jMenuBar);

 // set up contentPane
 contentPane = (JPanel) this.getContentPane();
 contentPane.setLayout(borderLayout1);
 contentPane.setBackground(Color.white);

 // set up status bar
 statusGeneralText.setText("Let's Babel! ");
 statusBar.add(statusGeneralText);
 contentPane.add(statusBar, borderLayout1.SOUTH);

 // set up schema / fiom split pane
 schemaFiomSplit.setOrientation(JSplitPane.HORIZONTAL_SPLIT);
 schemaFiomSplit.setLeftComponent(schemaTabbedPane);
 schemaFiomSplit.setRightComponent(null);

 // set up view / search split pane
 viewSearchSplit.setOrientation(JSplitPane.VERTICAL_SPLIT);
 viewSearchSplit.setTopComponent(schemaFiomSplit);
 viewSearchSplit.setBottomComponent(null);
 contentPane.add(viewSearchSplit, borderLayout1.CENTER);

75

 show();

 }//end init method

 /**
 * Loads a new XML schema from a .xsd file
 */
 void jMenuFileLoad_actionPerformed(ActionEvent e) {
 if (schema.loadFile()) {
 statusSchemaText.setText("Schema path -->" +
 schema.getFile().getPath());
 statusBar.add(statusSchemaText);
 jMenuFileLoad.setEnabled(false);
 jMenuFileClose.setEnabled(true);
 jMenuViewXMLSchemaTree.setEnabled(true);
 jMenuViewXMLSchemaText.setEnabled(true);
 jMenuToolsGen.setEnabled(true);
 show();
 }
 }///end jMenuFileLoad_actionPerformed method

 /**
 * Closes XML schema file and all related windows
 */
 void jMenuFileClose_actionPerformed(ActionEvent e) {
 schema.closeFile();
 statusBar.remove(statusSchemaText);
 jMenuFileLoad.setEnabled(true);
 jMenuFileClose.setEnabled(false);
 jMenuViewXMLSchemaTree.setState(false);
 jMenuViewXMLSchemaTree.setEnabled(false);
 jMenuViewXMLSchemaText.setState(false);
 jMenuViewXMLSchemaText.setEnabled(false);
 jMenuToolsGen.setEnabled(false);
 show();
 }///end jMenuFileLoad_actionPerformed method

 /**
 * File | Exit action performed
 */
 public void jMenuFileExit_actionPerformed(ActionEvent e) {
 System.exit(0);
 }//end jMenuFileExit_actionPerformed method

 /**
 * Displays view of loaded shema file
 */
 void jMenuViewXMLSchemaTree_itemStateChanged(ItemEvent e) {
 if (e.getStateChange() == ItemEvent.SELECTED) {
 schemaTabbedPane.addTab("Schema Tree View",
 schema.getTreeView(true));
 show();
 }
 else {
 schemaTabbedPane.remove(schema.getTreeView(true));
 }
 }///end jMenuViewXMLSchemaTree_actionPerformed method

 /**
 * Displays view of loaded shema file
 */
 void jMenuViewXMLSchemaText_itemStateChanged(ItemEvent e) {

 if (e.getStateChange() == ItemEvent.SELECTED) {
 schemaTabbedPane.addTab("Schema Text View",

76

 schema.getTextView(false));
 show();
 }
 else {
 schemaTabbedPane.remove(schema.getTextView(false));
 }
 }///end jMenuViewXMLSchemaTree_actionPerformed method

 /**
 * Generates Java classes from open XML Schema file
 */
 void jMenuToolsGen_actionPerformed(ActionEvent e) {
 schema.generateJavaClasses();
 }///end jMenuToolsIDE_actionPerformed method

 /**
 * Displays IDE Options
 */
 void jMenuToolsIDE_actionPerformed(ActionEvent e) {
 ideOptions.display();
 }///end jMenuToolsIDE_actionPerformed method

 /**
 * Help | About action performed
 */
 public void jMenuHelpAbout_actionPerformed(ActionEvent e) {
 MainFrame_AboutBox dlg = new MainFrame_AboutBox(this);
 }//end jMenuHelpAbout_actionPerformed method

 /**
 * Overridden so we can exit when window is closed
 */
 protected void processWindowEvent(WindowEvent e) {
 super.processWindowEvent(e);
 if (e.getID() == WindowEvent.WINDOW_CLOSING) {
 jMenuFileExit_actionPerformed(null);
 }
 }//end processWindowEvent method

}//end MainFrame class

//eof MainFrame.java

6. MainFrame_AboutBox.java
package mil.navy.nps.cs.babel;

import java.awt.*;
import javax.swing.*;

/**
 * Title: Babel
 * Description: Displays about information
 * Copyright: Copyright (c) 2001
 * Company: Naval Postgraduate School
 * @author Major Brent P. Christie USMC
 * @version 1.0
 */

public class MainFrame_AboutBox extends JOptionPane {

 // ***** DATA MEMBERS *****

77

 private String msg = "Babel \n" +
 "Version 1.0 \n" +
 "Copyright (c) 2001 \n\n" +
 "Authors: \n" +
 " CAPTAIN Paul E. Young USN \n" +
 " Major Brent P. Christie USMC \n" +
 " Captain Randy G. Pugh USMC \n\n" +
 "Overview: \n" +
 " A Integrated Development Enviornment (IDE) for \n" +
 "construction of a Federation Interoperability Object \n" +
 "Model (FIOM). This tool will enable a Interoperability \n" +
 "Engineer (IE) to design and maintain a federation of \n" +
 "real world entities (RWE) based on component system \n" +
 "representations. All based on Young's OOMI!";

 private ImageIcon aboutIcon = new ImageIcon
 (MainFrame_AboutBox.class.getResource("images/babel.jpg"));

 // ***** CONSTUCTORS *****

 public MainFrame_AboutBox(Component parent) {
 super();

 showMessageDialog(parent,
 msg,
 "About",
 PLAIN_MESSAGE,
 aboutIcon);

 }//end MainFrame_AboutBox constructor

 // ***** METHODS *****

 // none.

}//end MainFrame_AboutBox class

//eof MainFrame_AboutBox.java

7. Options.java
/*
 * This class was automatically generated with
 * Castor 0.9.2, using an
 * XML Schema.
 * $Id: Options.java,v 1.1.1.1 2001/08/27 23:42:30 bpchrist Exp $
 */

package mil.navy.nps.cs.babel;

 //---------------------------------/
 //- Imported classes and packages -/
//---------------------------------/

import java.io.Reader;
import java.io.Serializable;
import java.io.Writer;
import org.exolab.castor.xml.*;
import org.exolab.castor.xml.MarshalException;
import org.exolab.castor.xml.ValidationException;
import org.xml.sax.DocumentHandler;

/**
 *
 * @version $Revision: 1.1.1.1 $ $Date: 2001/08/27 23:42:30 $
**/
public class Options implements java.io.Serializable {

78

 //--------------------------/
 //- Class/Member Variables -/
 //--------------------------/

 private Paths _paths;

 //----------------/
 //- Constructors -/
 //----------------/

 public Options() {
 super();
 } //-- mil.navy.nps.cs.babel.Options()

 //-----------/
 //- Methods -/
 //-----------/

 /**
 **/
 public Paths getPaths()
 {
 return this._paths;
 } //-- Paths getPaths()

 /**
 **/
 public boolean isValid()
 {
 try {
 validate();
 }
 catch (org.exolab.castor.xml.ValidationException vex) {
 return false;
 }
 return true;
 } //-- boolean isValid()

 /**
 *
 * @param out
 **/
 public void marshal(java.io.Writer out)
 throws org.exolab.castor.xml.MarshalException,

org.exolab.castor.xml.ValidationException
 {

 Marshaller.marshal(this, out);
 } //-- void marshal(java.io.Writer)

 /**
 *
 * @param handler
 **/
 public void marshal(org.xml.sax.DocumentHandler handler)
 throws org.exolab.castor.xml.MarshalException,

org.exolab.castor.xml.ValidationException
 {

 Marshaller.marshal(this, handler);
 } //-- void marshal(org.xml.sax.DocumentHandler)

 /**
 *
 * @param paths
 **/
 public void setPaths(Paths paths)
 {
 this._paths = paths;

79

 } //-- void setPaths(Paths)

 /**
 *
 * @param reader
 **/
 public static mil.navy.nps.cs.babel.Options unmarshal(java.io.Reader reader)
 throws org.exolab.castor.xml.MarshalException,

org.exolab.castor.xml.ValidationException
 {
 return (mil.navy.nps.cs.babel.Options)

Unmarshaller.unmarshal(mil.navy.nps.cs.babel.Options.class, reader);
 } //-- mil.navy.nps.cs.babel.Options unmarshal(java.io.Reader)

 /**
 **/
 public void validate()
 throws org.exolab.castor.xml.ValidationException
 {
 org.exolab.castor.xml.Validator validator = new

org.exolab.castor.xml.Validator();
 validator.validate(this);
 } //-- void validate()

}

8. OptionsDescriptor.java
/*
 * This class was automatically generated with
 * Castor 0.9.2, using an
 * XML Schema.
 * $Id: OptionsDescriptor.java,v 1.1.1.1 2001/08/27 23:42:30 bpchrist Exp $
 */

package mil.navy.nps.cs.babel;

 //---------------------------------/
 //- Imported classes and packages -/
//---------------------------------/

import org.exolab.castor.mapping.AccessMode;
import org.exolab.castor.mapping.ClassDescriptor;
import org.exolab.castor.mapping.FieldDescriptor;
import org.exolab.castor.xml.*;
import org.exolab.castor.xml.FieldValidator;
import org.exolab.castor.xml.TypeValidator;
import org.exolab.castor.xml.XMLFieldDescriptor;
import org.exolab.castor.xml.handlers.*;
import org.exolab.castor.xml.util.XMLFieldDescriptorImpl;
import org.exolab.castor.xml.validators.*;

/**
 *
 * @version $Revision: 1.1.1.1 $ $Date: 2001/08/27 23:42:30 $
**/
public class OptionsDescriptor extends

org.exolab.castor.xml.util.XMLClassDescriptorImpl {

 //--------------------------/
 //- Class/Member Variables -/
 //--------------------------/

 private java.lang.String nsPrefix;

 private java.lang.String nsURI;

 private java.lang.String xmlName;

80

 private org.exolab.castor.xml.XMLFieldDescriptor identity;

 //----------------/
 //- Constructors -/
 //----------------/

 public OptionsDescriptor() {
 super();
 xmlName = "options";
 XMLFieldDescriptorImpl desc = null;
 XMLFieldHandler handler = null;
 FieldValidator fieldValidator = null;
 //-- initialize attribute descriptors

 //-- initialize element descriptors

 //-- _paths
 desc = new XMLFieldDescriptorImpl(Paths.class, "_paths", "paths",

NodeType.Element);
 handler = (new XMLFieldHandler() {
 public Object getValue(Object object)
 throws IllegalStateException
 {
 Options target = (Options) object;
 return target.getPaths();
 }
 public void setValue(Object object, Object value)
 throws IllegalStateException, IllegalArgumentException
 {
 try {
 Options target = (Options) object;
 target.setPaths((Paths) value);
 }
 catch (Exception ex) {
 throw new IllegalStateException(ex.toString());
 }
 }
 public Object newInstance(Object parent) {
 return new Paths();
 }
 });
 desc.setHandler(handler);
 desc.setRequired(true);
 desc.setMultivalued(false);
 addFieldDescriptor(desc);

 //-- validation code for: _paths
 fieldValidator = new FieldValidator();
 fieldValidator.setMinOccurs(1);
 desc.setValidator(fieldValidator);

 } //-- mil.navy.nps.cs.babel.OptionsDescriptor()

 //-----------/
 //- Methods -/
 //-----------/

 /**
 **/
 public org.exolab.castor.mapping.AccessMode getAccessMode()
 {
 return null;
 } //-- org.exolab.castor.mapping.AccessMode getAccessMode()

 /**
 **/
 public org.exolab.castor.mapping.ClassDescriptor getExtends()
 {
 return null;

81

 } //-- org.exolab.castor.mapping.ClassDescriptor getExtends()

 /**
 **/
 public org.exolab.castor.mapping.FieldDescriptor getIdentity()
 {
 return identity;
 } //-- org.exolab.castor.mapping.FieldDescriptor getIdentity()

 /**
 **/
 public java.lang.Class getJavaClass()
 {
 return mil.navy.nps.cs.babel.Options.class;
 } //-- java.lang.Class getJavaClass()

 /**
 **/
 public java.lang.String getNameSpacePrefix()
 {
 return nsPrefix;
 } //-- java.lang.String getNameSpacePrefix()

 /**
 **/
 public java.lang.String getNameSpaceURI()
 {
 return nsURI;
 } //-- java.lang.String getNameSpaceURI()

 /**
 **/
 public org.exolab.castor.xml.TypeValidator getValidator()
 {
 return this;
 } //-- org.exolab.castor.xml.TypeValidator getValidator()

 /**
 **/
 public java.lang.String getXMLName()
 {
 return xmlName;
 } //-- java.lang.String getXMLName()

}

9. Paths.java
/*
 * This class was automatically generated with
 * Castor 0.9.2, using an
 * XML Schema.
 * $Id: Paths.java,v 1.1.1.1 2001/08/27 23:42:30 bpchrist Exp $
 */

package mil.navy.nps.cs.babel;

 //---------------------------------/
 //- Imported classes and packages -/
//---------------------------------/

import java.io.Reader;
import java.io.Serializable;
import java.io.Writer;
import org.exolab.castor.xml.*;
import org.exolab.castor.xml.MarshalException;
import org.exolab.castor.xml.ValidationException;
import org.xml.sax.DocumentHandler;

/**

82

 *
 * @version $Revision: 1.1.1.1 $ $Date: 2001/08/27 23:42:30 $
**/
public class Paths implements java.io.Serializable {

 //--------------------------/
 //- Class/Member Variables -/
 //--------------------------/

 private java.lang.String _componentSystemSchemaPath;

 private java.lang.String _fiomPath;

 //----------------/
 //- Constructors -/
 //----------------/

 public Paths() {
 super();
 } //-- mil.navy.nps.cs.babel.Paths()

 //-----------/
 //- Methods -/
 //-----------/

 /**
 **/
 public java.lang.String getComponentSystemSchemaPath()
 {
 return this._componentSystemSchemaPath;
 } //-- java.lang.String getComponentSystemSchemaPath()

 /**
 **/
 public java.lang.String getFiomPath()
 {
 return this._fiomPath;
 } //-- java.lang.String getFiomPath()

 /**
 **/
 public boolean isValid()
 {
 try {
 validate();
 }
 catch (org.exolab.castor.xml.ValidationException vex) {
 return false;
 }
 return true;
 } //-- boolean isValid()

 /**
 *
 * @param out
 **/
 public void marshal(java.io.Writer out)
 throws org.exolab.castor.xml.MarshalException,

org.exolab.castor.xml.ValidationException
 {

 Marshaller.marshal(this, out);
 } //-- void marshal(java.io.Writer)

 /**
 *
 * @param handler
 **/

83

 public void marshal(org.xml.sax.DocumentHandler handler)
 throws org.exolab.castor.xml.MarshalException,

org.exolab.castor.xml.ValidationException
 {

 Marshaller.marshal(this, handler);
 } //-- void marshal(org.xml.sax.DocumentHandler)

 /**
 *
 * @param componentSystemSchemaPath
 **/
 public void setComponentSystemSchemaPath(java.lang.String

componentSystemSchemaPath)
 {
 this._componentSystemSchemaPath = componentSystemSchemaPath;
 } //-- void setComponentSystemSchemaPath(java.lang.String)

 /**
 *
 * @param fiomPath
 **/
 public void setFiomPath(java.lang.String fiomPath)
 {
 this._fiomPath = fiomPath;
 } //-- void setFiomPath(java.lang.String)

 /**
 *
 * @param reader
 **/
 public static mil.navy.nps.cs.babel.Paths unmarshal(java.io.Reader reader)
 throws org.exolab.castor.xml.MarshalException,

org.exolab.castor.xml.ValidationException
 {
 return (mil.navy.nps.cs.babel.Paths)

Unmarshaller.unmarshal(mil.navy.nps.cs.babel.Paths.class, reader);
 } //-- mil.navy.nps.cs.babel.Paths unmarshal(java.io.Reader)

 /**
 **/
 public void validate()
 throws org.exolab.castor.xml.ValidationException
 {
 org.exolab.castor.xml.Validator validator = new

org.exolab.castor.xml.Validator();
 validator.validate(this);
 } //-- void validate()

}

10. PathsDescriptor.java
/*
 * This class was automatically generated with
 * Castor 0.9.2, using an
 * XML Schema.
 * $Id: PathsDescriptor.java,v 1.1.1.1 2001/08/27 23:42:30 bpchrist Exp $
 */

package mil.navy.nps.cs.babel;

 //---------------------------------/
 //- Imported classes and packages -/
//---------------------------------/

import org.exolab.castor.mapping.AccessMode;
import org.exolab.castor.mapping.ClassDescriptor;
import org.exolab.castor.mapping.FieldDescriptor;

84

import org.exolab.castor.xml.*;
import org.exolab.castor.xml.FieldValidator;
import org.exolab.castor.xml.TypeValidator;
import org.exolab.castor.xml.XMLFieldDescriptor;
import org.exolab.castor.xml.handlers.*;
import org.exolab.castor.xml.util.XMLFieldDescriptorImpl;
import org.exolab.castor.xml.validators.*;

/**
 *
 * @version $Revision: 1.1.1.1 $ $Date: 2001/08/27 23:42:30 $
**/
public class PathsDescriptor extends

org.exolab.castor.xml.util.XMLClassDescriptorImpl {

 //--------------------------/
 //- Class/Member Variables -/
 //--------------------------/

 private java.lang.String nsPrefix;

 private java.lang.String nsURI;

 private java.lang.String xmlName;

 private org.exolab.castor.xml.XMLFieldDescriptor identity;

 //----------------/
 //- Constructors -/
 //----------------/

 public PathsDescriptor() {
 super();
 xmlName = "paths";
 XMLFieldDescriptorImpl desc = null;
 XMLFieldHandler handler = null;
 FieldValidator fieldValidator = null;
 //-- initialize attribute descriptors

 //-- initialize element descriptors

 //-- _componentSystemSchemaPath
 desc = new XMLFieldDescriptorImpl(java.lang.String.class,

"_componentSystemSchemaPath", "componentSystemSchemaPath", NodeType.Element);
 desc.setImmutable(true);
 handler = (new XMLFieldHandler() {
 public Object getValue(Object object)
 throws IllegalStateException
 {
 Paths target = (Paths) object;
 return target.getComponentSystemSchemaPath();
 }
 public void setValue(Object object, Object value)
 throws IllegalStateException, IllegalArgumentException
 {
 try {
 Paths target = (Paths) object;
 target.setComponentSystemSchemaPath((java.lang.String)

value);
 }
 catch (Exception ex) {
 throw new IllegalStateException(ex.toString());
 }
 }
 public Object newInstance(Object parent) {
 return null;
 }
 });
 desc.setHandler(handler);

85

 desc.setRequired(true);
 desc.setMultivalued(false);
 addFieldDescriptor(desc);

 //-- validation code for: _componentSystemSchemaPath
 fieldValidator = new FieldValidator();
 fieldValidator.setMinOccurs(1);
 { //-- local scope
 StringValidator sv = new StringValidator();
 sv.setWhiteSpace("preserve");
 fieldValidator.setValidator(sv);
 }
 desc.setValidator(fieldValidator);

 //-- _fiomPath
 desc = new XMLFieldDescriptorImpl(java.lang.String.class, "_fiomPath",

"fiomPath", NodeType.Element);
 desc.setImmutable(true);
 handler = (new XMLFieldHandler() {
 public Object getValue(Object object)
 throws IllegalStateException
 {
 Paths target = (Paths) object;
 return target.getFiomPath();
 }
 public void setValue(Object object, Object value)
 throws IllegalStateException, IllegalArgumentException
 {
 try {
 Paths target = (Paths) object;
 target.setFiomPath((java.lang.String) value);
 }
 catch (Exception ex) {
 throw new IllegalStateException(ex.toString());
 }
 }
 public Object newInstance(Object parent) {
 return null;
 }
 });
 desc.setHandler(handler);
 desc.setRequired(true);
 desc.setMultivalued(false);
 addFieldDescriptor(desc);

 //-- validation code for: _fiomPath
 fieldValidator = new FieldValidator();
 fieldValidator.setMinOccurs(1);
 { //-- local scope
 StringValidator sv = new StringValidator();
 sv.setWhiteSpace("preserve");
 fieldValidator.setValidator(sv);
 }
 desc.setValidator(fieldValidator);

 } //-- mil.navy.nps.cs.babel.PathsDescriptor()

 //-----------/
 //- Methods -/
 //-----------/

 /**
 **/
 public org.exolab.castor.mapping.AccessMode getAccessMode()
 {
 return null;
 } //-- org.exolab.castor.mapping.AccessMode getAccessMode()

 /**
 **/

86

 public org.exolab.castor.mapping.ClassDescriptor getExtends()
 {
 return null;
 } //-- org.exolab.castor.mapping.ClassDescriptor getExtends()

 /**
 **/
 public org.exolab.castor.mapping.FieldDescriptor getIdentity()
 {
 return identity;
 } //-- org.exolab.castor.mapping.FieldDescriptor getIdentity()

 /**
 **/
 public java.lang.Class getJavaClass()
 {
 return mil.navy.nps.cs.babel.Paths.class;
 } //-- java.lang.Class getJavaClass()

 /**
 **/
 public java.lang.String getNameSpacePrefix()
 {
 return nsPrefix;
 } //-- java.lang.String getNameSpacePrefix()

 /**
 **/
 public java.lang.String getNameSpaceURI()
 {
 return nsURI;
 } //-- java.lang.String getNameSpaceURI()

 /**
 **/
 public org.exolab.castor.xml.TypeValidator getValidator()
 {
 return this;
 } //-- org.exolab.castor.xml.TypeValidator getValidator()

 /**
 **/
 public java.lang.String getXMLName()
 {
 return xmlName;
 } //-- java.lang.String getXMLName()

}

11. Schema.java
package mil.navy.nps.cs.babel;

import java.awt.*;
import java.io.*;
import java.net.URL;
import javax.swing.*;
import javax.swing.filechooser.*;
import javax.swing.text.html.*;
import xbrowser.renderer.custom.*;

import org.exolab.castor.builder.*;

import javax.xml.parsers.*;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;

87

import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerConfigurationException;

import javax.xml.transform.dom.DOMSource;

import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;

/**
 * Title: Babel
 * Description: Handles all schema file operations
 * Copyright: Copyright (c) 2001
 * Company: Naval Postgraduate School
 * @author Major Brent P. Christie USMC
 * @version 1.0
 *
 */
public class Schema {

 // ***** DATA MEMBERS *****

 private Component parent;
 private IDEOptions options;

 private ConvenientFileFilter filter;
 private String schemaFilter = "xsd";
 private String schemaDescription = "XML Schema Files";

 private ConvenientFileView fileView;

 private File schemaFile = null;
 private boolean schemaFileLoaded = false;

 private Document document, documentWithInclude;

 private JScrollPane treeView, treeViewInc,
 textView, textViewInc;

 // ***** CONSTUCTORS *****

 /**
 * Schema constructor
 * @param parent parent window
 * @param options contains file path information
 */
 public Schema(Component parent, IDEOptions options) {

 this.parent = parent;
 this.options = options;

 }//end Schema constructor

 // ***** METHODS *****

 /**
 * Loads schema file using JFileChooser.
 * @return True if file loaded properly
 */
 public boolean loadFile() {

 JFileChooser chooser = new JFileChooser(options.getCSSPath());
 chooser.setFileSelectionMode(JFileChooser.FILES_ONLY);

 //set file filter(s)

88

 filter = new ConvenientFileFilter(schemaFilter, schemaDescription);
 chooser.addChoosableFileFilter(filter);

 //set icons(s)
 fileView = new ConvenientFileView();
 fileView.putIcon(schemaFilter,
 new ImageIcon(Schema.class.getResource
 ("images/babel_Icon.jpg")));
 chooser.setFileView(fileView);

 while (true) {

 int result = chooser.showDialog(parent, "Load");

 if (result == JFileChooser.APPROVE_OPTION) {

 schemaFile = chooser.getSelectedFile();
 SchemaDocument sd = new SchemaDocument();
 if (sd.goodLoadFromFile(schemaFile, true)) {
 documentWithInclude = sd.getDocument();

 sd.goodLoadFromFile(schemaFile, false);
 document = sd.getDocument();

 treeView = generateTreeView(document);
 treeViewInc = generateTreeView(documentWithInclude);

 textView = generateTextView(document);
 textViewInc = generateTextView(documentWithInclude);

 schemaFileLoaded = true;
 return true;
 }
 else {
 JOptionPane.showMessageDialog(parent,
 "File not valid XML document. See console messages for " +
 "details. Try again. ");
 }

 }
 else if (result == JFileChooser.ERROR_OPTION) {

 JOptionPane.showMessageDialog(parent, "An file error occured. " +
 "Try again. ");
 }
 else if (result == JFileChooser.CANCEL_OPTION) {
 return false;
 }
 else {
 JOptionPane.showMessageDialog(parent, "Unknown operation " +
 "occured. Try again. ");
 }

 }//end while
 }//end loadFile method

 /**
 * Frees current file
 */
 public void closeFile() {
 schemaFile = null;
 }//end closeFile method

 /**
 * Returns Loaded XML Schema file chosen by the user
 * @return Loaded XML Schema file chosen
 */

89

 public File getFile() {
 return schemaFile;
 }//end getFile method

 /**
 * Uses Castor Source Generator data binding API to create light weight java
 * classes based on input XML schema file.
 * @return True if light wieght classes were generated, False if error
 */
 public boolean generateJavaClasses() {

 if (schemaFileLoaded && schemaFile != null) {

 String packageName = "default"; //incase user cancels input
 String input = JOptionPane.showInputDialog
 (parent, "Enter package name for generated classes");

 if (input != null) {
 packageName = input;
 }

 SourceGenerator sg = new SourceGenerator();
 try {
 sg.generateSource(schemaFile.getPath(), packageName);
 return true;

 }
 catch (java.io.FileNotFoundException e) {
 System.out.println("File not found: " + e);
 return false;
 }

 }
 else {
 return false;
 }

 }//end generateJavaClasses method

 /**
 * Returns a JScrollPane containing a JTree view of the loaded XML Schema
 * File.
 * @param include If the tree returned is to contain information contained
 * within the files in <include> elements.
 * @return The tree view of the loaded XML Schema file.
 */
 public JScrollPane getTreeView(boolean include) {

 return include ? treeViewInc : textView;

 }//end getTreeView method

 /**
 * Returns a JScrollPane containing a JEditorPane with a XHTML view of the
 * loaded XML Schema File.
 * @param include True, if the XHTML returned is to contain schema
 * information from the files in <include> elements.
 * @return The tree view of the loaded XML Schema file.
 */
 public JScrollPane getTextView(boolean include) {

 return include ? textViewInc : textView;

 }//end getTextView method

 /**
 * Returns a JScrollPane containing a JTree view of the document given.

90

 * @param document document used to create JTree
 * @return Returns a JScrollPane containing a JTree view of the document
 * given.
 */
 private JScrollPane generateTreeView(Document document) {

 // This JScrollPane is the container for the JTree
 JScrollPane jScrollPane = new JScrollPane();
 // This is the XTree object which displays the XML in a JTree
 XTree xTree;

 // Build the XTree object
 xTree = new XTree(document);

 // Wrap the XTree in a JScroll so that we can scroll it in the JFrame.
 jScrollPane.getViewport().add(xTree);

 return jScrollPane;

 }//end getTreeView method

 /**
 * Returns JScrollPane containing a JEditorPane with the XHTML version of the
 * document given.
 * @param document document to convert to XHTML
 * @return Returns JScrollPane containing a JEditorPane with the XHTML
 * version of the document given.
 */
 private JScrollPane generateTextView(Document document) {

 JScrollPane jScrollPane = new JScrollPane();

 XHTMLEditorKit htmlKit = new XHTMLEditorKit();
 JEditorPane jep = new JEditorPane();
 htmlKit.install(jep);
 jep.setEditorKit(htmlKit);

 String xsltStylesheet = "xmlverbatim.xsl";

 if (schemaFile != null) {

 TransformerFactory tFactory = TransformerFactory.newInstance();

 try {

 // Use a Transformer for output

 Transformer transformer = tFactory.newTransformer(
 new StreamSource(xsltStylesheet));

 DOMSource source = new DOMSource(document);

 // create a new string writer
 StringWriter sw = new StringWriter();

 StreamResult result = new StreamResult(sw);
 transformer.transform(source, result);

 // set the text of the text pane
 //jTextPane.setText(sw.toString());
 jep.setText(sw.toString());
 }
 catch (Exception e) {
 e.printStackTrace();
 }

 }//end if

91

 jScrollPane.getViewport().add(jep);

 return jScrollPane;

 }////end generateTextView method

}//end Schema class
//eof Schema.java

11. SchemaDocument.java
package mil.navy.nps.cs.babel;

import java.io.*;
import java.util.Vector;

import javax.xml.parsers.*;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

import org.w3c.dom.*;

/**
 * Title: Babel
 * Description: Used to create a DOM document from a XML schema and any
 * xsd:include schemas. Note: This should not be necessary
 * once Xerces J parser starts supporting XML schemas. Current
 * 2.0 beta does not.
 * Copyright: Copyright (c) 2001
 * Company: Naval Postgraduate School
 * @author Major Brent P. Christie USMC
 * @version 1.0
 *
 */
public class SchemaDocument {

 // ***** DATA MEMBERS *****

 private DocumentBuilder builder;
 private DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 private Document document;

 private boolean includeReference;
 private boolean goodLoad = false;

 // ***** CONSTUCTORS *****

 /**
 * No argument constructor
 */
 public SchemaDocument() {

 factory.setIgnoringElementContentWhitespace(true);

 }//end SchemaDocument constructor

 // ***** METHODS *****

 /**
 * Creates new document from schema '.xsd' file.
 * @param schemaFile XML Schema file to load from
 * @param include True to include files referenced in xsd:include
 * elements' schemaLocation attribute.

92

 * @return True if document created properly
 */
 public boolean goodLoadFromFile(File schemaFile, boolean include) {

 document = null;

 includeReference = include;

 goodLoad = true;

 document = parseDocument(schemaFile);

 return goodLoad;

 }//end goodLoadFromFile method

 /**
 * Returns a DOM Document from a schema .xsd file. The document will contain

included
 * references if the includeReference flag is set.
 * @param schemaFile .xsd file to input
 * @return Document from given file
 */
 private Document parseDocument(File schemaFile) {

 Document currentDocument = null;

 try {
 builder = factory.newDocumentBuilder();
 currentDocument = builder.parse(schemaFile);

 if (includeReference) {

 currentDocument = createIncludeDocument(currentDocument,
 schemaFile);
 }//end if includeReference
 }
 catch (Exception e) {
 e.printStackTrace();
 goodLoad = false;
 }//end try-catch

 return currentDocument;

 }//end parseDocument method

 /**
 * Adds given schema file to current document.
 * @param currentDocument The document to add include file infromation to.
 * @param schemaFile The .xsd file to add to the currentDocument
 * @return a Document containing the combination of the given Document and the

given Document file.
 */
 public Document createIncludeDocument(Document currentDocument,
 File schemaFile) {

 Document includeDocument;
 String path;

 //find directory where schema file resides
 path = schemaFile.getPath().substring(0,
 schemaFile.getPath().length() - schemaFile.getName().length());

 //find all include elements
 NodeList includeList =
 currentDocument.getElementsByTagName("xsd:include");

93

 for (int i = 0; i < includeList.getLength(); i ++) {

 Element includeElement = (Element)includeList.item(0);

 String schemaLocation = includeElement.getAttribute("schemaLocation");

 //if valid schema location
 File includeFile = schemaFile;
 if (! schemaLocation.equals("")) {

 //if not absolute path, determine path, else no change
 includeFile = new File(schemaLocation);
 if (! includeFile.isAbsolute()) {

 //Update schemaLocation
 schemaLocation = path + schemaLocation;
 includeFile = new File(schemaLocation);
 try {
 //add relative path to current path
 path = includeFile.getCanonicalPath().substring(0,
 includeFile.getCanonicalPath().length() -
 includeFile.getName().length());
 }
 catch (IOException ioe) {
 goodLoad = false;
 ioe.printStackTrace();
 }//end try - catch
 includeFile = new File(path + includeFile.getName());

 }//end if (! tempFile.isAbsolute())

 System.out.println("Including File " + includeFile.getPath());

 //recursively search for other documents
 includeDocument = parseDocument(includeFile);

 //merge includeDocument into currentDocument
 createMergeDocument(currentDocument, includeDocument);

 } // end if valid schema location

 //remove found include node and replace with comment
 //<!-- Include file inc... -->
 Node insrtCmt = currentDocument.createComment("Include file " +
 "incorporated and stmt deleted");
 includeElement.getParentNode().replaceChild(insrtCmt,
 includeElement);

 }//end for all include elements loop

 return currentDocument;

 }

 /**
 * Returns the current DOM Document.
 * @return The current Document.
 */
 public Document getDocument() {

 return document;

 }//end getDocument method

 /**
 * This method merges a include(or any for that matter) document into another
 * (the currentDocument). It does this by finding all the "type" attributes
 * of all elements in the current document. For each "type" attribute

94

 * a search is made in the include document for all elements with a matching
 * "name" attribute. If found, that element is added as a child of the
 * current document element with matching type. This allows one to view
 * the guts of a type at the node that references it.
 * @param currentDocument document to update
 * @param includeDocument document to include into current (not changed)
 */
 private void createMergeDocument(Document currentDocument,
 Document includeDocument) {
 Element currentElement;
 String typeAttribute;

 //get included document's root element
 Element currentRoot = currentDocument.getDocumentElement();
 NodeList allChildrenList = currentRoot.getElementsByTagName("*");

 for (int i = 0; i < allChildrenList.getLength(); i++) {
 currentElement = (Element)allChildrenList.item(i);
 typeAttribute = currentElement.getAttribute("type");

 //separate namespace from type name
 String nameSpace;
 String type = typeAttribute;
 int colon = typeAttribute.indexOf(":"); //-1 returned if not found
 if (colon > 0) {
 nameSpace = typeAttribute.substring(0, colon - 1);
 type = typeAttribute.substring(colon + 1);
 }

 //add include element as child if match type attribute
 if (! type.equals("")) {

 //first add all complex types from include document
 NodeList complexChild = includeDocument.getElementsByTagName(
 "xsd:complexType");

 Element complexElement;
 String complexName;
 for (int j = 0; j < complexChild.getLength(); j++) {
 complexElement = (Element)complexChild.item(j);
 complexName = complexElement.getAttribute("name");
 //if "type" form currentDocument matches "name" from include
 //document add the include element as child of current element
 if (type.equals(complexName)) {
 //create a import node that is a deep copy of the match
 //this will allow view 'guts' of types
 Node importNode = currentDocument.importNode(complexElement,
 true);
 //make sure no duplicates of type information
 if (!currentElement.hasChildNodes()) {
 currentElement.appendChild(importNode);
 }//end if already has type information

 }//end if match
 }//end for complexChild loop

 NodeList simpleChild = includeDocument.getElementsByTagName(
 "xsd:simpleType");
 Element simpleElement;
 String simpleName;
 for (int j = 0; j < simpleChild.getLength(); j++) {
 simpleElement = (Element)simpleChild.item(j);
 simpleName = simpleElement.getAttribute("name");
 //if "type" form currentDocument matches "name" from include
 //document add the include element as child of current element
 if (type.equals(simpleName)) {
 //create a import node that is a deep copy of the match
 //this will allow view 'guts' of types
 Node importNode = currentDocument.importNode(simpleElement,

95

 true);
 //make sure no duplicates of type information
 if (!currentElement.hasChildNodes()) {
 currentElement.appendChild(importNode);
 }//end if alread has type information

 }//end if match

 }//end for simpleChild loop

 }//end if found type

 }//end for all children in currentDocument

 }///end mergeDoms method

}//end SchemaDocument class
//eof SchemaDocument.java

12. XTree.java
package mil.navy.nps.cs.babel;

// W3C DOM classes
import org.w3c.dom.*;

// JAXP's classes for DOM I/O
import javax.xml.parsers.*;

// Standard Java classes
import javax.swing.*;
import javax.swing.tree.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;

/**
 * Description: The XTree class is an extension of the javax.swing.JTree class.
 * It behaves in every way like a JTree component, the difference is that

additional
 * methods have been provided to facilitate the parsing of an XML document into a
 * DOM object and translating that DOM object into a viewable JTree structure.
 *
 * Copyright (c) March 2001 Kyle Gabhart
 * @author Kyle Gabhart
 * @version 1.0
 */

public class XTree extends JTree
{
 /**
 * This member stores the TreeNode object used to create the model for the

JTree.
 * The DefaultMutableTreeNode class is defined in the javax.swing.tree package
 * and provides a default implementation of the MutableTreeNode interface.
 */
 private DefaultMutableTreeNode treeNode;

 /**
 * These three members are a part of the JAXP API and are used to parse the XML
 * text into a DOM object (of type Document).
 */
 private Document doc;

 /**
 * This single constructor builds an XTree object using the XML text
 * passed in through the constructor.
 *

96

 * @param text A String of XML formatted text
 *
 * @exception ParserConfigurationException This exception is potentially thrown

if
 * the constructor configures the parser improperly. It won't.
 */
 public XTree(Document document)
 {
 // Initialize the superclass portion of the object
 super();

 doc = document;

 // Set basic properties for the Tree rendering
 getSelectionModel().setSelectionMode(

TreeSelectionModel.SINGLE_TREE_SELECTION);
 setShowsRootHandles(true);
 setEditable(false); // A more advanced version of this tool would allow

the Tree to be editable

 // Take the DOM root node and convert it to a Tree model for the JTree
 treeNode = createTreeNode((Node)doc.getDocumentElement());
 setModel(new DefaultTreeModel(treeNode));
 } //end XTree()

 /**
 * This takes a DOM Node and recurses through the children until each one is

added
 * to a DefaultMutableTreeNode. The JTree then uses this object as a tree

model.
 *
 * @param root org.w3c.Node.Node
 *
 * @return Returns a DefaultMutableTreeNode object based on the root Node

passed in
 */
 private DefaultMutableTreeNode createTreeNode(Node root)
 {
 DefaultMutableTreeNode treeNode = null;
 String type, name, value;
 NamedNodeMap attribs;
 Node attribNode;

 // Get data from root node
 type = getNodeType(root);
 name = root.getNodeName();
 value = root.getNodeValue();

 // Special case for TEXT_NODE or COMMENT NODE
 if (root.getNodeType() == Node.COMMENT_NODE ||
 root.getNodeType() == Node.TEXT_NODE) {
 name = value;
 }
 treeNode = new DefaultMutableTreeNode(name);

 // Display the attributes if there are any
 attribs = root.getAttributes();
 if(attribs != null)
 {
 for(int i = 0; i < attribs.getLength(); i++)
 {
 attribNode = attribs.item(i);
 name = attribNode.getNodeName().trim();
 value = attribNode.getNodeValue().trim();

 if (value != null)
 {
 if (value.length() > 0)
 {

97

 treeNode.add(new DefaultMutableTreeNode(name + "=\"" + value +
"\""));

 } //end if (value.length() > 0)
 } //end if (value != null)
 } //end for(int i = 0; i < attribs.getLength(); i++)
 } //end if(attribs != null)

 // Recurse children nodes if any exist
 if(root.hasChildNodes())
 {
 NodeList children;
 int numChildren;
 Node node;
 String data;

 children = root.getChildNodes();
 // Only recurse if Child Nodes are non-null
 if(children != null)
 {
 numChildren = children.getLength();

 for (int i=0; i < numChildren; i++)
 {
 node = children.item(i);
 if(node != null)
 {
 // A special case could be made for each Node type.
 if(node.getNodeType() == Node.ELEMENT_NODE)
 {
 treeNode.add(createTreeNode(node));
 } //end if(node.getNodeType() == Node.ELEMENT_NODE)

 data = node.getNodeValue();

 if(data != null)
 {
 data = data.trim();
 if (!data.equals("\n") && !data.equals("\r\n") &&

data.length() > 0)
 {
 treeNode.add(createTreeNode(node));
 } //end if (!data.equals("\n") && !data.equals("\r\n") &&

data.length() > 0)
 } //end if(data != null)
 } //end if(node != null)
 } //end for (int i=0; i < numChildren; i++)
 } //end if(children != null)
 } //end if(root.hasChildNodes())
 return treeNode;
 } //end createTreeNode(Node root)

 /**
 * This method returns a string representing the type of node passed in.
 *
 * @param node org.w3c.Node.Node
 *
 * @return Returns a String representing the node type
 */
 private String getNodeType(Node node)
 {
 String type;

 switch(node.getNodeType())
 {
 case Node.ELEMENT_NODE:
 {
 type = "Element";
 break;
 }
 case Node.ATTRIBUTE_NODE:
 {

98

 type = "Attribute";
 break;
 }
 case Node.TEXT_NODE:
 {
 type = "Text";
 break;
 }
 case Node.CDATA_SECTION_NODE:
 {
 type = "CData section";
 break;
 }
 case Node.ENTITY_REFERENCE_NODE:
 {
 type = "Entity reference";
 break;
 }
 case Node.ENTITY_NODE:
 {
 type = "Entity";
 break;
 }
 case Node.PROCESSING_INSTRUCTION_NODE:
 {
 type = "Processing instruction";
 break;
 }
 case Node.COMMENT_NODE:
 {
 type = "Comment";
 break;
 }
 case Node.DOCUMENT_NODE:
 {
 type = "Document";
 break;
 }
 case Node.DOCUMENT_TYPE_NODE:
 {
 type = "Document type";
 break;
 }
 case Node.DOCUMENT_FRAGMENT_NODE:
 {
 type = "Document fragment";
 break;
 }
 case Node.NOTATION_NODE:
 {
 type = "Notation";
 break;
 }
 default:
 {
 type = "???";
 break;
 }
 }// end switch(node.getNodeType())
 return type;
 } //end getNodeType()

} //end class XTree

99

B. REQUIRED FILES

1. options.xsl
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="options">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="paths">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="componentSystemSchemaPath" type="xsd:string"/>
 <xsd:element name="fiomPath" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

2. options.xml
<?xml version="1.0"?>
<options>
 <paths>
 <componentSystemSchemaPath>C:\XSD_Test\USMTF</componentSystemSchemaPath>
 <fiomPath>c:\Documents and Settings\OOMI Project\babel\fiom</fiomPath>
 </paths>
</options>

3. xmlverbatim.xsl
<?xml version="1.0" encoding="ISO-8859-1"?>

<!--
 XML to HTML Verbatim Formatter with Syntax Highlighting
 Version 1.0.2
 GPL (c) Oliver Becker, 2000-08-12
 obecker@informatik.hu-berlin.de
-->

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:verb="http://informatik.hu-berlin.de/xmlverbatim"
 exclude-result-prefixes="verb">

 <xsl:output method="html" omit-xml-declaration="yes" indent="no"/>

 <xsl:template match="/">

 <style type="text/css"><!--
 .xmlverb-default { color: #333333; background-color: #ffffff;
 font-family: monospace; }
.xmlverb-element-name { color: #990000; }
.xmlverb-element-nsprefix { color: #666600; }
.xmlverb-attr-name { color: #660000; }
.xmlverb-attr-content { color: #000099; font-weight: bold; }
.xmlverb-ns-name { color: #666600; }
.xmlverb-ns-uri { color: #330099; }
.xmlverb-text { color: #000000; font-weight: bold; }
.xmlverb-comment { color: #006600; font-style: italic; }
.xmlverb-pi-name { color: #006600; font-style: italic; }
.xmlverb-pi-content { color: #006666; font-style: italic; }
 --></style>

100

 <xsl:apply-templates select="." mode="xmlverb" />

 </xsl:template>

 <!-- root -->
 <xsl:template match="/" mode="xmlverb">
 <xsl:text>
</xsl:text>
 <xsl:comment>
 <xsl:text> converted by xmlverbatim.xsl 1.0.2, (c) O. Becker </xsl:text>
 </xsl:comment>
 <xsl:text>
</xsl:text>
 <div class="xmlverb-default">
 <xsl:apply-templates mode="xmlverb">
 <xsl:with-param name="root" select="true()"/>
 </xsl:apply-templates>
 </div>
 <xsl:text>
</xsl:text>
 </xsl:template>

 <!-- wrapper -->
 <xsl:template match="verb:wrapper">
 <xsl:apply-templates mode="xmlverb" />
 </xsl:template>

 <xsl:template match="verb:wrapper" mode="xmlverb">
 <xsl:apply-templates mode="xmlverb" />
 </xsl:template>

 <!-- element nodes -->
 <xsl:template match="*" mode="xmlverb">
 <xsl:param name="root" />
 <xsl:text><</xsl:text>
 <xsl:variable name="ns-prefix"
 select="substring-before(name(),':')" />
 <xsl:if test="$ns-prefix != ''">

 <xsl:value-of select="$ns-prefix"/>

 <xsl:text>:</xsl:text>
 </xsl:if>

 <xsl:value-of select="local-name()"/>

 <xsl:variable name="pns" select="../namespace::*"/>
 <xsl:if test="$pns[name()=''] and not(namespace::*[name()=''])">

 <xsl:text> xmlns</xsl:text>

 <xsl:text>=""</xsl:text>
 </xsl:if>
 <xsl:for-each select="namespace::*">
 <xsl:if test="not($pns[name()=name(current()) and
 .=current()])">
 <xsl:call-template name="xmlverb-ns" />
 </xsl:if>
 </xsl:for-each>
 <xsl:for-each select="@*">
 <xsl:call-template name="xmlverb-attrs" />
 </xsl:for-each>
 <xsl:choose>
 <xsl:when test="count(*)=0 and .=''">
 <xsl:text> /></xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>></xsl:text>
 <xsl:apply-templates mode="xmlverb" />
 <xsl:text></</xsl:text>
 <xsl:if test="$ns-prefix != ''">

 <xsl:value-of select="$ns-prefix"/>

101

 <xsl:text>:</xsl:text>
 </xsl:if>

 <xsl:value-of select="local-name()"/>

 <xsl:text>></xsl:text>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:if test="$root">
<xsl:text>
</xsl:text></xsl:if>
 </xsl:template>

 <!-- attribute nodes -->
 <xsl:template name="xmlverb-attrs">
 <xsl:text> </xsl:text>

 <xsl:value-of select="name()"/>

 <xsl:text>="</xsl:text>

 <xsl:call-template name="html-replace-entities">
 <xsl:with-param name="text" select="normalize-space(.)" />
 <xsl:with-param name="attrs" select="true()" />
 </xsl:call-template>

 <xsl:text>"</xsl:text>
 </xsl:template>

 <!-- namespace nodes -->
 <xsl:template name="xmlverb-ns">
 <xsl:if test="name()!='xml'">

 <xsl:text> xmlns</xsl:text>
 <xsl:if test="name()!=''">
 <xsl:text>:</xsl:text>
 </xsl:if>
 <xsl:value-of select="name()"/>

 <xsl:text>="</xsl:text>

 <xsl:value-of select="."/>

 <xsl:text>"</xsl:text>
 </xsl:if>
 </xsl:template>

 <!-- text nodes -->
 <xsl:template match="text()" mode="xmlverb">

 <xsl:call-template name="preformatted-output">
 <xsl:with-param name="text">
 <xsl:call-template name="html-replace-entities">
 <xsl:with-param name="text" select="." />
 </xsl:call-template>
 </xsl:with-param>
 </xsl:call-template>

 </xsl:template>

 <!-- comments -->
 <xsl:template match="comment()" mode="xmlverb">
 <xsl:param name="root" />
 <xsl:text><!--</xsl:text>

 <xsl:call-template name="preformatted-output">
 <xsl:with-param name="text" select="." />
 </xsl:call-template>

 <xsl:text>--></xsl:text>
 <xsl:if test="$root">
<xsl:text>
</xsl:text></xsl:if>
 </xsl:template>

102

 <!-- processing instructions -->
 <xsl:template match="processing-instruction()" mode="xmlverb">
 <xsl:param name="root" />
 <xsl:text><?</xsl:text>

 <xsl:value-of select="name()"/>

 <xsl:if test=".!=''">
 <xsl:text> </xsl:text>

 <xsl:value-of select="."/>

 </xsl:if>
 <xsl:text>?></xsl:text>
 <xsl:if test="$root">
<xsl:text>
</xsl:text></xsl:if>
 </xsl:template>

 <!-- === -->
 <!-- Procedures / Functions -->
 <!-- === -->

 <!-- generate entities by replacing &, ", < and > in $text -->
 <xsl:template name="html-replace-entities">
 <xsl:param name="text" />
 <xsl:param name="attrs" />
 <xsl:variable name="tmp">
 <xsl:call-template name="replace-substring">
 <xsl:with-param name="from" select="'>'" />
 <xsl:with-param name="to" select="'&gt;'" />
 <xsl:with-param name="value">
 <xsl:call-template name="replace-substring">
 <xsl:with-param name="from" select="'<'" />
 <xsl:with-param name="to" select="'&lt;'" />
 <xsl:with-param name="value">
 <xsl:call-template name="replace-substring">
 <xsl:with-param name="from"
 select="'&'" />
 <xsl:with-param name="to"
 select="'&amp;'" />
 <xsl:with-param name="value"
 select="$text" />
 </xsl:call-template>
 </xsl:with-param>
 </xsl:call-template>
 </xsl:with-param>
 </xsl:call-template>
 </xsl:variable>
 <xsl:choose>
 <!-- $text is an attribute value -->
 <xsl:when test="$attrs">
 <xsl:call-template name="replace-substring">
 <xsl:with-param name="from" select="'
'" />
 <xsl:with-param name="to" select="'&#xA;'" />
 <xsl:with-param name="value">
 <xsl:call-template name="replace-substring">
 <xsl:with-param name="from"
 select="'"'" />
 <xsl:with-param name="to"
 select="'&quot;'" />
 <xsl:with-param name="value" select="$tmp" />
 </xsl:call-template>
 </xsl:with-param>
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$tmp" />
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>

103

 <!-- replace in $value substring $from with $to -->
 <xsl:template name="replace-substring">
 <xsl:param name="value" />
 <xsl:param name="from" />
 <xsl:param name="to" />
 <xsl:choose>
 <xsl:when test="contains($value,$from)">
 <xsl:value-of select="substring-before($value,$from)" />
 <xsl:value-of select="$to" />
 <xsl:call-template name="replace-substring">
 <xsl:with-param name="value"
 select="substring-after($value,$from)" />
 <xsl:with-param name="from" select="$from" />
 <xsl:with-param name="to" select="$to" />
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$value" />
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>

 <!-- preformatted output: space as , tab as 8
 nl as
 -->
 <xsl:template name="preformatted-output">
 <xsl:param name="text" />
 <xsl:call-template name="output-nl">
 <xsl:with-param name="text">
 <xsl:call-template name="replace-substring">
 <xsl:with-param name="value"
 select="translate($text,' ',' ')" />
 <xsl:with-param name="from" select="'	'" />
 <xsl:with-param name="to"

select="' '" />
 </xsl:call-template>
 </xsl:with-param>
 </xsl:call-template>
 </xsl:template>

 <!-- output nl as
 -->
 <xsl:template name="output-nl">
 <xsl:param name="text" />
 <xsl:choose>
 <xsl:when test="contains($text,'
')">
 <xsl:value-of select="substring-before($text,'
')" />

 <xsl:text>
</xsl:text>
 <xsl:call-template name="output-nl">
 <xsl:with-param name="text"
 select="substring-after($text,'
')" />
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$text" />
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>

</xsl:stylesheet>

104

THIS PAGE INTENTIONALLY LEFT BLANK

105

LIST OF REFERENCES

[Bre01] The Breeze Factor, LLC, “News”,

 [http://www.breezefactor.com/news13.html]. June 2001.

[Cas01] ExoLab Group, “The Source Code Generator”,

 [http://castor.exolab.org/sourcegen.html]. September 2001.

[DII98] U.S. Defense Information Systems Agency, Defense Information
Infrastructure Master Plan, Version 7.0, Appendix A, Communications
and Computer Infrastructure, [http://www.disa.mil/diimp/diimp-a.html].
13 March 1998.

[DII01] “DII COE DataEmporium.”
[http://diides.ncr.disa.mil/xmlreg/user/index.cfm]

[DL99] United States Department of Defense, Defense Link, News Release,
NO.032-99, Department of Defense Budget For FY 2000,
[http://www.defenselink.mil/news/Feb1999/b02011999_bt032-99.html], 1
February 1999.

[DoD91] DoD Directive 8320.1, DoD Data Administration,
[http://web7.whs.osd.mil/pdf/d83201p.pdf], September 26, 1991.

[FDM01] DoD, Functional Description of the Mission Space Resource Center,
[http://fdms.msiac.dmso.mil/]

[GEF01] University of California at Irvine, Graph Editing Framework (GEF),
[http://www.ics.uci.edu/pub/arch/gef]

[JSR31] Java Specification Request 31, “XML Data Binding Specification”,
[http://jcp.org/jsr/detail/031.jsp]. August 1999.

[Leff00] Leffingwell, D., Widrig, D., Managing Software Requirements A Unified
Approach, Addison-Wesley, 2000.

106

[KA95] Khoshafian, S., Abnous, R., Object Orientation, John Wiley and Sons,
Inc., New York, NY, 1995.

[KM98] Kahng, J., McLeod D., “Dynamic Classificational Ontologies: Mediation
of Information Sharing in Cooperative Federated Database Systems”,
Cooperative Information Systems, Trends and Directions, Academic
Press, 1998.

[Lytt00] Lyttle, B., Ehrhardt, T., Interconnectivity via a Consolidated Type
Hierarchy and XML, Master’s Thesis, Naval Postgraduate School,
Monterey, CA, 2000.

[OECD01] Organization for Economic Co-operation and Development, Gross
Domestic Product Table, [http://www.oecd.org/std/gdp.htm], Jul 2001.

[Pit97] Pitoura, E., “Providing Database Inter-operability through Object-Oriented
Language Constructs”, Journal of Systems Integration, Volume 7, No. 2,
August 1997, pp. 99-126.

[Pug01] Pugh, R., Methods For Determining Object Correspondence During
System Integration, Master’s Thesis, Naval Postgraduate School,
Monterey, California, June 2001.

[SB01] SeeBeyond Technology Corp., SeeBeyond Taking the Challenges out of
eBusiness Integration, Making eBusiness a Reality, Marketing Overview,
[http://www.seebeyond.com/aboutus/], Jul 2001.

[WCS00] Walsh, A., Couch, J., Steinberg, D., Java 2 Bible, IDG Books Worldwide,
Inc., Foster City, CA, 2000.

[Whatis] Whatis?com web site,
[http://whatis.techtarget.com/definition/0,,sid9_gci212702,00.html], Last
updated on: Nov 24, 2000

[Wie93] Wiederhold, G., “Intelligent Integration of Information”, ACM-SIGMOD
93, Washington, DC, May 1993, pp. 434-437.

107

[YBGL01] Young, P., Berzins, V., Ge, J., Luqi, “Using an Object Oriented Model for
Resolving Representational Differences between Heterogeneous
Systems”, paper submitted to the 17th ACM Symposium on Applied
Computing, Madrid, Spain, 10-14 March 2002.

[Young02] Young, P., Integration of Heterogeneous Software Systems Through
Computer-Aided Resolution of Data Representation Differences, Ph.D.
Dissertation, Naval Postgraduate School, Monterey, CA, Unpublished.

[Zeus01] Email reply to question between Brett McLaughlin, Lutris Technologies,
and the authors, 20 August 2001.

108

THIS PAGE INTENTIONALLY LEFT BLANK

109

BIBLIOGRAPHY

[Hun00] Hunter, D., and others, Beginning XML, Wrox Press Ltd, August 200.

[Kay00] Kay, M., XSLT Programmer’s Reference, Wrox Press Ltd, July 2000.

[McL00] McLaughlin, B., Data binding from XML to Java applications. Four part-
series. IBM developerWorks, Part 1 [http://www-
106.ibm.com/developerworks/library/data-
binding1/index.html?dwzone=xml], Part 2 [http://www-
106.ibm.com/developerworks/library/data-
binding2/index.html?dwzone=xml], Part 3 [http://www-
106.ibm.com/developerworks/library/data-
binding3/index.html?dwzone=xml], Part 4 [http://www-
106.ibm.com/developerworks/library/x-databind4/?dwzone=xml], July-
October 2000.

[Sun99] Reinhold, M., An XML Data-Binding Facility for the Java Platform, Sun
Microsystems, Inc., [http://java.sun.com/xml/jaxp-1.0.1/docs/bind.pdf].
30 July 1999.

[Sun01] Reinhold, M., The Java Architecture for XML Binding (JAXB),
Working-Draft Specification, Sun Microsystems, Inc.,
[ftp://ftp.java.sun.com/pub/xml/987dfjaxb10ea3ds/jaxb-0_21-wd-
spec.pdf]. 30 May 2001.

[W3C] World Wide Web Consortium, web site, [http://www.w3c.org].

[W3Csch] World Wide Web Consortium, XML Schema web site,
[http://www.w3c.org/XML/Schema].

110

THIS PAGE INTENTIONALLY LEFT BLANK

111

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center..2

8725 John J. Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library...2
Naval Postgraduate School
411 Dyer Road
Monterey, CA 93943-5101

3. Marine Corps Representative...1

Naval Postgraduate School
 Monterey, California
 debarber@nps.navy.mil

4. Director, Training and Education, MCCDC, Code C46..1
Quantico, Virginia

 webmaster@tecom.usmc.mil

5. Director, Marine Corps Research Center, MCCDC, Code C40RC1
Quantico, Virginia

 ramkeyce@tecom.usmc.mil
 strongka@tecom.usmc.mil
 sanftlebenka@tecom.usmc.mil

6. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)1
Camp Pendleton, California

 doranfv@mctssa.usmc.mil
 palanaj@mctssa.usmc.mil

7. Professor Luqi..1

Naval Postgraduate School
Monterey, California

 LUQI@nps.navy.mil

8. Professor Valdis Berzins ..1

Naval Postgraduate School
Monterey, California

 berzinzs@nps.navy.mil

112

9. CAPT Paul Young ...1
Naval Postgraduate School
Monterey, California

 peyoung@nps.navy.mil

10. Major Brent P. Christie ..1
 149 LeHavre Drive
 Cheektowaga, NY 14227
 brent@christiez.com

