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ABSTRACT 
 
 
 
The fast frequency–hopping technique is considered one of the most effective 

Electronic Protective Measures (EPM) for military communications systems in order to 

mitigate the effect of a follower or repeat jammer. 

This thesis evaluates the performance of different jamming strategies as barrage 

noise jamming, partial band jamming and multitone band jamming against an uncoded 

noncoherent FFH/MFSK system with a conventional receiver.  

The theoretical and simulated results showed that the best jamming strategies for 

the examined modulation orders M=2,4,8 is the optimum case of multitone band 

jamming. 

As a second goal, this thesis also provides a preliminary analysis for an uncoded 

noncoherent FFH/MFSK system in a Rayleigh fading channel. This analysis includes the 

theoretical and simulated results of the system’s performance against a barrage noise 

jammer along with AWGN.  

The results of the theoretical analysis and the simulation modeling for both cases 

can be used as guidelines to analyze more complicated jamming or combinations of 

jamming strategies against an FFH/MFSK communication system. 
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I. INTRODUCTION 

It is generally acknowledged that the modern army relies greatly upon command 

and control as force multipliers.  Advance technology greatly enhances a commander's 

ability to remain abreast of a battlefield situation, affording him a brief opportunity to act 

or to react in the most effective manner.  To be successful, a commander must retain the 

capability to integrate the actions of his forces and their weapons systems.  This 

coordinated effort produces an economy of force.  Reliable communications is a priority 

for command and control.  Just as important, denying the enemy the same needs of 

communicating, with the help of electronic countermeasures (ECM) is essential to 

success. Communications jamming and surveillance are critical to achieve information 

superiority.  

A. PURPOSE OF ECM 
Electronic countermeasures (ECM) is the offensive or attack component of 

Electronic Warfare (EW).  ECM is defined as that division of EW involving actions taken 

to prevent or to reduce an enemy's effective use of the electromagnetic spectrum, through 

the use of electromagnetic energy.  There are three sub–divisions of ECM: Electronic 

Jamming, Electronic Deception, and Electronic Neutralization. 

Electronic jamming is the deliberate radiation, re–radiation or reflection of EM 

energy that impair the effectiveness of an enemy’s electronic devices, equipment or 

systems. 

Command, Control & Communications (C3) and also Electronic countermeasures 

(ECM) demand strategic planning, high technology and operational experience. 

Although C3 systems with fixed frequencies are vulnerable to unsophisticated 

ECM, spread spectrum (SS) technology severely challenges the enemy’s ECM 

capabilities by reducing the ability of the enemy to intercept and to jam the C3 systems 

that involve SS technology. 
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B. SCOPE OF THESIS 

Electronic Protective Measures (EPM) protect the electronic communication 

systems from an adversary’s EW actions or from friendly mutual interference.  EPM is 

defined as that division of EW involving actions taken to ensure friendly effective use of 

the electromagnetic spectrum despite the enemy's use of electromagnetic energy.   

Fixed–frequency communication channels are vulnerable to electronic 

countermeasures since an adversary has sufficient time to identify the operating 

frequency. To decrease this vulnerability, several modes of EPM have been developed. 

These modes spread the transmitted signal over a large bandwidth in order to reduce the 

probability of detection and jamming. The two principal forms of EPM are frequency–

hopping spread spectrum (FHSS or FH) and Direct Sequence Spread Spectrum (DSSS or 

DS). Each of these EPM techniques possess advantages and disadvantages for various 

operational situations. Military applications usually involve the FH technique because it 

is considered cheaper and easier to implement than the DS technique.  

The most effective ECM technique for a slow frequency–hopping technique is 

considered the follower or repeat jammer.  A popular EPM technique that is used in order 

to mitigate the effect of the repeat jammer is a fast frequency–hopped M–ary frequency–

shift keying (FFH/MFSK) modulation technique.   

The objective of this thesis was to evaluate the performance of different jamming 

strategies against an uncoded noncoherent fast frequency–hopped M–ary frequency–shift 

keying (FFH/MFSK) communication system under an additive white zero–mean 

Gaussian noise (AWGN) environment.  This thesis also evaluates the performance of the 

FFH/MFSK system in a fading environment along with the influence of AWGN and 

Barrage Noise Jamming (BNJ). 

The thesis is organized as follows.  Chapter II establishes the background for the 

FFH/MFSK systems and also discusses the configuration of the jammer and its geometric 

restrictions in reactive or follower jamming mode.  Chapter III presents the theoretical 

analysis of the jamming mode’s performance for an uncoded noncoherent FFH/MFSK 

system with a square–law linear combining receiver.  Chapter IV analyzes the 

performance of the FFH/MFSK system with a square–law linear combining receiver in a 
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Rayleigh fading channel under the influence of AWGN and BNJ.  Chapter V presents the 

simulation models, the simulation results corresponding to the theoretical analysis of 

Chapter III and a comparison of the simulation and theoretical results where these are 

available.  Chapter VI presents the simulation models and simulation results that 

correspond to the theoretical analysis of Chapter IV.  Finally, Chapter VII presents a 

summary with conclusions and proposes prospective developmental work in this area. 
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II.  BACKGROUND IN FREQUENCY–HOPPING SYSTEMS 

A. IMPORTANCE OF EFFECTIVE ECM IN FHSS SYSTEMS 
Frequency–hopping spread–spectrum protects against a hostile jammer by 

increasing the bandwidth that the information signal occupies far more than required. By 

increasing the system’s bandwidth, the hostile jammer spreads its power over a wide 

frequency band TW , which makes the jammer less effective.  

B. FUNDAMENTAL CONCEPTS OF FREQUENCY HOPPING SYSTEMS 
The main idea of frequency–hopping spread–spectrum is simply based on the 

multiplication of a conventional MFSK signal–prior to transmission–by an intermediate 

frequency. This frequency is generated by a frequency synthesizer [1] of the form: 

 
 ( ) ( ) ( ){ }12cos 2 2cos 2 1 , 1,2,...,i hp t f t f i f t i Nπ π  = = + − ∆ ⋅ =               (2.1) 

 

where N  is the maximum number of possible frequency hop bins, hf∆  is the separation 

between the carrier frequencies of adjacent bins, and i changes pseudorandomly every hT  

seconds. By doing this, the entire spectrum of the MFSK signal transmitted is shifted 

from its initial carrier frequency cf  to the new carriers frequencies: 

 
                          ( )1 1

ic c hf f f i f= + + − ⋅∆ .                                          (2.2) 

 

In Equation (2.1), there are N different frequency hop bins, each of 

bandwidth .hf∆  The value of i  is changed periodically every hT  seconds according to 

some predetermined (but apparently random to a third–party observer) noiselike 

spreading code, called a “pseudorandom” or “pseudonoise sequence.” 

A simplified block diagram of the transmitter of the FH/MFSK system is shown 

in Figure 1. 
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Figure 1.   Transmitter of FH/MFSK System. 

 

On a given hop, the signal bandwidth is identical to conventional MFSK, which is 

typically much smaller than TW ; however, averaged over many hops, the FH/MFSK 

spectrum occupies the entire TW  bandwidth. 

It is difficult to maintain phase coherence from hop to hop between the transmitter 

and the receiver, primarily because of frequency–dependent multipath and Doppler shifts 

[4]. Consequently, unless the hopping rate is very low compared to the transmitted 

symbol rate, practical frequency–hopping systems almost always require noncoherent or 

differentially coherent demodulation. For the rest of this thesis a non–coherent MFSK 

will be examined. 

A conventional MFSK signal is described by 

 

 ( ) ( ){ }2 cos 2 1 , 1,2,..,c s is t A f m f t m Mπ θ = ⋅ + − ∆ ⋅ + =               (2.3) 

 

where M  is the modulation order of the signal, iθ  is the symbol phase , and f∆  is the 

frequency separation between each of the M signaling tones. The step f∆  is chosen to be 

an integer multiple of the symbol rate sR  in order to achieve orthogonality. So, 

multiplying this signal by the frequency from the synthesizer (2.1) the signal becomes: 
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[ ]{ }
[ ]{ } [ ]{ }

( ) 2 2 cos 2 ( 1) cos(2 )

2 cos 2 ( 1) 2 cos 2 ( 1) .

c s i i

c i s i c i s i

s t A f m f t f

A f f m f t A f f m f t

π θ π

π θ π θ

′ = + − ∆ +

= + + − ∆ + + − − − ∆ −
(2.4) 

 

The carrier frequencies of the first term are  

( ) ( ) ( )11 1 1i s h sf f m f f i f f m f+ + − ∆ = + − ∆ + + − ∆  ,                            (2.5) 

which is smallest for 1i =  and 1m = . In this case, the carrier frequency becomes 1sf f+ . 

The carrier frequencies for the second term are  

( ) ( ) ( )11 1 1i s h sf f m f f i f f m f− − − ∆ = + − ∆ − − − ∆  ,                        (2.6) 

which is largest for i N=  and 1m = . In this case, the carrier frequency becomes 

( )1 1 h sf N f f+ − ∆ − .                                                 (2.7) 

If the smallest frequency of the first term is greater than the largest frequency of 

the second term, then from [1] the following condition has to be satisfied : 

 1
1

2s h
Nf f B f−

> + + ∆                                                (2.8) 

where B is the required guardband above and below the high– and the low–frequency 

signaling tones, respectively. In this case, a high–passed filter is used to remove the 

frequency difference contribution, and the frequency–hopped MFSK signal becomes  

 ( ) ( ){ }2 cos 2 1FH c i s is t A f f m f tπ θ = ⋅ + + − ∆ ⋅ +  .                     (2.9) 

The major advantage of frequency–hopping systems against non–sophisticated 

jammers is that the jammer cannot jam the specific hop bin where the FH system operates 

at any instant time. The reason is the lack of information about the hopping pattern that 

the transmitter uses. 

The frequency hopping technique also allows portions of the frequency band 

containing known narrowband interference to be avoided. 
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Another advantage of an FH system is that the power spectral density of the 

frequency–hopped signal is identical to that of the conventional MFSK signal in a 

specific hop bin. However, since the signal hops from bin to bin, and assuming that the 

probability that any bin is occupied is equal to (1/N), the average power spectral density 

is 

 
1

1 ( | )
i

N

FSK c c
i

PSD S f f f
N =

= =∑ .                                  (2.10) 

One of the most popular jammers against frequency–hopping systems is the 

follower jammer [8]. The follower jammer is a sophisticated jammer that has the ability 

to intercept –with an acceptable probability– the instantaneous frequency of the FH 

system, and then it can generate an appropriate jamming in a narrow range about this 

frequency. A follower jammer and its limitations will be analyzed in a later section. 

C. FAST FREQUENCY–HOPPING TECHNIQUE 

In order to mitigate the effects of a follower jammer an anti–jam (AJ) application 

is employed called the Fast Frequency Hopping (FFH) technique. The role of this 

technique is to prevent the follower jammer from having sufficient time to intercept the 

frequency and retransmit it along with adjacent frequencies so as to create interfering 

signal components. 

The term “fast” has nothing to do with the actual rate of frequency hopping.  It 

indicates that the hop rate hR  is an integer multiple of the MFSK symbol sR , while the 

term “slow” Frequency Hopping denotes the reverse condition. 

Synthesizer technology is progressing so rapidly that in the past it was common 

for FH systems to operate at several hundreds hops/sec and 10 to 20 Khops/sec were 

considered to be state–of–the–art [3]. Yet synthesizer implementations have now been 

developed that deliver rates of the order of Mhops/sec. 

The relation between the hop rate and symbol rate for the FFH is described by: 

 
b

h s
L RR L R

k
⋅

= ⋅ = ,                                                (2.11) 
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where L  indicates that every symbol is subdivided in L  subsymbols and k  is the 

number of bits per M–ary symbol.  

Fast Frequency Hopping (FFH) is actually a form of frequency/time diversity. 

Diversity is a form of repetition coding that is used to introduce data redundancy in an 

effort to improve performance, under some conditions. 

As previously mentioned each M–ary symbol is partitioned into L  subsymbols 

with energy:  

 b
h

k EE
L
⋅

= ,                                                 (2.12) 

where bE  is the energy of a  bit. Each subsymbol is transmitted on a different hop 

according with the pseudorandom sequence. The intention is that each subsymbol 

comprising an M–ary symbol will have an independent chance of being jammed. 

Figure 2 presents a Frequency Hop Diversity example for a FFH/MFSK system 

where the modulation order 4M = , the diversity 3L =  and a 4–ary symbol 3 is followed 

by 1. Each subsymbol is transmitted at a different frequency. 

 

FH CARRIER (WIT HOUT  DAT A)

3

3

3
1

1

1

FFH/MFSK SIGNAL

1

hR

hR

f

t  
Figure 2.   Diversity for a FFH/4FSK Communication System. 

 

However, there is a penalty incurred in subdividing a signal into several FH 

elements because the energy from these separate elements is combined noncoherently. 

Consequently, the demodulator of the receiver incurs a penalty in the form of a 

noncoherent combining loss, as will be described at Chapter III. 
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For FFH/MFSK with diversity order 1L > there are a number of ways in which 

the various diversity receptions can be combined depending on the type of the 

demodulator. 

One method is implementing a “hard decision” majority vote where every 

diversity reception is demodulated individually, yielding a “1” for the signal present or 

“0” for no signal for each of the M branches of the noncoherent receiver. The individual 

symbols for every branch are summed and the branch with the largest number is chosen 

as corresponding to the received symbol. 

Another combining method called “soft decision” is to sample the analog outputs 

of each square–law detector for each diversity every hT  and then adding them prior to 

deciding whether the signal corresponds to a particular branch or not. The decision for 

the received symbol is made according to which branch has the greatest value 

If the hops of a symbol are combined linearly, then in case of jamming 

interference, the jammed hops have just as much weight in the overall decision statistics 

as do the unjammed hops, leading to a major degradation in performance of this system. 

This is considered one of the major disadvantages of the linear combining technique. 

In order to overcome this disadvantage, other combining methods involving soft 

decision demodulation were discovered. In these methods, every diversity reception can 

be some how weighted or eliminated according to some criteria. 

Numerous proposals have been made for improving performance by means of 

“side information, ”  where the receiver of the FFH/MFSK system attempts to decide if 

each hop has been jammed or not. This information is used to either discard the 

“jammed” hops entirely, or to assign a “weighted” value to the hop. 

There are some disadvantages to the use of side information as Reference [5] 

indicates. First, the side information tends to be unreliable and can complicate the overall 

system quite considerably. Secondly, the “side information” methods can leave the 

system vulnerable to simple jammer methods that could make performance worse than if 

side information were not used. 
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Additionally, in the presence of large jamming, all hops tend to be jammed, 

thereby rendering side information is useless or, worse, causes the information on every 

hop to be erased, as all hops concerned as contaminated.    

For all the above reasons, the simplest and easier receiver to implement is the 

Square–Law Linear Combining Soft Decision receiver in which we do not have any 

information regarding which hops are jammed and which are not (side information).  

This is the system that will be examined in the next chapters against different 

jamming strategies as Barrage Noise Jamming, Partial Band Noise Jamming, and 

Multitone Band Jamming.  

D. REPEATER JAMMER CONFIGURATION AND GEOMETRICAL 
LIMITATIONS IN REPEAT MODE OF OPERATION 

The benefits of frequency hopping are potentially neutralized by a repeater 

jammer, also known as a follower jammer, which as mentioned before is a device that 

intercepts a signal, processes it, and then transmits the jamming signal at the same center 

frequency. 

The geometrical configuration for a follower jammer appears in Figure 3 where 

trD is the distance between the transmitter and the receiver, tjD  is the distance between 

the transmitter and the jammer and jrD  is the distance between the jammer and the 

receiver. The hop period for the communication system is 1
h

h

T
R

= . 

Reference [4] notes that for the jammer to be effective against a frequency–

hopping system, the arrival–time delay of the jamming relative to the authorized signal 

must not exceed a certain fraction of the dwell time as described by: 

 

 tj jr tr
pr d

D D DT n T
c c
+

+ ≤ + ⋅                                        (2.13) 

 

where c is the velocity of light, prT  is the processing time required from the follower 

jammer, n  is a fraction, and dT  is the dwell time, which is the duration of a frequency–
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hopping pulse and is less than or equal to the hop duration hT . A rearrangement of  

Equation (2.13) yields: 

 
( )tj jr d pr trD D n T T c D+ ≤ ⋅ − ⋅ + .                                   (2.14) 

 

If the right–hand side of this inequality is regarded as a constant, then equating 

the two sides defines an ellipse with the transmitter and the receiver located at the “foci” 

of the ellipses. If the follower jammer is outside this area, the jammer cannot be effective. 

 

Dtr

Follower Jammer

T ransmitter Receiver

Region Susceptible to Follower Jammer

Dtj
Djr

 
Figure 3.   A Representation of the Transmitter–Jammer–Receiver Geometry. 

 

Assuming that the jammer is located at the same level as the receiver and the 

transmitter, then the following equation gives the location that the jammer has to be 

placed in order to be effective:  

 

 
( )( ) ( )( )

2

2

2 2 2

4
42 1

tr

tr d pr tr d pr tr

Dx
y

D c n T T D c n T T D

 −  ⋅  + =
+ ⋅ ⋅ − + ⋅ ⋅ − −

              (2.15) 

 

where the x and y axis are centered on the transmit antenna, as in Figure 3. 

Based on Reference [4], the quantity ( )d prn T T⋅ −  can be considered equal to the 

hop period hT , so Equation (2.15) can be rewritten as:  
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( ) ( )

2

2

2 2 2

4
42 1

tr

tr h tr h tr

Dx
y

D c T D c T D

 −  ⋅  + =
+ ⋅ + ⋅ −

.                          (2.16) 

 

It is obvious that if the hop rate increases, then the area where the jammer can be 

effective becomes smaller. 

On a real battlefield, the jammer’s distance from the receiver is of vital 

importance for the jammer’s survival. The closer the jammer is to the link between the 

transmitter and the receiver, the more vulnerable it is to the enemy’s fire power. 
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Figure 4.   Boundary Ellipses for Operation of the Follower Jammer for Various hR . 
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In Figure 4 a realistic example of the geometrical limitations for a follower 

jammer is given for different hop rates. The distance between the transmitter and receiver 

is set at a 20 km  distance, which is typical on a real battlefield. 

It is clear how small the area of the jammer operation becomes for higher hop 

rates. For example for 20 khops/sechR =  the distance of the follower jammer from the 

link is 14.36 km  compared to the distance of 7.5 km  for the higher rate 

60 khops/sechR = . This distance is considered unacceptable for a jammer on the real 

battlefield. 

The limitation in distance is the reason that other jamming strategies must be 

devised so that the jammer can degrade the performance of a fast frequency–hopping 

system. 

The drawback to using higher hop rates is that synchronization between the 

transmitter and receiver becomes more difficult and demands complicated 

synchronization techniques. 
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III. THEORETICAL ANALYSIS FOR DIFFERENT JAMMING 
STRATEGIES AGAINST AN FFH/MFSK SYSTEM 

This chapter presents the different jamming strategies against an FFH/MFSK 

communication system. Examining each jamming strategy, describing the basic 

characteristics of a FFH/MFSK system, the channel model, and the symbology is very 

important, so that one can understand the system better. 

A. FFH/MFSK SYSTEM DESCRIPTION, CHANNEL MODEL, AND 
SYMBOLOGY USED  
The fundamental requirement of a FFH/MFSK communication system is to 

transmit binary source information over the channel by means of MFSK. An M–ary 

symbol is represented by one of the M orthogonal tones where 

2kM = ,                                                   (3.1) 
 

and k represents the number of bits per transmitted symbol. The binary input data have a 

rate bR , which is related to the bit duration by : 

1
b

b

R
T

=  ,                                                  (3.2) 

 

and the symbol rate sR  is related to the bit rate by: 

b
s

RR
k

=  .                                                  (3.3) 

 

As previously mentioned, the hop rate hR  is related to the bit rate by:  

b
h

s

L RLR
T k

⋅
= = .                                           (3.4) 

 

At the receiver, shown in Figure 5, the received signal is mixed with the output of 

a local frequency synthesizer driven by the same “pseudorandom” sequence used at the 

transmitter. For the K–th hop, the output of the low pass filter is then a tone of frequency 

mf  of duration hT . This tone is passed through a  bank of M  square law linear detectors. 

The outputs are  the samples mkV  for m=1,…,M and k=1,2,…,L, where m denotes the 
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frequency bin and  k denotes the hop period. The diversity combiners  form the decision 

statistics mV   by summing the L samples, mkV , in each bin. A decision is then made as to 

which symbol was sent by choosing the largest mV . The M–ary symbols are then 

converted to binary.  
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Figure 5.   FFH/MFSK Linear Combining Square–Law Receiver [7]. 

 

The total bandwidth TW of the FFH/MFSK system can be divided into N FH 

bands ( bandW ) and each band can be further divided into M bins as illustrated in Figure 6. 

Therefore, the signal’s bandwidth is  

T BandW N W M N f= ⋅ = ⋅ ⋅∆ ,                                       (3.5) 

where  

1
h

h

f p R p
T

∆ = ⋅ = ⋅ ,                                             (3.6) 
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and p is an integer number. The value of f∆  must satisfy Equation (3.6) in order to 

achieve orthogonal signaling [7].  

1 2 3 N

T BandW N W M N f= ⋅ = ⋅ ⋅∆

hf R∆ =

BandW

1 2..................M1 2..................M 1 2..................M 1 2...................M

 
Figure 6.   Bandwidth Representation of the FFH/MFSK System. 

  
B. JAMMING STRATEGIES AGAINST FFH/MFSK SYSTEM IN A AWGN 

CHANNEL 

This section presents different jamming strategies against a FFH/MFSK system. 

In these types of jamming, the jammer has no information about the transmitting 

frequency of the signal. 

The strategies that will be presented are barrage noise jamming, partial band 

jamming, and multitone band jamming. Before analyzing all of the above methods, it is 

necessary to show the performance of the system without any interference, except for 

AWGN. This is important in order to clarify the concept of diversity in an FFH/MFSK 

system. 

1. Performance of Uncoded FFH/MFSK in AWGN 
When AWGN is present, the total received signal in the receiver of the 

FFH/MFSK is the transmitted signal (2.9) plus the AWGN ( )n t  with PSD 0 / 2N  [8]. 

Thus, the received signal is 

 
( ) ( ){ } ( )2 cos 2 1T c i s is t A f f m f t n tπ θ = + + − ∆ + +  .                  (3.7) 

 

By combining Equation (3.6), this becomes 
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( ) ( ){ } ( )2 cos 2 1T c i s h is t A f f m pR t n tπ θ = + + − + +  .                 (3.8) 

 

Reference [7] notes that the probability of symbol error is  

1

Pr(error |1) Pr(1) Pr(error | 2) Pr(2) ..... Pr(error | ) Pr( )

Pr(error | ) Pr( ).

s
M

m

P M M

m m
=

= + + +

=∑
    (3.9) 

 

The transmitted symbols, without loss of generality, are assumed equally likely thus  

1Pr(1) Pr(2) Pr(3) ....Pr( )M
M

= = = = .                              (3.10) 

 

As a consequence of the symmetric nature of the receiver structure and the noise,  

Pr(error |1) Pr(error | 2) ..... Pr(error | )M= = = .                    (3.11) 
 

By combining Equations (3.9),  (3.10) and (3.11) the expression for symbol error 

becomes: 

1

1 1Pr(error | ) Pr(error | )

Pr(error | ) , 1, 2,...., .

M

m
Ps m M m

M M
m m M

=

= =

= =

∑ .                    (3.12) 

 

In Figure 5 the random variables , 1, 2,3,...mV m M=  represent the outputs of 

branches 1,2,…M, respectively. Without a loss of generality, it is assumed that the 

symbol "1"  represented by the frequency tone 1f  is transmitted. In order not to have an 

error, the output of branch one ( 1f ) must be greater than the outputs of all the other 

branches. The opposite condition causes an error situation. Reference [7] notes that the 

probability of symbol error becomes: 
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where according to Reference [2], ( )
1 1 |1Vf v  and ( )

2 2 |1Vf v  are the conditional 

probability density functions (PDFs) for the V1,2 when  the signal along with the AWGN 

is present and only the AWGN is present respectively. 

Reference [2] indicates that the PDF at the output of a square law detector when a 

signal is present is the PDF of the square of the envelope of a sine wave with random 

phase plus a narrowband Gaussian process. The result is a special case of the non–central 

chi–squared distribution. Assuming that the signal is present in channel “1,” the PDF for 

the random variable 1k
V  will be 

 

( ) ( )
2

1
2

1

2

2 1
1 0 12 2

21|1
2

ck

k k

k kk

v

c
V

k k

A v
f v e I u v

α

σ

σ σ

 +
 −
 
 

 ⋅
 = ⋅ ⋅ ⋅
 
 

,                        (3.14) 

 

where ( )1k
u v  is the unit step function, ( )0I • is the modified Bessel function of the first 

kind and zero order, and  

 
2 0
k

h

N
T

σ =                                                       (3.15) 

 

represents the noise power of each hop. 
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The PDF at the output of the square law detector for each of the M–1 channels 

with only Gaussian noise present is a special case of (3.14) when 0cA → . Thus, the PDF 

for the random variable 2k
V  will be  

 

( ) ( )
1

2

2

2
2 12

1|1
2

k

k

k kk

v

V
k

f v e u vσ

σ

 
−  
 = ⋅ ⋅ .                                (3.16) 

 

Since each hop is assumed to be independent, after the summation of diversity 

hops, the PDFs become [7]: 
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and 
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−
,                   (3.18) 

 

where L⊗  defines L–1 convolutions. 

The result of the replacement of (3.17) and (3.18) into (3.13) gives:  
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Using the results from Reference [9] this becomes:  
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Rearranging the terms, Equation (3.20) becomes: 
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Substituting  1 1
2and

2 2s

v dvx dx
σ σ

= =  into Equation (3.21) results in  
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There are two possibilities to consider according to Reference [7]: constant bit 

rate systems and constant hop rate systems. For constant hop rates systems, hR  remains 

fixed. So, the hop energy hE  will also remain fixed. According to Equation (2.12), the 

increase of diversity order L leads to the increase of bit energy bE . This also implies that 

the system has constant bandwidth since the bandwidth derives from Equation (3.5).  

The other possibility is to implement a constant bit rate. Consequently, the bit 

energy bE  remains fixed and the hop energy hE  decreases as the diversity order L 

increases. This generates a system with variable bandwidth as the diversity order L is 

changed. 

For the rest of the analysis, a constant bit rate system will be considered since this 

case is the conventional method for comparing diversity systems. Consequently, Equation 

(2.12) can be rewritten as  

 
2

2h c h b
b c

h

L E L A T k EE L A
k k T
⋅ ⋅ ⋅ ⋅

= = ⇒ ⋅ = ,                               (3.23) 

 

so the probability of symbol error based on Equations (3.15) and (3.23) is rewritten as: 
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For orthogonal signaling, the average probability of bit error is related to the 

average probability of symbol error [2] by: 

 
12

2 1

k

b skP P
−
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−

.                                                      (3.25) 

 

The combination of Equations (3.25 ) and  ( 3.24) results in the probability of bit error for 

the noncoherent FFH/MFSK system in the AWGN. Finally, the probability of bit error 

for a noncoherent FFH/MFSK system derives from 
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∑∫ .  (3.26) 

 

The analytical solution of Equation (3.26) is very complicated and the best way to 

proceed is by numerical evaluation. 

Figure 7 indicates the loss in performance due to the noncoherent combination of 

the  received hops. Specifically, notice the values of the four curves for 510bP −=  that 

have been marked. It becomes apparent that as the diversity order increases the 

performance of the system degrades. 
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Figure 7.   Performance of FFH/BFSK System in an AWGN for L=1,3,5,10. 
  

In Figure 8, the values of the three curves for 0/ 13.35bE N dB=  have also been 

marked. This is the signal–to–noise ratio (SNR) value that will be considered for the 

future simulation models. As was expected, the performance of the system significantly 

improves as the modulation order M increases. 
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Figure 8.   Performance of the FFH/MFSK System in the AWGN for L=5 and 

M=2,4,8. 
 

The next sections discuss the performance of different jamming strategies, such as 

barrage noise, partial band and multitone band jamming. 

2. Barrage Noise Jamming Against an FFH/MFSK System 

Barrage noise jamming (BNJ) is considered the simplest and least sophisticated 

form of jamming. In BNJ, the jammer knows by observation only the occupied region of 

spectrum for the FFH/MFSK system. 

In BNJ, the jammer attacks  a FFH/MFSK system injecting a bandlimited noise–

like signal ( )In t  with PSD ( )
InS f . Since the ( )In t  and the ( )n t  are independent random 

processes, the total PSD becomes: 

 

bP  

0/ (dB)bE N
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0( ) ( )
2 IT n

NN f S f= + ,                                               (3.27) 

 

where ( )
InS f is / 2IN  across the bandwidth TW , which the FH system occupies, and 

zero elsewhere. 

 The barrage noise is flat across the bandwidth of the receiver, so  it affects the 

receiver just as if it is were AWGN. The PSD of the total noise will be 

 
0( )

2 2
I

T
N NN f = + .                                                (3.28) 

 

Replacing the noise power from Equation (3.26) with the total noise power TN  from 

Equation (3.28), the performance of the BNJ can be calculated as:                
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Rearranging Equation (3.29), the probability of bit error becomes: 
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The interference power with BNJ for the conventional MFSK is 
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' '
'

2 2
I I

I nn nn I
N NP B B N

 
= ⋅ + = ⋅ 

 
,                                      (3.31) 

 

where nnB  is the null–to–null bandwidth of the conventional MFSK signal and '
IN  is the 

PSD across the bandwidth nnB . 

The interference power with BNJ for FFH/MFSK is  

 
'

2 2
I I

I T T I
N NP W W N = ⋅ + = ⋅ 

 
  .                                     (3.32) 

 

In both cases, the available jammer’s power is the same for this type of jammer. Thus, the 

second part of Equations ( 3.31) and (3.32) are equal. So 

 
'

' nn I
nn I T I I

T

B NB N W N N
W
⋅

⋅ = ⋅ ⇒ =  .                                   (3.33) 

 

According to Reference [2], the null–to–null bandwidth for the noncoherent 

MFSK system is  

 
( )2 1k

b
nn

R
B

k

+ ⋅
= .                                                   (3.34) 

 

The bandwidth that the FFH/MFSK occupies derives from Equation (3.5) where 

 
,T BandW N W M N f= ⋅ = ⋅ ⋅∆                                          (3.35) 

 

and since  b
h s

L Rf R L R
k
⋅

∆ = = ⋅ =  then  

 

Band 2 .k b
T

L RW N W N
k
⋅

= ⋅ = ⋅ ⋅                                      (3.36) 

 

Combining Equations (3.34) and (3.36) with Equation (3.33), the power density 

of the BNJ for the FFH/MFSK system will be 
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'

I IN Nλ= ⋅ ,                                           (3.37) 
 

where
( )2 11
2

k

kN L
λ

+
=

⋅
. Replacing IN  in Equation (3.29) with the result from Equation 

(3.37) reveals that the influence of barrage noise jamming mode in a FFH/MFSK system 

is  
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  (3.38) 

 

When AWGN is not considered negligible, a usual value for the signal–to–noise 

ratio  0/bE N  is 13.35 dB.  Equation (3.38) has some parameters that can control the 

performance of the system. The signal to interference ratio, '/b IE N  is the only parameter 

that the jammer can control dynamically. The other three parameters that Equation (3.38) 

depends on is the modulation order, the diversity, and the number of channels N. 

In Figure 9, the performance of the FFH/MFSK system for M=1,2,3 has been 

plotted keeping the diversity order L as a constant and defining the number of channels N 

as the variable parameter. 
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Figure 9.   Effect of the BNJ in the Performance of a FFH/MFSK System for Various 

Number of Hopping Bands N. 
 

Figure 9 clearly shows that as the number of channel N increases, the performance 

of the jammer decreases. The performance of the BNJ also decreases as the modulation 

order M  increases. The value of parameter λ  controls the processing gain of the spread 

spectrum system. In Table 1, different values of λ  have been calculated keeping the 

diversity order L as a constant. 

  
 50N =  100N =  200N =  500N =  

1k =  22.21(dB) 25.22 (dB) 28.23 (dB) 32.21 (dB) 
2k =  23.01 (dB) 26.02 (dB) 29.03 (dB) 33.01 (dB) 
3k =  23.46 (dB) 26.47 (dB) 29.48 (dB) 33.46 (dB) 

 
Table 1.   Possible Values of 1/λ  (dB) for Different k  and N  with Diversity Order 5L = . 

bP  

0/ (dB)bE N
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Finally, it becomes apparent that the smaller the value of λ  the worst the 

performance of the barrage noise jammer is.  

Figure 10 also illustrates the results from Equation (3.38) for 0/ 13.35 dBbE N =  

with diversity order L and modulation order M  as parameters. It is very interesting to 

observe that as the diversity order increases, the performance of the jammer for higher 

values  '/b IE N  (above –15 dB) actually improves. 
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Figure 10.   Effect of the BNJ in the Performance of a FFH/MFSK System for 

L=3,5,10 and N=400. 
 

In order to be consistent with the examination of other jamming strategies and to 

have comparable results, the total SS bandwidth of the system will remain constant for all 

the modulation orders M. The noise will be considered as / 2IN for the given bandwidth. 

In that case Equation (3.30) can be used, as it is independent from the number of 

frequency hop bands N.  

bP  

/ ' (dB)b IE N
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In Figure 11 the performance of the BNJ is presented for different modulation 

orders M  and for a constant PSD for the given bandwidth. The results will be compared 

with the simulation results in Chapter V.  
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Figure 11.   Effect of the BNJ in the Performance of a FFH/MFSK System for 

Modulation Order M=2,4,8, Diversity Order L=5 and the Same SS Bandwidth. 
  

In order to have the same bandwidth for all modulation orders, we use the same 

number of frequency hop bands for FFH/BFSK and FFH/4FSK, but a different number of 

frequency hop bands for the FFH/8FSK. The assumption of fixed SS bandwidth is more 

realistic because military communications systems have specific frequency bands that are 

allocated and can be utilized.  

In conclusion, the BNJ strategy for the FFH/MFSK systems is considered  the 

least effective jamming technique. The reason is that the jammer does not have any 

information about the instantaneous frequency of the frequency hop pulse. This forces the 

jammer to distribute its power to all the frequency spectrum that the SS system uses. As  

bP  

/ (dB)b IE N

0/ 13.35 dBbE N =  
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the number of hop bands  and  the modulation order  increases, the performance of the 

jammer decreases. The performance of BNJ will be used as a benchmark against more 

intelligent jammers. 

In the following sections the two principal types of intelligent but non–adaptive 

FH jamming threats [3], namely partial–band noise and multitone band jamming, will be 

presented. For these types of intelligent jammers, it is assumed that they have a priori 

knowledge of  all relative signal parameters, with the critical exception of real–time PN 

spreading sequence synchronization. Specifically the jammer has the ability to optimize 

its strategy to exploit information about , , , , ,T b hW M N R R the location of the FH tones, 

the detection metric, the signal power, and the nominal bP .  

3. Partial Band Jammer Against a FFH/MFSK Communication System 
In partial–band noise jamming strategy (PBJ), the jammer spreads its available 

power over a portion of the entire spread spectrum bandwidth.  This strategy is 

considered moreeffective than BNJ because the jammer uses less bandwidth and more 

power for the given bandwidth. 

Usually jammers can produce, with the help of a waveform generator, pulses 

containing noise with variable bandwidth. 

The partial–band interference is modeled  as additive Gaussian noise and is 

assumed to corrupt only a fraction ρ , where 1 0ρ≥ > , of the entire spread–spectrum 

bandwidth at one time. The partial–band interference  is assumed to be present in each 

branch of the MFSK receiver. In addition, the fraction of the spread–spectrum bandwidth 

experienced partial–band interference is assumed to be the same for all hops of a symbol. 

One major advantage of the frequency–hopping technique is that it can avoid 

certain frequency bands that it determines as particularly noisy [3].  Consequently, it is 

assumed (seen in Figure 12) that the intelligent jammer hops the jammed band over TW . 

This transition is  slow relative to the FH hop rate hR , but fast enough to deny the FH 

system the chance to detect that it is being jammed and to take remedial action. Also, to  
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simplify the analysis, it is assumed that the  shifts in the jammed band coincide with 

carrier hop transitions, so the channel is considered stationary over each hop. 

Furthermore, on a given hop, each N hop band lies entirely inside or outside TW . 

 
f

t

TW

FH CARRIER

I TW Wρ= ⋅

hR

JAMMEDBAND

 
Figure 12.   Partial–Band Noise Jamming of FFH System Where Jammer Hops the 

Noise Band to Prevent FFH Band Avoidance Countermeasure. 
 

From the previous analysis for BNJ it was defined that the average power spectral 

density of narrowband interference for the entire bandwidth is / 2IN . Then the power 

spectral density of the partial–band jamming for the given jamming bandwidth is 

 
' ( )

2I

I
n

NS f
ρ

=
⋅

.                                              (3.39) 

 

The total jamming power is considered the same whether the jammer is using a 

barrage or a partial–band jamming technique. 

This analysis also includes thermal  and other wideband noises that corrupt the 

channel and modeled as AWGN. The power spectral density of the noise was  previously 

defined as 0 / 2N . Thus, the power spectral density of the total noise is 0

2 2
I NN
ρ
+

⋅
 when 

partial–band jamming is present and is 0 / 2N  otherwise. 
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According to Reference [1], there is a practical limitation in PBJ because the 

jammer may not be able to transmit the peak power 
2

IN
ρ⋅

then ρ  is too small. One other 

limitation is that the jammer cannot jam less than one frequency hop band. This leads to  

 
11
N

ρ≥ ≥ .                                                   (3.40) 

 

For the case of a square–law linear combining receiver,  there is no information 

for the jamming state (side information). In that case,  the jammed hops have just as 

much weight in the overall decision statistics as unjammed hops do, and in case of 

partial–band noise jamming, the system behaves worse [7] without the appropriate error 

control coding scheme. 

This becomes apparent for the case of FFH/BFSK with a square–law linear 

combining receiver. Reference [10] indicates that the error performance of FFH is 

worsened when the bit energy is fixed and diversity L  is increased. This happens due to 

the dominance of increased noncoherent combining losses for higher values of  L  for this 

type of receiver. Figure 13 shows the improvement in performance for the jammer for 

different values of L , assuming that  0/ 13.35 dB.bE N =  This is the value of energy bit–

to–noise ratio that will be used in the simulation model in Chapter V. 

The only parameters that a PBJ can control are the  /b IE N  and the jammed 

fraction .ρ  The partial–band noise jammer may select the fraction ρ  and /b IE N  in 

order to optimize the effect on the communication system. 

The analytical performance of PBJ against the FFH/MFSK system is beyond  the 

scope of this thesis. The results from Reference [10] will be used in order to confirm the 

simulation results from Chapter V. 
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Figure 13.   Optimal Performance of PBJ in a FFH/BFSK System for Different 

Diversity Order L from Reference [10]. 
 

Figure 14 illustrates the optimum fraction  ρ  for the PBN jammer for different 

.L  Note that for 3L > , the optimum fraction remains fairly constant for a given ratio of 

signal–to–jamming power. 
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Figure 14.   Optimum Fraction ρ versus Diversity Order L when 0/ 13.35 dBbE N =  

with /b IE N  as a Parameter from Reference [10] 
 

Table 2 also presents the values of optimum fraction ρ for different values of  

/b IE N  given that the number of frequency hop bands 483N = . This is the number of 

frequency hop bands that will be used in the simulation model of the FFH/BFSK system. 

The parameter µ  also defines the closest integer value of the Nρ ⋅  given that it 

must be 1 Nµ≤ ≤ . 

 
/ ( )b IE N dB  ρ  Nρ ⋅  µ  

0 0.8   386.4  386 
5 0.45   217.35  217 
10 0.16  77.28  77 
15 25.6 10−⋅  27.048  27 
20 21.5 10−⋅  7.245  7 
25 35 10−⋅  2.415  2 
30 31.5 10−⋅  0.7245  1 

 
Table 2.   Optimum Fraction ρ for FFH/BFSK System for N=483. 

Diversity Order L 

Fr
ac

tio
n 
ρ 
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Reference [10] indicates that in an FFH system, the noncoherent “combining 

losses,” play a predominant role and, hence, when the bit energy is constrained, the error 

performance is further degraded as L increases.  This conclusion is also valid for all 

modulation orders. As expected, in the general case, where both jamming noise and 

thermal noise were present, the “bottoming out” effect was observed in the region where 

the jamming power was weaker than the signal power. 

In conclusion, the PBN jammer has better performance than the BNJ and the 

FFH/MFSK system provides no diversity improvement for this type of receiver.  

4. Multitone Band Jammer Against an FFH/MFSK Communication 
System 

The second class of intelligent jammers is the multitone or CW tone interference 

jammers. In this category, the jammer divides its total power IP  into q  distinct, equal 

power, random phase CW tones. Every jamming tone can be expressed as 

 
( )( ) 2 cos 2I I IJ t a f tπ φ= ⋅ + ,                                      (3.41)  

 

where Ia  is the amplitude of the tone and  Iφ  is again the random phase. Each of the 

jamming tones [7] will then have power: 

 

T

I
I

PP
q

= ,                                                       (3.42) 

 

where IP  is the total available power of the jammer. Every jamming tone is spaced from 

the other at least by  HzBandW . An equivalent MTJ power spectral density is defined as: 

 
I

I
T

PN
W

= .                                                      (3.43) 

There are two types of multitone jamming strategies: the band multitone and the 

independent multitone jamming. The independent multitone jamming (IMTJ) technique 

distributes the jamming tones randomly across the entire frequency–hopped bandwidth 

with the number of jamming tones within the hop band varying from zero to M.  
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In multitone band jamming (MTBJ), the jamming tones are distributed randomly 

across the entire SS signal bandwidth  TW  with at most only one jamming tone per 

frequency hop bin. So 

 
1 q N≤ ≤ .                                                          (3.44) 

 

This thesis examines the MTBJ case because it is considered more effective than the 

IMTJ [7].  

The frequency If  of the jamming tones are assumed to coincide exactly with one 

of the hopping frequencies at the M–ary band, as Figure 15 indicates. In order for the 

jammer to be effective,  it must  understand the structure of the signal. If the jammer 

cannot verify the structure of the system, then this jamming strategy is worthless in an 

FFH system. 

 

..........M1  2 ..........M1  2 ..........M1  2 ..........M1  2

2 3 N

Multitone jammer with number of tones ,q q N≤

BandTW N W N M f= ⋅ = ⋅ ⋅∆
BandW

hf R∆ =

 
Figure 15.   Multitone Band Jamming Representation in an FFH/MFSK System. 

 

Again, for this type of jamming, the receiver does not know if the transmitted  

hop frequencies are jammed or not. The symbol energy sE  for the FFH/MFSK system is 

also considered as a constant. 

In our analyses the thermal noise is modeled again as additive white Gaussian 

noise (AWGN) with two–sided spectral density 0 / 2N . 

As in the previous section, the probability of bit error for the optimum case of 

MTBJ against the FFH/BFSK system derives from Reference [11]. 
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In Figure 16 the performance of the jammer for different diversity level L  is 

illustrated with the signal–to–noise ratio 0/ 13.35 dB.bE N =  
 

 
Figure 16.   Optimal Performance of MTBJ in a FFH/BFSK System for Different 

Diversity Order L [11]. 
 

Again it is observed that as the diversity level L  increases, the performance of the 

jammer improves for the optimum case of multitone band jamming. 

Comparing Figures 13 and 16 for the FFH/BFSK system, the optimum MTBJ 

strategy appears to have a slightly better performance than the optimum PBJ strategy.  

The disadvantage of the MTBJ technique is that the jammer must know the 

signal’s full structure in order to interfere with the system. 

In all strategies, the performance of the jammer improves as the diversity order 

also increases, due to the dominance of the noncoherent “combining losses,” assuming 

that the interference noise density remains constant for the SS bandwidth. 

A full comparison for all jamming strategies and different modulation orders is 

examined in Chapter V using simulation software. 

0/ 13.35bE N dB=  

/ (dB)b IE N  
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IV. THEORETICAL ANALYSIS FOR AN FFH/MFSK SYSTEM IN 
A RAYLEIGH FADING CHANNEL 

The previous chapter described the performance of different jamming strategies 

against a an FFH/MFSK system in a Gaussian channel. The primarily impairment in the 

Gaussian channel model was noise which is characterized as AWGN.  

This chapter describes the performance of an FFH/MFK system with a square–

law linear combining receiver in a fading multipath channel. 

Generally, the fading channels can significantly degradate the performance of a 

communication system. The fast frequency–hopping technique that involves diversity is 

one of the methods that is used to overcome the consequences of a fading channel.  

A. CHANNEL MODEL DESCRIPTION AND SYMBOLOGY USED 
The received signal’s amplitude, in a fading channel, fluctuates and can no longer 

be modeled as a deterministic parameter but only as a random variable [7].  

There are two widely used channel models for a fading channel. The first is the 

Ricean fading channel and the other is the Rayleigh fading channel. The Rayleigh 

channel is considered  a special case of the Ricean channel.  

The Ricean channel model is used in a line–of–sight case between the transmitter 

and the receiver, where a portion of the received signal power is due to multipath. In the 

Rayleigh channel model there is no line–of–sight between the transmitter and the 

receiver, and the entire received signal’s power is due to multipath. 

In this chapter the smallest spacing between the frequency hop bands is larger 

than the coherence bandwidth of the channel. As a result, each hop of a symbol 

experiences independent fading. 

In addition, the channel for each hop of a symbol is modeled as a frequency–

nonselective, slowly fading Rayleigh process. This implies that the signal bandwidth is 

much smaller than the coherence bandwidth of the channel and that the hop duration hT  

is much smaller than the coherence time of the channel [12]. The latter assumption is  
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equivalent to requiring the hop rate to be large compared to the Doppler spread of the 

channel. As a result, the signal amplitude can be modeled as a Rayleigh random variable 

that remains fixed at least for the duration of a single hop. 

The PDF of the received amplitude for the Rayleigh channel derives from  
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C k kk
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 −
 
 = ⋅ ⋅                                (4.1) 

 

where 22 Rσ  is the power of the diffuse signal component of the respective tone. 

B. PERFORMANCE OF AN FFH/MFSK SYSTEM IN A RAYLEIGH 
FADING CHANNEL WITH AWGN 
From the previous analysis for the Gaussian channel the probability of a symbol 

error from Equation (3.13) is given: 
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                               (4.2)    

 

This is the general case for both fading and non–fading channels as long as the noise of 

the channel is characterized as AWGN.  

As before, a derivation of the PDFs ( )
1 1 |1Vf v  and ( )

2 2 |1Vf v  must be made in the 

output of the diversity combiner for every branch before the decision of which symbol 

has been transmitted. 

From the previous analysis, the PDF of the random variable that represents the 

output of the branch not containing the signal is described by:   
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The channel fading has no effect on the output of branches that do not contain the 

signal [12]. Therefore Equation (4.3) of the PDF can be used in our primary Equation 

(4.2) without modification.  

The probability density function ( )
1 1 |1Vf v , before diversity combining, is now 

conditioned upon the received hop’s amplitude 
kCα . This conditional PDF can be 

expressed as: 
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                  (4.4) 

 

where ( )u i  is the unit step function and ( )0I i  is the modified Bessel function of the first 

kind and order zero. The conditioning on 
kCa  must be removed by evaluating: 

 

( ) ( ) ( )1 11 1
0

|1 |1, .
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∞

= ⋅∫                           (4.5) 

 

The average received signal power is  

 
( )2 2 22 .

kC Rs t a σ= =                                                (4.6) 
 

The ratio of the average energy per diversity reception–to–noise power spectral 

density is given in Reference [7]:  

 
2

2

2 .R
h

k

σγ
σ

=                                                        (4.7) 

 

Inserting Equations (3.15) and (4.6) into (4.7) gives: 
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Reference [2] indicates that the average energy per bit–to–noise ratio is 
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2

,
logb h

L
M

γ γ=                                                   (4.9) 

 

where M indicates the modulation order. 

Inserting Equations (4.1) and (4.4) into Equation (4.5) and rearranging the terms 

gives the following expression for the PDF: 
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According to Reference [7] the PDF expression simplifies as follow: 
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Equation (4.11) has the same form as Equation (3.16) if we substitute 2 22k Rσ σ+  for 2
kσ  

and 1k
v  for 2k

v  respectively. Exploiting this similarity, the PDF for the branch that 

contains the signal–in the output of diversity combining–can derive substituting in 

Equation (3.18) again 2 22k Rσ σ+  for 2
kσ  and 1k

v  for 2k
v  respectively. 

Following this substitution the conditional PDF for the random variable  1v  

becomes: 
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        (4.12) 

 
By combining Equations (3.46), (3.55) and (4.2) the symbol error probability can 

be expressed as: 
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Regrouping the terms of Equation (4.13) results in: 
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By setting  
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and combining Equations (4.8) and (4.9) with Equation (4.15), the probability of symbol 

error is expressed as [2]: 
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The symbol error rate sP  may be converted to an equivalent bit error rate by using 

Equation (3.25). This results in a probability of bit error as follows: 
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The resulting analytic expression is extremely complicated, so a numerical evaluation is 

preferable to an analytical solution. 

Figures 17 and 18 illustrate the performance of an FFH/MFSK system for 

different diversity level 3,5,10L =  and different modulation order 2, 4,8M =  

respectively. The bit rate remains fixed and consequently the energy of every transmitted 

bit also remains fixed for the different examined cases. 
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Figure 17.   Performance of an FFH/BFSK System in a Rayleigh Channel for Diversity 

Order L=3,5,10. 
 

The FFH/MFSK system behaves differently in a nonselective slow fading 

Rayleigh channel as compared to a channel with no fading (AWGN only).   
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Figure 18.   Performance of an FFH/MFSK for Modulation Order M=2,4,8 and 
Diversity Order L=5. 

 

As can be concluded from Figures 17 and 18, performance improves significantly 

when the diversity order L  and the modulation order M  is increased [2]. For example, 

when the diversity order L  is increased from 3 to 5 for a probability of bit error 
410 ,bP −=  a gain of 2.78 dB  for the average energy per bit–to–noise ratio can be 

obtained. This is a significant gain for an FFH/MFSK system using diversity. 

Another important observation is that as the modulation order M increases, 

performance can be improved. For example, in order to achieve a bit error rate of 
410bP −=  a FFH/4FSK system needs 2.5 dB  less than the corresponding FFH/BFSK 

system for the same diversity order L. 

Generally, an increase in diversity order L  seems more efficient than a 

corresponding increase in the modulation order ,M  as Reference [2] indicates. 

bP  

(dB)bγ
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The next section presents the performance of an FFH/MFSK system under the 

influence of barrage jamming in a nonselective slow fading Rayleigh channel. This 

analysis will serve as a benchmark for other jamming techniques in future work. 

C. PERFORMANCE OF BARRAGE NOISE JAMMER AGAINST AN 
FFH/MFSK SYSTEM IN A RAYLEIGH FADING CHANNEL 

In BNJ, the jammer has knowledge only about the portion of the frequency 

spectrum that an FFH/MFSK system occupies. This information can be easily derived 

after observing the spread spectrum signal’s behavior.  

This method is considered   the least efficient jamming method because the 

jammer is forced to spread its  power to the entire bandwidth of the fast frequency–

hopping system. This method, as before, is the initial step for the comparison with other 

jamming techniques. 

In BNJ, the jammer increases the total noise power that corrupts each received 

hop pulse. Thus, the noise power at the integrator output for each hop can be expressed 

as:   

 
2 2 2

0 ,k Iσ σ σ= +                                                     (4.18) 
 

where 2
kσ  is the noise power of a jammed hop, 2

0σ  is the AWGN noise power and 2
Iσ  is 

the jamming noise power. Analytically these can be expressed as: 

 
2 0
0 ,

h

N
T

σ =                                                      (4.19) 

and 

 
2 ,I
I

h

N
T

σ =                                                       (4.20) 

 

where 0N  and IN  are the noise PSDs of the AWGN and the jamming signal 

respectively. 

Combining Equations (3.25), (4.14) and (4.15) gives the following expression for 

the probability of bit error:  
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Inserting Equations (4.6) and (4.19) into (4.22) the expression for the probability of bit 

error becomes: 

 

( )
( )

( ) ( )

( )

( ) ( )
2

0

1 111

0 2 0

0

11 1 .
2 1 !

1 1 !

C hk

I

k

x

TL ML
nN N x

b L
n

C h

I

xMP e e x dx
M nT

L
N N

α

α

−

− −−+∞ + −

=

 
 
   = − − ⋅  −    

 + − 
+    

∑∫
 (4.22) 

 

Rearranging the terms of (4.23) in a more convenient way we can express the bP  as: 
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where 

2
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and 

2
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,
log
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a TL
M N
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since bγ  is the average energy per bit–to–noise ratio and Iγ  is the average energy per bit 

–to–jamming power ratio for the FFH/MFSK system. 
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The power density of the BNJ for the conventional MFSK, ' ,IN  is related with the 

corresponding jamming power density for the FFH/MFSK, ,IN  by Equation (3.37): 

 
' ,I IN Nλ= ⋅                                                   (4.26)  

where 
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⋅
                                              (4.27) 

 

Combining Equations (4.26) and (4.27) into Equation (4.24) results in: 

 

( )

( )

( ) ( )( ) ( )

( )

( ) ( ) ( )
11 12

1 1log 11 '

0 11 1 02

2 1

11 1 ,
!log1 ' 1 !

b I

b

x
L MM L

nxL
L

n

b I

MP
M

x
e e x dx

nM L
L

γ λ γ

γ λ γ

−− −

−
− −  −+ ⋅ +∞   − 

−− − =

=
−

 
 

  × − −  
   + + −    

∑∫

  (4.28) 

 

where 'Iγ  is the average energy per bit –to–jamming power spectral density for the 

conventional MFSK system. 

Equation (4.28) indicates the highly dependence of the FFH/MFSK from the 

number of frequency hop bins N, the diversity order L , and the modulation order .M   
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Figure 19.   Effect of the BNJ in the Performance of a FFH/MFSK System in a 

Rayleigh Channel for L=3,5,10 and N=400. 
 

In Figure 19, the probability of bit error has been plotted with L  and M  as 

parameters for the same number of frequency hop bands N. It is obvious that higher 

modulation order M and greater diversity order L deteriorates the performance of the 

jammer and improves the performance of the FFH/MFSK system. 

The drawback for greater values of L, M and N  is the necessary increase of the 

signal’s bandwidth because the system uses orthogonal signaling and a fixed bit rate bR . 

Table 3 presents the necessary SS bandwidth for a different modulation order M  and 

diversity L , assuming that the frequency hop bands N  and the bR remain fixed.  These 

calculations were made according to Equation (3.36) giving: 

2log
b

T
L RW M N

M
⋅

= ⋅ ⋅ .                                          (4.29) 
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 L=3 L=5 L=10 
M=2 28,800,000 Hz 48,000,000 Hz 96,000,000 Hz 
M=4 28,800,000 Hz 48,000,000 Hz 96,000,000 Hz 
M=8 38,400,000 Hz 64,000,000 Hz 128,000,000 Hz 

 
Table 3.   Bandwidth of the FFH/MFSK System with 12 kbits/secbR =  and N=400. 

 

Figure 20 shows that as the numbers of frequency hop bands N  increases, the 

performance of the jammer decreases. For a large average energy per bit–to–jamming 

ratio the bP  remains stable independently from the number of frequency hop bands N. 

The performance of the jammer is also influenced by the modulation order. As M 

increases, the ability of the jammer to jam the signal decreases.  

Table 3 and Figure 20 reveal that the bandwidth for the same diversity order L 

and number of hop bands N is the same for the FFH/BFSK and FFH/4FSK system. The 

probability of bit error in that case decreases, improving the performance of the system 

without increasing the bandwidth of the signal. 
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Figure 20.   Effect of the BNJ in the Performance of an FFH/MFSK System in a 

Rayleigh Channel for N=50,200,500. 
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In order to compare the results from the mathematical analysis and the simulation 

analysis, we use Equation (4.23) to calculate the probability of bit error. Using this 

equation is also a necessity in order to compare the BNJ strategy with others jamming 

strategies in a future work. 

Equation (4.23) is not dependent upon the number of frequency hop bands N  

because it is assumed that the SS bandwidth remains the same for all the modulation 

orders M. With this assumption, the SS bandwidth of the system remains fixed for every 

modulation order M.  

The only difference between the curves of Figure 20 and Figure 21 is that there is 

a movement of the curves by 110 log dB
λ

 ⋅  
 

.  
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Figure 21.   Effect of BNJ in an FFH/MFSK System for a Rayleigh Channel 

Independently from the Number of Hop Bands N. 
 

To summarize, the BNJ strategy cannot be considered efficient enough because it 

does not degrade the system enough. The system can improve itself using greater 

bP  

17 dBbγ =

( d B )Iγ
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diversity order, a greater number of frequency hop bands and a greater modulation order. 

These disadvantages for the jammer will lead to the investigation of other forms of 

jamming, such as partial–band jamming and multitone band jamming. 

Chapter V introduces the creation of two simulation channel environments. The 

first one is an FFH/MFSK system in a Gaussian channel, which is under the influence of 

different jamming strategies. The second simulation model environment is the 

FFH/MFSK system in a Rayleigh fading channel, which is used to investigate and to 

verify the results in Chapter IV. The simulation environments were created by using a 

relatively new software called SystemView. 
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V. SIMULATION RESULTS OF AN UNCODED NONCOHERENT 
FFH/MFSK SYSTEM UNDER THE INFLUENCE OF 

DIFFERENT JAMMING STRATEGIES 

This chapter presents the simulation results for the FFH/MFSK system 

performance under the influence of different jamming strategies for a Gaussian channel 

model. A comparison will be made to determine which method degrades the system 

most.  

The jamming modes that are simulated are the Barrage Noise Jamming (BNJ), the 

Partial Band Noise Jamming (PBJ), and the Multitone Band Jamming (MTBJ). The 

simulation results will be compared with the theoretical values only when available. As 

mentioned in Chapter III, the theoretical analysis of the performance of the FFH/MFSK 

under the influence of partial–band jamming and multitone band jamming is extremely 

complicated, so we are restricted to the simulation analysis.  

All the simulations were generated with the help of a software package, which is 

called SystemView.  SystemView is a comprehensive dynamic systems analysis 

environment for the design and simulation of engineering systems. It provides real–time 

signal analysis in the time and/or frequency domain. 

The FFH/MFSK simulation scheme is used as a platform upon each type of 

jamming strategy is represented by adding the appropriate tokens.  

A. UNCODED NONCOHERENT FFH/MFSK SIMULATION MODEL  

The FFH/MFSK model was based on the model for slow frequency–hopping 

system from Reference [13]. This model was modified appropriately in order to support a 

fast frequency–hopping technique with a square–law linear combining receiver involving 

soft decision. 

The construction of the FFH/MFSK model was made based on the assumptions 

that were made in the previous chapters. 
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The parameters of the FFH/MFSK were chosen under two basic assumptions. The 

first assumption was that the system has the same bandwidth as the VHF combat radios, 

which is approximately 60 MHz. The second assumption was that the information bit rate 

12000 bits/sbR =  is very close to 16000 bits/sec, which is the usual bit rate for the 

combat radios.  

 

 
Table 4.   Operational Characteristics of the FFH/MFSK Simulation Model for Diversity 

Order L=5 and Bit Rate 12000 bits/sbR = . 
 

The overall block diagrams of the noncoherent FFH/BFSK and FFH/4FSK is 

shown in Figures 22 and 23, respectively. 

 

 
Figure 22.   Noncoherent FFH/BFSK Simulation Model. 

 

 sR  hR  f∆  N  TW  Frequency 
Range 

FFH/BFSK 12000 bit/s 60000 h/s 60 kHz 483 57.960 MHz 31.14–89.1 MHz 

FFH/4FSK 6000 sym/s 30000 h/s 30 kHz 483 57.960 MHz 31.14–89.1 MHz 

FFH/8FSK 4000 sym/s 20000 h/s 20 kHz 363 58.080 MHz 31.1–89.18 MHz 
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The noncoherent FFH/8FSK model is similar to the FFH/4FSK model, and 

therefore is not presented here. 

 

 
Figure 23.   Noncoherent FFH/4FSK Simulation Model. 

 

The 12 kbps data source (token 67) is first modulated in the MFSK modulator 

(token 60). The frequency separation f∆  of modulated tones is set hf R∆ =  in order to 

achieve orthogonal signal. The modulated signal is multiplied with the output from the 

frequency synthesizer, which consists of a numerical controlled oscillator (token 1) and a 

PN code generator (token 0). The PN code generator generates the 483 frequencies of the 

FFH system with a hop rate 60 kh/shR = .  The multiplication generates the FFH signal 

with diversity 5L =  as the bit rate bR  is related with the hop rate hR  with 5h bR R= . This 

subdivides every BFSK symbol into L=5 subsymbols. Token 4 represents the spread 

bandwidth TW  of the system, which is referenced in Table 4. This token also defines the 

sample rate of the specific SystemView model because the system’s sample rate must be 

at least twice the cut–off frequency of the filter. 

As assumed in the theoretical analysis, the interference of the channel is 

characterized as AWGN with a signal–to–noise ratio 0/ 13.35 dBbE N = . The AWGN 

inserts to the system with the form of token 71. 
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Considering perfect synchronization, the frequency synthesizer (token 57) is 

driven by the same PN sequence as it was in the transmitter. The multiplication in token 6 

achieves the perfect dehopping of the signal. The dehopped signal is filtered out in order 

to move the high frequency components with token 7. 

After the successful defiltering, the signal passes through the square–law 

detectors (tokens 8 and 35) and is sampled with a sample rate (token16) equal to a hop 

rate 60 /hR kh s=  (seen Figure 24). We used this improvised module instead of the 

regular MFSK demodulator that SystemView has because the output of the regular 

MFSK demodulator does not provide the voltage of every diversity reception for every 

branch. This voltage is necessary in order to make the soft decision when adding the 

diversity receptions.  

 

 
Figure 24.   Square–Law Detector for FFH/MFSK (Token 8 and 25). 

 

The next step is to add all the diversity receptions (token 17) using the method as 

it appears in Figure 25. SystemView does not provide a token to combine diversity 

receptions, so we improvised again using a combination of delay tokens (27, 28, 29, and 

30) and an adder (token 19). This improvised method corresponds to the soft decision 

method. The output of the combiner was again sampled with a rate equal to symbol rate 

12 kbpss bR R= =  (token 21).  
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Figure 25.   Linear Diversity Combiner. 

 

The final step is performed by using token 22 (or token 14 for FFH/4FSK), which 

we used in order to make a decision about what symbol was sent.  

Finally token 24 compares the transmitted data with the received data and extracts 

the probability of the bit error of the system. 

SystemView software estimates the probability of error by comparing the 

transmitted bit with the received one. The probability of error for the SystemView model 

is generated from the equation:  

sv
b

sv b

Er RP
P R
⋅

=
⋅

                                                             (5.1) 

where Er  is the total number of errors of every simulation loop, svP  is the number of 

samples of  every loop for the corresponding Er , and svR  is the sample rate of the 

SystemView model. The sample rate derives from secondary parameters as the cutoff 

frequencies of various filters in the system. So the smaller probability of bit error that the 

system can derive is when we have 1Er =  error to a loop and the maximum number of 

samples 312svP =  and this corresponds to 6(min) 6.98 10bP −= ⋅ .  

The number of samples that will pass through the system, the sample rate, the 

variable token, and the number of frequency loops can be arranged from the time 

specifications of the software.  
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A usual  limitation for software such as SystemView is that as the complexity of 

the system increases, the execution time also increases. For example, in the case of 

FFH/8FSK system under the influence of MTBJ, in order to calculate 312svP =  samples, 

the simulation time was approximately 17 hours. The execution time depends on the 

capabilities of the PC used (processor, RAM). 

 Before proceeding to the performance of different jamming methods, it is 

important to examine the above simulation under the effect of the AWGN only in order 

to verify that the models behave as expected. 

B. UNCODED NONCOHERENT FFH/MFSK SIMULATION MODEL IN 
AWGN 

The simulation model of the FFH/BFSK system in AWGN is illustrated in Figure 

23. By adding Gaussian noise (token 71) and defining the density as a variable parameter, 

the simulation is executed nine times for the FFH/BFSK, seven times for the FFH/4FSK, 

and six times for the FFH/8FSK system. Every time the simulation was executed (loop), 

the value of the power density 0N  decreased. This reduction corresponds to a continuous 

increase of 0/bE N . 

It is very interesting to observe in Figure 26 and Figure 27 the outputs of the 

square–law detectors branches for the FFH/BFSK system before the linear diversity 

combining (tokens 16 and 40)  
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Figure 26.   Square–law Detector Output before Diversity Combining without AWGN. 

 

Specifically, Figure 27 presents the outputs from the sampler without AWGN and 

Figure 28 presents the sampler outputs under the influence of AWGN with 

0/ 13.35 dBbE N = . 

 
SystemView

0

0

500e-6

500e-6

1e-3

1e-3

1.5e-3

1.5e-3

2e-3

2e-3

40

35

30

25

20

15

10

5

0

A
m
pl
itu

de

Time in Seconds

Sink 74

0

0

500e-6

500e-6

1e-3

1e-3

1.5e-3

1.5e-3

2e-3

2e-3

30

25

20

15

10

5

0

A
m
pl
itu

de

Time in Seconds

Sink 170

 
Figure 27.   Square–law Detector Outputs before Diversity Combining under the 

Influence of AWGN with 0/ 13.35 dBbE N = . 
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In order to verify that the above simulation model is an FH system, an 

oscilloscope is connected at the output of token 4. Figure 28 presents the frequency hop 

pulses for the FFH/BFSK system using N=483 frequency hop bands. It is apparent that 

the communication system is an FH system and its SS bandwidth is 57.96 MHz.TW =  

 

 
Figure 28.   Spread–Spectrum Bandwidth of FFH/BFSK System. 

 

Figure 29 presents the probability of bit error for a FFH/BFSK, FFH/4FSK and 

FFH/8FSK both simulated and theoretical according to Equation (3.26). The results 

verify that the simulation model results as expected with small variations for the 

FFH/BFSK system for larger values of 0/bE N . 

89.1Nf MHz=

1 31.14f MHz=  

966 hop pulses



61 

0 2 4 6 8 10 12 14 16
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
FFH/8FSK
FFH/4FSK
FFH/BFSK
THEORETICAL VALUES
SIMULATION VALUES

 
Figure 29.   Simulation of Noncoherent FFH/MFSK Performance in AWGN as 

Compared to Theoretical Curves. 
 

The next step is to generate the model for the first examined jamming strategy, 

the Barrage Noise Jamming. 

C. UNCODED NONCOHERENT FFH/MFSK SIMULATION MODEL 
UNDER THE INFLUENCE OF THE BARRAGE NOISE JAMMING 
The interference in the barrage noise jamming strategy is modeled as AWGN with 

noise density from Equation (3.32)  

I
I

T

PN
W

=                                                                (5.2)  

where IP  is the total available power of the jammer. 

Figure 30 illustrates the BNJ strategy against an FFH/BFSK system. The 

combination of tokens 72 and 73 represents the barrage noise jammer that is jamming the 

total operational SS bandwidth of the system 

 

bP  

0/ (dB)bE N
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Figure 30.   Barrage Noise Jamming Strategy Against an FFH/BFSK System. 

 

The noise of the channel is modeled again as AWGN with 0/ 13.35 dB.bE N =  

The only variable parameter to the system model is the noise density in token 72 that 

represents the available noise power of the jammer. 

The results of the simulation for the FFH/BFSK, FFH/4FSK and FFH/8FSK 

system are illustrated along with the theoretical results in Figure 31. 
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Figure 31.   Simulation Results of the Effect of the BNJ on the Performance of an 

FFH/MFSK System Along with the Theoretical Results for Diversity Order L=5. 
 

The simulation results verify the theoretical results with small variations in the 

case of the FFH/BFSK for greater values of /b IE N  for which the “bottoming effect” 

takes place. Again SystemView cannot produce a probability of bit error less 

than 66.98 10bP −< ⋅ . 

D. UNCODED NONCOHERENT FFH/MFSK SIMULATION MODEL 
UNDER THE INFLUENCE OF THE PARTIAL–BAND JAMMING 
The simulation model in the partial–band jamming case is the same as the BNJ 

model. The only difference is that now two variable parameters exist. The first, as before, 

is the noise density power that is represented by token 71 and is calculated from: 

'' I
I

NN
ρ

=                                                               (5.3) 

where IN  is the  available noise power density of the BNJ and ρ  is the ratio of the 

bandwidth of the filter (token 73) to total SS bandwidth TW of the system. 

bP  

0/ 13.35 dBbE N =

/ (dB)b IE N
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The second variable parameter is the bandwidth of the filter (token 73) that 

controls the part of the SS bandwidth that will be jammed (fraction ρ ). 

 

 
Figure 32.   Partial–Band Noise Jamming Model over an FFH/BFSK Communication 

System. 
 

It is very interesting to observe in Figure 33 the influence of the PBJ at the output 

of the samplers of the square–law detectors (token 15, 43).  

Adjustable Filter 
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Figure 33.   Square–Law Detectors Output without PBJ (Sink 170,171) and with PBJ 

(Sink 73, 74) in an FFH/BFSK System. 
 

It is obvious that the jamming noise influences some of the diversity and not all 

receptions because every frequency hop is independent from the next one. In the specific 

case of Figure 33, the PBJ contaminates two of the five diversity receptions creating a bit 

error. The PBJ influences all the branches of the receiver when the frequency hop 

coincides with jammed fraction. 

In Figure 34, with the help of the SystemView’s oscilloscope, the presence of the 

partial–band jamming in the communication system for a particular value of fraction ρ  

can be observed. 

 

Contaminated 
Frequency hop 
from PBJ 
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Figure 34.   Influence of PBJ Along with AWGN in an FFH/BFSK System with 

Jamming Fraction 25.6 10ρ −= ⋅ . 
 

In order to calculate the case of PBJ that degrades the FFH/MFSK system most, 

we used Table 2 as a guide to estimate the optimum fraction ocρ .  

Even though the interference power can be set easily as a variable, the bandwidth 

of the filter cannot, since in SystemView there is no option for variable bandwidth. The 

only possible procedure is to plot a curve for a given fraction ,ρ  and a range of /b IE N  

and save the results. The next step is to change the bandwidth of the filter (fraction ρ ), 

the noise power density ''
IN  (according to Equation '' /I IN N ρ= ) and plot the data again 

for the same range /b IE N , save the results, and so on.  

  

Hop pulse 

Partial 
Band  
Jamming 
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Based on this iterative technique, several simulation curves were plotted for the 

FFH/BFSK, FFH/4FSK and FFH/8FSK modulation scheme, as illustrated in Figures 35, 

36 and 37, respectively. 
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Figure 35.   Simulation Results of the Effect of Partial–Band Jamming for Different 

Fractions ρ  over an FFH/BFSK System. 
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Figure 36.   Simulation Results of the Effect of Partial–Band Jamming for Different 

Fractions ρ  over an FFH/4FSK System. 
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Figure 37.   Simulation Results of the Effect of Partial–Band Jamming for Different 

Fractions ρ  over an FFH/8FSK System. 
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The curves for different fractions appear to have a flat area and a break point. As 

the fraction ρ  becomes smaller, this break point moves to the left for higher values of 

/b IE N . 

As the signal–to–jamming ratio increases, the probability of error curves for all ρ  

tend forward the same value of bP . This value is the error produced due to AWGN. This 

phenomenon can be observed better in the case of FFH/BFSK in which the bP  for 

different fractions ρ  tends to become the same for higher values of /b IE N . 

In general, for any value of /b IE N , there is an optimum value of ρ  from the 

jammer’s viewpoint that maximizes bP , and this is denoted by ocρ  (for an optimum 

case). The performance in an optimum case partial–band noise is the upper envelope (or 

supremum) of the family of bP  curves for fixed values of ρ  [3]. Of course, in practice, it 

may be difficult for the jammer to match ρ  to the actual /b IE N . 

Finally, from the simulation results, the optimum performance for the partial–

band jammer over the FFH/BFSK, FFH/4FSK and FFH/8FSK systems is illustrated in 

Figure 38.   
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Figure 38.   Optimum Performance of the Partial–Band Jammer Against an 

FFH/MFSK Communication System for Modulation Order M=2, 4, 8 and 
Diversity Order L=5. 

 

Table 5 presents the simulation fraction ocρ  that was used in order to calculate the 

optimum performance for the simulation model. There is a slight difference between the 

theoretical and the simulated optimum fraction ocρ . The reason is that the filter (token 

73)  that we used to limit the jamming power to the specific fraction  of the SS bandwidth 

was not ideal. Therefore the jammer also influenced some of the adjacent frequency hop 

bands. This is an undesirable phenomenon, but this is something usual for real–time 

simulation systems.  
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/b IE N  FFH/BFSK FFH/4FSK FFH/8FSK 

 ocρ  int( )Nρ ⋅  ocρ  int( )Nρ ⋅  ocρ  int( )Nρ ⋅  

0 dB 1 483 1 483 1 363 

5 dB 0.8 386 0.8 386 0.5 181 

10 dB 0.2 96 0.1 48 0.1 36 

15 dB 0.06 29 0.05 24 0.05 18 

20 dB 0.02 9 0.01035 5 0.011 4 

25 dB 0.004141 2 0.00207 1 0.00207 1 

30 dB 0.00207 1 0.00207 1 – – 

 
Table 5.   Simulation Results for the Optimum Fraction ocρ  and Number of Jammed Hop 

Bands of PBJ Against an FFH/MFSK System for M=2, 4, 8. 
 

It is observed from Figure 38 that for the same bandwidth for all the modulation 

schemes (M=2, 4, 8) the FFH/8FSK has greater resistance to the optimum case of the 

partial–band jamming strategy than the other two modulation schemes.  

In case of an FFH/BFSK system, the theoretical optimum performance of the PBJ 

given from Reference [10] is very close to the simulated one. This verifies the operation 

of the simulation model. It is also observed that for the same SS bandwidth the 

performance of the jammer decreases as the modulation order M increases.  

The next step is to create the model of the multitone band jammer and observe its 

performance against the FFH/MFSK system. 

E. UNCODED NONCOHERENT FFH/MFSK SIMULATION MODEL 
UNDER THE INFLUENCE OF THE MULTITONE BAND JAMMING 
The simulation of the multitone band jamming can be achieved by using one of 

the existing channel models in the SystemView library, which is called narrow band 

interferer ( ).NBI  
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This specific token generates unmodulated (CW) tones over a prescribed 

frequency range [13]. The desired signal ( )x t  after the influence of the NBI , becomes 

 ( ) ( ) ( )
1

sin 2
q

k k k
k

y t x t A f tπ ϕ
=

= + +∑ , (5.4) 

where q  is the number of jamming tones, kϕ  is the random phase of each NBI  which is 

distributed uniformly between 0  and 2 .π  The amplitude kA  of each NBI  is distributed 

between specific values that the user can set. kA  is also the variable in this specific 

simulation model. The frequency kf  of each NBI  is chosen randomly over the 

communication bandwidth. This means that the jamming tones will be placed on 

frequencies separated by the frequency spacing parameter.  

Figure 39  represents the simulation model for the multitone band jamming 

(MTBJ) case in which token 72  represents the influence of the multitone band jammer. 

 

 
Figure 39.   Multitone Jamming Model in the Noncoherent FFH/BFSK System. 
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In Figure 40, using the oscilloscope from SystemView, the influence of the 

jammer in multitone band jamming can be observed. In the specific case, the jammer 

distributes five jamming tones randomly in the SS bandwidth that do not coincide with 

the frequency hops. 

 

 

 
Figure 40.   Influence of the MTBJ over an FFH/BFSK System with a Number of 

Jamming Tones 5q = . 
 

Figure 41 also shows the influence of a jamming tone that coincides with a 

frequency hop in the output of the square–law detectors. It is obvious that the jamming 

tone influences only the branch that corresponds to the specific M frequency and not the 

other branch. 

Jamming tones 

FFH pulses
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Figure 41.   Square–Law Detectors Output without MTBJ (Sink 174,175) and with 

MTBJ (Sink 77,78) in an FFH/BFSK System. 
 

In order to compare the multitone band jamming strategy with the partial–band 

noise jamming and barrage noise jamming strategy,  we need to establish a common 

measurement. This measurement is the ratio /b IE N  where IN  is the power density of 

the jammer, and it is the same for all strategies. 

The available power for every jamming strategy derives from  

I I TP N W= ⋅ .                                               (5.5) 

In case of multitone band jamming the IP  is distributed to q  equal power tones 

according to 

T

I
I

PP
q

=                                                       (5.6) 

where the q  jamming tones coincide exactly with  some of the N possible frequencies  

that the system can hop. 

Influence of  a 
jamming tone 
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The power of every jamming tone can become a variable if we set the amplitude 

kA of the jamming tone as a variable parameter (token 72). The power of every tone 

derives from 2 / 2 / .
TI K IP A P q= =  The only way to proceed is to plot a curve for a specific 

number of jamming tones q by decreasing consecutively the amplitude by 
(dB)
1010

X

 

where (dB)X  corresponds to the increase in  / (dB).b IE N  When the simulation is 

completed, the results are saved. We repeat the same procedure for a different number of 

jamming tones and save the results in overlay plots.  

In Figures 42, 43, and 44 the simulation results have been plotted for various 

numbers of jamming tones along with AWGN 0/ 13.35 dBbE N =  for modulation order 

2, 4,8M =  respectively. 
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Figure 42.   Simulation Results of the Effect of Multitone Band Jamming for a 
Different Number of Jamming Tones q over an FFH/BFSK System. 
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Figure 43.   Simulation Results of the Effect of Multitone Band Jamming for a 
Different Number of Jamming Tones q over an FFH/4FSK System. 
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Figure 44.   Simulation Results of the Effect of Multitone Band Jamming for a 
Different Number of Jamming Tones q over an FFH/8FSK System. 
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As before, in the analysis of the optimum case of partial–band jamming, for any 

value of /b IE N , there is an optimum value of q  from the jammer’s viewpoint that 

maximizes bP , and this is denoted by .ocq  The performance in the optimum case MTBJ is 

the upper envelope of the overlay plots of bP   for fixed values of .q   

Figure 45 presents the optimum performance of the MTBJ strategy over an 

noncoherent FFH/MFSK system along with AWGN 0/ 13.35 dB.bE N =  
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Figure 45.   Optimum Performance of MTBJ over the FFH/MFSK System for 

Modulation Order M=2,4,8 and Diversity Order L=5 
 

From the results of Figure 45 we see that the optimum MTBJ creates 

approximately the same probability of bit error for the modulation orders M =4, 8 

assuming that the systems have the same SS bandwidth. For large values of /b IE N  

(above 25 dB) the FFH/BFSK system appears to be more sensitive than the other two 

modulation schemes in MTBJ. 

 

bP  
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In Table 6 the values of optimum number of tones are presented based on the simulation 

results. The power of every jamming tone
TI

P  is calculated in relation to the total 

available jamming power IP  and the corresponding number of tones from Equation: 

[ ]/ (dB)
1010

T b I

I
I E N

PP
q

=

⋅

                                                 (5.7) 

where IP  is the total available jamming power that corresponds to .I bN E=  
 

/b IE N  FFH/BFSK FFH/4FSK FFH/8FSK 

 ocq  
TI

P  ocq  
TI

P  ocq  
TI

P  

0 dB 482 0.002075 IP⋅ 482 0.002075 IP⋅ 362 0.002075 IP⋅

3 dB 482 0.00104 IP⋅  482 0.00104 IP⋅  362 0.001384 IP⋅

8 dB 482 0.000329 IP  482 0.000329 IP  362 0.000438 IP  

13 dB 15 0.003341 IP⋅ 29 0.001728 IP  20 0.002506 IP  

18 dB 10 0.001585 IP  7 0.002264 IP  7 0.002264 IP  

23 dB 2 0.002506 IP  3 0.001671 IP  2 0.002506 IP  

25 dB 2 0.001581 IP  1 0.003162 IP  1 0.003162 IP  

28 dB 1 0.001585 IP  1 0.001585 IP  1 0.001585 IP  

30 dB 1 0.001 IP  –  1 0.001 IP  

31 dB 1 0.000794 IP  1 0.000794 IP  – – 

33 dB 1 0.0005 IP  – – – – 

 
Table 6.   Simulation Results for the Optimum Number of Jamming Tones ocq  and Power 

of the Jamming Tones of MTBJ Against FFH/MFSK System for M=2,4,8. 
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The next section compares all the jamming strategies in order to determine what 

is the most appropriate jamming strategy against the FFH/MFSK system with a square–

law linear combining receiver. 

F. SUMMARY 
This chapter presented the implementation of the simulation model of the 

uncoded noncoherent FFH/MFSK communication system with a square–law linear 

combining receiver. The purpose of the implementation of the simulation model against 

different jamming strategies was dual. First, to verify that the simulation model is 

operationally correct by comparing the simulation results with the theoretical results 

where available. Secondly, to investigate what the best jamming strategy against the 

FFH/MFSK system is. Both of the above purposes were achieved. 

The comparison between the theoretical curves and the simulation curves  verified 

that the system worked as expected. In order to determine what the best jamming strategy 

was, Figures 46, 47 and 48 were plotted with overlay curves from different jamming 

strategies for the FFH/BFSK, FFH/4FSK and FFH/8FSK system, respectively. 
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Figure 46.   Simulation Results for Barrage Noise Jamming, Optimum Case Partial–

Band Jamming and Optimum Case Multitone Band Jamming Against a 
Noncoherent FFH/BFSK System. 
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Figure 47.   Simulation Results for Barrage Noise Jamming, Optimum Case Partial–

Band Jamming and Optimum Case Multitone Band Jamming Against a 
Noncoherent FFH/4FSK System. 
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Figure 48.   Simulation Results for Barrage Noise Jamming, Optimum Case Partial–
Band Jamming and Optimum Case Multitone Band Jamming Against a 

Noncoherent FFH/8FSK System. 
 

Generally, the multitone band jamming (MTBJ) strategy can be more effective 

against FFH/MFSK signals than the PBJ strategy because the jamming tone (CW) is the 

most effective way for a jammer to inject energy into the noncoherent detectors [3]. On 

the other hand the MTBJ strategy has the disadvantage that the jammer must know the 

signal’s full structure before starting to jam the system. Only then is it capable of 

selecting jamming frequencies so that no more than one tone coincides with one of the M 

frequencies in each hop band.  

The simulation results proved that the barrage noise jamming strategy, as 

expected, is the least effective of all jamming strategies against FFH/MFSK systems with 

a modulation order M=2, 4, 8.  

 

 

bP  

/ (dB)b IE N

0/ 13.35 dBbE N =  
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For the case of an uncoded noncoherent FFH/MFSK system with a square–law 

linear combining receiver, the performance of the MTBJ strategy has the best results 

compared to the PBJ strategy. Especially as the modulation order M increases from M=2 

to M=8, then the partial–band jammer becomes less and less effective. 

The next chapter investigates, with the help of the SystemView, the performance 

of the FFH/MFSK system in a Rayleigh fading channel along with AWGN. 
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VI. SIMULATION RESULTS OF THE PERFORMANCE OF A 
NONCOHERENT FFH/MFSK SYSTEM IN A RAYLEIGH 

FADING CHANNEL 

This chapter presents simulation results for the performance of an uncoded 

noncoherent FFH/MFSK system in a Rayleigh fading channel model for two cases. The 

first case examines the performance of the system with only AWGN in a Rayleigh 

channel. The second case examines the performance of a barrage noise jammer against an 

FFH/MFSK system, also in a Rayleigh channel. The channel is modeled as a frequency–

nonselective, slowly fading channel.  

A. SIMULATION MODEL OF AN FFH/MFSK SYSTEM IN A RAYLEIGH 
FADING MODEL  

The FFH/MFSK simulation model is the same as the previous chapter. The only 

difference is the token that simulates the Rayleigh fading channel. The Rayleigh channel 

can be achieved by adding one of the existing models in the SystemView Communication 

Library, which is called rice fading channel (Rice Chn). As mentioned in Chapter IV, the 

Rayleigh fading channel is a special case of the Ricean fading channel. 

The Ricean channel model is used in a line–of–sight case between the transmitter 

and the receiver, where a portion of the received signal power is due to multipath. In the 

Rayleigh channel model there is no line–of–sight between the transmitter and the 

receiver, and the entire received signal’s power is due to multipath. 

The specific token implements a Ricean amplitude–fading channel [12]. The 

initial signal ( )x t  after the influence of the Rice Chn  becomes 

 
 ( ) ( ) ( )y t x t z t= , (6.1) 

 

where ( )z t  is the fading amplitude. The fading amplitude is given by: 

 

( ) [ ]22
1 2( ) ( )z t x t A x t= + +                                           (6.2) 
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where 1( )x t  and 2 ( )x t  are zero mean Gaussian random variables with standard deviation 

Rσ . The power in the fading channel is normalized to unity by the constraint: 

2 22 1R Aσ + =                                                       (6.3)  

where according to the theory 22 Rσ  indicates the diffuse signal power and 2A  represents 

the received direct, or line–of–sight, power. 

The values of A  and Rσ  are determined from the Ricean parameter K  according 

to the above relations: 

1
KA

K
=

+
,                                                        (6.4) 

and 

( )
1

2 1
R

K
σ =

+
.                                                    (6.5) 

The parameter K  is very important and is defined as the ratio of direct–to–diffuse 

signal power: 

2

22 R

AK
σ

= .                                                         (6.6) 

When 0K = , the channel is characterized as Rayleigh fading channel and when K = ∞  

the channel is not a fading channel. In our case the parameter K  of the Rice Chn token is 

chosen to be 0K =  in order to simulate the Rayleigh fading channel. 

The Rice Chn  token also has an another parameter. This parameter is the corrT    

that controls the fade rate of  z(t). The basic assumption is that the fade rate is slow 

compared to the signal–hop rate. In our model this parameter is set as 1/corr hT R=  and is 

different for every modulation scheme M=2, 4, 8. This assures that the signal amplitude 

can be modeled as a Rayleigh random variable that remains fixed at least for the duration 

of a single hop. The reason that the parameter was chosen to be exactly corr hT T=  is 

explained in the next section. 
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The overall block diagram of the uncoded noncoherent FFH/BFSK in a Rayleigh 

channel is shown in Figure 49. The Rayleigh channel is implemented with token 73. The 

diagrams of the FFH/4FSK and FFH/BFSK are similar to the FFH/BFSK and for that 

reason are not included. 

 

 
Figure 49.   Uncoded Noncoherent FFH/BFSK Model in a Rayleigh Fading Channel. 

 

Figures 50 also presents, with the help of the oscilloscope of the SystemView, the 

influence of the Rayleigh fading channel on the amplitude of the transmitted hop pulses.  

The FFH/BFSK system in this case does not include AWGN. The upper plot shows that 

every transmitted hop pulse has the same amplitude contrary to the lower plot that shows 

that the amplitude of the transmitted hop pulse is under the influence of the fading 

channel. 
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Figure 50.   Spread Spectrum of the Uncoded Noncoherent FFH/BFSK System in a 
Channel without Fading and in a Rayleigh Fading Channel. 

 

The next step examines the performance of the system under the influence of 

AWGN. 

B. UNCODED NONCOHERENT FFH/MFSK SIMULATION MODEL IN A 
RAYLEIGH FADING MODEL ALONG WITH AWGN 
The simulation model of the FFH/BFSK system in a Rayleigh channel along with 

AWGN is illustrated in Figure 49. Before the simulation was executed, a necessary 

setting  of the parameter corrT  had to be made. According to the theory, every value of the 

fading rate 1/corr corrR T=  that satisfies the relation   

1
corr h

corr

R R
T

= ≤                                                        (6.7) 

is valid for the simulation system.  In practice this proved incorrect.  

Frequency Hop 
Pulses in a 
Rayleigh Fading 
Channel 

Frequency Hop 
Pulses in a 
Channel without 
Fading  
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Figure 51 presents the probability of bit error bP  with 0/ 13.35 dBbE N =  for 

different values of corrT . 

 

 
Figure 51.   Simulation Results of an Uncoded Noncoherent FFH/BFSK System for 

Different Values of corrT  with 0/ 13.35 dBbE N = . 
 

It is very interesting that the token Rice Chn  that represents the Rayleigh channel 

for higher values of corrT  is not working very well. It creates higher values of probability 

of bit error than expected. The simulation system worked fine when the parameter corrT  

was set exactly as 1/corr hT R=  for every modulation order M.  

Following this assumption and defining the density of AWGN (token 0) as a 

variable parameter, the simulation was executed eight times for the FFH/BFSK, seven 

times for the FFH/4FSK, and six times for the FFH/8FSK system. Every time the 

simulation made a loop, the value of the power density 0N  decreased. This reduction 

corresponds to a continuous increase of 0/bE N . 
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1 / 8000 sec
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Figure 52.   Simulation Results of Uncoded Noncoherent FFH/MFSK System 

Performance with AWGN in a Rayleigh Fading Channel as Compared to 
Theoretical Results. 

 

Figure 52 illustrates the probability of bit error for the FFH/MFSK system with 

M=2,4,8 in a Rayleigh fading channel under the influence of AWGN. The theoretical 

curves calculated according to Equation (4.17). The results verify that the simulation 

model behaves in AWGN as the theory predicts with small variations ( )1 dB .≤  

The next step is to construct the simulation model of the BNJ and observe its 

influence in the performance of uncoded noncoherent FFH/MFSK in a Rayleigh channel. 

C. UNCODED NONCOHERENT FFH/MFSK SIMULATION MODEL IN A 
RAYLEIGH FADING MODEL UNDER THE INFLUENCE OF THE 
BARRAGE NOISE JAMMING 
The noise interference that the barrage noise jammer uses is characterized as 

AWGN. The power density of the jammer derives from 

 

 

bP  

0/ (dB)bE N
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I
I

T

PN
W

=                                                              (6.8) 

where IP  is the available power of the jammer. 

Figure 53 illustrates the simulation model for a FFH/BFSK system in a Rayleigh 

channel under the influence of BNJ. The BNJ consists of the token 75 that represents the 

noise source and the token 77 that limits the jammer’s noise power density into the SS 

operational bandwidth. 

 

 
Figure 53.   Simulation Model of an Uncoded Noncoherent FFH/BFSK System in a 

Rayleigh Channel under the Influence of BNJ. 
 

The AWGN of the channel is considered to be constant with 0/ 17 dBbE N = . The 

variable parameter in this case is the noise density power IN  that is represented by token 

75. 

The results of the simulation for M=2, 4, 8 are illustrated along with the 

theoretical results in Figure 54. 
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Figure 54.   Simulation Results of the Effect of BNJ in an Uncoded Noncoherent 

FFH/MFSK System in a Rayleigh Channel Along with AWGN. 
 

The results in Figure 54 prove that the simulation model behaves in BNJ as the 

theory predicts with a small variation in the case of an FFH/BFSK system. 

The analysis of this chapter, along with the theoretical analysis of Chapter IV, 

consist of the initial steps for a further investigation of the FFH/MFSK system with a 

square–law linear receiver in a fading channel. The results from this chapter also can be 

used as a benchmark for a future analysis for other jamming strategies against this type of 

FFH system. The simulation model operates in a Rayleigh channel as the theory predicts, 

so this simulation model forms a useful tool for a more complicated analysis of an FFH 

system. 

 

 

bP  

0/ 17 dBbE N =

/ (dB)b IE N
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VII. CONCLUSIONS AND FUTURE WORK 

The main scope of this thesis was to evaluate the performance of different 

jamming strategies against an uncoded noncoherent FFH/MFSK communication system 

with a square–law linear combining receiver. Another goal was to present a preliminary 

theoretical and simulated analysis for the FFH/MFSK system in a Rayleigh fading 

channel. 

The results of the theoretical analysis and the simulation modeling can be used as 

guidelines for selecting the most effective jamming strategies, depending on the type of 

hostile waveform. The same models with the appropriate changes can also be used to 

evaluate other types of more complicated jammers over various communication channels. 

In order to proceed in our analysis the various assumptions made are listed below: 

• The hostile communication system uses an uncoded noncoherent 
FFH/MFSK system with a square–law linear combining receiver. This 
type of receiver does not have any information for the jammed frequency 
hop bands (side information). 

• The channel environment is characterized as an AWGN channel for the 
analysis of a non–fading case and is characterized as a Rayleigh channel in 
the case of the analysis of a fading channel.   

• The SS bandwidth for all modulation orders M=2, 4, 8 are considered the 
same for all simulation models. 

• The information bit rate bR  remains fixed for all modulation orders. This 
results in a non–fixed hop rate as the diversity order L increases. 

The main points and conclusions of the investigation are summarized by chapter 

with suggestions for future work. 

A. CONCLUSIONS 
Chapter II provides a general description of the FFH/MFSK communication 

system. This chapter also presents the geometrical restrictions of a follower jammer over 

a FFH/MFSK communication system. Fast frequency–hopping prevents the follower 

jammer from having sufficient time to determine the communicator’s frequency and to 

transmit interfering signals. The greater the hopping rate, the more protected the FFH 

system is against the follower jammer. 
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Chapter III presents the performance of different jamming techniques against the 

uncoded noncoherent FFH/MFSK system. The jamming techniques that were analyzed 

are barrage noise jamming, partial band noise jamming, and multitone band jamming. 

According to the theoretical analysis of this chapter the optimum case multitone band 

jamming proved to be–at least for the case of FFH/BFSK–the most effective method and 

the barrage noise jamming the least effective. It was shown that as the modulation order 

increases from M=2 to M=8 the jammer influence degrades.   

In Chapter IV a preliminary analysis was made for the performance of the 

FFH/MFSK system in a fading Rayleigh channel. It was proved that as the diversity order 

L increases, the performance of the FFH/MFSK system improves (as measured by bP ). 

The influence of the BNJ  against a FFH/MFSK system in a Rayleigh channel was also 

examined. The results confirm that this jamming strategy cannot degrade the system 

enough. The interesting point was that the system can improve itself using a greater 

diversity order, a greater number of frequency hop bands, and a greater modulation order.  

In Chapter V, simulated models for a FFH/BFSK, FFH/4FSK and FFH/8FSK 

systems were constructed under the influence of different types of jammers. The 

implemented simulated jammers were the barrage noise jammer, the partial band jammer 

and the multitone band jammer. Both the simulated results and the theoretical results 

confirmed  that the most effective jamming strategy against an FFH/MFSK system is the 

optimum case multinone band jamming strategy  for all modulation orders. It was also 

shown that as the modulation order increases from M=2 to M=8, then the performance of 

the optimum case multitone jamming remains approximately the same.  

Chapter VI presented the simulation FFH/MFSK models from the previous 

chapter in a fading channel environment. The chosen fading channel was the Rayleigh 

channel. The simulated results agreed with the theoretical results from Chapter IV. The 

simulation model operates in a Rayleigh channel as the theory predicts and is a useful 

tool for a more complicated analysis for an FFH/MFSK system in various fading 

channels. 
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In conclusion, the probabilistic comparison of all types of jamming showed that 

the most effective jamming strategy over an uncoded FFH/MFSK system is the optimum 

case multitone band jamming. 

B. FUTURE WORK 
There are three major areas that can be identified for future work. First, 

completing the analysis for the performance evaluation of partial band and multitone 

band jamming strategies against the uncoded noncoherent FFH/MFSK system in a 

Rayleigh channel. Secondly, investigating the performance of a coded noncoherent 

FFH/MFSK system in a fading channel (Rayleigh or Ricean fading channels) under the 

influence of different jamming strategies. This would model the operational environment 

of the system more accurately. Finally, it would be useful to observe how the 

performance of the coded noncoherent FFH/MFSK system changes under the influence 

of combinations of jamming strategies by using two or more jamming schemes.  
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