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ABSTRACT 
 
 

Operational characteristics of a valveless pulse detonation engine system were 

characterized by experimental measurements of thrust, fuel flow, and internal gas 

dynamics. The multi-cycle detonation experiments were performed on an axis-symmetric 

engine geometry operating on an ethylene/air mixtures. The detonation diffraction 

process from a small ‘initiator’ combustor to a larger diameter main combustor in a 

continuous airflow configuration was evaluated during multi-cycle operation of a pulse 

detonation engine and was found to be very successful at initiating combustion of the 

secondary fuel/air mixture at high frequencies. The configuration was used to 

demonstrate the benefit of generating an overdriven detonation condition near the 

diffraction plane for enhanced transmission of the larger combustor.  Results have shown 

that the addition of optical sensors, such as tunable diode lasers, to provide fuel profile 

data are invaluable for providing high fidelity performance results. The performance 

results demonstrated the ability of the valveless pulse detonation engine to run at 

efficiencies similar to valved pulse detonation engine geometries and may be a low cost 

alternative to conventional air-breathing propulsion systems.  
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I. INTRODUCTION  

A. BACKGROUND 
This investigation was conducted as part of the Office of Naval Research program 

for fundamental research into pulse detonation engines (PDEs). The study involved the 

installation and calibration of a six degree-of-freedom (DOF) thrust stand awarded to 

Naval Postgraduate School (NPS), for the performance characterization of the NPS PDE 

geometry. The performance testing capabilities of the new test stand provide high fidelity 

benchmark data for system modelers and other researchers in the PDE area. 

 Over the past 10 years, pulse detonation engines have received a considerable 

amount of interest due to their potential for increased specific impulse values on a low 

cost engine architecture when compared to existing supersonic engine systems. These 

engines operate by producing detonation waves that propagate through a premixed 

fuel/air mixture and produce intermittent high chamber pressures which result in discrete 

impulses that may be averaged to produce a quasi-steady thrust [1]. The concept of using 

detonations as a means for propulsion is based on the simple concept of using a thrust 

tube, with a closed head end and an open downstream end, in which detonation waves are 

produced in a repetitive manner. A fuel/air mixture is injected at the beginning of each 

cycle, ignited, and the resulting deflagration wave quickly transitions into a detonation 

wave. This produces significant head-end pressure at the closed end and ultimately thrust 

by the exiting momentum flux. After the detonation wave exits the combustor, an 

expansion wave (rarefraction wave) travels from the exit of the combustor to the head 

wall relieving the high pressure and removing the hot combustion products from the 

combustor. Although most PDE systems evaluated in the past have utilized valved 

geometries, the valveless geometry being explored at NPS is an alternative architecture 

which could greatly reduce complexity and cost. 

 

B. PREVIOUS RESEARCH 
Previous studies at the NPS have explored the use of ethylene/air, propane/air, 

and JP10/air mixtures on the NPS valveless pulse detonation engine. Ethylene was 

chosen due to its increased detonation sensitivity and propane for its combustion 
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similarities to higher-order hydrocarbon fuels. Practical operation of these systems 

ultimately requires the use of fuels that have acceptance or approval by the military, such 

as JP-10. The use of such fuels has inherent difficulties since most fuel/air mixtures are 

often difficult to detonate [2], especially in a reliable and repetitive manner. Therefore, an 

initiator which consists of a small tube or auxiliary combustor filled with a highly 

detonable fuel/oxygen mixture is often used as a means to initiate a detonation in a larger 

main combustor containing a less sensitive fuel/air mixture [2]. 

The use of an initiator has proven reliable in ensure the detonation of the fuel/air 

mixture in the main combustor, but it does introduce a penalty on the performance of the 

system [3]. This highly detonable fuel/oxygen mixture is used due to its ability to provide 

reliable, repeatable, and very rapid ignition events. The volume and mass requirement to 

carry an auxiliary oxygen delivery system results in a loss in performance. This is due to 

the fact that it is treated as a ‘fuel’ for specific impulse (Isp) calculations. As shown in 

equation (1), the Isp is a relationship of the mass of the fuel used and the force that is 

created by the system.  

 
2

( )f

NET NET
sp

fuel fuel O Aux

F FI
m g m m g

= =
+

 (1) 

 

Therefore, the less oxygen that is added to the system the better the performance 

delivered by the overall system.  Equation (1) shows the direct relation on how 

advantageous it would be to create a system that would work without the need for 

auxiliary oxygen in the system. 
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II. DETONATION THEORY 

A. DETONATIONS, DEFLAGRATIONS, AND EXPLOSIONS 
The difference between a detonation and other combustion events is significant 

enough to require clarification to fully understand the pulse detonation engine cycle. The 

differences between detonations, deflagrations, and explosions can be understood by first 

discussing what the combustion process involves.  

Combustion is defined as an exothermic chemical reaction between a fuel and an 

oxidizer that once initiated can sustain itself as long as those ingredients are available in 

the proper proportions. The velocity at which the combustion wave propagates through 

the mixture is a relative measure of the strength of the event. The geometry of the 

volume, mixture composition, temperature, mixture conditions (i.e. turbulence levels), 

and pressure are all factors on which the combustion flame velocity is dependent.  

  There are primarily three types of combustion process: a) Deflagration, where a 

combustion wave propagates at subsonic speed and there is little or no pressure change 

across the flame front, b) Detonation, where a combustion wave propagates at supersonic 

speed with a substantial pressure rise across the flame front, and c) Explosion, where the 

rate of heat generation is extremely fast, but it does not require the passage of a 

combustion wave through the exploding medium. The detonation process has the lowest 

entropy rise for the given energy release relative to the deflagration process, producing 

more work available for propulsion means and an overall higher thermodynamic 

efficiency. [4] 

Deflagration is a combustion wave that propagates slower than the speed of sound 

(subsonic) into unburned reactants. Examples of the deflagration processes include the 

combustion of a simple birthday candle to the flame within a gas turbine engine. The 

flame speed is a function of pressure, temperature, mixture ratio and turbulence of 

reactants. The typical wave speeds for a deflagration will range from 1-30 m/s. This is 

not the most efficient thermodynamic path for combustion to occur. This is due to the fact 

that the entropy of the resulting gases is maximized which results in a reduced about of 

work available for subsequent thermodynamic processes. [4] 
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A detonation can be described as a supersonic combustion event that propagates 

at high velocities into a detonable mixture and produces a violent and rapid combustion 

of reactants due to the strong shock wave leading the combustion wave. The propagation 

characteristics of these waves are primarily a function of fuel-to-oxidizer ratio 

(equivalence ratios) and have specific velocities, pressures rises, and temperature ratios 

that are limited by thermodynamic considerations.  

A detonation wave can be modeled as a one-dimensional stationary plane wave, 

as seen in Figure 1.   As the reactants “pass through” the combustion wave from right to 

left, the ratio of the product properties to the reactant properties depends on whether the 

planar wave is a detonation or a deflagration. Table 1 shows the comparison of properties 

between deflagration and detonation events. These allow for an easy determination of 

which type of combustion process has occurred.  

 
Figure 1.   Stationary Combustion Wave  

 
Table 1. Differences between Detonation and Deflagration from Ref [2] 

 

In an explosion, a chemical exothermic reaction occurs at a rate much greater than 

the surrounding environment can absorb or dissipate. This reaction rate will increase 

exponentially with a subsequent increase in temperature and pressure resulting in the 

combustion event to drive itself out of control quickly. The volume of the explosion will  
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expand due to massive increase in pressure which forms a supersonic shock front. 

Though an explosion is powerful and occurs at a rapid rate, the combustion even itself is 

a deflagration wave. [3] 

 

B. THE RANKINE-HUGONOIT CURVE 
To understand the properties of a detonation wave, it is helpful to begin with an 

analysis of the Rankine-Hugoniot curve. This curve shows the relationship between 

enthalpy, pressure, and the density of gases in a combustion event. The process is 

assumed to take place in a constant area geometry.    

The Rankine-Hugoniot relation is generated by using three consecutive equations 

which determine the post-combustion state thermodynamic properties: 

 

Continuity :  ( ) 0d u
dx
ρ

=  (2) 

Conservation of momentum:           du dpu
dx dx

ρ = −  (3) 

  

Conservation of energy:    

 
2

( )
2 cond

d u du h q
dx dx

ρ
⎡ ⎤⎛ ⎞

+ = −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (4) 

Enthalpy and the heat added to the system are defined by the following system of 
equations. 

 

 ph C T h°= +  (5)  

 1 2q h h° °= −  (6) 

 cond
dTq
dx

λ= −  (7) 
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This derivation assumes steady one-dimensional flow with no external heat added 

or rejected from the system. The diffusion effects and viscous effects are assumed to be 

negligible as well. By making these assumptions, the detonation wave can be viewed as a 

supersonic shock wave with calculable properties both in front and behind the wave. By 

integrating equation (2) the requirement of constant mass flow rate can be stated. 

       ( ) 0d u dx uA const mρ ρ
•

= ⇒ = =∫ ∫               (8) 

Now, by substitution the equation for mass flow rate into the momentum equation (3) and 

simplifying,  

 2 0d u p
dx

ρ⎡ ⎤+ =⎣ ⎦  (9) 

Integrating this equation gives an alternate momentum equation. 

 2 'u p constρ + =  (10) 

By similar analysis, the energy equation becomes: 

 
2

"
2p c

u dTu C T h const
dx

ρ λ
⎛ ⎞

+ + − =⎜ ⎟
⎝ ⎠

 (11) 

Referring back to Figure 1.   and knowing that the change in temperature with respect to 

the position (dT/dx) in front of and behind the detonation wave is equal to zero, specific 

conservation equations can be derived. These equations relate the fluid dynamic and 

thermodynamic properties between the two regions. These equations are:   

 

 1 1 2 2 .u u const mρ ρ= = =  (12) 

 

 2 2

1 1 1 2 2 2p u p uρ ρ+ = +  (13) 

 2 2
1 1 2 2

1 1
2 2

ppC T u q C T u+ + = +  (14) 

Combining equations (5), (6), and (13)  results in  

 
2 2
1 2

1 22 2
u uh q h+ + = +  (15) 
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The final equation needed for deriving the Rankine-Hugoniot relation is found by 

the assumption that the gases in both the burned and unburned regions behave like a 

perfect gas, therefore 

 p RTρ=  (16) 

Equations (12), (13), (15),and (16) are the set of equations used to solve the five 

unknowns of the system, u1,u2,T2, p2, and ρ2. One equation with two unknowns (p2 and 

ρ2) can be formed by manipulated the four basic equations with the following outcome:  

 
1

2 2 22 1
1

1 2

1 1
p pu mρ

ρ ρ

−
= =

−
 (17) 

Equation (17) is the Rayleigh line equation, which describes the heat addition 

process through pressure, velocity, and density. It is more useful to describe the 

characteristics of thermodynamics in terms of the flow Mach number. This is completed 

by the following:  

 uM
c

=  (18) 

 c RTγ=  (19) 

Manipulating and substituting the equations can result in the following: 

 

2
2 2

21 1 1
12 2

12 2

2

1

1

p
u p M
u

ργ γργ ρ
ρ

−
= =

−
 (20) 

 Knowing that,  

 
1

p pvC C R C Rγ
γ

−
⎛ ⎞

= ⇒ = ⎜ ⎟−⎝ ⎠
 (21) 

 

Equation (14) can now be rewritten as:  
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 ( )2 1
2 1

2 1 2 1

1 1 1
1 2

p p p p qγ
γ ρ ρ ρ ρ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− − − + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠
 (22) 

and  

 2 1 2 1
1 2

1 1 1( )( )
2

h h p p
ρ ρ

− = − +  (23) 

Equations (22) and (23) are forms of the Rankine-Hugoniot relation. [2] 

The Rankine-Hugoniot curve is a plot that describes the different possible 

thermodynamic conditions after combustion occurs. These conditions include various 

strengths of deflagrations and detonations, dependent upon the specific volume and 

pressure at which the event occurs. Figure 2.   shows the Rankine-Hugoniot curve and the 

various combustion regions. Regions I through V are all regions of possible mathematical 

solutions. In reality, not all of the regions are physically realizable. For example, region 

V implies that the initial internal energy is imaginary. Careful analysis of the Rankine-

Hugoniot curve shows that there are two possible combustion processes: those in which 

pressure and density increase (detonations) and those in which pressure and density 

decrease (deflagrations). The points at which the Rankine-Hugoniot curve and the 

Rayleigh lines are tangent are known as the upper(U) and lower (L) Chapman-Jouguet 

points. These points represent where the post combustion gas velocity is sonic, as 

dictated by the Rayleigh limit for heat addition in a constant area tube. Table 2 depicts 

the type of combustion process and the Mach numbers of the reactants and products in 

each region of the Rankine-Hugonoit curve.  
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Figure 2.   Physical Breakdown of Hugoniot Curve from Ref [2] 

 

Region Combustion Wave M1 M2 
I Strong Detonation >1 <1 
II Weak Detonation >1 >1 
III Weak Deflagration <1 <1 
IV Strong Deflagration <1 >1 

Table 2. Hugoniot Curve Regional Properties 
  

By differentiating equation (13) with respect to 2ρ , and noting that the Rayliegh 

and Hugoniot curves intersect at the upper and lower points, the following equation is 

produced: 

 2 1
2 2

1 1

1 1
p p pγ ρ

ρ ρ

−
=

⎛ ⎞
−⎜ ⎟

⎝ ⎠

 (24) 

Combine equations (12) and (13) and setting the result equal to equation (18): 

 2 22
2 2 2 2

2

pu c u cγ
ρ

= = ⇒ =  (25) 

 

Which translates to, at the upper and lower C-J points (pts U and L in Figure 2.  ), 

the velocity of the combustion products after the wave is limited by the local speed of 
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sound of the products at the C-J detonation condition even though the detonation wave is 

moving supersonically relative to the unburned mixture.[5,6] 

 

C. DETONATION WAVE STRUCTURE 
A theory for a simplified detonation wave structure was independently arrived at 

by Zeldovich, von Neumann, and Doring (ZND). They assumed that a steady, one-

dimensional flow existed relative to the detonation front and that very limited reactions 

and heat release occurred in the shock wave itself due to its thickness relative to the mean 

free molecular path. They theorized that the detonation wave consisted of a planar shock 

moving at the detonation velocity with chemical reactions occurring behind the shock 

over a region thicker than the shock wave, and that the shock wave initially heats the 

reactants to a temperature that can result in a sufficiently fast reaction rate to generate the 

required energy to support the preceding shock wave. The ZND wave structure can be 

seen in Figure 3.  There are different zones throughout the assumed detonation wave 

structure. The induction zone immediately behind the shock, where the temperature is not 

very high, demonstrates a slow increase in reaction rate and relatively flat pressure, 

temperature, and density profiles. After the induction period the properties change rapidly 

as the reaction rate increases drastically. The reaction is complete within a distance on the 

order of 1 centimeter and the properties reach their equilibrium values.  
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Figure 3: Detonation Wave Profile. (From [3]) Figure 3: Detonation Wave Profile. (From [3])  
Figure 3.   ZND One Dimensional Wave Structure from Ref [4] 

 

Although the ZND model describes a simple detonation wave structure, an actual 

detonation wave is a three-dimensional structure possessing a complex shock wave 

structure followed by a reaction zone. The leading shock consists of nearly planar, but 

curved normal shock segments. At the intersection between these shock segments, lateral 

shock waves intersect the leading normal shock waves forming ‘triple’ points. The size of 

the “fish scale” pattern generated by the triple points of the resulting shock wave 

structure corresponds to the reactivity of the mixture and is often described by a 

characteristic length scale,λ . An example of the three dimensional detonation event can 

be seen in Figure 4.  The cell size, λ , is a parameter of practical importance, the more 

reactive the mixture, the smaller the cell size. The cell size is measured experimentally 

and there are some variations in the reported results due to the subjective interpretation of 

the patterns. The transition from a deflagration wave to a detonation wave, the 

propagation and transmission of a detonation can to some extent be evaluated based on 

knowledge of the cell size of the mixture.   
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Figure 4.   Three Dimensional Cellular Structure 

  

D. THERMODYNAMICS AND PROPAGATION OF DETONATION WAVES 
Theoretical cycle analyses have been performed previously to demonstrate the 

potential performance gain for a C-J detonation process over a constant pressure 

combustion process using ethylene and air as the reactants. [6] 

Determination of the resulting heat addition for both cases was done using the 

post combustion product conditions generated by the Thermodynamic Equilibrium 

Program (TEP) for the same given set of initial pre-combustion conditions simulating 

p=1 atmosphere, T=300 K, fuel/air equivalence ratio of one, flight Mach number of 2.5 at 

12,192 m for each case. The synthesis of this work was used in equation (26) to find the 

heat added, where 2u  is the detonation velocity and 2c is the sonic velocity behind the 

wave. 

 ( ) 2 1

2 2
2 2 2 1 2

1 1
2 2P P addu c C T C T u q− + − − =  (26) 
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To determine the net work and the thermal efficiency, several assumptions need 

to be made: 

(1) The working fluid is both a thermally and calorically perfect gas during 

isentropic compression and expansion. 

(2) The working fluid has constant but different specific heats prior to and after 

the combustion. 

(3) The energy of combustion is determined using thermodynamic considerations 

contained in TEP. 

Equations (2) and (5) and the Perfect Gas Law are used to determine the entropy 

relationship across the wave was determined using the following relationship: 

Entropy ln lnP
REF REF

T ps C R
T p
⎛ ⎞ ⎛ ⎞

= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (27) 

Figure 5.   and Figure 6.   depict the p-ν  diagrams for the Brayton (constant 

pressure) and detonation combustion cycles. By integrating the area under the under the 

curve, the net work for each case can be determined. Process 0 to 1 represents a 10:1 

compression ratio due to the supersonic flight Mach number and the MIL-E-5007D inlet 

recovery factor. Process 1 to 2 represents the combustion process, and process 2 to 3 

represents the isentropic expansion of the combustion products to ambient pressure. The 

final step from 3 to 0 is where the remaining heat is rejected to the atmosphere at constant 

pressure. 
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Figure 5.   Pressure-Specific Volume Diagram of Constant Pressure Combustion Cycle [Ref 

7] 
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C-J Detonation Cycle
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Figure 6.   Pressure-Specific Volume Diagram of C-J Detonation Cycle [Ref 7] 

 

The following tables show the conditions used at the various states within the 

process.  

State Pressure (atm) Temp. (K) Specific Volume (m3/kg) Entropy (KJ/kg-K) 
0 0.1 164.9 5.3 0 
1 1 300 0.8 6.5 
2 1.0 2256.0 6.6 9.6 
3 0.1 1361.1 39.3 9.6 

Table 3. Thermodynamic States for a Brayton Cycle [Ref 7] 
 

State Pressure (atm) Temp. (K) Specific Volume (m3/kg) Entropy (KJ/kgK) 
0 0.1 164.87 5.3 6.5 
1 1 300 0.8 6.5 
2 17.8 2868 0.47 9.2 
3 0.1 1022.9 27.2 9.2 

Table 4. Thermodynamic States for a Detonation Cycle [Ref 7] 
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The net work for each of the processes is found by finding the area enclosed by 

each of the cycles by integration.  The integration is set up for the detonation and Brayton 

cycles in equations (28) and (29) respectfully.  

  

 
3 1

0 3 02 0
( )C Jw pdv pdv p v v− = − − −∫ ∫  (28) 

  

 
3 1

1 2 1 0 3 02 0
( ) ( )braytonw p v v pdv pdv p v v= − + − − −∫ ∫  (29) 

 

The resulting net work is: 

 

2 21 0 0 3 3 2 22 1 2 1
2 1 2 2 2 1 3 0 3

2 1 2 1

1 1
( ) ( ) ( )

1 2 1C J

v p v v p vp p
w v v v v v p v v

v v v v
p pp pp

γ γ−

− −− −
= + − + − − + + −

− − − −

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
 (30) 

 1 1 0 0 3 3 2 2
2 2 1 3 0 3( ) ( )

1 1Brayton
p v p v p v p vw p v v P v v

γ γ
⎛ − ⎞ ⎛ − ⎞

= + − + + −⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 (31) 

 

The thermal efficiency was found by dividing the net work by the heat added for 

each cycle. 

 net
TH

add

W
q

η =  (32) 

  

 A graphical representation of the combination of the Brayton cycle and the C-J 

Detonation Cycle can be seen in Figure 7.   and are numerically shown in Table 5. 



17 

0

5

10

15

20

25

30

0 10 20 30 40 50

Specific Volume (m^3/kg)

Pr
es

su
re

 (a
tm

)

Brayton Cycle

C-J Detonation Cycle

 

Figure 7.   Pressure-Specific Volume Diagram Comparison of C-J Detonation vs Brayton 
Cycle [Ref 7] 

 

 

Combustion Cycle THη  (%) 

Brayton Cycle 33.8 

C-J Detonation 63.7 

 

Table 5. Thermal Efficiencies of the Detonation and Brayton Cycles [Ref 7] 
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E. EQUIVALENCE RATIO DEFINITION 
Equivalence ratio is a term widely used to describe the composition of a mixture 

used in combustion events. The equivalence ratio, φ , is defined as the ratio of fuel-to-

oxidizer reactants, divided by the ratio of fuel-to-oxidizer reactants in a stoichiometric 

ratio; as shown below.  

 fuelf

oxidizer

m

m

=

i

i
 (33) 

 

 
stoichiometric

f
f

φ =  (34) 

A stoichiometric mixture is one in which all reactants are used in the chemical 

reaction and form complete combustion products. In this study, ethylene, C2H4, was used 

as the fuel and air as the oxidizer. The stoichiometic mixture ratio is represented by the 

following reaction:  

 2 4 2 2 2 2 23( 3.76 ) 2 2 11.28C H O N CO H O N+ + → + +  (35)  

Since the number of moles of fuel is one and the number of moles of the oxidizer 

is 3, then the stoichiometirc molar ratio is 1/3 for these reactants. By multiplying each 

reactant by its molecular weight, the stoichiometirc mass ratio is found to be 0.0679. 

 

F.  DETONATION INITIATION 
There are three primary approaches used to achieve fuel/air detonations. The first 

is direct initiation in which a critical mass of the explosive charge is used to initiate a 

detonation. Direct initiation is not a common process for propulsion applications and 

there will be no further discussion of this topic in this thesis.  A second approach utilizes 

a strong shock wave to initiate detonations where the existence of turbulence and a shock 

front are assumed which create the hot spots by the way of shock reflection/focusing, 
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needed to initiate the detonation. Finally, the third approach utilizes a deflagration-to-

detonation transition (DDT) process which accelerates a subsonic combustion wave to 

the C-J condition. The combustion can be initiated with a low energy spark. The resulting 

ignition kernel will rapidly accelerate to a detonation through the use of wall turbulence 

such as tabs or wall spirals within the combustor. DDT has its disadvantages though, 

which is to include a loss of performance due to the necessity to cool wall turbulence 

devices, pressure losses during the fill and blow down processes, and difficulty with 

adequate purging between pulses.    

The NPS PDE architecture uses another common approach for detonation. This 

involves the utilization of an “initiator” which posses a highly detonable fuel/oxygen 

mixture to generate a strong denotation to propagate a shock wave from one mixture to 

another less sensitive mixture. This creates an overdriven condition and generally results 

in a detonation in the main combustor. The main combustor contains a less detonable 

mixture such as ethylene/air or JP-10/air.  The key to this system is the effective 

transmission of the initiator detonation wave into the fuel/air mixture. This wave must 

exit the smaller combustor and overcome the diffraction process from initial combustor to 

a larger combustor diameter and continue to propagate into the main combustor. There is 

the possibility of re-initiation, due to the reflection of the exiting shock wave downstream 

of the initiator.  The combination of the overdriven initiator and Mach shock reflection 

has become a proven source of ignition for the NPS pulse detonation engine and was 

utilized for this test series. [3]  
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III. PDE THERMODYNAMICS 

A. CYCLE ANALYSIS 
One of the primary benefits of a pulse detonation combustion cycle is the 

calculated higher thermodynamic efficiency and lower entropy rise relative to other 

combustion processes. The challenges are to establish the flow path timing to ensure that 

detonation is occurring at the most opportune time and to establish the ideal fuel/air 

mixture ratio that will maximize Isp for the configuration.   

The operational cycle of the valveless PDE is shown in Figure 8.  The cycle 

begins with air flowing through the engine and purging the previous combustion products 

(A). During the second stage, fuel is injected into the air flow and carried towards the 

main combustor (B). Stage (C) represents the end of the fuel injection event, and shows 

the start of the fuel/oxygen mixture into the initiator. The fuel/oxygen mixture is loaded 

into the initiator and allowed to mixture prior to the ignition (D). Stage (E) shows that the 

fuel/oxygen mixture has been ignited and a detonation wave is formed. The detonation 

wave then progresses through the mixture and diffracts successfully into the mixture in 

the main combustor (F). Stage (G) shows the detonation wave exiting the main 

combustor with the combustion products remaining behind.  Finally, after the detonation 

wave exits the main combustor, a series of rarefaction waves reduce the pressure inside 

the combustor and the combustion products are purged from the engine (H). 
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Figure 8.   Valveless PDE Cycle 

 

Immediately after the initiator detonation wave diffracts into the main combustor, 

a combustion-driven shock wave begins propagating upstream into the incoming air 

stream. This propagation can be minimized/eliminated if the velocity of the incoming air 

is sufficiently high and results in a choke point somewhere in the isolator, thereby 

producing a supersonic flow regime immediately downstream of this point.  The degree 

of isolation the isolator provides does affect performance due to a total pressure recovery 

loss. The optimum amount of isolation is being evaluated computationally within the 

ONR PDE Research program.  

 
 

B. MULTI-CYCLE EFFECTS 

As discussed in prior sections, a typical single detonation cycle consists of 

loading a fuel/oxidizer mixture, ignition of that mixture, propagation of a detonation 
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wave down the tube, and the products being expelled from the tube by rarefraction waves 

created by the sudden expansion to atmospheric pressure after the detonation wave exits. 

Ideally, this cycle could be repeated at a very high cycle frequency without having to 

account for each cycle’s effect on the next and without affecting the performance of the 

engine. In reality, there are several key issues, delineated below, that need to be 

accounted for in order to ensure engine performance. 

First, the thrust developed by the engine can be determined by either measuring 

the momentum flux out of the engine or by integrating the head-end pressure over time if 

a convenient thrust wall exists. The average thrust can actually be reduced due to the 

expansion below atmospheric pressure after the detonation wave exits the combustion 

tube. Proper coupling of the next cycle’s fuel/oxidizer loading sequence to the end of the 

previous cycle can be used to eliminate the effect by preventing the pressure within the 

tube form dropping below the local atmospheric value. The valveless detonation engine 

geometry which utilizes a continuous mass flow rate of air, similar to a jet engine, nearly 

eliminates the effect. 

Second, the cycle repetition rate, or frequency, is limited by the physical size of 

the detonation tube, the finite times required for loading the reactants, timescales for the 

DDT process, and purging the products. The aggregate air mass flow rate, which is a 

function of the flight conditions, strongly dictates the operational cycle. A valveless 

engine design shortens the product purge time, thereby theoretically increasing the 

potential cycle frequency. 

Third, the importance of matching the fuel/oxidizer load time of the next cycle to 

the detonation wave exit of the previous cycle must be balanced against the possibility of 

the new mixture to prematurely ignite due to remaining products of the previous 

combustion event still present in the tube. This possibility will again limit the cycle 

frequency and could affect the maximum average thrust produced by the engine. 
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IV. EXPERIMENTAL SETUP 

A. VITIATOR 
A hydrogen/oxygen vitiator was used to increase the “inlet air” temperature of the 

engine to temperatures approaching 533 K (500 ˚F). This was done to simulate the typical 

inlet conditions that a pulse detonation engine would experience in-flight at nominal 

supersonic flight conditions expected for such a system.  Compressed air was routed into 

the vitiator, were an H2/O2 igniter was used to light a self-sustaining hydrogen/air 

combustor. Since the vitiator combusts externally provided hydrogen and oxygen in the 

air, ‘make-up’ oxygen is added downstream of the vitiator to ensure that the ‘inlet air’ is 

brought back the proper oxygen molar concentration of 21%. A picture of the vitiator can 

be seen in Figure 9.   The vitiator can maintain engine inlet temperatures ranging from 

50°F to 450≈ °F depending on the desired test conditions.  

 
Figure 9.   Hydrogen/Oxygen Vitiator 
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B.  PULSE DETONATION ENGINE 

The major portion of this thesis was the modification of the Naval Postgraduate 

School’s pulse detonation engine installation to incorporate a six degree-of-freedom test 

stand designed by Pacific Press and new control and data acquisition system. The cell 

was stripped of all previous plumbing and electrical wiring. The new thrust stand was 

positioned and a back brace was designed and connected to the stand to allow for a 

perpendicular brace for alternate thrust measurements through a spring/displacement 

system and as a support bulkhead for the tubing connections.  The drawings for this piece 

can be found in Appendix E. The test set up can be viewed in Figure 10.   The geometry 

under development at NPS is a continuous air flow design, which does not utilize or 

require valves to supply air to the main combustor chamber as shown in Figure 11.   Air 

flow is monitored and restricted by a converging/diverging inlet venturi, with a 16.6 mm 

throat diameter, at the forward end of the PDE.   

 

 
Figure 10.   NPS PDE Test Cell #2 
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Figure 11.   Schematic of  the Valveless NPS PDE [Ref 3] 

 The design consists of four fuel/air inlet arms which discharge into a common inlet 

manifold. The requirement for these arms for operation is only that they provide adequate 

length for good mixing and for liquid fuel to vaporize prior to the main combustor 

entrance. The optimal inlet arm length will be determined through additional 

computational studies. Additional drawings of the NPS PDE can be seen in Appendix A. 

A detailed view of the test set up can be viewed in Figure 12.   The fuel injection 

delivered by Valvetech solenoid valves (15060-2) which are controlled by a BNC 5000 

pulse generator.  

              
Figure 12.   NPS Pulse Detonation Engine 
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C. INITIATOR 

The initiator is a .254 m long stainless steel chamber with a varying head-end 

cross-section, with an internal diameter of .04445 m. The geometry for this initiator was 

previously developed from research performed by LT Dave Forster on initiating 

detonations and can be seen in Figure 13.   [5] 

               
Figure 13.   Solid Model of Initiator 

Purge air continuously flowed through the initiator during operation and provided 

approximately 20% of the oxidizer required for operation of the initiator. Oxygen and 

ethylene were then injected at appropriate intervals before the initiation of a detonation in 

the initiator. Oxygen was injected into the initiator with Parker Hannifin Valves (009-

0449-900) and ethylene was injected using a Valvetech (15060-2) valve. 

 

D. EXHAUST TUBE/ SILENCER 

An exhaust tube was used to direct the exhaust gases from directly behind the 

engine to a location 0.508m beyond the test cell. The tube also doubled as a noise 

suppression system to help reduce the level of noise introduced into the local 

environment. A noise suppression system was also installed using water misters as shown 

in Figure 14.  to further aid in the suppression of the resulting engine noise.  
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Figure 14.   Noise Suppression System 

Location Exhaust Tube Only (dB) Full Noise Suppression System (dB) 
1 127.133 125 
2 129.1 125 
3 121.56 113.5 

Table 6. Noise Suppression Results 

 

Table 6 shows the noise level readings taken with and without the noise 

suppression system engaged.   

Location 1 is located behind the exhaust tube at the edge of the property line 

(approximately 91 m). Location 2 is that same location, but at an approximate height of 

7m. Location 3 is approximately 70 m from the forward end of the engine. As shown in 

Table 6, the noise suppression system slightly decreases the noise produced by the 

system. 
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E.  FACILITY CONTROL 

A major effort of the Naval Postgraduate School PDE program this year was the 

development of the new facility control and data acquisition system. The control and data 

acquisition system was run on a PC using software by National Instruments called 

LABVIEW 7.1. The control system hardware for the program was run on the PXI 1000B 

controller using the LABVIEW RT (real time) system. This is a non-Windows based 

system that had the advantage of lower overhead than an application based on a Windows 

environment. The control program was semi-automated, requiring the user to open supply 

ball valves and set the engine and vitiator parameters prior to starting the vitiator and 

running the engine. The vitiator sequence was automated for both safety and time 

restrictions. Finally, the engine control was performed by a BNC pulse generator which 

allowed for separate control of the engine cycle that allowed for the real time 

modification of the engine operating frequency. The facility control GUI (graphical user 

interface) is shown in Figure 15.  The facility was controlled using the Digital Output 

lines from the PXI-6031E to enable CRYDOM solid state relays. A PXI-6508, a 96    

  
Figure 15.   Test Cell #2 GUI 
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channel digital input/output board was also used for specific relay control. Photographs 

of this system can be seen in Appendix D.  

The GUI was also designed to take low speed (10 Hz) facility data that is used to 

monitor various pressure transducers placed on both supply gases and at various location 

on the engine as well as various temperature on the well as being recorded for future 

viewing. The PXI 6031E, 16-bit Analog Input card in engine and air lines. This 

information is displayed on screen in a real-time capacity as differential mode was used 

to collect this data. An example of the data recorded for the facility can be found in 

Figure 16.   

     
Figure 16.   Example of Facility Pressure and Temperature Data 

 
 

 



32 

 F. HIGH SPEED DATA AQUISTION 

  Kistler 603B1 pressure transducers were placed along the PDE, which were used 

to monitor detonation/shock wave speeds. The locations of these transducers both along 

the main combustor and upstream of the fuel injection location can be seen in Figure 17.   

To collect this data at 500 KHz per channel a second PXI-1000B which housed three PXI 

6115 high speed DAQ cards, was dedicated to measuring the pressure transducer data. 

The data acquisition system recorded up to 6 channels of data which is both viewed on 

screen after the test and written to a file for further post processing. The GUI used for the 

high speed data acquisition was an existing data logger from NI seen in Figure 18.  

 
Figure 17.   Transducer Locations 
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Figure 18.   High Speed DAQ GUI 

Due to the limitations of both the hardware and software, typically only one 

second of data at this acquisition rate could be recorded.  An example of this data is 

shown below Figure 19.    



34 

 
Figure 19.   Example of High Speed Pressure Data  

 

G.  THRUST MEASURMENT 

A thrust measurement independent of the thrust stand was used to calculate the 

force from the NPS PDE. This was accomplished using a NOVOTECHNIK position 

transducer w/restoring spring (TRS 75) as can be seen in Figure 17.   The control 

program GUI can record either direct voltage output or will convert this voltage into a 

force measurement using the calibration curve presented in Appendix C. The curve was 

created after pressurizing the air delivery system, to account for tare loads due to 

pressurization of the flex lines. This process can be viewed in Figure 20.   
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Figure 20.   Position Transducer Calibration 

 

H.  OPTICAL FUEL MEASUREMENT 
The Naval Postgraduate School is currently developing the diagnostic capability 

on-site to acquire a temporal fuel data, however Stanford University is jointly 

participating in this research and performs this role as they continue their refinement of 

the use of  tunable diode lasers (TDLs) for water temperature and fuel measurements. 

This process is shown in Figure 21.   

 
Figure 21.   Tunable Diode Laser Test Setup 
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This technique has been proven to measure temperature and fuel 

measurements for speeds ranging from 10-50Hz. The laser diagnostics have been 

engineered to tolerate movement, vibration, beam steering, and emission in the 

harsh environment present in the PDE. Specifics for this technique can be found 

in Reference [8]. The actual setup used at NPS can be viewed in Figure 22.   

 

 
Figure 22.   Tunable Diode Laser Setup on PDE 
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V. RESULTS 

A. PERFORMANCE TESTING 
Equation (1) describes the effectiveness of an air-breathing engine as a 

performance relationship between the net force created and the mass of the fuel used to 

generate that force or thrust. The challenge in evaluating performance during any test 

program is to develop high fidelity measurement capabilities for both force and mass 

flow. This becomes especially difficult when dealing with unsteady flow such as those 

related to PDEs. 

1. Fuel Injection Characteristics 

A very important measurement in determining the specific impulse of a PDE is 

the temporal fuel profile of the fuel injection into the engine. The existing fuel 

distribution along the engine axis at the time of detonation directly affects performance. 

Prior research was conducted which utilized calibrated choked orifices to determine the 

fuel mass flow rate needed for Isp calculations. Tunable Diode Lasers (TDLs) are now 

available that allow for quantitative temporal fuel measurements. This leads to a detailed 

fuel distribution profile which in turn produces a higher fidelity Isp calculation for the 

engine. An example of the fuel injection data that the Stanford team was able to collect 

during testing can be seen in Figure 23.   
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Figure 23.   Example of Fuel Profile Data from TDLs 

 

This data is critical for determining an accurate fuel mass flow rate profile during the 

detonation. In order to do this, the velocity (V(x)) within the combustion tube is 

calculated solving the following equation for V(x). 

 ( ) ( )( )pm V x A x
RT

• ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (36) 

Once the velocity distribution of the fuel/air mixture was calculated, the average time to 

fill the main combustor could then be determined. The fill time was then used to 

determine the average fuel fill profile distribution along the combustor. The nominal fuel 

profile was created by averaging the data from the eight shots recorded over the fill time 

calculated. The measurement portion is shown in Figure 23.  and was used for the mass 

calculation of C2H4 in the main combustor. This however is not the total “fuel” to be 

accounted for in the system when determining the fuel-based Isp. The auxiliary oxygen 
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added to the system initiator must also be included in the total mass of the fuel used in the 

denominator of equation (1) since it was considered as a weight and volume penalty on 

the actual system. The total mass of fuel in the system is therefore calculated by:  

 
2 4 2 _f C H O Auxm m m= +  (37) 

Clearly, the auxillary oxygen used in the initiator will reduce the system specific 

impulse calculation and will need to be eliminated on future versions of the engine. 

 

2.  Thrust Measurements  
The next step in determining the performance of the engine was to calculate the 

net force (FNET, eqn (38)) that was produced by the system. 

 NET Gross RamDragF F F= −  (38) 

 Prior to calculating the net force, it was important to first confirm that a 

detonation had occurred. This was confirmed by calculating the wave speed in the main 

combustor. The transition time between channels 3 and 4 of the Kistler 603B1 pressure 

transducers was measured (see Figure 24.  ) and knowing the distance between the two 

transducers, the wave speed could then be calculated. The wave speed was then 

compared to theoretical values on Figure 25.  to ensure that a detonation had occurred.  
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Figure 24.   Example of Detonation Wave Transition 
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Figure 25.   Theoretical Detonation Wave Speeds 

 

The gross force (Fgross) was calculated from the displacement measurement 

recorded from the linear position transducer.  Ram drag needed to be subtracted from this 

force to account for the inlet momentum flux delivered to the engine.  

 
 



41 

3.  Specific Impulse Calculations 

The specific impulse of the PDE was then calculated using equation (1) and 

revealed the Ispf of 1106.1 sec at an equivalence ratio of 1.27 at the test settings seen in 

Table 7.  Figure 26.  is a compilation of numerous PDE runs from various researchers.  

As shown in the graphic, the NPS PDE falls amongst the majority of these engines. An 

important advantage of the NPS PDE is that it is a valveless system, making it simpler 

and likely more cost effective. Most of the remaining data on the figure is for systems 

which include valves on the air delivery systems.   

 

Frequency mdot(air) mdot(fuel) 
40 Hz 0.33 kg/s 0.02244 kg/s 
Table 7. Nominal Test Settings 

 
Figure 26.   Specific Impulse-Equivalence Ratio for PDE 

 

The multiple NPS data points on the graph represent both the current geometry as 

well as a longer combustor configuration evaluated preciously. In previous testing of the 

NPS PDE, the main combustor was over twice the length of the one currently installed on 

the test stand. This resulted in a smaller initiator/main combustor volume ratio for the 
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previous runs which would lower the effect of the auxiliary oxygen on the overall system 

performance. Previous testing calculated a φ  of 1.0 or less while tests run for this thesis 

were at a φ of 1.27 which meant the engine was not being run at its ideal settings, 

resulting in the lower specific impulse values. Although only one test condition is 

presented in Figure 26.  it is representative of all the performance runs made at 40 Hz.  
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VI.  CONCLUSIONS 

The integration of a six degree of freedom thrust stand with independent linear-

displacement force measurement capability and optical diagnostics for fuel mass injection 

characteristics was performed to allow for two independent measurements of thrust and 

fuel flow rates for specific impulse performance measurements. The successful 

application of the optical fuel measurement system using TDLs demonstrated the 

advantages of quantitative temporal fuel profile information. The results allowed for the 

fuel distribution to be accurately determined, resulting in an equivalent combustor fuel 

mass loading for specific impulse calculations.   

The successful design of the ‘smart’ real time control system for the PDE allowed 

for the automation of the overall system. This produced the ability to actively vary the 

engine operating parameters during a run in the attempt to find the ideal run parameters 

for maximizing performance. This system was used to demonstrate operational 

frequencies of up to 50 Hz on the valveless geometry. 

Finally, the integration of the aforementioned systems has allowed for high 

fidelity performance data on the valveless engine PDE geometry at a fixed condition. The 

data will be provided to researchers within the ONR PDE Research program to aid in the 

proper modeling of the NPS system and aid in the continued development/evolution of 

the NPS PDE architecture.  
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 APPENDIX A NPS PULSE DETONATION ENGINE DRAWINGS 

 
Figure 27.   NPS Pulse Detonation Engine 

 

 
Figure 28.   Internal view of PDE Initiator, Diffraction Plane, and  Main Combustor 
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APPENDIX B TEST CELL STANDARD OPERATING 
PROCEDURES 

Test Cell #2 
Standard Operating Procedures (S.O.P) 

Engine Start UP 
(last modification date 01 December 2004) 

 
 
Prior to starting preparations 

1. Notify all lab personnel of live test cell. 
2. Turn ON warning lights 
3. Notify the Golf Course (x2167) (Only required if Hot Fire Test is conducted) 

 
Preparing Test Cell 

1.   Push the Emergency Stop IN (secured) 
2. Ensure MSD Ignition OFF (disarmed) 
3. Ensure that PXI Controllers, Amps, Kisslers, and Power strips in 2 the black 

cabinets are ON.  
4. On Scarp, open LABVIEW and ensure that the execution target contains the PXI 

address. Open control panel and run the program. 
a. RT Target address: 169.254.0.2 
b. Control Program Path 

i. Open 
ii. Test Cell #2 Manual Control v16 

iii. Enter Run Path Name  
1. If this is not completed prior to running you will lose the 

data file that was created with the default name. 
5. On Savage, switch view to PXI in windows mode.  

a. You are using LabView not RT 
b. High Speed DAQ Path 

i. Open on Desktop High Speed (8 Channel) 
ii. Ensure that you are set on the external trigger. 

iii. Ensure Device A set to 1, Ensure Device B set to 3 
iv. The vi has the ability to take two seconds of data and will from the 

moment that it receives the trigger. The vi should not be run until 
after the Vitiator sequence has been engaged. 

6. Turn ON BNC Cabinet Power Strip. 
7. OPEN Main Air (HP Air Tank Valve) 

a. Blue hand valve should be opened slowly as not to shock the lines 
8. OPEN Air valve for the noise suppression system. 
9. Ensure Shop Air in Test Cell #1 is CLOSED 
10. Enter Test Cell #2 and OPEN all the supply gas bottles that are going to be used 
11. Turn ON 24 VDC power supply for Test Cell #2 TESCOM Control Power. 
12. OPEN Shop Air and Purge Air (High Pressure Air) 
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13. OPEN water supply for the Noise suppression system. 
14. If required, set up any visual data recording equipment.  
15. Evacuate all non-essential personnel to the control room 
16. SET Initiator Fuel Regulator. 
17. Turn ON Kissler Amplifiers 

a. Ensure they have been reset 
b. Check Gain for each channel 

18. Connect Vitiator Spark Plug (if being used). 
19. Connect the Engine Spark Plug. 
20. Turn ON 24 VDC and 110 VAC in the control room cabinet 

 
Running the Engine 

1. Twist Emergency Stop Button clockwise (TEST CELL IS NOW LIVE) 
2. Set All Engine Control Parameters (on BNC Pulse Generator) 

a. Send Engine Parameters to BNC 
3. Set Main Air, Secondary/Purge Air, and all other gases pressures (ER3000) ON 

SAVAGE 
a. Set Main Air and Purge Air (ER3000) 

i. 001 Main Air 
ii. 004 Secondary Air 

b. Supply Gases in Test Cell #2 TESCOM Node Address 
i. 020 Main Fuel 

ii. 021 O2 
iii. 022 H2 

4. Run the Control VI. 
5. Enable the Test Cell on the VI. 
6. OPEN required ball valves. 
7. Verify Golf Course is clear 
8. Sound the Siren 
9. When area is clear, START record VCRs 
10. Enable MSD Ignition switch 
11. Manually engage Main Air flow 

 
***************************WARNING***************************** 

The next step will result in the commencement of a run profile and ignition. 
* Note: The 3-Way Ball Valve has a control in the Vitiator sequence. If the 

Vitiator is used then the 3-Way Ball will not divert through the engine until 375º F and 
will dump overboard at the end of the run at 175º F.  

 
12. COMMENCE RUN 

a. High Speed DAQ will be triggered and the engine profile will commence 
13. STOP RUN. 

a. Pulse generation will be stopped. 
14. Push Emergency Stop Button IN 
15. Secure MSD Ignition System 
16. Stop Main Air Flow 
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17. If personnel are entering Test Cell, Push Emergency Stop Button IN  
18. Secure 24VDC due to power flux in capacitor! 
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Test Cell #2 

Standard Operating Procedures (S.O.P) 
Engine Shut DOWN 

(last modification date 01 December 2004) 
 

 
1. Secure MSD Ignition System 
2. Set Main Air and High Pressure Air to Zero on SAVAGE. 
3. Vent all supply gases to ZERO 
4. Ensure all BV have been closed on the NI control panel 

a. 3 Way Ball Valve, Purge, and Supply Gasses 
5. Stop and Exit Control Code (ensure all relays have been set in original 

position) 
6. Turn OFF Power Strip in BNC Timing Cabinet 
7. Turn OFF 24 VDC and 110 VAC power supplies 
8. Push Emergency Stop Button IN 
9. Secure Main Air (HP Air valve in OFF position) 
10. Secure Air for the Noise suppression system. 
11. Remove Engine Spark Plug and Vitiator Spark Plug head 
12. Close Shop Air, High Pressure Air, and Supply gases in Test Cell #2 
13. Secure Kisslers  
14. Secure water for the Noise Suppression system. 
15. Secure TESCOM 24VDC power in Test Cell #2. 
16. Stow Cameras and other equipment used in testing. 
17. Turn OFF Warning Lights. 
18. Close Test Cell #2. 
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APPENDIX C THRUST CALIBRATION 

 
Figure 29.   Thrust Calibration Curve Relating Displacement (∆Voltage) to Force. 
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APPENDIX D LABVIEW BLOCK DIAGRAMS 

 
Figure 30.   LabVIEW Control Loop Block Diagram 
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Figure 31.   National Instruments PXI 1000B Instrumentation Chassis 
 

 
Figure 32.   Breakout Panels for PXI 6508 and PXI 6031E Data Acquisition Boards 
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APPENDIX E   ENGINEERING DRAWINGS 

 
Figure 33.   Thrust Stand Brace  
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Figure 34.   Main Air Choke (0.016637 m) 
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