
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2004-12

Building software tools for combat modeling and analysis

Chen, Yuanxin

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/1282

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36695018?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release: Distribution is unlimited

BUILDING SOFTWARE TOOLS FOR COMBAT
MODELING AND ANALYSIS

by

Chen Yuanxin

December 2004

 Thesis Advisor: Mikhail Auguston
 Second Reader: Richard Riehle

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response,
including the time for reviewing instruction, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden, to Washington headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY
(Leave Blank)

2. REPORT DATE
December 2004

3. REPORT TYPE AND DATES
COVERED Master’s Thesis

4. TITLE AND SUBTITLE: Building Software Tools for Combat
Modeling and Analysis
6. AUTHOR(S) Chen Yuanxin

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND
ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES) N/A

10. SPONSORING /
MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release: Distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The focus of this thesis is to use and leverage the strengths of dynamic computer program analysis
methodologies in software engineering testing and debugging such as program behavior modeling and event
grammars to automate the building and analysis of combat simulations. An original high level language
METALS (Meta-Language for Combat Simulations) and its associated parser and C++ code generator were
designed to reduce the amount of time and developmental efforts needed to build sophisticated real world
combat simulations. A C++ simulation of the Navy’s current mine avoidance problem in littoral waters was
generated using high level METALS description in the thesis as a demonstration. The software tools that
were developed will allow users to focus their attention and efforts in the problem domain while sparing
them to a considerable extent the rigors of detailed implementation.

15. NUMBER
OF PAGES 201

14. SUBJECT TERMS Event Grammar, Context Free Grammar, BNF, Rigal, Lexical
Analyzer, Language Parser, Code Generator, Mine Avoidance Concept, METALS,
Latvia

16. PRICE
CODE

17. SECURITY
CLASSIFICATION

OF REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS

PAGE Unclassified

19. SECURITY
CLASSIFICATIO
N OF ABSTRACT

Unclassified

20.
LIMITATION
OF
ABSTRACT

UL

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release: distribution is unlimited

BUILDING SOFTWARE TOOLS FOR COMBAT MODELING AND ANALYSIS

Chen Yuanxin

Major, Republic of Singapore Navy
B.S. (Hons) Elect, Nanyang Technological University, 1996

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2004

Author: Chen Yuanxin

Approved by: Dr. Mikhail Auguston

Thesis Advisor

Dr. Richard Riehle
Second Reader

Dr. Peter J. Denning
Chairman, Department of Computer Science

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

 The focus of this thesis is to use and leverage the strengths of dynamic computer

program analysis methodologies in software engineering testing and debugging such as

program behavior modeling and event grammars to automate the building and analysis of

combat simulations.

 An original high level language METALS (Meta-Language for Combat

Simulations) and its associated parser and C++ code generator were designed to reduce the

amount of time and developmental efforts needed to build sophisticated real world combat

simulations. A C++ simulation of the Navy’s current mine avoidance problem in littoral

waters was generated using high level METALS description in the thesis as a

demonstration. The software tools that were developed will allow users to focus their

attention and efforts in the problem domain while sparing them to a considerable extent the

rigors of detailed implementation.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION ...1

A. BACKGROUND ...1

B. THE PROCESS OF BUILDING COMBAT MODELS BASED ON THE
DYANMIC ANALYSIS APPROACH...4

C. OTHER SIMILAR OR RELATED WORK IN THIS FIELD........................6

II. THE EVENT BASED METALANGUAGE FOR SIMULATIONS.........................9

A. LANGUAGE DESIGN OVERVIEW ..9

B. STEP 1 - PROGRAM BEHAVIOR MODELING..9

C. STEP 2 - EVENT MODELING... 12

D. STEP 3 - RELATIONSHIPS BETWEEN EVENTS.................................... 15

E. STEP 4 - METALS SYNTAX AND SEMANTICS 17

III. IMPLEMENTATION OF METALS ... 37

A. AN OVERVIEW OF THE METALS COMPILER37

B. COMPILER DEVELOPMENT TOOL ...38

C. THE METALS LEXICAL ANALYZER ..45

D. THE METALS PARSER...46

E. THE METALS CODE GENERATOR..76

IV. APPLICATIONS OF METALS..101

A. EXAMPLE 1 - SIMPLE COIN TOSS... 101

B. EXAMPLE 2 - MINE AVOIDANCE IN LITTORALS 108

V. CONCLUSION..121

APPENDIX A - SOURCE CODE FOR METALS COMPILER 118.............................123

APPENDIX B - MINE AVOIDANCE SIMULATION IN METALS 136 143

viii

APPENDIX C - MINE AVOIDANCE SIMULATION IN GENERATED C++ 161

LIST OF REFERENCES...179

INITIAL DISTRIBUTION LIST ..181

ix

LIST OF FIGURES

Figure 1. Simulating Discrete Events..2
Figure 2. Incorporating continuous variables into discrete events simulations...............3
Figure 3. Overview of the Combat Model Building Process. ..5
Figure 4. The role of the Meta Language in simulation. ... 10
Figure 5. An Event Set. ... 15
Figure 6. An Event Chain. .. 15
Figure 7. Alternative Events. .. 16
Figure 8. Concurrent Events. .. 17
Figure 9. Code example for Rules 2 and 3... 20
Figure 10. Code example for Rule 4... 21
Figure 11. Code example for Rule 5... 22
Figure 12. Code example for Rule 6... 24
Figure 13. Code example for Rule 7... 25
Figure 14. An Event Chain - Part 2. ... 26
Figure 15. An Event Chain - Part 3. ... 26
Figure 16. An Event Chain - Part 3. ... 27
Figure 17. The SIMPLE Pattern. .. 28
Figure 18. The ACTION Pattern. ... 29
Figure 19. The CONDITIONAL Pattern. .. 30
Figure 20. The ALTERNATIVE Pattern - Part 1.. 30
Figure 21. The ALTERNATIVE Pattern - Part 2.. 31
Figure 22. The ALTERNATIVE Pattern - Part 2.. 31
Figure 23. Special case for ALTERNATIVE Pattern - Part 1A. 32
Figure 24. Special case for ALTERNATIVE Pattern - Part 1B. 32
Figure 25. Special case for ALTERNATIVE Pattern - Part 2A. 32
Figure 26 Special case for ALTERNATIVE Pattern - Part 2B. 32
Figure 27. The ALTERNATIVE Pattern. .. 33
Figure 28. The ITERATION Pattern - Part 1... 34
Figure 29. The ITERATION Pattern - Part 2... 34
Figure 30. The ITERATION Pattern - Part 3... 34
Figure 31. The GROUP Pattern. ...35
Figure 32. Composite Events. ...35
Figure 33. Components of the METALS Compiler. ...38
Figure 34. A Simple RIGAL Program. ...39
Figure 35. A Simple List Comprising 3 Atoms...40
Figure 36. A Simple Tree Comprising 2 Atoms. ..41
Figure 37. A Multi-layer Tree Comprising 3 Atoms...42
Figure 38. A Multi-layer Tree Comprising 5 Atoms...42
Figure 39. Tree Addition. ..43
Figure 40. A Simple RIGAL Rule...44
Figure 41. An example of an input stream of tokens. ...45
Figure 42. An example of code with syntax error. ..45
Figure 43. Input source code. ..46
Figure 44. Output list of tokens...46

x

Figure 45. Expected Input Pattern for a METAL programs..47
Figure 46. Program Execution Flow for #Parse Rule. ... 47
Figure 47. The METALS Parsed Tree Structure. .. 48
Figure 48. The METALS Parsed Tree. .. 48
Figure 49. Expected Input Pattern for #Title. ... 49
Figure 50. Program Execution Flow for #Title Rule.. 49
Figure 51. Output returned by the #Title rule. .. 49
Figure 52. The #Title Parsed Tree Structure... 49
Figure 53. Expected Input Pattern for #Title. ... 50
Figure 54. Output returned by the #Title rule. .. 50
Figure 55. The #Header Structure. .. 50
Figure 56. Expected Input Pattern for #World. ... 51
Figure 57. Program Execution Flow for #World Rule.. 51
Figure 58. Output returned by the #World rule...52
Figure 59. The #World Parsed Tree Structure... 52
Figure 60. Expected Input Pattern for #Entity. ... 53
Figure 61. Program Execution Flow for #Entity Rule. .. 53
Figure 62. Output returned by the #World rule...53
Figure 63. The #Entity Parsed Tree Structure. ... 54
Figure 64. Expected Input Pattern for #Event. ... 54
Figure 65. Program Execution Flow for #Event Rule.. 55
Figure 66. Output returned by the #Event Rule. ..55
Figure 67. The #Event Parsed Tree Structure... 55
Figure 68. Expected Input Pattern for #Event_Attributes. 56
Figure 69. Program Execution Flow for #Event_Attributes Rule. 56
Figure 70. Output returned by the #Event_Attributes rule.56
Figure 71. The #Event_Attributes Parsed Tree Structure. 57
Figure 72. Expected Input Pattern for #Event. ... 57
Figure 73. Program Execution Flow for #Chain rule. ..58
Figure 74. Output returned by the #Chain rule...58
Figure 75. The #Chain Parsed Tree Structure... 58
Figure 76. Expected Input Pattern for #Rule. .. 59
Figure 77. Program Execution Flow for #Rule rule. ..59
Figure 78. Output returned by the #Chain rule...59
Figure 79. The #Rule Parsed Tree Structure. .. 60
Figure 80. The Expected Input Pattern for #Pattern. ... 61
Figure 81. Output for a single event pattern..61
Figure 82. Output for a list of event patterns. ...62
Figure 83. The #Pattern Parsed Tree Structure for A Single Pattern........................ 62
Figure 84. The #Pattern Parsed Tree Structure for Lists of Patterns. 62
Figure 85. Expected Input Pattern for #Iteration. ... 63
Figure 86. Output returned by the #Iteration rule. ..63
Figure 87. The #Iteration Parsed Tree Structure... 64
Figure 88. Expected Input Pattern for #Loop. .. 64

xi

Figure 89. Output returned by the #Loop rule. ..65
Figure 90. The #Loop Parsed Tree Structure. .. 65
Figure 91. Expected Input Pattern for #Conditional. ... 65
Figure 92. Output returned by the #Conditional rule. ...66
Figure 93. The #Conditional Parsed Tree Structure.. 66
Figure 94. Expected Input Pattern for #Conditional. .. 66
Figure 95. Output returned by the #Alternative rule. ...67
Figure 96. Expected Input Pattern for #Outcome. .. 67
Figure 97. Expected Input Pattern for #Outcome. .. 68
Figure 98. Output returned by the #Probability rule. ... 68
Figure 99. Output returned by the #Outcome rule. ... 68
Figure 100. Output returned by the #Alternative rule. ... 68
Figure 101. The #Alternative Parsed Tree Structure.. 69
Figure 102. Expected Input Pattern for #Simple. ... 69
Figure 103. Output returned by the #Simple rule. ... 70
Figure 104. The #Simple Parsed Tree Structure. ... 70
Figure 105. Expected Input Pattern for #Group. ... 70
Figure 106. Output returned by the #Alternative rule. ...71
Figure 107. The #Group Parsed Tree Structure... 71
Figure 108. Expected Input Pattern for #Group. ... 71
Figure 109. Output returned by the #Action rule. ...72
Figure 110. The #Action Parsed Tree Structure. ... 72
Figure 111. Program Execution Flow for #Pattern.. 73
Figure 112. The METALS Parsed Tree Structure. .. 76
Figure 113. Structure of generated C++ simulation program. .. 76
Figure 114. Opening 5 output files for writing. ... 77
Figure 115. Feeding the parsed tree into specific code generating rules. 77
Figure 116. Generating the C++ main program... 78
Figure 117. Input to #Generate_Title Rule. ..78
Figure 118. Output from #Generate_Title Rule. ...78
Figure 119. Input to #Generate_Headers Rule...79
Figure 120. Output from #Generate_Headers Rule. ..79
Figure 121. Input to #Generate_Worlds Rule. ..80
Figure 122. Data structure for each world object in list $Worlds.80
Figure 123. Output for each world object from #Generate_Worlds Rule in

Worlds.h. ...81
Figure 124. Input to #Generate_Entities Rule. ...82
Figure 125. Data structure for each entity object in list $Entities.82
Figure 126. Output from #Generate_Entities Rule in Entitiesh.82
Figure 127. Input to #Generate_EventClasses Rule...83
Figure 128. Data structure for each event object in list $Events...............................83
Figure 129. Output from #Generate_Events Rule in Eventsh.......................................84
Figure 130. Event chain code generation mapping. ..85
Figure 131. Input to #Generate_EventChains Rule. ..86

xii

Figure 132. The input data structure of an event chain.. ...86
Figure 133. Code generated directly by #Generate_EventChains..86
Figure 134. The input data structure of an event chain. ..87
Figure 135. Code generated directly by #Generate_Rules.87
Figure 136. The input data structure of an event pattern...88
Figure 137. Mapping of code generating rules to event types.88
Figure 138. Input to #Generate_Iteration Rule..89
Figure 139. Code generated by #Generate_Iteration when $Op = '='.90
Figure 140. Portion of the RIGAL source code to implement iteration........................90
Figure 141. Code generated by #Generate_Iteration when $Op is not '='. ..91
Figure 142. Input to #Generate_Alternative Rule..91
Figure 143. Code generated by #Generate_Probability for n outcomes.92
Figure 144. Portion of the RIGAL source code to implement alternatives...................92
Figure 145. Standard print the C++ pseudorandom number generator in the output....93
Figure 146. Input to #Generate_Probability Rule..95
Figure 147. Portion of the RIGAL source code to implement IF-ELSE statements.....96
Figure 148. Input to #Generate_Alternative Rule..96
Figure 149. Code generated by #Generate_Conditional.97
Figure 150. Input to #Generate_Loop Rule. ...97
Figure 151. Code generated by #Generate_Loop. ..97
Figure 152. Input to #Generate_Simple Rule..98
Figure 153. Code generated directly by #Generate_Simple.98
Figure 154. Input to #Generate_Alternative Rule..99
Figure 155. METALS source code for Simple Coin Toss example. 101
Figure 156. Intermediate parsed tree produced by METALS parser.............................. 103
Figure 157. Listings for MAINCPP generated by METALS code generator. 104
Figure 158. Listings for ENTITIESH generated by METALS code generator. 104
Figure 159. Partial Listings for EVENTSH generated by METALS code generator.... 105
Figure 160. Listings for CHAINSH generated by METALS code generator. 106
Figure 161. Screen output by program after execution. .. 106
Figure 162. Mine Clearance State Diagram... 109
Figure 163. Mine Avoidance State Diagram.. 110
Figure 164. Event Trace for Mine Avoidance. .. 111
Figure 165. Entities needed in the simulation. ... 112
Figure 166. Pseudo-code for Event Move.. 113
Figure 167. METALS source code to set up a minefield..114
Figure 168. METALS source code calculate the expected number of mines and

NOMBOs. ..114
Figure 169. Algorithm for spreading mines and objects.. ...115
Figure 170. Algorithm for setting the object type for each Minefield square.............115
Figure 171. Spatial Poisson Process for Mine Avoidance... 116
Figure 172. Computing duration over event traces.. 117
Figure 173. Screen output by Mine Avoidance simulation program after execution 1. 119
Figure 174. Screen output by Mine Avoidance simulation program after execution 2. 119
Figure 175. Screen output by Mine Avoidance simulation program after execution 3. 120

xiii

LIST OF TABLES

Table 1. Relationships Between Events.. 16
Table 2. Token pair concatenation table ..75
Table 3. Iteration Operators ...89
Table 4. Continuous Pseudorandom Variate Generators ...94
Table 5. Discrete Pseudorandom Variate Generators ..95
Table 6. Mine Avoidance Events .. 111
Table 7. Mine Avoidance Entities... 112
Table 8. Results of Simulation Runs... 118

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

ACKNOWLEDGMENTS

 I would like to offer my deepest gratitude to my advisor Dr Mikhail Auguston for

his clinical insight, invaluable guidance and excellent facilitation during the course of

work on this thesis. His remarkable patience, constant encouragement, faith in my

abilities and wonderful ability to teach and explain the abstract and the complicated with

great clarity and simplicity has untied countless dead ends and reduced the number of

sleepless nights.

 I would also like to thank my second reader Dr. Richard Riehle for his assistance

and for taking time out to go through my work. His presence and remarks have always

been an inspiration and a constant source of motivation.

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

EXECUTIVE SUMMARY

 As an active area of research in the field of software engineering, dynamic computer

program analysis methodologies such as program behavior modeling and event grammars

are currently used to automate software analysis, testing and debugging.

 In program behavior modeling, a computer program is modeled as a set of inter-

related events over finite time (event trace). Each program event is abstracted as an object

(event type) with attributes. Relationships such as precedence between events are also

defined.

 The behavior of events is described formally using context free semantic rules

known as event grammars. A specialized high level programming language based on the

notion of event grammars can consequently be designed for the purpose of describing

program behavior and to perform computations over event traces. Such program behavior

modeling is traditionally used in software analysis, testing and debugging, whereby specific

routines are built into these precise program behavior models for assertion checking,

debugging queries, execution profiles and performance measurements.

 This thesis extended this concept in a new direction by using the methodology to

build combat simulation models and analyze their behavior. A high level language called

"Meta-Language for Combat Simulations" or METALS is designed and implemented, along

with its parser and C++ code generator to enable users to describe and build sophisticated

combat models with a high level of abstraction and simplicity. Robust and complex

combat simulation C++ programs can be created automatically using high level description

in METALS.

 The language parser and code generator are written using the RIGAL compiler

construction language tools developed at the University of Latvia. As an important

demonstration in the thesis, METALS was used to model the Navy's real world and

doctrinal problem of Mine Avoidance in littoral waters. The stochastic processes and the set

of definitive and procedural events that occur are translated from relatively simple high level

xviii

definitions by METALS into their equivalent and substantially longer and more complex

lower language C++ code. METALS will allow users to focus their attention more on the

problem at hand than on the rigors of its implementation in lower level code.

1

I. INTRODUCTION

A. BACKGROUND

1. The Existing Approach To Software Debugging Automation

 The existence of unintended, hidden or unknown behaviors in a computer program

can have serious security, reliability, safety and other repercussions for the system(s) within

which the program reside. Therefore the dynamic analysis of the behavior of substantial and

complex computer programs while they are running constitutes an important and active area

of research in software engineering. In dynamic analysis, the specific behaviors of a

computer program such as sequences of steps performed, histories of variable values,

function call hierarchies, frequencies of traversed paths, frequencies of execution of

program blocks (program hot spots), race conditions and memory reference errors are

typically instrumented either by inserting instrumentation code (assertions) directly into the

source code, using the compiler itself to insert the code during compile time, or through the

re-writing of binary images containing the text sections for shared libraries or other

applications [AUG03] [BALL99]. Automated tools for performing these often manually

performed and time consuming techniques cannot be developed easily without a more

precise and formal representation (model) of program behavior. In other words, tools or

programs developed to instrument other programs automatically will need to recognize

the standard patterns of behavior in the programs and the semantic rules that govern these

patterns of behavior. A high level language that can be used to model program behaviors

based on events and event traces will therefore be extremely useful in this context.

Notable examples of such languages that have been designed for debugging automation

include the EEL [LARUS95], FORMAN [AUG98], UFO [AUG03].

2. Adapting The Approach To Build Combat Simulation Models

 A combat simulation model essentially simulates an abstract representation of a

particular military system. A military system typically comprises a set of entities such as

platforms, weapons, sensors and soldiers mutually interacting and consuming resources

2

within a physical environment resulting in a chain of co-related events. Therefore

simulation models of military systems are frequently discrete-event simulation models

where the state of the system only changes at discrete points of time, and a change in state is

driven by an event (event-driven). In additional, each event also exists autonomously and is

discrete, implying that nothing happens during the transition between one to the next.

Figure 1. Simulating Discrete Events.

 As illustrated in Figure 1 above, discrete events are often simulated in a computer

program by treating each program execution step (each cycle in an iteration or loop in terms

of data structure) to represent a transition between successive events. The stochastic nature

of the intervals between two events can be implemented by defining a duration attribute for

each event and then updating this attribute with a randomly generated value around some

empirically obtained mean value during a transition.

 A continuous-event simulation on the other hand is characterized by having the state

of the system changes constantly over time (time-driven). Although this thesis's focus is

primarily on simulation of discrete event systems, an event driven simulation model can also

be extended to incorporate continuous variables by dividing the randomly generated event

duration into quasi-fixed time intervals, and to perform functional computations on

continuous variables over these quasi-fixed time intervals using as illustrated in figure 2

below.

Program Execution
Step N

Event A Event B

Program Execution
Step N+1

Event C
t1 t2

Program Execution
Step N+2

A.Duration = t1
t1 = Random_Variate

B.Duration = t2
t2 = Random_Variate

3

Figure 2. Incorporating continuous variables into discrete events simulations.

 Discrete-event simulation models are usually analyzed numerically and exist

essentially as computer programs in slight contrast with other types of models such as

mathematical (analytic), statistical and input-output models. Because discrete-event systems

are built from the basic notion of an event as an elementary unit of action, the dynamic

analysis program behavior modeling approach described in the previous section can be

adapted to model and describe the behavior of discrete-event military systems. This forms

the focus of this thesis research. Instead of automating the generation computer programs

with instrumentation code and functionalities built-into them using some high level

language, the main aim here is to design and develop an entirely new high level language

centered around the notion of events to built or generate discrete-event combat simulation

models automatically in lower level code. In this thesis, the conception, design and

implementation of the high level language called the Meta Language for Combat

Program Execution
Step N

Event A Event B

Program Execution
Step N+1

Event C
t1 t2

Program Execution
Step N+2

A.Duration = t1
t1 = Random_Variate

B.Duration = t2
t2 = Random_Variate

Number of quasi-fixed
time intervals = m1

m1 = t1 / constant

Initial Value = XN-1

Final Value = XN

Continuous function
f(X) performed over
m1 intervals

Number of quasi-fixed
time intervals = m2

m2 = t2 / constant

Initial Value = XN

Final Value = XN+1

Continuous function
f(X) performed over
m2 intervals

4

Simulations (METALS) will be described in detail. Such a high level language will allow

users to focus their attention more on the simulation problem at hand than on the rigors of its

implementation in lower level code.

B. THE PROCESS OF BUILDING COMBAT MODELS BASED ON THE
DYANMIC ANALYSIS APPROACH

 A simulation program can be written directly in any native general purpose language

such as FORTRAN, Basic, C, C++ or Java. However for practical reasons, a discrete event

simulation computer program will need to be written in a language that best supports the

abstraction of real world entities, interactions and processes. Object oriented languages such

as C++ or Java will therefore be the two most suitable candidates, due to their widespread

usage and the availability of development tools and compilers. The aim of the thesis is not

to design an entirely new language for simulation that duplicates the full functionalities of

these languages, the purpose but to automate the generation of programs written more

robustly in these languages by allowing users to model a real world system using intuitive

and higher level descriptions and definitions. In this thesis, the chosen language for the

generated simulation program is C++ on a PC as a matter of preference, although the entire

prescribed methodology will technically work with any target language.

 The process of building combat models based on the dynamic analysis approach is

envisaged to comprise of several intermediate stages as illustrated in Figure 3.

 In Stage 1, a high level description of the model is first created by the user visually

using a graphical user interface engine. The output of this process is a text file containing

the description of the model in the high level language.

 In Stage 2, a custom built compiler comprising a language parser and code generator

will be involved to translate the high level model description into the equivalent C++

program code.

 In Stage 3, a C++ compiler will compile the equivalent C++ code into an executable

5

that is ready to be run on the targeted platform.

 Stages 4 and 5 are highly automated tasks involving extensive simulation runs and

data aggregation and analysis.

 The main focus and most important research work accomplished and described in

this thesis is the design and development of the high level language needed in Stage 1 as

well as its associated language parser and code generator in Stage 2. A detailed description

of this high level language - the Meta-Programming Language for Simulation or METALS

and the implementation details of the parser and code generator will be presented in

Chapters I and III respectively.

Figure 3. Overview of the Combat Model Building Process.

Stage 1: Graphical User Interface for Combat Modeling

Stage 2: Translation into C++ code using custom built METALS compiler

Stage 3: Translation into Executable using C++ Compiler

Stage 4: Simulation Runs in Runtime Environment

Stage 5: Statistical Data Analysis using MATLAB

Text file with model description in METALS

C++ Code (Intermediate Level)

Executable

Statistical data files

Analysis Results

6

C. OTHER SIMILAR OR RELATED WORK IN THIS FIELD

 1. Early Programming Languages Designed Specifically For Simulation

 High level object-orientated simulation programming first originated with the

SIMULA language [NYGAARD] first proposed in 1966. Although SIMULA can be used

as general purpose language, it was designed to address the problem of describing complex

real world systems in discrete simulations. It introduced the record class as a form of data

abstraction and is a precursor to object-oriented programming languages like Smalltalk and

C++.

 In the simulation of continuous systems, the Continuous System Simulation

Language (CSSL) [CSSL67] was first developed by the Simulations Council Inc (SCI) for

the Jet Propulsion Lab and became commercially available in 1968, and was widely

distributed from 1969-1875 [COMDIC1]. A later variant of CSSL, the Continuous System

Modeling Program (CSMP) [SPECK76] was first published in 1976. IBM developed a

APL compiler for simulations written in the CSMP language in the late 1970s and

introduced three different products based on this compiler in the mainframe computers of

the time.[IBM79]. In the CSMP language, models are directly entered in the form of

mathematical equations and the language provides a large number of predefined

mathematical and engineering functions and blocks [ALFON99].

 The earliest simulation programming language based on the notions of Entities,

Attributes, Sets and Events (EAS-E) was the original SIMSCRIPT [I] language developed

by Harry Markowitz et al at the RAND Corporation in Santa Monica [EAS-E][HYPER1].

As a precursor to FORTRAN, the language with a free-form English like grammar

influenced SIMULA and was designed primarily as a language for programming discrete

events. The latest incarnation of the language, the SIMSCRIPT II.5 is developed,

maintained and currently marketed as a complete but proprietary and expensive simulation

development environment by CACI.

7

2. Recent Meta Programs And Languages Used To Generate Simulation
Programs In A Lower Level Language

 Meta programs are programs used to generate another program usually in a lower

level languages. The most common examples of meta programs languages are the macro

pre-processors, compilers and interpretators.

 A more recent example of a meta program used to generate simulation programs is

the APL CSMP/OO-CSMP compiler developed by Manuel Alfonseca et al [ALFON99] in

1999. His team first developed a compiler written in APL to translate simulation models

written in the CSMP language into APL simulation programs. His team also extended

the CSMP language to create the new Object Oriented CSMP (OO-CSMP) which

incorporated object oriented features such as definition of objects and classes, simple

inheritance, vectors of objects, definition of attributes and functions (methods) associated

to a class of objects and a simple way to reference object and object vectors attributes and

methods. They developed a separate compiler written in APL2 to translate simulation

models written in OO-CSMP into C++ simulation programs. C++ was chosen to

overcome performance problems the team experience with APL programs. Both the APL

and APL2 compilers comprised of a lexical analyzer, a syntax analyzer (parser) and a

code generator.

 A metalanguage is a formal language used to describe other object languages.

Event based metalanguages such as EEL [LARUS95], FORMAN [AUG98] and UFO

[AUG03] are used to define and insert instrumentation code inside a target object

language like C++. For simulation model construction, the OO-CSMP language

described earlier is suitable for modeling continuous systems and the time based

interactions between entities inside these systems. The event based metalanguage for

combat simulations (METALS) presented in this thesis relatively unique in this regard.

8

THIS PAGE INTENTIONALLY LEFT BLANK

9

II. THE EVENT BASED METALANGUAGE FOR SIMULATIONS (METALS)

A. LANGUAGE DESIGN OVERVIEW

 The design of the metalanguage METALS begins with the rationalization and

aggregation of the behavior of a simulation program. There are four important steps that are

integral to this process of rationalization, namely:

• Step 1 - Differentiating between the design and problem domain behaviors

of the program.

• Step 2 - The abstraction of each design domain event and simulated real

world event as an object (event type) with attributes and methods.

• Step 3 - The definition of a set of relationships between events over finite

time.

• Step 4 - The formal method of translating of system behavior into event

traces using event grammars.

B. STEP 1 - PROGRAM BEHAVIOR MODELING

 The behavior of a simulation program is first examined in two different contexts,

namely in the context of the program's design and flow (design domain) and in the context

of the simulated event flows (problem domain).

 1. Design Domain Preambles

 In the design domain, all event driven simulation programs typically share a

common set of characteristics and events. The common characteristics include:

10

• The ability to perform multiple simulation runs and to allow users to define

the initial and terminating conditions for each of these runs.

• The ability of perform statistical computations and performance

instrumentation over the simulation runs.

• The provisions of special routines and libraries such as random variable

generators to support the simulation.

• The support for the object-oriented modeling of real world entities and

events.

 The common design domains events are largely dictated by the specific

programming language in which the program is developed. For example, a typical sequence

of events that occur during the writing of a standard C++ program is illustrated below:

Figure 4. Sequence of Events in C++ Simulation Program Creation.

Define simulation Title

Include Header Files containing global

routines and parameters

Define Classes representing real world

Environments, Entities & Events

Define simulation start point and write the

Main program routine.

Implement the precedence and inclusion of

events in code as function calls

11

 This means that METALS will needed to have a syntax that supports the various

types of programming activities albeit from a higher level of abstraction. For example, a

preliminary context free language rule based on the sequence of events shown in Figure 4

can be defined as follows:

<Simulation_Program> ::=

<Title> <Headers> <Entities> <Events> <Rules> (2.1)

 Rule 2.1 stipulates that a simulation program can be defined as a series of title,

headers, entities, events and rules that govern how the entities and events interact. Each of

the five non-terminating symbols on the right hand side of the rule can subsequently be

further defined. For example, the <Headers> symbol represents a list of headers file that the

user intends to include in the program can be represented as an iterative series of similar

series header <Header> which in turn is terminated by the reserved world "include"

followed by the user specified filename as shown in Rules 2.2 and 2.3 below.

<Headers> ::= <Header*> (2.2)

<Header> ::= "include" <filename> (2.3)

 Here the asterisk symbol in rule 2.2 is a standard BNF (Backus Naur form) symbol

used to represent iteration. A complete walk through of the final METAL language in

context free grammar BNF will be given in the later sections of this chapter.

 2. Problem Domain Preambles

 In the problem domain, the basic assumption made in the design of the language is

that any military system will comprise entities generating chains of interrelated events. The

behavior of the simulated system is then abstracted as a set of inter-related events over finite

time (event trace).

12

 The sequence and order in which events occur in the real world can be aggregated

along a few standard patterns of behavior, which in turn will be used to construct the syntax

and semantics of the METALS for simulation. These standard patterns include:

• Iteration - The same set or sequence of events is repeated a number of times.

• Loop - The same set or sequence of events is repeated while some condition

in the system remains true.

• Conditional - A set or sequence of events is set to occur if the condition is

right, if not an alternative set or sequence of events will result.

• Alternative - There exist a number of alternative event(s) that can follow a

set or sequence of events, each alternative having some probability of

occurrence.

• Concurrency - A parallel set or sequence of events in occurring concurrently

with the current set or sequence of events.

• Action - Each event typically occurs with some interaction between entities

in the system resulting in a manipulation of the system, entity or events

attributes.

C. STEP 2 - EVENT MODELING

1. Basic Definition And Characteristics Of Events

 An event is defined as something that happens at a given place and time. Every

event also has a duration which is based from the event's start and finishing times, and can

either be deterministic or stochastic.

 Two basic binary relationships exist between events, namely precedence and

13

inclusion [AUG98].

 Any arbitrary event can either precede or be included in another event. The

following example shows an event trace for event A. In this simple event trace, event B

occurs before C (Precedence) and both events B and C in sequence constitutes a larger event

A (Inclusion).

 Rule A :: B C (2.3)

 The precedence relation defines partial order of events. Two events are not

necessary ordered for they also can happen concurrently. The following example illustrates

this. In this event trace, events C and D are concurrent events which occurs after event B

but before event E.

 Rule A :: B { C D } E (2.4)

 Such an event based approach to modeling real world behavior is compatible with

the principles of discrete event modeling and simulation. The completion of one event

triggers another. An event is not a point in the state space of the system but has a duration

(starting and ending time) within which its attributes can vary. Such a duration can be

deterministic (fixed) for a particular class of events or be stochastic in which inter-arrival

times between events is randomly distributed about some known mean value or parameters.

The manipulation of an event's attributes is also useful, especially in simulating the

consumption of resources.

 2. Formal Axioms

 The formal axioms [AUG98] that should be satisfied by any events based on these

two binary relationships include:

• Mutual exclusion

14

A PRECEDES B implies that A in not IN B (2.5)

• Non-commutability

A PRECEDES B implies that B does NOT PRECEDES A (2.6)

A IN B implies that B is NOT IN A (2.7)

• Transitivity

If A PRECEDES B, and B PRECEDES C,

then A PRECEDES C (2.8)

• Distributivity

If A is IN B, and B PRECEDES C,

then A PRECEDES C (2.9)

If A PRECEDS B, and B is IN C,

then A PRECEDES C (2.10)

15

D. STEP 3 - RELATIONSHIPS BETWEEN EVENTS

 1. Basic Relationships

 The last step prior to the design of the language syntax and semantics is to formalize

the relationships between events.

• Event Set - A set of events or event set is expressed as an event that is

composed of a set of other unrelated or concurrent events as shown in
Figure 5 below.

Figure 5. An Event Set.

• Event Chain - A sequence of events or event chain is expressed as anevent

that is composed of a sequence of related events that is temporally ordered as
shown in Figure 6 below.

Figure 6. An Event Chain.

• Alternative Paths - Separate alternative sets or sequences of events can
follow an event, each with some probability of occurrence as shown in
Figure 7 below.

Ev1

Ev2 Ev3 Evn

...

Time

…….

Ev1

Ev2 Ev3 Evn

16

 where 1P
n

2K
K =∑

=

 Figure 7. Alternative Events.

 In terms of notation:

Notation Description
Ev1 An Event
Ev1 :: { Ev2, Ev3 … Evn } A set of concurrent n events
Ev1 :: Ev2=>Ev3=>…Evn A sequence of events
Ev1 :: { Ev2, Ev3 … Evn } |
 { Evn+1, Evn+2 … Evm } |
 …

Separate alternative sets of events

Ev1 :: Ev2=>Ev3=>…Evn |
 Evn+1=>Evn+2=>…Evm |
 ...

Separate alternative sequences of events

Ev1 :: { Ev2, Ev3 ... Evn } |
 Evn+1=>Evn+2=>...Evm

Separate alternatives consequence of either a
set or sequence of events

Table 1. Relationships Between Events.

 2. Concurrent Events

 For events that occur concurrently, they can be modeled as a set of events where

special synchronizing sub-events common to these events can be defined for information

exchange. For example, if sequences Ev2=>Ev3=>Ev4 and Ev5=>Ev6=>Ev7 are

concurrent sequences belonging to the overall system event Ev1, in terms of notation:

Ev1 = Ev2=>Ev3=>Ev4 | Ev5=>Ev6=>Ev7 (2.11)

Ev1

Ev2 Ev3 Evn

P1 P2
Pn

17

Then special synchronizing event Evs can be defined for both threads, implying:

Ev1 = Ev2=>Ev3=>Evs=>Ev4 | Ev5=>Evs=>Ev6=>Ev7 (2.12)

 Figure 8. Concurrent Events.

E. STEP 4 - METALS SYNTAX AND SEMANTICS

 1. Overview of METALS

 METALS is a high level language used to model and built simulation programs in a

target language. Specifically, the language models the behavior of simulation programs as a

series of events known as event traces. Events can be sequentially ordered and any number

of child events can be included within a parent event based on the two fundamental

relationships of precedence and inclusion described earlier.

 Events are treated as objects (event types) with attributes, and computation over

event traces is possible through the manipulation of these attributes. For example, if a

simulation program S comprises a sequence of 3 events A, B and C, each with an attribute

defined as Duration, then the total duration for the simulation program can be obtained by

summing up the individual durations of each event as shown by the simple C++ expression

below:

Time
Ev2 Ev3

Evs
Ev4

Ev5 Ev6 Ev7

Ev1

18

BEGIN

 S.Duration = A.Duration + B.Duration + C.Duration;

END (2.13)

 In equation 2.13, BEGIN and END are METALS key words used to mark the direct

insertion of code written in the target language (C++ in this case).

 METALS is designed specifically to describe events. METALS leaves the

mechanisms for data and attribute manipulation by design largely to the target language.

2. The METALS Event Grammar

 The model of the simulation program is formally defined using an event grammar.

The event grammar is a set of axioms that describe possible patterns of basic relationships

between events of different type during the execution of the simulation program [AUG98].

 In METALS, a simulation program comprises the following series of design domain
based events:

• Define Name - A name for the simulation is defined along with its

description.

• Include Headers -Header files containing global libraries of parameters and

routines are included.

• Define and Instantiate Simulation Environments Objects - Classes of objects

representing the simulation environment within which entities reside and

interact are defined and instantiated.

• Entities - Classes of objects representing real world entities are defined and

instantiated.

19

• Events - Classes of objects representing real world events are defined.

• Chains - Chains of events and their associated patterns of behavior reflecting

the real world are defined by the user. At this point, event traces in the

problem domain are generation by the overall simulation program.

 Expressed in context free grammar, if the preceding design domain chain of events

is shown in BNF form1 below:

<Simulation_Program> ::=
 <Title>
 [<Header>*]
 [<World>*]
 [<Entity>*]
 [<Event>*]
 [<Chain>*] (Rule 1)

 Rule 1 is the quintessential formal definition of a simulation program in METALS.

Rule 1 mandates that all simulation program must be first named and the process of building

the simulation program should then be followed by the occurrences of five different types of

events in a prescribed order. This order is influenced by the order in which the simulation

program is constructed in the target language and reflects the semantics of this target

language (C++). The subsequent event grammar rules for METALS further describes each

of the six main event types defined in Rule 1. They are described in detail as follows:

1 In BNF notation, the meta-symbols "::=" means "is defined as", "|" means "or", "*" and means "repeated
zero or more times". The angle brackets "< >" represents non-terminal symbols that are used to name
syntax rules. The square brackets "[]" represents "optional".

20

 2. Rules 2 And 3

<Title> ::=
'SIMULATE'
<Simulation_Name>
['{' <Description> '}'] (Rule 2A)

<Simulation_Name> ::= Identifier (Rule 2B)

<Description> ::= String (Rule 2C)

 Rule 2 stipulates that a simulation program will begin with the keyword

SIMULATE followed by a name defined by the user and optional description enclosed by

curly braces.

<Header> ::= 'INCLUDE' <File_Name> (Rule 3A)

<File_Name> ::= Identifier (Rule 3B)

 Rule 3 stipulates that headers files written in the target language can be included into

the simulation program by preceding each header file name with the keyword INCLUDE.

A code example for Rules 2 and 3 is shown in Figure 9 below:

 Figure 9. Code example for Rules 2 and 3.

SIMULATE My_Program { Version 1.0 }

INCLUDE My_Filename1
INCLUDE My_Filename2

21

 3. Rule 4 - The WORLD Event

<World> ::=
'WORLD'
<World_Name>
'{' <World_Attributes> '}' (Rule 4A)

<World_Name> ::= Identifier (Rule 4B)

<World_Attributes> ::=
'ROWS' Number
'COLS' Number
<Terrain>
[<Attributes>] (Rule 4C)

<Terrain> ::= 'TERRAIN' '{' Identifier* '}' (Rule 4D)

<Attributes> ::= 'ATTRIBS' '{' <CPP_Code> '}' (Rule A)

<CPP_Code> ::= 'BEGIN' CPP_Expression 'END' (Rule C)

 Rule 4 allows the user to define a two dimensional array of objects representing the

physical environment within which entities reside and interact. Each of these objects of type

<World_Name> has a pre-defined attribute called <Terrain> which allows the users to

specify an unlimited number of terrain types. These terrain types are translated to an

enumerated data type in the target language (C++). Additional attributes for the objects can

be specified directly in the target language (C++) as an option. A code example for Rule 4

is shown in Figure 10 below:

 Figure 10. Code example for Rule 4.

WORLD Battlefield
{
 ROWS 100
 COLS 100
 TERRAIN { Forest Swamp Farm Barren Lake }
 ATTRIBS {
 BEGIN
 double Size;
 END
 }
}

22

 4. Rule 5 - The ENTITIY Event

<Entity> ::=
'ENTITY'
<Entity_Name>
'{' <Attributes> '}' (Rule 5A)
<Entity_Name> ::= Identifier (Rule 5B)

<Attributes> ::= 'ATTRIBS' '{' <CPP_Code> '}' (Rule A)

<CPP_Code> ::= 'BEGIN' CPP_Expression 'END' (Rule C)

 Rule 5 allows the user to define objects representing real world entities for the

simulation. Attributes for these objects are specified in the target language (C++) directly.

A code example for Rule 5 is shown in Figure 11 below:

 Figure 11. Code example for Rule 5.

ENTITY Tank
{
 ATTRIBS
 {
 BEGIN
 double speed;
 int status;
 long ammo_level;
 END
 }
}

23

 5. Rule 6 - The EVENT Event

<Event> ::=
'EVENT'
<Event_Name>
‘{‘ <Event_Attributes>* ‘}’ (Rule 6A)

<Event_Attributes> ::=
['DET''DUR' '=' <Duration>]||
['STO''MEAN' '=' <Mean>]
[<Attributes>] (Rule 6C)

<Attributes> ::= 'ATTRIBS' '{' <CPP_Code> '}' (Rule A)

<CPP_Code> ::= 'BEGIN' CPP_Expression 'END' (Rule C)

<Event_Name> ::= Identifier (Rule D)

 Rule 6 is the key language construct for METALS. Rule 6 stipulates how users can

define all real world events (design domain events) that are to be simulated in the program.

METALS supports 3 standard attributes for an event, namely:

• Stochastic vs Deterministic - An event can be defined as stochastic or deterministic

using the keywords 'STO' and 'DET' respectively. This attribute can be used to determine

how the duration (time to next event) for is generated for each instantiation of the event

object from the event class. For example, a Poisson Random Variate generator routine can

be placed inside the constructor of this event class in the target language (C++) to set this

duration if the event is defined as stochastic by the user.

• Duration - User can define the duration of the event using the keyword 'DUR'. This

value is only valid if the event is defined as deterministic by the user.

• Mean - User can define the mean duration of the event using the keyword 'MEAN'

that can be used in random variate generation routines. This value is only used if the event

is defined as stochastic by the user.

24

 Additional attributes for the objects can be specified directly in the target language

(C++) as an option. A code example for Rule 6 is shown in Figure 12 below:

 Figure 12. Code example for Rule 6.

 In the above example, the Tank_Move event is defined with an attributed

fuel_consumed. This attribute is used to track the resource consumption level in the

simulation, the resource in this case being fuel. Although a total of 5 different attributes

has been defined in the code, the event class when translated into the target language (C++)

will contain additional 'hidden' standard attributes, namely the event's name, event's type

(stochastic or deterministic), event's mean duration and event's duration. Specific details of

this translation will be described when the code generator for METALS is presented in the

next chapter.

EVENT Tank_Move
{
 STO MEAN = 8
 ATTRIBS
 {
 BEGIN
 int startrow;
 int startcol;
 int endrow;
 int endcol;
 double fuel_consumed;
 END
 }
}

25

 6. Rule 7 - The CHAIN Event

<Chain> ::=
'CHAIN'
<Chain_Name>
‘{‘ <Rule>* ‘}’ (Rule 7A)

<Chain_Name> ::= Identifier (Rule 7B)

<Rule> ::= <Event_Name> [':' <Pattern>*] ';' (Rule 7C)

<Event_Name> ::= Identifier (Rule D)

 All the preceding set of rules that has been described so far has enabled the various

simulation environments, entities and events to be customary defined. The actual behavior

of the simulation program, specifically in terms of how the events unfold in the simulation

and how the entities will interact during has yet to be determined.

 Rule 7 provides the necessary language constructs that will enable the logical flow

of events and their mutual interactions under specific conditions to be defined. Rule 7

centers around the notion of event chains and event rules.

 An event chain represents quite literally a chain or series of events. In METALS,

each event chain is represented by a master event START which encompasses all other

possible events within the chain. Figure 13 below illustrates this.

 Figure 13. Code example for Rule 7.

Start_Rule : Event_A Event_B Event_C;

Event_A_Rule : Event_D Some_E_Action;

Event_B_Rule : Some_B_Action;

Event_C_Rule : Some_C_Action;

Event D_Rule : Some_D_Action;

26

 The behavior of each event within the chain is defined as an event rule. Every event

type defined by the user previously must have a corresponding event rule that defines its

behavior. The special START event rule associated with the master START event type

therefore is the entry point of execution for each event chain defined in the simulation

program.

 In Figure 14, The behavior of the master event START is defined in the

START_RULE which stipulates that the entire simulation comprises 3 events executed in

sequence, Event A followed by Event B followed by Event C. Subsequent rules are then

defined for each event type that has been previously defined. For example, the rule for

Event A stipulates that it comprises 2 events, Events D followed some actions, and specific

rules for Events B, C and D describes in target language exactly what happened during their

occurrences.

 The previously described two binary rules of precedence and inclusion which

governs the relationship between events are fully supported by METALS. In other words,

the event chain given in Figure 13 can be re-written in its equivalent forms presented in

Figures 14 and 15.

 Figure 14. An Event Chain - Part 2.

 Figure 15. An Event Chain - Part 3.

 In order to improve the intuitiveness and usability of the language, the syntax

Start_Rule : Event_D Some_E_Action Event_B Event_C;

Event_B_Rule : Some_B_Action;

Event C_Rule : Some_C_Action;

Event_D_Rule : Some_D_Action;

Start Rule : Some_D_Action Some_E_Action
Some_B_Action Some_C_Action;

27

presented in Rule 7 stipulates that rule name on the left hand side of each rule expression

should be exactly the event name. In addition, the METALS compiler will always assume

that the very first rule declared by the user within an event chain is the START event and be

designated as the entry point for the simulation automatically. Therefore, there is no

keyword START or START_RULE mandated by the syntax for METALS.

 Another important aspect in Rule 7 is the language constructs that describes the

standard patterns of behavior for events that the user can use in writing each rule.

Subsequent rules that support these standards patterns2 include rules for Iteration, Loop,

Conditional, Alternatives and Action. There is no special construct supporting the

concurrency of event is designed at this time. It is felt that the event chain construct which

allows two sets of independent, non-synchronizing and concurrent events to be defined and

executed is sufficient for the first version of the language.

 A code example for Rule 7 is shown in Figure 16 below:

 Figure 16. An Event Chain - Part 3.

2 A detailed description of these patterns has already been presented in Chapter 1 at page 11.

START_SIM : Deploy Search Engage

Deploy : BEGIN
 Tank.StartRow = 0;
 Tank.StartCol = 0;
 END;

Search : WHILE (Tank.found_enemy == false)
 { Tank_Move };

Tank_Move : BEGIN
 Tank.CurrentRow += 1;
 Tank.CurrentCol += 1;
 if (Tank.Contact == Enemy_Tank)
 Tank.found_enemy == true
 END;

Engage : BEGIN Tank.Ammo_Level -= 1; END;

28

 All rule statements must end with the semi-colon character ';'.

 7. Rule 8 - The PATTERN Event

<Pattern> ::=
<Simple> |
<Action> |
<Conditional> |
<Alternative> |
<Loop> |
<Iteration> |
<Group> (Rule 8A)

 Rule 8A defines 7 standard patterns that can be used to describe the behavior of

events in a simulation.

 a. The SIMPLE Pattern

<Simple> ::= <Event_Name> (Rule 8B)

<Event_Name> ::= Identifier (Rule D)

 The SIMPLE Pattern is used to substitute code describing the behavior of an

event on the right hand side of an event rule with the name of the event itself. In the code

example shown in Figure 17, both Event_B and Event_C are simple patterns. In the

example, the specific implementation for both Event_B and Event_C can be defined

separately without affecting the implementation for Event_A_Rule.

 Figure 17. The SIMPLE Pattern.

Event_A_Rule : Event_B Event_C;

29

 b. The ACTION

<Action> ::= <CPP_Code> (Rule 8C)

<CPP_Code> ::= 'BEGIN' CPP_Code 'END' (Rule C)

 The ACTION Pattern can be used to insert code written in the target

language anywhere within an event rule. The specific code must be placed between the

keywords 'BEGIN' and 'END'. An application of the ACTION pattern is shown in the code

example in Figure 18 below:

 Figure 18. The ACTION Pattern.

 c. The CONDITIONAL Pattern

<Conditional> ::=
'WHEN' '(' Boolean_Expression ')' '{' <Pattern>* '}'
['ELSE' '{' <Pattern>* '}'] (Rule 8D)

 The CONDITIONAL Pattern provides the language construct that allows the

simulation program to make a decision on whether to proceed with some pre-defined events

based on some pre-defined condition. Conditional METALS statements must begin with

the keyword 'WHEN' followed by the a Boolean expression (written in the target language)

enclosed in brackets. The pre-defined events to be executed when the Boolean expression

returns true should be enclosed in curly brackets. An optional alternative set of pre-defined

events to be executed on the falsity of the Boolean expression can be specified by the

keyword 'ELSE'. An application of the ACTION pattern is shown in the code example in

Figure 19 below:

Event_A_Rule :
Event A
Event_B
BEGIN cout << "Simulation Commenced"; END
Event_C;

30

 Figure 19. The CONDITIONAL Pattern.

 d. The ALTERNATIVE Pattern

<Alternative> ::=
'DECIDE' '(' <Outcome>* '|' ')' (Rule 8E)

<Outcome> ::=
['P' '(' <Probability> ')'] <Pattern>* (Rule 8F)

<Probability> := Number between 0 and 1 (Rule 8G)

 The ALTERNATIVE Pattern provides the language construct that allows the

simulation program to choose to proceed with some pre-defined events amongst a set of

alternatives or outcomes. Alternative METALS statements must begin with the keyword

'DECIDE' followed by a series of possible outcomes separated by the symbol '|'.

 The probability of occurrence for each outcome can be optionally specified

with the prefix 'P' followed by a value between 0 and 1 enclosed in braces. If no probability

is specified in this way, the METALS will assign equal probabilities to all outcomes.

 A code example for the ALTERNATIVE Pattern where all outcomes have

equal probabilities of occurrence is shown in Figure 20 below.

 Figure 20. The ALTERNATIVE Pattern - Part 1.

Event_A_Rule :
WHEN (Event_B.Duration > 2) { Event_C }
ELSE { Event_D };

Event_A_Rule :
DECIDE (Event_B | Event_C | Event_D);

31

 Another code example for the ALTERNATIVE Pattern where specific

probabilities of occurrence are specified is shown in Figure 21 below:

 Figure 21. The ALTERNATIVE Pattern - Part 2.

 The number zero character can be omitted when specifying probability

values. The equivalent code for the example shown in Figure 21 is shown in Figure 22

below:

 Figure 22. The ALTERNATIVE Pattern - Part 3.

 The sum of all probabilities must equate to the value 1. If the sum of all

probabilities exceed 1, then only events up to point before the sum of all probabilities

exceed 1 will be recognized. In the code example shown in Figure 23, the sum of the

probabilities exceed one at the outcome Event_D. METALS will therefore assign a

probability of 0.2 to Event_D and ignore Event_E altogether. The equivalent code for the

example shown in Figure 23 is shown in Figure 24 below.

Event_A_Rule :
DECIDE (P(0.5) Event_B |
 P(0.3) Event_C |
 P(0.2) Event_D);

Event_A_Rule :
DECIDE (P(.5) Event_B |
 P(.3) Event_C |
 P(.2) Event_D);

32

 Figure 23. Special case for ALTERNATIVE Pattern - Part 1A.

 Figure 24. Special case for ALTERNATIVE Pattern - Part 1B.

 If the sum of all probabilities is less than 1, then the last outcome will be

assigned a probability that will set this sum to unity. In the code example shown in Figure

25, the sum of the probabilities is short of one. METALS will therefore assign a probability

of 0.5 to Event_D. The equivalent code for the example shown in Figure 25 is shown in

Figure 26 below:

 Figure 25. Special case for ALTERNATIVE Pattern - Part 2A.

 Figure 26. Special case for ALTERNATIVE Pattern - Part 2B.

Event_A_Rule :
DECIDE (P(.5) Event_B |
 P(.3) Event_C |
 P(.3) Event_D |
 P(.2) Event_E);

Event_A_Rule :
DECIDE (P(.5) Event_B |
 P(.3) Event_C |
 P(.2) Event_D);

Event_A_Rule :
DECIDE (P(.3) Event_B |
 P(.2) Event_C |
 P(.1) Event_D);

Event_A_Rule :
DECIDE (P(.3) Event_B |
 P(.2) Event_C |
 P(.5) Event_D);

33

 e. The LOOP Pattern

<Loop> ::=
'WHILE' '(' Boolean_Expression ')'
'{' <Pattern>* '}' (Rule 8H)

 The LOOP Pattern is a repetition language construct that allows the

simulation program to repeat a set of events while some pre-defined condition remains true.

Loop METALS statements must begin with the keyword 'WHILE' followed by the a

Boolean expression (written in the target language) enclosed in brackets. The pre-defined

events to be executed when the Boolean expression returns true should be enclosed in curly

brackets. An application of the LOOP pattern is shown in the code example in Figure 27

below:

 Figure 27. The ALTERNATIVE Pattern.

 f. The ITERATION Pattern

<Iteration> ::=
'REPEAT' '(' <Operator> Expression ')'
'{' <Pattern>* '}' (Rule 8I)

<Operator> ::= (‘<’ | '<=' | '=’) (Rule B)

 The ITERATION Pattern is another repetition language construct that allows

the simulation program to repeat a set of events for a specified number of times. Unlike the

LOOP Pattern where the Boolean expression is specified in the target language, the

ITERATION Pattern enable the exact number of repetitions executed to be stochastic or

deterministic by prefixing the number of repetitions (that can be computed from an

expression written in the target language) with one of three pre-defined operators.

<
Event_A_Rule :
WHILE (Simulation.Terminate == false)
{ Event_B Event_C };

34

 In the code example shown in Figure 28 below, the operator '=' is specified.

This means that Event_B will be executed exactly 10 times.

 Figure 28. The ITERATION Pattern - Part 1.

 In the code example shown in Figure 29 below, the operator '<=' is specified.

This means that Event_B will be executed any number of times between 0 to 10.

 Figure 29. The ITERATION Pattern - Part 2.

 In the code example shown in Figure 30 below, the operator '<' is specified.

This means that Event_B will be executed any number of times between 0 to 9.

 Figure 30. The ITERATION Pattern - Part 3.

Event_A_Rule :
REPEAT (=10) { Event_B };

Event_A_Rule :
REPEAT (<=10) { Event_B };

Event_A_Rule :
REPEAT (<10) { Event_B };

35

 g. The GROUP Pattern

<Group> ::= '(' <Pattern>* ')' (Rule 8J)

 The GROUP Pattern allows a series of events to be grouped together and

enclosed between parentheses. The program will treat this group of events as a contiguous

block. The GROUP Pattern can be used to create composite outcomes in ALTERNATIVE

statements such as in the example shown in Figure 31 below. An equivalent code is shown

in Figure 32.

 Figure 31. The GROUP Pattern.

 Figure 32. Composite Events.

Event_A_Rule :
DECIDE (P(.5) Event_B |
 P(.3) (Event_C Event_D Event_E) |
 P(.2) Event_D);

Event_A_Rule :
DECIDE (P(.5) Event_B |
 P(.3) Composite_Event |
 P(.2) Event_D);

Composite_Event_Rule : Event_C Event_D Event_E;

36

THIS PAGE INTENTIONALLY LEFT BLANK

37

III. IMPLEMENTATION OF METALS

A. AN OVERVIEW OF THE METALS COMPILER

 The METALS compiler comprises three main components that operate in

sequence to automatically transform code written in the high level METALS language

described in depth in the preceding chapter to a simulation program generated in the

target language. The three components are the Lexical Analyzer, the Parser and the Code

Generator.

 A Lexical Analyzer will first read the high level source code from a file as a

stream of characters and strings, and then produces a stream of symbols called "lexical

tokens" that can be handled by the Parser more efficiently.

 A Parser will next analyze the grammatical structure of the token stream with

respect to the formal context free grammar for METALS. The METALS parser employs

the top-down recursive descent parsing technique. In this top-down process, the parser

will attempt to check the syntax of the token stream from left to right, reading each token

from the input token stream and then engages in pattern matching to match the token with

the terminals from the pre-defined grammar. Each grammar rule corresponds to a

recursive function that is used by the parser to construct the parse tree. The resulting

parse tree or code in intermediate form is then fed to the Code Generator.

 A Code generator will first synthesize the parse tree by assigning useful values

(annotate) to every node on the tree in such a way that either the value at one node

determines the values for its children or vice versa. These values can subsequently be

used by specific routines to output equivalent code in the target language.

 The overall process of compiling a METALS program is illustrated in Figure 33

below:

38

Figure 33. Components of the METALS Compiler.

B. COMPILER DEVELOPMENT TOOL

 1. The RIGAL Compiler Development Language And Toolkit

 The METALS compiler is developed in the RIGAL compiler construction

language [RIG1][RIG2] that is first developed at the University of Latvia, Institute of

Mathematics and Computer Science in 1987. The main data structures in the language are

atoms, lists and labeled trees. Control structures in RIGAL are based on advanced pattern

matching. The METALS parser and code generator was programmed in this language in

short and readable form using the RIGAL development toolkit [RIG3]. The built in RIGAL

Lexical Analyzer

Source Code in METALS

(Text file)

Parser

Stream of Lexical Tokens

Parse Tree
(Intermediate form)

Code Generator

Source Code in Target Language
(C++ Program

39

lexical analyzer from the toolkit is used as the first component to the compiler.

 The text of a RIGAL program is a sequence of tokens - variables, atoms, lists,

trees, keywords, special symbols and rules. Tokens may be surrounded by any number of

blanks. A comment is any string of symbols that begins with the symbol --. The end of

the comment is the end of the line. An example of a simple RIGAL program is shown in

Figure 34 below:

Figure 34. A Simple RIGAL Program.

 2. RIGAL Variables

 Variables in RIGAL are prefixed with the symbol $ followed by an identifier. A

value can be assigned to a variable with the := assignment operator. In RIGAL,

variables have no data types and the value of a variable can either be an atom, a list or a

tree. For example, the assignment statement $Unit := Soldier means that the atom

Soldier is now the value of the variable $Unit.

 3. RIGAL Atoms, Lists And Trees

 The RIGAL Language contains only three types of data structures, namely

Atoms. Lists and Trees.

 a. Atoms

#Sum -- rule for addition of two numbers

 $N1 -- the first number

 $N2 -- the second number

 / RETURN $N1 + $N2 / -- return of the result

40

 The most elementary data structure is the ATOM, which is used to

represent a text string (identifier) or an integer (number). An atom can be compared with

another atom to see if both of them are identical. This comparison forms the basis of the

pattern matching functionality that is essential in the programming of a parser or code

generator.

 Identifier atoms can be written directly as in Apple, Orange, Banana or in

quotes as in 'Apple', 'Orange', '123'. Numerical atoms are written directly as 123. It is

worth noting that the identifier '123' is not equivalent to the numerical value 123.

Besides identifier and numerical atoms, two other special types of atoms also exists in

RIGAL, namely the NULL atom and the T atom. The NULL atom which is yielded by

an error, or used to represent an error, an empty list, an empty tree and the Boolean value

'FALSE'. The T atom is yielded by logical operations and represents the value 'TRUE'.

 b. Lists

 A list is an ordered sequence of atoms, trees or other lists. In RIGAL, a

list can be created using a special List constructor denoted by a pair of (. and .).

special symbols. For example, the statement (. A B C .) creates a list comprising

three atoms A, B and C. Figure 35 below illustrates a list in graphical form.

 Figure 35. A Simple List Comprising 3 Atoms.

 Individual elements of a list can be referenced by indexing. If the variable

$List is a list comprising 3 atoms A B and C, then the expression $List[1] represents

Atom A. For indices that are out of range, in other words greater than the total number of

elements in the list, the atom NULL is automatically assigned as value to the expression.

For example, using the same example, the expression $List[10] will mean that the

Atom A

Atom B

Atom C

41

NULL atom will be its value. A negative index -N will represent the Nth element

counting from the end of the list. For example, the expression $List[-1] will refer to

Atom C.

 An additional element can be inserted into the list using the operator

denoted by the !. special symbol. For example the statement (. A B .) !. C will

yield the list (. A B C .).

 Two lists can be concatenated to form a new list using the !! special

symbol. For example, the statement (. A B .) !! (. C D .) will yield

the list (. A B C D .).

 c. Trees

 A tree is a recursive nodal data structure that holds data in nodes that are

hierarchically connected. A tree begins with the parent node that contains zero or more

child nodes or leaves each connected by a single arch or link. In RIGAL, a tree can be

created using a special Tree constructor by a pair of <. and .> tree symbols and : tree

selector symbol. For example, the statement <. A : B, C : D .> will create a

tree with two leaves, each terminating at the atoms B and D respectively via selectors or

links A and C. An equivalent visual representation is shown in the diagram below:

 Figure 36. A Simple Tree Comprising 2 Atoms.

 Elements before the : symbol in the tree constructor are named selectors. In

the example shown above, A and B are selectors for Atom B and Atom D respectively. The

Atom B Atom D

A B

42

tree constructor is computed from left to right.

 Multi layer trees can be built using the tree constructor. For example, the

statement <. A : B, C : <. D : E, F : G .> .> will create a tree with the

following visual representation:

 Figure 37. A Multi-layer Tree Comprising 3 Atoms.

 The leaves of a tree can contain a list of atoms. For example, the

statement < A : B, C : <. D : E, F : (. G H I .) .> .> will create a

tree with the following visual representation.

 Figure 38. A Multi-layer Tree Comprising 5 Atoms.

Atom B

A C

Atom E Atom G

D F

Atom B

A C

Atom E

D F

Atom G

Atom H

Atom I

43

 An additional leaf or tree branch can be inserted into a tree using the

operator denoted by the ++ special symbol. In other words, if T1 and T2 are trees with

some branches, the statement T1 ++ T2 means that all tree branches of T2 will be

added to the tree T1 one by one. For example, the statement <. A : B .> ++ <. C

: D, E : F .> will yield the tree <. A : B, C : D, E : F .> as

illustrated visually below:

 Figure 39. Tree Addition.

 For any tree addition T1 ++ T2, if in the tree T1 there is already a

branch with the same selector of another branch in T2, the T1 branch is substituted by the

new T2 branch. Therefore, the operation ++ is not commutative.

Atom B

A

Atom D Atom F

C E ++

Atom B Atom F

A E

Atom D

C

44

 3. RIGAL Pattern Matching Rules

 The RIGAL Language uses Rules to check whether an input token or a series of

tokens (source code) complies with some pre-defined grammar. For this purpose, each

rule is constructed with a certain pattern that reflects the underlying grammar. Input

tokens that are handled by a rule are matched with this pattern. A RIGAL rule can also

perform computations and return values or objects (atoms, lists, trees). A rule call will

end with either a success (where pattern matching is successful) or failure. A rule call

can be called recursively or be called inside another rule.

 A rule definition first begins with its name prefixed by the special symbol #. A

pattern of objects follows before the special symbols ## marks its end. An example of a

simple rule is given below:

 Figure 40. A Simple RIGAL Rule.

 In the simple RIGAL rule shown in Figure 40, the rule Rule_A expects to see an

Atom first, followed by a list and finally a tree. As long as the input stream of tokens

matches the pattern prescribed in the rule, pattern matching will continue until the end of

the rule, else the rule will failure the same input stream of tokens will be compared with

the next rule. Computation statements are enclosed using a pair of / symbols, which in

the example above, returns a list of all atoms from the input stream.

 Therefore, if the input tokenized source code contains the tokens shown in Figure

41 below, than the pattern matching is successful and the rule will return the list of atoms
(. Ship Submarine_A Submarine_B Destroyers Minehunters .).

#Rule_A
 A
 (. B C .)
 <. D : E, F : G .>
 / RETURN (. A B C E G .) /

45

 Figure 41. An example of an input stream of tokens.

 However if the input tokenized source code is as indicated in Figure 42,

then the rule will fail because the second token is a tree rather than an expected list.

 Figure 42. An example of code with syntax error.

 Rule definitions form the basis of the development of the parser and code

generator for METALS.

C. THE METALS LEXICAL ANALYZER

 For the current implementation of METALS, the lexical analyzer function in the

RIGAL toolkit is used for tokenizing the input source code. The RIGAL lexical analyzer

is invoked programmatically using the special built-in RIGAL rule #CALL_PAS.

 In the example given in below, the input source code in Figure 43 is parsed into

the rule #CALL_PAS. The resulting output stream of tokens is shown in Figure 44.

Ship (. Submarine_A Submarine_B .)
<. Task_Force_A : Destroyers,
 Task_Force_B : Minehunters .>

Ship <. Task_Force_A : Destroyers,
 Task_Force_B : Minehunters .>
(. Submarine_A Submarine_B .)

46

 Figure 43. Input source code.

 Figure 44. Output list of tokens.

 The complete implementation in RIGAL language for the lexical analyzer is

given in Appendix I.

D. THE METALS PARSER

 1. The Main #Parse Rule

 The METALS parser is constructed using a set of recursive RIGAL rules whose

patterns are based on the METALS context free grammar. The parser receives an input

list of tokens from the RIGAL lexical analyzer and uses the main #Parse Rule to

generate an equivalent parsed tree. Parsing is top-down recursive using the LL(1)

technique with backtracking. This means that tokens are read from Left to right to

produce a Leftmost deviation 1 token at a time. The backtracking feature will be explained

in the description for the rule #Pattern. The expected input pattern for a syntactically

correct METALS source code is in the form shown in Figure 45 below:

SIMULATE Tokenization_Example { Version 1 }

EVENT Start_Flipping

CHAIN Algorithm
{
 Start_Flipping :
}

(. 'SIMULATE' 'Tokenization_Example' '{' 'Version' 1
'}' 'EVENT' 'Start_Flipping' 'CHAIN' 'Algorithm' '{'
'Start_Flipping' ':' '}' .)

47

 Figure 45. Expected Input Pattern for a METAL programs.

 In the input token stream shown above, the parser expects a title following by 5

lists of user defined headers, worlds, entities, events and event chains in this order. 6

specific rules are used to see if the current token in the stream pattern matches as a title, a

header, a world, an entity, an event or a chain. Except for the title token which is

immediately stored in an atom $Title, all other successfully matched tokens are then

accumulated into their respective lists. In terms of program execution flow, the main

#Parse rule for the parser calls 6 other rules as illustrated in Figure 46 below:

 Figure 46. Program Execution Flow for #Parse Rule.

(.
 $Title := #Title
 [(* $Headers !.:= #Header *)]
 [(* $Worlds !.:= #World *)]
 [(* $Entities !.:= #Entity *)]
 [(* $Events !.:= #Event *)]
 [(* $Chains !.:= #Chain *)]
.)

#Parse

#Title

#World *

#Entity *

#Event *

#Header *

1

1

#Chain *

Many

Many

Many

Many

Many

48

 The resulting output returned by the #Parse rule is in the form of a tree (parsed

tree). The structure of the tree is shown in Figure 47.

 Figure 47. The METALS Parsed Tree Structure.

 The equivalent visual notion for the parsed tree is shown in Figure 48 below:

 Figure 48. The METALS Parsed Tree.

 The #Parse rule is derived from METALS grammar Rule 1.

<. Title: $Title,
 Headers: $Headers,
 Worlds: $Worlds,
 Entities: $Entities,
 Events: $Events,
 Chains: $Chains .>

Simulation Program

$Title

Title

$Headers

$Worlds $Entities

$Events

$ChainsHeaders

Worlds Entities

Events

Chains

49

 2. The #Title Rule

 The title rule expects the input token stream to contain the pattern shown in Figure

49 below. The #Title rule is derived from METALS grammar Rule 2.

 Figure 49. Expected Input Pattern for #Title.

 The rule expects to detect the use of the keyword SIMULATE followed by an

identifier and finally some option description in plain text. In terms of program

execution flow, the main #Title rule for the parser can call the #Plain_Text rule to

collect a stream of plain text in a list as illustrated in Figure 50 below:

 Figure 50. Program Execution Flow for #Title Rule.

 The resulting output returned by the #Title rule is in the form of a tree whose

structure is shown in Figure 52. This tree data structure is assigned to the $Title variable

in the main #Parse rule.

 Figure 51. Output returned by the #Title rule.

 The equivalent visual notion for the parsed tree is shown in Figure 52 below:

 Figure 52. The #Title Parsed Tree Structure.

'SIMULATE'
$Title
['{' [$Description := #Plain_Text] '}']

<. Title: $Title,
 Description: $Description .>

$Title Title $Name

$DescriptionDescription

#Plain_Text
1 1

#Title

50

 3. The #Header Rule

 The header rule expects the input token stream to contain the pattern shown in

Figure 53 below. The #Header rule is derived from METALS grammar Rule 3.

 Figure 53. Expected Input Pattern for #Title.

 The rule expects to detect the use of the keyword INCLUDE follow by an

identifier. The rule does not call any other rules and returns an identifier atom as shown

in Figure 54. This identifier is collected in the list $Headers in the main #Parse rule.

 Figure 54. Output returned by the #Title rule.

 The equivalent visual notion for the #Header rule is shown in Figure 55 below:

 Figure 55. The #Header Structure.

'INCLUDE' $Header_Name

$Header_Name

$Headers

$Header_Name

...

append

51

 3. The #World Rule

 The header rule expects the input token stream to contain the pattern shown in

Figure 56 below. The #World rule is derived from METALS grammar Rule 4.

 Figure 56. Expected Input Pattern for #World.

 The rule expects to detect the use of the keyword WORLD followed by an

identifier representing the name of the world object and finally a detailed specification of

its attributes using the keywords ROWS, COLS, TERRAINS and ATTRIBS. To obtain

the attributes, the rule can call the #CPP_Code rule to collect a stream of text

representing source code written in the target language in a list as illustrated in Figure 57

below:

 Figure 57. Program Execution Flow for #World Rule.

 The resulting output returned by the #World rule is in the form of a tree whose

structure is shown in Figure 58. This tree data structure is inserted into the $World list in

the main #Parse rule.

'WORLD'
$World_Name
'{'
 'ROWS' '=' $MaxRows
 'COLS' '=' $MaxCols
 'TERRAINS' '='
 '(' (* $Terrains !.:= S'($$<> ')') *) ')'
 ['ATTRIBS' '=' '(' $Attributes := #CPP_Code ')']
'}'

#CPP_Code
1 1

#World

52

 Figure 58. Output returned by the #World rule.

 The equivalent visual notion for the parsed tree is shown in Figure 59 below:

 Figure 59. The #World Parsed Tree Structure.

<. World_Name: $World_Name,
 MaxRows: $MaxRows,
 MaxCols: $MaxCols,
 Terrains: $Terrains,
 Attributes: $Attributes .>

$Worlds ...

$World_Name

$MaxRows

$MaxCols

$Terrains

$Attributes

World_Name

MaxRows

MaxCols

Terrains

Attributes

append

World Tree

53

 4. The #Entity Rule

 The entity rule expects the input token stream to contain the pattern shown in Figure

60 below. The #Entity rule is derived from METALS grammar Rule 5.

 Figure 60. Expected Input Pattern for #Entity.

 The rule expects to detect the use of the keyword ENTITY followed by an

identifier representing the name of the entity object and finally a detailed specification of

its attributes. To obtain the attributes, the rule can call the #CPP_Code rule to collect a

stream of text representing source code written in the target language in a list as

illustrated in Figure 61 below:

 Figure 61. Program Execution Flow for #Entity Rule.

 The resulting output returned by the #Entity rule is in the form of a tree whose

structure is shown in Figure 62. This tree data structure is inserted into the $Entities

list in the main #Parse rule.

 Figure 62. Output returned by the #World rule.

'ENTITY'
$Entity_Name
['{' [$Entity_Attributes := #CPP_Code] '}']

<. Entity_Name: $Entity_Name,
 Entity_Attributes: $Entity_Attributes .>

#CPP_Code
1 1

#Entity

54

 The equivalent visual notion for the parsed tree is shown in Figure 63 below:

 Figure 63. The #Entity Parsed Tree Structure.

 5. The #Event and #Event_Attributes Rules

 a. The #Event Rule

 The event rule expects the input token stream to contain the pattern shown in

Figure 64 below. The #Event rule is derived from METALS grammar Rule 6.

 Figure 64. Expected Input Pattern for #Event.

 The rule expects to detect the use of the keyword EVENT followed by an

identifier representing the name of the event object and finally a detailed specification of

its attributes. To obtain the attributes, the rule can call the #Event_Attributes rule

to collect a stream of text representing source code written in the target language in a list

$Entities ...

$Entity_Name $Entity_Attributes

Entity Tree

Entity_Name Entity_Attributes

append

'EVENT'
$Event_Name
['{' [$Event_Attributes := #Event_Attributes]
}']

55

as illustrated in Figure 65 below:

 Figure 65. Program Execution Flow for #Event Rule.

 The resulting output returned by the #Event rule is in the form of a tree

whose structure is shown in Figure 66. This tree data structure is inserted into the

$Events list in the main #Parse rule.

 Figure 66. Output returned by the #Event Rule.

 The equivalent visual notion for the parsed tree is shown in Figure 67 below:

 Figure 67. The #Event Parsed Tree Structure.

<. Event_Name: $Event_Name,
 Event_Attributes: $Event_Attributes .>

$Events ...

$Event_Name $Event_Attributes

Event Tree

Event_Name Event_Attributes

append

#Event_Attributes
1 1

#Event

56

 b. The #Event_Attributes Rule

 The event rule expects the input token stream to contain the pattern shown in

Figure 68 below. The #Event rule is derived from METALS grammar Rule 6.

 Figure 68. Expected Input Pattern for #Event_Attributes.

 The rule expects attributes to be specified using the keywords STO, DET,

MEAN, DUR. Additional attributes are also expected and identified by calling the

#CPP_Code rule to collect a stream of text representing source code written in the target

language in a list as illustrated in Figure 69 below:

 Figure 69. Program Execution Flow for #Event_Attributes Rule.

 The resulting output returned by the #Event_Attributes rule is in the

form of a tree whose structure is shown in Figure 70. This tree data structure is then

assigned to the $Event_Attributes variable in the #Event rule.

 Figure 70. Output returned by the #Event_Attributes rule.

[$Var := ('STO'!'DET')]
['MEAN' '=' $Mean]
['DUR' '=' $Duration]
 [$Additional_Attribs := #CPP_Code]

#CPP_Code
11

#Event_Attributes

<. Var: $Var,
 Mean: $Mean,
 Duration: $Duration,
 Additional_Attribs: $Additional_Attribs .>

57

 The equivalent visual notion for the parsed tree is shown in Figure 71 below:

 Figure 71. The #Event_Attributes Parsed Tree Structure.

 6. The #Chain and #Rule Rules

 a. The #Chain Rule

 The chain rule expects the input token stream to contain the pattern shown in

Figure 72 below. The #Chain rule is derived from METALS grammar Rule 7.

 Figure 72 Expected Input Pattern for #Event.

 The rule expects to detect the use of the keyword CHAIN followed by an

identifier representing the name of the chain object and finally a list of event rules

associated with this chain. To obtain the events rules, the rule #Rule is called to return

each rule detected in the input stream. This call is illustrated in Figure 73 below:

$Event_Attributes

$Mean

$Duration

Var

Duration

$Var Mean

$ Additional_Attribs

Additional_Attribs

'CHAIN' $Chain_Name
'{'(* $Rules !.:= #Rule *)'}'

58

 Figure 73. Program Execution Flow for #Chain rule.

 The resulting output returned by the #Chain rule is in the form of a tree

whose structure is shown in Figure 74. This tree data structure is then inserted into the

$Chains list in the main #Parse rule.

 Figure 74. Output returned by the #Chain rule.

 The equivalent visual notion for the parsed tree is shown in Figure 75 below:

 Figure 75. The #Chain Parsed Tree Structure.

#Rule
Many 1

#Chain

<. Chain_Name: $Chain_Name,
 Rules: $Rules .>

$Rules

$Chains ...

$Chain_Name

Chain Tree

Chain_Name Rules

append

59

 b. The #Rule Rule

 This rule expects the input token stream to contain the pattern shown in

Figure 76 below. The #Rule rule is derived from METALS grammar Rule 7C

specifically.

.

 Figure 76. Expected Input Pattern for #Rule.

 The rule uses no keyword but first expects an identifier representing the

name of the rule before the special : symbol. A list of event patterns is expected after

this symbol optionally. The rule #Pattern is used to match incoming streams of

tokens to a list of pre-defined standard event patterns. This call is illustrated in Figure 77

below:

 Figure 77. Program Execution Flow for #Rule rule.

 The resulting output returned by the #Rule rule is in the form of a tree

whose structure is shown in Figure 78. This tree data structure is then inserted into the

$Rules list in the #Chain rule.

 Figure 78. Output returned by the #Chain rule.

$Rule_Name
[':' (* $Patterns !.:= #Pattern *)] ';'

#Pattern
Many 1

#Rule

<. Rule_Name: $Rule_Name,
 Patterns: $Patterns,
 Used_Event_Names: $used_event_names,
 number_of_occurences: $num_of_occurences .>

60

 The equivalent visual notion for the parsed tree is shown in Figure 79 below:

 Figure 79. The #Rule Parsed Tree Structure.

 7. Rules used to match and identify Event Patterns

 a. The #Pattern Rule

 The pattern rule is a recursive rule that is either called to pattern match and

identify event patterns in the input stream. It is derived from METALS grammar Rule 8.

This rule demonstrates the RIGAL language's ability to perform a top-down recursive

parsing in the traditional LL(1) sense but with the addition ability and flexibility to

optionally perform backtracking in the event of a parse failure. The backtracking feature is

supported in RIGAL by the ability to define alternative patterns within a single rule.

Whenever an input token stream fails to match one pattern inside a rule, the same input

token stream will be read again and compared with the other alternative patterns that has

been defined in the rule. A failure will cause the parser to backtrack and read the same input

token stream again.

Used_Event_Names

$num_of_occurences

$Rules ...

$Rule_Name

$Patterns

Rule_Name

append

Patterns

$used_event_names

Rule Tree

number_of_occurence

61

 The #Pattern rule contains two alternative patterns that is used to match

in the incoming token stream. The first attempts to match the incoming token stream with 7

pre-defined standard event types prescribed by the METALS language, while the second

one attempts to detect a group of patterns enclosed within braces. The two alternative

patterns in the rule is separated by the special ;; symbol. The expected input patterns are

shown in Figure 80 below:

 Figure 80. The Expected Input Pattern for #Pattern.

 A specific rule is called for each of the standard event patterns, and the order

in which these rules are called is sequential. For example, the parser will first attempt to

identify an iteration event pattern failing which it will then proceed to identify a loop event

pattern and so forth with the same input token stream.

 The two alternative patterns defined in the #Pattern rule means that the

rule will have two possible outputs. For the first standard event pattern matching

alternative, the rule will return a tree with the structure shown in Figure 83.

 Figure 81. Output for a single event pattern.

 For the second list of patterns, alternatively the rule will return a list of

patterns shown below in Figure 82, each with a structure described in Figure 84.

(#Iteration !
 #Loop !
 #Conditional !
 #Alternative !
 #Action !
 #Group !
 #Simple)
;;
'(' (* $List !.:= #Pattern *) ')'

<. Type: $Type, Body: $Pattern .>

62

 Figure 82. Output for a list of event patterns.

 The output tree or list data structure is then inserted into the $Patterns

list in the #Rule rule. The equivalent visual notions for two possible outputs are shown in

Figure 83 and 84 below:

 Figure 83. The #Pattern Parsed Tree Structure for A Single Pattern.

 Figure 84. The #Pattern Parsed Tree Structure for Lists of Patterns.

$List

$Pattern

$Patterns ...

$Type

append

Pattern Tree

Type Body

$Patterns ...

Pattern Tree

$List ...

append

append

63

 b. The #Iteration Rule

 The #Iteration rule is derived from the METALS grammar Rule 8I.

The rule expects the input token stream to contain the pattern shown in Figure 85 below.

 Figure 85. Expected Input Pattern for #Iteration.

 The rule expects to detect the use of the keyword REPEAT followed by a

combination of an operator and an expression in plain text before proceeding to identify a

list of patterns to be collected. This rule calls the #Operator, #Plain_Text and the

recursive #Pattern rules to obtain the specified operator, expression and list of

patterns respectively.

 The resulting output returned by the #Iteration rule is in the form of a

tree whose structure is shown in Figure 86. This tree data structure is then assigned to the

$Pattern variable in the #Pattern rule.

 Figure 86. Output returned by the #Iteration rule.

'REPEAT'
'('
$Op := #Operator
$Expression := #Plain_Text
')'
'{' (* $Pattern !.:= #Pattern *) '}'

<. Repeat : (. $Op $Expression .),
 This: $Pattern .>

64

 The equivalent visual notion for the parsed tree is shown in Figure 87 below:

 Figure 87. The #Iteration Parsed Tree Structure.

 c. The #Loop Rule

 The #Loop rule is derived from the METALS grammar Rule 8H. The rule

expects the input token stream to contain the pattern shown in Figure 88 below.

 Figure 88. Expected Input Pattern for #Loop.

 The rule expects to detect the use of the keyword WHILE followed by a

Boolean expression before proceeding to identify a list of patterns to be collected. This

rule calls the #Bool_Expression and the recursive #Pattern rules to obtain the

specified Boolean expression and list of patterns respectively.

 The resulting output returned by the #Loop rule is in the form of a tree

whose structure is shown in Figure 89. This tree data structure is then assigned to the

$Pattern

$Pattern

$Op

Repeat This

$Expression

List

'WHILE'
'(' $Bool := #Bool_Expression ')'
'{' (* $Pattern !.:= #Pattern *) '}'

65

$Pattern variable in the #Pattern rule.

 Figure 89. Output returned by the #Loop rule.

 The equivalent visual notion for the parsed tree is shown in Figure 90 below:

 Figure 90. The #Loop Parsed Tree Structure.

 d. The #Conditional Rule

 The #Conditional rule is derived from the METALS grammar Rule 8D.

The rule expects the input token stream to contain the pattern shown in Figure 91 below.

 Figure 91. Expected Input Pattern for #Conditional.

 The rule expects to detect the use of the keyword WHEN followed by a

Boolean expression before proceeding to identify a list of patterns to be collected. The

rule also expects the optional use of the keyword ELSE and a list of alternative event

patterns to be collected. This rule calls the #Bool_Expression and the recursive

<. While : $Bool,
 Do : $Pattern .>

$Pattern

$Pattern

While Do

$Bool

'WHEN'
'(' $Bool := #Bool_Expression ')'
'{' (* $Pattern !.:= #Pattern *) '}'
['ELSE'
'{' (* $Pattern2 !.:= #Pattern *) '}']

66

#Pattern rules to obtain the specified Boolean expression and the lists of patterns

respectively.

 The resulting output returned by the #Conditional rule is in the form of

a tree whose structure is shown in Figure 92. This tree data structure is then assigned to the

$Pattern variable in the #Pattern rule.

 Figure 92. Output returned by the #Conditional rule.

 The equivalent visual notion for the parsed tree is shown in Figure 93 below:

 Figure 93. The #Conditional Parsed Tree Structure.

 e. The #Alternative Rule

 The #Alternative rule is derived from the METALS grammar Rule 8E.

The rule expects the input token stream to contain the pattern shown in Figure 94 below.

 Figure 94. Expected Input Pattern for #Conditional.

<. When: $Bool,
 Do: $Pattern,
 Else: $Pattern2 .>

$Pattern

$Pattern

When Else

$Bool

Do

$Pattern

'DECIDE'
'(' (* $Outcome := #Outcome * '|') ')'

67

 The rule expects to detect the use of the keyword DECIDE followed by a

a series of alternative outcomes separated by the | special symbol. This rule calls the

#Outcome rule to obtain an outcome which is either an event or a series of events with

a probability value associated with it.

 The resulting output returned by the #Alternative rule is in the form of

a list of outcomes as shown in Figure 95. This list data structure is then assigned to the

$Pattern variable in the #Pattern rule.

 Figure 95. Output returned by the #Alternative rule.

 The #Outcome rule that is called by the #Alternative rule is derived

from the METALS grammar Rule 8F. The rule contains two alternative patterns shown in

Figure 96 below.

 Figure 96. Expected Input Pattern for #Outcome.

 The rule either expects a probability value to be associated with a list of

event patterns using the P(Value) constructor or no associated at all. Should the

constructor be detected, the rule will call the #Probability rule to obtain a

probability value. The reason why an alternative pattern that allows no probability values

to be associated with an outcome is to provide flexibility and versatility. For example,

the code generator can assign equal probabilities to all outcomes should none be

explicitly defined.

$List_Of_Outcomes

'P' '(' $Value := #Probability ')'
(* $Patterns !.:= #Pattern *)

;;

(* $Patterns !.:= #Pattern *)
/ $Value := 'unknown'; /

68

 The #Probability rule that is called by the #Outcome rule is derived

from the METALS grammar Rule 8G. The rule essential collects tokens and concatenate

(using the RIGAL built-in rule #IMPLODE) them into a string of characters that is supposed

to represent a float number as shown in Figure 97 below:

 Figure 97. Expected Input Pattern for #Outcome.

 The rule allows probability values to be expressed in the shorter dot-value

format (for example .8) rather than the standard zero-dot-value format (for example

0.8).

 The resulting outputs returned by the rules #Probability, #Outcome

and #Alternative are shown in Figures 98, 99 and 100 below respectively.

 Figure 98. Output returned by the #Probability rule.

 Figure 99. Output returned by the #Outcome rule.

 Figure 100. Output returned by the #Alternative rule.

(* $List !.:= S'($$ <> ')') *)
/ IF ($List[1] = '.') ->
 $List := (. 0 .)!!$List; FI;
 $Value := #IMPLODE($List);

$Value

<. Patterns: $Patterns,
 Probability: $Value .>

$List_Of_Outcomes

69

 The equivalent visual notion for the parsed tree is shown in Figure 101

below:

 Figure 101. The #Alternative Parsed Tree Structure.

 f. The #Simple Rule

 The #Simple rule is derived from the METALS grammar Rule 8B. The

rule expects the input token stream to contain the pattern shown in Figure 102 below.

 Figure 102. Expected Input Pattern for #Simple.

$Value

Patterns

$List_Of_Outcomes

Probability

$Patterns

...

Outcome Tree

append

$Pattern

$Id
/
LAST #Rule $used_event_names ++:=
<. $Id:T .>;

LAST #Rule $num_occurences ++:=
<. $Id: LAST #Rule $num_occurences.$Id +1 .>;
/

70

 The rule expects only an identifier $Id and will return it in a tree together

with the updated value of the variable $num_occurences with is declared as global to all

rules within the #Rule rule. The $num_occurences value will be used by the code

generator to uniquely identify the current instance of this event should multiple instances of

this event exists within a rule. This tree data structure shown in Figure 104 below is then

assigned to the $Pattern variable in the #Pattern rule.

 Figure 103. Output returned by the #Simple rule.

 The equivalent visual notion for the parsed tree is shown in Figure 101

below:

 Figure 104. The #Simple Parsed Tree Structure.

 g. The #Group Rule

 The #Group rule is derived from the METALS grammar Rule 8J. The rule

expects the input token stream to contain the pattern shown in Figure 105 below.

 Figure 105. Expected Input Pattern for #Group.

<. Event_Name: $Id,
 order: LAST #Rule $num_occurences.$Id - 1 .>

$num_occurences

Event_Name order

$Id

$Pattern

'(' (* $Group_Of_Patterns !.:= #Pattern *) ')'

71

 The rule is used to allow any arbitrary group of event patterns to be grouped

by enclosed them within brackets.

 The resulting output returned by the #Group rule is in the form of a list of

patterns as shown in Figure 106. This list data structure is then assigned to the $Pattern

variable in the #Pattern rule.

 Figure 106. Output returned by the #Alternative rule.

 The equivalent visual notion for the parsed tree is shown in Figure 107

below:

 Figure 107. The #Group Parsed Tree Structure.

 h. The #Action Rule

 The #Action rule is derived from the METALS grammar Rule 8C. The

rule is used to collect a stream of input tokens and convert them into text strings using the

#CPP_Code rule as shown by the RIGAL in Figure 108. The output text strings are code

written in the target language by the user that is in a form that is readable by the code

generator.

 Figure 108. Expected Input Pattern for #Group.

$Group_Of_Patterns

$Patterns ...

$Pattern

$Action := #CPP_Code

72

 The resulting output returned by the #Action rule is in the form of a list of

character tokens (representing source code) as shown in Figure 109. This list data structure

is then assigned to the $Pattern variable in the #Pattern rule.

 Figure 109. Output returned by the #Action rule.

 Figure 110. The #Action Parsed Tree Structure.

 8. Program Execution Flow For Rules Dealing With Event Patterns

 The program execution flow for rules dealing with event patterns is illustrated in

Figure 111. During each call to the #Pattern rule, each of the 7 rules representing the

seven standard event patterns will be called in order until a pattern match is successful.

With the exception of the #Simple and #Action rule, the other 5 event pattern matching

rules, namely the #Iteration, #Loop, #Conditional, #Alternative and

#Group rules will call the #Pattern rule recursively.

$Action

$Action ...

$Pattern

73

 Figure 111. Program Execution Flow for #Pattern.

#Pattern

#Operator

#Iteration

#Plain Text

#Boolean Expression

#Loop

#Boolean Expression

#Conditional

#Alternative

1
Many

#Probability

#Outcome

Many

#Simple

#Action

#Outcome

#CPP Code

74

 9. The String Processing Rules

 In additional to rules described earlier, the METALS parser also include special

string processing rules to ensure that the strings generated by the rules in the parser can be

interpreted correctly by the code generator. These rules include:

• The #Operator Rule - The RIGAL lexical analyzer will treat an string

input of the logical operator <= as two separate token < and =. This rule is

necessary to correct this by concatenating them together again. This rule can

be expanded for all other similar requirements of concatenating two tokens

as necessary. Currently it is only used by the #Iteration rule.

• The #Boolean_Expression Rule - This rule is used to collect all tokens

enclosed between the keywords BEGIN and END inside a list that will

represent a Boolean expression written in the target language that is to be

output directly by the code generator without modifications. Currently it is

used by the #Loop and #Conditional rules.

• The #Plain_Text Rule - This rule is used to collect all tokens enclosed

within curly braces { and } inside a list that will represent a section of plain

text to be output directly by the code generator without modifications.

Currently it is only used by the #Iteration rule.

• The #CPP_Code Rule - This rule is used to collect all tokens enclosed

between the keywords BEGIN and END inside a list that will represent code

written in the target language that are to be output directly by the code

generator without modifications. In addition, the rule will also concatenate

the pairs of tokens into standard symbols required in the target language

(C++) listed in Table 1 below. Currently it is only used by the #Action

rule.

75

 Table 2. Token pair concatenation table.

Input Token Pair Output Single Token

/ / //

< = <=

> = >=

= = ==

! = !=

+ + ++

- - --

+ = +=

- = -=

| | ||

& & &&

< < <<

> > >>

76

E. THE METALS CODE GENERATOR

 1. The Main #Generate Rule

 The METALS code generator is built using a set of RIGAL rules based on the

syntax of the target language which is ANSI C++ for this current implementation. The

code generator receives an input parsed tree of the METALS source code from the parser

and uses the main #Generate Rule to generate the equivalent C++ simulation program.

 The expected input pattern for the code generator is the parsed tree returned by the

parser followed by the name of the input METALS source file shown in Figure 112 below:

 Figure 112. The METALS Parsed Tree Structure.

 Code is generated by the parsed tree into 5 C++ source files that together constitutes

the C++ simulation program. The structure of this program is shown in Figure 113 below:

 Figure 113. Structure of generated C++ simulation program.

<. Title: $Title,
 Headers: $Headers,
 Worlds: $Worlds,
 Entities: $Entities,
 Events: $Events,
 Chains: $Chains .>
$Filename

Main.cpp

C++ Simulation Program

Worlds.h

Entities.h

Events.h

Chains.h

77

 Each of the source files is opened for writing using the OPEN file_object filename

built-in RIGAL constructor analogous to the file I/O object in C++. The code fragment that

opened the 5 output files for writing is shown here in Figure 114:

 Figure 114. Opening 5 output files for writing.

 The C++ code generation sequence follows the general structure of a C++ program,

in other words inclusion of headers files → class definitions → function prototypes →

functions / sub-routines → C++ main routine.

 Each section of the C++ simulation program is generated by feeding each branch of

the input parsed tree into separate code generating rules as shown in Figure 115 below:

 Figure 115. Feeding the parsed tree into specific code generating rules.

 Text is written directly to a file using the << operator similar to output stream

operator in C++. In the #Generator rule, the main routine for the C++ simulation is

created. A simplified version of the series of statements necessary to accomplish this is

shown in Figure 116. The starting point for the simulation is the first rule that the code

generator obtains from first event chain in the list of chains $Chains.

OPEN GEN_MAIN 'Main.cpp';
OPEN GEN_WORLD 'Worlds.h';
OPEN GEN_ENTITIES 'Entities.h';
OPEN GEN_EVENTS 'Events.h';
OPEN GEN_CHAINS 'Chains.h';

#Generate_Title($Title $Filename);
#Generate_Headers($Headers);
#Generate_Worlds($Worlds);
#Generate_Entities($Entities);
#Generate_EventClasses($Events);
#Generate_EventChains($Chains);

78

 Figure 116. Generating the C++ main program.

 2. The Code Generation Template

 a. The #Generate_Title Rule

 This rule receives and processes the branch Title from the overall

parsed tree followed by the METALS input source file name as shown in Figure 117

below:

 Figure 117. Input to #Generate_Title Rule.

 Using this information, the rules generates the output C++ code in the

Main.Cpp file shown in Figure 118 below:

Figure 118. Output from #Generate_Title Rule.

-- Main Program
GEN_MAIN << 'int main(int argc, char *argv[])';
GEN_MAIN << '{';
GEN_MAIN << $First_Rule.Rule_Name '_class '
 $First_Rule.Rule_Name ';';
GEN_MAIN << $First_Rule.Rule_Name '_rule'
 $First_Rule.Rule_Name ');';
GEN_MAIN << 'system("PAUSE");';
GEN_MAIN << 'return 0;';
GEN_MAIN << '}';

<. Title: $Title,
 Description: $Description .>
$Fname

// METALS Code Generator Version 0.4C
// C++ simulation program [$Title] created from $Fname
// $Description

79

 b. The #Generate_Headers Rule

 This rule receives and processes the branch Headers from the overall

parsed tree which is a simple list of user defined header file names shown in Figure 119

below:

 Figure 119. Input to #Generate_Headers Rule.

 Using this information, the rules generates the output C++ code in the

Main.Cpp file shown in Figure 120 below. The header files that will be generated by

the code generators, namely Worlds.h, Entities.h, Events.h and Chains.h

are all included in the output source code.

Figure 120. Output from #Generate_Headers Rule.

$Headers

#include <iostream>
#include <ctime>';
#include <cstdlib>';
#include <stdlib.h>';

using namespace std;';

#include "Worlds.h"';
#include "Entities.h"';

#include $Headers[1]
.
.
.
#include $Headers[n] // for n number of header files.

#include "Events.h"';
#include "Chains.h"';

80

 c. The #Generate_Worlds Rule

 This rule receives and processes the branch Worlds from the overall

parsed tree which is a list of user defined world objects shown in Figure 121 representing

the environment within which entities reside. Each of these world objects in the list

$Worlds has a data structure shown in Figure 122 below:

 Figure 121. Input to #Generate_Worlds Rule.

 Figure 122. Data structure for each world object in list $Worlds.

 Using this information, for each of the world object that the user has

defined, the rule generates the output C++ code in the Worlds.h header file shown in

Figure 123. The branch Terrains contains a list of user defined terrain types for the

environment, while the branch Attributes contains additional attributes that the user has

defined. The generated source code contains class definitions for a world object as well

as an instantiation of this object at the end.

$Worlds

<. World_Name: $World_Name,
 MaxRows: $MaxRows,
 MaxCols: $MaxCols,
 Terrains: $Terrains,
 Attributes: $Attributes .>

81

Figure 123. Output for each world object from #Generate_Worlds Rule in
Worlds.h.

// METALS Code Generator Version 0.4C
// Generation of Worlds

__int64 $World_Name_MaxRows = $MaxRows;
__int64 $World_Name_MaxCols = $MaxCols;

enum $World_Name_Terrain { $Terrains[1] . $Terrains[n] }

class $World_Name_class
{
 public:
 $World_Name_class();

 __int64 BeenHere;';
 bool Marked;';
 $World_Name_Terrain ObjectType;

 $Attributes;
};

$World_Name_class :: $World_Name_class()
{
 BeenHere = 0;
 Marked = false;
 ObjectType = Empty;
}

$World_Name_class
$World_Name [$World_Name_MaxRows][$World_Name_MaxCols];

82

 d. The #Generate_Entities Rule

 This rule receives and processes the branch Entities from the overall

parsed tree which is a list of user defined entity objects shown in Figure 124 representing

the entities participating in the simulation. Each of these entity objects in the list

$Entities has a data structure shown in Figure 125 below:

 Figure 124. Input to #Generate_Entities Rule.

 Figure 125. Data structure for each entity object in list $Entities.

 Using this information, for each of the entity object that the user has

defined, the rule generates the output C++ code in the Entities.h header file shown

in Figure 126. The branch Entity_Attributes contains additional attributes that

the user has defined. The generated source code contains class definitions for an entity

object as well as an instantiation of this object at the end.

Figure 126. Output from #Generate_Entities Rule in Entities.h.

$Entities

// METALS Code Generator Version 0.4C
// Generation of Entities

class $Entity_Name_class
{
 public:
 $Entity_Name_class();
 $Entity_Attributes;
}

$Entity_Name_class $Entity_Name;

<. Entity_Name: $Entity_Name,
 Entity_Attributes: $Entity_Attributes .>

83

 e. The #Generate_EventClasses Rule

 This rule receives and processes the branch Events from the overall

parsed tree which is a list of user defined event objects shown in Figure 127 representing

the events that will occur in the simulation. Each of these event objects in the list

$Events has a data structure shown in Figure 128 below:

 Figure 127. Input to #Generate_EventClasses Rule.

 Figure 128. Data structure for each event object in list $Events.

 Using this information, for each of the n number of event objects that the

user has defined in the $Events list, the rule generates the output C++ code in the

Events.h header file shown in Figure 129. A static member Instances is created

for each event and incremented by the event class constructor to keep track of the total

number of instantiations for this event class. A discrete Poisson random number

generator is used to determine the duration if the event attribute Var is set as STO

(Stochastic). A global event count variable is also declared and incremented in the

constructor to keep track of the total number of events regardless of its type.

$Events

<. Event_Name: $Event_Name,

 Event_Attributes:
 <. Var: $Var,
 Mean: $Mean,
 Duration: $Duration,
 Additional_Attribs: $Additional_Attribs
 .>
.>

84

Figure 129. Output from #Generate_Events Rule in Events.h.

// METALS Code Generator Version 0.4C';
// Generation of Event Classes';

long Global_Event_Count;
enum EType { DET, STO };

class $Events[n].Event_Name_class
{
 public:
 $Events[n].Event_Name_class();
 string Name;
 EType Var;
 double Mean;
 double Duration;
 $Event[n].Event_Attributes.Additional_Attribs
 static long Instances;
};

long $Events[n].Event_Name_class :: Instances = 0;

$Events[n].Event_Name_class ::
$Events[n].Event_Name_class()
{
 Global_Event_Count++;
 Instances++;
 Name = $Events[n].Event_Name;
 Var = $Events[n].Event_Attributes.Var;
 Mean = $Events[n].Event_Attributes.Mean;
 Duration = $Events[n].Event_Attributes.Duration;
 if (Var==STO) // Discrete Poisson RNG.
 double a = exp(-Mean);'
 long p = 1; long x = 1;'
 while (p > a) {
 double U = (double) rand() / RAND_MAX;
 p = p*U;
 x++; }
 Duration = x;
}

85

 f. The #Generate_EventChains and related rules

 Each event chain comprises a number event rules. Each event rule

comprises a number of events in order of their occurrence. Each event has a particular

pattern of behavior. Due to this hierarchical data structure of the event chain, a hierarchy

of rules are used to generate specific sections of code needed to generate each layer in

event chain. The top-down mapping between the event chain data structure and the code

generator rule calls is illustrated in Figure 130.

 Figure 130. Event chain code generation mapping.

 The topmost #Generate_EventChains rule receives and processes

the branch Chains from the overall parsed tree which is a list of user defined chains of

events that constitute the simulation shown in Figure 131.

#Generate_EventChains

$Rules

$Chain

$Chains

$Rule

$Patterns

$Pattern

#Generate_Patterns

..

..

..

..

..

#Generate_Rules

86

 Figure 131. Input to #Generate_EventChains Rule.

 Each event chain in $Chains has the data structure shown in Figure 132

below:

 Figure 132. The input data structure of an event chain.

 The name of the chain and a list of rules $Rules are used by the code

generator to generate the C++ code in the Chains.h header file shown in Figure 133.

The list of rules are used to generate the C++ functional prototypes and then passed to the

#Generate_Rules rule to generate lower level code fragments.

Figure 133. Code generated directly by #Generate_EventChains.

<. Chain_Name: $Chain_Name,
 Rules: $Rules .>

$Chains

// METALS Code Generator Version 0.4C
// Generation of Event Chains

// User defined chain $Chain_Name

// Functional prototypes for n number of rules
// in one event chain
$Rules[1].Rule_Name_class
$Rules[1].Rule_Name_rule($Rule.Rule_Name_class);
.
.
$Rules[n].Rule_Name_class
$Rules[n].Rule_Name_rule($Rule.Rule_Name_class);

// Specific code returned by RIGAL rule
// #Generate_Patterns for n number of rules
#Generate_Rules($Rule[1]);
.
.
#Generate_Rules($Rule[n]);

87

 Each rule in $Rules has the data structure shown in Figure 134 below:

 Figure 134. The input data structure of an event chain.

 The name of the rule and a list of event patterns $Patterns are used by

the code generator to generate the C++ code in the Chains.h header file shown in

Figure 135. The names of all events that are in the event chain are stored in the list

$used_event_names. An instance for each event object in this list is first created

before #Generate_Patterns rule is called to generate the specific code associated

with each event object. An instance of the rule is also created and returned to allow event

attributes to be manipulated and propagated externally.

Figure 135. Code generated directly by #Generate_Rules.

$Rule_Name_class $Rule_Name_rule($Rule_Name_class)
{
 $Rule_Name_class $Rule_Name;
// Functional prototypes for n number of events
$used_event_names[1]_class
$used_event_Names[1]
[$num_of_occurences.$used_event_names[1]]
.
.
$used_event_names[n]class
$used_event_Names[n]
[$num_of_occurences.$used_event_names[n]]

// Specific code returned by RIGAL rule
// #Generate_Patterns for n number of event patterns
#Generate_Patterns($Patterns[1])
.
.
#Generate_Patterns($Patterns[n])
 return $Rule_Name;
}

<. Rule_Name: $Rule_Name,
 Patterns: $Patterns,
 Used_Event_Names: $used_event_names,
 number_of_occurences: $num_of_occurences .>

88

 Depending on what type of standard event pattern that is encountered, the

#Generate_Patterns rule will generate the corresponding equivalent C++ code in

the Chains.h header file. Each event pattern has a data structure shown in Figure 136

below. The body $Pattern for each event is passed into a specific code generating

rule that has been developed based on its type specified by $Type.

 Figure 136. The input data structure of an event pattern.

 Figure 137 below shows the specific rule that is invoked to handle its

corresponding event type.

 Figure 137. Mapping of code generating rules to event types.

<. Type: $Type, Body: $Pattern .>

#Generate_IterationIteration

Alternative

Conditional

Loop

Action

Simple

Group

#Generate_ Alternative

#Generate_Conditional

#Generate_Loop

#Generate_Action

#Generate_Simple

#Generate_Group

89

 g. The #Generate_Iteration Rule

 This rule expects an iteration event pattern with a data structure shown in

Figure 138 below:

 Figure 138. Input to #Generate_Iteration Rule.

 There are 3 possible outputs to the input depending on the type of operator

specified in $Op. The meaning for each of these operators is summarised in Table 2

below:

Operator Expression Meaning

= Expression Repeat the list of event patterns EXACTLY the

number of times specified by Expression

<= Expression Repeat the list of event patterns a random

number of times LESS THAN or EQUAL to the

number specified by Expression.

< Expression Repeat the list of event patterns a random

number of times LESS THAN the number

specified by Expression.

 Table 3. Iteration Operators.

 If the operator $Op is = than the equivalent C++ code generated is shown

in FIgure 139. The rule $Generate_Patterns is called recursively for each pattern

in the list $PatternList. The $num_of_occurences variable is used to

differentiate between multiple instances of the same event within each rule.

<. Repeat : (. $Op $Expression .),
 This: $PatternList .>
$num_of_occurences

90

Figure 139. Code generated by #Generate_Iteration when $Op = '='.

 If the operator $Op is <= or <, the generated C++ code will include an

uniquely named integer variable to hold the value of the number of iterations to be

performed. A unique number $Unique that is global to the RIGAL rule #Generate is

incremented and appended to the name of the integer Chance each time an iteration

pattern is encountered. All global variables are accessed using the RIGAL key word

LAST followed by the parent rule identifier that defines its scope. A number is then

randomly generated between 1 and $Expression and stored in the Chance integer

which is then used in the C++ for loop expression. The RIGAL source code that does

the above and the output C++ code are shown in Figure 140 ad 141 respectively.

Figure 140. Portion of the RIGAL source code to implement iteration.

for (__int64 i=1; i=$Expression; i++)
{
 // Specific code returned by RIGAL rule
 // #Generate_Patterns for n number of event patterns
 #Generate_Patterns($PatternList[1], $num_of_occurences)
 .
 .
 .
 #Generate_Patterns($PatternList[n], $num_of_occurences)
}

IF ($Op = '=') ->
 GEN_CHAINS <<
 'for (__int64 i=1; i<=' $Expression '; i++)';
ELSIF (T) ->
 $Unique := LAST #Generate $Unique + 1;

 GEN_CHAINS <<
 'int Chance'$Unique ' = Rand() % ' $Expression ';';

 GEN_CHAINS <<
 'for (__int64 i=1; i' $Op 'Chance' $Unique '; i++)';
$UniqueFI;

91

Figure 141. Code generated by #Generate_Iteration when $Op is not '='.

 h. The #Generate_Alternative and related rules

 The #Generate_Alternative rule expects an input pattern shown in

Figure 142 comprising a list of alternative outcomes followed by the

$num_of_occurences value that is used to differentiate between multiple instances

of the same alternative event within each rule.

 Figure 142. Input to #Generate_Alternative Rule.

 The rule generates a C++ statement to generate a random variable Chance

as well as creating 3 variables $PlusSign, $ElseSign and $Cumulative that will

be used by the $Generate_Probability rule.

 The $Generate_Probability rule is called to generate the

equivalent C++ code for each of the outcomes in $List_of_Outcomes. Repeated

calling of this rule is necessary to create a nested series of C++ IF-ELSE statements in

the generated code as illustrated in Figure 143. The RIGAL source code that does the

above is shown in Figure 144.

int Chance$Unique;
Chance$Unique = Rand() & $Expression;
for (__int64 i=1; i $Op Chance$Unique; i++)
{
 // Specific code returned by RIGAL rule
 // #Generate_Patterns for n number of event patterns
 #Generate_Patterns($PatternList[1], $num_of_occurences)
 .
 .
 .
 #Generate_Patterns($PatternList[n], $num_of_occurences)
}

$List_of_Outcomes
$num_of_occurences

92

Figure 143. Code generated by #Generate_Probability for n outcomes.

Figure 144. Portion of the RIGAL source code to implement alternatives.

$Unique := LAST #Generate $Unique + 1;

GEN_CHAINS <<
'double Chance'$Unique ' = (double) rand() / RAND_MAX;';

$PlusSign := NULL;
$ElseSign := NULL;
$Cumulative := NULL;

FORALL $Outcome IN $List_of_Outcomes
DO
 #Generate_Probability
 ($Unique $Outcome $num_of_occurences)
OD;

if (Chance$Unique < $Prob[1])
{
 #Generate_Patterns
 ($PatternList[1] $num_of_occurence)
}
else
if (Chance$Unique < $Prob[1]+ $Prob[2])
{
 #Generate_Patterns
 ($PatternList[2] $num_of_occurence)
}
.
.
else
if (Chance$Unique < $Prob[1]+ $Prob[2] + ... + $Prob[n])
{
 #Generate_Patterns
 ($PatternList[n] $num_of_occurence)
}

93

 For this current implementation of the code generator, the C++ built-in

pseudorandom random variate generator, the rand() function is used to generate the

number Chance. The rand() function generates integers in the range [0,

RAND_MAX] inclusive with RAND_MAX being a value defined in the stdlib.h

being typically 32767. The srand() function is often used to seed this pseudorandom

variate generator prior to calling the function rand().

 The METALS code generator can easily be extended by substituting the

the statement printing the code dealing with pseudo random variate generation shown in

Figure 145 below with any standard pseudorandom variate generators used in actual

combat simulation. Listings of common continuous and discrete pseudorandom variate

generators [JERRY] are given in Table 3 and 4 respectively.

Figure 145. Standard print the C++ pseudorandom number generator in the output.

GEN_CHAINS <<
'double Chance'$Unique ' = (double) rand() / RAND_MAX;';

94

Pseudorandom
Variates

Probability Distribution Function Pseudo Code

Continuous
Uniform

⎪
⎩

⎪
⎨

⎧

≥

<<
−
−

≤

=

bx

bxa
ab
ax

ax
xF

1

0
)(

Let U = Random(0,1)
Return X = a + (b-a) U

Continuous
Exponential

⎪⎩

⎪
⎨
⎧

>⎟
⎠
⎞

⎜
⎝
⎛−−=

otherwise

x
a
x

xF
0

0exp1)(
Let U = Random(0,1)
Return X = -a ln(1-U)

Continuous
Weibull

⎪
⎩

⎪
⎨

⎧
>

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−−=

otherwise

x
a
x

xF

b

0

0exp1)(

Let U = Random(0,1)
Return X = -a ln(1-U)1/b

Continuous
Normal

No closed form expression for
distribution.
Distribution mean = µ
Distribution variance = σ2

While (true) {
 Let U1 = Random(0,1)
 Let U2 = Random(0,1)
 Let V1 = 2U1 - 1
 Let V2 = 2U2 - 1
 Let W = V1

2 + V2
2

 If (W < 1) {
 Let Y = [(-2 ln W) / W] 1/2
 Return X1 = µ + σ V1Y
 Return X2 = µ + σ V2Y
}

Table 4. Continuous Pseudorandom Variate Generators.

Pseudorandom
Variates

Probability Mass Function Pseudo Code

Discrete
Bernoulli

⎩
⎨
⎧

−=
=

=
pyprobabilit

pyprobabilit
X

10
1

Let U = Random(0,1)
If (U ≤ p) Return X = 1
Else Return X = 0

Discrete
Binomial ()

⎪⎩

⎪
⎨
⎧

=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

otherwise

nxpp
x
n

xP
xnx

0

,,1,0)1)(K

where ())!!
!

xnx
n

x
n

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

Let the function BER(n,p)
implements the mass
function and returns the
value of X for a given n and
p.

X = 0
For (i = 1 to n)
 Let B = BER(n,p),
X=X+B
Return X

95

Discrete
Poisson

⎪⎩

⎪
⎨
⎧

==

−

otherwise

x
x

e
xP

x

0

,1,0
!)(K
λλ

Let a = exp(-λ)
Let p = 1
Let X = 1

While (p > a) {
 Let U = Random(0,1)
 p = pU
 X = X + 1
}
Return X

Table 5. Discrete Pseudorandom Variate Generators.

 The $Generate_Probability rule expects an input pattern shown in

Figure 146.

 Figure 146. Input to #Generate_Probability Rule.

 During code generation, the $ElseSign is printed before each IF

statement. In order to get the correct sequence nested IF-ELSE statements, this

$ElseSign variable is initially set to NULL before being assigned with the string

ELSE after the first IF statement.

 Likewise the required cumulative probability values for successive IF

statements is printed using the $Cumulative variable that stores the probability value

$Prob for each outcome preceding by a $PlusSign variable storing the plus sign +.

For the first IF statement, the plus sign is set to NULL to get a correct syntax.

 The rule $Generate_Patterns is called recursively for each pattern

in the list $PatternList. The RIGAL source code that does all the above is shown in

Figure 147.

$Unique
<. Patterns: $PatternList,
 Probability: $Prob .>
$num_of_occurences

96

Figure 147. Portion of the RIGAL source code to implement IF-ELSE statements.

.

 i. The #Generate_Conditional Rule

 The #Generate_Conditional rule expects an input pattern shown in

Figure 148 comprising a Boolean expression $Bool, two alternative event patterns

followed by the $num_of_occurences value that is used to differentiate between

multiple instances of the same conditional event within each rule.

 Figure 148. Input to #Generate_Alternative Rule.

 The rule generates an equivalent IF-ELSE C++ statement shown in Figure

149. The rule $Generate_Patterns is called recursively for the two alternative

patterns.

LAST #Generate_Alternative $Cumulative :=
LAST #Generate_Alternative $PlusSign
+ ' ' + $Prob + ' ' +
LAST #Generate_Alternative $Cumulative;

$PlusSign := LAST #Generate_Alternative $PlusSign;
$ElseSign := LAST #Generate_Alternative $ElseSign;
$Cumulated := LAST #Generate_Alternative $Cumulative;

GEN_CHAINS << $ElseSign;
GEN_CHAINS << 'if (Chance'$Unique < ' $Prob ')';
GEN_CHAINS << '{';
FORALL $Pattern IN $PatternList
DO
 #Generate_Patterns($Pattern $num_of_occurences);
OD;
GEN_CHAINS << '}';

<. When: $Bool,
 Do: $Pattern, [Else: $Pattern2] .>
$num of occurences

97

Figure 149. Code generated by #Generate_Conditional.

 j. The #Generate_Loop Rule

 The #Generate_Loop rule expects an input pattern shown in Figure

150 comprising a Boolean expression $Bool, an event pattern followed by the

$num_of_occurences value that is used to differentiate between multiple instances

of the same loop event within each rule.

 Figure 150. Input to #Generate_Loop Rule.

 The rule generates an equivalent WHILE C++ statement shown in Figure

151. The rule $Generate_Patterns is called recursively for the pattern.

Figure 151. Code generated by #Generate_Loop.

if ($Bool)
{
 #Generate_Patterns($Pattern $num_of_occurences)
}
else
{
 #Generate_Patterns($Pattern2 $num_of_occurences)
}

<. While : $Bool,
 Do : $Pattern .>
$num of occurences

while ($Bool)
{
 #Generate_Patterns($Pattern $num_of_occurences)
}

98

 k. The #Generate_Action Rule

 The #Generate_Action rule expects an input stream of string tokens

that represents C++ code. These tokens are output directly by the rule to the source file

without modifications.

 l. The #Generate_Simple Rule

 The #Generate_Simple rule expects an input pattern shown in Figure

152 comprising an event name, its order of occurrence within the rule value $Order

followed by the $num_of_occurences value that is used to determine if a previous

instance of the same event already exist within the rule.

 Figure 152. Input to #Generate_Simple Rule.

 The rule generates an equivalent C++ functional call to the event function

with the name $Id shown in Figure 153. If previous instances of the same event already

exists within the rule ($num_of_occurences > 1), than an array index in the form of

[$Order] is added immediately after the name of event $Id[$Order].

Figure 153. Code generated directly by #Generate_Simple.

 The event function always return an event object. This is to allow

attributes for the current instance of an event to be accessible and modifiable by other

events. This important feature forms the basis of how computations can be done over an

event trace (series of events within a rule).

<. Event_Name: $Id,
order: $Order .>
$num_of_occurences

$Id[$Order] = $Id_rule ($Id[$Order]);

99

 m. The #Generate_Group Rule

 The #Generate_Group rule expects an input pattern shown in Figure

154 comprising a list (group) of event patterns $Group_Of_Patterns followed by

the $num_of_occurences value that is used to differentiate between multiple

instances of the same group event within each rule.

 Figure 154. Input to #Generate_Alternative Rule.

 The rule $Generate_Patterns is then called recursively for each of

the event pattern in $Group_Of_Patterns.

 The complete METALS lexical analyzer, parser and code generator source

code in RIGAL is given in Appendix I.

$Group_Of_Patterns
$num_of_occurences

100

THIS PAGE INTENTIONALLY LEFT BLANK

101

IV. APPLICATION OF METALS

A. EXAMPLE 1 - SIMPLE COIN TOSS.

 A simple coin example is first used to demonstrate the basic capabilities of

METALS. In this example, a coin is flipped a million times and the total number of times

that the result is a `head' is counted. The probabilities for obtaining a `head' or 'tail' are both

set at 0.5. The input source code written in METALS is shown in Figure 155 below:

Figure 155. METALS source code for Simple Coin Toss example.

SIMULATE CoinFlip { Version 1 }

ENTITY Simulation
{ BEGIN __int64 TotalCoinFlips; __int64 NumHeads; END }

EVENT Initialize
EVENT Head
EVENT Tail
EVENT Start_Flipping

CHAIN Algo
{
Start_Flipping : Initialize
 REPEAT(=3000000000)
 { BEGIN Simulation.TotalCoinFlips++; END
 DECIDE (P(0.5) Head | P(0.5) Tail) }
 BEGIN
 cout << "Total Coin Flips = "
 << Simulation.TotalCoinFlips << "\n"
 << "Number of Heads = "
 << Simulation.NumHeads << "\n";
 END;

Initialize : BEGIN Simulation.TotalCoinFlips = 0;
 Simulation.NumHeads = 0; END;

Head : BEGIN Simulation.NumHeads++; END;

Tail;
}

102

 The simulation named CoinFlip comprises a single entity which is the

Simulation itself and 4 events, namely Initialize, Head, Tail and

Start_Flipping.

 The Simulation entity contains 2 attributes TotalCoinFlips and NumHeads

which are modified by a single chain of events named Algo. The simulation start point is

the first rule in the first chain, which in this simple example is the rule Start_Flipping.

Start_Flipping begins with the event Initialize, followed by an Iteration

event pattern and an Action event pattern.

 The Iteration event pattern itself contains an Action pattern followed by an

Alternative event pattern which can call either the Head or Tail event. Specific

code for the Initialize, Head and Tail events finally completes the event chain.

 The intermediate parsed tree for the METALS program produced by the METALS

parser is given in Figure 156. This tree is then fed to the METAL code generator to

generate an equivalent C++ program comprising of the following 5 output files:

• MAIN.CPP - This is the main C++ program file.

• WORLDS.CPP - This is the C++ header file containing class definitions for

simulation environments. For this example, no world is defined in the source

code so the header file is empty.

• ENTITIES.CPP - This is the C++ header file containing class definitions for

simulation entities.

• EVENTS.CPP - This is the C++ header file containing event class definitions.

• CHAINS.CPP - This is the C++ header file that containing functions that

implements event rules.

103

Listings for these output files are given in Figures 157 to 160.

Figure 156. Intermediate parsed tree produced by METALS parser.

<.Title: <.Title: 'CoinFlip',
 Description: (.'Version''0''.'1'B'.).>,

 Entities: (.<.Entity_Name: 'Simulation',
 Entity_Attributes: (.'__int64''TotalCoinFlips'';'
 '__int64''NumHeads'';'.).>.),

 Events: (.<.Event_Name: 'Initialize'.>
 <.Event_Name: 'Head'.>
 <.Event_Name: 'Tail'.>
 <.Event_Name: 'Start_Flipping'.>.),

 Chains: (.<.Chain_Name: 'Algo',
 Rules: (.

 <.Rule_Name: 'Start_Flipping',

 Patterns: (.<.Type: 'Simple',
 Body: <.Event_Name: 'Initialize',
 order: 0.>.>

 <.Type: 'Iteration',
 Body: <.Repeat: (.'='(.3000000000.).),
 This: (.<.Type: 'Action',
 Body:(.'Simulation''.''TotalCoinFlips''++'';'.).>

 <.Type: 'Alternative',
 Body: (.<.Patterns: (.<.Type: 'Simple',
 Body: <.Event_Name: 'Head',
 order:0.>.>.),
 Probability:'0.5'.>

 <.Patterns: (.<.Type: 'Simple',
 Body: <.Event_Name: 'Tail',
 order:0.>.>.),
 Probability:'0.5'.>.).>.).>.>

 <.Type: 'Action',
 Body: (.'cout''<<''Total Coin Flips = ''<<''Simulation''.'
 'TotalCoinFlips''<<''\n'';''cout''<<''Number of Heads = '
 '<<''Simulation''.''NumHeads''<<''\n'';'.).>.),

 Used_Event_Names: <.Initialize: 'T',
 Head: 'T',
 Tail: 'T'.>,

 number_of_occurences: <.Initialize: 1,
 Head: 1,
 Tail: 1.>.>

 <.Rule_Name: 'Initialize',

 Patterns: (.<.Type: 'Action',
 Body: (.'Simulation''.''TotalCoinFlips''=''0'';'
 'Simulation''.''NumHeads''=''0'';'.).>.).>

 <.Rule_Name: 'Head',

 Patterns: (.<.Type: 'Action',
 Body: (.'Simulation''.''NumHeads''++'';'.).>.).>

 <.Rule_Name:'Tail'.>.).>.).>

104

Figure 157. Listings for MAIN.CPP generated by METALS code generator.

Figure 158. Listings for ENTITIES.H generated by METALS code generator.

// METALS Code Generator Version 0.4C
// C++ simulation program [CoinFlip] created from aaa.txt
// Version 0 . 1 B

#include <iostream>
#include <ctime>
#include <cstdlib>
#include <stdlib.h>

using namespace std;

#include "Worlds.h"
#include "Entities.h"
#include "Events.h"
#include "Chains.h"

// Main
int main(int argc, char *argv[])
{
 Start_Flipping_class Start_Flipping;
 Start_Flipping_rule(Start_Flipping);

 system("PAUSE");
 return 0;
}

// METALS Code Generator Version 0.4C
// Generation of Entities

class Simulation_class
{
 public:

 _int64 TotalCoinFlips;
 _int64 NumHeads;

};

Simulation_class Simulation;

// Base class for all events

long Global_Event_Count;

enum EType { DET, STO };

class Event
{
 public:
 Event(EType, double);
 string Name;
 EType EventType;
 double Mean;
 double Duration;
};

Event :: Event(EType EventType, double Mean)
{
 Global_Event_Count++;

 if (EventType==DET) Duration = Mean;
 else { Duration = Mean; }
}

105

Figure 159. Partial Listings for EVENTS.H generated by METALS code generator.

// METALS Code Generator Version 0.4C
// Generation of Event Classes

long Global_Event_Count;

enum EType { DET, STO };

class Initialize_class
{
 public:
 Initialize_class();
 string Name;
 EType Var;
 double Mean;
 double Duration;
 static long Instances;
};

long Initialize_class :: Instances = 0;

Initialize_class :: Initialize_class()
{
 Global_Event_Count++;
 Instances++;

 Name = "Initialize";
 Var = DET;
 Mean = 0;
 Duration = 0;

 if (Var==STO) // Discrete Poisson RNG.
 {
 double a = exp(-Mean);
 double p = 1;
 long x = 1;
 while (p > a) {
 double U = (double) rand() / RAND_MAX;
 p = p*U;
 x++; }
 Duration = x; }
}

106

Figure 160. Listings for CHAINS.H generated by METALS code generator.

Figure 161 Screen output by program after execution.

// METALS Code Generator Version 0.4C
// Generation of Event Chains
// The various user defined event descriptions in Algo
// Functional prototypes for each rule in the event chain
Start_Flipping_class Start_Flipping_rule(Start_Flipping_class);
Initialize_class Initialize_rule(Initialize_class);
Head_class Head_rule(Head_class);
Tail_class Tail_rule(Tail_class);

Start_Flipping_class Start_Flipping_rule(Start_Flipping_class)
{
 Start_Flipping_class Start_Flipping;
 Initialize_class Initialize;
 Head_class Head;
 Tail_class Tail;
 Initialize =Initialize_rule (Initialize);
 for (__int64 i=1; i<=1000000; i++)
 {
 Simulation . TotalCoinFlips ++;
 double Chance = (double) rand() / RAND_MAX;
 if (Chance < 0.5)
 {
 Head =Head_rule (Head);
 }
 else
 if (Chance < 0.5)
 {
 Tail =Tail_rule (Tail);
 }
 }
 cout << "Total Coin Flips = " << Simulation . TotalCoinFlips << "\n";
 cout << "Number of Heads = " << Simulation . NumHeads << "\n";

 return Start_Flipping;
}

107

 In this simulation, a coin is flipped 3 billion times and the total number of heads

obtained is counted. The C++ __int64 data type is used to support a maximum of

9,223,372,036,854,775,808 runs using its 8 bytes or 64 bit size. The entire simulation took a

total of 552 seconds on a Pentium 4 2.4 GHz notebook with 512 Mb of RAM. This gives an

estimated 5.4 million runs per second for this simple experiment.

108

B. EXAMPLE 2 - MINE AVOIDANCE IN LITTORALS

 1. Introduction

 The use of minefields at sea is the oldest but nevertheless still high effective and

widely used naval tactic due to its simplicity in execution and the low cost of mines.

 Minefields are normally deployed at navigational chokepoints to impede or delay the

safe passage of ships. This make littoral waters, with its intrinsic characteristics of shallow

waters, cluttered seabed and constricted passages ideal environments for the deployment of

mines. Mines are cheap relative to the sophisticated modern navy vessels, and therefore

constitutes a significant weapon of asymmetry against navies.

 There are two widely debated approaches that modern navies can use to create a safe

passage through a minefield. The first is the classical method of Mine-Clearance, whereby,

a mine clearance vessel will detect, classify and destroy mines along a pre-determined path

through the affected area. This method is extremely time consuming, because not only will

a vessel need time to classify and identify an object detected on sonar, time is needed to

physically position charges near a mine to destroy it upon positive identification. The

expected higher population density of non-mine, mine-like bottom objects (NOMBOs) in

littoral waters can potentially make the method of mine-clearance untenable in terms of how

long the entire operation is going to take.

 The second method is a more radical method of Mine-Avoidance, whereby, a mine

hunting vessel will detect, classify, mark NOMBOs using special mine avoidance sonars

and changing course to avoid them while continuing to go through a mine field. This is

analogous to the classic maze problem whereby a `mouse' is supposed to work through a

labyrinth or walls and dead ends to reach the exit on the other side of the maze.

109

 The effectiveness of both methods can be measured in terms of:

• Total time taken to create a safe navigational path of a certain size through the

affected area.

• The probability of successful safe transit of the mine clearance/hunting vessel

during its operation. In other words, whether the vessel indeed survive while

conducting mine clearance/avoidance operations.

The typical state space diagrams for both mine clearance and avoidance operations

are shown in Figure 162 and 163 respectively.

Figure 162. Mine Clearance State Diagram.

110

Figure 163. Mine Avoidance State Diagram.

It is beyond the scope of this thesis to analyze in depth the effectiveness of both

methods using extensive simulations. Instead, a Mine Avoidance simulation program with

its complicated search and decision making routines will be built from ground up based on

the state diagram shown above using METALS exclusively as a demonstration of the its

capabilities.

 2. Event Space During Mine Avoidance Operations

 The distinction between events in the design domain and events in the problem

domains had been made earlier in Chapter 2. While such a distinction is important in the

design of the METALS language, for the end-user, the METALS language does not

differentiate between the two types of events and supports all event definitions with the

same language constructs. For the Mine Avoidance problem, the list of possible events that

will take place during simulation is summarized in Table 5 below.

Drop Back Maneuvers

111

Event ID Description Domain
Initialize All global variables are

initialized during this event.

All worlds and entities are
instantiated from their
respective class definitions.

Design

Populate The simulation environment
in this case a minefield is
populated randomly with a
range of user defined objects.

Design

Start_Simulation Simulation begins with this
event which encompass a
number of events representing
simulation runs.

Design

Start_Run Each Start_Run event
encapsulates all problem
domain events.

Design

Move Vessel begins to scan ahead
for objects.

If object is detected and
classified as NOMBOS then
avoid by calling either the
Go_Clockwise event or
Go_AntiClockwise event,
else proceed ahead and repeat
the move event again.

Problem

Go_Clockwise Circumscribe detected mine-
like objects clockwise.

Problem

Go_AntiClockwise Circumscribe detected mine-
like objects clockwise.

Problem

Table 6. Mine Avoidance Events.

 The event trace for this simulation program is shown in Figure 164 below:

Figure 164. Event Trace for Mine Avoidance.

Simulation_Program: Initialize Populate Start_Simulation

Start_Simulation : Start_Run

Start_Run : Move*

Move : Go_Clockwise | Go_AntiClockwise

112

 3. Defining The Simulation Entities

 For this simulation, the list of entities created is listed in Table 6 below, and the

corresponding METALS source code to create them is shown in Figure 165.

Table 7. Mine Avoidance Entities.

Figure 165. Entities needed in the simulation.

Entity Attributes Description

MaxRuns = Maximum number of runs to

execute during the simulation

numClockwise = Performance indicator

counting the number of clockwise

movements

Simulation

numAntiwise = Performance indicator

counting the number of anticlockwise

movements

The overall simulation

program.

Run MaxSteps = Maximum number of steps to

iterate through to prevent infinite looping

Each simulation run.

Clockwise = Boolean value indicating

whether current mode of circumscribing is

clockwise or otherwise.

CurrentCol, CurrentRow = Current position

within the minefield.

Ship

StartCol, FinishCol = Starting and finishing

position.

The mine-avoiding vessel.

ENTITY Simulation { BEGIN
 long MaxRuns, numClockwise, numAntiClockwise;
 END }
ENTITY Run { BEGIN long MaxSteps; END }
ENTITY Ship { BEGIN
 bool Clockwise;
 int CurrentCol, CurrentRow, StartCol, FinishCol;
 END }

113

 4. The Mine Avoidance Algorithm

 With reference to the event trace given in Figure 165, the mine avoidance algorithm

is encapsulated within the event Move in the simulation. The basic pseudo code for the

Move algorithm implemented in C++ is shown in Figure 166 below:

Figure 166. Pseudo-code for Event Move.

 The circumscription routines around objects are based on the wall following maze

solving routine with some customization for this simulation. The Go_Clockwise and

Go_AntiClockwise events are called to move the vessel by one step clockwise or

anticlockwise around objects ahead of the vessel. Upon reaching a new position, the Move

event is again called and the sequence of events thus repeats..

Scan one square North.

If no object detected {

 Move one square North, Mark current square as BeenHere }

else {

 Scan one square North-East.

 If no object detected {

 Move one square North-East, Mark current square as BeenHere }

 else {

 Scan one square North-West

 If no object detected {

 Move one square North-West, Mark current square as BeenHere }

 else {

 If Mode is clockwise {

 Circumscribe clockwise around objects }

 else {

 Circumscribe anticlockwise around objects }

 }

}

114

 5. Modeling The Minefield.

 The METALS World language construct is used here to create the 2-D array

representing the minefield. A minefield can contain a few standard types of objects such as

a NOMBO, a non-mine object, a sonar false alarm or a mine. The TERRAINS keyword in

the World grammar is used here to define a range of possible objects or event markers that

can be associated with each element of the array. The METALS source code for

establishing ad setting up a Minefield is shown in Figure 167 below:

Figure 167. METALS source code to set up a minefield.

 After creating a minefield with the required attributes, the next step is to populate

the minefield with objects whose types has just been defined. An event Populate is

defined for this purpose. Inside this event, the expected number of mines and NOMBOs

inside the Minefield are computed based on expected mine and object population density.

The METALS source code based using the Action pattern (C++ Code) for this

computation is shown in Figure 168 below:

Figure 168. METALS source code calculate the expected number of mines and

NOMBOs.

WORLD Minefield {
 ROWS = 32
 COLS = 32
 TERRAINS = (Empty Nombo NonMine False_Alarm Mine
 Boundary Start Finish)
 ATTRIBS = (BEGIN // Additional Attribs Can Be Added Here END)
}

int Objects_Per_Square_km= 5;
int Mines_Per_Square_km = 3;
int Size_Of_Square = 200;
int Num_Squares_Per_Square_km =
(1000/Size_Of_Square)*(1000/Size_Of_Square);

int ExpectedNumMines = (NumSquares / Num_Squares_Per_Square_km) *
 Mines_Per_Square_km;
int ExpectedNumObjects = (NumSquares / Num_Squares_Per_Square_km) *
 Objects_Per_Square_km;

115

 Continuing with the Populate event, using the expected values for the

number of mines and NOMBOs, and using the total number of squares in the 2-D array

Minefield, mines and NOMBOs are first distributed randomly across the total number of

squares using a uniform randomly number generation. The code that spread mines and

objects over the total number of squares is shown in Figure 169 below:

Figure 169. Algorithm for spreading mines and objects.

 From the code shown in Figure 169, 3 arrays IsObject, IsMine and

IsNombo, each with an array size that is equal to the total number of squares are used

store information about whether any particular square contains a mine, NOMBO or

object. These array are then used to set the object type for each element in the Minefield

shown in Figure 170 below:

Figure 170. Algorithm for setting the object type for each Minefield square.

int i, j, Choice;
srand((unsigned)time(0));
for (i=0; i<=ExpectedNumObjects-1; i++) {
 Choice = 1 + rand() % NumSquares;
 IsObject[Choice-1] = true;
}
for (j=0; j<=ExpectedNumMines-1; j++) {
 Choice = 1 + rand() % NumSquares;
 if (IsObject[Choice-1] == false)
 IsMine[Choice-1] = true;
 else {
 IsObject[Choice-1] == false;
 IsNombo[Choice-1] = true;
 }
}

int CurrentPointer = 0;
for (int Row=1; Row<=Minefield_MaxRows-2; Row++) {
 for (int Col=1; Col<=Minefield_MaxCols-2; Col++) {
 Minefield[Row][Col].ObjectType = Empty;
 if (IsMine[CurrentPointer] == true)
 Minefield[Row][Col].ObjectType = Mine;
 if (IsObject[CurrentPointer] == true)
 Minefield[Row][Col].ObjectType = NonMine;
 if (IsNombo[CurrentPointer] == true)
 Minefield[Row][Col].ObjectType = Nombo;
 CurrentPointer++;
 }
}

116

 It is to be noted that the distribution of objects (NOMBOs) and mines

within the 2-D array is typically simulation based on the Spatial Poisson Process that is

extremely well documented and presented in [GAVER1] and [GAVER2]. A summary of

the Spatial Possion Process from these documents are summarized in Figure 171 below.

Figure 171. Spatial Poisson Process for Mine Avoidance.

 6. Computations Over Event Traces.

 In this simulation, besides finding a clear path through a minefield, the total

and average duration per simulation run, as well as the total number of clockwise and

anticlockwise movements are also parameters of interests. The METALS source code for

computing the total duration for the total number of simulation runs is shown in Figure 172

below. The Start_Run event is executed MaxRuns number of times and the duration

for each Start_Run is accumulated in the attribute Duration for the entity

Simulation. Simple calculations are next done to obtain the average duration per run.

The same approach is used to keep track of the number of clockwise and anticlockwise

movements.

Spatial Poisson Process

– Assumptions
• Number of objects in disjoint increments of area are independent
• One object in each small increment of area

– Poisson rate � is the average number of objects per unit area

– Random number of objects in sub-region of area a, N(a) , is Poisson
distributed

– Amounts of area, A, covered between objects is exponentially distributed

– Subscripts used for Poisson rates, i.e., average numbers of mines and
NOMBOs, �M and �O, respectively

– Mines & NOMBOs are independently placed

{ } { } []0() 0
0!

a aa
P A a P N a e e−λ −λλ

> = = = =

{ } []()
!

n
a a

P N a n e
n

−λ λ
= =

117

Figure 172. Computing duration over event traces.

 METALS is design to allow event attributes to be exposed to other events by

having each event rule return a copy of the same event type object. This allow computations

like summation and averaging to be perform in a straightforward, tidy and highly controlled

manner.

7. Compiling The METALS Source And Building The Simulation

Program.

 The complete METALS source code for the Mine Avoidance Simulation is

given in Appendix II. It is This 263 lines in length METALS source code is fed into the

METALS parser and code generator to produce a C++ simulation program that comprises 6

output files with a total of 682 lines. This gives a target to source length ratio of about 2.6.

 As METALS is designed for computations over event traces, it is leaves the

bulk of attribute manipulation to the C++ language in the forms of actions. Despite this, the

savings in terms of the number of lines in absolute terms as well ss the higher level of

abstraction offered by METALS is significant.

REPEAT(=Simulation.MaxRuns) {
 Start_Run
 BEGIN
 Start_Simulation.Duration += Start_Run.Duration;
 END
}

BEGIN
 double Avg_Duration = Start_Simulation.Duration / Simulation.MaxRuns;
 cout << "Average duration per run over " << Simulation.MaxRuns
 << " run(s) is " << Avg_Duration << "\n";
 cout << "Total number of events occurred = " << Global_Event_Count
 << "\n";
 cout << "Number of Clockwise Movements = "
 << Simulation.numClockwise << "\n";
 cout << "Number of AntiClockwise Movements = "
 << Simulation.numAntiClockwise << "\n";
END;

118

 8. Simulation Results.

 A simulation over 1000000 runs is conducted with the ship starting at the

same position. The minefield is repopulated after even run. The compiled C++ simulation

program is executed 3 times, each running a total of 1000000 simulation runs. The results

for all three executions are given in Table 8 below:

 1st Execution 1 2nd Execution 2 3rd Execution Average
Number of
Simulation Runs
Conducted

1 000 000 1 000 000 1 000 000 1 000 000

Total Real Time
Taken (s)

150 172 154 158.666

Number of
Simulation Runs
per Second

6666 5813 6493 6302

Average
Simulation Time
(Duration) per Run

120.237 122.979 123.473 122.230

Length of event
trace

132 430 713 132 434 961 133 525 651 132 797 108

Total number of
clockwise
movements

24 095 580 25 089 616 24 727 338 24 637 511

Total number of
anti-clockwise
movements

15 983 512 15 903 520 16 430 360 16 105 797

Clockwise to
Anticlockwise
Ratio

1.507527 1.577614 1.504978 1.529729

Table 8. Results of Simulation Runs.

 The mean time taken for each execution is 158.666 seconds on a Pentium 4

2.4 GHz notebook with 512 Mb of RAM. This gives an estimated 6302 runs per second

performance for this simple experiment. The mean length of event trace is 132797108 or

about 132 million events long. A mean total of 24637511 clockwise movements were

recorded versus 16105797 anticlockwise movements, which yields a mean ratio of 1.5 to 1.

This implies that the algorithm is slightly biased to favor the clockwise circumscription

around objects. The screen captures from on 3 runs is shown in Figures 173 to 175 below:

119

Figure 173. Screen output by Mine Avoidance simulation program after execution 1.

Figure 174. Screen output by Mine Avoidance simulation program after execution 2.

120

Figure 175. Screen output by Mine Avoidance simulation program after execution 3.

 On the screens, the symbol o represents objects, * represents mines and ?

represent NOMBOs. The numeric letters 1, 2 ... represents the number of times a particular

square has been visited by the ship. The ship is transiting from bottom to top. The

particular map of the minefield is the output for the final run in the simulation.

 On the whole, in combat simulation, the ability to perform similar computations over

event traces can proof to be significantly useful. Examples include resource management

and monitoring resource depletion, such as the utilization of the port torpedo tube versus the

starboard torpedo tube using a particular tactic, the amount of ammunition consumed by

guns at various positions using a particular maneuver.

121

V. CONCLUSION

 This thesis has introduced an alternative way to design and construct combat

simulation models adapting methodologies like program behavior modeling, event

grammars and computations over event traces that are used traditionally in software

debugging automation tools.

 The feasibility and benefits of the new approach has been verified first by the

successful design and development of METALS and demonstrated subsequently by the

building of a mine avoidance simulation program. The METALS language howerver is far

from being complete in terms of providing the complete range of functionalities needed for

real world combat simulations. Possible future work needed will include extensions and

modifications to the METALS language construct to support more simulation features, most

notably constructs that automate computations over event traces and perform some attribute

manipulation. A high level combat model written in METALS can potentially be compiled

into C++, Java or any other code by pre-built compilers by just designing the appropriate

code generator, and make the model more portable and platform/environment independent.

Therefore, a Java version of the METALS code generator will represent an immediate next

step. In the longer run, a graphical development environment to model, create and run

simulations visually is also possible.

122

THIS PAGE INTENTIONALLY LEFT BLANK

123

APPENDIX A: SOURCE CODE FOR THE METALS COMPILER

A. THE METALS LEXICAL ANALYZER 0.5

-- Meta Language for Combat Simulation - Compiler
#MAIN
 PRINT 'METALS Parser Version 0.4B';

 -- TOKENIZATION
 -- Obtain code written in METALS from Combat.txt and generate
list of tokens.
 $Filename := 'MINE4.txt';
 $Tokens := #CALL_PAS(35 $Filename 'L+A-U-P-C+p-m+');
 PRINT $Tokens;

 -- LANGUAGE PARSING
 -- Use list of tokens and parse them into intermediate form.
 $Results := #Parse($Tokens);

 -- CODE GENERATION
 -- Use intermediate form to generate C++ code.
 #Generate($Results $Filename);

 #Generate_Patterns($Pattern $num_of_occurences);
 OD;
 GEN_CHAINS << '}';
 /

124

B. THE METALS PARSER VERSION 0.5

-- Meta Language for Combat Simulation - Parser Version 0.5

-- Obtain entire parsed tree for simulation program
#Parse
 / PRINT 'Inside #Simulation_Program'; /

 (.
 $Title := #Title
 [(* $Headers !.:= #Header *)]
 [(* $Worlds !.:= #World *)]
 [(* $Entities !.:= #Entity *)]
 [(* $Events !.:= #Event *)]
 [(* $Chains !.:= #Chain *)]
 .)

 / RETURN
 <. Title: $Title,
 Headers: $Headers,
 Worlds: $Worlds,
 Entities: $Entities,
 Events: $Events,
 Chains: $Chains .> /

-- Obtain simulation title and description
#Title
 / PRINT 'Inside #Title'; /

 'SIMULATE' $Id ['{' [$Description := #Plain_Text] '}']
 / RETURN
 <. Title: $Id,
 Description: $Description .> /

-- Add the user's own header file(s)
#Header
 / PRINT 'Inside #Header'; /

 'INCLUDE' $Id
 / RETURN $Id /

-- Obtain user-defined world
#World
 / PRINT 'Inside #World'; /

 'WORLD' $World_Name
 '{'
 'ROWS' '=' $MaxRows
 'COLS' '=' $MaxCols
 'TERRAINS' '=' '(' (* $Terrains !.:= S'($$<> ')') *) ')'
 ['ATTRIBS' '=' '(' $Attributes := #CPP_Code ')']

125

 '}'
 / RETURN
 <. World_Name: $World_Name,
 MaxRows: $MaxRows,
 MaxCols: $MaxCols,
 Terrains: $Terrains,
 Attributes: $Attributes .> /

-- Obtain user-defined entity
#Entity
 / PRINT 'Inside #Entity'; /

 'ENTITY' $Entity_Name
 ['{'
 [$Entity_Attributes := #CPP_Code]
 '}']
 / RETURN
 <. Entity_Name: $Entity_Name,
 Entity_Attributes: $Entity_Attributes .> /

-- Obtain user defined events
#Event
 / PRINT 'Inside #Event'; /

 'EVENT' $Event_Name
 ['{'
 [$Event_Attributes := #Event_Attributes]
 '}']

 / RETURN
 <. Event_Name: $Event_Name,
 Event_Attributes: $Event_Attributes .> /

-- Used by #Event to obtain event attributes.
#Event_Attributes
 / PRINT 'Inside #Event_Attributes'; /

 [$Var := ('STO'!'DET')]
 ['MEAN' '=' $Mean]
 ['DUR' '=' $Duration]
 [$Additional_Attribs := #CPP_Code]
 /
 -- Assign default values.
 IF ($Var = NULL) -> $Var := 'DET'; FI;
 IF ($Mean = NULL) -> $Mean := '0'; FI;
 IF ($Duration = NULL) -> $Duration := '0'; FI;
 IF ($Additional_Attribs = NULL) -> $Additional_Attribs :=
'None'; FI;
 RETURN
 <. Var: $Var,
 Mean: $Mean,
 Duration: $Duration,
 Additional_Attribs: $Additional_Attribs .> /

126

-- Obtain user defined chains of events
#Chain
 / PRINT 'Inside #Chain'; /

 'CHAIN' $Chain_Name
 '{'
 (* $Rules !.:= #Rule *)
 '}'
 / RETURN
 <. Chain_Name: $Chain_Name,
 Rules: $Rules .> /

-- Used by #Chain to obtain individual sequences or rules.
#Rule
 / PRINT 'Inside #Rule'; /

-- global var: $used_event_names : <* $id: T *>
-- $num_of_occurences: <* $Id: $Numb *>
-- number of rule name $Id occurences in the right hand part

 $Rule_Name [':' (* $Patterns !.:= #Pattern *)] ';'
 / RETURN
 <. Rule_Name: $Rule_Name,
 Patterns: $Patterns,
 Used_Event_Names: $used_event_names,
 number_of_occurences: $num_of_occurences .> /

-- ;;
-- (* $List !.:= S'($$ <> ';') *)
-- / PRINT 'Syntax error in #Rule found in the following:';
-- PRINT $List; /

-- Standard patterns for various data and control structures.
#Pattern
 / PRINT 'Inside #Pattern'; /

 -- Initialize pattern type
 / $Type := NULL; /

 -- Match pattern
 $Pattern := (#Iteration / $Type := 'Iteration'; / !
 #Loop / $Type := 'Loop'; / !
 #Conditional / $Type := 'Conditional'; / !
 #Alternative / $Type := 'Alternative'; / !
 #Action / $Type := 'Action'; / !
 #Group / $Type := 'Group'; / !
 #Simple / $Type := 'Simple'; /)
 / RETURN <. Type: $Type, Body: $Pattern .> /
 ;;
 '(' (* $List !.:= #Pattern *) ')'
 / RETURN $List /

127

#Iteration
 / PRINT 'Inside RIGAL Rule Iteration'; /
 'REPEAT' '(' $Op := #Operator $Expression := #Plain_Text2 ')' '{'
(* $Pattern !.:= #Pattern *) '}'
 / RETURN <. Repeat : (. $Op $Expression .), This: $Pattern .> /
 --> ONFAIL PRINT 'Iteration Pattern Matching Failure'

#Loop
 / PRINT 'Inside #Loop'; /
 'WHILE' '(' $Bool := #Bool_Expression ')' '{' (* $Pattern !.:=
#Pattern *) '}'
 / RETURN <. While : $Bool, Do : $Pattern .> /
 --> ONFAIL PRINT 'Conditional Pattern Matching Failure'

#Conditional
 'WHEN' '(' $Bool := #Bool_Expression ')' '{' (* $Pattern !.:=
#Pattern *) '}'
 ['ELSE' '{' (* $Pattern2 !.:= #Pattern *) '}']
 / RETURN <. When: $Bool, Do: $Pattern, Else: $Pattern2 .> /
 --> ONFAIL PRINT 'Conditional Pattern Matching Failure'

-- Pattern for decision making control structure
-- Legal patterns are as follows:
-- DECIDE (Event1 | Event2) - 2 events
-- DECIDE (Event1 | Event2 | Event3 ... | EventN) - N events
-- DECIDE (P(Value1) Event1 | P(Value2) Event2)
-- DECIDE (P(Value1) Event1 | P(Value2) Event2 | | P(ValueN)
EventN)
-- Value can be '0.5' or '.5'
#Alternative
 / PRINT 'Inside #Alternative'; /

 'DECIDE'
 '('
 (* $Outcome := #Outcome / $List_Of_Outcomes !.:= $Outcome; / *
'|')
 ')'
 / RETURN $List_Of_Outcomes /

-- Used by #Alternative to recognize an outcome
#Outcome
 / PRINT 'Inside #Outcome'; /

 'P' '(' $Value := #Probability ')' (* $Patterns !.:= #Pattern *)
 / RETURN <. Patterns: $Patterns, Probability: $Value .> /
 ;;
 (* $Patterns !.:= #Pattern *) / $Value := 'unknown'; /
 / RETURN <. Patterns: $Patterns, Probability: $Value .> /

-- Used by #Alternative to obtain probability value between 0 and 1
#Probability

128

 / PRINT 'Inside #Probability'; /

 (* $List !.:= S'($$ <> ')') *)
 / IF ($List[1] = '.') -> $List := (. 0 .)!!$List; FI;
 $Value := #IMPLODE($List);
 RETURN $Value /

#Simple
 $Id

 / LAST #Rule $used_event_names ++:= <. $Id:T .>;
 LAST #Rule $num_of_occurences ++:= <. $Id: LAST #Rule
$num_of_occurences.$Id +1 .>;

 RETURN
 <. Event_Name: $Id,
 order: LAST #Rule $num_of_occurences.$Id - 1 .> /

#Group
 '(' (* $Group_Of_Patterns !.:= #Pattern *) ')'
 / RETURN $Group_Of_Patterns /

-- Pattern for user defined C++ code
#Action
 / PRINT 'Inside #Action'; /

 $Action := #CPP_Code
 / RETURN $Action /

-- Obtain boolean expression from list of tokens
#Bool_Expression
 / PRINT 'Inside #Bool_Expression'; /

 $Bool_Expression := #CPP_Code
 / RETURN $Bool_Expression /

-- Used by #Iteration to recognize and obtain C++ operator from
token(s)
#Operator
 / PRINT 'Inside #Operator'; /
 (
 ('<' '=' / $Operator := '<=' /) !
 ('<' / $Operator := '<' /) !
 ('=' / $Operator := '=' /)
)
 / RETURN $Operator /

-- Obtain plain text from list of tokens
#Plain_Text
 / PRINT 'Inside #Plain_Text'; /

129

 (* (
 ('/' '/' / $Plain_Text !.:= '//' /) !
 ('<' '=' / $Plain_Text !.:= '<=' /) !
 ('>' '=' / $Plain_Text !.:= '>=' /) !
 ('=' '=' / $Plain_Text !.:= '==' /) !
 ('!' '=' / $Plain_Text !.:= '!=' /) !
 ('+' '+' / $Plain_Text !.:= '++' /) !
 ('-' '-' / $Plain_Text !.:= '--' /) !
 ('+' '=' / $Plain_Text !.:= '+=' /) !
 ('-' '=' / $Plain_Text !.:= '-=' /) !
 ('|' '|' / $Plain_Text !.:= '||' /) !
 ('&' '&' / $Plain_Text !.:= '&&' /) !
 ('<' '<' / $Plain_Text !.:= '<<' /) !
 ('>' '>' / $Plain_Text !.:= '>>' /) !
 $Plain_Text !.:= S'($$<> '}')
) *)
 / RETURN $Plain_Text /

-- Obtain plain text from list of tokens
#Plain_Text2
 / PRINT 'Inside #Plain_Text'; /

 (* (
 ('/' '/' / $Plain_Text !.:= '//' /) !
 ('<' '=' / $Plain_Text !.:= '<=' /) !
 ('>' '=' / $Plain_Text !.:= '>=' /) !
 ('=' '=' / $Plain_Text !.:= '==' /) !
 ('!' '=' / $Plain_Text !.:= '!=' /) !
 ('+' '+' / $Plain_Text !.:= '++' /) !
 ('-' '-' / $Plain_Text !.:= '--' /) !
 ('+' '=' / $Plain_Text !.:= '+=' /) !
 ('-' '=' / $Plain_Text !.:= '-=' /) !
 ('|' '|' / $Plain_Text !.:= '||' /) !
 ('&' '&' / $Plain_Text !.:= '&&' /) !
 ('<' '<' / $Plain_Text !.:= '<<' /) !
 ('>' '>' / $Plain_Text !.:= '>>' /) !
 $Plain_Text !.:= S'($$<> ')')
) *)
 / RETURN $Plain_Text /

-- Obtain C++ code from list of tokens
#CPP_Code
 / PRINT 'Inside #CPP_Code'; /
 'BEGIN'
 (* (
 ('/' '/' / $CPP_Code !.:= '//' /) !
 ('<' '=' / $CPP_Code !.:= '<=' /) !
 ('>' '=' / $CPP_Code !.:= '>=' /) !
 ('=' '=' / $CPP_Code !.:= '==' /) !
 ('!' '=' / $CPP_Code !.:= '!=' /) !
 ('+' '+' / $CPP_Code !.:= '++' /) !
 ('-' '-' / $CPP_Code !.:= '--' /) !
 ('+' '=' / $CPP_Code !.:= '+=' /) !
 ('-' '=' / $CPP_Code !.:= '-=' /) !
 ('|' '|' / $CPP_Code !.:= '||' /) !

130

 ('&' '&' / $CPP_Code !.:= '&&' /) !
 ('<' '<' / $CPP_Code !.:= '<<' /) !
 ('>' '>' / $CPP_Code !.:= '>>' /) !
 $CPP_Code !.:= S'($$<> 'END')
) *)
 'END'
 / RETURN $CPP_Code /

131

C. THE METALS CODE GENERATOR 0.5

-- Meta Language for Combat Simulation - Code Generator Version 0.5

-- Generate equivalent C++ simulation program from intermediate
representation
#Generate
 / PRINT 'Inside #Generate'; /

 <. Title: $Title,
 [Headers: $Headers],
 [Worlds: $Worlds],
 [Entities: $Entities],
 [Events: $Events],
 [Chains: $Chains] .>
 $Filename

 /
 $Unique := 1;
 $First_Rule := NULL;

 -- Open CPP files to add code
 OPEN GEN_MAIN 'Main.cpp';
 OPEN GEN_WORLD 'Worlds.h';
 OPEN GEN_ENTITIES 'Entities.h';
 OPEN GEN_EVENTS 'Events.h';
 OPEN GEN_CHAINS 'Chains.h';

 -- Main Program Headers

 #Generate_Title($Title $Filename);
 #Generate_Headers($Headers);
 #Generate_Worlds($Worlds);
 #Generate_Entities($Entities);
 #Generate_EventClasses($Events);
 #Generate_EventChains($Chains);

 -- Main Program
 GEN_MAIN <<;
 GEN_MAIN << '// Main';
 GEN_MAIN << 'int main(int argc, char *argv[])';
 GEN_MAIN << '{';
 GEN_MAIN << ' '@ $First_Rule.Rule_Name '_class '
$First_Rule.Rule_Name ';';
 GEN_MAIN << ' '@ $First_Rule.Rule_Name '_rule' @ '('
$First_Rule.Rule_Name ');';
 GEN_MAIN <<;
 GEN_MAIN << ' system("PAUSE");';
 GEN_MAIN << ' return 0;';
 GEN_MAIN << '}';
 GEN_MAIN <<;
 /

132

#Generate_Title
 / PRINT 'Inside #Generate_Title'; /

 <. Title: $Title,
 Description: $Description .>
 $Filename

 /
 GEN_MAIN << '// METALS Code Generator Version 0.4C';
 GEN_MAIN << @ '// C++ simulation program [' $Title '] created
from ' $Filename;
 GEN_MAIN << '// ';
 FORALL $Atom IN $Description
 DO
 GEN_MAIN <] @ $Atom ' ';
 OD;
 /

#Generate_Headers
 / PRINT 'Inside #Generate_Headers'; /

 $Headers

 /
 GEN_MAIN <<;
 GEN_MAIN << '#include <iostream>';
 GEN_MAIN << '#include <ctime>';
 GEN_MAIN << '#include <cstdlib>';
 GEN_MAIN << '#include <stdlib.h>';
 GEN_MAIN <<;
 GEN_MAIN << 'using namespace std;';
 GEN_MAIN <<;
 GEN_MAIN << '#include "Worlds.h"';
 GEN_MAIN << '#include "Entities.h"';
 FORALL $HEADER IN $Headers
 DO
 GEN_MAIN << @ '#include "' $HEADER '.h"';
 OD;
 GEN_MAIN << '#include "Events.h"';
 GEN_MAIN << '#include "Chains.h"';
 GEN_MAIN <<;

 /

#Generate_Worlds
 / PRINT 'Inside #Generate_Worlds'; /

 $Worlds

 /
 $Comma := NULL;

133

 $Tail := NULL;

 GEN_WORLD << '// METALS Code Generator Version 0.4C';
 GEN_WORLD <<;
 GEN_WORLD << '// Generation of Worlds';
 GEN_WORLD <<;

 FORALL $World IN $Worlds
 DO
 GEN_WORLD << @ 'int ' $World.World_Name '_MaxRows = '
$World.MaxRows ';';
 GEN_WORLD << @ 'int ' $World.World_Name '_MaxCols = '
$World.MaxCols ';';
 GEN_WORLD <<;
 GEN_WORLD << @ 'enum ' $World.World_Name '_Terrain {';
 FORALL $Terrain IN $World.Terrains
 DO
 IF $Terrain = $World.Terrains[-1] -> $Tail := ' };';
FI;
 GEN_WORLD <] @ $Comma ' ' $Terrain $Tail;
 IF $Comma = NULL -> $Comma := ','; FI;
 OD;
 GEN_WORLD <<;
 $Comma := NULL;
 $Tail := NULL;
 GEN_WORLD << @ 'class ' $World.World_Name '_class';
 GEN_WORLD << '{';
 GEN_WORLD << ' public:';
 GEN_WORLD << @ ' ' $World.World_Name '_class();';
 GEN_WORLD << ' int BeenHere;';
 GEN_WORLD << ' bool Marked;';
 GEN_WORLD << @ ' ' $World.World_Name '_Terrain
ObjectType;';
 GEN_WORLD << ' ';
 FORALL $Attribute IN $World.Attributes
 DO
 IF $Attribute = ';' -> GEN_WORLD <] @ $Attribute;
GEN_WORLD << ' ';
 ELSIF $Attribute <> ';' -> GEN_WORLD <] @ ' '
$Attribute; FI;
 OD;
 GEN_WORLD << '};';
 GEN_WORLD <<;
 GEN_WORLD << @ $World.World_Name '_class :: '
$World.World_Name '_class()';
 GEN_WORLD << '{';
 GEN_WORLD <<;
 GEN_WORLD << ' BeenHere = 0;';
 GEN_WORLD << ' Marked = false;';
 GEN_WORLD << ' ObjectType = Empty;';
 GEN_WORLD << '}';
 GEN_WORLD <<;
 GEN_WORLD << @ $World.World_Name '_class '
$World.World_Name '[' $World.MaxRows '][' $World.MaxCols '];';
 GEN_WORLD <<;
 OD;
 /

134

#Generate_Entities
 / PRINT 'Inside #Generate_Entities'; /

 $Entities

 /
 GEN_ENTITIES << '// METALS Code Generator Version 0.4C';
 GEN_ENTITIES <<;
 GEN_ENTITIES << '// Generation of Entities';
 GEN_ENTITIES <<;

 -- Define C++ classes for every user defined entity
 FORALL $Entity IN $Entities
 DO
 GEN_ENTITIES << @ 'class ' $Entity.Entity_Name '_class';
 GEN_ENTITIES << '{';
 GEN_ENTITIES << ' public:';
 -- GEN_ENTITIES << @ ' ' $Entity.Entity_Name
'_class();'; -- Constructor Option.
 GEN_ENTITIES <<;
 GEN_ENTITIES << ' ';
 FORALL $Attribute IN $Entity.Entity_Attributes
 DO
 IF $Attribute = ';' -> GEN_ENTITIES <] @ $Attribute;
GEN_ENTITIES << ' ';
 ELSIF $Attibute <> ';' -> GEN_ENTITIES <] @ ' '
$Attribute; FI;
 OD;
 GEN_ENTITIES << '};';
 GEN_ENTITIES <<;
 OD;

 -- Instantiate global entities
 FORALL $Entity IN $Entities
 DO
 GEN_ENTITIES << @ $Entity.Entity_Name '_class '
$Entity.Entity_Name ';';
 OD;
 GEN_ENTITIES <<;
 /

#Generate_EventClasses
 / PRINT 'Inside #Generate_EventClasses.'; /

 $Events

 /
 GEN_EVENTS << '// METALS Code Generator Version 0.4C';
 GEN_EVENTS <<;
 GEN_EVENTS << '// Generation of Event Classes';
 GEN_EVENTS <<;
 GEN_EVENTS << 'long Global_Event_Count;';
 GEN_EVENTS <<;
 GEN_EVENTS << 'enum EType { DET, STO };';

135

 GEN_EVENTS <<;
 -- Define C++ classes for every user defined event
 FORALL $Event IN $Events
 DO
 GEN_EVENTS << @ 'class ' $Event.Event_Name '_class';
 GEN_EVENTS << '{';
 GEN_EVENTS << ' public:';
 GEN_EVENTS << @ ' ' $Event.Event_Name '_class();';
 GEN_EVENTS << ' string Name;';
 GEN_EVENTS << ' EType Var;';
 GEN_EVENTS << ' double Mean;';
 GEN_EVENTS << ' double Duration;';
 GEN_EVENTS << ' static long Instances;';
 GEN_EVENTS << ' ';
 IF $Event.Event_Attributes.Additional_Attribs <> 'None' ->
 FORALL $Attribute IN
$Event.Event_Attributes.Additional_Attribs
 DO
 IF $Attribute = ';' -> GEN_EVENTS <] @
$Attribute; GEN_EVENTS << ' ';
 ELSIF T -> GEN_EVENTS <] @ ' ' $Attribute; FI;
 OD;
 FI;
 GEN_EVENTS <<;
 GEN_EVENTS << '};';
 GEN_EVENTS <<;
 GEN_EVENTS << @ 'long ' $Event.Event_Name '_class ::
Instances = 0;';
 GEN_EVENTS <<;
 GEN_EVENTS << @ $Event.Event_Name '_class :: '
$Event.Event_Name '_class()';
 GEN_EVENTS << '{';
 GEN_EVENTS << ' Global_Event_Count++;';
 GEN_EVENTS << ' Instances++;';
 GEN_EVENTS <<;

 GEN_EVENTS << @ ' Name = "' $Event.Event_Name '";';

 IF $Event.Event_Attributes.Var = NULL -> GEN_EVENTS << '
Var = DET;';
 ELSIF T -> GEN_EVENTS << ' Var = '
$Event.Event_Attributes.Var ';'; FI;

 IF $Event.Event_Attributes.Mean = NULL -> GEN_EVENTS << '
Mean = 0;';
 ELSIF T -> GEN_EVENTS << ' Mean = '
$Event.Event_Attributes.Mean ';'; FI;

 IF $Event.Event_Attributes.Duration = NULL -> GEN_EVENTS <<
' Duration = 0;';
 ELSIF T -> GEN_EVENTS << ' Duration = '
$Event.Event_Attributes.Duration ';'; FI;

 GEN_EVENTS <<;
 GEN_EVENTS << ' if (Var==STO) // Discrete Poisson RNG.';
 GEN_EVENTS << ' {';

136

 GEN_EVENTS << ' double a = exp(-Mean);';
 GEN_EVENTS << ' double p = 1;';
 GEN_EVENTS << ' long x = 1;';
 GEN_EVENTS << ' while (p > a) {';
 GEN_EVENTS << ' double U = (double) rand() /
RAND_MAX;';
 GEN_EVENTS << ' p = p*U;';
 GEN_EVENTS << ' x++; }';
 GEN_EVENTS << ' Duration = x; }';
 GEN_EVENTS << ' }';
 GEN_EVENTS <<;
 OD;
 /

#Generate_EventChains
 / PRINT 'Inside #Generate_EventChains.'; /

 $Chains

 /
 GEN_CHAINS << '// METALS Code Generator Version 0.4C';
 GEN_CHAINS <<;
 GEN_CHAINS << '// Generation of Event Chains';
 GEN_CHAINS <<;

 -- Generate C++ code for each event chain
 FORALL $Chain IN $Chains
 DO
 GEN_CHAINS << @ '// The various user defined event
descriptions in '$Chain.Chain_Name;
 GEN_CHAINS <<;

 -- Set the starting point for the simulation.
 LAST #Generate $First_Rule := $Chain.Rules[1];

 -- Generate C++ functional prototypes for each rule in the
event chain.
 GEN_CHAINS << '// Functional prototypes for each rule in
the event chain';

 FORALL $Rule IN $Chain.Rules
 DO
 IF LAST #Generate $First_Rule = NULL -> LAST
#Generate $First_Rule := $Rule; FI;
 GEN_CHAINS << @ $Rule.Rule_Name '_class '
$Rule.Rule_Name '_rule(' $Rule.Rule_Name '_class);';
 OD;
 GEN_CHAINS <<;

 -- Generate C++ code for each rule.
 FORALL $Rule IN $Chain.Rules
 DO
 GEN_CHAINS <<;
 #Generate_Rules($Rule);
 $et.($Rule.Rule_Name) := generated;

137

 OD;
 GEN_CHAINS <<;
 FORALL $r IN $et
 DO
 IF $et.$r = T -> GEN_CHAINS << @ $r '_class ' $r
'_Rule(' $r '_class){};' FI
 OD;
 OD;
 /

#Generate_Rules
 / PRINT 'Inside #Generate_Rules.'; /

 <. Rule_Name: $Rule_Name,
 [Patterns: $Patterns],
 [Used_Event_Names: $used_event_names],
 [number_of_occurences: $num_of_occurences] .>

 /
 GEN_CHAINS << @ $Rule_Name '_class ' $Rule_Name '_rule('
$Rule_Name '_class)';
 GEN_CHAINS << '{';
 GEN_CHAINS << @ ' ' $Rule_Name '_class ' $Rule_Name ';';
 GEN_CHAINS <<;

 -- Instantiate event classes used in this rule.
 FORALL $EVAR IN $used_event_names
 DO
 GEN_CHAINS << @ $EVAR '_class ' $EVAR;
 IF $num_of_occurences.$EVAR > 1 -> GEN_CHAINS <] '['
$num_of_occurences.$EVAR ']' FI;
 GEN_CHAINS <]';'
 OD;

 -- Generate rest of code for this rule.
 FORALL $Pattern IN $Patterns
 DO
 #Generate_Patterns($Pattern $num_of_occurences);
 OD;
 GEN_CHAINS <<;
 GEN_CHAINS << @ ' return ' $Rule_Name ';';
 GEN_CHAINS << '}';
 GEN_CHAINS <<;
 /

#Generate_Patterns
 / PRINT 'Inside #Generate_Patterns.'; /

 <. Type: $Type, Body: $Pattern .>
 $num_of_occurences

 /
 IF $Type='Iteration' -> #Generate_Iteration($Pattern
$num_of_occurences);

138

 ELSIF $Type='Alternative' -> #Generate_Alternative($Pattern
$num_of_occurences);
 ELSIF $Type='Conditional' -> #Generate_Conditional($Pattern
$num_of_occurences);
 ELSIF $Type='Loop' -> #Generate_Loop($Pattern
$num_of_occurences);
 ELSIF $Type='Action' -> #Generate_Action($Pattern
$num_of_occurences);
 ELSIF $Type='Simple' -> #Generate_Simple($Pattern
$num_of_occurences);
 ELSIF $Type='Group' -> #Generate_Group($Pattern
$num_of_occurences) FI;
 /
 ;;
 (. (* #Generate_Patterns *) .)
 --;;
 --/
 -- GEN_CHAINS << '// Placeholder for rule without pattern(s).'
 --/

#Generate_Simple
 / PRINT 'Inside #Generate_Simple.'; /

 <. Event_Name: $Id, order: $Order .>
 $num_of_occurences

 /
 GEN_CHAINS << ' ' $Id;

 IF $num_of_occurences.$Id > 1
 -> GEN_CHAINS <] @'[' $Order ']'
 FI;

 GEN_CHAINS <] @ '=' $Id '_rule (' $Id;

 IF $num_of_occurences.$Id > 1 -> GEN_CHAINS <] @'[' $Order ']'
FI;

 GEN_CHAINS <] ');';
 /

#Generate_Loop
 / PRINT 'Inside #Generate_Loop.'; /

 <. While : $Bool,
 Do : $Pattern .>
 $num_of_occurences

 /
 GEN_CHAINS << @ ' while (' $Bool ')';
 GEN_CHAINS << @ '{';
 #Generate_Patterns($Pattern $num_of_occurences);
 GEN_CHAINS << @ '}';
 /

139

#Generate_Group
 / PRINT 'Inside #Generate_Group.'; /

 $Group_Of_Patterns
 $num_of_occurences

 /
 FORALL $Pattern IN $Group_Of_Patterns
 DO
 #Generate_Patterns($Pattern $num_of_occurences);
 OD;
 /

#Generate_Action
 / PRINT 'Inside #Generate_Action.'; /

 $Action
 $num_of_occurences

 /
 FORALL $Atom IN $Action
 DO
 IF $Atom = ';' -> GEN_CHAINS <] @ $Atom; GEN_CHAINS << '
';
 ELSIF #TATOM($Atom) -> GEN_CHAINS <] @ #CHR(34)
#IMPLODE($Atom) #CHR(34); GEN_CHAINS << ' ';
 ELSIF $Atom <> ';' -> GEN_CHAINS <] @ ' ' $Atom; FI;
 OD;
 /

#Generate_Conditional
 / PRINT 'Inside #Generate_Conditional.'; /

 <. When: $Bool, Do: $Pattern, [Else: $Pattern2] .>
 $num_of_occurences

 /
 GEN_CHAINS << @ ' if (' $Bool ')';
 GEN_CHAINS << @ '{';
 #Generate_Patterns($Pattern $num_of_occurences);
 GEN_CHAINS << @ '}';
 GEN_CHAINS << @ 'else';
 GEN_CHAINS << @ '{';
 #Generate_Patterns($Pattern2 $num_of_occurences);
 GEN_CHAINS << @ '}';
 /

#Generate_Alternative
 / PRINT 'Inside #Generate_Alternative.'; /

 -- (. <. Pattern: <. Type:'Simple', Body: <.
Event_Name:'Head',order:0 .> .>, Probability:'0.5' .>

140

 -- <. Pattern: <. Type:'Simple', Body: <.
Event_Name:'Tail',order:0 .> .>, Probability:'0.5' .> .)
 $List
 $num_of_occurences

 /
 GEN_CHAINS << 'double Chance = (double) rand() / RAND_MAX;';
 $PlusSign := NULL;
 $ElseSign := NULL;
 $Cumulative := NULL;

 FORALL $Outcome IN $List
 DO
 #Generate_Probability($Outcome $num_of_occurences) OD;
 /

#Generate_Probability
 / PRINT 'Inside #Generate_Probability.'; /

 -- <. Patterns: (. <. Type: 'Simple', Body: <. Event_Name:
'Head', order:0.> .> .), Probability:'0.5' .>
 <. Patterns: $PatternList, Probability: $Prob .>
 $num_of_occurences

 /
 LAST #Generate_Alternative $Cumulative := LAST
#Generate_Alternative $PlusSign + ' ' + $Prob + ' ' + LAST
#Generate_Alternative $Cumulative;
 $PlusSign := LAST #Generate_Alternative $PlusSign;
 $ElseSign := LAST #Generate_Alternative $ElseSign;
 $Cumulated := LAST #Generate_Alternative $Cumulative;

 GEN_CHAINS << $ElseSign;
 GEN_CHAINS << 'if (Chance < ' $Prob ')';
 GEN_CHAINS << '{';
 FORALL $Pattern IN $PatternList
 DO
 #Generate_Patterns($Pattern $num_of_occurences);
 OD;
 GEN_CHAINS << '}';

 LAST #Generate_Alternative $PlusSign := '+';
 LAST #Generate_Alternative $ElseSign := 'else';
 /

#Generate_Iteration
 / PRINT 'Inside #Generate_Iteration.'; /

 <. Repeat : (. $Op $Expression .), This: $PatternList .>
 $num_of_occurences

 /
 IF ($Op='=') -> GEN_CHAINS << @ 'for (__int64 i=1; i<='
$Expression '; i++)';
 ELSIF (T) ->

141

 $Unique := LAST #Generate $Unique + 1;
 GEN_CHAINS << @ '__int64 Chance' $Unique ' = Rand() % '
$Expression ';';
 GEN_CHAINS << @ 'for (__int64 i=1; i' $Op 'Chance' $Unique
'; i++)';
 FI;

 GEN_CHAINS << '{';
 FORALL $Pattern IN $PatternList
 DO
 #Generate_Patterns($Pattern $num_of_occurences);
 OD;
 GEN_CHAINS << '}';
 /

142

THIS PAGE INTENTIONALLY LEFT BLANK

143

APPENDIX B : MINE AVOIDANCE SIMULATION IN METALS

A. THE MINE AVOIDANCE SIMULATION METALS SOURCE CODE

SIMULATE Mine_Avoidance { Version 0.5A }

INCLUDE Settings

WORLD Minefield {
 ROWS = 32
 COLS = 32
 TERRAINS = (Empty Nombo NonMine False_Alarm Mine Explosion Boundary Start
Finish)
 ATTRIBS = (BEGIN // Additional Attribs Can Be Added Here END)
}

ENTITY Simulation { BEGIN long MaxRuns, numClockwise, numAntiClockwise; END}
ENTITY Run { BEGIN long MaxSteps; END }
ENTITY Ship { BEGIN bool Clockwise; int CurrentCol, CurrentRow, StartCol, FinishCol;
END }

EVENT Initialize
EVENT Move
EVENT Go_Clockwise { DET MEAN = 6 DUR = 6 }
EVENT Go_AntiClockwise { DET MEAN = 6 DUR = 6 }
EVENT Start_Simulation
EVENT Start_Run
EVENT Populate

CHAIN Algorithm1 {
 Start_Simulation: BEGIN
 Simulation.MaxRuns = 100000;
 Simulation.numClockwise = 0;
 Simulation.numAntiClockwise = 0;
 END
 REPEAT(=Simulation.MaxRuns) {
 Start_Run
 BEGIN
 Start_Simulation.Duration += Start_Run.Duration;
 END
 }
 BEGIN
 Draw();

144

 double Avg_Duration = Start_Simulation.Duration / Simulation.MaxRuns;
 cout << "Average duration per run over " << Simulation.MaxRuns
 << " run(s) is " << Avg_Duration << "\n";
 cout << "Total number of events occurred = " << Global_Event_Count <<
"\n";
 cout << "Number of Clockwise Movements = " <<
Simulation.numClockwise << "\n";
 cout << "Number of AntiClockwise Movements = " <<
Simulation.numAntiClockwise << "\n";
 END;

 Start_Run: Initialize
 Populate
 BEGIN
 long Steps=0;
 while ((Ship.CurrentRow <= Minefield_MaxRows-
2)&&(Steps<Run.MaxSteps)) {
 Move_class Move;
 Move = Move_rule (Move);
 Start_Run.Duration += Move.Duration;
 // Draw();
 Steps++;
 }
 // Draw();
 END;

 Initialize: BEGIN
 Run.MaxSteps = 200;
 NumSquares = (Minefield_MaxCols-2) * (Minefield_MaxRows-2);

 for (int Row=0; Row<=Minefield_MaxRows-1; Row++)
 for (int Col=0; Col<=Minefield_MaxCols-1; Col++) {
 Minefield[Row][Col].Marked = false;
 Minefield[Row][Col].BeenHere = 0;
 Minefield[Row][Col].ObjectType = Empty;
 }
 int Entry_Gap[2] = { 5, 25 };
 int Exit_Gap[2] = { 5, 9 };

 for (int Col=0; Col <=Minefield_MaxCols-1; Col++) {
 if ((Col<Entry_Gap[0])||(Col>Entry_Gap[1]))
 Minefield[0][Col].ObjectType = Boundary;
 else
 Minefield[0][Col].ObjectType = Empty;

 if ((Col<Exit_Gap[0])||(Col>Exit_Gap[1]))

145

 Minefield[Minefield_MaxRows-1][Col].ObjectType = Boundary;
 else
 Minefield[Minefield_MaxRows-1][Col].ObjectType = Empty;

 if ((Col==0)||(Col==Minefield_MaxCols-1)) {
 for (int Row=1; Row <=Minefield_MaxRows-2; Row++)
 Minefield[Row][Col].ObjectType = Boundary;
 }
 }

 Ship.Clockwise = true;

 srand((unsigned)time(0));
 Ship.CurrentCol = rand() % (Entry_Gap[1]-Entry_Gap[0]);
 // Ship.CurrentCol = 15;
 Ship.CurrentRow = 0;
 Ship.StartCol = Ship.CurrentCol;
 END;

 Populate: BEGIN
 bool IsObject[NumSquares], IsMine[NumSquares], IsNombo[NumSquares];

 int Objects_Per_Square_km= 5;
 int Mines_Per_Square_km = 3;
 int Size_Of_Square = 200;
 int Num_Squares_Per_Square_km =
(1000/Size_Of_Square)*(1000/Size_Of_Square);

 int ExpectedNumMines = (NumSquares / Num_Squares_Per_Square_km) *
Mines_Per_Square_km;
 int ExpectedNumObjects = (NumSquares / Num_Squares_Per_Square_km) *
Objects_Per_Square_km;

 int x;
 for (x=0; x<=NumSquares-1; x++) {
 IsMine[x] = false;
 IsObject[x] = false;
 IsNombo[x] = false;
 }

 int i, j, Choice;
 srand((unsigned)time(0));
 for (i=0; i<=ExpectedNumObjects-1; i++) {
 Choice = 1 + rand() % NumSquares;
 IsObject[Choice-1] = true;
 }

146

 for (j=0; j<=ExpectedNumMines-1; j++) {
 Choice = 1 + rand() % NumSquares;
 if (IsObject[Choice-1] == false)
 IsMine[Choice-1] = true;
 else {
 IsObject[Choice-1] == false;
 IsNombo[Choice-1] = true;
 }
 }

 int CurrentPointer = 0;
 for (int Row=1; Row<=Minefield_MaxRows-2; Row++) {
 for (int Col=1; Col<=Minefield_MaxCols-2; Col++) {
 Minefield[Row][Col].ObjectType = Empty;
 if (IsMine[CurrentPointer] == true) Minefield[Row][Col].ObjectType = Mine;
 if (IsObject[CurrentPointer] == true) Minefield[Row][Col].ObjectType =
NonMine;
 if (IsNombo[CurrentPointer] == true) Minefield[Row][Col].ObjectType =
Nombo;
 CurrentPointer++;
 }
 }
 END;

 Move: BEGIN
 Minefield[Ship.CurrentRow][Ship.CurrentCol].BeenHere++;
 if (Ship.CurrentRow<=Minefield_MaxRows-1) {
 if ((Minefield[Ship.CurrentRow+1][Ship.CurrentCol].ObjectType == Empty) &&
 (Minefield[Ship.CurrentRow+1][Ship.CurrentCol].BeenHere == 0))
 Ship.CurrentRow++;
 else {
 if (Ship.CurrentCol == 1) Ship.Clockwise = false;
 if (Ship.CurrentCol == Minefield_MaxCols-2) Ship.Clockwise = true;
 if (Ship.Clockwise) { Go_Clockwise_class Go_Clockwise;
 Go_Clockwise = Go_Clockwise_rule(Go_Clockwise);
 Simulation.numClockwise = Go_Clockwise.Instances;
 Move.Duration = Go_Clockwise.Duration; }
 else { Go_AntiClockwise_class Go_AntiClockwise;
 Go_AntiClockwise = Go_AntiClockwise_rule(Go_AntiClockwise);
 Simulation.numAntiClockwise = Go_AntiClockwise.Instances;
 Move.Duration = Go_AntiClockwise.Duration; }
 }
 }
 Ship.FinishCol = Ship.CurrentCol;
 END;

147

 Go_Clockwise: BEGIN
 if (Scan(TopLeft)==false) {
 if ((Minefield[Ship.CurrentRow+1][Ship.CurrentCol-1].BeenHere > 1) &&
 (Minefield[Ship.CurrentRow-1][Ship.CurrentCol].ObjectType == Empty))
 Ship.CurrentRow--;
 else
 { Ship.CurrentRow++; Ship.CurrentCol--; }
 }
 else {
 if (Scan(Left)==false) {
 if ((Minefield[Ship.CurrentRow][Ship.CurrentCol-1].BeenHere > 1) &&
 (Minefield[Ship.CurrentRow-1][Ship.CurrentCol].ObjectType ==
Empty))
 Ship.CurrentRow--;
 else
 Ship.CurrentCol--;
 }
 else {
 if (Scan(BottomLeft)==false) {
 if ((Minefield[Ship.CurrentRow][Ship.CurrentCol-1].BeenHere > 1) &&
 (Minefield[Ship.CurrentRow-1][Ship.CurrentCol].ObjectType ==
Empty))
 Ship.CurrentRow--;
 else
 { Ship.CurrentRow--; Ship.CurrentCol--; }
 }
 else {
 if ((Scan(Astern)==false) && (Ship.CurrentRow>0))
 Ship.CurrentRow--;
 else
 Ship.Clockwise = !Ship.Clockwise;
 }
 }
 }
 END;

 Go_AntiClockwise: BEGIN
 if (Scan(TopRight)==false) {
 if ((Minefield[Ship.CurrentRow+1][Ship.CurrentCol+1].BeenHere > 1)
&&
 (Minefield[Ship.CurrentRow-1][Ship.CurrentCol].ObjectType ==
Empty))
 Ship.CurrentRow--;

148

 else
 { Ship.CurrentRow++; Ship.CurrentCol++; }
 }
 else {
 if (Scan(Right)==false) {
 if ((Minefield[Ship.CurrentRow][Ship.CurrentCol+1].BeenHere > 1) &&
 (Minefield[Ship.CurrentRow-1][Ship.CurrentCol].ObjectType ==
Empty))
 Ship.CurrentRow--;
 else
 Ship.CurrentCol++;
 }
 else {
 if (Scan(BottomRight)==false) {
 if ((Minefield[Ship.CurrentRow-1][Ship.CurrentCol+1].BeenHere > 1)
&&
 (Minefield[Ship.CurrentRow-1][Ship.CurrentCol].ObjectType ==
Empty))
 Ship.CurrentRow--;
 else
 { Ship.CurrentRow--; Ship.CurrentCol++; }
 }
 else {
 if ((Scan(Astern)==false) && (Ship.CurrentRow>0))
 Ship.CurrentRow--;
 else
 Ship.Clockwise = !Ship.Clockwise;
 }
 }
 }
 END;
}

149

B. THE MINE AVOIDANCE SIMULATION METALS INTERMEDIATE

 PARSED TREE

<.Title:<.Title:'Mine_Avoidance',Description:(.'Version' '0' '.'

 5 'A' .).>,

 Headers:(.'Settings' .),

 Worlds:

 (.

 <.World_Name:'Minefield',

 MaxRows:32,

 MaxCols:32,

 Terrains:

 (.'Empty'

 'Nombo' 'NonMine' 'False_Alarm' 'Mine' 'Explosion' 'Boundary'

 'Start' 'Finish'

 .)

 ,

 Attributes:(.'//' 'Additional' 'Attribs' 'Can' 'Be' 'Added'

 'Here' .)

 .>

 .)

 ,

 Entities:

 (.

 <.Entity_Name:'Simulation',

 Entity_Attributes:(.'long'

 'MaxRuns' ',' 'numClockwise' ',' 'numAntiClockwise' ';' .)

 .> <.Entity_Name:'Run',Entity_Attributes:(.'long'

 'MaxSteps' ';' .).>

 <.Entity_Name:'Ship',

150

 Entity_Attributes:

 (.'bool'

 'Clockwise' ';' 'int' 'CurrentCol' ',' 'CurrentRow' ',' 'StartCol'

 ',' 'FinishCol' ';'

 .)

 .>

 .)

 ,

 Events:

 (.<.Event_Name:'Initialize'.> <.Event_Name:'Move'.>

 <.Event_Name:'Go_Clockwise',

 Event_Attributes:<.Var:'DET',Mean:6,Duration:6,Additional_Attribs:'None'.>

 .>

 <.Event_Name:'Go_AntiClockwise',

 Event_Attributes:<.Var:'DET',Mean:6,Duration:6,Additional_Attribs:'None'.>

 .>

 <.Event_Name:'Start_Simulation'.> <.Event_Name:'Start_Run'.>

<.Event_Name:'Populate'.>

 .)

 ,

 Chains:

 (.

 <.Chain_Name:'Algorithm1',

 Rules:

 (.

 <.Rule_Name:'Start_Simulation',

 Patterns:

 (.

151

 <.Type:'Action',

 Body:

 (.'Simulation'

 '.' 'MaxRuns' '=' 100 ';' 'Simulation' '.' 'numClockwise'

 '=' '0' ';' 'Simulation' '.' 'numAntiClockwise' '='

 '0' ';'

 .)

 .>

 <.Type:'Iteration',

 Body:

 <.Repeat:(.'=' (.'Simulation'

 '.' 'MaxRuns' .) .),

 This:

 (.

 <.Type:'Simple',

 Body:<.Event_Name:'Start_Run',order:0.>

 .>

 <.Type:'Action',

 Body:

 (.'Start_Simulation' '.' 'Duration'

 '+=' 'Start_Run' '.' 'Duration' ';'

 .)

 .>

 .)

 .>

 .>

 <.Type:'Action',

152

 Body:

 (.'Draw' '(' ')' ';' 'double'

 'Avg_Duration' '=' 'Start_Simulation' '.' 'Duration'

 '/' 'Simulation' '.' 'MaxRuns' ';' 'cout' '<<' 'Average duration per run over '

 '<<' 'Simulation' '.' 'MaxRuns' '<<' ' run(s) is '

 '<<' 'Avg_Duration' '<<' '\n' ';' 'cout' '<<' 'Total number of events occurred = '

 '<<' 'Global_Event_Count' '<<' '\n' ';' 'cout' '<<'

 'Number of Clockwise Movements = ' '<<' 'Simulation' '.'

 'numClockwise' '<<' '\n' ';' 'cout' '<<' 'Number of AntiClockwise Movements

= '

 '<<' 'Simulation' '.' 'numAntiClockwise' '<<' '\n'

 ';'

 .)

 .>

 .)

 ,

 Used_Event_Names:<.Start_Run:'T'.>,

 number_of_occurences:<.Start_Run:1.>

 .>

 <.Rule_Name:'Start_Run',

 Patterns:

 (.<.Type:'Simple',Body:<.Event_Name:'Initialize',order:0.>.>

 <.Type:'Simple',Body:<.Event_Name:'Populate',order:0.>.>

 <.Type:'Action',

 Body:

 (.'long'

 'Steps' '=' '0' ';' 'while' '(' '(' 'Ship' '.'

 'CurrentRow' '<=' 'Minefield_MaxRows' '-' 2 ')'

 '&&' '(' 'Steps' '<' 'Run' '.' 'MaxSteps' ')' ')'

153

 '{' 'Move_class' 'Move' ';' 'Move' '=' 'Move_rule'

 '(' 'Move' ')' ';' 'Start_Run' '.' 'Duration' '+='

 'Move' '.' 'Duration' ';' '//' 'Draw' '(' ')' ';'

 'Steps' '++' ';' '}' '//' 'Draw' '(' ')' ';'

 .)

 .>

 .)

 ,

 Used_Event_Names:<.Initialize:'T',Populate:'T'.>,

 number_of_occurences:<.Initialize:1,Populate:1.>

 .>

 <.Rule_Name:'Initialize',

 Patterns:

 (.

 <.Type:'Action',

 Body:

 (.'Run'

 '.' 'MaxSteps' '=' 200 ';' 'NumSquares' '=' '('

 'Minefield_MaxCols' '-' 2 ')' '*' '(' 'Minefield_MaxRows'

 '-' 2 ')' ';' 'for' '(' 'int' 'Row' '=' '0'

 ';' 'Row' '<=' 'Minefield_MaxRows' '-' 1 ';'

 'Row' '++' ')' 'for' '(' 'int' 'Col' '=' '0'

 ';' 'Col' '<=' 'Minefield_MaxCols' '-' 1 ';'

 'Col' '++' ')' '{' 'Minefield' '[' 'Row' ']' '['

 'Col' ']' '.' 'Marked' '=' 'false' ';' 'Minefield'

 '[' 'Row' ']' '[' 'Col' ']' '.' 'BeenHere' '='

 '0' ';' 'Minefield' '[' 'Row' ']' '[' 'Col' ']'

 '.' 'ObjectType' '=' 'Empty' ';' '}' 'int' 'Entry_Gap'

154

 '[' 2 ']' '=' '{' 5 ',' 25 '}' ';'

 'int' 'Exit_Gap' '[' 2 ']' '=' '{' 5 ','

 9 '}' ';' 'for' '(' 'int' 'Col' '=' '0' ';'

 'Col' '<=' 'Minefield_MaxCols' '-' 1 ';' 'Col'

 '++' ')' '{' 'if' '(' '(' 'Col' '<' 'Entry_Gap'

 '[' '0' ']' ')' '||' '(' 'Col' '>' 'Entry_Gap'

 '[' 1 ']' ')' ')' 'Minefield' '[' '0' ']'

 '[' 'Col' ']' '.' 'ObjectType' '=' 'Boundary' ';'

 'else' 'Minefield' '[' '0' ']' '[' 'Col' ']' '.'

 'ObjectType' '=' 'Empty' ';' 'if' '(' '(' 'Col'

 '<' 'Exit_Gap' '[' '0' ']' ')' '||' '(' 'Col'

 '>' 'Exit_Gap' '[' 1 ']' ')' ')' 'Minefield'

 '[' 'Minefield_MaxRows' '-' 1 ']' '[' 'Col' ']'

 '.' 'ObjectType' '=' 'Boundary' ';' 'else' 'Minefield'

 '[' 'Minefield_MaxRows' '-' 1 ']' '[' 'Col' ']'

 '.' 'ObjectType' '=' 'Empty' ';' 'if' '(' '(' 'Col'

 '==' '0' ')' '||' '(' 'Col' '==' 'Minefield_MaxCols'

 '-' 1 ')' ')' '{' 'for' '(' 'int' 'Row' '='

 1 ';' 'Row' '<=' 'Minefield_MaxRows' '-' 2

 ';' 'Row' '++' ')' 'Minefield' '[' 'Row' ']' '['

 'Col' ']' '.' 'ObjectType' '=' 'Boundary' ';' '}'

 '}' 'Ship' '.' 'Clockwise' '=' 'true' ';' 'srand'

 '(' '(' 'unsigned' ')' 'time' '(' '0' ')' ')'

 ';' 'Ship' '.' 'CurrentCol' '=' 'rand' '(' ')'

 '%' '(' 'Entry_Gap' '[' 1 ']' '-' 'Entry_Gap'

 '[' '0' ']' ')' ';' '//' 'Ship' '.' 'CurrentCol'

 '=' 15 ';' 'Ship' '.' 'CurrentRow' '=' '0' ';'

 'Ship' '.' 'StartCol' '=' 'Ship' '.' 'CurrentCol'

 ';'

 .)

155

 .>

 .)

 .>

 <.Rule_Name:'Populate',

 Patterns:

 (.

 <.Type:'Action',

 Body:

 (.'bool'

 'IsObject' '[' 'NumSquares' ']' ',' 'IsMine' '['

 'NumSquares' ']' ',' 'IsNombo' '[' 'NumSquares' ']'

 ';' 'int' 'Objects_Per_Square_km' '=' 5 ';' 'int'

 'Mines_Per_Square_km' '=' 3 ';' 'int' 'Size_Of_Square'

 '=' 200 ';' 'int' 'Num_Squares_Per_Square_km' '='

 '(' 1000 '/' 'Size_Of_Square' ')' '*' '(' 1000

 '/' 'Size_Of_Square' ')' ';' 'int' 'ExpectedNumMines'

 '=' '(' 'NumSquares' '/' 'Num_Squares_Per_Square_km'

 ')' '*' 'Mines_Per_Square_km' ';' 'int' 'ExpectedNumObjects'

 '=' '(' 'NumSquares' '/' 'Num_Squares_Per_Square_km'

 ')' '*' 'Objects_Per_Square_km' ';' 'int' 'x' ';'

 'for' '(' 'x' '=' '0' ';' 'x' '<=' 'NumSquares'

 '-' 1 ';' 'x' '++' ')' '{' 'IsMine' '[' 'x'

 ']' '=' 'false' ';' 'IsObject' '[' 'x' ']' '='

 'false' ';' 'IsNombo' '[' 'x' ']' '=' 'false' ';'

 '}' 'int' 'i' ',' 'j' ',' 'Choice' ';' 'srand'

 '(' '(' 'unsigned' ')' 'time' '(' '0' ')' ')'

 ';' 'for' '(' 'i' '=' '0' ';' 'i' '<=' 'ExpectedNumObjects'

 '-' 1 ';' 'i' '++' ')' '{' 'Choice' '=' 1

 '+' 'rand' '(' ')' '%' 'NumSquares' ';' 'IsObject'

 '[' 'Choice' '-' 1 ']' '=' 'true' ';' '}'

156

 'for' '(' 'j' '=' '0' ';' 'j' '<=' 'ExpectedNumMines'

 '-' 1 ';' 'j' '++' ')' '{' 'Choice' '=' 1

 '+' 'rand' '(' ')' '%' 'NumSquares' ';' 'if' '('

 'IsObject' '[' 'Choice' '-' 1 ']' '==' 'false'

 ')' 'IsMine' '[' 'Choice' '-' 1 ']' '=' 'true'

 ';' 'else' '{' 'IsObject' '[' 'Choice' '-' 1

 ']' '==' 'false' ';' 'IsNombo' '[' 'Choice' '-'

 1 ']' '=' 'true' ';' '}' '}' 'int' 'CurrentPointer'

 '=' '0' ';' 'for' '(' 'int' 'Row' '=' 1 ';'

 'Row' '<=' 'Minefield_MaxRows' '-' 2 ';' 'Row'

 '++' ')' '{' 'for' '(' 'int' 'Col' '=' 1

 ';' 'Col' '<=' 'Minefield_MaxCols' '-' 2 ';'

 'Col' '++' ')' '{' 'Minefield' '[' 'Row' ']' '['

 'Col' ']' '.' 'ObjectType' '=' 'Empty' ';' 'if'

 '(' 'IsMine' '[' 'CurrentPointer' ']' '==' 'true'

 ')' 'Minefield' '[' 'Row' ']' '[' 'Col' ']' '.'

 'ObjectType' '=' 'Mine' ';' 'if' '(' 'IsObject' '['

 'CurrentPointer' ']' '==' 'true' ')' 'Minefield' '['

 'Row' ']' '[' 'Col' ']' '.' 'ObjectType' '=' 'NonMine'

 ';' 'if' '(' 'IsNombo' '[' 'CurrentPointer' ']' '=='

 'true' ')' 'Minefield' '[' 'Row' ']' '[' 'Col'

 ']' '.' 'ObjectType' '=' 'Nombo' ';' 'CurrentPointer'

 '++' ';' '}' '}'

 .)

 .>

 .)

 .>

 <.Rule_Name:'Move',

 Patterns:

157

 (.

 <.Type:'Action',

 Body:

 (.'Minefield'

 '[' 'Ship' '.' 'CurrentRow' ']' '[' 'Ship' '.'

 'CurrentCol' ']' '.' 'BeenHere' '++' ';' 'if' '('

 'Ship' '.' 'CurrentRow' '<=' 'Minefield_MaxRows' '-'

 1 ')' '{' 'if' '(' '(' 'Minefield' '[' 'Ship'

 '.' 'CurrentRow' '+' 1 ']' '[' 'Ship' '.' 'CurrentCol'

 ']' '.' 'ObjectType' '==' 'Empty' ')' '&&' '('

 'Minefield' '[' 'Ship' '.' 'CurrentRow' '+' 1

 ']' '[' 'Ship' '.' 'CurrentCol' ']' '.' 'BeenHere'

 '==' '0' ')' ')' 'Ship' '.' 'CurrentRow' '++' ';'

 'else' '{' 'if' '(' 'Ship' '.' 'CurrentCol' '=='

 1 ')' 'Ship' '.' 'Clockwise' '=' 'false' ';'

 'if' '(' 'Ship' '.' 'CurrentCol' '==' 'Minefield_MaxCols'

 '-' 2 ')' 'Ship' '.' 'Clockwise' '=' 'true'

 ';' 'if' '(' 'Ship' '.' 'Clockwise' ')' '{' 'Go_Clockwise_class'

 'Go_Clockwise' ';' 'Go_Clockwise' '=' 'Go_Clockwise_rule'

 '(' 'Go_Clockwise' ')' ';' 'Simulation' '.' 'numClockwise'

 '=' 'Go_Clockwise' '.' 'Instances' ';' 'Move' '.'

 'Duration' '=' 'Go_Clockwise' '.' 'Duration' ';' '}'

 'else' '{' 'Go_AntiClockwise_class' 'Go_AntiClockwise'

 ';' 'Go_AntiClockwise' '=' 'Go_AntiClockwise_rule' '('

 'Go_AntiClockwise' ')' ';' 'Simulation' '.' 'numAntiClockwise'

 '=' 'Go_AntiClockwise' '.' 'Instances' ';' 'Move' '.'

 'Duration' '=' 'Go_AntiClockwise' '.' 'Duration' ';'

 '}' '}' '}' 'Ship' '.' 'FinishCol' '=' 'Ship' '.'

 'CurrentCol' ';'

 .)

158

 .>

 .)

 .>

 <.Rule_Name:'Go_Clockwise',

 Patterns:

 (.

 <.Type:'Action',

 Body:

 (.'if'

 '(' 'Scan' '(' 'TopLeft' ')' '==' 'false' ')' '{'

 'if' '(' '(' 'Minefield' '[' 'Ship' '.' 'CurrentRow'

 '+' 1 ']' '[' 'Ship' '.' 'CurrentCol' '-' 1

 ']' '.' 'BeenHere' '>' 1 ')' '&&' '(' 'Minefield'

 '[' 'Ship' '.' 'CurrentRow' '-' 1 ']' '[' 'Ship'

 '.' 'CurrentCol' ']' '.' 'ObjectType' '==' 'Empty'

 ')' ')' 'Ship' '.' 'CurrentRow' '--' ';' 'else'

 '{' 'Ship' '.' 'CurrentRow' '++' ';' 'Ship' '.'

 'CurrentCol' '--' ';' '}' '}' 'else' '{' 'if' '('

 'Scan' '(' 'Left' ')' '==' 'false' ')' '{' 'if'

 '(' '(' 'Minefield' '[' 'Ship' '.' 'CurrentRow' ']'

 '[' 'Ship' '.' 'CurrentCol' '-' 1 ']' '.' 'BeenHere'

 '>' 1 ')' '&&' '(' 'Minefield' '[' 'Ship' '.'

 'CurrentRow' '-' 1 ']' '[' 'Ship' '.' 'CurrentCol'

 ']' '.' 'ObjectType' '==' 'Empty' ')' ')' 'Ship'

 '.' 'CurrentRow' '--' ';' 'else' 'Ship' '.' 'CurrentCol'

 '--' ';' '}' 'else' '{' 'if' '(' 'Scan' '(' 'BottomLeft'

 ')' '==' 'false' ')' '{' 'if' '(' '(' 'Minefield'

 '[' 'Ship' '.' 'CurrentRow' ']' '[' 'Ship' '.'

 'CurrentCol' '-' 1 ']' '.' 'BeenHere' '>' 1

 ')' '&&' '(' 'Minefield' '[' 'Ship' '.' 'CurrentRow'

159

 '-' 1 ']' '[' 'Ship' '.' 'CurrentCol' ']' '.'

 'ObjectType' '==' 'Empty' ')' ')' 'Ship' '.' 'CurrentRow'

 '--' ';' 'else' '{' 'Ship' '.' 'CurrentRow' '--'

 ';' 'Ship' '.' 'CurrentCol' '--' ';' '}' '}' 'else'

 '{' 'if' '(' '(' 'Scan' '(' 'Astern' ')' '=='

 'false' ')' '&&' '(' 'Ship' '.' 'CurrentRow' '>'

 '0' ')' ')' 'Ship' '.' 'CurrentRow' '--' ';' 'else'

 'Ship' '.' 'Clockwise' '=' '!' 'Ship' '.' 'Clockwise'

 ';' '}' '}' '}'

 .)

 .>

 .)

 .>

 <.Rule_Name:'Go_AntiClockwise',

 Patterns:

 (.

 <.Type:'Action',

 Body:

 (.'if'

 '(' 'Scan' '(' 'TopRight' ')' '==' 'false' ')'

 '{' 'if' '(' '(' 'Minefield' '[' 'Ship' '.' 'CurrentRow'

 '+' 1 ']' '[' 'Ship' '.' 'CurrentCol' '+' 1

 ']' '.' 'BeenHere' '>' 1 ')' '&&' '(' 'Minefield'

 '[' 'Ship' '.' 'CurrentRow' '-' 1 ']' '[' 'Ship'

 '.' 'CurrentCol' ']' '.' 'ObjectType' '==' 'Empty'

 ')' ')' 'Ship' '.' 'CurrentRow' '--' ';' 'else'

 '{' 'Ship' '.' 'CurrentRow' '++' ';' 'Ship' '.'

 'CurrentCol' '++' ';' '}' '}' 'else' '{' 'if' '('

 'Scan' '(' 'Right' ')' '==' 'false' ')' '{' 'if'

160

 '(' '(' 'Minefield' '[' 'Ship' '.' 'CurrentRow' ']'

 '[' 'Ship' '.' 'CurrentCol' '+' 1 ']' '.' 'BeenHere'

 '>' 1 ')' '&&' '(' 'Minefield' '[' 'Ship' '.'

 'CurrentRow' '-' 1 ']' '[' 'Ship' '.' 'CurrentCol'

 ']' '.' 'ObjectType' '==' 'Empty' ')' ')' 'Ship'

 '.' 'CurrentRow' '--' ';' 'else' 'Ship' '.' 'CurrentCol'

 '++' ';' '}' 'else' '{' 'if' '(' 'Scan' '(' 'BottomRight'

 ')' '==' 'false' ')' '{' 'if' '(' '(' 'Minefield'

 '[' 'Ship' '.' 'CurrentRow' '-' 1 ']' '[' 'Ship'

 '.' 'CurrentCol' '+' 1 ']' '.' 'BeenHere' '>'

 1 ')' '&&' '(' 'Minefield' '[' 'Ship' '.' 'CurrentRow'

 '-' 1 ']' '[' 'Ship' '.' 'CurrentCol' ']' '.'

 'ObjectType' '==' 'Empty' ')' ')' 'Ship' '.' 'CurrentRow'

 '--' ';' 'else' '{' 'Ship' '.' 'CurrentRow' '--'

 ';' 'Ship' '.' 'CurrentCol' '++' ';' '}' '}' 'else'

 '{' 'if' '(' '(' 'Scan' '(' 'Astern' ')' '=='

 'false' ')' '&&' '(' 'Ship' '.' 'CurrentRow' '>'

 '0' ')' ')' 'Ship' '.' 'CurrentRow' '--' ';' 'else'

 'Ship' '.' 'Clockwise' '=' '!' 'Ship' '.' 'Clockwise'

 ';' '}' '}' '}'

 .)

 .>

 .)

 .>

 .)

 .>

 .)

 .>

161

APPENDIX C : MINE AVOIDANCE SIMULATION IN GENERATED C++

A. THE MINE AVOIDANCE SIMULATION GENERATED C++ MAIN.CPP

// METALS Code Generator Version 0.4C

// C++ simulation program [Mine_Avoidance] created from Mine5.txt

// Version 0 . 5 A

#include <iostream>

#include <ctime>

#include <cstdlib>

#include <stdlib.h>

using namespace std;

#include "Worlds.h"

#include "Entities.h"

#include "Settings.h"

#include "Events.h"

#include "Chains.h"

// Main

int main(int argc, char *argv[])

{

 Start_Simulation_class Start_Simulation;

 Start_Simulation_rule(Start_Simulation);

 system("PAUSE");

 return 0;

}

162

B. THE MINE AVOIDANCE SIMULATION GENERATED WORLDS.H

// METALS Code Generator Version 0.4C

// Generation of Worlds

int Minefield_MaxRows = 32;
int Minefield_MaxCols = 32;

enum Minefield_Terrain { Empty, Nombo, NonMine, False_Alarm, Mine, Explosion,
Boundary, Start, Finish };

class Minefield_class
{
 public:
 Minefield_class();
 int BeenHere;
 bool Marked;
 Minefield_Terrain ObjectType;
 // Additional Attribs Can Be Added Here
};

Minefield_class :: Minefield_class()
{

 BeenHere = 0;
 Marked = false;
 ObjectType = Empty;
}

Minefield_class Minefield[32][32];

163

C. THE MINE AVOIDANCE SIMULATION GENERATED ENTITIES.H

// METALS Code Generator Version 0.4C

// Generation of Entities

class Simulation_class
{
 public:

 long MaxRuns , numClockwise , numAntiClockwise;

};

class Run_class
{
 public:

 long MaxSteps;

};

class Ship_class
{
 public:

 bool Clockwise;
 int CurrentCol , CurrentRow , StartCol , FinishCol;

};

Simulation_class Simulation;
Run_class Run;
Ship_class Ship;

164

D. THE MINE AVOIDANCE SIMULATION GENERATED EVENTS.H

// METALS Code Generator Version 0.4C

// Generation of Event Classes

long Global_Event_Count;

enum EType { DET, STO };

class Initialize_class
{
 public:
 Initialize_class();
 string Name;
 EType Var;
 double Mean;
 double Duration;
 static long Instances;

};

long Initialize_class :: Instances = 0;

Initialize_class :: Initialize_class()
{
 Global_Event_Count++;
 Instances++;

 Name = "Initialize";
 Var = DET;
 Mean = 0;
 Duration = 0;

 if (Var==STO) // Discrete Poisson RNG.
 {
 double a = exp(-Mean);
 double p = 1;
 long x = 1;
 while (p > a) {
 double U = (double) rand() / RAND_MAX;
 p = p*U;
 x++; }
 Duration = x; }
 }

165

class Move_class
{
 public:
 Move_class();
 string Name;
 EType Var;
 double Mean;
 double Duration;
 static long Instances;

};

long Move_class :: Instances = 0;

Move_class :: Move_class()
{
 Global_Event_Count++;
 Instances++;

 Name = "Move";
 Var = DET;
 Mean = 0;
 Duration = 0;

 if (Var==STO) // Discrete Poisson RNG.
 {
 double a = exp(-Mean);
 double p = 1;
 long x = 1;
 while (p > a) {
 double U = (double) rand() / RAND_MAX;
 p = p*U;
 x++; }
 Duration = x; }
 }

class Go_Clockwise_class
{
 public:
 Go_Clockwise_class();
 string Name;
 EType Var;
 double Mean;
 double Duration;

166

 static long Instances;

};

long Go_Clockwise_class :: Instances = 0;

Go_Clockwise_class :: Go_Clockwise_class()
{
 Global_Event_Count++;
 Instances++;

 Name = "Go_Clockwise";
 Var = DET ;
 Mean = 6 ;
 Duration = 6 ;

 if (Var==STO) // Discrete Poisson RNG.
 {
 double a = exp(-Mean);
 double p = 1;
 long x = 1;
 while (p > a) {
 double U = (double) rand() / RAND_MAX;
 p = p*U;
 x++; }
 Duration = x; }
 }

class Go_AntiClockwise_class
{
 public:
 Go_AntiClockwise_class();
 string Name;
 EType Var;
 double Mean;
 double Duration;
 static long Instances;

};

long Go_AntiClockwise_class :: Instances = 0;

Go_AntiClockwise_class :: Go_AntiClockwise_class()
{

167

 Global_Event_Count++;
 Instances++;

 Name = "Go_AntiClockwise";
 Var = DET ;
 Mean = 6 ;
 Duration = 6 ;

 if (Var==STO) // Discrete Poisson RNG.
 {
 double a = exp(-Mean);
 double p = 1;
 long x = 1;
 while (p > a) {
 double U = (double) rand() / RAND_MAX;
 p = p*U;
 x++; }
 Duration = x; }
 }

class Start_Simulation_class
{
 public:
 Start_Simulation_class();
 string Name;
 EType Var;
 double Mean;
 double Duration;
 static long Instances;

};

long Start_Simulation_class :: Instances = 0;

Start_Simulation_class :: Start_Simulation_class()
{
 Global_Event_Count++;
 Instances++;

 Name = "Start_Simulation";
 Var = DET;
 Mean = 0;
 Duration = 0;

 if (Var==STO) // Discrete Poisson RNG.

168

 {
 double a = exp(-Mean);
 double p = 1;
 long x = 1;
 while (p > a) {
 double U = (double) rand() / RAND_MAX;
 p = p*U;
 x++; }
 Duration = x; }
 }

class Start_Run_class
{
 public:
 Start_Run_class();
 string Name;
 EType Var;
 double Mean;
 double Duration;
 static long Instances;

};

long Start_Run_class :: Instances = 0;

Start_Run_class :: Start_Run_class()
{
 Global_Event_Count++;
 Instances++;

 Name = "Start_Run";
 Var = DET;
 Mean = 0;
 Duration = 0;

 if (Var==STO) // Discrete Poisson RNG.
 {
 double a = exp(-Mean);
 double p = 1;
 long x = 1;
 while (p > a) {
 double U = (double) rand() / RAND_MAX;
 p = p*U;
 x++; }
 Duration = x; }

169

 }

class Populate_class
{
 public:
 Populate_class();
 string Name;
 EType Var;
 double Mean;
 double Duration;
 static long Instances;

};

long Populate_class :: Instances = 0;

Populate_class :: Populate_class()
{
 Global_Event_Count++;
 Instances++;

 Name = "Populate";
 Var = DET;
 Mean = 0;
 Duration = 0;

 if (Var==STO) // Discrete Poisson RNG.
 {
 double a = exp(-Mean);
 double p = 1;
 long x = 1;
 while (p > a) {
 double U = (double) rand() / RAND_MAX;
 p = p*U;
 x++; }
 Duration = x; }
 }

170

E. THE MINE AVOIDANCE SIMULATION GENERATED CHAINS.H

// METALS Code Generator Version 0.4C

// Generation of Event Chains

// The various user defined event descriptions in Algorithm1

// Functional prototypes for each rule in the event chain
Start_Simulation_class Start_Simulation_rule(Start_Simulation_class);
Start_Run_class Start_Run_rule(Start_Run_class);
Initialize_class Initialize_rule(Initialize_class);
Populate_class Populate_rule(Populate_class);
Move_class Move_rule(Move_class);
Go_Clockwise_class Go_Clockwise_rule(Go_Clockwise_class);
Go_AntiClockwise_class Go_AntiClockwise_rule(Go_AntiClockwise_class);

Start_Simulation_class Start_Simulation_rule(Start_Simulation_class)
{
 Start_Simulation_class Start_Simulation;

Start_Run_class Start_Run; Simulation . MaxRuns = 100;
 Simulation . numClockwise = 0;
 Simulation . numAntiClockwise = 0;

for (__int64 i=1; i<=Simulation.MaxRuns; i++)
{
 Start_Run =Start_Run_rule (Start_Run); Start_Simulation . Duration += Start_Run .
Duration;

} Draw ();
 double Avg_Duration = Start_Simulation . Duration / Simulation . MaxRuns;
 cout <<"Average duration per run over "
 << Simulation . MaxRuns <<" run(s) is "
 << Avg_Duration <<"\n"
 ;
 cout <<"Total number of events occurred = "
 << Global_Event_Count <<"\n"
 ;
 cout <<"Number of Clockwise Movements = "
 << Simulation . numClockwise <<"\n"
 ;
 cout <<"Number of AntiClockwise Movements = "
 << Simulation . numAntiClockwise <<"\n"

171

;

 return Start_Simulation;
}

Start_Run_class Start_Run_rule(Start_Run_class)
{
 Start_Run_class Start_Run;

Initialize_class Initialize;
Populate_class Populate;
 Initialize =Initialize_rule (Initialize);
 Populate =Populate_rule (Populate); long Steps = 0;
 while ((Ship . CurrentRow <= Minefield_MaxRows - 2) && (Steps < Run .
MaxSteps)) { Move_class Move;
 Move = Move_rule (Move);
 Start_Run . Duration += Move . Duration;
 // Draw ();
 Steps ++;
 } // Draw ();

 return Start_Run;
}

Initialize_class Initialize_rule(Initialize_class)
{
 Initialize_class Initialize;
 Run . MaxSteps = 200;
 NumSquares = (Minefield_MaxCols - 2) * (Minefield_MaxRows - 2);
 for (int Row = 0;
 Row <= Minefield_MaxRows - 1;
 Row ++) for (int Col = 0;
 Col <= Minefield_MaxCols - 1;
 Col ++) { Minefield [Row] [Col] . Marked = false;
 Minefield [Row] [Col] . BeenHere = 0;
 Minefield [Row] [Col] . ObjectType = Empty;
 } int Entry_Gap [2] = { 5 , 25 };
 int Exit_Gap [2] = { 5 , 9 };
 for (int Col = 0;
 Col <= Minefield_MaxCols - 1;
 Col ++) { if ((Col < Entry_Gap [0]) || (Col > Entry_Gap [1])) Minefield [0] [
Col] . ObjectType = Boundary;

172

 else Minefield [0] [Col] . ObjectType = Empty;
 if ((Col < Exit_Gap [0]) || (Col > Exit_Gap [1])) Minefield [
Minefield_MaxRows - 1] [Col] . ObjectType = Boundary;
 else Minefield [Minefield_MaxRows - 1] [Col] . ObjectType = Empty;
 if ((Col == 0) || (Col == Minefield_MaxCols - 1)) { for (int Row = 1;
 Row <= Minefield_MaxRows - 2;
 Row ++) Minefield [Row] [Col] . ObjectType = Boundary;
 } } Ship . Clockwise = true;
 srand ((unsigned) time (0));
 Ship . CurrentCol = rand () % (Entry_Gap [1] - Entry_Gap [0]);
 // Ship . CurrentCol = 15;
 Ship . CurrentRow = 0;
 Ship . StartCol = Ship . CurrentCol;

 return Initialize;
}

Populate_class Populate_rule(Populate_class)
{
 Populate_class Populate;
 bool IsObject [NumSquares] , IsMine [NumSquares] , IsNombo [NumSquares];
 int Objects_Per_Square_km = 5;
 int Mines_Per_Square_km = 3;
 int Size_Of_Square = 200;
 int Num_Squares_Per_Square_km = (1000 / Size_Of_Square) * (1000 /
Size_Of_Square);
 int ExpectedNumMines = (NumSquares / Num_Squares_Per_Square_km) *
Mines_Per_Square_km;
 int ExpectedNumObjects = (NumSquares / Num_Squares_Per_Square_km) *
Objects_Per_Square_km;
 int x;
 for (x = 0;
 x <= NumSquares - 1;
 x ++) { IsMine [x] = false;
 IsObject [x] = false;
 IsNombo [x] = false;
 } int i , j , Choice;
 srand ((unsigned) time (0));
 for (i = 0;
 i <= ExpectedNumObjects - 1;
 i ++) { Choice = 1 + rand () % NumSquares;
 IsObject [Choice - 1] = true;
 } for (j = 0;
 j <= ExpectedNumMines - 1;

173

 j ++) { Choice = 1 + rand () % NumSquares;
 if (IsObject [Choice - 1] == false) IsMine [Choice - 1] = true;
 else { IsObject [Choice - 1] == false;
 IsNombo [Choice - 1] = true;
 } } int CurrentPointer = 0;
 for (int Row = 1;
 Row <= Minefield_MaxRows - 2;
 Row ++) { for (int Col = 1;
 Col <= Minefield_MaxCols - 2;
 Col ++) { Minefield [Row] [Col] . ObjectType = Empty;
 if (IsMine [CurrentPointer] == true) Minefield [Row] [Col] . ObjectType = Mine;
 if (IsObject [CurrentPointer] == true) Minefield [Row] [Col] . ObjectType =
NonMine;
 if (IsNombo [CurrentPointer] == true) Minefield [Row] [Col] . ObjectType =
Nombo;
 CurrentPointer ++;
 } }

 return Populate;
}

Move_class Move_rule(Move_class)
{
 Move_class Move;
 Minefield [Ship . CurrentRow] [Ship . CurrentCol] . BeenHere ++;
 if (Ship . CurrentRow <= Minefield_MaxRows - 1) { if ((Minefield [Ship .
CurrentRow + 1] [Ship . CurrentCol] . ObjectType == Empty) && (Minefield [Ship .
CurrentRow + 1] [Ship . CurrentCol] . BeenHere == 0)) Ship . CurrentRow ++;
 else { if (Ship . CurrentCol == 1) Ship . Clockwise = false;
 if (Ship . CurrentCol == Minefield_MaxCols - 2) Ship . Clockwise = true;
 if (Ship . Clockwise) { Go_Clockwise_class Go_Clockwise;
 Go_Clockwise = Go_Clockwise_rule (Go_Clockwise);
 Simulation . numClockwise = Go_Clockwise . Instances;
 Move . Duration = Go_Clockwise . Duration;
 } else { Go_AntiClockwise_class Go_AntiClockwise;
 Go_AntiClockwise = Go_AntiClockwise_rule (Go_AntiClockwise);
 Simulation . numAntiClockwise = Go_AntiClockwise . Instances;
 Move . Duration = Go_AntiClockwise . Duration;
 } } } Ship . FinishCol = Ship . CurrentCol;

 return Move;
}

174

Go_Clockwise_class Go_Clockwise_rule(Go_Clockwise_class)
{
 Go_Clockwise_class Go_Clockwise;
 if (Scan (TopLeft) == false) { if ((Minefield [Ship . CurrentRow + 1] [Ship .
CurrentCol - 1] . BeenHere > 1) && (Minefield [Ship . CurrentRow - 1] [Ship .
CurrentCol] . ObjectType == Empty)) Ship . CurrentRow --;
 else { Ship . CurrentRow ++;
 Ship . CurrentCol --;
 } } else { if (Scan (Left) == false) { if ((Minefield [Ship . CurrentRow] [Ship .
CurrentCol - 1] . BeenHere > 1) && (Minefield [Ship . CurrentRow - 1] [Ship .
CurrentCol] . ObjectType == Empty)) Ship . CurrentRow --;
 else Ship . CurrentCol --;
 } else { if (Scan (BottomLeft) == false) { if ((Minefield [Ship . CurrentRow] [
Ship . CurrentCol - 1] . BeenHere > 1) && (Minefield [Ship . CurrentRow - 1] [Ship .
CurrentCol] . ObjectType == Empty)) Ship . CurrentRow --;
 else { Ship . CurrentRow --;
 Ship . CurrentCol --;
 } } else { if ((Scan (Astern) == false) && (Ship . CurrentRow > 0)) Ship .
CurrentRow --;
 else Ship . Clockwise = ! Ship . Clockwise;
 } } }

 return Go_Clockwise;
}

Go_AntiClockwise_class Go_AntiClockwise_rule(Go_AntiClockwise_class)
{
 Go_AntiClockwise_class Go_AntiClockwise;
 if (Scan (TopRight) == false) { if ((Minefield [Ship . CurrentRow + 1] [Ship .
CurrentCol + 1] . BeenHere > 1) && (Minefield [Ship . CurrentRow - 1] [Ship .
CurrentCol] . ObjectType == Empty)) Ship . CurrentRow --;
 else { Ship . CurrentRow ++;
 Ship . CurrentCol ++;
 } } else { if (Scan (Right) == false) { if ((Minefield [Ship . CurrentRow] [Ship .
CurrentCol + 1] . BeenHere > 1) && (Minefield [Ship . CurrentRow - 1] [Ship .
CurrentCol] . ObjectType == Empty)) Ship . CurrentRow --;
 else Ship . CurrentCol ++;
 } else { if (Scan (BottomRight) == false) { if ((Minefield [Ship . CurrentRow - 1] [
Ship . CurrentCol + 1] . BeenHere > 1) && (Minefield [Ship . CurrentRow - 1] [Ship .
CurrentCol] . ObjectType == Empty)) Ship . CurrentRow --;
 else { Ship . CurrentRow --;
 Ship . CurrentCol ++;
 } } else { if ((Scan (Astern) == false) && (Ship . CurrentRow > 0)) Ship .
CurrentRow --;
 else Ship . Clockwise = ! Ship . Clockwise;

175

 } } }

 return Go_AntiClockwise;
}

176

F. THE MINE AVOIDANCE SIMULATION USER INPUT SETTINGS.H

// Detection Algorithm Paramters.
const double Prob_Detection = 1;
const double Prob_False_Alarm = 1;
int NumSquares;

enum ScanDirection { Ahead, TopLeft, TopRight, Left, Right,
 BottomLeft, BottomRight, Astern };

bool Scan (ScanDirection Direction)
{
 bool Detected = false;

 int NextRow; int NextCol;
 switch (Direction)
 {
 case Ahead: NextRow = Ship.CurrentRow+1; NextCol = Ship.CurrentCol; break;
 case TopLeft: NextRow = Ship.CurrentRow+1; NextCol = Ship.CurrentCol-1; break;
 case Left: NextRow = Ship.CurrentRow; NextCol = Ship.CurrentCol-1; break;
 case BottomLeft: NextRow = Ship.CurrentRow-1; NextCol = Ship.CurrentCol-1; break;
 case Astern: NextRow = Ship.CurrentRow-1; NextCol = Ship.CurrentCol; break;
 case BottomRight: NextRow = Ship.CurrentRow-1; NextCol = Ship.CurrentCol+1;
break;
 case Right: NextRow = Ship.CurrentRow; NextCol = Ship.CurrentCol+1; break;
 case TopRight: NextRow = Ship.CurrentRow+1; NextCol = Ship.CurrentCol+1; break;
 default: NextRow = Ship.CurrentRow; NextCol = Ship.CurrentCol; break;
 }

 srand((unsigned)time(0));
 double Chance = double(rand()%100)/100;

 if (Minefield[NextRow][NextCol].ObjectType == Empty)
 {
 // if (Chance > Prob_Detection*Prob_False_Alarm)
 Detected = false;
 // else
 // {
 // Minefield[NextRow][NextCol].ObjectType = False_Alarm;
 // }
 }
 else
 {
 // if (Chance <= Prob_Detection)
 Detected = true;
 // else

177

 // {
 // Minefield[NextRow][NextCol].ObjectType = Explosion;
 // Detected = false;
 // Sunk = true;
 // }
 }
 if (Detected) Minefield[NextRow][NextCol].Marked = true;
 return Detected;
}

void Draw()
{
 system("CLS");

 cout << "+";
 for (int Col=1; Col<=Minefield_MaxCols-2; Col++)
 {
 if (Col==Ship.FinishCol) cout << "F";
 else
 if (Minefield[Minefield_MaxRows-1][Col].BeenHere > 0)
 cout << Minefield[Minefield_MaxRows-1][Col].BeenHere;
 else
 if (Minefield[Minefield_MaxRows-1][Col].ObjectType == Boundary) cout << "-
";
 else cout << " ";
 }
 cout << "+\n";

 for (int Row=Minefield_MaxRows-2; Row>=1; Row--)
 {
 for (int Col=0; Col<=Minefield_MaxCols-1; Col++)
 {

 if (Minefield[Row][Col].BeenHere > 0)
 cout << Minefield[Row][Col].BeenHere;
 else
 {
 switch (Minefield[Row][Col].ObjectType)
 {
 case Boundary: cout << "|"; break;
 case Mine: cout << "*"; break;
 case NonMine: cout << "o"; break;
 case Nombo: cout << "?"; break;
 case Explosion: cout << "K"; break;
 case False_Alarm: cout << "!"; break;
 default: cout << " ";

178

 }
 }

 }
 cout << "\n";
 }

 cout << "+";
 for (int Col=1; Col<=Minefield_MaxCols-2; Col++)
 {
 if (Col==Ship.StartCol) cout << "S";
 else
 if (Minefield[0][Col].BeenHere > 0)
 cout << Minefield[0][Col].BeenHere;
 else
 if (Minefield[0][Col].ObjectType == Boundary) cout << "-";
 else cout << " ";
 }
 cout << "+\n";
 cout << "\n\n";
 cout << "Current Row = " << Ship.CurrentRow << "\n";
 system("PAUSE");
}

179

LIST OF REFERENCES

[BALL99] Ball T, The Essence of Dynamic Analysis, Proceedings at the University of

Washington/Microsoft Research Summer Institute on Technologies to
Improve Software Development, UW Campus and Semiahmoo Resort
August 2-6, 1999, presentation slides (also on the Microsoft web site at
http://research.microsoft.com/tisd/Slides/TomBall.ppt), November 18, 2004.

[LARUS95] Larus J. R., Schnarr E., EEL: Machine-Independent Executable Editing,

Proceeding of PLDI 1995, SIGPLAN Notices, pp291-300, Vol 30, No 6,
June 1995.

[AUG98] Auguston M., Building Program Behavior Models , European Conference

on Artificial Intelligence ECAI'98 Workshop on Temporal and Spatial
Reasoning, 1998.

[AUG03] Auguston M., Jefferey C., Underwood S., A Monitoring Language for Run

Time and Post-Mortem Behavior Analysis and Visualization, Proceedings of
5th International Workshop on Algorithmic and Automatic Debugging
AADEBUG 2003, Ghent, Belgium, pp. 41-54 (also on the CoRR web site at
http://arxiv.org/abs/cs/0310025), September 8-10, 2003

[NYGAARD] Dahl O. J., Nygaard K., SIMULA: an ALGOL-based simulation language,

Communications of the ACM, Volume 9 Issue 9, pp. 671-678, September
1966.

[BOLIER] Bolier D., Eliens A., SIM : a C++ library for Discrete Event Simulation,

Vrije Universiteit, Department of Mathematics and Computer Science,
Amsterdam, The Netherlands web site at
http://www.cs.vu.nl/~eliens/sim/sim_html/sim.html, November 18, 2004.

[CSSL67] Strauss J. C., Augustin D.C., Fineberg M.S., Johnson B.B., Linebarger R.
M., Sansom F. J., The SCI Continuous System Simulation Language (CSSL),
pp281-303, Simulation 9(12), December 1967.

[COMDIC1] Facts obtained from http://computing-dictionary.thefreedictionary.com,

November 18, 2004.

[SPECK76] Speckhart F. H. et al, A Guide to Using CSMP - The Continuous System

Modeling Program, P-H, 1976.

[IBM79] IBM Corporation, IBM System/370 APL Continuous System Modelling

Program Program Description and Operations Manual, Moline (Ill.), SH20-
2115, 1979.

180

[ALFON99] Alfonseca M., Alfonseca E., Lara J.D., Compiling a simulation language in
APL, Proceedings of the APL98 conference on Array Processing
Language, Rome, Italy, pp. 105-109, 1999.

[EAS-E] Facts obtained from http://www.eas-e.org/index.html, November 19, 2004.

[HYPER1] Facts obtained from http://www.hyperdictionary.com, November 19, 2004.

[HYPER2] Facts obtained from http://www.hyperdictionary.com, November 19, 2004.

[RIG1] Auguston M., Programming language RIGAL as a compiler writing tool,
ACM SIGPLAN Notices, vol.25, #12, pp.61-69, December 1990.

[RIG2] Auguston M., RIGAL - a programming language for compiler writing,
Lecture Notes in Computer Science, Springer Verlag, vol.502, pp.529-564,
1991.

[RIG3] RIGAL Language Home Page at http://www.ida.liu.se/~vaden/rigal/, August
13, 2004.

[JERRY] Jerry Banks, Handbook of Simulation - Principles, Methodology, Advances,

Applications, and Practice, John Wiley & Sons, Inc, pp.149-166, 1998.

[GAVER1] Donald P. Gaver, The Effect Of Sensor Performance On Safe Minefield

Transit, Menneken Lecture 2003, 2003.

[GAVER2] Donald P. Gaver, Patricia A. Jacobs, Steven E. Pilnick, On Minefield Transit

by Detection, Avoidance, and DeMining, 3rd Joint Australian/American
Conference on Mine Countermeasures and Demining Australian Defence
Force Academy, Canberra 2004, 2004.

181

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. Mikhail Auguston
 Naval Postgraduate School
 Monterey, California

4. Richard Riehle
 Naval Postgraduate School
 Monterey, California

