
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2004-12

Utilization of forward error correction (FEC)

techniques with extensible markup language (XML)

schema-based binary compression (XSBC) technology

Norbraten, Terry D.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/1247

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36694983?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

UTILIZATION OF FORWARD ERROR CORRECTION (FEC) TECHNIQUES
WITH EXTENSIBLE MARKUP LANGUAGE (XML)

SCHEMA-BASED BINARY COMPRESSION (XSBC) TECHNOLOGY

by

Terry D. Norbraten

December 2004

Thesis Advisor: Don Brutzman
Co Advisor: Don McGregor
Second Reader: Duane Davis

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time
for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing
and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2004

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Utilization of Forward Error Correction (FEC)
Techniques with Extensible Markup Language (XML) Schema-based
Binary Compression (XSBC) Technology
6. AUTHOR Terry D. Norbraten

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME AND ADDRESS
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES: The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT
 In order to plug-in current open sourced, open standard Java programming technology into the building blocks of the
US Navy’s ForceNet, first, stove-piped systems need to be made extensible to other pertinent applications and then a
new paradigm of adopting extensible and cross-platform open technologies will begin to bridge gaps with old and new
weapons systems. The battle-space picture in real time and with as much detail, or as little detail needed is now a
current vital requirement. Access to this information via wireless laptop technology is here now. Transmission of data
to increase the resolution of that battle-space snapshot will invariably be through noisy links. Noisy links such as found
in the shallow water littoral regions of interest will be where Autonomous Underwater and Unmanned Underwater
Vehicles (AUVs/UUVs) are gathering intelligence for the sea warrior in need of that intelligence.
 The battle-space picture built from data transmitted within these noisy and unpredictable acoustic regions demands
efficiency and reliability features abstract to the user. To realize this efficiency Extensible Markup Language (XML)
Schema-based Binary Compression (XSBC), in combination with Vandermode-based Forward Error Correction (FEC)
erasure codes, offer the qualities of efficient streaming of plain text XML documents in a highly compressed form, and a
data self-healing capability should there be loss of data during transmission in unpredictable transmission mediums.
 Both the XSBC and FEC libraries detailed in this thesis are open sourced Java Application Program Interfaces (APIs)
that can be readily adapted for extensible, cross-platform applications that will be enhanced by these desired features to
add functional capability to ForceNet for the sea warrior to access on demand, at sea and in real-time. These features
will be presented in the Autonomous Underwater Vehicle (AUV) Workbench (AUVW) Java-based application that will
become a valuable tool for warriors involved with Undersea Warfare (UW).

15. NUMBER OF
PAGES

191

14. SUBJECT TERMS: Autonomous Underwater Vehicle (AUV) Workbench (AUVW), Erasure
Codes, Extensible Markup Language (XML), Extensible Modeling and Simulation Framework
(XMSF), Forward Error Correction (FEC), Scenario Authoring & Visualization for Advanced
Graphical Environments (SAVAGE), XML Schema based Binary Compression (XSBC) 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

This thesis done in cooperation with the MOVES Institute
Approved for public release; distribution is unlimited

UTILIZATION OF FORWARD ERROR CORRECTION (FEC) TECHNIQUES
WITH EXTENSIBLE MARKUP LANGUAGE (XML)

SCHEMA-BASED BINARY COMPRESSION (XSBC) TECHNOLOGY

Terry D. Norbraten
Lieutenant, United States Navy

B.S., Norfolk State University, 1994

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MODELING, VIRTUAL ENVIRONMENTS

AND SIMULATION (MOVES)

from the

NAVAL POSTGRADUATE SCHOOL

December 2004

 Author: Terry D. Norbraten

Approved by: Dr. Don Brutzman
 Thesis Advisor

 Don McGregor
 Thesis Co-Advisor

 CDR Duane T. Davis, USN
 Thesis Second Reader

 Rudolph P. Darken

 Chair, MOVES Academic Committee

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

 In order to plug-in current open sourced, open standard Java

programming technology into the building blocks of the US Navy’s ForceNet, first,

stove-piped systems need to be made extensible to other pertinent applications

and then a new paradigm of adopting extensible and cross-platform open

technologies will begin to bridge gaps with old and new weapons systems. The

battle-space picture in real time and with as much detail, or as little detail needed

is now a current vital requirement. Access to this information via wireless laptop

technology is here now. Transmission of data to increase the resolution of that

battle-space snapshot will invariably be through noisy links. Noisy links such as

found in the shallow water littoral regions of interest will be where Autonomous

Underwater and Unmanned Underwater Vehicles (AUVs/UUVs) are gathering

intelligence for the sea warrior in need of that intelligence.

 The battle-space picture built from data transmitted within these noisy and

unpredictable acoustic regions demands efficiency and reliability features

abstract to the user. To realize this efficiency Extensible Markup Language

(XML) Schema-based Binary Compression (XSBC), in combination with

Vandermode-based Forward Error Correction (FEC) erasure codes, offer the

qualities of efficient streaming of plain text XML documents in a highly

compressed form, and a data self-healing capability should there be loss of data

during transmission in unpredictable transmission mediums.

 Both the XSBC and FEC libraries detailed in this thesis are open sourced

Java Application Program Interfaces (APIs) that can be readily adapted for

extensible, cross-platform applications that will be enhanced by these desired

features to add functional capability to ForceNet for the sea warrior to access on

demand, at sea and in real-time. These features will be presented in the

Autonomous Underwater Vehicle (AUV) Workbench (AUVW) Java-based

application that will become a valuable tool for warriors involved with Undersea

Warfare (UW).

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1

A. PROBLEM STATEMENT... 1
B. MOTIVATION... 2
C. OBJECTIVES... 3
D. THESIS ORGANIZATION.. 3

II. BACKGROUND AND RELATED WORK... 5
A. INTRODUCTION.. 5
B. ABSTRACT TECHNOLOGIES HAVING PERTINENCE IN THE

FORCENET CONCEPT ... 6
1. XSBC... 6
2. Internet Protocol over Sea Water (IP/SW).............................. 6
3. World Wide Web Consortium (W3C) XML Binary

Characterization Working Group.. 7
4. Sun Microsystems Fast Web Services 7
5. Seaweb Underwater Acoustic Network (UAN) 8

C. SUMMARY... 10

III. CLAUDE SHANNON’S INFORMATION THEORY....................................... 11
A. INTRODUCTION.. 11
B. BACKGROUND IN FORWARD ERROR CORRECTION.................. 11

1. Impetus that Started it All ... 11
2. Error Correction Theories to Concepts 11
3. N-Dimensional Theory Applied to Error Correcting

Codes.. 16
C. CLAUDE SHANNON’S WORK IN INFORMATIONAL THEORY 18

1. What is Information? ... 18
2. The Noiseless Coding Theorem of Shannon....................... 20
3. Signaling in the Presence of Noise 22

a. Channel Capacity.. 23
4. Detection of Occurring Errors .. 25
5. Probabilities of Occurring Errors ... 26
6. Constructing an Encoding Code Book 27
7. Suitability of Dr. Shannon’s Code Books 28

D. RELATED FIELDS AND APPLICATIONS FOR FEC........................ 29
1. Discussion.. 29

E. SUMMARY... 31

IV. THEORETICAL DERIVATION OF ERASURE CODES................................ 33
A. INTRODUCTION.. 33
B. WHY SOFTWARE FEC? ... 33
C. ERASURE CODING THEORY... 35

1. Encoding and Decoding Process... 35

 viii

2. The Generator Matrix... 38
3. Computations in Finite Fields... 38

a. Prime Fields... 39
4. Data Recovery.. 41

D. AN ERASURE CODE BASED ON VANDERMONDE MATRICES.... 42
E. SUMMARY... 43

V. SUITABILITY OF COMBINING FEC ENCODING WITH XSBC................... 45
A. INTRODUCTION.. 45
B. XML SCHEMA BASED BINARY COMPRESSION (XSBC) 45

1. XML Document Serialization... 46
2. XML Document De-serialization ... 49
3. XSBC Instead of Other Types of Binary Compression....... 49
4. XSBC as a Module within the AUVW.................................... 49

a. Telemetry from an AUV to the AUVW Server............ 50
C. INTRODUCTION OF A JAVA BASED FEC ENCODING LIBRARY . 52
D. THE FUTURE OF XSBC.. 52
E. SUMMARY... 53

VI. FEC FILTER COMBINED WITH XSBC.. 55
A. INTRODUCTION.. 55

1. XSBC Serializer Functionality within the AUVW 55
a. UDP Functionality ... 56

2. XSBC Transaction Functionality within the AUVW............. 61
B. SUMMARY... 63

VII. USER INTERFACE: AUV WORKBENCH (AUVW) AND XML-BASED
TACTICAL CHAT (XTC)... 65
A. INTRODUCTION.. 65
B. INTERFACE FOR THE XSBC AND FEC SERVERS 65
C. INTERFACE WITH XML-BASED TACTICAL CHAT (XTC) 67
D. SUMMARY... 69

VIII. SECURITY CONSIDERATIONS... 71
A. INTRODUCTION.. 71
B. CONSIDERATIONS FOR COUNTERING INFORMATIONAL

EXPLOITATIONS... 71
C. XML CANONICALIZATION AND SECURITY 73
D. SUMMARY... 74

IX. CONCLUSIONS AND RECOMMENDATIONS... 75
A. INTRODUCTION.. 75
B. CONCLUSIONS... 76
C. RECOMMENDATIONS.. 77
D. FUTURE WORK... 78
E. SUMMARY... 79

APPENDIX A. LIST OF ABBREVIATIONS .. 81

 ix

APPENDIX B. FAMILIARITY NOTES FOR THE FEC 1.0.3 LIBRARY 85
A. INTRODUCTION.. 85
B. SETUP OF THE FEC 1.0.3 LIBRARY ... 85
C. RUNNING THE INCLUDED TEST FILES.. 88
D. TEST FILE DEBUGGING FOR ANALYSIS OF FUNCTIONALITY ... 88
E. EXAMPLE OF FEC ENCODING AN XML FILE COMPRESSED

WITH XSBC ... 93
1. XSBC_FECFileTest.java... 93

F. EXAMPLE FEC ENCODING THE MOVESLOGO.JPG FILE 98
1. FECFileTest.java .. 98

G. EXAMPLE SERVER/CLIENT ENCODING A FILE WITH FEC,
SENDING, RECEIVING AND DECODING WITH A FILE
COMPARISON FEATURE... 101
1. FECSendN.java .. 101
2. FECReceiveN.java ... 106

H. SUMMARY... 110

APPENDIX C. FAMILIARITY NOTES FOR THE XSBC 0.91.1 LIBRARY ... 111
A. INTRODUCTION.. 111
B. SETUP OF THE XSBC 0.91.1 LIBRARY... 111
C. XSBC CODE EXAMPLES ... 116

1. SimpleExample.java .. 117
2. Example UDP Implementation of an XSBC/FEC

Server/Client Utility .. 119
a. SenderSimulation.java.. 119

3. The Receiver Client Code.. 130
a. ReceiverSimulation.java... 130

4. Supporting Code Called from the Server/Client
Application ... 145
a. XsbcSerializerFecEncoder.java 146
b. XsbcTransactionFecDecoder.java........................... 156

D. SUMMARY... 163

LIST OF REFERENCES.. 165

INITIAL DISTRIBUTION LIST ... 171

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Seaweb Underwater Acoustic Networking Enables Data Telemetry

and Remote Control for Undersea Sensor Grids, Vehicles, and
other Autonomous Instruments. Gateways to Manned Control
Centers Include Radio-acoustic Communications (racom) Nodes
with Radio Links to Sky or Shore (From Rice 2000). 9

Figure 2. First Error Correcting Codes (After Hamming 1986)........................... 12
Figure 3. Code Arranged in a Triangular Form with Parity Check Bits Placed

on the Diagonal (From Hamming 1997) ... 13
Figure 4. Information Bits Arranged in a Block with Parity Check Bits Placed

on the Axes Showing a Maximum Hamming Distance (L1) of 3 from
the Origin.. 13

Figure 5. Parity Check Bits Naming the Syndrome of an Error (After
Hamming 1985).. 14

Figure 6. Example Decoded Message with the Position of the Error Named
(After Hamming 1985) .. 15

Figure 7. Graphical Representation of a Log Inequality (From Hamming
1995) .. 21

Figure 8. A Sender’s Sphere Drawn about a Message Point with Expected
Error Probabilities and a Slightly Extended Sphere for the Received
Message Point (From Hamming 1995)... 24

Figure 9. Receiver’s Message Sphere with Expected Error Probabilities
(From Hamming 1995) ... 25

Figure 10. A Graphical Representation of an Encoding/Decoding Process
where x’s Represent Packet Losses (From Rizzo 1997) 36

Figure 11. The (EN/DE) Process in Matrix Form for a Systematic Code (the
top k rows of G constitute the identity matrix Ik). y’ and G’
Correspond to the Grey Areas of the Vector and Matrix on the Right
(From Rizzo 1997).. 37

Figure 12. File Format Compression Comparisons for the Teapot Exemplar
(After Serin 2003) ... 47

Figure 13. Comparison of Filesizes for GZIP Alone, XSBC or combined
XSBC/GZip for a Schema Defined XML Document (Consult
Appendix C).. 47

Figure 14. Example XML Document Before the XSBC Serialization Process
with Element and Attribute Tagsets Highlighted for Clarity (After
Serin 2003)... 48

Figure 15. Example XML Document Results After the XSBC Serialization
Process (After Serin 2003) ... 48

Figure 16. Data Flow Diagram for XSBC/FEC Data through an Acoustic
Medium (From AUV to AUVW Server) ... 51

 xii

Figure 17. Server/Client Simulation of an XML Document Compressed, FEC
Encoded, Transmitted, Received, FEC Decoded, Uncompressed
and Displayed in JTree Form. Example available within the XSBC
0.91.1 Library. .. 51

Figure 18. AUVW GUI for the XSBC and FEC Server Functionality.................... 66
Figure 19. XML Tagset Describing Jabber Chat Session Parsing for Mission

Critical Keywords (From Lee 2004) .. 69
Figure 20. Illustration of Reverse Path Forwarding.. 72
Figure 21. Ant Script that Contains the Command to Combine Multiple JAR

Files into One for Convenience .. 87
Figure 22. Debug Information Obtained by FEC Encoding the

MOVESLogo.jpg File DEBUG Information Obtained by
 Instantiating the org.apache.log4j.BasicConfigurator

[BasicConfigurator.configure()]
Figure 23. within FECFileTest.java.. 90
Figure 24. DEBUG Information Obtained from Invoking XSBC Compression,

GZipping and Encoded with FEC of the espdu.xml File 90
Figure 25. Example Block Encoding for the espdu.xml File Showing FEC

Parameters of k=16, n=32 and a Packet Size of 1024 Bytes and
Padding with Zeros... 91

Figure 26. Sample Process Output of the Comparison Tool GUI
(ComarisonTool.java) included with the XSBC 0.91.1 Library 112

Figure 27. Example Ant Script written in XML that takes Multiple Jar Files and
Combines them into a Single JAR.. 114

 xiii

LIST OF TABLES

Table 1. Minimum Distances and Correctability of Errors (From Hamming
1995) .. 17

Table 2. Illustration of Detecting an Occurring Error (From Hamming 1995).... 25
Table 3. Proposed Format for an FEC Protocol Containing Data to be Sent

Along with Each FEC Encoded Source Symbol Packet 77

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I am most grateful for and would be entirely remiss for not mentioning the

utmost patience, guidance, and inspiration, who with a most reassuring voice and

by the gentle manner of my thesis advisor Prof. Donald Brutzman, my time would

have been spent in vain. Without his most valuable course, Hamming on

Hamming: Learning to Learn, I would have had no idea what FEC was or where

to start in this research. His honest enthusiasm to train and increase the skill and

situational awareness of the sea warrior efficiently, cost effectively, and while

having great fun doing so, was a most sobering and delightful eye opener.

The principal developer of XSBC now lies with Alan D. Hudson, president

of Yumetech Inc. (see Yumetech). Alan and his team are contracted by and

fellow collaborators with other team research associates of the MOVES Institute

at NPS. I would like to thank Alan and his fellow Yumetech associate Justin

Couch for their valuable insight into XSBC and Java Swing technologies.

Don McGregor was most valuable in understanding networking theory

programming in Java as with Dr. Mark Pullen who introduced me to the world of

wireless multicasting through his MV 4774 Networked Virtual Environment (NVE)

course held over the internet from George Mason University (GMU) to NPS via

the Network Education Ware (NEW).

Capt. James Neushul, USMC opened up a whole new world to me with his

implementation of a non-proprietary, open source, open standards solution with

his wonderful X-Globe 3D terrain mapping web service application.

CDR Duane Davis for his most valuable mentorship, volunteering as

technical sounding board and leadership.

Finally, my friend and confident through over two years of learning

struggles, Maj. Glenn Hodges, USA who inspired me to keep moving forward and

learn the ever dynamic language of Modeling and Simulation (M&S).

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. PROBLEM STATEMENT
Major strides in underwater communications and data networking have

taken place in the last century and this. Sound energy sometimes does not

propagate very efficiently or reliably under water and especially in shallow water

littoral regions. Yet, the US Navy is moving forward with promising results in the

research and development (R&D) of Autonomous Underwater and Unmanned

Underwater Vehicles (AUVs/UUVs). These devices carry with them the

enormous potential of detection, classification and neutralization of sea mines, in

3D mapping of sea floors, in support of salvage operations, exploration,

oceanography and meteorological research, and a myriad of other areas of

ocean research.

The desire to cheaply setup and maintain an Underwater Acoustic

Network (UAN) has been the goal of a plethora of diverse marine scientists who

are ever approaching this goal closer than ever before. Technology in

underwater modems and data transfer capabilities is to the point where this can

be fully realized.

At the Naval Postgraduate School (NPS), one of the main goals of the

Modeling, Virtual Environments and Simulation (MOVES) Institute is to

collaborate with the Undersea Warfare (UW) curriculum, also at NPS, to develop

AUV technology for the above mentioned purposes, plus to aid the at sea

warfighter with capabilities of on demand, real-time information exchange so that

tactical decisions concerning aspects of USW can be made at the click of a

mouse. From accurate sonar prediction models to 3D visualization of AUV

collected data, progress is moving forward continually to realize this potential.

Current work to put this powerful capability into the toolkit of the sea

warrior is being conducted by continual development of the AUV Workbench

(AUVW). This is a powerful open source, open standards Java-based

application to plan, execute missions, retrieve data both binary and in 3D for

2

analysis and decision making, and for training in the AUV/UUV area of UW. How

that data is transmitted reliably and efficiently underwater remains a formidable

challenge, but one that can be overcome well.

The problem statement lies here. How can data be efficiently streamed

and reliably retrieved in the often hostile to sound energy propagation conditions

of shallow water littoral regions to promote furtherance of AUV/UUV

technologies? This thesis proposes an open sourced Java-based solution to

integrate into the AUVW application.

B. MOTIVATION
AUV and UUV technology is growing at a rapid pace. In order to leverage

this technology for advantage and exploitation by the at-sea warfighter, current

technological pace has to be kept and maintained by the appropriate agencies

who would place this technology into the hands of that warrior tasked with

making critical life and death decisions. With the disadvantage and enormously

costly stove-piped proprietary systems that the Department of Defense (DOD)

employs today, pace will be further hindered in placing that critical technology

into the toolkit of the sea warrior.

Movement towards open standards and open sourced solutions must be

integrated into a new paradigm-shift for those agencies that procure war fighting

systems. Technological pace can be maintained, costs will makedly decrease

and efficiency and security of these systems will increase many fold. No longer

would a ship at sea on a critical mission have to rely on outdated equipment and

software systems that were once maintained at high cost by companies and

contractors that have folded or gone out of business or simply do not see profit in

maintaining those systems anymore.

The AUVW is one solution to maintaining pace with the technological

sectors of the defense industry as students and other interested collaborators all

have valuable ideas and features to offer this application. The main feature of

the AUVW is its ability to plan and execute missions on demand as a web service

3

for AUV/UUV employment. Data is collected for a mission’s intended purpose

and transmitted back to a gateway server for analysis and intelligence gathering

purposes. In order to transmit this data efficiently and reliably from a vehicle that

possess low and exhaustible power supplies, much like satellites and space

probes, data transmission must be quick, efficient and reliable when received by

its intended client. This thesis gives background into the efficiency solution by

introducing XSBC. The main thrust of this thesis will then be to offer the

reliability solution for assuring that the data transmitted will get to its destination

intact.

C. OBJECTIVES
This thesis will introduce the feasibility for a software implementation of a

Forward Error Correction (FEC) erasure code written in the Java programming

language to be used in conjunction with Extensible Markup Language (XML)

Schema-based Binary Compression (XSBC) technology as a reliable way to

transmit XML messages and data over noisy links such as the shallow water

littoral acoustic environments that AUVs and UUVs must operate in to gather

data and execute USW missions. This solution will then be integrated into the

AUVW application to further is usefulness and potential as a resource for efficient

conduct of UW by the sea warrior.

D. THESIS ORGANIZATION
 This Chapter offers the problem statement and motivation for this thesis

research. Chapter II introduces background information and related work in the

field of reliable and efficient data transmission within the realm of UANs. Chapter

III gives background into informational theory that led to the invention of FEC

codes. Chapter IV gives information of the derivation of a particular kind of FEC

in that of erasure codes. Chapter V offers information into the feasibility of

combining XSBC technology with FEC to realize the goal of this research.

Chapter VI explains in detail how the two technologies were combined within the

AUVW. Chapter VII offers information about user interfaces for XSBC and FEC

4

within the AUVW. Chapter VIII covers some pertinent information for security

considerations. Chapter IX covers the conclusions and recommendations of this

research and offers some ideas for future work to be explored. The appendices,

specifically B and C offer source code and familiarity with the XSBC and FEC

open source libraries.

5

II. BACKGROUND AND RELATED WORK

A. INTRODUCTION
ForceNet, as defined by the Chief of Naval Operations (CNO) Admiral

(ADM) Vern Clark, is the operational construct and architectural framework for

naval warfare in the information age (Clark 2002). Many facets of information

superiority and information technology utilized by the warfighter will be

incorporated into ForceNet to enable that warfighter to have instantaneous,

reliable, on demand or real-time information at his/her fingertips. How that

information arrives to that warfighter will be based upon XML formats and those

formats will have to be utilized in secure, internet-based environments through a

reliable transmission process. The following will present some abstract

technologies that pertain to the development of ForceNet and how they will apply

to this thesis.

Open Source and Open Standards are keys to reliable and extensible

ways to implement information exchange within ForceNet. By enforcing Open

Standards compliance with future systems, design add-on products can be

developed and readily deployed to the warfighter without delay. XML will be the

way to do things here-to-fore were unable to be accomplished. From DOD

contracted proprietary and stove-piped software driven systems that are unable

to communicate effectively with other pertinent information systems, XML is key

to meta-tagging data sets so that cross platform information exchange can take

place seamlessly. The Department of the Navy (DON) will be placing more of its

data online which will be accomplished by the utilization of XML (French 2002).

The DON Chief Information Officer (DON CIO) chartered the DON XML

Work Group to “fully exploit XML as an enabling technology to achieve

interoperability in support of maritime information superiority” (Sall 2003).

6

B. ABSTRACT TECHNOLOGIES HAVING PERTINENCE IN THE
FORCENET CONCEPT

1. XSBC
This thesis is primarily based upon the use of FEC erasure codes

combined with XSBC as an option for reliable network transmission of binarily

compressed XML documents and messages over the noisy links inherent in

acoustic environments such as littoral regions around the globe. As development

of the AUVW continues at NPS, the need for reliable network transfer of data to

and from AUVs was identified prompting research into finding a suitable open

source avenue to accomplish this requirement. XSBC [originally called

Cross-Format Schema Protocol (XSFP)] was developed as an alternative for

networked simulations using hard coded protocols that have to be recompiled at

runtime if changes are introduced into the system which detracts from the

extensibility and dynamicism of that system (Serin 2003). XSBC is used by the

AUVW to compress XML documents and messages for efficient use of limited

network capacities available to the at-sea warfighter. A more in depth discussion

of XSBC is presented in Chapter V titled Suitability of Combining FEC Encoding

with XSBC.

2. Internet Protocol over Sea Water (IP/SW)
The need for reliable transmission of encoded data through noisy acoustic

links was presented first in (Reimers 1995). This need is amplified by the fact

that repeated retransmission of messages received incorrectly can result in AUV

transmitter failure due to limited power supplies in these vehicles. By showing

how to enable Internet Protocol (IP) packets to be transmitted reliably the first

time over an underwater channel, at great step was taken to provide low-cost

reliable transmission of data in the acoustic environment.

The example for FEC in this work was primarily based upon Hamming

codes that correct bit errors. Bit error correction was the first type of FEC

employed after Dr. Hamming invented them in 1947. This thesis will present an

7

erasure code that is concerned with dropped packet data reconstruction rather

that bit error corrections.

3. World Wide Web Consortium (W3C) XML Binary
Characterization Working Group

The XML Binary Characterization Working Group is tasked with gathering

information about uses cases where the overhead of generating, parsing,

transmitting, storing, or accessing XML-based data may be deemed too great for

a particular application, characterizing the properties that XML provides as well

as those that are required by the use cases, and establishing objective, shared

measurements to help judge whether XML 1.x and alternate (binary) encodings

provide the required properties (see XML Binary Characterization Working

Group). The XML Binary Characterization Working Group was created as a

result of the Binary Interchange Workshop, which identified XML particular needs

as stated above. In (Binary Interchange Workshop Report 2003) many

collaborative efforts are documented with the goal of realizing the utility of

compressing XML documents and messages, comparing Infoset level

representations with other methods so that a specification of an interoperable

transmission format may be realized. The working group is chartered under a

royalty-free basis to produce deliverables that enhance XML-based data

transfers of which XSBC is one of those deliverables.

4. Sun Microsystems Fast Web Services
Another enhancement to XML-based efficient data transfer is Sun

Microsystems’ Fast Web Services initiative. Fast Web Services are aimed at the

identification of performance problems in existing implementations of Web

Services standards (Sandoz and others 2003). The Sun Microsystems group

has explored several solutions to these problems. Fast Web Services explores

the use of more efficient binary encodings as an alternative to textual XML

representations. XML's self-describing nature has significant advantages, but

they come at the price of bandwidth and performance. XML-based messages

8

are larger and require more processing than existing protocols such as Remote

Method Invocation (RMI), RMI Internet Inter-Object Request Broker Protocol

(RMI/IIOP) or Common Object Request Broker Architecture IIOP (CORBA/IIOP):

data is represented inefficiently, and binding requires more computation.

Fast Web Services attempts to solve these problems by defining binary-

based messages that consume less bandwidth and are faster and require less

memory to be processed. Two different solutions have been identified: Fast

schema and Fast infoset. As its name suggests, the Fast schema approach

uses information from a document's schema to optimize which parts of the

infoset to include in a message. Fast infoset, on the other hand, is a pure

infoset-based drop-in replacement for XML. Both alternatives have advantages

and disadvantages; application requirements will dictate which of the two

approaches is more appropriate. Fast infoset is an encoding that is tokenized

and thus more compact but also faster to both generate and consume. Fast

schema can only be used when both the producer and consumer of the data

have access to its schema.

5. Seaweb Underwater Acoustic Network (UAN)
An ongoing project between the National Oceanographic Partnership

Program (NOPP), Space and Warfare (SPAWAR) Systems Center San Diego

and the Office of Naval Research (ONR), titled US Navy Seaweb, provides for

research into a reliably advanced UAN. This network can provide the US Navy

with data telemetry and command and control capabilities for a wide set of

applications (Rice 2000). This specialized system consists of networked acoustic

modems used for wireless real-time delivery of data transmitted in a salt-water

acoustic environment from a distributed array of subsurface-networked

equipment. This integrated network contains nodes, repeater nodes, gateway

nodes and a shore-based control center. Funded experiments with Seaweb

consisted of interfacing oceanographic sensing instruments, interfaced with

acoustic modems, deployed in trawl-resistant bottom frames along side

azimuthally omni-directional acoustic signaling equipment needed for feasible

9

network re-routing (Codiga, Rice and Baxley 2004). Repeaters are individual

acoustic modems to relay data so the array covers a larger area. Gateways are

buoys with acoustic modems interfaced to cellular telephone modems for

communication between the UAN and shore.

Figure 1. Seaweb Underwater Acoustic Networking Enables Data Telemetry and
Remote Control for Undersea Sensor Grids, Vehicles, and other

Autonomous Instruments. Gateways to Manned Control Centers Include
Radio-acoustic Communications (racom) Nodes with Radio Links to Sky

or Shore (From Rice 2000).

The way this system deals with reliable delivery of data packets in this

sometimes harsh acoustic network environment is through a protocol designed to

facilitate dynamic throughput. In shallow water environments, typically less than

100 meters, surface action wind was the largest contributor of network

performance degradations. Other factors such as estuarine flow, varying water

temperature columns, upward and downward propagating sound speed profiles,

commercial shipping and commercial fishing interferences had noticeable effects

on network performance as well.

To mitigate these interferences, this specific UAN protocol first initiates a

Request to Send (RTS) from a sensor that has need to transmit data. The

10

nearest network topology repeater then sends a Clear to Send (CTS) message to

that sensor. Bit error FEC redundancy may be encoded in the following data

packet and if the Bit Error Ratio (BER) was too great for full data recovery by the

receiving sensor, an Automatic Repeat Request (ARQ), for the corrupted or

dropped data packet to be resent, will be initiated. The process repeats until a

gateway has received all data packets per transmission block to be sent via

cellular network to a repeater satellite or shore repeater. This full course

handshaking and data delivery method ensured that data was reliably delivered

during several Seaweb experiments conducted on the west and east coasts of

the continental US.

C. SUMMARY
This chapter introduced some technologies that can benefit in increased

reliability by using FEC and compressed XML structured documents and data.

The goal of this thesis is to present a fusing of these two areas for reliable

acoustic networking. By using XML, previous disparate systems can

communicate due to the structure of XML and its cross-platform capabilities.

Secure, fast and reliable information exchange will always be the goal of past,

present and future systems that the warfighter requires to execute successful

missions.

11

III. CLAUDE SHANNON’S INFORMATION THEORY

A. INTRODUCTION
This chapter provides background information regarding work done prior

to the derivation of the original Forward Error Correction (FEC) Hamming codes.

Claude E. Shannon’s insights and development of Information Theory (Shannon

1948) are synopsized. This theory was the basis for finding utility in error

correcting codes by Dr. Hamming. Related work topics in the field of FEC codes

are also presented.

B. BACKGROUND IN FORWARD ERROR CORRECTION

1. Impetus that Started it All
Richard W. Hamming, Ph.D. in mathematics, worked at Bell Telephone

Laboratories located in Murray Hill, NJ in 1947 when he invented error-correcting

codes. He was working on a Model 5 relay computer in New York City in

preparation for delivering it to the Aberdeen Proving Grounds along with some

mathematical routines programmed in software (Hamming 1997). If an error

occurred somewhere in the routines when ran, it was detected by the 2-out-of-5

block codes used then, so, the machine attempted to repeat the step up to three

times before dropping the error-riddled routine and then proceeded to pick up the

next routine leaving the previous error uncorrected. These routines were run

mainly at night and it wasn’t until the next day when the programmer arrived to

pick up the results that, indeed, an error in the partially processed data was

discovered. Dr. Hamming surmised that if a computer can tell you if there was

an error, it should be able to tell where that error occurred and then simply fix the

error by changing the state of whatever bit caused the error.

2. Error Correction Theories to Concepts
One theory to combat errors was to build three copies of a machine each

with comparator circuits which would then use a “majority vote” (Hamming 1986).

12

The eventual cost incurred was too great to employ this technique. Dr. Hamming

had studied parity checks and their fundamentals and surmised that this would

be the route to investigate error correction coding techniques. His first attempt

was to arrange message bits in a rectangle, put parity checks on each row and

column which when any two parity checks failed they would give the coordinates

of the single error causing the parity checks to fail as seen below.

Figure 2. First Error Correcting Codes (After Hamming 1986)

A double error, in this case, would potentially go undetected in this

fashion, but he was well on the way to solving the problem of implementing FEC.

Some weeks later, as he was riding in the company car to NYC, he thought that if

he arranged the message bits in the form of triangle, then he could place the

parity check bits along the diagonal, Figure 2, where each parity check bit would

identify both the row and the column of the error, so, he thought this would

produce more favorable redundancy.

As he journeyed along his route in northern New Jersey he then thought

about arranging the message bits in a cube form with parity check bits placed all

along the planes of each side, along with a parity check bit placed on the axes,

would produce an even better redundant code at a cost of 3n – 2 parity checks

for the n3 encoded message as seen in Figure 3.

Used for even parity check Used for even parity check

13

Figure 3. Code Arranged in a Triangular Form with Parity Check Bits Placed on the
Diagonal (From Hamming 1997)

Figure 4. Information Bits Arranged in a Block with Parity Check Bits Placed on the
Axes Showing a Maximum Hamming Distance (L1) of 3 from the Origin

000

100

010

111

001

14

This line of thinking eventually led to Dr. Hamming to ponder the thought of a

2x2x2…x2 dimensional cube with n + 1 parity checks. The premise was not to

actually build one, but rather to inter-wire a machine that way. These n + 1 parity

checks could be represented in a string of length n + 1 that could represent any

of 2n + 1 things. All that is needed is 2n + 1, the 2n points in the cube and one

result that the message was correct. Dr. Hamming figured that he was off by a

factor of two in this line of thinking. He eventually set aside this problem for a

few days and when he came back to theorizing, he decided a good approach

would be to use the syndrome of the error as a binary number that named the

place of the error. Figure 5 shows how this might be accomplished. A parity

check on the right hand side of a syndrome would involve all positions which

have a 1 in the right column and the second digit from the right will involve the

numbers which have a 1 in the second column, etc. If any error were to occur in

some position, those parity checks would fail producing 1’s in the syndrome

which will then produce the binary representation of the position of the error.

Figure 5. Parity Check Bits Naming the Syndrome of an Error (After Hamming 1985)

15

An example of how this would work follows. Assume a code block with 4

message bit and 3 check bit positions. These numbers satisfy the condition

23 ≥ 7 + 1

which is a necessary condition for parity versus message bits. For clarity,

chosen are the check positions 1, 2 and 4 as these will scale well to binary

representations. The message positions take the other positions of 3, 5, 6 and 7.

Let a binary message be 1001. In Figure 6, the message is written on the top

line, encoded on the next line and then an error is inserted at position 6 on the

next line. On the next lines, parity checks are computed for the three parity

check bits chosen. Once the message is received, the parity checks are again

applied to the message. In this case, even parity checks will reveal the position

of the error once the message in error is decoded. Stripping the parity check bits

from the message then flipping the bit in error will produce the original

transmitted message.

Figure 6. Example Decoded Message with the Position of the Error Named

(After Hamming 1985)

1 2 3 4 5 6 7 position
--
 1 0 0 1 message
--
0 0 1 1 0 0 1 encoded message
--
0 0 1 1 0 1 message with an error
--
 applied parity checks

1 3 5 7 0 passed even parity check
 2 3 6 7 1 failed even parity check
 4 5 6 7 1 failed even parity check

 Binary number 110 6 = position of error

11

16

If one thinks about an all zero message, this will produce an all zero parity check.

If a single digit changes, the position of that change will become readily apparent

by the syndrome binary number revealing the position of that error exactly. The

reader will note that the sum of any two correct messages will always be a

correct message, so, these messages will form an additive group modulo two.

Correct messages will give all zeros and the sum of a correct message plus any

error in a position will give away that position during a decoding process no

matter what message is sent. These parity checks focus on the errors and

ignore what the content of the message is. Dr. Hamming stated that a good

balance is a single error correcting plus a double error detecting code for a

message of an appropriate length. If the message is too short, the redundancy

cost is too high; however, a message that is too long will run the risk of a double

uncorrectable error (Hamming 1997). In single error correcting code terms, this

would be a correction that causes a third error.

3. N-Dimensional Theory Applied to Error Correcting Codes
In (Hamming 1972), a string of bits can be represented by an n-

dimensional cube (see Figure 4) with each string being a vertex of the cube. Any

error in a message would then move that string along one edge of an axis, two

errors along two edges and so on. Dr. Hamming realized that he would be

working in L1 space where the distance between symbols is the number of

positions in which they differ. This metric satisfies these standard conditions for

a distance. They are:

 1. D(x, y) ≥ 0 (non negative)

 2. D(x, y) = 0, iff x = y (identity)

 3. D(x, y) = D(y, x) (symmetry)

 4. D(x, y) + D(y, z) ≥ D(x, z) (triangle inequality)

L1, or Hamming space, does not use the sum of the square of the

distances as in the Pythagorean Theorem, but again, just the sum of the

17

distances much like traveling on a grid in the city. The distance to your

destination is the sum of the legs you travel arriving to your destination. Within

L1 space a sphere can be defined as having all points at a fixed distance from its

center. Referring back to Figure 4, the origin lies at point (0, 0, 0) and the

following points (0, 0, 1), (0, 1, 0) and (1, 0, 0) all lie a unit distance away from

the origin. Points (1, 1, 0), (1, 0, 1) and (0, 1, 1) lie two unit distances away and

point (1, 1, 1) lies three unit distances away.

In an n-dimensional cube, all code points could be thought of as the origin

points in spheres of unit radius. These spheres are theoretically packed in this n-

dimensional cube (a message block), yet do not overlap. A single error in a

transmitted message will result in a non-code point which would be recognizable

as to where it came from by being somewhere within its unique sphere of radius

one about the point from which it was originally transmitted. The minimum

distance between code points in this case would be three. If non-overlapping

spheres of radius two were used, a double error can be corrected due to the

received point being nearer to its original code point than any other point. In this

case the minimum distance would be five. Dr. Hamming gives the following table

of equivalence minimum distances between code points and the correctability of

errors:

Table 1. Minimum Distances and Correctability of Errors (From Hamming 1995)

18

Finding an error correcting code is to find a set of code points in an n-

dimensional space that have the required minimum distances between

messages. Error correction, in this sense, can be exchanged for more detection

by giving up one error correction for two more error detections.

Dr. Hamming gives the upper bound on the number of non-overlapping

spheres and code points in the corresponding space by:

2 #
1 (,1) (, 2) ... (,)

n

of spheres
C n C n C n k

≥
+ + + +

where k = the sphere radius, C(n, k) = the number of points in a sphere of radius

k and 2n = the whole n-dimensional space. To get an extra error detection, one

simply adds an overall parity check which increases the minimum distance which

before was 2k + 1 to 2k + 2.

C. CLAUDE SHANNON’S WORK IN INFORMATIONAL THEORY
Claude E. Shannon, also a Ph.D. in mathematics, worked with Dr.

Hamming at Bell Labs in the early 1940s. His original 1948 paper on Information

Theory (Shannon 1948) was reprinted with corrections by Bell Labs, now Lucent

Technologies (Lucent Technologies), and appropriately titled “A Mathematical

Theory of Communication”. At the time of this work, communication was thought

of as sending electromagnetic signals down a wire, such as a telegraph, with

Morse code. Dr. Shannon proposed a linear schematic model of

communications that could possibly send pictures, audio and even video by

sending a stream of ones and zeros (binary bits) representing those data types

down the same wire. This was a revolutionary vision that we now benefit from as

evidenced by advanced multimedia streaming technologies available today.

1. What is Information?
Dr. Shannon identified information with the term “surprise”. He chose the

negative of the logarithm of the probability of an event as the amount of

information one obtains when the event of probability p happens. As an

19

example, if the reader was told that the ocean looks blue from outer space the

with a highest p ≤ 1, this would equate to not much information. If the reader

were told that in certain areas the ocean looks pink from outer space then that

would be a surprise and would represent more information. Given that log1 0= ,

the former event contains virtually no information.

Dr. Shannon believed that the measure of the amount of information

should be a continuous function of the probability p of an event and for

independent events it should be additive, namely, what one would learn from

each independent event when added together should be the amount learned

from the combined event. To symbolize mathematically, if I(p) is the amount of

information one has for an event of probability p then for event x with probability

p1 and for another independent event y with probability p2 one will obtain for the

event of both x and y:

1 2 1 2() () () ()I p p I p I p x and y independent events= +

which is the Cauchy functional equation true for all p1 and p2. In solving this

equation let p1 = p2 and p2 = p. This then gives:

2() 2 ()I p I p=

If p1 = p2 and p2 = p then:

3() 3 ()I p I p=

By extending this process, one can show by the standard method used for

exponents that for all rational numbers m/n:

/() (/) ()m nI p m n I p=

From this, it is given that the log is the only continuous solution to the Cauchy

functional equation.

Dr. Shannon proposed a customary convention in that to take the base of

the log system as 2, so that a binary choice is exactly one bit of information, then

information could be measured by the formula:

20

 2 2() log log (1/)I p p p= − =

Information, thus far, has not been defined, but only a formula measuring

the amount. This measure, again, depends on the concept of “surprise” which

matches well to situations with machines, i.e. telephones, radio, television and

computers, but does not represent a normalized human attitude towards

information. It should be mentioned that the above formula is only a relative

measure depending on one’s state of knowledge. If one were to look at a stream

of random numbers from a random source then one could think that each

number comes as a surprise, however, if one were given the formula for

computing these random numbers then the next number coming down the

stream contains no surprise, and consequently, no information.

Dr. Shannon vehemently stuck to his original naming of his work

“Information Theory”; however, Bell Labs wanted him to name it Communication

Theory (Hamming 1997). This is because, even now, this convention does not fit

well with what humans think of as “information”. It gives rise to distortion of the

common view of information because it only deals with what Dr. Shannon

describes as “surprise”.

2. The Noiseless Coding Theorem of Shannon
Given an alphabet of q symbols with probabilities pi then the average

amount of information (the expected value), in the system is:

1 1
() () log(1/)

q q

i i i i
i i

H P p I p p p
= =

= =∑ ∑

This is defined by (Shannon 1948) as the entropy H of the system with the

probability distribution {pi }. The name “entropy” is used because the same

mathematical form arises in thermodynamics and in statistical mechanics, which

gives rise to an “aura” of importance, which is not justified in this particular case.

The same mathematical form does not imply the same interpretation for these q

symbols; however, a definition for entropy in this case will be given later.

21

The entropy of a probability distribution does play a central role in coding

theory, though, as it represents the number of bits needed for the shortest

possible encoding of a message (Hamming 1986 and Wagner 2003). One of the

important results for this definition lies in Gibb’s inequality for two different

probability distributions, pi and qi. What had to be proven was:

 1
log(/) 0

q

i i i
i

p q p
=

≤∑

It was proven by the following Figure 7. An Equality only occurs when:

 log 1, (0)x x x≤ − ≤ ≤ ∞

Figure 7. Graphical Representation of a Log Inequality (From Hamming 1995)

Applying the inequality to each term in the sum on the left hand side:

(/ 1) 1 1 0i i i i ip q p q p− = − = − =∑ ∑ ∑

If there are q symbols in the signaling system and choosing the qi = 1/q then

Gibb’s inequality is evident. By transposing the q terms:

22

 () logH P q≤

This states that in a probability distribution, if all q symbols are of equal

probability of 1/q, then the maximum entropy is exactly ln q, else the inequality

holds true.

 In (Hamming 1995), his two lectures on Coding Theory gives utility to the

Kraft inequality for defining a uniquely decodable code such as (see Kraft’s

Inequality):

1/ 2 1lK i= ≤∑

In naming some pseudo probabilities:

 2 /l
iQ i K−=

where ∑Qi =1, Gibb’s inequality will reveal:

 1
log(1/(2) 0

q
l

i i
i

p Kp i
=

≤∑

and after some further algebraic manipulation:

() log i iH p K p l L averagecodelength= + ≤ =∑

Entropy H, now, can be further defined as the lower bound for any encoding,

symbol to symbol, for the average code length L which is the noiseless coding

theorem of Dr. Shannon.

3. Signaling in the Presence of Noise
In signaling systems that use the encoding of a bit stream of independent

bits, which go symbol to symbol in the presence of noise means that there is a

probability that a bit of information is correct with p > ½, and the converse

probability Q = 1 – P that the information bit is altered when transmitted. It will be

assumed here that errors are independent and are the same for each bit sent, a

form of “white noise”.

23

When encoding a long stream of n bits into one encoded message, the nth

extension of a one bit code, and where n will be determined later, regard this

message of n bits as central points of origin contained within spheres that are

theoretically packed together in an n-dimensional space. Since there is an nth

extension and assuming that each message has the same probability of

occurring and assuming that there are M messages (M to be determined later),

the probability of each initial message is 1/M.

a. Channel Capacity
In examining the above initial message probability, the idea of

channel capacity is presented. The greater details will be left out, but it can be

thought of as the maximum amount of information that can be sent through a

channel reliably maximized over all possible encodings so that no more

information can be transmitted reliably as channel capacity will be maxed. For a

binary symmetric channel (used by computer controlled communication links) the

capacity C, per bit sent, is given by:

 C = 1 – H(P) = 1 – H(Q)

where P is the probability of no error in any bit sent. For the n independent bits

sent the channel capacity will be:

 nC = n{1 – H(P)}

 If near channel capacity is desired then that amount of information

(I) for each of the symbols ai, i = 1 … M, and of probability 1/M, then:

 I(ai) = n(C – e1)

when any one of the M equally likely messages ai are sent. Therefore:

 1()2 2 / 2in C e nenCM −= =

 With n bits one will expect to have nQ errors. In practice,

approximately nQ errors will be in the received message. For large n the relative

spread (spread = width, √variance) of the distribution of the number of errors will

be become narrow as n increases.

24

 From a sender’s point of view a message ai is to be sent in which a

sphere is drawn about it of radius:

 2 2 2() , (0, 1/ 2)r Q e n e Q e= + > + <

which is slightly larger by e2 than the expected number of errors Q as in Figure 8.

Figure 8. A Sender’s Sphere Drawn about a Message Point with Expected Error
Probabilities and a Slightly Extended Sphere for the Received Message

Point (From Hamming 1995)

If n is large enough then there is a small probability of there

occurring a received message point bj that will fall outside of this sphere. From

the sender’s point of view, along any radii from the chosen signal ai to the

received message bj with the probability of an error being within a normal

distribution, peaking up at nQ, and with any given e2, there is an n so large that

the probability of the received point bj falling outside of this sphere will be as

small as desired.

Looking from the receiver’s point of view as in Figure 9, there is a

sphere S(r) of the same radius r about the received point bj in the space such

25

that if the received message bj is inside the sender’s sphere, then the original

message ai that was sent is inside the receiving sphere.

Figure 9. Receiver’s Message Sphere with Expected Error Probabilities
(From Hamming 1995)

4. Detection of Occurring Errors
How is it that detection of an error occurs? The following Table 2

illustrates this:

Table 2. Illustration of Detecting an Occurring Error (From Hamming 1995)

case ai another in S(r) meaning

1 yes yes error
2 yes no no error
3 no yes error
4 no no error

case ai another in S(r) meaning

1 yes yes error
2 yes no no error
3 no yes error
4 no no error

26

From the above table it can be seen that if there is a least one other original

message point in the sphere about the received point then it is an error since one

cannot decide which message point is the intended message from the sender.

The sent message is correct only if the sent point is in the sphere and there are

no other code points within that sphere.

5. Probabilities of Occurring Errors
A mathematical equation for the probability of an occurring error can now

be given. If the message sent is ai then:

{ ()} { ()}* { ()}i iE jP P a not in S r P a is in S r P at least onemorea is in S r= +

By dropping the first factor in the second term by setting it equal to 1 the

following inequality is:

 { ()} { ()}iE jP P a not in S r P at least onemorea is in S r≤ +

Now, the fact that:

 1 2 1 2 1 2(/) () () ()EP E and or E P E P E P E E≤ + −

now gives:

 1 2 1 2(/) () ()EP E and or E P E P E≤ +

and applied repeatedly to the last term on the right:

{ ()} { ()}

j i

E i j
a a

P P a not in S r P a in S r
∀ ≠

≤ + ∑

By making n large enough the first term can be made as small as desired, for

example, some number d:

{ ()}

j i

E j
a a

P d P a in S r
∀ ≠

≤ + ∑

27

6. Constructing an Encoding Code Book
How one can make a code book for the encoding of M messages, each of

n bits, will now be examined. Not knowing how to encode, as Dr. Hamming’s

error correcting codes had not been invented yet, Dr. Shannon chose random

encoding. By tossing a penny for each bit of the n bits of a message in the code

book and repeating for all M messages, there would be 2nM possible code books

with all books having the same probability of 1/2nM. The random process of

making the code book might mean that there would be duplicates and that there

may be code points that are close to each other which will be a probable source

of errors. With an n large enough, it can be shown that this will not occur with a

probability above any positive small level of error we choose.

The decisive step is that Dr. Shannon chose to average over all possible

code books to find the average error. The symbol Av will now be shown to mean

the average over the set of all possible random code books. Averaging over the

constant d gives this constant and since the average of each term is the same as

any other term in the sum:

() (1) { (()}E jAv P d M Av P a in S r≤ + −

which can be increased as M-1 goes to M:

() { ()}

j i

E j
a a

Av P d M P a in S r
∀ ≠

≤ + ∑

For any particular message, when the average is taken over all code books, the

encoding runs through all possible values which leads to the average probability

that a point is in the sphere is a ratio of the volume of the sphere to the total

volume of the n-dimensional space. The volume of a coding sphere can be given

by:

21 (,1) (, 2) ... (,), 1/ 2C n C n C n ns where s Q e and ns is an integer+ + + + = + <

The largest term in this sum is the last. The estimate of its size can be

done via Stirling’s formula for factorials (see Stirling’s Formula). When looking at

the rate of fall off to the next term before it, this rate increases the further left one

28

looks. Dr. Shannon states that you can dominate the sum by a geometric

progression with this initial rate, extend the geometric progression from ns terms

to an infinite number and sum the geometric progression to finally arrive at the

bound for very large n:

()1 (,1) (, 2) ... (,) 2 , (1/ 2)nH sC n C n C n ns s+ + + + ≤ <

The Taylor series expansion of H(s) = H(Q + e2) which gives a bound

when the first derivative term is evaluated, and with neglecting all others, to

arrive at the final expression:

1 3()() 2 n e e
EAv P d − −≤ +

where:

 3 2 ln{(1) / }, (1/ 2)e e Q Q Q= − <

By choosing an e2 so that e3 < e1, the last tem will get as small as desired with

sufficiently large n. The average error PE can be made as small as desired now

while still being as close to channel capacity C as desired.

7. Suitability of Dr. Shannon’s Code Books
If the average over all codes has a suitably small error then at least one

code must be suitable, so, there exists at least one suitable encoding system.

This is the main crux of Dr. Shannon’s “noisy coding theorem” only lightly

explained here for a simple binary symmetric channel. His proofs extend the

theory to even greater generalities where the mathematics get extremely difficult,

but here, the concern will be with what machines can understand; that being the

binary system of bits represented by ones and zeros.

The size of “sufficiently large n” is considered to be astronomical in this

sense if one desires to be both close to channel capacity and reasonably sure

there will no errors. One would have to wait a very long time to accumulate a

message of that many bits before encoding it, let alone contemplating the size of

29

the random code books which can not be represented in a shorter form than the

complete listing of all nM bits both n and M being very large.

Dr. Hamming’s error correcting codes escape this unachievable task due

to the fact that they adopt regular computable methods. In theory, error

correcting codes tend to lose the ability to come very near to the channel

capacity and still keep an arbitrarily low error rate, but when a large number of

errors are corrected by the code they can do well. If a capacity for error

correction is established at some level, then for efficiency’s sake, the ability for

correcting many errors must be used or else capacity is wasted; that ability being

a high number of errors corrected in each message sent. Dr. Shannon showed

that efficient coding schemes must have very elaborate encodings of very long

strings of bits of information. This has been accomplished in space probes that

have passed the outer planets as they now correct more and more errors per

block as they travel farther from both the Earth and the Sun, which supplies

some solar power of about 5 watts; other probes using atomic power sources of

roughly the same wattage. High error correcting codes had to be devised in

order to be effective given their unavoidably low power transmitting sources and

their small transmitting dish sizes. Receiving dishes on earth are also of limited

size and the distances that the signals have to travel are ever increasing.

D. RELATED FIELDS AND APPLICATIONS FOR FEC

1. Discussion
Since the invention of Hamming FEC codes in 1947, many fields of

information processing now use them extensively, especially the field in

telecommunications (Potts 1999). From the television signals we receive through

the airwaves or through cable, from compact disc (CD) players and digital audio

tapes (DAT), to the way our hard drives on our computers store data; all of these

technologies use FEC codes extensively. As mentioned before, space probes

and communication satellites use FEC to correct many errors within a message

block as their transmitting power is very limited and the receivers on earth can

30

only receive partial signals as the earth rotates, therefore receivers located all

throughout the world must share the load in retrieving data from these probes

and satellites that have very limited beam focusing capabilities across very long

distances (many factors here that can introduce errors).

The use of FEC has allowed network planners and design engineers to

maximize efficiency and performance of their various products while minimizing

cost. FEC can do this by minimizing the BER of signals by effectively eliminating

the bit error ratio floor – a necessary consideration if FEC is not used. BERs for

digital communication systems typically operate at a BER of 10-9, that is 1 bit

error tolerable in 109 bits transmitted. Simply put, FEC facilitates improved data

transmission BER’s through noisy mediums such as water, deep space and even

our terrestrial atmosphere which can be interfered with by lightening, solar flares

and temperature differentials over any particular receiving location. Complete

erasures or flipping of bits can occur in these mediums during varying

environmental conditions causing distortion to intended messages or data being

sent through them.

As mentioned before, Dr. Shannon paved the way for Dr. Hamming to

invent the first error-correcting codes. Since that time, error-correcting codes

have gone through transformations and many improvements in application and

utility. In 1960 Irving S. Reed and Gustave Solomon, staff members at the

Massachusetts Institute of Technology (MIT) Lincoln Laboratory, developed the

Reed-Solomon code, which has become the most widely used algorithm for error

correcting. The Reed-Solomon code is well understood, relatively easy to

implement, provides a good tolerance to error bursts and is compatible with

binary transmission systems. These codes correct many bit errors within large

message blocks (see Reed-Solomon Codes). These codes have been

implemented in hardware for many years now; however, there is still utility in

software implemented FEC as will be discussed later in this thesis.

31

E. SUMMARY
The need for computers to be able to not only detect the presence of

errors, but also identify and be able to correct those errors led Dr. Hamming to

make use of Dr. Shannon’s theories on Information and Communication in order

to understand how efficient encodings could be implemented. Dr. Hamming was

able to use the binary “syndrome” of the error to identify and correct the error

with an efficiency of 2k + 1, that is, correct 2k errors and be able to detect 2k + 1

errors. Channel capacity, in Dr. Shannon’s terms, was not fully utilized as error

correcting codes use specific computational methods to correct errors. However,

if many errors are to be corrected, the efficiency in channel capacity utilization

does improve by use of efficient error correcting codes, such as used by

planetary space probes..

Reed-Solomon codes contain very efficient algorithms for correcting many

errors within a message block with remarkable efficiency even during burst

errors. These codes have been implemented in hardware and are used virtually

anywhere efficient communication, data transfer and data storage is required.

Without the use of these codes, invaluable space probe data would not be

recoverable and we would not enjoy the efficiency of our communication, internet

multimedia streaming and information exchange systems employed today.

32

THIS PAGE INTENTIONALLY LEFT BLANK

33

IV. THEORETICAL DERIVATION OF ERASURE CODES

A. INTRODUCTION
Although FEC coding algorithms have been successfully implemented in

hardware, there is still utility in software implementations for FEC as will be

discussed. The chapter on derivation of the Hamming code introduced a bit error

correction code that deals with the detection and correction of single bit errors as

they occur in a message block. Another example of this type of FEC is the

Reed-Solomon codes. An introduction of a variation on a FEC code, in the form

of an erasure code, that deals with dropped packets (Rizzo 1997) is presented

here. Packet losses can occur as a result of many reasons such as network

congestion, overloaded router and switch buffers which completely drop packets,

noisy environments such as found in an acoustic medium and even asymmetric

end user equipment which can experience a variety of packet loss rates (PLR)

due to differing processing speeds, memory capacities and type of network

connection available.

B. WHY SOFTWARE FEC?

In (Rizzo 1997 and Rizzo and Viscisano 1998), three main objectives are

given for software implementation of FEC as a tool to combat the problem of

dropped packets. First, putting the software implementation of FEC in the right

perspective by showing that it is not too computationally expensive; second, to

provide the research community with a high-performance C implementation of

erasure codes capable of running at speeds in excess of 100 Megabits per

Second (Mbs) and third; to present a number of applications where software FEC

can be used to improve performance in wireless, fast wired, unicast and even

multicast communication protocols without the need for super computing power

requirements. Since the principles of operation in finite fields (as will be

discussed later) are not directly supported in most processors (Rizzo 1998), the

requirement for the proposed type of erasure code can only be implemented with

software and will be shown that performance costs can be kept to a minimum.

34

In using reliable transport protocols such as Transmission Control Protocol

(TCP), unavoidable packet losses are dealt with by the technique of using ARQ

which is a retransmission request by a receiver to a server to retransmit the

missing or lost packet(s) explicitly or after an appropriate timeout. This is a

computationally inexpensive process. However, in the presence of these losses,

when the bandwidth-delay product approaches the sender’s window, ARQ might

result in reduced throughput. Data recovery, using ARQ, requires at least one

additional round trip time (RTT) which may cause this technique to be

unattractive when high latencies cannot be tolerated such as in real time

interactive simulations, fast satellite links or deep space communications. This is

especially true in multicast communication protocols when a number of clients

(groups) start having a growing rate of uncorrelated losses. Another undesirable

feature of ARQ is the requirement of a feedback channel from the receiver that

may be an expensive consideration in certain transmission environments.

The author of an open source C based implementation of FEC

(Rizzo 1997) reported that by reducing the time needed to recover missing

packets, solved by sending them with redundant information, would allow

receivers to reconstruct missing data without the need for retransmission

techniques. A feedback channel, in this sense, may not be required since in a

multicast environment different loss patterns can be recovered from using the

same set of transmitted data.

In the realm of computer communications, error detection is generally

provided by the lower protocol layers which use checksums such as Cyclic

Redundancy Checksums (CRC) to discard corrupted packets, which would be

another source of packet loss (see Cyclic Redundancy Check). Error correcting

codes are also used in special cases such as modems, wireless and other noisy

links in attempts to make the residual error rate comparable to dedicated wired

connections. Next in the stack, above the link layered processes, are the upper

protocol layers which have to deal with complete erasures of data caused by

35

missing packets in a stream. These types of erasures are easier to deal with as

the exact position of the missing data is known.

Multicast communication applications such as video conferencing or audio

can tolerate some packet losses causing some performance degradation, but

other applications cannot tolerate these losses such as vital secure military

communication links and acoustic telemetry from AUVs. These have a much

stricter requirement for reliable delivery of all data. Reliability in the transmission

of data in the latter would be improved greatly with the techniques of redundant

encodings before transmission. Especially in the low powered and limited

network capacities of at-sea networks dealing with AUV’s, a one time short burst

of transmitted telemetry is highly desired. Erasure codes that can operate on

packet sized data objects implemented in software using general purpose

processors would be a feasible option to handle packet losses in the acoustic

medium without elaborate and expensive equipment and with tolerable

computational costs.

C. ERASURE CODING THEORY
In (Lin, Costello and Miller 1983) there is an abundance of information in

the principle operations of erasure codes. The following discussion will deal with

linear block codes as they will be appropriate for this thesis’ proposed application

and are relatively easy to understand.

1. Encoding and Decoding Process
The key behind erasure codes is that k blocks of source data are encoded

at the sender to produce n blocks of encoded data such that any subset of k

encoded blocks (and their identity as will be explained later) will be sufficient to

reproduce the exact source data. The following figure will graphically represent

this. This type of code is called an (n, k) code which will allow a receiver to

recover up to n - k losses.

36

Figure 10. A Graphical Representation of an Encoding/Decoding Process where x’s
Represent Packet Losses (From Rizzo 1997)

In the telecommunications world a block of data is usually made up of

small bits of information. In computer communications the quantum of

information is much larger in that a packet of data can contain up to thousands of

bits. Large blocks of data may change the way an erasure code can be

implemented. The way to deal with encoding large blocks or files is to specify

the parameters of (n, k) and the packet sizes of the data to be encoded. This

way, large files can be split or broken up into multiple data items and the

encoding/decoding (EN/DE) process can be applied one packet at a time.

The interest lies in a type of erasure code and that is of the linear code

class. This is so called because they can be analyzed using properties of linear

algebra. Let:

0 1... kx x −=x

be the source data, G an n x k matrix, called the encoding matrix, then an (n, k)

linear code can be represented by:

 =y Gx

37

Assuming that k components of y are available at the receiver, source data can

be reconstructed by using the k equations corresponding to the known

components of y by making G’ a k x k matrix representing these equations. This

can only be possible if these equations are linearly independent which will be the

case, generally, if any k x k matrix extracted from G’ is invertible.

 If the encoded blocks include a verbatim copy of the source blocks, the

code is called a systematic code. This corresponds to including the identity

matrix Ik in G. The advantage of a systematic code is that it will simplify

reconstruction of source data if few losses are expected. This is so because the

first k of the (n, k) code will be an exact replica of the original source. Again,

n – k will be encoded so that any k subset of the n encoded packets will

reconstruct the data should there be losses. If all k original packet replicas were

received intact, very few cycles will be spent in reconstruction as the data is

already in its source originality. The following figure gives better graphical

representation to this concept.

Figure 11. The (EN/DE) Process in Matrix Form for a Systematic Code (the top k
rows of G constitute the identity matrix Ik). y’ and G’ Correspond to the
Grey Areas of the Vector and Matrix on the Right (From Rizzo 1997).

38

2. The Generator Matrix
G is called the generator matrix of the code because any valid y is a linear

combination of columns of G. With G being an n x k matrix with rank k, any

subset of k encoded blocks will convey information on all of the k source blocks.

As a property of this code, each column of G can have at most k – 1 zero

elements. In the case of a systematic code G will contain the identity matrix Ik

which will contain all zero elements. The remaining rows of the matrix must now

contain all non-zero elements.

During the reconstruction process, the index of each n packet must be

known. These indices are generated during the encoding process and can be

transmitted and retrieved ahead of the actual reception of the n encoded packets.

The cost in terms of this operation is relatively negligible (compared to the

encoded packets) as this will be just single integer information for each index.

There is a cost to be considered for the source encoding operation and

that is the precision used for computations. If each xi is represented using b bits,

representing the yi’s require more bits if ordinary arithmetic is used. If each

coefficient gij of G is represented with b’ bits, then the yi’s need:

2' (log)b b k+ +

bits to be represented with out loss of precision. This poses a significant cost in

cycles per bit processing as these excess bits must also be transmitted to

reconstruct the data exactly. Rounding or truncating the representations of the

yi’s would prevent exact reconstruction of data which would lead to disastrous

results.

3. Computations in Finite Fields
The potential expansion of the above mentioned data can be dealt with by

working in a finite field. In this type of field basic arithmetic can be performed on

data much like it is with integers. In (Blahut 1985) the mathematics of finite fields

are covered very thoroughly. A field is closed under addition and multiplication

meaning that a result of sums and products of field elements are still field

39

elements. A finite field has the property of having a finite number of elements.

Most properties of linear algebra will apply to these finite fields.

A desirable advantage of using a finite field lies in the closure property

which allows for the ability to calculate precise field elements without requiring

extra bits to represent the results as was previously mentioned. In working with

finite fields mapping data elements into field elements, operating upon them

according to the rules of the field and then applying the inverse mapping to the

elements allows for reconstruction of desired results.

a. Prime Fields
Finite fields have been shown to exist with q = pr elements where p

is a prime number. Fields with p elements, with p prime, are called prime fields

or GF(p), where GF stands for Galois (pronounced as "gal-wah") Field.

Operating in a prime field is relatively simple since GF(p) is the set of integers

from 0 to p – 1 under the operations of addition and multiplication modulo p.

From the point of view of a software implementation, there are two minor

difficulties in using a prime field: first, with an exception of p = 2, field elements

require:

2 2loglog p p>

bits to be represented. This will cause a slight inefficiency in the encoding

process and there will be an even larger possibility of inefficiency in operating on

these numbers since the operand sizes might not match the word size of a

particular processor. The second problem lies in the need of a modulo operation

on sums and multiplications. Most of the modulo operations will be on the latter.

A modulo calculation is an expensive operation since it requires a division. Both

problems are overcome by setting p = 2m + 1.

40

b. Extension Fields

Fields with q = pr, with p prime and r > 1, are called extension fields

or GF(pr). The sum and product in extension fields are not done by taking results

modulo q, but rather field elements can be considered as polynomials of degree

r – 1 with coefficients in GF(p). The sum operation is just the sum between

coefficients modulo p; the product is the product between polynomials, computed

modulo an irreducible polynomial such as one without divisors in GF(pr) of

degree r and with coefficients reduced modulo p.

 Although the apparent complexity presented here, the operations

on extension fields can become simple in the case of p = 2. With this particular

case, elements of GF(2r) require exactly r bits to be represented. The reader will

note that this will greatly simplify the handing of data encoding. Sums and

subtractions will become the same operation (bit by bit sum modulo 2) which can

simply be executed with an exclusive OR (XOR).

c. Multiplications and Divisions

A noteworthy property of prime or extension fields is that there

exists at least one special element, usually denoted by α, whose powers

generate all non-zero elements of the field. As an example a generator for GF(5)

is 2, whose powers starting from 20
 are 1, 2, 4, 3, 1, …. Powers of α repeat with

a period of length q – 1, so, αq-1 = α0 = 1. In (Wagner, 2001) there is an excellent

Java implementation of how these generators can be determined. This is a

variation of Fermat’s Theorem which states that:

1 mod 1pa p− =

where a is any non-zero number less than p and p is prime.

 This property has a direct consequence on the implementation of

multiplication and division in that one can express any non-zero field element x

41

as x = ak. Now kx can be considered as a logarithm of x and multiplication and

division can be computed using logarithms such as:

1 11,x y q x

k k q kxy
x

α α−
+ − −= =

where |a|b stands for “a modulo b”. If the number of field elements is not too

large then tables can be built off line to provide the logarithms, exponentials and

the multiplicative inverses of each non-zero field element. In some cases it can

be convenient to provide a table for multiplications as well. Using the above

techniques operations in extension fields with p = 2 can be very fast and easy to

implement.

4. Data Recovery
 Recovery of the original data is possible by solving the linear system:

1' ' ' '−= → =y G x x G y

where x is the source data and y’ is a subset of k components of y available at

the receiver. Matrix G’ is the subset of rows from G corresponding to the

components of y’.

 The problem can be solved in two steps: first G’ is inverted, then

x = G’ -1y’ is computed. This is because the cost of matrix inversion can be

amortized over all the elements which are contained in a packet and this can be

virtually negligible in most cases. The inversion of G’ can be accomplished by

replacing division with multiplication by the inverse field element. The cost of the

inversion is reported in (Rizzo 1997) as O(kl2) where l ≤ min(k, n – k) which is the

number of data blocks that must be recovered. Reconstructing the l missing data

blocks has a total cost of O(lk) operations.

42

D. AN ERASURE CODE BASED ON VANDERMONDE MATRICES
 An effective way to build the generator matrix, G, will now be discussed.

Building this matrix will include coefficients of the form:

1j

ij i
g x −=

where the xi’s are the elements of GF(pr). Such matrices are commonly known

as Vandermonde matrices and their determinant is:

 , 1... ,

()j i
i j k i k

x x
= <

−∏

If all xi’s are different then the matrix has a non-null determinant and it is

invertible. Provided q > k and all xi ≠ 0, up to q – 1 rows can be constructed

which satisfy the properties required for G. Such matrices can be extended with

the identity matrix Ik to obtain a suitable generator for a systematic code. A good

discussion of the polynomial properties of Vandermonde matrices are given in

(Lamparter and others 1993).

 It should be noted the there will be some special cases of this code which

are of trivial implementation. An example would be a (n, 1) code which only

requires the same data to be retransmitted several times. This type of code

represents a degree-0 polynomial (a constant) which will have the same value at

all points, so, G becomes an n x 1 matrix with unity coefficients. This would be of

no cost in overhead. Another example is that of a systematic (k + 1, k) code

where the only redundant block is the sum [as defined in GF(pr)] of the k source

data blocks. This code would be represented by a degree k – 1 polynomial

evaluated at p = 1 making G a 1 x k matrix with unity coefficients. The sum of all

coefficients amount to a simple XOR in the case of p = 2. As a consequence, a

(k + 1, k) code is only useful for a small amount of expected losses. In other

cases, such as will be presented in this thesis, there will be a need for codes with

k > 1 and n – k > 1.

 Dr. Rizzo’s C implemented FEC code (Rizzo 1997) was written for peak

performance within network protocols. This code will support p = 2, any r in the

43

range of 2 … 16 and arbitrary packet sizes. Reported maximum efficiency can

be achieved with r = 8 since this will allow most operations to be executed using

memory manageable lookups for logarithmic and exponential tables and for

XOR’s. The generator matrix has the form indicated above with xi = αi – 1. Up to

2n – 1 rows can be built this way which makes it possible to construct codes up to

n = 2(2r – 1), k = 2r – 1. Packet sizes of 1024 bytes were used very efficiently,

which is a recommend parameter when specifying this type of erasure FEC

encoding. Observing this recommendation will comply with a typical Ethernet

Maximum Transmission Unit (MTU) restriction of 1500 bytes.

 Dr. Rizzo warns that using erasure codes in a unicast protocol is

computationally expensive due to the lack of native support in most processors

for work in finite fields, but can be minimized by choosing good values for the

parameters (n, k) and the size of a data packet to hold encoded data. These

choices are available to the implementer of this particular erasure code. In a

multicast environment, the benefit will be that erasure coding techniques will

remove the effect of independent losses at different receivers. Reconstruction of

the original data is possible using the identity of the received packets, the identity

being at what index was that packet encoded. Scalability is improved as loss

patterns at each receiver are not a main concern as each individual receiver’s

loss pattern can be dealt with effectively.

E. SUMMARY
Erasure codes based on Vandermonde matrices interprets k source data

symbols as the coefficients of a polynomial P of degree k – 1. As the polynomial

is fully characterized by its values in k different points the desired amount of

redundancy can be produced by evaluating P at n different points.

Reconstruction of the original data (the coefficients of P) is possible as soon as k

of these values are available. In practice, the encoding process requires

multiplying the original data by an n x k encoding matrix G which is a

Vandermonde matrix. The decoding process requires the inversion of a k x k sub

matrix of G’ taken from G and the multiplication of the received data by G’-1. By

44

simple algebraic manipulation, G can be transformed to make its top k rows

constitute the identity matrix making this code a systematic code.

45

V. SUITABILITY OF COMBINING FEC ENCODING WITH XSBC

A. INTRODUCTION
The previous chapter introduced an open sourced C based

implementation of a Vandermonde matrix based FEC code. An open sourced

Java implementation of the same type of Vandermonde matrix based FEC code,

written by Justin F. Chapweske, founder of Onion Networks, Inc., (see Onion

Networks Inc.) based on Dr. Rizzo’s code, was selected for this thesis’

application for reliable acoustic telemetry transfer in conjunction with XSBC.

First, an introduction into XSBC will be given to give the reader a background into

this remarkable compression algorithm. Next covered will be the Java based

implementation of the erasure code and will conclude with the integration of the

two separate libraries and how they interoperate within the AUVW to ensure

reliable data and telemetry transfer to and from AUVs.

B. XML SCHEMA BASED BINARY COMPRESSION (XSBC)
 The background into XSBC begins in (Serin 2003) with what was formally

titled Cross-Format Schema Protocol (XSFP) and Dynamic Behavior Protocol

(DBP) before it was later redefined as XSBC (see Extensible Modeling and

Simulations (XSMF) projects page). XSFP was originally designed as a further

enhancement of the Institute for Electrical and Electronic Engineers (IEEE)

Distributive Interactive Simulation (DIS) effort. DIS was designed as a way to

exchange state information between entities within a real time distributed

interactive simulation.

 In order to create this flexible and run-time extensible application layer

protocol, XML, due to its terseness, was chosen for describing data structures

and as a direct result, an XML schema describing document parameters such as

legal elements, attributes and data structures (types) can be used to describe the

protocol syntax (Serin 2003). Elements and attributes are replaced via a

tokenization scheme which carefully preserves valid XML document structure.

46

Initial testing showed that XML-izing a document can inflate its size beyond the

MTU requirements of some networks (typically 1500 bytes) due its verbose

nature in describing data types. Such increases in file size can consume

considerable network capacity when transmitting data structures in plain XML

text form. The W3C Workshop on Binary XML Interchange (see XML Binary

Interchange Workshop Report) is currently working to reduce the overhead in

parsing of XML structured text streams. XSBC is offered as a royalty free (RF)

exemplar algorithm solution to this cost in transmission overhead.

1. XML Document Serialization
 The first principal in the use of XSBC for reliable compression of XML text

streams or documents is that the stream or document must be defined by a

schema. This is so because during the serialization process a schema parser is

employed to create entries in a table for each element and attribute defined in

that schema. A replacement algorithm for all element and attribute names of the

XML document is then invoked that replaces these names with short tag

numbers which constitute the serialization process. It should be noted that data

is left intact, but there will still be considerable savings in the serialized XML

document over the original uncompressed form file size. Results for showing

improved compression over GNU’s zip utility (GZIP) and WinZip alone are shown

in the following figures with file extension types defined below:

- x3d: Extensible 3D (X3D) File Format

- wrl: Virtual Reality Modeling Language (VRML) 97 File Format

- b3d: Binary X3D File Format

- zip_x3d: X3D File Compressed by WinZip Program

- zip_wrl: VRML97 File Format Compressed by WinZip Program

- b3z: X3D File Compressed by Serializer using GZIP Streams

47

Figure 12. File Format Compression Comparisons for the Teapot Exemplar
(After Serin 2003)

Figure 13. Comparison of Filesizes for GZIP Alone, XSBC or combined XSBC/GZip
for a Schema Defined XML Document (Consult Appendix C)

48

 Due to a protocol’s agreement between user applications via the same

schema, whole names are not required to be sent. This is an advantage over

DIS in that DIS requires the syntax of the protocol to be static and all of the data

must be in their previously specified places so that no subset or selected section

of the whole protocol could be transmitted. Therefore, by serializing XML

documents, with the advantage of the XSBC attribute and element name

replacement algorithms, they can be transmitted in a much more compact way.

The two following figures give a better graphical representation as to what

happens to the XML document during the serialization process.

Figure 14. Example XML Document Before the XSBC Serialization Process with
Element and Attribute Tagsets Highlighted for Clarity (After Serin 2003)

Figure 15. Example XML Document Results After the XSBC Serialization Process
(After Serin 2003)

<?xml version="1.0" encoding="UTF-8"?>
<protocol xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="example.xsd">
 <location x="3.45" y="56.72" z="-10.1"/>
 <header>
 <exerciseID>1</exerciseID>
 <version>1</version>
 <pduType>2</pduType>
 </header>
 <velocity x="1.0" y="0.0" z="-0.7"/>
</protocol>

<?xml version="1.0" encoding="UTF-8"?>
<10>
 <14 24="3.45" 25="56.72" 26="-10.1" 15>
 <12>
 <20>1<21>
 <18>1<19>
 <22>2<23>
 <13>
 <16 27="1.0" 28="0.0" 29="-0.7" 17>
<11>

49

2. XML Document De-serialization
 The de-serialization process can now be described as the process of

recreating the XML tree back from the received binary stream. By using the

same schema needed to create a table for the serialization process, the de-

serializer uses that schema to create another table to match the tokenized or

serialized element and attribute tags with their proper full names and will match

any data that belong within those names. To accomplish this the de-serialization

process uses stack operations to rebuild the XML tree into its original fully

verbose form. For a more detailed description of both the serialization and de-

serialization processes the reader is encouraged to consult (Serin 2003).

3. XSBC Instead of Other Types of Binary Compression
 XML serialization provides an alternative and compact way to send and

receive XML documents over the network. Currently, most XML documents use

Unicode Transformation Format – 8 (UTF-8) encoding which corresponds to 8-bit

American Standard Code for Information Interchange (ASCII) encoding. With

this type of encoding each alphabetical character and number is represented by

eight bits. Instead of using 8 bits for each character, the notion agreement is

exploited so that element and attribute names are replaced by binary short tags

(Serin 2003). The result of this is that data, marked-up by elements and

attributes, are serialized to binary form resulting in compact XML.

 During the XSBC process XML documents are compressed without using

any other types of conventional binary compression algorithms. A list of driving

factors of avoiding binary compression algorithms altogether include simplicity of

implementation, computational speed performance improvements and ability to

bypass bitwise operations.

4. XSBC as a Module within the AUVW

 The Scenario Authoring & Visualization for Advanced Graphical

Environments (SAVAGE) laboratory of the MOVES Institute located at NPS has

a number of ongoing projects dedicated to the improvement of training and war-

50

fighting skill maintenance for military members across all DOD service

components and their allies. One such project involves a distributable

application to facilitate AUV mission planning and analysis (Lee 2004).

 The AUVW is comprised of a set Java-based open source libraries.

XSBC is one those libraries used for the compression of telemetry and data to

and from since XML is used for data storage and exchange between an AUV and

the AUVW Server. One of the most important features of the AUVW is the

definition and use of a common AUV mission control script (Hawkins and Van

Leuvan 2004). Further development and improvement of this script is currently

being conducted by CDR Duane T. Davis, USN, a Ph.D. candidate with the

Computer Science Department at NPS. The importance of this common script is

that dissimilar AUVs will be able to be controlled and employed through this

common language which is XML based and defined by the Autonomous Vehicle

Command and Control Language (AVC2L) schema. Further information on

AVC2L can be obtained from (see NPS AUV Workbench Flyer).

a. Telemetry from an AUV to the AUVW Server
 In the design of the AUVW there was consideration for the need for

exchange of information. This is done via a scaled down, yet fully functional

multi-threaded web server module within the workbench. Through this server,

AUVs are able to uplink information such as current position, list of obstacles

encountered, mission findings and such that are publishable and easily

accessible by operators and planners of AUV missions (Lee 2004). Since data

sent from an AUV to the AUVW server is structured in XML according to the

AVC2L schema, this data is a prime candidate for compression by XSBC.

 Mission data is compressed in two ways within the AUVW. First, as

an on-the-fly routine implemented before data uplink and second, as a manual

function selected by planner/operator from one of the workbench’s many GUI

features. The following figures represent a server/client User Datagram Protocol

(UDP) implementation of this process.

51

Figure 16. Data Flow Diagram for XSBC/FEC Data through an Acoustic Medium

(From AUV to AUVW Server)

Figure 17. Server/Client Simulation of an XML Document Compressed, FEC
Encoded, Transmitted, Received, FEC Decoded, Uncompressed and
Displayed in JTree Form. Example available within the XSBC 0.91.1

Library.

XML Document
(Mission Data) to

transmit

GZip/XSBC
Serializer
Module

FEC Encoder
(Optional)

XML Schema
Defining Mission Data
Document Structure

AUV Acoustic
Modem

XML Document
(Mission Data)

stored from an AUV

UnGZip/XSBC
De-Serializer

Module

FEC Decoder

XML Schema
Defining Mission Data
Document Structure

AUV Workbench
Server Acoustic

Modem
Acoustic Medium

Acoustic Medium

52

C. INTRODUCTION OF A JAVA BASED FEC ENCODING LIBRARY
As was mentioned previously an open sourced implementation of a Java

based FEC code, based on Dr. Rizzo’s C implementation of his Vandermonde

based erasures codes, was selected for integration with XSBC within the

AUVW’s application library. This Java based approach was logical for the fact

that Java is cross platform independent as long as that platform recognizes and

operates with a Java Virtual Machine (JVM).

An interesting issue to note about the FEC 1.0.3 library from Onion

Networks, Inc. is that the designer can implement the C based implementation by

including the fec-win32.jar file (available within the FEC 1.0.3 library download) in

a platform’s JVM classpath. If this option is not desired, as in the case of this

thesis work, simply omit this file reference from the classpath which will force a

pure Java implementation of the code. The release notes (Chapweske 2000) for

FEC 1.0.3 state that the C based implementation is better optimized for speed,

but the Java forced implementation is only a few milliseconds behind the C

implementation.

The Java based implementation has the same principles of operation as

presented in Chapter IV of this thesis and will not be restated here. For further

familiarization of the Java FEC 1.0.3 library, and a hyperlink to the source code,

the reader is encouraged to consult Appendix B.

D. THE FUTURE OF XSBC
Not only is XSBC used within the AUVW, but it has several other

application possibilities. XSBC is a library designed to compress XML

documents and messages. It is designed to support both large documents like

X3D Graphics and Scalar Vector Graphics (SVG) files as well as short messages

such as Simple Object Access Protocol (SOAP) and XML Remote Procedure

Calls (XML-RPC). A major feature of this library is the ability to register

53

compressors for an attribute type, an element or document fragment. This allows

data-aware compressor algorithms to get much better compression then typical

generic routines.

As of the writing of this thesis, XSBC is still under development, however;

a working version is available for download and experimentation. XSBC is an

open sourced library licensed under the GNU LGPL v2.1 from the Extensible

Modeling and Simulation Framework (XMSF) source page at

http://sourceforge.net/projects/xmsf. For familiarity in working with XSBC the

reader is encouraged to consult Appendix C.

Planned, continued and future work for XSBC technology include:

• Implementation of X3D Compressed Binary Encoding

• Implementation of the International Standards Organization (ISO)

Fast Infoset Encoding

• Tracking developments, best practices and eventual W3C

recommendation efforts of the XML Binary Characterization

Working Group

• Addition of bitwise FEC support

• Provide support for XML Tactical Chat (XTC) and Jabber Chat

clients (Brutzman and others 2004)

• Provide support for binary-XML Web Services

E. SUMMARY
After the efficient compression techniques of XSBC are applied to an XML

document or message, reliability in transmitting that data can be realized by

applying an FEC erasure code to that compressed data. The coding will contain

redundant information enabling a receiver to reconstruct that data without

retransmission from the sender. In the realm of AUVs and UUVs, this is a

prudent technique to apply to preserve the power supplies of their data

54

transmitters that would before employ “try 'til you die” transmission routines. The

costs, in terms of computations, are practically negligible compared to the cost in

power consumption by having to respond to repeated ARQs from a receiver that

received corrupted data or that experienced significant packet losses due to the

noisy and lossy characteristics of shallow-water sound propagation.

55

VI. FEC FILTER COMBINED WITH XSBC

A. INTRODUCTION
This chapter covers how the Java-based FEC codes were integrated with

XSBC within the AUVW. For on-the-fly compression with the XSBC utility, the

AUVW uses two files which are XsbcSerializer.java and XsbcTransaction.java.

The serializer is called when telemetry or other mission data from an AUV is

ready to be transmitted uplink. Before this is done, the data, in XML text form,

must be compressed, for network capacity considerations, followed by FEC

encoding for redundant reliability. Once the compressed/encoded file is received

by the AUVW Server, the data is collected in a temporary buffer, decoded (if

necessary), written to file form with *.xsbc.gz extension, decompressed and un-

serialized resulting in an XML mission results data file for viewing or storing in a

local server cache folder. Again, if the file was GZipped and/or FEC encoded

(both are options within the AUVW) during the serialization process, the

transaction file will decode the incoming GZip stream, uncompress the GZip

steam, deserialize the .xsbc file and then create a missionResults(ID#).xml file

for storage, later retrieval and evaluation.

1. XSBC Serializer Functionality within the AUVW
The original network functionality was built around a TCP connection.

Since, as discussed previously, TCP, with its reliable connectivity issues, may

not be the most desirable form of data transmission for this application. An

additional constructor was added to the XsbcSerializer.java file to add the

desired UDP functionality. Even though UDP only provides “best effort” packet

deliveries, this is where the benefit of FEC encoding of XSBC files comes in. If

packets are dropped due to the inherent noisy links experienced in an open

water acoustic environment, redundant encoding will provide reliable data

recovery of potentially lost packets without the need for a feedback channel or

without regard to which specific packet were lost or dropped.

56

a. UDP Functionality
The following will be code snippets from the XsbcSerializer.java file

that give the FEC encoding capability option to the workbench planner.

XsbcSerializer.java was first developed with TCP/IP functionality originally. UDP

functionality was built in as an option to the AUVW Server so as to realize faster

data transfer without the need for a feedback channel. Selecting the FEC Server

will optimize reliability of UDP transmitted data. Only the major features are

covered that may not intuitive to the reader:

 /**
 * Creates a new instance of XsbcSerializer for a UDP option
 *
 * @param inFilePath (including filename) of input XML file
 * @param udp true if a UDP option is invoked
 * @param encode true if the file is to be FEC encoded, false if not
 * @param p the FECParameters to utilize for FEC file encoding
 * @param host the host address to connect to
 * @param port the port number to bind to
 */
 public XsbcSerializer(String inFilePath, boolean udp, boolean
 encode, FECParameters p, String host, int port) {

 result = 0;
 udpOption = udp; // tdn
 this.encode = encode;
 params = p;
 setHost(host);
 setPort(port);

 // Check for FEC encoding option
 if (!encode) {

 // Serialize without FEC Encoding
 setDocumentWriter(inFilePath); // tdn

 } else {

 repairBuffer = new Buffer[p.getN()];
 stripeOrderArray = new int[p.getN()];
 System.out.println("From Serializer constructor: " + p); // DEBUG

 doFECEncoding(inFilePath);

 } // end if-else block

 } // end UDP option constructor

The first thing to note is the FECParameters argument in the

constructor. This is where specification of particular parameters to perform

encodings are implemented. Mission data or telemetry .xml files are generally

57

3.5 MBs or more in size. Still, values of k and n can be kept at or under k = 32

and n = 256 and still provide quick and reliable encodings within this software

implemented FEC capability. Using these recommended FECParameter values

will force the use of GF(28) which allows for much greater (EN/DE) speeds on the

fly as all matrix algebraic tables can be generated and kept in memory with a

minimal memory footprint observed. The upper limit for n in GF(28) is 28 = 256.

The speed advantage comes from the fact that the logarithm tables for GF(28)

are 28 x 28 x 8 bits = 64 KBs of memory. The code will use a n x k matrix to

perform all encoding calculations which will take O(nk) cycles to complete.

Recall that if many losses are expected, specifying a higher k value would be

prudent. If lower packet losses are expected, a lower k value of < 16 can be

selected. The same reasoning goes for selecting n (n > k must be observed).

The repairBuffer and stripeOrderN data members are key in that

they will contain the FEC encoded repair packets and the index number with

which those encoded repair packets were created respectively. This is

necessary as the proper index information is needed to properly conduct the

necessary matrix operations during the decoding process. The software will

determine any index < k and systematically reorder the decoding matrix so as to

place all repair packets of index < k in the identity matrix. This will save in

decoding flops as these < k index repair packets are in their original source

symbol form.

The repairBuffer is a byte[] wrapper that holds repair packet

encoded data for the entire block size(s) generated by the FEC encoding

process. Once an *.xsbc.gz file is ready to be encoded, if the FEC encoding

option is selected, that file is automatically broken up according to the

FECParameters selected. A file is broken up into separate blocks for encoding

by the following convention:

/(*)Blockcount filesize k packetsize=

where filesize is the size of the .xsbc and/or .xsbc.gz file to be encoded and

packetsize is another FECParameter we select. Typical packet sizes of 1024

58

bytes will work well to maintain within MTU restrictions. The FEC class that

performs these automatic file handing capabilities is the FECFile class. The

repairBuffer will hold all n repair packets each of 1024 bytes in size generated for

each block. Each block, if a file is broken up into more than one, will each

contain n repair packets where index offsets are spaced 1024 bytes apart.

 The constructor then calls doFECEncoding() giving the string

location of the file to be encoded as an argument:

 /**
 * Performs the FEC Encoding of an already saved to disc .xsbc file before
 * sending out in a stream
 *
 * @param fileName the .xsbc file to encode
 *
 * @exception IOException if FECFile did not form properly and/or
 * the encoding process failed
 */
 private void doFECEncoding(String fileName) {

 newFile = new File(fileName);

 System.out.println("File to encode with FEC: " + newFile);

 // Create the FEC file out of the .xsbc file in read only mode with the
 // default parameters K=16, N=32 and repair packet size=1024 B
 try {

 fecF = new FECFile(newFile, "r", params);

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 // Create an array of N numbered indices
 for (int i = 0; i < stripeOrderArray.length; i++) {

 stripeOrderArray[i] = i;

 } // end for

 // Create an FEC Buffer[] as a wrapper holding N byte[] 1024 B in size.
 // These will be the repair packets of which we only need any K subset
 // per block on the receiving end to decode the orig. file (not to be
 // confused with Datagram Packets) (tdn)
 for (int i = 0 ; i < params.getN(); i++) {

 repairBuffer[i] = new Buffer(params.getPacketSize());

 } // end for

59

 // Perform a Fisher-Yates shuffle of the stripeOrder[] numbered indices.
 // Repair packets (N of them for each block, last block may contain less)
 // will be encoded according to the stripe ordering produced by this
 // shuffle.
 Util.shuffle(stripeOrderArray);

 for (int i = 0; i < params.getBlockCount(); i++) {

 try {

 // Encode packets in each file partitioned block (i) as repair
 // packets according to the shuffled order of their indices
 // (FEC code)
 fecF.read(repairBuffer, i, stripeOrderArray);

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 // Send each block (index information along with each N repair packet)
 // along it's way. Once decoded by the receiver, the receiver will
 // determine GZipped status and handle accordingly via UDP only.
 sendFECEncoded();

 System.out.println("Sending block number: " + i);

 } // end for

 } // end doFECEncoding()

 The fecF data member is an instantiation of FECFile. This method

will take in a java File argument to create our encoded repair packets, a

parameter argument to make this file a read only file “r” and, finally, the

FECParameters object we specify. Before the file begins the encoding process,

the file is broken up into blocks if necessary by the above given equation. The

FECFile class in the fec 1.0.3 library handles many things in preparing a file for

encoding automatically with little impact on the designer. Therefore it was

chosen to first have an .xsbc file created, although not efficient for continuous

streaming purposes, but other encoding preparations are taken care of such as

breaking up a file into encoding blocks if necessary and of padding with zeros in

case of the last block not being of size n. This padding is necessary in order to

keep matrices of size n x k even though there may not be enough source code

symbols to encode in the last block.

60

 Next, the stripOrderArray is created which will become an integer

array containing the indices of each encoded repair packet as they were when

encoded within the GF Vandermonde matrix. n repairBuffer’s are then prepared

each of size 1024 bytes. This index information is sent out ahead of time and

received by the AUVW Server for later incorporation into the decoding process.

 In order to simulate packet loss and to optimize the decoding

process, the Util.shuffle() method shuffles the order of the indices so that, even

though the first k packets encoded per block are exactly in their original

unencoded source symbol form, these original source packets will get mixed in

with encoded repair packets and transmitted. It is prudent to send out source

symbols in their original source form, especially for higher values of (n, k) so that

in the event of successfully receiving a source symbol packet in its original

unencoded form, that repair packet will get shuffled back into its < k position

within the identity matrix portion of the GF matrix before decoding. This will save

some cycles in decoding time as they do not need to be decoded.

 Next, the fecF.read() method is called which gives the arguments of

the repairBuffer, block number index and stripeOrder index. This is where each

block’s worth of n encoded repair packets are generated just before

transmission. Recall that the first k of each block’s n encoded repair packets are

the actual original source code symbols. This is so because if these k are

received intact and not dropped, then the decoding process is trivial as there will

be no decoding process to perform by the AUVW Server. However, if the data

transfer process were to experience packet drop losses, then any k subset of

each block’s n encoded repair packets will suffice to perform a proper and

complete decoding of the original data. Finally, each block’s worth of n encoded

repair packets are transmitted to the AUVW Server for decoding by the

XsbcTransaction process via a conventional Java Datagram socket

implementation.

61

2. XSBC Transaction Functionality within the AUVW
The transaction process will be a reverse process of the

compression/encoding process. Once the AUVW Server has received all n

repair packets per message block then k of those repair packets from each block

will be selected so that the decoding process can begin. This is performed by

the fec.decode() method in the XsbcTransaction.java file. Its arguments are the

repairBuffer holding the encoded data, in the same manner as the wrapper that

contained the encoded repair packets before transmission, and the index

information received ahead of time indicating in which index the repair packet

was encoded inside of each message block so that proper decoding can take

place within the server’s decoding GF matrix.

 /**
 * Performs preparations for FEC decoding to enable MissionOutputXX.xml
 * file saving to cache.
 *
 * @exception IOException if the socket couldn't read packets
 */
 private void doFECDecoding() {

 //create our fec code
 fec = FECCodeFactory.getDefault().createFECCode(params.getK(),
 params.getN());

 // Prepare to receive our K * Block Count repair indices. These
 // are just byte format integers for each Datagram packet. Again,
 // we will select our K required subset from the N received from
 // each block.
 indicePacket = new DatagramPacket(new byte[params.getN()],
 params.getN());

 // Storage for each block's K subset of N repair indexes that
 // will be received via UDP.
 repairIndexes = new int[params.getK() * params.getBlockCount()];

 // Receive each block repair index information
 for (int ix = 0; ix < params.getBlockCount(); ix++) {

 try {

 // Receive our repair index info.
 udpSocket.receive(indicePacket);

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 // Feed index information into this BAIS per block
 bais = new ByteArrayInputStream(indicePacket.getData());

62

 System.out.println("Receiving block number: " + ix);

 // Extract K * Block Count packet elements that make up our
 // repair indices.
 for (int jx = 0; jx < params.getK(); jx++) {

 // Read in our K subset indice information
 repairIndexes[jx] = bais.read();

// System.out.println("Received repair packet index: " +
// repairIndexes[jx]); // DEBUG

 } // end inner for

 } // end outer for

 /***************** Receive Encoded Repair Packets *****************/

 // Prepare this packet for reception of a repair packet each
 // containing 1024 bytes of encoded data
 fecPacket = new DatagramPacket(new byte[params.getPacketSize()],
 params.getPacketSize());

 // Container for the K required/selected encoded repair packets
 encodedNData = new byte[params.getN() * params.getPacketSize() *
 params.getBlockCount()];
 encodedKData = new byte[params.getK() * params.getPacketSize() *
 params.getBlockCount()];

 // Receive each block's worth of a K subset of N encoded repair packets
 // for storage
 for (int ix = 0; ix < params.getK() * params.getBlockCount(); ix++) {

 // Receive a block of data to encode
 try {

 // Receive our encoded data
 udpSocket.receive(fecPacket);

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 // Copy N encoded packets into a byte[] for K selection
 System.arraycopy(fecPacket.getData(), 0, encodedNData, ix *
 fecPacket.getLength(), fecPacket.getLength());

 } // end for

 System.out.println("Expanded Block Size: " +
 params.getExpandedBlockSize()); // DEBUG

 // Extract a K subset of the N encoded repair packets for decoding
 System.arraycopy(encodedNData, 0, encodedKData, 0, params.getK() *
 params.getPacketSize());

// for (int ix = 0; ix < params.getK(); ix++) {
//
// System.out.println("Receive FEC encoded data packet " +
// ix + " " + encodedKData[ix]); // DEBUG

63

//
// } // end for

 // This will hold our K subset of encoded repair packets
 repairBuffer = new Buffer[params.getK() * params.getBlockCount()];

 // Put the encoded data into an FEC Buffer wrapper for decoding
 for (int ix = 0; ix < params.getK() * params.getBlockCount(); ix++)
 repairBuffer[ix] = new Buffer(encodedKData, ix *
 params.getPacketSize(), params.getPacketSize());

 // Finally, decode the repair packets into the file
 fec.decode(repairBuffer, repairIndexes);

 } // end doFECDecoding()

B. SUMMARY
Since the work of this coding is done in GF(28), efficient use of memory

can take place by using lookup tables for logarithmic, inverse and exponential

functions needed to encode and decode within the G matrix. By having an XML

file already compressed with XSBC, using the supplied FECFile class within the

FEC 1.0.3 library will enhance usefulness by the designer. This is realized by the

functionality built into this class of taking a file of any size, breaking it up into

appropriate block sizes according to prespecified FECParameters. Encoding

and subsequent streaming of the encoded data can then take place with very

little overhead in computations.

This chapter concludes the combining of two disparate technologies into a

workable implementation where acoustic networking applications can benefit by

this combination. By compressing the XML data and adding the required

redundancy to that data, it can then be transmitted in a noisy medium such as a

shallow water littoral region with assured reliability. The need for a feedback

channel can be eliminated by implementing transmission via UDP by the acoustic

network and AUV power supplies can be preserved for extended use by not

having to “try till you die” in order to transmit critical mission data.

For full text versions of the above source code consult Appendix C.

64

THIS PAGE INTENTIONALLY LEFT BLANK

65

VII. USER INTERFACE: AUV WORKBENCH (AUVW) AND XML-
BASED TACTICAL CHAT (XTC)

A. INTRODUCTION
This chapter will introduce the Graphical User Interfaces (GUI) associated

with the AUVW that enable it to produce mission results and other chat logging

files compressed with XSBC, GZipped and encoded with FEC then acoustically

transmitted from an AUV to the AUVW Server for archiving and later retrieval.

B. INTERFACE FOR THE XSBC AND FEC SERVERS

Since the AUVW is a Java-based application built for the research and

development (R&D) of a common command and control language for dissimilar

autonomous vehicles, whether air or sea based (Lee 2004), the integration of

FEC into the AUVW was a straightforward process since it is also a Java-based

library. The approach was to have FEC functionality built into the XSBC process,

as this is where it becomes most useful to aid in reliable transfer and reception of

files in the acoustic environment.

The original design process of XSBC transfer is for the AUV to transmit via

TCP an XSBC/GZipped mission results files by default. This can now be set

false by alteration the AUV/UAV XML based configuration files within the AUVW

build package. In order to shed the cost of maintaining a reliable connection

such as TCP, the UDP option was chosen to transmit an FEC encoded *.xsbc.gz

mission results file. Operation of FEC for archiving mission results files in the

AUVW is shown below:

66

Figure 18. AUVW GUI for the XSBC and FEC Server Functionality

1) Once the AUVW is invoked, select mission (i.e.

OpenWaterMission1.xml or OpenWaterMission1a.xml) from the File\Open

Mission menu. Observe that the mission waypoints are visible in the 2D Mission

Viewer.

2) Select the X3D Scene Viewer Panel, then select a scene (i.e.

AriesInOpenWater.x3d) to render

3) Start the mission by selecting StartNext

4) Select the Other Utilities Panel

3

24

7

1

6

5

67

5) The default parameters for FEC are adequate for most applications.

Keep the packet size <= 1024 bytes, n <= 256 and k < n. n should be a multiple

of k and k should be a factor of n for best performance of the FEC Utility.

6) Enable the XSBC Server to enable FEC Server Enabling

7) Select FEC Server Enable

XSBC and GZipping processes will be initiated automatically as per the

AUVWorkbenchConfiguration.xml file. To allow reception and archiving of these

files, the XSBC Server must be enabled. Once the XSBC Server is enabled, the

FEC Server check box will become enabled to allow for selection of FEC

Encoding. This will tell the transmitting server to switch sockets to a

DatagramSocket to allow for UDP for sending FEC encoded repair packets.

Selecting FEC Server Enable will tell the receiving XSBC server to expect these

repair packets via UDP and for FEC decoding to take place before un-GZipping

and final deserialization of the mission results file. The final step is uploading to

a specified folder within the AUVW Server that will archive the file for later

retrieval.

C. INTERFACE WITH XML-BASED TACTICAL CHAT (XTC)
As may have been noticed, in the above figure, on the right side of the

GUI panel for the AUVW are a vertical column of application access buttons.

One of them invokes the Jabber chat client utility. This is an open sourced chat

client built into the AUVW for chat and messaging capability. By providing a set

of streaming XML protocols and technologies, two entities on the internet are

enabled for exchange of messages, presence and other structured information in

real time (Lee 2004). Jabber also offers appropriate bridging functionality to

similar legacy instant messaging (IM) services such as Yahoo, America online

(AOL) instant messaging (AIM).

68

The advantage of using Jabber for these functions are that is free, open,

public and secure because of the adherence to the Extensible Messaging and

Presence Protocol (XMPP) that the Jabber protocol is built around. XMPP is

supported by the Internet Engineering Task Force (IETF) for its use of Simple

Authentication and Security layer (SASL) and Transport Layer Security (TLS).

These technologies allow Jabber to interface with the above mentioned

proprietary IMs and with others.

The purpose of the Jabber client for use within the AUVW is that two

operators can communicate securely about mine contacts reported during an

AUV mission deployed to search and classify mine like objects. The Jabber

client IM or chat room can be monitored for keywords such as “mine”, “contact”,

“mine-like-object” and so forth. These keywords can be monitored because an

incoming XML message stream can be parsed for these keywords. This is the

function of the XTC Monitor module built into the AUVW. The IMCriteria module

of the XTC Monitor causes events to raise alerts within the AUVW triggered by

the above mentioned keywords. These messages are parsed by looking for the

CDATA element tag of the XML message and then parsed for the appropriate

keywords. The XML tagsets that allow for this are shown below.

69

Figure 19. XML Tagset Describing Jabber Chat Session Parsing for Mission Critical
Keywords (From Lee 2004)

For XSBC to work with these types of XML messages, a schema must be

present to define the structure and possible data types that the XML message is

comprised of. This schema is not currently designed with the current build of the

AUVW, however; if designed to do so, XSBC can be used to compress such

messages for transport over other protocols such as TCP/IP or UDP. FEC can

still be used to add the desired redundancy to the data symbols since FEC is not

concerned about what type of data is being encoded, however the compressed

ratios that XSBC offers would not be realized within that particular schema-less

XML document. This can be a future developmental capability of the AUVW.

D. SUMMARY
Introduced were the user interfaces to invoke both XSBC and FEC

servers. XML mission results files can be transported and archived, for later

retrieval, reliably and efficiently through XSBC and with FEC encodings. XTC is

a capability of the AUVW to report mission observations and keywords noted and

<XTCMonitor>
 <MonitorDefault keywordSubject="mine, bomb, torpedo" keywordBody="nice, mine,
 bomb, torpedo, location, CVN62, SNN12, DDG51">
 <WatchEvent name="Mine" desc="Look out for Mines" expr="^.*(?i)MINE[s|S]? .*[
 (]{1,2}(\d*),[]{0,2}(\d*),[]{0,2}(\d*)[).]?+">
 <Alert type="visual" src="build/image/mine.gif" enabled="true"/>
 <Alert type="sound" src="sound/alert.wav" enabled="true"/>
 <Alert type="url" src="C:/auv/Workbench/javadocs/index.html" enabled="false"/>
 </WatchEvent>
 <WatchEvent name="Ship" desc="Look out for Ships" expr="^.*(?i)SHIP[s|S]? .*[
 (]{1,2}(\d*),[]{0,2}(\d*),[]{0,2}(\d*)[).]?+">
 <Alert type="visual" src="build/image/ship.gif" enabled="true"/>
 </WatchEvent>
 <WatchEvent name="Location" desc="Look out for Locations"
 expr="^.*(?i)LOCATION[s|S]? .*[(]{1,2}(\d*),[]{0,2}(\d*),[]{0,2}(\d*)[
).]?+" alert=""/>
 </MonitorDefault>
 <Monitor jid="savage@conference.xchat.movesinstitute.org" desc="" datetimeStart=""
 dateTimeEnd="" keywordSubject="mineX, bomb, torpedo" keywordBody="mineX, bomb,
 torpedo, location"/>
 <Monitor jid="auvrobot@surfaris.cs.nps.navy.mil" desc="" datetimeStart=""
 datetimeEnd="" keywordSubject="urgent, problem" keywordBody="damage, sinking,
 surface"/>
</XTCMonitor>

70

will raise appropriate alarms within AUVW to alert of these mission details. This

is accomplished by parsing of XML Jabber server logs and incoming XML

messages to Jabber clients.

71

VIII. SECURITY CONSIDERATIONS

A. INTRODUCTION
The realm of UANs is not without compromise. As information can now be

exploited better than ever by computer savvy enemies, protection of underwater

network traffic is required to be employed with greater skill and know how.

Packet sniffers can be utilized by the enemy to gain insight into protocol usage

and enough information could possibly be obtained to introduce a “man in the

middle” attack, or, to possibly introduce corrupt packets that would render a data

set useless. Protection against these types of intrusions will be discussed as

well as some techniques to counter these malicious attempts at exploiting

friendly informational assists.

B. CONSIDERATIONS FOR COUNTERING INFORMATIONAL
EXPLOITATIONS
Delivery of vital information can be subjected to denial-of-service (DoS)

attack by intruders who would send corrupted packets which might be accepted

as legitimate by certain receivers (Luby and others 2002). This type of intrusion

is a major concern when speaking of multicast delivery schemes due to the

possibility of receiving a corrupted packet within a session which could be

injected close to the root of a multicast tree. If this were to succeed, there is

grave concern because this corrupted packet would now be transmitted to many

receivers. When using FEC for encoding information building blocks, the

corrupted packet containing encoded data may result in the decoding of an

object that is totally unusable by an application depending on the reception of

reliable data.

In order to counter this type of denial of service attack, Request for

Comments (RFC) 3452 (see Request for Comments) suggests that decoded

objects be checked for integrity before delivering objects to applications. An

example is using a Message-Digest Algorithm 5 (MD5) hash (Rivest 1992) of an

object which could be appended to the protocol header before transmission, and

72

then that hash could be computed and checked after that object is decoded, but

before it is delivered to the application needing the object. RFC 3452 also

suggests obtaining strong cryptographic integrity protection by use of a digital

signature which would be verifiable by the receiver by being computed on top of

the MD5 hash value.

A packet authentication tool such as TESLA (Perrig, Canetti, Song and

Tygar 2001) can be used to detect and discard corrupted packets upon arrival to

a receiver.

Yet another technique to ensure packet reliability is to enable employment

of Reverse Path Forwarding (RPF) checks to limit the possibility of a bad agent

being successful in injecting a corrupted packet into the multicast tree data path.

These are checks that a router can use to forward a multicast datagram if

received on the interface used to send unicast datagrams to the source.

Figure 20. Illustration of Reverse Path Forwarding

Another possible concern is that some FEC information may be accepted

by receivers out-of-band in a session description, and if that session description

is forged or corrupted, then the receivers will not use the correct protocol for

decoding content received from those packets. Measures to prevent receivers

from accepting incorrect session descriptions, such as using source

73

authentication to ensure receivers only accept legitimate session descriptions

from authorized senders, should be considered.

C. XML CANONICALIZATION AND SECURITY
Logical equivalence of two XML documents is the premise of XML

canonicalization since this equivalence will be determined by comparison of the

canonical (or simplified) form, octet-by-octet (Siddiqui 2002). If the form of each

document contains the same sequence of octets, it is assumed that the two XML

documents are logically equivalent.

This logical equivalence comes into play when digitally signing XML

documents for security and authenticity reasons. W3C is the entity for

recommending how the canonicalization process should take place and gives

guidelines for the process. In order to protect the mission results files generated

by an AUV for archival with the AUVW Server, these files can be canonicalized,

digested as with the MD5 process mentioned earlier, then digitally signed with a

private key before undergoing the FEC encoding process and subsequent UDP

transfer of the document to the server. The reason for canonicalization before

digesting and signing the mission results XML file is to preclude any signature

validation attempts due to variations of an equivalent, but non-cononical version

of that XML document.

Canonicaliztion involves defining a standard encoding scheme such as

UTF-8, representing line breaks with a standard character string such as #xA,

normalizing attributes, encapsulating attribute values by double quotes, handling

special characters in attribute values, replacing entity references with actual

content, defining default attributes in canonical XML form, removing XML and

DTD declarations, proper handling of whitespace, namespace declaration

preservation and ordering of namespace declarations. These procedures are

detailed with the official specification available at W3C (see Canonocial XML) .

74

D. SUMMARY
Presented here were issues to consider in order to maintain data security

and authenticity when transmitting sensitive mission data files over a UAN such

as from an AUV to an AUVW Server for archiving and later retrieval. Techniques

such as utilizing MD5 along with public and private key pair digital signatures can

be an option to verify integrity. In order to protect against corrupted packets,

whether by natural or man-made causes, applications like TESLA can be utilized

to detect and drop corrupted packets. By canonicalizing XML documents,

digests and digital signatures can be verified due to the logical equivalence factor

made possible by XML canonicalization.

75

IX. CONCLUSIONS AND RECOMMENDATIONS

A. INTRODUCTION
The research conducted in support of this thesis was to introduce an open

source solution for reliable XML data transport within noisy links such as a UAN.

The UAN environment is dynamic in nature and transmission of data must be

enabled to withstand this sometimes data transmitting resistant nature. The

process of XSBC and FEC encodings will help in data delivery reliability.

XML compression is realized through the use of XSBC which reads in a

schema and tokenizes elements and attributes according to the layout of that

schema and replaces with those elements and attributes with serialized integers.

In this manner, the verboseness of XML plain text is greatly reduced so that

documents can realize compression ratios on average of 17% of their original

size over GZipping alone.

By sending the serialized data through a GZip steam, even more

compression can be accomplished before adding redundancy through FEC

encodings. The process of FEC encoding does not increase the size of the file

as the file is broken up into blocks according to file size and the appropriate FEC

parameters chosen. Network capacity is somewhat taxed as a trade off to

sending many packets with redundant information; however the benefit is much

more reliable data transfer and reconstruction. Encodings take place within the

encoding GF matrix expanded to encode redundant symbols which are n-k,

where k is the value of the original source symbology and n is the value of

desired redundancy thereby producing a systematic erasure code. Data transfer

takes place by sending out all n repair (FEC encoded) packets via UDP.

Transfer via UDP is pertinent choice as the reliable, yet computationally costly,

characteristic of TCP is avoided thereby increasing throughput and avoiding the

other cost of maintaining a feedback channel.

When any k subset of the n repair packets are received, first the FEC

decoder checks for packets that are indexed < k so as to shuffle them back into

76

their original source identity matrix saving cycles in the decoding process. This is

the nature of a systematic code. Any n-k repair packets received to fulfill the rest

of the required k subset will be placed in the GF(2n) matrix in the same index as

during their encoding process for data recovery (FEC decoding). The data is

recovered by using the inverse GF(2n) matrix multiplied by the y’ encoded vector

to solve back into the original x source symbols.

Un-gzipping and XML de-serialization can take place along with any

employed security authentication techniques employed to finally arrive at the

ability to archive a verifiably authentic original mission results XML files

generated from an autonomous vehicle.

FEC and XSBC are both suited for both uni-cast or multi-cast applications.

Both are extensible and scalable to larger applications. By choosing the

appropriate FEC parameters, software implementation of FEC was not shown to

be a highly computational burden on even simple laptop systems. The added

redundancy that produces high reliability of data recovery is of great benefit to

systems that have low and quickly exhaustible transmission capabilities for data

transfer. By compressing verbose plain text XML data, streaming is efficient is

and by utilizing FEC, data recovery and transfer reliability is realized.

B. CONCLUSIONS
By using open sources to accomplish this complex task, the high cost of

stove-piped proprietary systems can be avoided. Open sources and open

standards promote security, extensibility, cross-platform capability, scalability to

larger applications and access to security technologies free and clear of

proprietary systems. Both XSBC, maintained and developed by Yumetech, Inc.

and FEC, maintained and developed by Onion Networks, Inc., are a desired pair

of disparate applications possessing these qualities.

The interfacing methods, to be written by the developer, are intuitive and

tailorable to that developer’s application needs concerning both the XSBC and

FEC libraries.

77

C. RECOMMENDATIONS
By following RFCs 3695 – Compact Forward Error Correction Schemes,

3452 – Forward Error Correction Building Block and 3453 – The Use of Forward

Error Correction in Reliable Multicast, a useful real world application of FEC can

be developed. The source code examples contained in the appendices section

of this thesis were developed for quick demonstration purposes. Since the

AUVW is still under development, the FEC Server implementation exploited the

demonstration mode that the AUVW is, at present, used for.

Since there are out-of-band pieces of information to send either ahead, or

with the encoded source symbols, a simple, yet effective protocol can be

achieved for FEC. As stated earlier, the example source code sidesteps this out-

of-band information by simulation methods. When building an FEC code for

encoding a file, the parameters k, n, packetSize and fileSize information must be

delivered to the receiving FEC decoding client. An example FEC protocol that

can accomplish this could be in similar form to the DIS Entity State Protocol

Datagram Unit (ESPDU) format used by other XMSF applications:

Table 3. Proposed Format for an FEC Protocol Containing Data to be Sent Along
with Each FEC Encoded Source Symbol Packet

Field Content Bytes Value

FEC Server Enabled Boolean 0 1 or 0
GZip Enabled Boolean 1 1 or 0
FEC Parameter k 2 1 - <n
 n 3-5 < 256
 packetSize 6-9 <=1024
 fileSize 10-max size KB/MB

MD5 hash value (offset byte of digest
 MD5 hash value) value
 of XML
 file

FEC Code Source Symbols (offset after 1024
 MD5 hash value)

Field Content Bytes Value

FEC Server Enabled Boolean 0 1 or 0
GZip Enabled Boolean 1 1 or 0
FEC Parameter k 2 1 - <n
 n 3-5 < 256
 packetSize 6-9 <=1024
 fileSize 10-max size KB/MB

MD5 hash value (offset byte of digest
 MD5 hash value) value
 of XML
 file

FEC Code Source Symbols (offset after 1024
 MD5 hash value)

78

By sending all required field information with each n packet sent, this will

ensure that any k subset of repair packets received can be parsed for this

information to initialize FEC parameters in the receiving decoding client. The

FECFile class takes an MD5 hash value as an argument during the decoding

process and which immediately verifies the integrity of the original source file as

before it allows creation of a decoded file. All other field values can be discarded

or ignored except the encoded source symbols needed for decoding the entire

file in subsequently received repair packets.

If a large file is broken up by the encoding FECFile class, recall that an

important parameter “blockSize” is calculated by the fileSize, k, and packetSize

parameters so that all block specific repair packets can be placed in their

appropriate index within a server’s decoding matrix, so, the decoder can

determine this parameter explicitly through the availability of the other listed

parameters within the FEC protocol.

D. FUTURE WORK

Development of a streaming capability feature for FEC would be desirable

to realize even faster software implementations of the combined XSBC/FEC

utility features. By GZipping, XSBC serialization and FEC encoding with within

the same data stream, network capacity requirements can be even further

lowered.

An application, much like the afore mentioned Seaweb UAN, which uses

selective ARQ to retransmit missing data packets, can be employed to send only

those specific redundant packets that were calculated to be missing from the

appropriate application. This would involve implementation of a TCP connection

should that requirement be desired at the cost of before mentioned TCP

characteristics.

Development of a schema for the description and format for Jabber chat

sessions or XTC would enable the use of XSBC. XTC logging of data is done in

XML, so if these logged chat sessions were desired to be transmitted to other

79

agencies requiring this data, XSBC would add increased efficiency for use in

channel capacity limiting characteristics when transmitting this data.

Functionality to add a closing “end chat server” tag to the final XTC session log

would close the log and enable that log to be a complete and well-formatted XML

document.

E. SUMMARY
Open source and open standards allow for scalability and extensibility not

available with proprietary software developments. Security is enhanced as

source code is readily available for inspection and modification by the designer.

XSBC and FEC allow for efficient and reliable transfer of XML documents in any

type of noisy environment that would hinder reliable data transfers. This thesis

concludes with a solution to the original problem statement. It is the desire of the

author that serious consideration be given to the applications presented in this

thesis as a low cost and highly reliable solution to other real world applications in

support of real time and on demand information for tactical decision-making by

the sea warrior.

80

THIS PAGE INTENTIONALLY LEFT BLANK

81

APPENDIX A. LIST OF ABBREVIATIONS

ADM Admiral

AIM AOL Instant Messaging

AOL America Online

ARQ Automatic Repeat Request

ASCII American Standard Code for Information Interchange

AVC2L Autonomous Vehicle Command and Control Language

AUV Autonomous Underwater Vehicle

AUVW AUV Workbench

BER Bit Error Ratio

C The C Programming Language

CD Compact Disc

CNO Chief of Naval Operations

CORBA Common Object Request Broker Architecture

CRC Cyclic Redundancy Checksums

DAT Digital Audio Tape

DBP Dynamic Behavior Protocol

DIS Distributive Interactive Simulation

DOD Department of Defense

DON Department of the Navy

DoS Denial-of-Service

EN/DE Encoding/Decoding Process

ESPDU Entity State Protocol Datagram Unit

FEC Forward Error Correction

82

GL Galois (pronounced “gal wah”) Field

GMU George Mason University

GNU Recursive Acronym for “GNU's Not UNIX”

GZIP GNU Zip

IEEE Institute of Electrical and Electronic Engineers

IETF Internet Engineering Task Force

IIOP Internet Inter-Object Request Broker Protocol

IM Instant Messaging

ln Natural Logarithm (base e)

IP Internet Protocol

IP/SW Internet Protocol over Seawater

ISO International Standards Organization

JNI Java Native Interface

JVM Java Virtual Machine

KB Kilobytes

MB Megabytes

Mbs Megabits Per Second

MD5 Message-Digest Algorithm 5

MIT Massachusetts Institute of Technology

MOVES Modeling, Virtual Environments and Simulation

M&S Modeling and Simulation

MTU Maximum Transmission Unit

NEW Network Education Ware

NOPP National Oceanographic Partnership Program

83

NPS Naval Postgraduate School

NVE Networked Virtual Environments

PLR Packet Loss Rate

RACOM Radio-acoustic Communications

R&D Research and Development

RF Royalty Free

RFC Request for Comments

RMI Remote Method Invocation

RPF Reverse Path Forwarding

RTT Round Trip Time

SASL Simple Authentication and Security Layer

SOAP Simple Object Access Protocol

SPAWAR Space and Warfare

TCP Transmission Control Protocol

TLS Transport Layer Security

UAN Underwater Acoustic Network

UAV Unmanned Aerial Vehicle

UDP User Datagram Protocol

UTF-8 Unicode Transformation Format – 8

UUV Unmanned Underwater Vehicle

UW Undersea Warfare

W3C World Wide Web Consortium

X3D Extensible 3D

XFSP Cross Format Schema Protocol

84

XML Extensible Markup Language

XML-RPC XML Remote Procedure Call

XMPP Extensible Messaging and Presence Protocol

XMSF Extensible Modeling and Simulation Framework

XOR Exclusive OR

XSBC XML Schema based Binary Compression

85

APPENDIX B. FAMILIARITY NOTES FOR THE FEC 1.0.3
LIBRARY

A. INTRODUCTION
The following paragraphs are presented by the author as a familiarity

guide into the methods employed by the FEC 1.0.3 library. These notes were

written during trial and error attempts at working with this Java API. This was

written with the intent of self-guidance and discovery, and thus it is hoped that

the reader will have an understanding into the author’s rationale in how to work

with this remarkable library.

B. SETUP OF THE FEC 1.0.3 LIBRARY

At this site: http://www.onionnetworks.com/developers/ (Last accessed

November 2004) is located the Java open source fec-1.0.3.zip download link.

Upon unzipping, rename the destination end folder. This (your named)

end folder contains two folders, fec-1.0.3 and META-INF. The former contains all

the goodies. I use the netBeans™ IDE (see netBeans IDE). Mount the fec-1.0.3

folder in netBeans.

This application can be modified / rebuilt using Ant. netBeans™ bundles

Ant into its IDE and Ant itself can be updated. Due to dislike of netBeans

bundling other application within its IDE the author has the IDE point to a

separate (newest) installation Ant 1.6.2 directory. Separation of applications is

less confusing to work with. netBeans also bundles current J2SEs.

After inspection of the file structure in the netBeans explorer, locate the

fec 1.0.3 build.properties file, right click, select edit and comment out

“build.compiler=jikes”. This causes many problems. This project builds just fine

using the current Java SDKs javac.exe. The Ant script automatically calls this.

There are some other modifications commented with the author’s initials (tdn)

that were found necessary to do within this file and other pieces of source code

modified for functionality to work within the AUVW. Prior to building this

86

application with Ant, do this: In the \fec-1.0.3\fec-1.0.3\bin\lib directory is the

fec.properties file, comment out all references to “native” and keep all references

to “pure”. This is eluded to in the \fec-1.0.3\fec-1.0.3\docs\README file. When

building ${app.jar}, this will force pure java implementation of FEC (en/de)

routines.

Received a personal email reply, concerning posed implementation

questions, dtd 29 JUL 04 from Justin Chapweske, founder of Onion Networks

Inc. on the fec-1.0.3 release:

For native vs. pure, I believe you simply have to have the
appropriate native library jar in your class path and it will
automatically attempt to load the native library first, then fall back to
the pure Java library.

I believe in the 1.0.3 version there are actually some test programs
that don’t compile out of the box, so you may need to make some
modifications in order to allow them to do so.

After a long hiatus, we are again making new enhancements to the
FEC library, so over the next month or so we'll probably post a
version 1.1 release that will be much cleaner than the current
release in terms of packaging and usage.

There is a fec-win32.jar file that contains these native C routines in 8 and

16 bit implementations, namely fec8.dll and fec16.dll. If one does not include this

.jar in the classpath, or, simply not mount this .jar in the netBeans file system,

then only pure Java FEC will be implemented.

The build.xml file, used as the Ant Script, can be modified in the “jar

target” element to ease the user in creating one jar file that contains embedded

classes from other jar files used to compile the source code that come with this

build. However, this is just a convenience method as is not recommended
for actual building of applications. Modified as follows:

87

Figure 21. Ant Script that Contains the Command to Combine Multiple JAR Files into
One for Convenience

Right clicking and executing the javadoc target compiles the source code,

builds the onion-fec.jar or ${app.jar} file and produces javadoc all in one swoop.

Recommend this be done prior to working with the code. The produced javadoc

is missing documentation from the com.onionnetworks.util package. I believe

this package is used for Java Native Interface (JNI) use of the native C code that

code is originally based on. Here is a link to a more complete online javadoc:

http://onionnetworks.com/fec/javadoc/. If the reader mounts this link into

netBeans’ javadoc manager, methods will be able to point to its documentation

by right clicking over a method and selecting “Show Javadoc”.

Expand this folder: fec-1.0.3\lib and mount the following jar files in

netBeans: concurrent-jaxed.jar, log4j.jar, onion-common.jar and newly produced

onion-fec.jar to start using this code as is. This can be done simultaneously by

selecting all of these jars, right click and select “Mount JAR”. The later two are

definitely needed to run the included test programs located in the “tests” folder.

The concurrent-jaxed.jar, log4j.jar and onion-common.jar are used for compiling

the provided source code and producing the onion-fec.jar by the Ant scripted

<!--== -->
 <target depends="classes" description="Build the jar files" name="jar">
 <!-- Included the manifest from concurrent-jaxed.jar due to some errors
 that showed up when trying to read this app.jar manifest (tdn) -->
 <jar jarfile="${app.jar}" manifest="manifest/fec.mf" update="true">
 <!-- Include all the ${classpath} jar file classes used to compile the
 classes for creating the application jar. This produces one happy
 jar for everyone to enjoy. Found this command on the Java
 Tutorial site (tdn) -->
 <zipgroupfileset dir="${lib}" includes="*.jar"/> This is the
 command that embeds classes from other jar files into the ${app.jar}
 <fileset dir="classes">
 <include name="**"/>
 </fileset>
 <fileset dir="bin">
 <include name="lib/**/*"/>
 </fileset>
 </jar>
 </target>

88

build.xml file. The fec-win32.jar contains the C native routines and can be

omitted if you want to your OS run pure Java FEC only.

C. RUNNING THE INCLUDED TEST FILES
If reader desires to run the test files included in the zip, place: package

tests; at the top of the source file before compiling. This is so that netBeans will

compile the folder and run the files accordingly. The files: CodeTest,

FECOverhead, FECFileTest and IOPerformanceTest work well with the

modifications the author has introduced. Modification of the FECFileTest from

the fec-1.0.3 library was necessary to be either called from another program or to

run as an instantiable main class to show the (EN/DE) process. That file was

renamed XSBC_FECFileTest.java so that it could be called from the Comparison

Tool of the XSBC 0.91.1 library.

D. TEST FILE DEBUGGING FOR ANALYSIS OF FUNCTIONALITY

Okay, some newer and more interesting stuff. The FECFileTest is an

interesting test of the FEC code API. The author experimented with the MOVES

Institute logo which can be modified into .jpg format. The file size is 146 KB.

The FEC code breaks it up into nine blocks of packet size 1024 B after encoding.

89

Figure 22. Debug Information Obtained by FEC Encoding the MOVESLogo.jpg File

By importing org.apache.log4j.BasicConfigurator and by instantiating the

configurator as follows: BasicConfigurator.configure(); detailed debug

information, such as in the following figure, can be retrieved.

FECParameters(k=16,n=32,packetSize=1024,fileSize=146907),
File partition block count: 9,
Hash code count: -287834112, Max stripe size: 9216 B,
Default number of vanilla bytes in a block: 16384 B,
Max num of bytes that a fully encoded block can contain: 32768 B,
Max num stripes (N) that can be created from this file: 32,
Min num packets required to recreate orig. file: 144
Packet size for block: 0 = 1024 B
Num of packets required to send across the original block: 0 = 16
Packet size for block: 1 = 1024 B
Num of packets required to send across the original block: 1 = 16
Packet size for block: 2 = 1024 B
Num of packets required to send across the original block: 2 = 16
Packet size for block: 3 = 1024 B
Num of packets required to send across the original block: 3 = 16
Packet size for block: 4 = 1024 B
Num of packets required to send across the original block: 4 = 16
Packet size for block: 5 = 1024 B
Num of packets required to send across the original block: 5 = 16
Packet size for block: 6 = 1024 B
Num of packets required to send across the original block: 6 = 16
Packet size for block: 7 = 1024 B
Num of packets required to send across the original block: 7 = 16
Packet size for block: 8 = 1024 B
Num of packets required to send across the original block: 8 = 16
Num of packets written to disc: 144

90

Figure 23. DEBUG Information Obtained by Instantiating the
org.apache.log4j.BasicConfigurator [BasicConfigurator.configure()] within

FECFileTest.java

Figure 24. DEBUG Information Obtained from Invoking XSBC Compression,
GZipping and Encoded with FEC of the espdu.xml File

Loading: C:\Documents and Settings\Terry\My
 Documents\MyFiles\NPS\Courses\MV 0810 Thesis Work\Java
 Code\XSBC_FEC\xsbc_fec\examples\espdu.xml

ElementNumber: 137 AttributeNumber: 173
Bytes: Elements: 1 attributes: 1
ElementNumber: 137 AttributeNumber: 173
Bytes: Elements: 1 attributes: 1
Unknown attribute: /espdu/@xmlns:xsi
Unknown attribute: /espdu/@xsi:noNamespaceSchemaLocation
Serialized and GZipped: C:\Documents and Settings\Terry\My Documents\My

 Files\NPS\Courses\MV 0810 Thesis Work\Java
 Code\XSBC_FEC\xsbc_fec\examples\espdu.xsbc.gz

File to encode with FEC: C:\Documents and Settings\Terry\My Documents\My
 Files\NPS\Courses\MV 0810 Thesis Work\Java
 Code\XSBC_FEC\xsbc_fec\examples\espdu.xsbc.gz

FECParameters(k=16,n=32,packetSize=1024,fileSize=369)

0 [Decoder Thread] DEBUG com.onionnetworks.fec.io.FECFile - stripeNums=5,17,20,3,16,2,0,4,21,18,15,7,24,29,11,26
0 [Decoder Thread] DEBUG com.onionnetworks.fec.io.FECFile - trying to decode block : blockNum=0
Packet size for block: 2 = 1024 B
Num of packets required to send across the original block: 2 = 16
10 [Decoder Thread] DEBUG com.onionnetworks.fec.io.FECFile - stripeNums=7,28,31,15,19,18,17,9,2,11,26,3,22,5,23,27
10 [Decoder Thread] DEBUG com.onionnetworks.fec.io.FECFile - trying to decode block : blockNum=1
20 [Decoder Thread] DEBUG com.onionnetworks.fec.io.FECFile - stripeNums=29,2,5,11,13,3,31,26,4,1,8,7,22,23,14,0
20 [Decoder Thread] DEBUG com.onionnetworks.fec.io.FECFile - trying to decode block : blockNum=2
Packet size for block: 3 = 1024 B
Num of packets required to send across the original block: 3 = 16
Packet size for block: 4 = 1024 B
Num of packets required to send across the original block: 4 = 16
30 [Decoder Thread] DEBUG com.onionnetworks.fec.io.FECFile - stripeNums=24,6,26,8,27,9,21,31,11,1,14,15,18,13,5,10
30 [Decoder Thread] DEBUG com.onionnetworks.fec.io.FECFile - trying to decode block : blockNum=3
Packet size for block: 5 = 1024 B
Num of packets required to send across the original block: 5 = 16
30 [Decoder Thread] DEBUG com.onionnetworks.fec.io.FECFile - stripeNums=12,9,2,18,15,14,6,4,16,27,10,8,20,11,29,1
40 [Decoder Thread] DEBUG com.onionnetworks.fec.io.FECFile - trying to decode block : blockNum=4
40 [Decoder Thread] DEBUG com.onionnetworks.fec.io.FECFile - stripeNums=12,13,21,23,26,29,22,18,20,16,7,3,0,9,6,4
40 [Decoder Thread] DEBUG com.onionnetworks.fec.io.FECFile - trying to decode block : blockNum=5
Packet size for block: 6 = 1024 B
Num of packets required to send across the original block: 6 = 16
Packet size for block: 7 = 1024 B
Num of packets required to send across the original block: 7 = 16
50 [Decoder Thread] DEBUG com.onionnetworks.fec.io.FECFile - stripeNums=6,13,31,15,25,14,7,10,22,4,18,17,11,5,26,21
50 [Decoder Thread] DEBUG com.onionnetworks.fec.io.FECFile - trying to decode block : blockNum=6
Packet size for block: 8 = 1024 B
Num of packets required to send across the original block: 8 = 16
60 [Decoder Thread] DEBUG com.onionnetworks.fec.io.FECFile - stripeNums=3,2,22,19,11,26,28,17,23,18,14,10,12,13,21,31
140 [Decoder Thread] DEBUG com.onionnetworks.fec.io.FECFile - trying to decode block : blockNum=7
140 [Decoder Thread] DEBUG com.onionnetworks.fec.io.FECFile - stripeNums=15,24,10,9,31,20,8,16,4,26,14,25,17,28,23,12
140 [Decoder Thread] DEBUG com.onionnetworks.fec.io.FECFile - trying to decode block : blockNum=8
140 [Decoder Thread] DEBUG com.onionnetworks.fec.io.FECFile - File Decoded, switching to read-only
Num of packets written to disc: 144
All Good!

Loading: C:\Documents and Settings\Terry\My
 Documents\MyFiles\NPS\Courses\MV 0810 Thesis Work\Java
 Code\XSBC_FEC\xsbc_fec\examples\espdu.xml

ElementNumber: 137 AttributeNumber: 173
Bytes: Elements: 1 attributes: 1
ElementNumber: 137 AttributeNumber: 173
Bytes: Elements: 1 attributes: 1
Unknown attribute: /espdu/@xmlns:xsi
Unknown attribute: /espdu/@xsi:noNamespaceSchemaLocation
Serialized and GZipped: C:\Documents and Settings\Terry\My Documents\My

 Files\NPS\Courses\MV 0810 Thesis Work\Java
 Code\XSBC_FEC\xsbc_fec\examples\espdu.xsbc.gz

File to encode with FEC: C:\Documents and Settings\Terry\My Documents\My
 Files\NPS\Courses\MV 0810 Thesis Work\Java
 Code\XSBC_FEC\xsbc_fec\examples\espdu.xsbc.gz

FECParameters(k=16,n=32,packetSize=1024,fileSize=369)

91

This is a snapshot of an actual encoded block of the espdu.xml file:

Figure 25. Example Block Encoding for the espdu.xml File Showing FEC Parameters
of k=16, n=32 and a Packet Size of 1024 Bytes and Padding with Zeros

to Maintain Parameter Matrix Size n x k

As can be plainly seen, the FECParameters set are:

(k=16,n=32,packetSize=1024,fileSize=369). The espdu.xml was serialized

(XSBC) and then compressed further with GZip. The resulting file size is 369B.

When invoking the FECFile with these parameters, block partitioning of the file is

Sending FEC encoded data.... Buffer{length: 1024; offset: 0; 0: 125, 1: -127, 2: 109, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 0, 10: 63, 11: 11, 12: -110, 13: -
55, 14: -88, 15: -56, 16: 98, 17: 122, 18: 86, 19: 104, 20: 5, 21: 108, 22: -65, 23: -58, 24: 66, 25: 67, 26: 97, 27: 79, 28: -87, 29: -119, 30: -82, 31: 92, 32:
16, 33: 120, 34: 88, 35: -104, 36: 40, 37: 66, 38: 113, 39: -91, 40: -72, 41: 8, 42: -102, 43: -26, 44: -28, 45: 53, 46: 38, 47: 68, 48: -12, 49: 60, 50: -115, 51:
46, 52: 15, 53: -37, 54: -73, 55: 60, 56: 69, 57: -85, 58: 18, 59: 126, 60: 79, 61: 46, 62: -54, 63: 77, 64: -82, 65: 0, 66: 14, 67: -11, 68: -34, 69: -54, 70: 3,
71: -34, 72: -62, 73: 31, 74: 121, 75: -2, 76: 82, 77: -51, 78: -48, 79: 82, 80: 88, 81: 72, 82: 15, 83: -39, 84: 107, 85: 70, 86: -37, 87: 92, 88: 97, 89: 94, 90: -
60, 91: 75, 92: -122, 93: -103, 94: -47, 95: 47, 96: 81, 97: 114, 98: -107, 99: -119, 100: 69, 101: 93, 102: -9, 103: 63, 104: -51, 105: 79, 106: -111, 107: -59,
108: -79, 109: -41, 110: -93, 111: 60, 112: -75, 113: 94, 114: 98, 115: 32, 116: 23, 117: 101, 118: -20, 119: -44, 120: -91, 121: -97, 122: 121, 123: 6, 124:
108, 125: 11, 126: -65, 127: -66, 128: 98, 129: -70, 130: -11, 131: 101, 132: 41, 133: 4, 134: 79, 135: 66, 136: 91, 137: 61, 138: 118, 139: 16, 140: -107,
141: -81, 142: -25, 143: 90, 144: 121, 145: 1, 146: -117, 147: -71, 148: 91, 149: -34, 150: 39, 151: -38, 152: 39, 153: -33, 154: -87, 155: -33, 156: 88, 157:
19, 158: 36, 159: -126, 160: -57, 161: -64, 162: -20, 163: 84, 164: 90, 165: 78, 166: -48, 167: -117, 168: 57, 169: 83, 170: 69, 171: -6, 172: -91, 173: -6,
174: -121, 175: 14, 176: 50, 177: 49, 178: 94, 179: -97, 180: 95, 181: 75, 182: 13, 183: 89, 184: -47, 185: 57, 186: 7, 187: -96, 188: 113, 189: 127, 190: -
99, 191: -71, 192: 121, 193: -57, 194: 45, 195: 70, 196: 43, 197: -35, 198: 26, 199: -49, 200: 58, 201: 103, 202: 2, 203: -119, 204: 13, 205: 101, 206: 74,
207: 27, 208: 8, 209: 9, 210: 54, 211: -79, 212: 118, 213: -94, 214: 45, 215: -7, 216: -63, 217: 101, 218: 53, 219: -15, 220: 123, 221: 5, 222: 16, 223: -125,
224: 33, 225: -5, 226: -36, 227: 32, 228: -124, 229: 13, 230: -51, 231: -70, 232: 127, 233: 70, 234: 64, 235: 100, 236: 62, 237: -29, 238: 26, 239: 118, 240:
23, 241: 14, 242: 88, 243: 6, 244: 40, 245: -17, 246: 85, 247: 73, 248: -75, 249: -37, 250: -84, 251: -104, 252: 76, 253: -50, 254: 108, 255: 52, 256: 22, 257:
-86, 258: -39, 259: -67, 260: -26, 261: -67, 262: -117, 263: -3, 264: 26, 265: 19, 266: -66, 267: -103, 268: 63, 269: -49, 270: -41, 271: -2, 272: 42, 273: 38,
274: 8, 275: -39, 276: -82, 277: -15, 278: -7, 279: 4, 280: -5, 281: 54, 282: -76, 283: -88, 284: 28, 285: -51, 286: 66, 287: 110, 288: -45, 289: -108, 290: -91,
291: -42, 292: -75, 293: 16, 294: -44, 295: -64, 296: -24, 297: 112, 298: -84, 299: -116, 300: -118, 301: 5, 302: 112, 303: 72, 304: -55, 305: 39, 306: -52,
307: 108, 308: 58, 309: -66, 310: 29, 311: 118, 312: 88, 313: 40, 314: 1, 315: 44, 316: 112, 317: 74, 318: -13, 319: -81, 320: -73, 321: 18, 322: -122, 323: -
70, 324: -13, 325: -56, 326: -85, 327: -73, 328: 112, 329: 75, 330: 18, 331: 92, 332: 17, 333: 12, 334: 93, 335: 97, 336: -92, 337: -102, 338: 24, 339: -121,
340: 80, 341: 23, 342: -90, 343: -106, 344: -62, 345: 98, 346: 7, 347: -70, 348: 117, 349: 68, 350: 109, 351: -127, 352: -13, 353: -73, 354: -26, 355: 68,
356: 53, 357: -127, 358: 22, 359: 5, 360: 0, 361: -58, 362: -96, 363: 2, 364: 112, 365: 35, 366: 46, 367: 0, 368: 0, 369: 0, 370: 0, 371: 0, 372: 0, 373: 0,
374: 0, 375: 0, 376: 0, 377: 0, 378: 0, 379: 0, 380: 0, 381: 0, 382: 0, 383: 0, 384: 0, 385: 0, 386: 0, 387: 0, 388: 0, 389: 0, 390: 0, 391: 0, 392: 0, 393: 0,
394: 0, 395: 0, 396: 0, 397: 0, 398: 0, 399: 0, 400: 0, 401: 0, 402: 0, 403: 0, 404: 0, 405: 0, 406: 0, 407: 0, 408: 0, 409: 0, 410: 0, 411: 0, 412: 0, 413: 0,
414: 0, 415: 0, 416: 0, 417: 0, 418: 0, 419: 0, 420: 0, 421: 0, 422: 0, 423: 0, 424: 0, 425: 0, 426: 0, 427: 0, 428: 0, 429: 0, 430: 0, 431: 0, 432: 0, 433: 0,
434: 0, 435: 0, 436: 0, 437: 0, 438: 0, 439: 0, 440: 0, 441: 0, 442: 0, 443: 0, 444: 0, 445: 0, 446: 0, 447: 0, 448: 0, 449: 0, 450: 0, 451: 0, 452: 0, 453: 0,
454: 0, 455: 0, 456: 0, 457: 0, 458: 0, 459: 0, 460: 0, 461: 0, 462: 0, 463: 0, 464: 0, 465: 0, 466: 0, 467: 0, 468: 0, 469: 0, 470: 0, 471: 0, 472: 0, 473: 0,
474: 0, 475: 0, 476: 0, 477: 0, 478: 0, 479: 0, 480: 0, 481: 0, 482: 0, 483: 0, 484: 0, 485: 0, 486: 0, 487: 0, 488: 0, 489: 0, 490: 0, 491: 0, 492: 0, 493: 0,
494: 0, 495: 0, 496: 0, 497: 0, 498: 0, 499: 0, 500: 0, 501: 0, 502: 0, 503: 0, 504: 0, 505: 0, 506: 0, 507: 0, 508: 0, 509: 0, 510: 0, 511: 0, 512: 0, 513: 0,
514: 0, 515: 0, 516: 0, 517: 0, 518: 0, 519: 0, 520: 0, 521: 0, 522: 0, 523: 0, 524: 0, 525: 0, 526: 0, 527: 0, 528: 0, 529: 0, 530: 0, 531: 0, 532: 0, 533: 0,
534: 0, 535: 0, 536: 0, 537: 0, 538: 0, 539: 0, 540: 0, 541: 0, 542: 0, 543: 0, 544: 0, 545: 0, 546: 0, 547: 0, 548: 0, 549: 0, 550: 0, 551: 0, 552: 0, 553: 0,
554: 0, 555: 0, 556: 0, 557: 0, 558: 0, 559: 0, 560: 0, 561: 0, 562: 0, 563: 0, 564: 0, 565: 0, 566: 0, 567: 0, 568: 0, 569: 0, 570: 0, 571: 0, 572: 0, 573: 0,
574: 0, 575: 0, 576: 0, 577: 0, 578: 0, 579: 0, 580: 0, 581: 0, 582: 0, 583: 0, 584: 0, 585: 0, 586: 0, 587: 0, 588: 0, 589: 0, 590: 0, 591: 0, 592: 0, 593: 0,
594: 0, 595: 0, 596: 0, 597: 0, 598: 0, 599: 0, 600: 0, 601: 0, 602: 0, 603: 0, 604: 0, 605: 0, 606: 0, 607: 0, 608: 0, 609: 0, 610: 0, 611: 0, 612: 0, 613: 0,
614: 0, 615: 0, 616: 0, 617: 0, 618: 0, 619: 0, 620: 0, 621: 0, 622: 0, 623: 0, 624: 0, 625: 0, 626: 0, 627: 0, 628: 0, 629: 0, 630: 0, 631: 0, 632: 0, 633: 0,
634: 0, 635: 0, 636: 0, 637: 0, 638: 0, 639: 0, 640: 0, 641: 0, 642: 0, 643: 0, 644: 0, 645: 0, 646: 0, 647: 0, 648: 0, 649: 0, 650: 0, 651: 0, 652: 0, 653: 0,
654: 0, 655: 0, 656: 0, 657: 0, 658: 0, 659: 0, 660: 0, 661: 0, 662: 0, 663: 0, 664: 0, 665: 0, 666: 0, 667: 0, 668: 0, 669: 0, 670: 0, 671: 0, 672: 0, 673: 0,
674: 0, 675: 0, 676: 0, 677: 0, 678: 0, 679: 0, 680: 0, 681: 0, 682: 0, 683: 0, 684: 0, 685: 0, 686: 0, 687: 0, 688: 0, 689: 0, 690: 0, 691: 0, 692: 0, 693: 0,
694: 0, 695: 0, 696: 0, 697: 0, 698: 0, 699: 0, 700: 0, 701: 0, 702: 0, 703: 0, 704: 0, 705: 0, 706: 0, 707: 0, 708: 0, 709: 0, 710: 0, 711: 0, 712: 0, 713: 0,
714: 0, 715: 0, 716: 0, 717: 0, 718: 0, 719: 0, 720: 0, 721: 0, 722: 0, 723: 0, 724: 0, 725: 0, 726: 0, 727: 0, 728: 0, 729: 0, 730: 0, 731: 0, 732: 0, 733: 0,
734: 0, 735: 0, 736: 0, 737: 0, 738: 0, 739: 0, 740: 0, 741: 0, 742: 0, 743: 0, 744: 0, 745: 0, 746: 0, 747: 0, 748: 0, 749: 0, 750: 0, 751: 0, 752: 0, 753: 0,
754: 0, 755: 0, 756: 0, 757: 0, 758: 0, 759: 0, 760: 0, 761: 0, 762: 0, 763: 0, 764: 0, 765: 0, 766: 0, 767: 0, 768: 0, 769: 0, 770: 0, 771: 0, 772: 0, 773: 0,
774: 0, 775: 0, 776: 0, 777: 0, 778: 0, 779: 0, 780: 0, 781: 0, 782: 0, 783: 0, 784: 0, 785: 0, 786: 0, 787: 0, 788: 0, 789: 0, 790: 0, 791: 0, 792: 0, 793: 0,
794: 0, 795: 0, 796: 0, 797: 0, 798: 0, 799: 0, 800: 0, 801: 0, 802: 0, 803: 0, 804: 0, 805: 0, 806: 0, 807: 0, 808: 0, 809: 0, 810: 0, 811: 0, 812: 0, 813: 0,
814: 0, 815: 0, 816: 0, 817: 0, 818: 0, 819: 0, 820: 0, 821: 0, 822: 0, 823: 0, 824: 0, 825: 0, 826: 0, 827: 0, 828: 0, 829: 0, 830: 0, 831: 0, 832: 0, 833: 0,
834: 0, 835: 0, 836: 0, 837: 0, 838: 0, 839: 0, 840: 0, 841: 0, 842: 0, 843: 0, 844: 0, 845: 0, 846: 0, 847: 0, 848: 0, 849: 0, 850: 0, 851: 0, 852: 0, 853: 0,
854: 0, 855: 0, 856: 0, 857: 0, 858: 0, 859: 0, 860: 0, 861: 0, 862: 0, 863: 0, 864: 0, 865: 0, 866: 0, 867: 0, 868: 0, 869: 0, 870: 0, 871: 0, 872: 0, 873: 0,
874: 0, 875: 0, 876: 0, 877: 0, 878: 0, 879: 0, 880: 0, 881: 0, 882: 0, 883: 0, 884: 0, 885: 0, 886: 0, 887: 0, 888: 0, 889: 0, 890: 0, 891: 0, 892: 0, 893: 0,
894: 0, 895: 0, 896: 0, 897: 0, 898: 0, 899: 0, 900: 0, 901: 0, 902: 0, 903: 0, 904: 0, 905: 0, 906: 0, 907: 0, 908: 0, 909: 0, 910: 0, 911: 0, 912: 0, 913: 0,
914: 0, 915: 0, 916: 0, 917: 0, 918: 0, 919: 0, 920: 0, 921: 0, 922: 0, 923: 0, 924: 0, 925: 0, 926: 0, 927: 0, 928: 0, 929: 0, 930: 0, 931: 0, 932: 0, 933: 0,
934: 0, 935: 0, 936: 0, 937: 0, 938: 0, 939: 0, 940: 0, 941: 0, 942: 0, 943: 0, 944: 0, 945: 0, 946: 0, 947: 0, 948: 0, 949: 0, 950: 0, 951: 0, 952: 0, 953: 0,
954: 0, 955: 0, 956: 0, 957: 0, 958: 0, 959: 0, 960: 0, 961: 0, 962: 0, 963: 0, 964: 0, 965: 0, 966: 0, 967: 0, 968: 0, 969: 0, 970: 0, 971: 0, 972: 0, 973: 0,
974: 0, 975: 0, 976: 0, 977: 0, 978: 0, 979: 0, 980: 0, 981: 0, 982: 0, 983: 0, 984: 0, 985: 0, 986: 0, 987: 0, 988: 0, 989: 0, 990: 0, 991: 0, 992: 0, 993: 0,
994: 0, 995: 0, 996: 0, 997: 0, 998: 0, 999: 0, 1000: 0, 1001: 0, 1002: 0, 1003: 0, 1004: 0, 1005: 0, 1006: 0, 1007: 0, 1008: 0, 1009: 0, 1010: 0, 1011: 0,
1012: 0, 1013: 0, 1014: 0, 1015: 0, 1016: 0, 1017: 0, 1018: 0, 1019: 0, 1020: 0, 1021: 0, 1022: 0, 1023: 0}

Host to send to: 127.0.0.1 and port to send to: 4040 <- we set these in the Sender so the
Datagram Socket can bind to the local host on port 4040.

Sending FEC encoded data.... Buffer{length: 1024; offset: 0; 0: 125, 1: -127, 2: 109, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 0, 10: 63, 11: 11, 12: -110, 13: -
55, 14: -88, 15: -56, 16: 98, 17: 122, 18: 86, 19: 104, 20: 5, 21: 108, 22: -65, 23: -58, 24: 66, 25: 67, 26: 97, 27: 79, 28: -87, 29: -119, 30: -82, 31: 92, 32:
16, 33: 120, 34: 88, 35: -104, 36: 40, 37: 66, 38: 113, 39: -91, 40: -72, 41: 8, 42: -102, 43: -26, 44: -28, 45: 53, 46: 38, 47: 68, 48: -12, 49: 60, 50: -115, 51:
46, 52: 15, 53: -37, 54: -73, 55: 60, 56: 69, 57: -85, 58: 18, 59: 126, 60: 79, 61: 46, 62: -54, 63: 77, 64: -82, 65: 0, 66: 14, 67: -11, 68: -34, 69: -54, 70: 3,
71: -34, 72: -62, 73: 31, 74: 121, 75: -2, 76: 82, 77: -51, 78: -48, 79: 82, 80: 88, 81: 72, 82: 15, 83: -39, 84: 107, 85: 70, 86: -37, 87: 92, 88: 97, 89: 94, 90: -
60, 91: 75, 92: -122, 93: -103, 94: -47, 95: 47, 96: 81, 97: 114, 98: -107, 99: -119, 100: 69, 101: 93, 102: -9, 103: 63, 104: -51, 105: 79, 106: -111, 107: -59,
108: -79, 109: -41, 110: -93, 111: 60, 112: -75, 113: 94, 114: 98, 115: 32, 116: 23, 117: 101, 118: -20, 119: -44, 120: -91, 121: -97, 122: 121, 123: 6, 124:
108, 125: 11, 126: -65, 127: -66, 128: 98, 129: -70, 130: -11, 131: 101, 132: 41, 133: 4, 134: 79, 135: 66, 136: 91, 137: 61, 138: 118, 139: 16, 140: -107,
141: -81, 142: -25, 143: 90, 144: 121, 145: 1, 146: -117, 147: -71, 148: 91, 149: -34, 150: 39, 151: -38, 152: 39, 153: -33, 154: -87, 155: -33, 156: 88, 157:
19, 158: 36, 159: -126, 160: -57, 161: -64, 162: -20, 163: 84, 164: 90, 165: 78, 166: -48, 167: -117, 168: 57, 169: 83, 170: 69, 171: -6, 172: -91, 173: -6,
174: -121, 175: 14, 176: 50, 177: 49, 178: 94, 179: -97, 180: 95, 181: 75, 182: 13, 183: 89, 184: -47, 185: 57, 186: 7, 187: -96, 188: 113, 189: 127, 190: -
99, 191: -71, 192: 121, 193: -57, 194: 45, 195: 70, 196: 43, 197: -35, 198: 26, 199: -49, 200: 58, 201: 103, 202: 2, 203: -119, 204: 13, 205: 101, 206: 74,
207: 27, 208: 8, 209: 9, 210: 54, 211: -79, 212: 118, 213: -94, 214: 45, 215: -7, 216: -63, 217: 101, 218: 53, 219: -15, 220: 123, 221: 5, 222: 16, 223: -125,
224: 33, 225: -5, 226: -36, 227: 32, 228: -124, 229: 13, 230: -51, 231: -70, 232: 127, 233: 70, 234: 64, 235: 100, 236: 62, 237: -29, 238: 26, 239: 118, 240:
23, 241: 14, 242: 88, 243: 6, 244: 40, 245: -17, 246: 85, 247: 73, 248: -75, 249: -37, 250: -84, 251: -104, 252: 76, 253: -50, 254: 108, 255: 52, 256: 22, 257:
-86, 258: -39, 259: -67, 260: -26, 261: -67, 262: -117, 263: -3, 264: 26, 265: 19, 266: -66, 267: -103, 268: 63, 269: -49, 270: -41, 271: -2, 272: 42, 273: 38,
274: 8, 275: -39, 276: -82, 277: -15, 278: -7, 279: 4, 280: -5, 281: 54, 282: -76, 283: -88, 284: 28, 285: -51, 286: 66, 287: 110, 288: -45, 289: -108, 290: -91,
291: -42, 292: -75, 293: 16, 294: -44, 295: -64, 296: -24, 297: 112, 298: -84, 299: -116, 300: -118, 301: 5, 302: 112, 303: 72, 304: -55, 305: 39, 306: -52,
307: 108, 308: 58, 309: -66, 310: 29, 311: 118, 312: 88, 313: 40, 314: 1, 315: 44, 316: 112, 317: 74, 318: -13, 319: -81, 320: -73, 321: 18, 322: -122, 323: -
70, 324: -13, 325: -56, 326: -85, 327: -73, 328: 112, 329: 75, 330: 18, 331: 92, 332: 17, 333: 12, 334: 93, 335: 97, 336: -92, 337: -102, 338: 24, 339: -121,
340: 80, 341: 23, 342: -90, 343: -106, 344: -62, 345: 98, 346: 7, 347: -70, 348: 117, 349: 68, 350: 109, 351: -127, 352: -13, 353: -73, 354: -26, 355: 68,
356: 53, 357: -127, 358: 22, 359: 5, 360: 0, 361: -58, 362: -96, 363: 2, 364: 112, 365: 35, 366: 46, 367: 0, 368: 0, 369: 0, 370: 0, 371: 0, 372: 0, 373: 0,
374: 0, 375: 0, 376: 0, 377: 0, 378: 0, 379: 0, 380: 0, 381: 0, 382: 0, 383: 0, 384: 0, 385: 0, 386: 0, 387: 0, 388: 0, 389: 0, 390: 0, 391: 0, 392: 0, 393: 0,
394: 0, 395: 0, 396: 0, 397: 0, 398: 0, 399: 0, 400: 0, 401: 0, 402: 0, 403: 0, 404: 0, 405: 0, 406: 0, 407: 0, 408: 0, 409: 0, 410: 0, 411: 0, 412: 0, 413: 0,
414: 0, 415: 0, 416: 0, 417: 0, 418: 0, 419: 0, 420: 0, 421: 0, 422: 0, 423: 0, 424: 0, 425: 0, 426: 0, 427: 0, 428: 0, 429: 0, 430: 0, 431: 0, 432: 0, 433: 0,
434: 0, 435: 0, 436: 0, 437: 0, 438: 0, 439: 0, 440: 0, 441: 0, 442: 0, 443: 0, 444: 0, 445: 0, 446: 0, 447: 0, 448: 0, 449: 0, 450: 0, 451: 0, 452: 0, 453: 0,
454: 0, 455: 0, 456: 0, 457: 0, 458: 0, 459: 0, 460: 0, 461: 0, 462: 0, 463: 0, 464: 0, 465: 0, 466: 0, 467: 0, 468: 0, 469: 0, 470: 0, 471: 0, 472: 0, 473: 0,
474: 0, 475: 0, 476: 0, 477: 0, 478: 0, 479: 0, 480: 0, 481: 0, 482: 0, 483: 0, 484: 0, 485: 0, 486: 0, 487: 0, 488: 0, 489: 0, 490: 0, 491: 0, 492: 0, 493: 0,
494: 0, 495: 0, 496: 0, 497: 0, 498: 0, 499: 0, 500: 0, 501: 0, 502: 0, 503: 0, 504: 0, 505: 0, 506: 0, 507: 0, 508: 0, 509: 0, 510: 0, 511: 0, 512: 0, 513: 0,
514: 0, 515: 0, 516: 0, 517: 0, 518: 0, 519: 0, 520: 0, 521: 0, 522: 0, 523: 0, 524: 0, 525: 0, 526: 0, 527: 0, 528: 0, 529: 0, 530: 0, 531: 0, 532: 0, 533: 0,
534: 0, 535: 0, 536: 0, 537: 0, 538: 0, 539: 0, 540: 0, 541: 0, 542: 0, 543: 0, 544: 0, 545: 0, 546: 0, 547: 0, 548: 0, 549: 0, 550: 0, 551: 0, 552: 0, 553: 0,
554: 0, 555: 0, 556: 0, 557: 0, 558: 0, 559: 0, 560: 0, 561: 0, 562: 0, 563: 0, 564: 0, 565: 0, 566: 0, 567: 0, 568: 0, 569: 0, 570: 0, 571: 0, 572: 0, 573: 0,
574: 0, 575: 0, 576: 0, 577: 0, 578: 0, 579: 0, 580: 0, 581: 0, 582: 0, 583: 0, 584: 0, 585: 0, 586: 0, 587: 0, 588: 0, 589: 0, 590: 0, 591: 0, 592: 0, 593: 0,
594: 0, 595: 0, 596: 0, 597: 0, 598: 0, 599: 0, 600: 0, 601: 0, 602: 0, 603: 0, 604: 0, 605: 0, 606: 0, 607: 0, 608: 0, 609: 0, 610: 0, 611: 0, 612: 0, 613: 0,
614: 0, 615: 0, 616: 0, 617: 0, 618: 0, 619: 0, 620: 0, 621: 0, 622: 0, 623: 0, 624: 0, 625: 0, 626: 0, 627: 0, 628: 0, 629: 0, 630: 0, 631: 0, 632: 0, 633: 0,
634: 0, 635: 0, 636: 0, 637: 0, 638: 0, 639: 0, 640: 0, 641: 0, 642: 0, 643: 0, 644: 0, 645: 0, 646: 0, 647: 0, 648: 0, 649: 0, 650: 0, 651: 0, 652: 0, 653: 0,
654: 0, 655: 0, 656: 0, 657: 0, 658: 0, 659: 0, 660: 0, 661: 0, 662: 0, 663: 0, 664: 0, 665: 0, 666: 0, 667: 0, 668: 0, 669: 0, 670: 0, 671: 0, 672: 0, 673: 0,
674: 0, 675: 0, 676: 0, 677: 0, 678: 0, 679: 0, 680: 0, 681: 0, 682: 0, 683: 0, 684: 0, 685: 0, 686: 0, 687: 0, 688: 0, 689: 0, 690: 0, 691: 0, 692: 0, 693: 0,
694: 0, 695: 0, 696: 0, 697: 0, 698: 0, 699: 0, 700: 0, 701: 0, 702: 0, 703: 0, 704: 0, 705: 0, 706: 0, 707: 0, 708: 0, 709: 0, 710: 0, 711: 0, 712: 0, 713: 0,
714: 0, 715: 0, 716: 0, 717: 0, 718: 0, 719: 0, 720: 0, 721: 0, 722: 0, 723: 0, 724: 0, 725: 0, 726: 0, 727: 0, 728: 0, 729: 0, 730: 0, 731: 0, 732: 0, 733: 0,
734: 0, 735: 0, 736: 0, 737: 0, 738: 0, 739: 0, 740: 0, 741: 0, 742: 0, 743: 0, 744: 0, 745: 0, 746: 0, 747: 0, 748: 0, 749: 0, 750: 0, 751: 0, 752: 0, 753: 0,
754: 0, 755: 0, 756: 0, 757: 0, 758: 0, 759: 0, 760: 0, 761: 0, 762: 0, 763: 0, 764: 0, 765: 0, 766: 0, 767: 0, 768: 0, 769: 0, 770: 0, 771: 0, 772: 0, 773: 0,
774: 0, 775: 0, 776: 0, 777: 0, 778: 0, 779: 0, 780: 0, 781: 0, 782: 0, 783: 0, 784: 0, 785: 0, 786: 0, 787: 0, 788: 0, 789: 0, 790: 0, 791: 0, 792: 0, 793: 0,
794: 0, 795: 0, 796: 0, 797: 0, 798: 0, 799: 0, 800: 0, 801: 0, 802: 0, 803: 0, 804: 0, 805: 0, 806: 0, 807: 0, 808: 0, 809: 0, 810: 0, 811: 0, 812: 0, 813: 0,
814: 0, 815: 0, 816: 0, 817: 0, 818: 0, 819: 0, 820: 0, 821: 0, 822: 0, 823: 0, 824: 0, 825: 0, 826: 0, 827: 0, 828: 0, 829: 0, 830: 0, 831: 0, 832: 0, 833: 0,
834: 0, 835: 0, 836: 0, 837: 0, 838: 0, 839: 0, 840: 0, 841: 0, 842: 0, 843: 0, 844: 0, 845: 0, 846: 0, 847: 0, 848: 0, 849: 0, 850: 0, 851: 0, 852: 0, 853: 0,
854: 0, 855: 0, 856: 0, 857: 0, 858: 0, 859: 0, 860: 0, 861: 0, 862: 0, 863: 0, 864: 0, 865: 0, 866: 0, 867: 0, 868: 0, 869: 0, 870: 0, 871: 0, 872: 0, 873: 0,
874: 0, 875: 0, 876: 0, 877: 0, 878: 0, 879: 0, 880: 0, 881: 0, 882: 0, 883: 0, 884: 0, 885: 0, 886: 0, 887: 0, 888: 0, 889: 0, 890: 0, 891: 0, 892: 0, 893: 0,
894: 0, 895: 0, 896: 0, 897: 0, 898: 0, 899: 0, 900: 0, 901: 0, 902: 0, 903: 0, 904: 0, 905: 0, 906: 0, 907: 0, 908: 0, 909: 0, 910: 0, 911: 0, 912: 0, 913: 0,
914: 0, 915: 0, 916: 0, 917: 0, 918: 0, 919: 0, 920: 0, 921: 0, 922: 0, 923: 0, 924: 0, 925: 0, 926: 0, 927: 0, 928: 0, 929: 0, 930: 0, 931: 0, 932: 0, 933: 0,
934: 0, 935: 0, 936: 0, 937: 0, 938: 0, 939: 0, 940: 0, 941: 0, 942: 0, 943: 0, 944: 0, 945: 0, 946: 0, 947: 0, 948: 0, 949: 0, 950: 0, 951: 0, 952: 0, 953: 0,
954: 0, 955: 0, 956: 0, 957: 0, 958: 0, 959: 0, 960: 0, 961: 0, 962: 0, 963: 0, 964: 0, 965: 0, 966: 0, 967: 0, 968: 0, 969: 0, 970: 0, 971: 0, 972: 0, 973: 0,
974: 0, 975: 0, 976: 0, 977: 0, 978: 0, 979: 0, 980: 0, 981: 0, 982: 0, 983: 0, 984: 0, 985: 0, 986: 0, 987: 0, 988: 0, 989: 0, 990: 0, 991: 0, 992: 0, 993: 0,
994: 0, 995: 0, 996: 0, 997: 0, 998: 0, 999: 0, 1000: 0, 1001: 0, 1002: 0, 1003: 0, 1004: 0, 1005: 0, 1006: 0, 1007: 0, 1008: 0, 1009: 0, 1010: 0, 1011: 0,
1012: 0, 1013: 0, 1014: 0, 1015: 0, 1016: 0, 1017: 0, 1018: 0, 1019: 0, 1020: 0, 1021: 0, 1022: 0, 1023: 0}

Host to send to: 127.0.0.1 and port to send to: 4040 <- we set these in the Sender so the
Datagram Socket can bind to the local host on port 4040.

92

determined based on these parameters by taking the file’s size as a numerator

and dividing by:

 (K * PACKET_SIZE).

So, in this case:

369 /(16*1024)
0.02252197265

BLOCKCOUNT =
=

and the size of the block is (K * PACKET_SIZE).

This number is rounded up to an integer value, so the block size for the

369 byte espdu.xsbc.gz file is 1. Inside this block will be 16 byte arrays each

1024 bytes in size. These contain the FEC encoding values (symbols) and are

designated repair packets. The packets are padded with zeros to maintain GF

matrix of size n x k if there is no further encoding to be done on that particular

packet. These zeros are parsed for and discarded during the decoding process.

Using the Vandermonde-based Erasure Correction Codes that this FEC

API is based upon, the MOVESLogo.jpg was encoded into a set of 32 original

data packets per block which were placed in a set of n - k encoded packets such

that any k of the n encoded packets is sufficient to reproduce the original data

(Chapweske 2000). FEC codes do not care which form the data is in (Hamming

1995), therefore, the author concludes that it is correct to encode a combined

.xsbc and binarily compressed file *xsbc.bz before sending it on its way.

93

E. EXAMPLE OF FEC ENCODING AN XML FILE COMPRESSED WITH
XSBC

1. XSBC_FECFileTest.java

/* Program: XML Schema Binary Compression (XSBC) files encoded with Forward
 * Error Correction (FEC) coding
 *
 * Author: LT Terry D. Norbraten, USN
 * Modifier:
 *
 * Created on: July 11, 2004, 1030
 * Modified on: November 12, 2004, 2358
 *
 * Course: MV 0810 (Thesis Research)
 * Summer 2004
 *
 * File: XSBC_FECFileTest.java
 *
 * Compiler: netBeans IDE 3.6 (External), J2SDK 1.4.2_04
 * O/S: Windows XP Home Ed. (SP 1)
 *
 * Description: First attempt at encoding an .xsbc file with fec followed by
 * decoding, then finally uncompressing to observe the magic of it
 * all.
 *
 * Information: Using fec-1.0.3 created by Justin F. Chapweske of Onion
 * Networks and xsbc-0.91.1 created by Alan Hudson of Yumetech
 * Inc. Both are Java open source APIs. Invoke this test after
 * invoking SimpleExample or a FileNotFoundException will occur.
 */

package xsbc_fec;

// External imports (tdn)
import java.io.File;
import java.io.FileInputStream;
import java.io.InputStream;
import java.io.IOException;

import java.security.DigestInputStream;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

// Local imports (tdn)
import com.onionnetworks.fec.io.FECFile;
import com.onionnetworks.fec.io.FECParameters;

import com.onionnetworks.util.BlockDigestInputStream;
import com.onionnetworks.util.Buffer;
import com.onionnetworks.util.FileIntegrity;
import com.onionnetworks.util.FileIntegrityImpl;
import com.onionnetworks.util.Util;

import org.apache.log4j.BasicConfigurator;

/**
 * Code heavily borrowed from the FECFileTest.java of the fec-1.0.3 API. Encodes
 * an .xsbc file and decodes checking file integrity to show that it is indeed
 * an original reproduction.
 *
 * @author LT Terry D. Norbraten, USN
 */
public class XSBC_FECFileTest {

94

 /* DATA MEMBER(s) */

 /* Public */

 /* Private */

 /** Used for file integrity checks */
 private BlockDigestInputStream bdis;

 /** The buffer array used for FEC decoding */
 private Buffer[] repairBuffer;

 /** Used for file integrity checks */
 private DigestInputStream dis;

 /** Our (en/de) pair */
 private FECFile server,
 client;

 /** Our FEC code parameters */
 private FECParameters params;

 /** A check on our decoding process */
 private FileIntegrity integrity;

 /** In steam for file encoding */
 private InputStream is;

 /** Used for file integrity checks */
 private MessageDigest md;

 /** File base to apply .xsbc extention to */
 private String fileBase;

 /** File name to substring into a file base */
 private String fileName;

 /** Designate a message digest algorithm */
 private final String DIGEST_ALGORITHM = "sha";

 /** Name our test file with .xsbc extenstion */
 private final static String TEST_FILE = "espdu.xsbc";

 /** String pointer to my user directory */
 private final static String USER_DIR = "C:\\Documents and Settings\\Terry\\"
 + "My Documents\\My Files\\NPS\\Courses\\MV 0810 Thesis Work\\Java Code\\" +
 "XSBC_FEC\\xsbc_fec\\examples\\";

 /** Our stripe order array N */
 private int[] stripeOrder;

 /** The random indices of our stripe orders K */
 private int[] indexes;

 /** Designate 3 out of 4 FEC parameters (tdn) */
 private final int K = 16,
 N = 32,
 PACKET_SIZE = 1024;

 /* CONSTRUCTOR(s) */

 /** Creates and new instance of XSBC_FECFileTest */
 public XSBC_FECFileTest() {

 md = null;
 dis = null;
 bdis = null;
 stripeOrder = new int[N];
 repairBuffer = new Buffer[K];
 indexes = new int[K];

95

 // This function, which was originally commented out, produces a DEBUG
 // output that shows Block Counts and the decoding process. If commented
 // out, it will throw a couple of log4j error about not being initialized
 // properly (tdn)
 BasicConfigurator.configure();

 } // end constructor

 /* MAIN METHOD */

 /**
 * @param args the command line arguments if any (tdn)
 *
 * @exception Exception thrown if (en/de) failed
 */
 public static void main(String[] args) {

 try {

 // Moved everything that was in this main to fileEncode_Decode() so
 // that I could call it from the XSBC ComparisonTool GUI, or run this
 // class as an instantiable main class (tdn)
 new XSBC_FECFileTest().fileEncode_Decode(new File(USER_DIR +
 TEST_FILE));

 } catch (Exception e) {

 System.out.println(e);

 } // end try-catch block

 } // end main()

 /**
 * Encodes an .xsbc file, then decodes into another file with a "Decoded"
 * prefix.
 *
 * @param file the .xml file to (en/de)
 *
 * @exception NoSuchAlgorithmException
 */
 public void fileEncode_Decode(File file) throws Exception {

 // Get our file name in String form
 fileName = file.getName();
 System.out.println("File name: " + fileName); // DEBUG

 // Cut off the .xml extension and create a new file with an .xsbc
 // extension as the xsbc version of the .xml (tdn)
 fileBase = fileName.substring(0, fileName.lastIndexOf("."));
 System.out.println("File base: " + fileBase); // DEBUG

 System.out.println("Computing checksums on: " + fileBase
 + "Decoded.xsbc");

 // Read in the file
 is = new FileInputStream(file);

 // Build our integrity checker
 try {

 md = MessageDigest.getInstance(DIGEST_ALGORITHM);
 System.out.println("The message digest object: " + md); // DEBUG
 dis = new DigestInputStream(is, md);
 System.out.println("The digest stream: " + dis); // DEBUG
 bdis = new BlockDigestInputStream(dis, DIGEST_ALGORITHM,
 K * PACKET_SIZE);

 } catch (NoSuchAlgorithmException e) {

 throw new IOException(e.getMessage());

96

 } // end try-catch block

 // The length 8192 of this byte array has something to do with the
 // encMartix size in the code's FEC math functions. This is a character
 // array of size K * N. This new byte[] will take orig. file information
 // for the File integrity check fucntion of FECFile writting in rw mode
 // (tdn)
 byte[] b = new byte[8192];
 long fileLength = 0;
 int c = 0;

 // Read in the data and digest it.
 while ((c = bdis.read(b)) != -1) {

 fileLength += c;

 } // end while

 bdis.finish();
 // Finish must be called first to avoid throwing a
 // java.lang.IllegalStateException (tdn)
 System.out.println("The BDIS object: " +
 bdis.getBlockDigests()[0] + "\n"); // DEBUG

 // Create our parameters
 params = new FECParameters(K, N, PACKET_SIZE, fileLength);

 System.out.println(params); // DEBUG

 // Finalize the integrity table
 integrity = new FileIntegrityImpl(DIGEST_ALGORITHM, new Buffer(
 md.digest()), bdis.getBlockDigests(), params.getFileSize(),
 params.getUnexpandedBlockSize());

 System.out.println("The File Integrity hash computation for file: " +
 file + "\nis " + integrity.getFileHash()); // DEBUG

 System.out.println("Unexpanded Block Size: "
 + params.getUnexpandedBlockSize()); // DEBUG

 System.out.println("checksums done doing our thang.");

 // Only need to do this once. For loop is for testing purposes only
 for (int i = 0; i < 1; i++) { // orig. iteration was 100 (tdn)

 // Encode the file in read mode only
 server = new FECFile(file, "r", params);

 // TODO: Must be able to show a file that has been encoded with FEC
 // as this file is what would be sent over the net. Must also show,
 // by implementing some kind of random noise generator that would
 // drop packets, that the encoded code will decode to it's orig. state
 // and then my work will be complete (tdn)

 // Attempting with direct pointing to a file with a name and
 // directory I select. Decode the file in read/write mode and check
 // for integrity against the original file (tdn)
 client = new FECFile(new File(USER_DIR + "\\" + fileBase +
 "Decoded.xsbc"), "rw", params, integrity);

 // Perform the (en/de) function
 doIt(client, server, params);

// System.out.println(i); // Num interations for DEBUG/File Integrity
 // checks

 } // end for

 System.out.println("All Good!");

 } // end fileEncode_Decode()

97

 /**
 * This is the necessary to invoke the principle (en/de) function
 *
 * @param client the FECFile to decode from packet block/byte form back into
 * a file
 * @param server the FECFile to encode into a block/byte form packets
 * @param params the FEC code parameters used for (en/de)
 */
 private void doIt(FECFile client, FECFile server, FECParameters params)
 throws Exception {

 // Create N of these
 for (int i = 0; i < stripeOrder.length; i++) {

 stripeOrder[i] = i;

 } // end for

 // K of these Buffer wrappers each which will hold byte[] of size 1024 B
 // which hold the original source packets (tdn)
 for (int i = 0; i < K; i++) {

 repairBuffer[i] = new Buffer(PACKET_SIZE);

 } // end for

 for (int i = 0; i < params.getBlockCount(); i++) {

 // Shuffle the order of the (N) indices using a Fisher-Yates shuffle
 // algorithm (num blocks) times (tdn)
 Util.shuffle(stripeOrder);

 // Copy the order a (K) subset of N stripe indices into index array
 // (tdn)
 System.arraycopy(stripeOrder, 0, indexes, 0, K);

 // Reads K packets (encoding them if necessary) into the provided
 // buffers (block num) times (tdn)
 server.read(repairBuffer, i, indexes);
 int l = 0;

 System.out.println("Num of packets required to send across the "
 + "original block: " + i + " = " +
 + params.getUnexpandedPacketCount(i)); // DEBUG

 for (int j = 0; l < params.getUnexpandedPacketCount(i); j++) {

 // Prevent writing of decoded packets padded with zeros
 if (!params.isPaddingPacket(i, indexes[j])) {

 // This decodes the packets and write the orig. file back to
 // disc
 client.write(repairBuffer[j], i, indexes[j]);

 l++;

 } // end if

 } // end inner for

 } // end outer for

 // This halts threads until the file is written to disc
 client.waitForFileDecoded();

 System.out.println("Num of packets written to disc: "
 + client.getWrittenCount()); // DEBUG

 server.close();
 client.close();

98

 } // end doIt()

} // end class file XSBC_FECFileTest.java

F. EXAMPLE FEC ENCODING THE MOVESLOGO.JPG FILE

1. FECFileTest.java

/* Program: XML Schema Binary Compression (XSBC) files encoded with Forward
 * Error Correction (FEC) coding
 *
 * Author: Justin F. Chapweske
 * Modifier: LT Terry D. Norbraten, USN
 *
 * Created on: July 11, 2004, 1030
 * Modified on: November 12, 2004, 2358
 *
 * Course: MV 0810 (Thesis Research)
 * Summer 2004
 *
 * File: FECFileTest.java
 *
 * Compiler: netBeans IDE 3.6 (External), J2SDK 1.4.2_04
 * O/S: Windows XP Home Ed. (SP 1)
 *
 * Description: Test file taking a rather large .jpg file, encoding with FEC
 * which takes the file, breaks it up into encoding blocks
 * according to the specified FEC parameters, checks the file
 * integrity utilizing a message digest "sha" algorithm and
 * reproducing the original file as a decoded copy.
 *
 * Information: Using fec-1.0.3 created by Justin F. Chapweske of Onion
 * Networks Inc., an Java open source API.
 */
package xsbc_fec.testFiles;

// Standard library imports
import java.io.File;
import java.io.FileInputStream;
import java.io.InputStream;
import java.io.IOException;

import java.net.URI;

import java.security.*;

// Specific local imports
import com.onionnetworks.fec.io.*;
import com.onionnetworks.util.*;
import org.apache.log4j.BasicConfigurator;

/*
 * Test file taking a rather large .jpg file, encoding with FEC
 * which takes the file, breaks it up into encoding blocks
 * according to the specified FEC parameters, checks the file
 * integrity utilizing a message digest "sha" algorithm and
 * reproducing the original file as a decoded copy.
 *
 * @author Justin F. Chapweske
 * <p> Modified by LT Terry D. Norbraten, USN </p>
 */
public class FECFileTest {

99

 /* DATA MEMBERS */

 public static final int K = 16; // tdn
 public static final int N = 32; // tdn
 public static final int PACKET_SIZE = 1024; // tdn
 public static final String DIGEST_ALGORITHM = "sha";

 /* MAIN METHOD */

 public static void main(String[] args) throws Exception {

 // This function, which was originally commented out, produces a DEBUG
 // output that shows Block Counts and the decoding process. If commented
 // out, it will throw a couple of log4j error about not being initialized
 // properly (tdn)
 BasicConfigurator.configure();

 // Attempting with pseudofiles (tdn)
 File sourceFile = new File("C:/Documents and Settings/" +
 "Terry/My Documents/My Files/NPS/MOVESLogo.jpg");

 System.out.println("Computing checksums");
 InputStream is = new FileInputStream(sourceFile);

 MessageDigest md = null;
 DigestInputStream dis = null;
 BlockDigestInputStream bdis = null;

 try {
 md = MessageDigest.getInstance(DIGEST_ALGORITHM);
 dis = new DigestInputStream(is,md);
 bdis = new BlockDigestInputStream(dis,DIGEST_ALGORITHM,
 K * PACKET_SIZE);
 } catch (NoSuchAlgorithmException e) {
 throw new IOException(e.getMessage());

 } // end try-catch block

 // The length 8192 of this byte array has something to do with the
 // encMartix size in the code's FEC math functions. This is a character
 // array of size K * N. This new byte[] will take orig. file information
 // and for the File integrity check (tdn)
 byte[] b = new byte[8192];
 long fileLength = 0;
 int c = 0;
 // Read in the data and digest it.
 while ((c = bdis.read(b)) != -1) {
 fileLength += c;

 } // end while

 bdis.finish();

 FECParameters params = new FECParameters(K, N, PACKET_SIZE, fileLength);
 FileIntegrity integrity = new FileIntegrityImpl
 (DIGEST_ALGORITHM, new Buffer(md.digest()), bdis.getBlockDigests(),
 params.getFileSize(), params.getUnexpandedBlockSize());

 System.out.println("checksums done doing our thang.");

 for (int i = 0; i < 1; i++) { // orig. 100 iterations (tdn)

 FECFile server = new FECFile(sourceFile, "r", params);

 // Attemping with direct pointing to a file with a name and
 // directory I select (tdn)
 FECFile client = new FECFile(new File("C:/Documents and Settings/" +
 "Terry/My Documents/My Files/NPS/Courses/MV 0810 Thesis Work/" +
 "Java Code/XSBC_FEC/xsbc_fec/examples/test.jpg"), "rw", params,
 integrity);

100

 doIt(client,server,params);

 } // end for

 System.out.println("All Good!");
 System.exit(0);

 } // end main()

 /*
 * Encodes and check file integrity to ensure that the decoded copy file is
 * a computed hash verification of the original during the FEC decoding
 * process
 */
 public static void doIt(FECFile client, FECFile server,
 FECParameters params) throws Exception {

 // So, 256 of these (N) (tdn)
 int[] stripeOrder = new int[N];
 for (int i=0;i<stripeOrder.length;i++) {
 stripeOrder[i] = i;

 } // end for

 // K of these Buffer wrappers each which will hold byte[] of size 1024 B
 // which hold the original source packets (tdn)
 Buffer[] bufs = new Buffer[K]; // orig K
 for (int i=0;i<K;i++) { // orig. K
 bufs[i] = new Buffer(PACKET_SIZE);

 } // end for

// System.out.println(params + ", File partition block count: "
// + params.getBlockCount()+ ", \nHash code count: "
// + params.hashCode() + ", Max stripe size: "
// + params.getMaxStripeSize() + " B,"
// + " \nDefault number of vanilla bytes in a block: "
// + params.getUnexpandedBlockSize() + " B," +
// "\nMax num of bytes that a fully encoded block"
// + " can contain: " + params.getExpandedBlockSize()
// + " B," + "\nMax num stripes (N) that can be created "
// + "from this file: " + params.getNumStripes() +
// ", \nMin num packets required to recreate orig. file:"
// + " " + params.getUnexpandedPacketCount()); // DEBUG

 for (int i = 0; i < params.getBlockCount(); i++) {

 // Shuffle the order of the (N) indicies using a Fisher-Yates shuffle
 // algorithm (num blocks) times (tdn)
 Util.shuffle(stripeOrder); // <- this is a curious function (tdn)

 // New array of length (N) (tdn)
 int[] indexes = new int[K]; // orig. K

 // Copy the order a (K) subset of N stripe indices into index array
 // (tdn)
 System.arraycopy(stripeOrder, 0, indexes, 0, K);

 // Reads N packets (encoding them if necessary) into the provided
 // buffers (block num) times (tdn)
 server.read(bufs, i, indexes);

 System.out.println("Packet size for block: " + i + " " + "= " +
 params.getPacketSize(i, indexes[i]) + " B"); // DEBUG

 System.out.println("Num of packets required to send across the "
 + "original block: " + i + " = " +
 + params.getUnexpandedPacketCount(i)); // DEBUG

 int l=0;
 for (int j=0;l<params.getUnexpandedPacketCount(i);j++) {

101

 // Prevent writing of decoded packets padded with zeros
 if (!params.isPaddingPacket(i, indexes[j])) {

 // This decodes the packets and writes the orig. file back to
 // disc
 client.write(bufs[j],i,indexes[j]);
 l++;

 } // end if

 } // end inner for

 } // end outer for

 // This halts threads until the file is written to disc
 client.waitForFileDecoded();

 int numPackets = client.getWrittenCount();

 System.out.println("Num of packets written to disc: "
 + numPackets); // DEBUG

 server.close();
 client.close();

 } // end doIt()

} // end class file FECFileTest.java

G. EXAMPLE SERVER/CLIENT ENCODING A FILE WITH FEC, SENDING,
RECEIVING AND DECODING WITH A FILE COMPARISON FEATURE

1. FECSendN.java

/* Program: Test UDP sending of Forward Error Correction (FEC) coded data
 *
 * Author: LT Terry D. Norbraten, USN
 * Modifier:
 *
 * Created on: August 29, 2004, 1903
 * Modified on: November 13 2004, 1657
 *
 * Course: MV 0810 (Thesis Research)
 * Summer 2004
 *
 * File: FECSendN.java
 *
 * Compiler: netBeans IDE 3.6 (External), J2SDK 1.4.2_04
 * O/S: Windows XP Home Ed (SP 1).
 *
 * Description: Attempt at encoding a file with FEC and sending it via UDP to
 * a client decoder by sending all N repair packet and selecting
 * only K for data reconstruction.
 *
 * Information: Using fec-1.0.3 created by Justin F. Chapweske of Onion
 * Networks which is a Java-based open source API.
 */

package xsbc_fec.testFiles;

// Standard library imports
import java.io.ByteArrayOutputStream;
import java.io.IOException;

102

import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
import java.net.SocketException;
import java.net.UnknownHostException;
import java.util.Arrays;
import java.util.Random;

// Application specific local imports
import com.onionnetworks.fec.FECCode;
import com.onionnetworks.fec.FECCodeFactory;

import com.onionnetworks.util.Buffer;
import com.onionnetworks.util.Util;

/**
 * Attempt at encoding a file with FEC and sending it via UDP to a client
 * decoder by sending all N repair packet and selecting only K for data
 * reconstruction.
 *
 * @author Terry D. Norbraten
 */
public class FECSendN {

 /* DATA MEMBER(s) */

 /* Public */

 /**
 * This will be our source file that will be compared to the received and
 * decoded file in the main().
 */
 public static byte[] source;

 /* Private */

 /** Will contain our FEC encoded data for transmission */
 private byte[] repair;

 /** Local port designation */
 private final int DEST_PORT = 4040;

 /** FEC parameters */
 private static final int K = 16,
 N = 32,
 PACKET_SIZE = 1024;

 /** Index in which a packet was FEC encoded */
 private int[] repairIndex;

 /* Stream for the FEC index information */
 private ByteArrayOutputStream baos;

 /** Wrappers for our source and repair byte[] required for FEC process */
 private Buffer[] sourceBuffer,
 repairBuffer;

 /* UDP utility */
 private DatagramPacket packet;

 /* UDP channel sender */
 private DatagramSocket socket;

 /** Our FEC code */
 private FECCode fec;

 /** Source file data generator */
 private Random rand;

 /** String name of this local host */
 private final String LOCAL_HOST = "127.0.0.1";

103

 /* CONSTRUCTOR(s) */

 /** Creates a new instance of FECSendN */
 public FECSendN() {
 rand = new Random();
 source = new byte[K*PACKET_SIZE];

 // NOTE: The source needs to split into k*packetsize sections, so if your
 // file is not of the write size you need to split it into groups. The
 // final group may be less than k*packetsize, in which case you must pad
 // it until you read k*packetsize. Also, send the length of the file so
 // that you know where to cut it once decoded.
 // this is just so we have something to encode
 rand.nextBytes(source);

 //this will hold the encoded file
 repair = new byte[N*PACKET_SIZE];

 // These buffers allow us to put our data in them. They reference a
 // packet length of the file (or at least will once we fill them)
 sourceBuffer = new Buffer[K];
 repairBuffer = new Buffer[N];

 // These Buffers each contain the whole file they are wrapping, but at
 // different offsets designated by PACKET_SIZE, as each is holding either
 // the unexpanded file size K, or, the expanded file size N (tdn)
 for(int i = 0; i < sourceBuffer.length; i++)
 sourceBuffer[i] = new Buffer(source, i*PACKET_SIZE, PACKET_SIZE);

 for(int i = 0; i < repairBuffer.length; i++)
 repairBuffer[i] = new Buffer(repair, i*PACKET_SIZE, PACKET_SIZE);

 //When sending the data you must identify what it's index was when
 //encoded. Will be shown and explained later.
 repairIndex = new int[N];

 for(int i = 0; i < repairIndex.length; i++)
 repairIndex[i] = i;

 // We just need any K subset of the orig. N expanded repair packets. This
 // will shuffle the order of the indicies which will be used to index each
 // repair packet as it's encoded by the FEC process. This shuffled order
 // will be sent with the encoded repair packets to prove that any K subset
 // of the N expanded repair packets is what's needed to reconstruct the
 // orig. data.
 Util.shuffle(repairIndex);

 //create our fec code
 fec = FECCodeFactory.getDefault().createFECCode(K,N);

 //encode the data
 fec.encode(sourceBuffer, repairBuffer, repairIndex);
 //encoded data is now contained in the repairBuffer's repair byte array

 //From here you can send each 'packet' of the encoded data, along with
 //what repairIndex it was encoded with. Also include the group number if
 //you had to split the file
 sendFECEncoded();

 } // end constructor

 /* MAIN METHOD */

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {

 // Start the receiver as a thread of this class
 FECReceiveN fecrn = new FECReceiveN();
 Thread t = new Thread(fecrn);

104

 t.start();

 // Invoke this sender
 new FECSendN();

 // Allow the receiver to process
 try {
 Thread.sleep(1000);
 } catch (InterruptedException ie) {}

 //check for equality
// for (int ix = 0; ix < K * PACKET_SIZE; ix++) {
// System.out.println("Source file contents at " + ix + " is: " +
// sourceFile[ix]);
// System.out.println("Decoded file contents at " + ix + " is: " +
// fecrn.receivedK[ix]);
// } // end for DEBUG

 if (Arrays.equals(source, fecrn.receivedK)) {

 System.out.println("Source and decoded files are equal!");
 System.exit(0);

 } else {

 System.out.println("Opps! Something went wrong.");
 System.exit(1);

 } // end if-else block

 } // end main()

 /* PUBLIC METHOD(s) */

 /* GETTER(s) and SETTER(s) */

 /* PRIVATE METHOD(s) */

 /**
 * Sends only FEC encoded packets down stream time along with the repair
 * packet index of each repair packet encoding order.
 *
 * @exception SocketException if the Datagram Socket didn't open
 * @exception UnknownHostException if host couldn't be determined
 * @exception IOException if the socket couldn't send the packet
 */
 private void sendFECEncoded() {

 // Send repair packet indicie info first
 try {

 // Open our UDP socket
 socket = new DatagramSocket();

 // Prepare a BAOS for sending repair packet indice info.
 baos = new ByteArrayOutputStream();

 } catch (SocketException se) {

 se.printStackTrace();

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 // Write the repair index information to a buffer
 for (int i = 0; i < N; i++) {

105

 // Write an N amount of the shuffled indices to the stream
 baos.write(repairIndex[i]);

 } // end for

 try {
 // Flush the bytes out of the buffer into the stream
 baos.flush();

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 try {

 // Prepare the packet to send indicie info.
 packet = new DatagramPacket(baos.toByteArray(),
 baos.toByteArray().length, InetAddress.getByName(LOCAL_HOST),
 DEST_PORT);

 } catch (UnknownHostException uhe) {

 uhe.printStackTrace();

 } // end try-catch block

 // Send the N repair index Datagram Packets first
 try {

 // Send repair packet indicie info.
 socket.send(packet);

// for (int ix = 0; ix < repairIndex.length; ix++)
// System.out.println("Sending FEC encoded data packet index: " +
// repairIndex[ix] + " in packet size: "
// + baos.toByteArray().length); // DEBUG

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 try {

 baos.close();

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 /***************************** FEC Sending ******************************/

 // Send N repair packets
 for (int i = 0; i < N; i++) {

 try {

 // Load the packet with encoded data of just repair packet size and
 // send each to keep under the 1500 byte MTU as specified by NPS
 // research associate Don McGregor. I know I'm making new Datagram
 // packets with each iteration of the for loop, but with the FEC
 // Buffer[], this is the only way to extract encoded data into byte
 // array form for the Datagram Packet for each repair packet that
 // is to be transmitted. So here, we send N packets of encoded data
 // per block.
 packet = new DatagramPacket(repairBuffer[i].getBytes(),

106

 PACKET_SIZE, InetAddress.getByName(LOCAL_HOST),
 DEST_PORT); // tdn

 } catch (UnknownHostException uhe) {

 uhe.printStackTrace();
 } // end try-catch block

// System.out.println("Sending FEC encoded data packet " + i + " " +
// repairBuffer[i]); // DEBUG

 // Send the repair encoded packets
 try {

 // Send encoded data
 socket.send(packet);

// System.out.println("Successfully sent encoded repair packet " + i +
// " of size: " + packet.getLength() + " B to: " +
// packet.getAddress().toString() + " on port: " +
// packet.getPort()); // DEBUG

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 } // end for

 // Close the socket
 socket.close();

 } // end sendFECEncoded()

} // end class file FECSendN.java

2. FECReceiveN.java

/* Program: Test UDP receiving of Forward Error Correction (FEC) coded data
 *
 * Author: LT Terry D. Norbraten, USN
 * Modifier:
 *
 * Created on: August 29, 2004, 1908
 * Modified on: November 13 2004, 1657
 *
 * Course: MV 0810 (Thesis Research)
 * Summer 2004
 *
 * File: FECRecieveN.java
 *
 * Compiler: netBeans IDE 3.6 (External), J2SDK 1.4.2_04
 * O/S: Windows XP Home Ed (SP 1).
 *
 * Description: Attempt at decoding an FEC file after receiving it via UDP from
 * an encoding server upon reception of all N encoded repair
 * packets. K repair packets will be selected for the file
 * reproduction.
 *
 * Information: Using fec-1.0.3 created by Justin F. Chapweske of Onion
 * Networks Inc. which is a Java-based open source API.
 */

package xsbc_fec.testFiles;

107

// Standard library imports
import java.io.ByteArrayInputStream;
import java.io.IOException;

import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
import java.net.SocketException;
import java.net.UnknownHostException;

// Application specific local imports
import com.onionnetworks.fec.FECCode;
import com.onionnetworks.fec.FECCodeFactory;

import com.onionnetworks.util.Buffer;

/**
 * Attempt at decoding an FEC file after receiving it via UDP from an encoding
 * server upon reception of all N encoded repair packets. K repair packets will
 * be selected for the file reproduction.
 *
 * @author Terry D. Norbraten
 */
public class FECReceiveN implements Runnable {

 /* DATA MEMBER(s) */

 /* PUBLIC */

 /** Will be accessed by the sender for comparison with the source file */
 public byte[] receivedK;

 /* PRIVATE */

 /** Storage of our N received repair packets */
 private byte[] receivedN;

 /** Local port designation */
 private final int RECEIVE_PORT = 4040;

 /** FEC parameters */
 private static final int K = 16,
 N = 32,
 PACKET_SIZE = 1024;

 /** Encoding index ordering */
 private int[] receiverIndex,
 repairIndexes;

 private ByteArrayInputStream bais;

 /** FEC wrappers used for decoding */
 private Buffer[] repairBuffer;

 /* UDP utilities */
 private DatagramPacket indexPacket,
 fecPacket;

 /* UDP channel receiver */
 private DatagramSocket socket;

 /** FEC codes used for decoding */
 private FECCode fec;

 /** String name of this local host */
 private final String LOCAL_HOST = "127.0.0.1";

 /* CONSTRUCTOR(s) */

 /** Creates a new instance of FECReceiveN */
 public FECReceiveN() {

108

 try {
 socket = new DatagramSocket(RECEIVE_PORT);

 } catch (SocketException se) {
 se.printStackTrace();

 } // end try-catch block

 } // end constructor

 /* PUBLIC METHOD(s) */

 /* THREAD */

 /** Ran as a thread from the server */
 public void run() {

 doReceiveFECEncoded();

 } // end run

 /* GETTER(s) and SETTER(s) */

 /* PRIVATE METHOD(s) */

 /**
 * Receives only FEC encoded packets along with the repair packet index of
 * each repair packet encoding order.
 *
 * @exception SocketException if the Datagram Socket didn't open
 * @exception UnknownHostException if host couldn't be determined
 * @exception IOException if the socket couldn't send the packet
 */
 private void doReceiveFECEncoded() {

 // Prepare to receive our K repair indicies. These are just byte format
 // integers for each Datagram packet. Again, we will require a K subset
 // from the N generated by the encoder.
 indexPacket = new DatagramPacket(new byte[N], N);

 //We only need to store k, packets received, but we'll receive N and
 // choose K
 receiverIndex = new int[N];

 try {

 // Receive our repair index info.
 socket.receive(indexPacket);

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 // Feed index information into this BAIS per block
 bais = new ByteArrayInputStream(indexPacket.getData());

 // Storage for each block's K subset of N repair indexes that will
 // be copied from receiveIndexes.
 repairIndexes = new int[K];

 // Extract K packet elements that make up our repair indices.
 for (int ix = 0; ix < indexPacket.getLength(); ix++) {

 // Collect our repair packet indicies
 receiverIndex[ix] = bais.read();

// System.out.println("Received repair packet index: " +
// receiverIndex[ix]); // DEBUG

109

 } // end for

 // Extract and store each K subset of N repair packet indexes.
 System.arraycopy(receiverIndex, 0, repairIndexes, 0, K);

// for (int ix = 0; ix < K ; ix++)
// System.out.println("Array copied repair index " + ix + ": " +
// repairIndexes[ix]); // DEBUG

 /***************************** FEC Receiving ****************************/

 // Prepare this packet for reception of an encoded repair packet each
 // containing 1024 bytes of data.
 fecPacket = new DatagramPacket(new byte[PACKET_SIZE], PACKET_SIZE);

 // Container for our entire Expanded encoded repair file size
 receivedN = new byte[N * PACKET_SIZE];

 // Receive each of N encoded repair packets for storage
 for (int ix = 0 ; ix < N; ix++) {

 // Receive a block of data to encode
 try {

 // Receive our encoded data
 socket.receive(fecPacket);

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 // Copy N repair packets of the encoded file
 System.arraycopy(fecPacket.getData(), 0, receivedN, ix *
 fecPacket.getLength(), fecPacket.getLength());

 } // end for

 // Close the socket
 socket.close();

 //this will store the received packets to be decoded
 receivedK = new byte[K*PACKET_SIZE];

 // Extract and store a K subset of N repair packet data.
 System.arraycopy(receivedN, 0, receivedK, 0, K * PACKET_SIZE);

 // This will hold our K subset of encoded repair packets
 repairBuffer = new Buffer[K];

 //create our Buffers for the encoded data extracting only K encoded repair
 // packets
 for (int ix = 0; ix < K; ix++) {

 // Prepare our decoding buffers with offsets and length
 repairBuffer[ix] = new Buffer(receivedK, ix *
 fecPacket.getLength(), fecPacket.getLength());

// System.out.println("Receive FEC encoded data packet " +
// ix + " " + repairBuffer[ix]); // DEBUG

 } // end for

 //create our fec code
 fec = FECCodeFactory.getDefault().createFECCode(K,N);

110

 // Finally, decode the repair packets into the file
 fec.decode(repairBuffer, repairIndexes);

 } // end doRecieveFECEncoded()

} // end class file FECReceiveN.java

H. SUMMARY
The preceding files were given so as to represent, in a simplistic way, how

to employ the Java FEC 1.0.3 library by Onion Networks, Inc. The API is not

very well documented, so, one has to “play” with the API and experiment a bit

with the mechanics of how to implement the features of this API. The next

appendix will feature how this research put together FEC with XSBC so as to

enable reliable UAN features that may employed by AUV/UUVs to communicate

with surface based gateway servers.

111

APPENDIX C. FAMILIARITY NOTES FOR THE XSBC 0.91.1
LIBRARY

A. INTRODUCTION
The following paragraphs are presented by the author as a familiarity

guide into the methods employed by the XSBC 0.91.1 library. These notes were

written during trial and error attempts at working with this Java API. This was

written with the intent of self-guidance and discovery, and thus it is hoped that

the reader will have an understanding into the author’s rationale in how to work

with this remarkable library.

B. SETUP OF THE XSBC 0.91.1 LIBRARY

Download and mount the xsbc-0.91.1.jar file from

http://sourceforge.net/projects/xmsf. The source code can be retrieved from the

CVS link and the same page.

An xsbc.jar file can be created from the source code package by the Ant

build process that will be explained later.

The reader must modify the path in each .xml file contained in the

examples folder to reflect a user.dir on a local machine, for example:

xsi:noNamespaceSchemaLocation="C:\(your path)\(your schema).xsd"

The ComparisonTool will not show gzipped statistics unless you download

gzip. The best open source one the reader found is here:

http://gnuwin32.sourceforge.net/packages/gzip.htm. To set an Environmental

Variable, put GZIP_HOME = C:\Program Files\GnuWin32 and amended the

PATH to %GZIP_HOME%\bin and now gzip invokes very well from the command

line.

A word on setting the Environment Variables for Windows XP Home Ed.

SP1. Set these variables from the System icon in the Control Panel, or right

clicking on My Computer on your desktop (PC only) and select Properties,

Advanced, Environment Variables you add (your application)_HOME =

112

%HOMEDRIVE%%HOMEDIR% and then PATH = %(your

application)_HOME%\bin. If .exe, .cmd or .bat files are located elsewhere, then

use \(folder). Separate entries by a “;” and never any whitespace between

entries. If the directory path contains spaces then put the entire path in “”, or, just

the specific directory between “\”s.

The ComparisonTool was modified slightly to reflect GUI output that

makes slightly more sense to (because the author needs to completely

understand the slightest detail as much as humanly possible).

Once invoked, select File, Open, examples and click on an example .xml

file. Select process and will observe the following:

Figure 26. Sample Process Output of the Comparison Tool GUI
(ComarisonTool.java) included with the XSBC 0.91.1 Library

113

1) The name of the original document that was selected from the File

menu pull-down. Selecting “View” will invoke an XML reader (XMLSpy2004 in

this case) and load the file.

 2) Observe the original size of the .xml document

 3) Selecting Process will serialize the document with the XSBC algorithm

which tokenizes attributes and elements thereby compressing the original .xml

document, but preserving its tree as it is structured by its own schema.

 4) This shows the original .xml binary compression size by just GZipping.

 5) This shows the size of the file with XSBC invoked.

 6) This shows the combined XSBC / GZipping compression size. In this

particular case, GZipping actually made the .xsbc file grow slightly.

 7) This shows the time it took to compress a file in either binary (GZip),

XSBC, or both.

 8) This feature will invoke the FEC encoding and decoding (en/de) utility

creating a file of the original named .xml with a “Decoded” prefix, uncompress

from the XSBC form and recreate the original .xml file (called foo.xml in this

demonstration case) using its schema.

 9) Shows the Moves Institute logo.

 The reader can select between Fastest Parsing, Compression - Non

Lossy or Maximum Compression - Lossy and observe the compression results

as compared to the original file size. The reader can then select View /

Document Compressed which will be decompressed and renamed into a generic

foo.xml, placed in the examples folder and XMLSpy2004 will open for viewing

that file.

 There are four good working examples. ComparisonTool,

SimpleExample, SenderSimulation and ReceiverSimulation. When compressing

with the ComparisonTool these errors will show; however, it is not a bug:

114

 Unknown attribute: /espdu/@xmlns:xsi

 Unknown attribute: /espdu/@xsi:noNamespaceSchemaLocation

It’s because these attributes are not to be reproduced by the Dom4jReader in the

uncompressed/deserialized XML version. This fact was verified by meeting with

the XSBC developer Alan Hudson on Thurs. Aug. 26, 2004.

 The author modified the application’s XML build file to pull in the dom4j

classes into the xsbc.jar so that one can produce a single jar to mount and work

with. This is a convenience method only and should not used for actual
deployable .jar files. The following modification was made inside of the jar

target:

Figure 27. Example Ant Script written in XML that takes Multiple Jar Files and
Combines them into a Single JAR

 All licenses and notifications were copied from dom4j into the META-

INF\MANIFEST as required by dom4j.

 This action of creating a single jar file was confirmed as not a good

practice because if any of the “pulled-in” jars from other sources were modified,

by Justin Couch, Alan Hudson and Don Brutzman. The entire jar would have to

be rebuilt each time another required jar was modified by its developer, so, this is

not good development practice.

 The author modified the ComparisonTool to grab the FEC decoded file

with the prefix “Decoded” to produce the foo.xml to show in XMLSpy.

<!-- Include the dom4j jar file classes used to compile the
 classes for creating the application jar. This produces one happy
 jar for everyone to enjoy. Found this command on the Java
 Tutorial site (tdn) -->
 <zipgroupfileset dir="${lib.dir}" includes="*.jar"/>

115

 The author had to go into the GZipProcess.java and modify where .bak

files are made for both the original .xml and the resulting .xsbc files before

gzipping. This wasn’t working well due to problems encountered with the

Runtime rt = Runtime.getRuntime() call. The System’s command interpreter was

never being invoked the way the code was originally written. It was because

these method calls were originally Unix commands, not Windows. The

GZipProcess.java file is in package

org.web3d.xmsf.xsbc.apps.comparison.process. The modification now invokes

the system command interpreter to backup, perform gzip and unbackup .xml and

.xsbc files which now show correct statistics on the ComparisonTool GUI. Also,

the author replaced the icon on this GUI to show the MOVES logo.

 Found and even better ExecRunner (for Runtime calls) and

StreamGobbler (required to output system errors encountered) at:

http://spumoni.sourceforge.net/java2html/. This is under a GNU General Public

License and which does not combine well with the GNU LGPL v2.1 that XSBC is

open licensed with. With a little modification, annotated with the author’s initials

(tdn) in the source code, it works like a champ using java.lang.Runtime’s exec()

with the String cmd, String[] env and File dir arguments. The env argument is set

to null in this particular implementation. Must also set a maximum time to allow

the ExecRunner to do its thing, because if an application is still open, a while

loop will be infinitely running waiting for a System.exit integer return.

 Another important point about the original GZipProcess.java: not only was

the author having command interpreter problems the way the original code was

written, he didn’t understand that is was written to invoke the LINUX / UNIX

command interpreter. Modifications were made it to work the Windows XP

command interpreter. The ExecRunner.java will investigate for all Windows O/S

from 95 – XP and use the proper commands for each of these particular O/S

builds.

 Improved functionality by making the Sender Simulation and Receiver

Simulation demos more robust. The Sender Simulation starts the Receiver

116

Simulation as a thread because the author needed to send to the receiver pre-

information on the type of functions to expect such as if the .xml file will be

XSBC’d and/or XSBC and GZipped. Played with the JFrame new look and feel

features to window dress the GUIs a bit more. Built in a check box option to add

FEC encoding of the resulting .xsbc or .xsbc.gz files. GZipping is now done via

the GZIPInputStream and GZIPOutputStream method of java.util. Files can be

saved to disc in either *.xsbc or *.xsbc.gz form and read into a DOM tree by the

Receiver Simulation GUI. Put back in the functionality of producing an .xml DOM

tree in the Sender Simulation so that the file can be visually rendered in JTree

form before sending via UDP for comparison with the resulting received and

decompressed form. This was accomplished by reintroducing Ekrem Serin’s

DocumentProccesor.java class. Of course, the option to GZip a file was also

built into the demo pair.

 The XSBC serializing and de-serializing processes, along with the option

to add FEC encoding before transmitting, are now accomplished by the AUVW

XsbcSerializer and XsbcTransaction classes. These classes have extra

functionality that permit TCP or UDP transmission of packets over the net. FEC

encoding and decoding functions are also built in if the (en/de) option is desired.

So, the Sender serializes and encodes through the XsbcSerializer and the

Receiver decodes and de-serializes through the XsbcTransaction.

C. XSBC CODE EXAMPLES
The following are XSBC code examples that show functionality of XSBC

and how files from the AUVW were modified to incorporate both XSBC and FEC.

There is an option for selection of FEC encoding and for GZipping.

117

1. SimpleExample.java

/* Program: XML Schema Binary Compression (XSBC) example
 *
 * Author: Alan Hudson, Yumetech Inc.
 * Modifier: LT Terry D. Norbraten, USN [comments/changes labeled (tdn)]
 *
 * Created on: 2004-06-08 12:52 PM
 * Modified on: August 05, 2004, 2224
 *
 * Course: MV 0810 (Thesis Research)
 * Summer 2004
 *
 * File: SimpleExample.java
 *
 * Compiler: netBeans IDE 3.6 (External), J2SDK 1.4.2_04
 * O/S: Windows XP Home Ed. (SP 1)
 *
 * Description: Example of how XSBC works to compress an XMLized file that
 * is has a readable schema reference
 *
 * Information: Using xsbc-0.91.1 created by Alan Hudson of Yumetech
 * Inc. An Java open source API. Invoke this test before
 * invoking XSBC_FECFileTest.java, or a FileNotFoundException
 * will occur.
 */

/***
 * Web3d.org Copyright (c) 2004
 * Java Source
 *
 * This source is licensed under the GNU LGPL v2.1
 * Please read http://www.gnu.org/copyleft/lgpl.html for more information
 *
 * This software comes with the standard NO WARRANTY disclaimer for any
 * purpose. Use it at your own risk. If there"s a problem you get to fix it.
 *
 **/
package xsbc_fec;

// External Imports
import java.io.BufferedInputStream;
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import java.net.URL;

// Local imports
import org.web3d.xmsf.xsbc.BlockDataInputStream;
import org.web3d.xmsf.xsbc.DocumentWriter;
import org.web3d.xmsf.xsbc.TableManager;
import org.web3d.xmsf.xsbc.XMLWriter;
import org.web3d.xmsf.xsbc.XSBCReader;

import org.web3d.xmsf.xsbc.datatypes.SimpleType;

import org.xml.sax.*;

/**
 * A simple example showing how XSBC can be used to compress and
 * decompress an XML document.
 *
 * @author Alan Hudson
 * @version 0.91.1
 */
public class SimpleExample {

118

 /** Substring pointer to our schema */
 public static final String SCHEMA = "\\espdu.xsd";

 /** Substring pointer to our test .xml file */
 public static final String TEST_FILE = "\\espdu";

 /**
 * String pointer to my user dircectory. Make this null to force pointing
 * to the system's user directory
 */
 private final static String USER_DIR = "C:\\Documents and Settings\\Terry\\"
 + "My Documents\\My Files\\NPS\\Courses\\MV 0810 Thesis Work\\Java Code\\" +
 "XSBC_FEC\\xsbc_fec\\examples\\";

 /* MAIN METHOD */

 /**
 * Entry point for the program
 *
 * @param args the command line entry arguments if any
 */
 public static void main(String args[]) {

 // Write out an XML file using XSBC
 try {

 File file = new File(USER_DIR + TEST_FILE + ".xml");
 System.out.println("Compressing: " + file);
 DocumentWriter dw = new DocumentWriter(file.getPath());

 SimpleType.setCompressionMethod(
 SimpleType.COMPRESSION_METHOD_SMALLEST_NONLOSSY);

 FileOutputStream fos = new FileOutputStream(USER_DIR + TEST_FILE
 + ".xsbc");
 DataOutputStream dos = new DataOutputStream(fos);

 dw.serialize(dos);
 fos.close();

 } catch(IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 // Read a file written using XSBC and write it out to foo.xml
 try {

 System.out.println("Decompressing to foo.xml");

 TableManager tableManager = new TableManager(new URL("file:///"
 + USER_DIR + SCHEMA));

 SimpleType.setCompressionMethod(
 SimpleType.COMPRESSION_METHOD_SMALLEST_NONLOSSY);

 File file = new File(USER_DIR + TEST_FILE + ".xsbc");

 FileInputStream fis = new FileInputStream(file);
 BufferedInputStream bis = new BufferedInputStream(fis);
 BlockDataInputStream bdis = new BlockDataInputStream(bis);

 XSBCReader reader = new XSBCReader(tableManager);

 // Added path so that it goes directly to a folder that I designate
 // (tdn)
 XMLWriter writer = new XMLWriter(new FileOutputStream(new File(
 USER_DIR + "foo.xml")));
 reader.read(bdis, writer);

119

 } catch(Exception e) {

 e.printStackTrace();

 } // end try-catch block

 } // end main()

} // end class file SimpleExample.java

2. Example UDP Implementation of an XSBC/FEC Server/Client
Utility

a. SenderSimulation.java

/* Program: Test UDP sending of XML compressed (XSBC) data encoded with
 * Forward Error Correction (FEC)
 *
 * Author: Alan Hudson, Yumetech Inc.
 * Modifier: LT Terry D. Norbraten, USN [comments/changes labeled (tdn)]
 *
 * Created on: August 20, 2004, 1903
 * Modified on: November 13 2004, 1657
 *
 * Course: MV 0810 (Thesis Research)
 * Summer 2004
 *
 * File: SenderSimulation.java
 *
 * Compiler: netBeans IDE 3.6 (External), J2SDK 1.4.2_04
 * O/S: Windows XP Home Ed (SP 1).
 *
 * Description: This is a loopback UDP implementation of a server/client that
 * takes an XML file, which is definied by an XML schema, is
 * compressed with XSBC (XSBC 0.91.1 library) and encoded with FEC
 * (FEC 1.0.3 library). A Dom4jTree is created in each of the
 * sever and client GUIs to show the origianl and transmitted XML
 * files and appropriate XSBC and XML files are generated through
 * optional GZipping and FEC processes. The client is started as
 * a thread from the server, but can run independently to analyze
 * transmitted files. This server/client application is supported
 * by XsbcSerializer.java and XsbcTransaction.java which handle
 * the XSBC and FEC processes.
 *
 * Information: Using fec-1.0.3 created by Justin F. Chapweske of Onion
 * Networks Inc. and xsbc-0.91.1 created by Alan Hudson of
 * Yumetech Inc. Both are Java open source APIs.
 */

/***
 * Web3d.org Copyright (c) 2004
 * Java Source
 *
 * This source is licensed under the GNU LGPL v2.1
 * Please read http://www.gnu.org/copyleft/lgpl.html for more information
 *
 * This software comes with the standard NO WARRANTY disclaimer for any
 * purpose. Use it at your own risk. If there's a problem you get to fix it.
 *
 **/
package xsbc_fec;

// External Imports (tdn)
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.event.ActionEvent;

120

import java.awt.event.ActionListener;
import java.awt.event.KeyEvent;
import java.awt.Image;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.InputStream;
import java.io.IOException;

import java.net.InetAddress;
import java.net.UnknownHostException;
import java.net.URL;
import javax.swing.ButtonGroup;
import javax.swing.ImageIcon;
import javax.swing.JButton;
import javax.swing.JCheckBoxMenuItem;
import javax.swing.JComponent;
import javax.swing.JFileChooser;
import javax.swing.JFrame;
import javax.swing.JMenu;
import javax.swing.JMenuBar;
import javax.swing.JMenuItem;
import javax.swing.JPanel;
import javax.swing.JRadioButtonMenuItem;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
import javax.swing.JTree;
import javax.swing.tree.TreeSelectionModel;
import javax.swing.filechooser.FileFilter;

// Application specific local imports (tdn)
import com.onionnetworks.fec.io.FECParameters;

import com.onionnetworks.util.Buffer;
import com.onionnetworks.util.Util;

import xsbc_fec.comparison.process.DocumentProcessor;
import xsbc_fec.comparison.process.XsbcSerializer;

/**
 * Class to show a simulation of XML serialization. Provides a GUI to send XML
 * data over the network or save to local disc. User loads the XML file and
 * sends it to the local host or saves to disc. Modified by (tdn) to add a GZip
 * stream option and a FEC option to serialize XML data and/or, encode with
 * FEC before sending or saving to local disc. This class will automatically
 * start the ReceiverSimulation as a thread of this class. Modified by (tdn)
 * </p>
 *
 * @author Alan Hudson, Yumetech Inc.
 * Modified by Terry D. Norbraten
 * </p>
 */
public class SenderSimulation extends JComponent implements ActionListener {

 /* DATA MEMBER(s) */

 /** Check select button group */
 private ButtonGroup bGroup;

 /** Used to render and XML tree before processing to an .xsbc document */
 private DocumentProcessor dp;

 /** FEC encoding parameters that need to be sent to the reciever for file
 * decoding
 */
 private FECParameters params;

 /** Container for file information, path, etc */
 private File file,
 newFile;

121

 /** In steam for file encoding */
 private InputStream is;

 /** File operation selections (tdn) */
 private JButton sendFile,
 saveFile;

 /** Option to encode file with FEC (tdn) */
 private JCheckBoxMenuItem fecFile;

 /** Option to gzip file (tdn) */
 private JCheckBoxMenuItem gzipFile;

 /** Our file chooser */
 private JFileChooser fc;

 /** bunch of gui stuff, we'll build actual gui later */
 private JMenu fileMenu;
 private JMenuBar menuBar;

 /** Menu items */
 private JMenuItem loadFile,
 exit;

 /** Our content pane */
 private JPanel contentPane,
 buttonPanel;

 /** The viewing pane for a document tree */
 private JScrollPane treeView;

 /** Document tree display area */
 private JTextArea output;

 /** Tree window */
 private JTree tree;

 /** String name of this local host */
 private final String LOCAL_HOST = "127.0.0.1";

 /**
 * String pointer to my user dircectory. Make this null to force pointing
 * to the system's user directory
 */
 private final String USER_DIR = "C:\\Documents and Settings\\Terry\\" +
 "My Documents\\My Files\\NPS\\Courses\\MV 0810 Thesis Work\\Java Code\\" +
 "XSBC_FEC\\xsbc_fec\\examples";

 /** Instance of the receiver to notify of GZipping */
 private ReceiverSimulation rs;

 /** Thread instance to run Receiver Simulation */
 private Thread t;

 /** Our XML serializer process */
 private XsbcSerializerFecEncoder xsfe;

 /** Indicate our return value */
 private int returnVal;

 /** Local port designation */
 private final int DEST_PORT = 4040;

 /** Designate 3 of 4 FEC file parameters */
 private final int K = 16,
 N = 32,
 PACKET_SIZE = 1024;

122

 /* CONSTRUCTOR(s) */

 /** Creates a new instance of SenderSimulation */
 public SenderSimulation() {

 file = newFile = null;
 returnVal = 0;
 params = null;
 dp = null;
 startReceiverSimulation();

 } // end constructor

 /* PUBLIC METHOD(s) */

 /**
 * Creates the menu bar
 *
 * @return the created menu bar
 */
 public JMenuBar createMenuBar() {

 // Create the menu bar
 menuBar = new JMenuBar();

 // Create the first menu
 fileMenu = new JMenu("File");
 menuBar.add(fileMenu);

 // A load XML file menu item
 loadFile = new JMenuItem("Load XML File");
 loadFile.addActionListener(this);
 fileMenu.add(loadFile);

 // a group of check box menu items
 fileMenu.addSeparator();
 bGroup = new ButtonGroup();

 // Allow for either one or both check boxes to be selected
 gzipFile = new JCheckBoxMenuItem("GZip File"); // tdn
 gzipFile.setSelected(true);
 gzipFile.setMnemonic(KeyEvent.VK_C);
 gzipFile.addActionListener(this);
 fileMenu.add(gzipFile);

 fecFile = new JCheckBoxMenuItem("Encode with FEC"); // tdn
 fecFile.setMnemonic(KeyEvent.VK_H);
 fecFile.addActionListener(this);
 fileMenu.add(fecFile);

 fileMenu.addSeparator();

 exit = new JMenuItem("Exit");
 exit.addActionListener(this);
 fileMenu.add(exit);

 return menuBar;

 } // end createMenuBar()

 /**
 * Creates the content pane for the GUI
 *
 * @return a container for this content pane
 */
 public Container createContentPane() {

 // Create the content-pane-to-be.
 contentPane = new JPanel(new BorderLayout());
 contentPane.setOpaque(true);

123

 // Add our operating buttons
 contentPane.add(createButtons(), BorderLayout.SOUTH);

 return contentPane;

 } // end createContentPane()

 /** @return an Image or null */
 public Image getFDImage() {

 URL imgURL = SenderSimulation.class.getResource("images/MOVESLogo.gif");
 if (imgURL != null) {
 return new ImageIcon(imgURL).getImage();
 } else {
 System.out.println("Unable to find icon");
 return null;
 }

 } // end getFDImage()

 /* PRIVATE METHOD(s) */

 /**
 * Starts the Receiver Simulation at the same time as this simulation to
 * work as a pair
 */
 private void startReceiverSimulation() {

 // Run the Receiver Simulation as a thread of this GUI
 rs = new ReceiverSimulation();
 t = new Thread(rs);
 t.start();

 } // end startReceiverSimulation()

 /**
 * Creates our operating buttons
 *
 * @return a panel for our buttons
 */
 private JPanel createButtons() {

 buttonPanel = new JPanel();

 sendFile = new JButton("Send");
 sendFile.addActionListener(this);
 saveFile = new JButton("Save");
 saveFile.addActionListener(this);

 buttonPanel.add(sendFile);
 buttonPanel.add(saveFile);

 return buttonPanel;

 } // end createButtons()

 /** Performes the .xml file loading procedure */
 private void doLoadFile() {

 fc = new JFileChooser(USER_DIR);
 fc.addChoosableFileFilter(new XMLFileFilter());

 returnVal = fc.showDialog(this, "Load XML File");

 if (returnVal == JFileChooser.APPROVE_OPTION) {

 file = fc.getSelectedFile();

 System.out.println("Loading: " + file.getPath());

 } // end if

124

 // Cause the selected .xml document to render as a dom4j tree in this
 // GUI (tdn)
 new Thread(new Runnable() {

 public void run() {

 try {

 if (file != null) {

 // Using Ekrem Serin's Document Processor from XFSP
 dp = new DocumentProcessor(new URL("file:///"
 + file.getPath()));

 } else {

 System.out.println("You didn't load a file? ");
 return;

 } // end if-else block

 tree = new JTree(dp.getTree());

 tree.getSelectionModel().setSelectionMode(
 TreeSelectionModel.SINGLE_TREE_SELECTION);

 //Create the scroll pane and add the tree to it.
 treeView = new JScrollPane(tree);

 // Add the scroll pane to the content pane.
 contentPane.add(treeView, BorderLayout.CENTER);

 // XML tree won't render unless we do this (tdn)
 contentPane.setVisible(false);
 contentPane.setVisible(true);

 } catch (Exception ex) {

 ex.printStackTrace();

 } // end try-catch block

 } // end run()

 }).start();

 } // end doLoadFile()

 /**
 * Performs the send file procedure. This is invoked once to render the DOM
 * tree in the receiver and then, when selected again, will generate the
 * mission file .xml in the dataweb/results cache foler.
 */
 private void doSendFile() {

 // Make sure we load a file first before we can send one out serialized
 if (file == null) {

 System.out.println("You must load a file before sending!");
 doLoadFile();

 } // end if

 // Check if we want encode with FEC
 if (fecFile.getState()) {

 // Invoke the serializer and send .xsbc file info via the UDP
 // option in GZIP and XSBC form with FEC encoding parameters. The
 // file was already saved as an .xsbc or .xsbc.gz (tdn)
 xsfe = new XsbcSerializerFecEncoder(newFile.getPath(), true,
 fecFile.getState(), params, LOCAL_HOST, DEST_PORT);

125

 // Check if we want to gzip before .xsbc
 } else if (gzipFile.getState()) {

 // Invoke the serializer and send .xml file info via the UDP option
 // in GZIP and XSBC form w/o FEC encoding (tdn)
 xsfe = new XsbcSerializerFecEncoder(file.getPath(), true,
 fecFile.getState(), null, LOCAL_HOST, DEST_PORT);

 returnVal = xsfe.writeNetwork(LOCAL_HOST, DEST_PORT,
 gzipFile.getState());

 // Indicate results of writing to gz.xsbc or just .xsbc
 if (returnVal == 1)

 System.out.println("Sucessfully sent in GZipped and XSBC " +
 "form.");

 else if (returnVal == 0)

 System.out.println("Problem encountered while sending in " +
 "GZipped and XSBC form.");

 // We just want to .xsbc the file
 } else {

 // Invoke the serializer and send .xml file info via the UDP option
 // in XSBC form w/o FEC encoding (tdn)
 xsfe = new XsbcSerializerFecEncoder(file.getPath(), true,
 fecFile.getState(), null, LOCAL_HOST, DEST_PORT);

 returnVal = xsbcs.writeNetwork(LOCAL_HOST, DEST_PORT,
 gzipFile.getState());

 // Indicate results of writing to gz.xsbc or just .xsbc
 if (returnVal == 1)

 System.out.println("Sucessfully sent in XSBC form.");

 else if (returnVal == 0)

 System.out.println("Problem encountered while sending in " +
 "XSBC form.");

 } // end if-else block

 // Trying to be careful with these
 returnVal = 0;

 // Must select fec encoding again next time around
// fecFile.setState(false);

 } // end doSendFile()

 /** Performs the save file to disc procedure in .xsbc or .xsbc.gz format */
 private void doSaveFile() {

 // Invoke the serializer second constructor and send file info with
 // write to disc only function w/o FEC encoding (tdn)
 xsfe = new XsbcSerializerFecEncoder(file.getPath(), false, false, null,
 LOCAL_HOST, DEST_PORT);

 // Check if we want gzip before .xsbc
 if (gzipFile.getState()) {

 // Rename our file to be gzipped & serialized with an xsbc.gz extension
 // to indicate xsbc in gzip format (tdn)
 returnVal = xsbcs.writeFile(file.getPath().substring(0,
 file.getPath().lastIndexOf('.')) + ".xsbc.gz",
 gzipFile.getState());

 // Indicate results of writing to gz.xsbc or just .xsbc

126

 if (returnVal == 1) {

 // We need access to this file for FEC Encoding
 newFile = new File(file.getPath().substring(0,
 file.getPath().lastIndexOf('.')) + ".xsbc.gz");

 System.out.println("Serialized and GZipped: " + newFile);

 } else if (returnVal == 0) {

 System.out.println("Problem encountered while saving: "
 + file.getPath().substring(0, file.getPath().lastIndexOf('.'))
 + ".xsbc.gz");

 } // end else-if block

 } else {

 // Rename our serialized file with an .xsbc extension only (tdn)
 returnVal = xsbcs.writeFile(file.getPath().substring(0,
 file.getPath().lastIndexOf('.')) + ".xsbc", gzipFile.getState());

 // Indicate results of writing to .xsbc
 if (returnVal == 1) {

 // We need access to this file for FEC Encoding
 newFile = new File(file.getPath().substring(0,
 file.getPath().lastIndexOf('.')) + ".xsbc") ;

 System.out.println("Serialized only: " + newFile);

 } else if (returnVal == 0) {

 System.out.println("Problem encountered while saving: "
 + file.getPath().substring(0, file.getPath().lastIndexOf('.'))
 + ".xsbc");

 } // end else-if block

 } // end if-else block

 // Trying to be careful about these
 returnVal = 0;

 } // end doSaveFile()

 /**
 * Creates an FECParameters that the decoding process will need access to
 * for orig. file reconstruction (tdn)
 */
 private void createFECParameters() {

 // Make sure we load a file first before we can FEC encode and send
 if (file == null) {

 System.out.println("You must load a file before sending with FEC" +
 " encoding!");
 return;

 } // end if

 // We need save a file in .xsbc or .xsbc.gz form so that the FEC
 // encoder has access to the file. The File will be called newFile when
 // completed.
 doSaveFile();

 params = new FECParameters(K, N, PACKET_SIZE, newFile.length());

127

 // Send the parameters to the receiver for file decoding info. This is a
 // convenience method that actually wouldn't be done in a real server/
 // client application. The parameters would be coded in the data members
 // of the client for K and N.
 rs.setFECParameters(params);

 } // end createFECParameters()

 /* ACTION LISTENER(s) */

 /**
 * Implememnts action listener
 *
 * @param e the event to handle
 */
 public void actionPerformed(ActionEvent e) {

 Object evt = e.getSource();

 // Notify the receiver of the GZipped option
 rs.setIsGZipped(gzipFile.getState());

 // Notify the receiver of the FEC option
 rs.setIsFECEncoded(fecFile.getState());

 if (evt == exit) {

 System.exit(0);

 } // end if

 // Load the selected .xml file and show the DOM tree. This should be
 // done first in all cases (tdn)
 if (evt == loadFile) {

 doLoadFile();

 } // end if

 // XSBC selected .xml file and send over the net (tdn)
 if (evt == sendFile) {

 doSendFile();
 return;

 } // end if

 // GZip and/or XSBC selected .xml file and save to disc. Must load the
 // file again before saving. Sending it twice to produce DOM tree and
 // the mission file closes all the streams. Loading the file again will
 // open all appropriate streams.
 if (evt == saveFile) {

 // This one ignores if FEC Encoding is selected b/c it's just being
 // serialized to disc only. It can be encoded later if we wish.
 doSaveFile();
 return;

 } // end outer if

 if (fecFile.getState()) {

 // If the .xsbc or .xsbc.gz file didn't get saved to disc,
 // FECParameters will be null. Once another action such as load
 // file is fired, this will not return.
 if (file == null) {

 System.out.println("You must load a file before hitting the" +
 " 'Send' button!");
 return;

128

 } else

 // Creates the FECParameter that the decoder will need for file
 // reconstruction. This method will save a serialized .xsbc or
 // .xsbc.gz file to disc so that the serializer method only has to
 // FEC encode the file (tdn)
 createFECParameters();

 } // end if

 } // end actionPerformed()

 /* MAIN METHOD */

 /**
 * Method called when used as an application. Borrowed from Java Sun's
 * GUI tutorial.
 *
 * @param args the command line initial argument
 *
 * @exception Exception if GUI didn't create successfully
 */
 public static void main(String args[]) {

 // Execute a job on the event-dispatching thread creating this GUI
 try {

 javax.swing.SwingUtilities.invokeAndWait(new Runnable() {

 public void run() {

 createAndShowGUI();

 } // end run()

 }); // end invokeAndWait()

 } catch (Exception e) {

 System.err.println("createAndShowGUI() didn't successfully complete" +
 " due to:\n");

 e.printStackTrace();

 } // end try-catch block

 } // end main()

 /**
 * Create the GUI and show it. For thread safety, this method is invoked
 * from the event-dispatching thread (Java Sun's Tutorial on GUIs)
 */
 private static void createAndShowGUI() {

 //Make sure we have nice window decorations.
 JFrame.setDefaultLookAndFeelDecorated(true);

 // Create and set up the window
 JFrame f = new JFrame("XSBC w/ FEC SENDER S I M U L A T I O N");
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 //Create and set up the content pane.
 SenderSimulation ss = new SenderSimulation();
 f.setJMenuBar(ss.createMenuBar());
 f.setContentPane(ss.createContentPane());

 //Display the window.
 f.setSize(500, 600);
 f.setLocation(200, 100);
 f.setVisible(true);

129

 // Show the MOVES Logo as an icon
 f.setIconImage(ss.getFDImage());

 } // end createAndShowGUI()

 /* INNER CLASS(s) */

 public class XMLFileFilter extends FileFilter {

 /** String representation of a file extension */
 private String extension = null;

 /** String representation of a file name */
 private String fn = "";

 /** Accept all directories and all gif, jpg, or tiff files */
 public boolean accept(File f) {

 if (f.isDirectory())

 return true;

 fn = f.getName();

 int i = fn.lastIndexOf('.');

 if (i > 0 && i < fn.length() - 1) {

 extension = fn.substring(i + 1).toLowerCase();

 } // end if

 if (extension != null) {

 if (extension.equals("xml"))

 return true;

 else

 return false;

 } // end outer if

 return false;

 } // end accept()

 /**
 * The description of this filter
 *
 * @return a string describing the filter
 */
 public String getDescription() {

 return "Just XML Files";

 } // end getDescription()

 } // end inner class XMLFileFilter

} // end class file SenderSimulation.java

130

3. The Receiver Client Code

a. ReceiverSimulation.java

/* Program: Test UDP sending of XML compressed (XSBC) data encoded with
 * Forward Error Correction (FEC)
 *
 * Author: Alan Hudson, Yumetech Inc.
 * Modifier: LT Terry D. Norbraten, USN [comments/changes labeled (tdn)]
 *
 * Created on: August 20, 2004, 1903
 * Modified on: November 13 2004, 1657
 *
 * Course: MV 0810 (Thesis Research)
 * Summer 2004
 *
 * File: ReceiverSimulation.java
 *
 * Compiler: netBeans IDE 3.6 (External), J2SDK 1.4.2_04
 * O/S: Windows XP Home Ed (SP 1).
 *
 * Description: This is a loopback UDP implementation of a server/client that
 * takes an XML file, which is definied by an XML schema, is
 * compressed with XSBC (XSBC 0.91.1 library) and encoded with FEC
 * (FEC 1.0.3 library). A Dom4jTree is created in each of the
 * sever and client GUIs to show the origianl and transmitted XML
 * files and appropriate XSBC and XML files are generated through
 * optional GZipping and FEC processes. The client is started as
 * a thread from the server, but can run independently to analyze
 * transmitted files. This server/client application is supported
 * by XsbcSerializer.java and XsbcTransaction.java which handle
 * the XSBC and FEC processes.
 *
 * Information: Using fec-1.0.3 created by Justin F. Chapweske of Onion
 * Networks Inc. and xsbc-0.91.1 created by Alan Hudson of
 * Yumetech Inc. Both are Java open source APIs.
 */

/***
 * Web3d.org Copyright (c) 2004
 * Java Source
 *
 * This source is licensed under the GNU LGPL v2.1
 * Please read http://www.gnu.org/copyleft/lgpl.html for more information
 *
 * This software comes with the standard NO WARRANTY disclaimer for any
 * purpose. Use it at your own risk. If there's a problem you get to fix it.
 *
 **/
package xsbc_fec;

// External imports
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.KeyEvent;
import java.awt.Image;

import java.io.BufferedInputStream;
import java.io.ByteArrayInputStream;
import java.io.DataInputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

131

import java.io.PushbackInputStream;

import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
import java.net.Socket;
import java.net.SocketException;
import java.net.URL;

import java.util.zip.GZIPInputStream;

import javax.swing.ButtonGroup;
import javax.swing.ImageIcon;
import javax.swing.JButton;
import javax.swing.JComponent;
import javax.swing.JFileChooser;
import javax.swing.JFrame;
import javax.swing.JMenu;
import javax.swing.JMenuBar;
import javax.swing.JMenuItem;
import javax.swing.JPanel;
import javax.swing.JRadioButtonMenuItem;
import javax.swing.JScrollPane;
import javax.swing.JTree;
import javax.swing.tree.TreeSelectionModel;
import javax.swing.filechooser.FileFilter;

import org.dom4j.Document;

// Application specific local imports (tdn)
import com.onionnetworks.fec.FECCode;
import com.onionnetworks.fec.FECCodeFactory;

import com.onionnetworks.fec.io.FECParameters;

import com.onionnetworks.util.Buffer;
import com.onionnetworks.util.Util;

import org.apache.log4j.BasicConfigurator;

import org.web3d.xmsf.xsbc.BlockDataInputStream;
import org.web3d.xmsf.xsbc.Dom4jReader;
import org.web3d.xmsf.xsbc.Dom4jReaderNew;
import org.web3d.xmsf.xsbc.TableManager;
import org.web3d.xmsf.xsbc.XSBCReader;
import org.web3d.xmsf.xsbc.apps.XMLSwingTree;

import xsbc_fec.comparison.process.XsbcTransaction;

/**
 * Class to show a simulation of XML serialization. Provides a GUI to receive
 * the XML data. User must assign schema before actual receive process to
 * define the packet type. This class is automatically started as a thread from
 * the SenderSimulation. Modified by (tdn) to ungzip and decode FEC. </p>
 *
 * @author Alan Hudson, Yumetech Inc.
 * Modified by Terry D. Norbraten
 * </p>
 */
public class ReceiverSimulation extends JComponent implements ActionListener,
Runnable {

 /* DATA MEMBER(s) */

 /** Our data input stream */
 private BlockDataInputStream bdis;

132

 /**
 * An FEC Buffer[] holding byte arrays (packets of decoded data size 1024 B)
 * to be read into the DOM reader for .xml tree rendering
 */
 private Buffer[] repairBuffer;

 /** A buffered input stream */
 private BufferedInputStream bis;

 /** Check select button group */
 private ButtonGroup bGroup;

 /** An output stream carrying bytes */
 private ByteArrayInputStream bais;

 /** Our UDP packets to receive data */
 private DatagramPacket packet,
 fecPacket,
 indicePacket;

 /** Our UDP socket */
 private DatagramSocket udpSocket;

 /** DOM4J document */
 private Document domDoc;

 /** XML document reader */
 private Dom4jReader domReader;

 /** XSBC document reader */
 private Dom4jReaderNew dombuilder;

 /** Our decoding code algorithms */
 private FECCode fec;

 /** The parameters we set for FEC encoding */
 private FECParameters params;

 /** Container for the schema file information, path, etc */
 private File schemaFile;

 /** Container for the binary file information, path, etc */
 private File binaryFile;

 /** Input stream for reading binary files */
 private FileInputStream fis;

 /** Our inbound GZip stream */
 private GZIPInputStream zipStream;

 /** File operation selections (tdn) */
 private JButton receiveXSBCFile,
 receiveEncodedFile;

 /** Our file chooser */
 private JFileChooser fc;

 /** bunch of gui stuff, we'll build actual gui later */
 private JMenu fileMenu;
 private JMenuBar menuBar;

 /** Menu items */
 private JMenuItem assignSchema,
 loadBinary,
 exit;

 /** Our content pane */
 private static JPanel contentPane,
 buttonPanel;

133

 /** The viewing pane for a document tree */
 private JScrollPane treeView;

 /** the swing tree, to show the XML document as a swing tree */
 private JTree tree;

 /** String reference to a file path */
 private String path;

 /** Point relatively to the x3d schema directory (tdn) */
 public final String X3DSCHEMA = "examples\\x3d-3.0.xsd";

 /** Thread of the XSBC transaction process */
 private Thread x;

 /** String pointer to my user directory */
 private final String USER_DIR = "C:\\Documents and Settings\\Terry\\" +
 "My Documents\\My Files\\NPS\\Courses\\MV 0810 Thesis Work\\Java Code\\" +
 "XSBC_FEC\\xsbc_fec\\examples\\";

 /** The orig. base name of a now encoded file */
 private String origName;

 /** look up table */
 private TableManager tableManager;

 /** Our XML swing tree */
 private XMLSwingTree swingTree;

 /** XSBC reader */
 private XSBCReader reader;

 /** Our XML de-serializer process */
 private XsbcTransactionFecDecoder xtfd;

 /** Buffers to hold FEC data */
 private byte[] encodedKData,
 encodedNData;

 /** Flag to denote if file is GZipped */
 private boolean isGZipped;

 /** Flag to denote if file is encoded with FEC */
 private boolean isFECEncoded;

 /** Container for all block received indices */
 private int[] repairIndexes;

 /** Indicate our return value */
 private int returnVal;

 /** the port that we listen */
 private final int PORT = 4040;

 /* CONSTRUCTOR(s) */

 /**
 * Constructs a new instance of ReceiverSimulation
 */
 public ReceiverSimulation() {

 returnVal = 0;
 setIsGZipped(false);
 setIsFECEncoded(false);
 openDatagramSocket();

 } // end constructor

134

 /* PUBLIC METHOD(s) */

 /**
 * Creates the menu bar
 *
 * @return the created menu bar
 */
 public JMenuBar createMenuBar() {

 // Create the menu bar
 menuBar = new JMenuBar();

 // Create the first menu
 fileMenu = new JMenu("File");
 menuBar.add(fileMenu);

 // A group of menu items
 assignSchema = new JMenuItem("Assign Schema");
 assignSchema.addActionListener(this);
 fileMenu.add(assignSchema);

 loadBinary = new JMenuItem("Load Binary File");
 loadBinary.addActionListener(this);
 fileMenu.add(loadBinary);

 // a button menu item
 fileMenu.addSeparator();
 bGroup = new ButtonGroup();

 exit = new JMenuItem("Exit");
 exit.addActionListener(this);
 fileMenu.add(exit);

 return menuBar;

 } // end createMenuBar()

 /**
 * Creates the content pane for the GUI
 *
 * @return a container for this content pane
 */
 public Container createContentPane() {

 // Create the content-pane-to-be.
 contentPane = new JPanel(new BorderLayout());
 contentPane.setOpaque(true);

 // Add our operating buttons
 contentPane.add(createButtons(), BorderLayout.SOUTH);

 return contentPane;

 } // end createContentPane()

 /** @return an Image or null */
 public Image getFDImage() {

 URL imgURL = ReceiverSimulation.class.getResource("images/MOVESLogo.gif");
 if (imgURL != null) {
 return new ImageIcon(imgURL).getImage();
 } else {
 System.out.println("Unable to find icon");
 return null;
 }

 } // end getFDImage()

135

 /* GETTER(s) / SETTER(s) */

 /**
 * Sets whether received file is GZipped
 *
 * @param f true if file is GZipped
 */
 public void setIsGZipped(boolean f) {

 isGZipped = f;

 } // end setIsGZipped()

 /**
 * Indicates whether received file is GZipped
 *
 * @return true if file is GZipped
 */
 public boolean getIsGZipped() {

 return isGZipped;

 } // end getIsGZipped()

 /**
 * Sets whether received file is FEC Encoded and set the FEC Parameters
 * if so.
 *
 * @param f true if file is FEC Encoded
 */
 public void setIsFECEncoded(boolean f) {

 isFECEncoded = f;

 } // end setFECEncoded()

 /**
 * Indicates whether received file is FEC Encoded
 *
 * @return true if file is FEC Encoded
 */
 public boolean getIsFECEncoded() {

 return isFECEncoded;

 } // end getIsFECEncoded()

 /**
 * Sets the FEC Parameters that we need for file decoding. This is cheating
 * as we need to send this info over the net instead.
 *
 * @param p the FEC Parameters to set
 */
 public void setFECParameters(FECParameters p) {

 params = p;

 } // end setFECParameters()

 /**
 * Retrieves the FEC Parameters that we need for file decoding. This is
 * cheating as we need to send this info over the net instead.
 *
 * @return the FEC Parameters to set
 */
 public FECParameters getFECParameters() {

 return params;

 } // end getFECParameters()

136

 /* PRIVATE METHOD(s) */

 /**
 * Creates our operating buttons
 *
 * @return a panel for our buttons
 */
 private JPanel createButtons() {

 buttonPanel = new JPanel();

 receiveXSBCFile = new JButton("Receive XSBC");
 receiveXSBCFile.addActionListener(this);

 receiveEncodedFile = new JButton("Receive Encoded");
 receiveEncodedFile.addActionListener(this);

 buttonPanel.add(receiveXSBCFile);
 buttonPanel.add(receiveEncodedFile);

 return buttonPanel;

 } // end createButtons()

 /**
 * Opens the Datagram socket for receiving packets on designated port
 *
 * @exception SocketException if the socket couldn't bind to the port
 */
 private void openDatagramSocket() {

 try {

 udpSocket = new DatagramSocket(PORT);

 } catch (SocketException se) {

 se.printStackTrace();

 } // end try-catch block

 } // end openDatagramSocket()

 /** Performs the schema loading procedure */
 private void doAssignSchema() {

 fc = new JFileChooser(USER_DIR);
 fc.addChoosableFileFilter(new SchemaFileFilter());

 returnVal = fc.showDialog(this,"Assign Schema");

 if (returnVal == JFileChooser.APPROVE_OPTION) {

 schemaFile = fc.getSelectedFile();
 System.out.println("Loading schema: " + schemaFile.getPath());

 try {

 tableManager = new TableManager(new URL("file:///"
 + schemaFile.getPath()));

 } catch (Exception ex) {

 ex.printStackTrace();

 } // end try-catch block

 // Invoke our receiver .xsbc document reader at let it know if the
 // incoming file is in GZip format and or FEC encoded (tdn)
 xtfd = new XsbcTransactionFecDecoder(udpSocket, schemaFile, 0,

 getIsGZipped(),

137

 getIsFECEncoded(), getFECParameters());
 x = new Thread(xtfd);

 } // end inner if

 } // end doAssignSchema()

 /** Performs the receiving file procedure to build the DOM tree */
 private void doReceiveFile() {

 new Thread(new Runnable() {

 /**
 * @exception IOException if there are socket or GZIPInputStream
 * issues
 */
 public void run() {

 // Notify to load the schema first
 if (tableManager == null) {

 System.out.println("You must load a schema first!");
 doAssignSchema();;

 } // end if

 // create an .xml document processor
 domReader = new Dom4jReader(tableManager);

 // Prepare the packet for reception of data
 packet = new DatagramPacket(new byte[1500], 1500);

 // The first time you hit the send button, this receiver will
 // generate the dom4j .xml document tree. If you hit this send
 // button a second time, a missionResultsXsbc0.file will
 // be generated in the dataweb/results folder (tdn)
 try {

 udpSocket.receive(packet);

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 System.out.println("Received Packet Size " +
 packet.getLength());

 // Grap the packet contents
 bais = new ByteArrayInputStream(packet.getData());

 doRenderDOMTree();

 // Start the xsbc transaction thread to make the mission file after
 // the second time the send button is selected from the server
 x.start();

 } // end run

 }).start();

 } // end doReceiveFile()

138

 /**
 * Performs preparations for FEC decoding to render an .xml file in the
 * DOM tree. In this runnable thread, the socket will listen for packets and
 * receive them from the Server Simulation.
 *
 * @exception IOException if the socket couldn't read packets
 */
 private void doFECDecoding() {

 new Thread(new Runnable() {

 public void run() {

 if (getIsFECEncoded())

 //create our fec code
 fec = FECCodeFactory.getDefault().createFECCode(params.getK(),
 params.getN());

 else {

 // If we don't return here, a null pointer exception will be
 // thrown.
 System.out.println("FEC Parameters haven't been set by the"
 + " encoding server! ");
 return;

 } // end if-else block

 // Notify to load the schema first
 if (tableManager == null) {

 System.out.println("You must load a schema first!");
 doAssignSchema();

 } // end if

 // create an .xml document processor
 domReader = new Dom4jReader(tableManager);

 // Prepare to receive our K * Block Count repair indices. These
 // are just byte format integers for each Datagram packet. Again,
 // we will select our K required subset from the N received from
 // each block.
 indicePacket = new DatagramPacket(new byte[params.getN()],
 params.getN());

 // Storage for each block's K subset of N repair indexes that
 // will be copied from receiveIndexes.
 repairIndexes = new int[params.getK() * params.getBlockCount()];

 // Receive each block repair index information
 for (int ix = 0; ix < params.getBlockCount(); ix++) {

 try {

 // Receive our repair index info.
 udpSocket.receive(indicePacket);

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 // Feed index information into this BAIS per block
 bais = new ByteArrayInputStream(indicePacket.getData());

 System.out.println("Receiving block number: " + ix);

139

 // Extract K * Block Count packet elements that make up our
 // repair indices.
 for (int jx = 0; jx < params.getK(); jx++) {

 // Collect our K selected repair packet indicies
 repairIndexes[jx] = bais.read();

// System.out.println("Received repair packet index: " +
// repairIndexes[jx]); // DEBUG

 } // end inner for

 } // end outer for

 /***************** Receive Encoded Repair Packets *****************/

 // Prepare this packet for reception of a repair packet each
 // containing 1024 bytes of encoded data
 fecPacket = new DatagramPacket(new byte[params.getPacketSize()],
 params.getPacketSize());

 // Temp storage for encoded data
 encodedNData = new byte[params.getN() * params.getPacketSize() *
 params.getBlockCount()];
 encodedKData = new byte[params.getK() * params.getPacketSize() *
 params.getBlockCount()];

 // Receive each block's worth of N encoded repair packets for
 // storage
 for (int ix = 0; ix < params.getN() * params.getBlockCount();
 ix++) {

 // Receive a block of data to encode
 try {

 // Receive our encoded data
 udpSocket.receive(fecPacket);

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 // Copy N encoded packets into a byte[] for K selection
 System.arraycopy(fecPacket.getData(), 0, encodedNData, ix *
 fecPacket.getLength(), fecPacket.getLength());

 } // end for

 // Extract a K subset of the N encoded repair packets for decoding
 System.arraycopy(encodedNData, 0, encodedKData, 0, params.getK() *
 params.getPacketSize());

// for (int ix = 0; ix < params.getK(); ix++) {

// System.out.println("Receive FEC encoded data packet " +
// ix + " " + encodedKData[ix]); // DEBUG

// } // end for

 System.out.println("Expanded Block Size: " +
 params.getExpandedBlockSize()); // DEBUG

 // This will hold our K subset of encoded repair packets
 repairBuffer = new Buffer[params.getK() * params.getBlockCount()];

 // Put the encoded data into an FEC Buffer wrapper for decoding
 for (int ix = 0; ix < params.getK() * params.getBlockCount();
 ix++)
 repairBuffer[ix] = new Buffer(encodedKData, ix *

140

 params.getPacketSize(), params.getPacketSize());

 // Finally, decode the repair packets into the file
 fec.decode(repairBuffer, repairIndexes);

 // Grab the repairBuffer's contents
 bais = new ByteArrayInputStream(encodedKData);

 // Prompt to assign the schema to be able to render the DOM tree
 if (schemaFile == null) {

 doAssignSchema();

 } // end if

 doRenderDOMTree();

 // Start the xsbc transaction thread to make the mission file
 x.start();

 } // end run()

 }).start();

 } // end doFECDecoding()

 /**
 * Renders the DOM tree in the JScroll Panel after being decoded and/or
 * uncompressed.
 */
 private void doRenderDOMTree() {

 try {

 // Test if the byte array input stream is wrapped in a
 // GZIPInputSteam. If not, continue normally (tdn)
 if (getIsGZipped()) {

 zipStream = new GZIPInputStream(bais);
 System.out.println("Receiving GZipped data.... ");
 bis = new BufferedInputStream(zipStream);
 bdis = new BlockDataInputStream(bis);

 } else {

 bdis = new BlockDataInputStream(bais);

 } // end if-else block

 // Read the data (throws a null pointer exception at org.web3d.xmsf.
 // xsbc.Dom4jReader.readingAttributes(Dom4jReader.java:317)
 // Impact: Receiver Dom4jTree panel incomplete rendering of full
 // received XSBC file (tdn)
 domReader.parseData(bdis);

 // Build the XML tree, but something is broke. Not all
 // attributes are reconstructing in the DOM tree (tdn)
 swingTree = new XMLSwingTree(domReader.getDocument());
 tree = new JTree(swingTree.getSwingTree());
 tree.getSelectionModel().setSelectionMode(
 TreeSelectionModel.SINGLE_TREE_SELECTION);
 treeView = new JScrollPane(tree);

 // Add the scroll pane to the content pane.
 contentPane.add(treeView, BorderLayout.CENTER);

 // XML tree won't render unless we do this (tdn)
 contentPane.setVisible(false);
 contentPane.setVisible(true);

141

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 } // end doRenderDOMTree()

 /** Performes the binary file loading */
 private void doLoadBinary() {

 new Thread(new Runnable() {

 public void run() {

 // Notify to load the schema first
 if (tableManager == null) {

 System.out.println("You must load a schema first!");
 doAssignSchema();

 } // end if

 try {

 fc = new JFileChooser(USER_DIR);
 fc.addChoosableFileFilter(new XMLFileFilter());

 returnVal = fc.showDialog(ReceiverSimulation.this,
 "Load XML File");

 if (returnVal != JFileChooser.APPROVE_OPTION)
 return;

 // created the document processor
 binaryFile = fc.getSelectedFile();

 // Test for a .gz extension
 String extension = null;
 String fn = binaryFile.getName();
 int i = fn.lastIndexOf('.');
 if (i > 0 && i < fn.length() - 1) {
 extension = fn.substring(i+1).toLowerCase();
 } // end if
 if (extension != null) {
 if (extension.equals("gz"))
 setIsGZipped(true);
 } // end if

 System.out.println("XSBC file: " + binaryFile.getPath() +
 " \nand schema: " +
 schemaFile.getPath()); // DEBUG

 fis = new FileInputStream(binaryFile);
 byte[] buffer = new byte[(int) binaryFile.length()];
 fis.read(buffer);
 bais = new ByteArrayInputStream(buffer);
 if (getIsGZipped()) {
 zipStream = new GZIPInputStream(bais);
 bis = new BufferedInputStream(zipStream);
 bdis = new BlockDataInputStream(bis);
 } else {

 bdis = new BlockDataInputStream(bais);

 }

 System.out.println("Loading GZipped binary data ");

 dombuilder = new Dom4jReaderNew(tableManager);

142

 reader = new XSBCReader(tableManager);

 reader.read(bdis, dombuilder);

 domDoc = dombuilder.getDocument();

 swingTree = new XMLSwingTree(domDoc);
 tree = new JTree(swingTree.getSwingTree());

 tree.getSelectionModel().setSelectionMode(
 TreeSelectionModel.SINGLE_TREE_SELECTION);

 //Create the scroll pane and add the tree to it.
 treeView = new JScrollPane(tree);

 // Add the scroll pane to the content pane.
 contentPane.add(treeView, BorderLayout.CENTER);

 // XML tree won't render unless we do this (tdn)
 contentPane.setVisible(false);
 contentPane.setVisible(true);

 } catch (Exception ex) {

 ex.printStackTrace();

 } // end try-catch block

 } // end run()

 }).start();

 } // end doLoadBinary

 /* ACTION EVENT(s) */

 /**
 * Take action appropirate on the events
 *
 * @param e the event to take action on
 */
 public void actionPerformed(ActionEvent e) {

 Object evt = e.getSource();

 if (evt == exit) {

 System.exit(0);

 } // end if

 if (evt == assignSchema) {

 doAssignSchema();

 } // end outer if

 if (evt == receiveXSBCFile) {

 doReceiveFile();

 } // end if

 // Load an .xsbc file, decompress and view (tdn)
 if (evt == loadBinary) {

 doLoadBinary();

 } // end if

143

 if (evt == receiveEncodedFile) {

 doFECDecoding();

 } // end if

 } // end actionPerformed()

 /* MAIN METHOD */

 /**
 * Method called when used as an application. Borrowed from Java Sun's
 * GUI tutorial.
 *
 * @param args the command line initial argument
 *
 * @exception Exception if GUI didn't create successfully
 */
 public static void main(String args[]) {

 // Execute a job on the event-dispatching thread creating this GUI
 try {

 javax.swing.SwingUtilities.invokeAndWait(new Runnable() {

 public void run() {

 createAndShowGUI();

 } // end run()

 }); // end invokeAndWait()

 } catch (Exception e) {

 System.err.println("createAndShowGUI() didn't successfully complete" +
 " due to:\n");

 e.printStackTrace();

 } // end try-catch block

 } // end main()

 /* THREAD */

 /** To be ran as a thread from Server Simulation */
 public void run() {

 //Make sure we have nice window decorations.
 JFrame.setDefaultLookAndFeelDecorated(true);

 // Create and set up the window
 JFrame f = new JFrame("XSBC w/ FEC RECEIVER S I M U L A T I O N");
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 //content panes must be opaque
 f.setJMenuBar(createMenuBar());
 f.setContentPane(createContentPane());

 // Show the MOVES Logo as an icon
 f.setIconImage(getFDImage());

 //Display the window.
 f.setSize(500, 600);
 f.setLocation(750, 100);
 f.setVisible(true);

 } // end run()

144

 /**
 * Create the GUI and show it. For thread safety, this method is invoked
 * from the event-dispatching thread (Java Sun's Tutorial on GUIs)
 */
 private static void createAndShowGUI() {

 //Make sure we have nice window decorations.
 JFrame.setDefaultLookAndFeelDecorated(true);

 // Create and set up the window
 JFrame f = new JFrame("XSBC w/ FEC RECEIVER S I M U L A T I O N");
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 //Create and set up the content pane.
 ReceiverSimulation rs = new ReceiverSimulation();

 //content panes must be opaque
 f.setJMenuBar(rs.createMenuBar());
 f.setContentPane(rs.createContentPane());

 //Display the window.
 f.setSize(500, 600);
 f.setLocation(750, 100);
 f.setVisible(true);

 // Show the MOVES Logo as an icon
 f.setIconImage(rs.getFDImage());

 } // end createAndShowGUI()

 /* INNER CLASS(s) */

 /**
 * Inner class used to filter schema files
 */
 public class SchemaFileFilter extends FileFilter {

 /** String representation of a file extension */
 private String extension = null;

 /** String representation of a file name */
 private String fn = "";

 // Accept all directories and all gif, jpg, or tiff files.
 public boolean accept(File f) {
 if (f.isDirectory())
 return true;

 extension = null;

 fn = f.getName();

 int i = fn.lastIndexOf('.');

 if (i > 0 && i < fn.length() - 1) {
 extension = fn.substring(i+1).toLowerCase();

 }

 if (extension != null) {
 if (extension.equals("xsd"))
 return true;

 else
 return false;
 }

 return false;

 } // end accept()

145

 /** The description of this filter */
 public String getDescription() {

 return "Just Schema Files";

 } // end getDescription()

 } // end inner class SchemaFileFilter

 /** Inner class used to filter binary files */
 public class XMLFileFilter extends FileFilter {

 /** String representation of a file extension */
 private String extension = null;

 /** String representation of a file name */
 private String fn = "";

 // Accept all directories and all gif, jpg, or tiff files.
 public boolean accept(File f) {
 if (f.isDirectory())
 return true;

 extension = null;

 fn = f.getName();

 int i = fn.lastIndexOf('.');

 if (i > 0 && i < fn.length() - 1) {
 extension = fn.substring(i+1).toLowerCase();

 }

 if (extension != null) {
 if (extension.equals("xsbc") || extension.equals("gz"))
 return true;

 else
 return false;
 }

 return false;

 } // end accept()

 /** The description of this filter */
 public String getDescription() {

 return "Just Binary Files";

 } // end getDescription()

 } // end inner class XMLFileFilter

} // end class file ReceiverSimulation.java

4. Supporting Code Called from the Server/Client Application
 The following two files are supporting files called by the

SenderSimulation.java and ReceiverSimulation.java files. They take care of the

implementation of compressing XML files by the XSBC process and FEC

encoding and the converse of uncompressing and decoding. As noted, the

146

SenderSimulation invokes the ReceiverSimulation as a thread process, so

executing the SenderSimulation readies all four files to process XSBC and FEC

functions.

a. XsbcSerializerFecEncoder.java

/* Program: Extensible Markup Language (XML) Schema-based Binary
 * Compression (XSBC) w/Forward Error Correction (FEC)
 *
 * Author: Duane T. Davis
 * Modifier: LT Terry D. Norbraten, USN [comments/changes labeled (tdn)]
 *
 * Created on: Janurary 30, 2004: 0000
 * Modified on: December 02, 2004: 1428
 *
 * Course: MV 0810 (Thesis Research)
 * Summer 2004
 *
 * File: XsbcSerializerFecEncoder.java
 *
 * Compiler: netBeans IDE 3.6 (External), J2SDK 1.4.2_06
 * O/S: Windows XP Home Ed (SP 1).
 *
 * Description: Reads and XML document and compresses it with XSBC and/or
 * GZip and either writes to file or sends over the net in
 * either a TCP or a UDP option. Also adds an option to encode
 * with FEC which is only used in the UDP option only (tdn).
 *
 * Information: Using fec-1.0.3 created by Justin F. Chapweske of Onion
 * Networks Inc. and xsbc-0.91.1 created by Alan Hudson of
 * Yumetech Inc. Both are Java open source APIs.
 */
package xsbc_fec.comparison.process;

// Standard library imports
import java.io.ByteArrayOutputStream;
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.io.IOException;
import java.io.OutputStream;

import java.net.DatagramSocket;
import java.net.DatagramPacket;
import java.net.InetAddress;
import java.net.Socket;
import java.net.SocketException;
import java.net.UnknownHostException;

import java.util.zip.GZIPOutputStream;

// Application specific local imports
import com.onionnetworks.fec.io.FECFile;
import com.onionnetworks.fec.io.FECParameters;

import com.onionnetworks.util.Buffer;
import com.onionnetworks.util.Util;

import org.web3d.xmsf.xsbc.DocumentWriter;
import org.web3d.xmsf.xsbc.datatypes.SimpleType;

//import execution.*;

147

/**
 * Reads and XML document and compresses it with XSBC and/or GZip and either
 * writes to file or sends over the net in either a TCP or a UDP option
 * (tdn). </p>
 *
 * @author Duane T. Davis
 * Modified by Terry D. Norbraten
 * </p>
 */
public class XsbcSerializerFecEncoder {

 /* DATA MEMBER(s) */

 /**
 * An FEC wrapper (K of them) to hold encoded data (byte[] packets of size
 * 1024 B) that will be encoded with repair data before for transmission
 */
 private Buffer[] sourceBuffer;

 /** An outstream to contain byte arrays for sending packets */
 private ByteArrayOutputStream baos;

 /** A UDP packet to carry our data out */
 private DatagramPacket packet,
 repairIndices;

 /** A UDP socket for sending and receiving data over the net */
 private DatagramSocket udpSocket;

 /** Stream for sending binary files to disc */
 private DataOutputStream dos;

 /** The document writer that serializes .xml files */
 private DocumentWriter writer;

 /** Instance of the FEC encoding file object */
 private FECFile fecF;

 /** The parameters we set for FEC encoding */
 private FECParameters params;

 /** Our .xml file object */
 private File inFile;

 /** Our serialized .xml file to .xsbc */
 private File outFile;

 /** Output stream for writing a serialized .xml file */
 private FileOutputStream fos;

 /** GZip stream for send further compressed binary files */
 private GZIPOutputStream zipStream;

 /** Input stream to monitor TCP socket connection */
 private InputStream iStream;

 /** Out stream for sending a binary file */
 private OutputStream oStream;

 /** A TCP socket to transmit data */
 private Socket tcpSocket;

 /** String name of our host */
 private String host;

 /** A flag indicating a UDP option */
 private boolean udpOption;

 /** Flag indicating FEC option */
 private boolean encode;

148

 /** Indicate the port any socket is connected to */
 private int port;

 /** Indicate result of serializing an .xml file */
 private int result;

 /** Our stripe order (repair indice) arrays */
 private int[] stripeOrderN;

 /* CONSTRUCTOR(s) */

 /**
 * Creates a new instance of XsbcSerializerFecEncoder for a TCP option
 *
 * @param inFilePath (including filename) of input XML file
 * @param encode option to use FEC encoding
 * @param p the FEC parameters set if FEC option was selected
 */
 public XsbcSerializerFecEncoder(String inFilePath, boolean encode,
 FECParameters p) {

 // TCP option
 this(inFilePath, false, encode, p, null, 0);

 } // XsbcSerializer (default)

 /**
 * Creates a new instance of XsbcSerializerFecEncoder for a UDP option
 *
 * @param inFilePath (including filename) of input XML file
 * @param udp true if a UDP option is invoked
 * @param encode true if the file is to be FEC encoded, false if not
 * @param p the FECParameters to utilize for FEC file encoding
 * @param host the host address to connect to
 * @param port the port number to bind to
 */
 public XsbcSerializerFecEncoder(String inFilePath, boolean udp,
 boolean encode, FECParameters p,
 String host, int port) {

 result = 0;
 udpOption = udp; // tdn
 this.encode = encode;
 params = p;
 setHost(host);
 setPort(port);

 // Check for FEC encoding option
 if (!encode) {

 // Serialize without FEC Encoding
 setDocumentWriter(inFilePath); // tdn

 } else {

 sourceBuffer = new Buffer[p.getN()];
 stripeOrderN = new int[p.getN()];
 System.out.println("From Serializer constructor: " + p); // DEBUG

 doFECEncoding(inFilePath);

 } // end if-else block

 } // end UDP option constructor

149

 /* PUBLIC METHOD(s) */

 /**
 * Writes the Xsbc data to a specified file
 *
 * @param outFilePath (including name) of the output file
 * @param zipped true if output file is to be compressed (zipped)
 *
 * @exception if outstreams have failed
 */
 public int writeFile(String outFilePath, boolean zipped) {
 try {
 outFile = new File(outFilePath);
 fos = new FileOutputStream(outFile);

 if (zipped)
 result = writeZippedStream(fos);
 else
 result = writeStream(fos);

 fos.close();
 return result;
 } catch (Exception e) {
 e.printStackTrace();
 return(0);
 } // catch (Exception e)
 } // end writeFile()

 /**
 * Writes the XSBC data to a network address by opening a socket. Closes the
 * socket once write is complete. FEC encoded packets will be send via the
 * sendFECEncoded() method (tdn) </p>
 *
 * @param host the string name of the host
 * @param port the port on host to connect to
 * @param zipped true if the file is to be compressed, false if not
 *
 * @exception UnknownHostException
 * @exception SocketException
 * @exception IOException
 */
 public int writeNetwork(String host, int port, boolean zipped) {

 // The setHostAndPort() method doesn't get called if the file isn't
 // selected for FEC encoding, so we set these parameters here (tdn)
 setHost(host);
 setPort(port);

 // Check for the UDP option
 if (!udpOption) {

 try {

 tcpSocket = new Socket(InetAddress.getByName(host), port);
 iStream = tcpSocket.getInputStream();
 oStream = new DataOutputStream(tcpSocket.getOutputStream());
 oStream.flush();

 if (zipped)
 result = writeZippedStream(oStream);
 else
 result = writeStream(oStream);

 oStream.close();

 // loop until server closes connection
 while (tcpSocket.isConnected());
 } catch (Exception e) {
// Utilities.traceOut("Unable to establish network connection for
// XSBC-compressed archive transfer");
 e.printStackTrace();

150

 } // catch (Exception e)

 // Send packet via UDP (tdn)
 } else {

 try {

 udpSocket = new DatagramSocket(); // tdn
 baos = new ByteArrayOutputStream(); //tdn
 oStream = new DataOutputStream(baos); // tdn
 oStream.flush();

 if (zipped)
 result = writeZippedStream(oStream);
 else
 result = writeStream(oStream);

 oStream.close();

 } catch (SocketException se) {

 se.printStackTrace();

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 } // end outer if-else block

 return result;

 } // end writeNetwork()

 /* GETTER(s) / SETTER(s) */

 /**
 * Set the host for sending FEC Encoded files
 *
 * @param host the host to send to
 */
 public void setHost(String host) {

 this.host = host;

 } // end setHost()

 /**
 * Retrieve the host to send FEC Encoded files to
 *
 * @return the host to send to FEC Encoded files to
 */
 public String getHost() {

 return host;

 } // end getHost()

 /**
 * Set the port number for sending FEC Encoded files
 *
 * @param port the port number to connect to
 */
 public void setPort(int port) {

 this.port = port;

 } // end setPort()

151

 /**
 * Retrieve the port # to send FEC Encoded files to
 *
 * @return the port # to send FEC Encoded files to
 */
 public int getPort() {

 return port;

 } // end getPort()

 /* PRIVATE METHOD(s) */

 /**
 * Set up the XSBC document writer
 *
 * @param file the incoming .xml file to serialize
 */
 private void setDocumentWriter(String file) {

 try {
 inFile = new File(file);
 writer = new DocumentWriter(inFile.getPath());
 } catch(Exception ioe) {
 ioe.printStackTrace();
 } // catch (IOException)

 } // end setDocumentWriter()

 /**
 * Performs the FEC Encoding of an already saved to disc .xsbc file before
 * sending out in a stream
 *
 * @param fileName the .xsbc file to encode
 *
 * @exception IOException if FECFile did not form properly and/or
 * the encoding process failed
 */
 private void doFECEncoding(String fileName) {

 System.out.println("File to encode with FEC: " +
 new File(fileName).getName());

 // Create the FEC file out of the .xsbc file in read only mode with the
 // default parameters K=16, N=32 and repair packet size=1024 B
 try {

 fecF = new FECFile(new File(fileName), "r", params);

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 // Create an array of N numbered indices
 for (int i = 0; i < stripeOrderN.length; i++) {

 stripeOrderN[i] = i;

 } // end for

 // Create an FEC Buffer[] as a wrapper holding N byte[] 1024 B in size.
 // These will be the repair packets of which will expand to N encoded
 // repair packets. We only need any K subset per block on the receiving
 // end to decode the orig. file (not to be confused with Datagram
 // Packets). (tdn)
 for (int i = 0; i < params.getN(); i++) {

 sourceBuffer[i] = new Buffer(params.getPacketSize());

152

 } // end for

 // Not sure why we do this save only to mix the repair index ordering
 // to prove that any K of N repair packets per block is all that's needed
 // to restore the orig. file. Yes, confirmed we just need any K
 // subset of the orig. N expanded repair packets and this method, by
 // shuffling the indices, will prove that any K subset of the N will do
 // the trick.

 // Perform a Fisher-Yates shuffle of the stripeOrder[] numbered indices.
 // Repair packets (N of them for each block, last block may contain less)
 // will be encoded according to the stripe ordering produced by this
 // shuffle.
 Util.shuffle(stripeOrderN);

 for (int i = 0; i < params.getBlockCount(); i++) {

 try {

 // Encode packets in each file partitioned block (i) as repair
 // packets according to the shuffled order of their indices
 // (FEC code)
 fecF.read(sourceBuffer, i, stripeOrderN);

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 // TODO: Implement TCP option of sending FEC encoded data

 // Send each block (index information along with each N repair packet)
 // along it's way. Once decoded by the receiver, the receiver will
 // determine GZipped status and handle accordingly via UDP only.
 sendFECEncoded();

 System.out.println("Sending block number: " + i);

 } // end for

 } // end doFECEncoding()

 /**
 * Sends only FEC encoded packets down stream one block at a time along with
 * the repair packet index of each repair packet ordering via UDP only
 *
 * @exception SocketException if the Datagram Socket didn't open
 * @exception UnknownHostException if host couldn't be determined
 * @exception IOException if the socket couldn't send the packet
 */
 private void sendFECEncoded() {

 // Send repair packet indicie info first
 try {

 // Open our UDP socket
 udpSocket = new DatagramSocket();

 // Prepare a BAOS for sending repair packet indice info.
 baos = new ByteArrayOutputStream();

 } catch (SocketException se) {

 se.printStackTrace();

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

153

 // Write the repair index information to a buffer
 for (int i = 0; i < params.getN(); i++) {

 // Write an N amount of the shuffled indices to the stream
 baos.write(stripeOrderN[i]);

 } // end for

 try {

 // Flush the bytes out of the buffer into the stream
 baos.flush();

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 /********************* Send Encoded Repair Packets **********************/

 try {

 // Prepare the packet to send indice info.
 repairIndices = new DatagramPacket(baos.toByteArray(),
 baos.toByteArray().length, InetAddress.getByName(getHost()),
 getPort());

 } catch (UnknownHostException uhe) {

 uhe.printStackTrace();

 } // end try-catch block

 // Send the N repair index packets first
 try {

 // Send repair packet indice info.
 udpSocket.send(repairIndices);

// for (int ix = 0; ix < repairIndices.getLength(); ix++)
//
// System.out.println("Sending FEC encoded data packet index: " +
// stripeOrderArray[ix] + " in packet size: "
// + baos.toByteArray().length); // DEBUG

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 try {

 baos.close();

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 // Send each block's worth of N repair packets
 for (int i = 0; i < sourceBuffer.length; i++) {

 try {

154

 // Load the packet with encoded data of just repair packet size and
 // send each to keep under the 1500 byte MTU as specified by NPS
 // research associate Don McGregor. I know I'm making new Datagram
 // packets with each iteration of the for loop, but with the FEC
 // Buffer[], this is the only way to extract encoded data into byte
 // array form for the Datagram Packet for each repair packet that
 // is to be transmitted. So here, we send N packets of encoded data
 // per block.
 packet = new DatagramPacket(sourceBuffer[i].getBytes(),
 params.getPacketSize(), InetAddress.getByName(getHost()),
 getPort()); // tdn

 } catch (UnknownHostException uhe) {

 uhe.printStackTrace();

 } // end try-catch block

// System.out.println("Sending FEC encoded data packet " + i + " " +
// sourceBuffer[i]); // DEBUG

 // Send the repair encoded packets
 try {

 // Send encoded data
 udpSocket.send(packet);

// System.out.println("Successfully sent encoded repair packet " + i +
// " of size: " + packet.getLength() + " B to: " +
// packet.getAddress().toString() + " on port: " +
// packet.getPort()); // DEBUG

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 } // end for

 // Close the socket
 udpSocket.close();

 } // end sendFECEncoded()

 /**
 * Writes the XSBC data to an output stream via the TCP or the UDP option.
 * Does not open stream. </p>
 *
 * @param stream the outstream to write data to
 *
 * @exception FileNotFoundException
 * @exception IOException
 */
 private int writeStream(OutputStream stream) {

 try {

 SimpleType.setCompressionMethod(
 SimpleType.COMPRESSION_METHOD_SMALLEST_NONLOSSY);
 dos = new DataOutputStream(stream);
 writer.serialize(dos);
 dos.flush();
 dos.close();

 // Check for the UDP option to send this file. If the file is being
 // saved to disc, this will not be selected by the caller (tdn)
 if (udpOption) {

 // TODO: Implement streaming FEC here

155

 sendUDP();

 System.out.println("Sending data non-GZipped.... "
 + baos.toByteArray().length + " B"); // DEBUG

 } // end if

 // Indicate success (tdn)
 return(1);

 } catch (Exception e) {

// Utilities.traceOut("Unable to write XSBC to stream");
 e.printStackTrace();

 return(0);

 } // catch (Exception e)

 } // end writeStream()

 /**
 * Writes the XSBC data to an output stream in zipped form. Does not open
 * the stream. </p>
 *
 * @param stream the output stream to write compressed Xsbc to
 *
 * @exception IOException
 */
 private int writeZippedStream(OutputStream stream) {
 try {
 zipStream = new GZIPOutputStream(stream);
 SimpleType.setCompressionMethod(
 SimpleType.COMPRESSION_METHOD_SMALLEST_NONLOSSY);
 dos = new DataOutputStream(zipStream);
 writer.serialize(dos);
 dos.flush();
 dos.close();

 // Check for the UDP option to send this file. If the file is being
 // saved to disc, this will not be selected by the caller (tdn)
 if (udpOption) {

 // TODO: Implement streaming FEC here

 sendUDP();

 System.out.println("Sending data GZipped.... " +
 baos.toByteArray().length + " B"); // DEBUG

 } // end if

 // Indicate success (tdn)
 return(1);
 } catch (Exception e) {
// Utilities.traceOut("Unable to write XSBC to Zip Stream");
 e.printStackTrace();
 return(0);
 } // catch (Exception e)

 } // end writeStreamZipped()

 /**
 * Sends the packet via UDP best effort delivery
 *
 * @exception UnknownHostException if the packet didn't form
 * @exception IOException if the packet didn't send *
 */
 private void sendUDP() {

 try {

156

 // This is able to happen b/c the baos was part of the orig. data
 // output stream that the serializer requires for serializing .xml
 // documents and it's the baos that holds the serialized data.
 packet = new DatagramPacket(baos.toByteArray(),
 baos.toByteArray().length, InetAddress.getByName(getHost()),
 getPort());

 udpSocket.send(packet); // tdn

 } catch (UnknownHostException uhe) {

 uhe.printStackTrace();

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 } // end sendUDP()

} // end class file XsbcSerializerFecEncoder.java

b. XsbcTransactionFecDecoder.java

/* Program: Extensible Markup Language (XML) Schema-based Binary
 * Compression (XSBC) w/Forward Error Correction (FEC)
 *
 * Author: Duane T. Davis
 * Modifier: LT Terry D. Norbraten, USN [comments/changes labeled (tdn)]
 *
 * Created on: February 01, 2004: 0006
 * Modified on: December 02, 2004: 1428
 *
 * Course: MV 0810 (Thesis Research)
 * Summer 2004
 *
 * File: XsbcTransactionFecDecoder.java
 *
 * Compiler: netBeans IDE 3.6 (External), J2SDK 1.4.2_06
 * O/S: Windows XP Home Ed (SP 1)
 *
 * Description: Receives GZipped streams of XSBC data, reads the data,
 * uncompresses the .xsbc file and writes out to cache the
 * reconstructed .xml document. FEC Encoded data will only be
 * received via UDP.
 *
 * Information: Using fec-1.0.3 created by Justin F. Chapweske of Onion
 * Networks Inc. and xsbc-0.91.1 created by Alan Hudson of
 * Yumetech Inc. Both are Java open source APIs.
 */
package xsbc_fec.comparison.process;

// Standard Library imports
import java.io.ByteArrayInputStream;
import java.io.BufferedInputStream;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.io.IOException;

import java.util.zip.GZIPInputStream;

157

import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.MalformedURLException;
import java.net.URL;
import java.net.Socket;

// Application specific imports
import com.onionnetworks.fec.FECCode;
import com.onionnetworks.fec.FECCodeFactory;

import com.onionnetworks.fec.io.FECParameters;

import com.onionnetworks.util.Buffer;
import com.onionnetworks.util.Util;

import org.apache.log4j.BasicConfigurator;

import org.web3d.xmsf.xsbc.BlockDataInputStream;
import org.web3d.xmsf.xsbc.TableManager;
import org.web3d.xmsf.xsbc.XMLWriter;
import org.web3d.xmsf.xsbc.XSBCReader;
import org.web3d.xmsf.xsbc.datatypes.SimpleType;

/**
 * Receives GZipped streams of XSBC data, reads the data, uncompresses the
 * .xsbc file and writes out to cache the reconstructed .xml document.
 *
 * @author Duane T. Davis
 * Modified by Terry D. Norbraten
 * </p>
 */
public class XsbcTransactionFecDecoder implements Runnable {

 /* DATA MEMBER(s) */

 /** Input stream for UDP packets */
 private ByteArrayInputStream bais;

 /** A block data input stream */
 private BlockDataInputStream bdis;

 /** A buffered input stream */
 private BufferedInputStream bis;

 /** An FEC Buffer[] holding byte arrays (packets of decoded data size 1024 B)
 * to be read into the DOM reader for .xml tree rendering
 */
 private Buffer[] repairBuffer;

 /** Our UDP packets to receive data */
 private DatagramPacket packet,
 fecPacket,
 indicePacket;

 /** A UDP socket to connect to the net */
 private DatagramSocket udpSocket;

 /** Our FEC Code used for decoding */
 private FECCode fec;

 /** Our FEC parametes for decoding */
 private FECParameters params;

 /** An outfile object to go to cache */
 private File outFile;

 /** File pointer to a schema location */
 private File schemaLoc;

 /** For writting a file to disc */
 private FileOutputStream fos;

158

 /** Our inbound GZip stream */
 private GZIPInputStream zipStream;

 /** Our TCP input stream */
 private InputStream iStream;

 /** A TCP socket to connect to the net */
 private Socket tcpSocket;

// /** Point to the data cache folder */
// private final String DATACACHE = "/dataweb/results/";

 /** Point to the data cache folder (tdn) */
 private final String DATACACHE = "C:\\Documents and Settings\\Terry\\" +
 "My Documents\\My Files\\NPS\\Courses\\MV 0810 Thesis Work\\Java Code\\" +
 "XSBC_FEC\\xsbc_fec\\dataweb\\results\\";

 /** Point to the cache file folder */
 private final String CACHEFILE = "missionResultsXsbc";

 /** Location of AVCL schema for use by XSBC routines */
// public static final String AVCLSCHEMA = "../build/Scripts/AVCL.xsd";
 public static final String AVCLSCHEMA = "C:/auv/AuvWorkbench/Scripts/AVCL.xsd";

 /** A Table manager to hold the XML schema tree */
 private TableManager tableManager ;

 /** Our XML document writer */
 private XMLWriter writer;

 /** Our XSBC document reader */
 private XSBCReader reader;

 /** Flag to denote if incoming packet is FEC encoded */
 private boolean isEncoded;

 /** Flag to denote if incoming packet is in GZip format */
 private boolean isGZipped;

 /** Buffers to hold FEC data */
 private byte[] encodedKData,
 encodedNData;

 /** Indentify a transaction by this id */
 private int transactionId;

 /** Container for all block received indices */
 private int[] repairIndexes;

 /* CONSTRUCTOR(s) */

 /**
 * Creates a new instance of XsbcTransaction
 *
 * @param socket the TCP socket over which the transaction will take place
 * @param p the FEC parameters to utilize if FEC encoding was selected
 * @param e true if FEC encoding was selected
 * @param id the trasnaction id of a generated mission output file
 */
 public XsbcTransactionFecDecoder(Socket socket, FECParameters p, boolean e,
 int id) {
 this(null, null, id, false, e, p);
 this.tcpSocket = socket;
 } // XsbcTransactionFecDecoder (default)

159

 /**
 * Creates a new instance of XsbcTransactionFecDecoder for a UDP option
 *
 * @param socket the UDP socket over which the transaction will take place
 * @param file the XML schema used to reconstruct the orig. .xml tree
 * @param id the trasnaction type of this process
 * @param g a flag to denote if incoming packet is in GZip format
 * @param e a flag to denote if incoming packet is FEC encoded
 * @param p our given FEC Parameters
 */
 public XsbcTransactionFecDecoder(DatagramSocket socket, File file, int id,
 boolean g, boolean e, FECParameters p) {

 udpSocket = socket;
 schemaLoc = file;
 transactionId = id;
 isGZipped = g;
 isEncoded = e;
 params = p;

 if (udpSocket != null) {

 // Sufficient capacity to receive UDP packets
 packet = new DatagramPacket(new byte[1500], 1500);

 } // end if

 // This function produces a verbose DEBUG output that shows Block
 // Counts and the decoding process. If commented out, it will throw a
 // couple of log4j error about not being initialized properly. They
 // can be ignored (tdn)
 BasicConfigurator.configure();

 } // end UDP option constructor

 /* THREAD PROCESS */

 /**
 * Processes the XSBC transaction
 */
 public void run() {

 SimpleType.setCompressionMethod(
 SimpleType.COMPRESSION_METHOD_SMALLEST_NONLOSSY);

 // Check for a TCP or a UDP socket
 if (tcpSocket != null) {

 System.out.println("External network connection made. Begin XSBC " +
 "file upload");
 try // IOException
 {
 // TODO: Implement decoding of FEC encoded data through TCP

 iStream = tcpSocket.getInputStream();
 zipStream = new GZIPInputStream(iStream);
 schemaLoc = new File(AVCLSCHEMA);
 System.out.println("XSBC using schema located at " +
 schemaLoc.toURL());
 tableManager = new TableManager(schemaLoc.toURL());
 reader = new XSBCReader(tableManager);

 bis = new BufferedInputStream(zipStream);
 bdis = new BlockDataInputStream(bis);
 outFile = new File(DATACACHE + CACHEFILE + transactionId
 + ".xml");
 fos = new FileOutputStream(outFile);
 writer = new XMLWriter(fos);
 reader.read(bdis, writer);

 fos.flush();

160

 fos.close();
 tcpSocket.close();
 System.out.println("XSBC file successfully uploaded");
 } catch (Exception e) {
 System.out.println("Exception while attempting to upload file");
 e.printStackTrace();
 } // catch (Exception e)

 } else {

 runUDPProcess();

 } // end outer if-else block

 } // end run()

 /**
 * Receives a UDP packet and processes the data back into an .xml file from
 * either a GZipped/XSBC format or just from XSBC format.
 *
 * @exception IOException if there are socket reception, GZIPInputStream, and
 * or file writing issues
 * @exception MalformedURLException if there is trouble finding the schema
 */
 private void runUDPProcess() {

 System.out.println("Receiving file via UPD. Begin XSBC file upload");

 // Check for FEC encoding option state
 if (!isEncoded) {

 try {

 System.out.println("Waiting for compressed data....");
 udpSocket.receive(packet);
 System.out.println("Received packet size: " + packet.getLength()
 + " B"); // tdn

 } catch (IOException ioe) {

 System.out.println("Exception while attempting to upload file");
 ioe.printStackTrace();

 } // end try-catch block

 bais = new ByteArrayInputStream(packet.getData());

 } else {

 doFECDecoding();

 // Grab the repairBuffer's decoded contents
 bais = new ByteArrayInputStream(encodedKData);

 } // end if-else block

 // Check for GZip flag
 if (isGZipped) {

 try {

 zipStream = new GZIPInputStream(bais);
 bis = new BufferedInputStream(zipStream);

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 } else {

161

 bis = new BufferedInputStream(bais);

 } // end if-else block

 try {

 System.out.println("XSBC using schema located at " +
 schemaLoc.toURL());
 tableManager = new TableManager(schemaLoc.toURL());

 } catch (MalformedURLException murle) {

 murle.printStackTrace();

 } // end try_catch block

 reader = new XSBCReader(tableManager);
 bdis = new BlockDataInputStream(bis);
 System.out.println("Receiving compressed data ");
 outFile = new File(DATACACHE + CACHEFILE + transactionId
 + ".xml");

 // Open the file output stream
 try {

 fos = new FileOutputStream(outFile);

 } catch (FileNotFoundException fnfe) {

 fnfe.printStackTrace();

 } // end try-catch block
 writer = new XMLWriter(fos);

 // Write the missionResults doc
 try {

 reader.read(bdis, writer);
 fos.flush();
 fos.close();

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block
 udpSocket.close();
 System.out.println("XSBC file successfully uploaded");

 } // end runUDPProcess()

 /**
 * Performs preparations for FEC decoding to enable MissionOutputXX.xml
 * file saving to cache.
 *
 * @exception IOException if the socket couldn't read packets
 */
 private void doFECDecoding() {

 //create our fec code
 fec = FECCodeFactory.getDefault().createFECCode(params.getK(),
 params.getN());

 // Prepare to receive our K * Block Count repair indices. These
 // are just byte format integers for each Datagram packet. Again,
 // we will select our K required subset from the N received from
 // each block.
 indicePacket = new DatagramPacket(new byte[params.getN()],
 params.getN());

162

 // Storage for each block's K subset of N repair indexes that
 // will be recieved via UDP.
 repairIndexes = new int[params.getK() * params.getBlockCount()];

 // Receive each block repair index information
 for (int ix = 0; ix < params.getBlockCount(); ix++) {

 try {

 // Receive our repair index info.
 udpSocket.receive(indicePacket);

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 // Feed index information into this BAIS per block
 bais = new ByteArrayInputStream(indicePacket.getData());

 System.out.println("Receiving block number: " + ix);

 // Extract K * Block Count packet elements that make up our
 // repair indices.
 for (int jx = 0; jx < params.getK(); jx++) {

 // Read in our K subset indice information
 repairIndexes[jx] = bais.read();

// System.out.println("Received repair packet index: " +
// repairIndexes[jx]); // DEBUG

 } // end inner for

 } // end outer for

 /***************** Receive Encoded Repair Packets *****************/

 // Prepare this packet for reception of a repair packet each
 // containing 1024 bytes of encoded data
 fecPacket = new DatagramPacket(new byte[params.getPacketSize()],
 params.getPacketSize());

 // Container for the K required/selected encoded repair packets
 encodedNData = new byte[params.getN() * params.getPacketSize() *
 params.getBlockCount()];
 encodedKData = new byte[params.getK() * params.getPacketSize() *
 params.getBlockCount()];

 // Receive each block's worth of a K subset of N encoded repair packets
 // for storage
 for (int ix = 0; ix < params.getK() * params.getBlockCount(); ix++) {

 // Receive a block of data to encode
 try {

 // Receive our encoded data
 udpSocket.receive(fecPacket);

 } catch (IOException ioe) {

 ioe.printStackTrace();

 } // end try-catch block

 // Copy N encoded packets into a byte[] for K selection
 System.arraycopy(fecPacket.getData(), 0, encodedNData, ix *
 fecPacket.getLength(), fecPacket.getLength());

 } // end for

163

 System.out.println("Expanded Block Size: " +
 params.getExpandedBlockSize()); // DEBUG

 // Extract a K subset of the N encoded repair packets for decoding
 System.arraycopy(encodedNData, 0, encodedKData, 0, params.getK() *
 params.getPacketSize());

// for (int ix = 0; ix < params.getK(); ix++) {
//
// System.out.println("Receive FEC encoded data packet " +
// ix + " " + encodedKData[ix]); // DEBUG
//
// } // end for

 // This will hold our K subset of encoded repair packets
 repairBuffer = new Buffer[params.getK() * params.getBlockCount()];

 // Put the encoded data into an FEC Buffer wrapper for decoding
 for (int ix = 0; ix < params.getK() * params.getBlockCount(); ix++)
 repairBuffer[ix] = new Buffer(encodedKData, ix *
 params.getPacketSize(), params.getPacketSize());

 // Finally, decode the repair packets into the file
 fec.decode(repairBuffer, repairIndexes);

 } // end doFECDecoding()

} // end class file XsbcTransactionFecDecoder.java

D. SUMMARY

The previous code examples complete the illustration of one crude way to

implement and optional FEC filter along with the XSBC process. More code is

supplied with the CD that this research produced. As was mentioned previously,

open source and open standards are desirable to be leveraged as it is much

cheaper and can be developed freely by others because the source code is

readily available. Proprietary developments do not have to be relied upon with

their overhead in expense that could be utilized much more efficiently elsewhere

in current DOD procurement practices.

164

THIS PAGE INTENTIONALLY LEFT BLANK

165

LIST OF REFERENCES

Binary Interchange Workshop. Retrieved December 2004 from
 http://www.w3.org/2003/08/binary-interchange-workshop/Report.html

Blahut, R.E., Fast Algorithms for Digital Signal Processing. Reading, MA:
 Addison Wesley, 1985.

Brutzman, D., McGregor, D., DeVos, D.A., Lee, C.S., Amsden, S., Blais, C.,
 Davis, D.T., Filiagos, D. and Hitner, B., (2004, January 23), “XML-Based
 Tactical Chat (XTC): Requirements, Capabilities and Preliminary Progress”,
 Technical Report NPS-MV-2004-001, Naval Postgraduate School, Monterey,
 CA. Retrieved December 2004 from
 http://www.movesinstitute.org/xmsf/projects/XTC/
 XmlTacticalChat2004January28.pdf

Canonical XML, (2001, March 15), Canonical XML version 1.0, W3C
 Recommendation retrieved December 2004 from:
 http:/www.w3.org/TR/2001/REC-xml-c14n-20010315

Chapweske, J.F., (2000), “Forward Error Correction Performance”, Paper
 contained in the docs folder of the binary fec-1.0.3.zip file in .pdf format
 titled “FECPerformance”.

Clark, V., “Sea Power 21: Projecting Decisive Joint Capabilities,” Proceedings,
 October 2002. Retrieved December 2004 from
 http://www.chinfo.navy.mil/navpalib/cno/proceedings.html

Codiga, D.L., J.A. Rice, and P.S. Baxley, 2004. “Networked Acoustic Modems
 for Real-time Data Delivery from Distributed Subsurface Instruments in the
 Coastal Ocean: Initial System Development and Performance,” Journal of
 Atmospheric and Oceanic Technology, 21(2), 331-346.

Cyclic Redundancy Check. Retrieved December 2004 from
 http://en.wikipedia.org/wiki/Cyclic_redundancy_check

Fermat’s Theorem. Retrieved December 2004 from
 http://mathworld.wolfram.com/FermatsLittleTheorem.html

French, D., “Navy preps XML policy: Policy seeks to drive data interoperability”,
 Federal Computer Week, 09 December 2002. Retrieved December 2004
 from http://www.fcw.com/fcw/articles/2002/1209/news-xml-12-09-02.asp

166

Hamming, R.W., Computers and Society. New York: McGraw-Hill, 1972.

Hamming, R.W., Coding and Information Theory, 2nd edition. Englewood
 Cliffs, New Jersey: Prentice-Hall, 1986.

Hamming, R.W., (1995, April 18 and 20), “Lecture: Coding Theory I and II” from
 the Hamming on Hamming: Learning to Learn lecture series, a distance
 education course taught online and sponsored by the Naval Postgraduate
 School’s MOVES Institute. Retrieved December 2004 from
 http://online.cs.nps.navy.mil/DistanceEducation/MovesContent/
 Courses/HammingLearningToLearn/session.html

Hamming, R.W., (1995, 21 April), “Lecture: Error Correcting Codes”, Naval
 Postgraduate School taped lecture series.

Hamming, R.W., The Art of Doing SCIENCE and Engineering: Learning to
 Learn. Amsterdam B.V., The Netherlands: Gordon and Breach Science
 Publishers, 1997.

Hawkings, D.L., and Van Leuvan, B.C., “An Xml-based Mission Command
 Language for Autonomous Underwater Vehicles (AUVs)”, Master’s Thesis,
 Naval Postgraduate School, Monterey, CA, June 2003.

Kraft’s Inequality. Retrieved December 2004 from
 http://www.nist.gov/dads/HTML/kraftsinqlty.html

Lamparter, B., Boehrer, O., Effelsberg, W. and Turau, V., “Adaptable Forward
 Error Correction for Multimedia Data Streams”, Technical Report TR-93-909,
 Department for Mathematics and Computer Science, University of Mannheim,
 1993, accessed December 2004 from
 http://www.informatik.uni-mannheim.de/techberichte/lib/TR-93-009.pdf

Lee, C.S., “NPS AUV Workbench: Collaborative Environment for Autonomous
 Underwater Vehicles (AUV) Mission Planning and 3D Visualization”, Master’s
 Thesis, Naval Postgraduate School, Monterey, CA, March 2004. Retrieved
 December 2004 from:
 http://www.movesinstitute.org/Theses/leethesis.pdf

Lin, S., Costello, D.J. and Miller, M., Error Control Coding: Fundamentals and
 Applications. New Jersey: Prentice-Hall, 1983.

Luby, M., Vicisano, L., Gemmell, J., Rizzo, L., Handley, M., and Crowcroft, J.,
 “Forward Error Correction (FEC) Building Block”, RFC 3452,
 December 2002.

167

Luby, M., Vicisano, L., Gemmell, J., Rizzo, L., Handley, M., and Crowcroft, J.,
 “The Use of Forward Error Correction (FEC) in Reliable Multicast”, RFC 3453,
 December 2002.

Lucent Technologies. Retrieved December 2004 from http://www.bell-labs.com

netBeans™ IDE. Retrieved December 2004 from
 http://www.netbeans.info/downloads/download.php?a=b&p=1

NPS AUV Workbench Flyer. Retrieved December 2004 from
 http://www.movesinstitute.org/xmsf/projects/AUV/
 NpsAuvWorkbenchFlyerFebruary2004.pdf

Onion Networks Inc. Retrieved December 2004 from
 http://www.onionnetworks.com/about.php

Perrig, A., Canetti, R., Song, D. and Tygar, J., “Efficient and Secure Source
 Authentication for Multicast”, Network and Distributed System Security
 Symposium, NDSS 2001, pp. 35-46, February 2001. Retrieved December
 2004 from
 http://www.ece.cmu.edu/~adrian/projects/tesla-ndss/ndss.pdf

Potts, M., “Forward-thinking your capacity”, (1999, June 7) Telephony. Last
 accessed December 2004 from
 http://telephonyonline.com/ar/telecom_forwardthinking_capacity/

Reed-Solomon Codes, (n.d.), “An introduction to Reed-Solomon codes:
 principles, architecture and implementation”, Last accessed December 2004
 from http://www.4i2i.com/reed_solomon_codes.htm

Reimers, S.P., “Towards Internet Protocol Over Seawater (IP/SW): Forward Error
 Correction (FEC) Using Hamming Codes For Reliable Acoustic Telemetry”,
 Master’s Thesis, Naval Postgraduate School, Monterey, CA, September 1995.
 Retrieved December 2004 from
 http://www.cs.nps.navy.mil/research/auv/ipoversw/

Request for Comments (RFC), retrieved December 2004 from
 http://www.rfc-editor.org/

Rice, J.A., “Seaweb Network for FRONT Oceanographic Sensors”, a National
 Oceanographic Partnership Program FY-00 annual report retrieved December
 2004 from
 http://www.onr.navy.mil/sci_tech/ocean/reports/docs/nopp_funded/00/
 00_seaweb.pdf

168

Rivest, R., “The MD5 Message-Digest Algorithm”, RFC 1321, April 1992.

Rizzo, L., “Effective erasure codes for reliable computer communication
 protocols”, ACM Computer Communication Review, Vol. 27, n. 2, April 1997.
 Also available as DEIT Technical report LR-970115, retrieved December 2004
 from http://www.iet.unipi.it/~luigi/fec.html

Rizzo, L., "On the feasibility of software FEC", DEIT Technical Report LR-
 970131. Retrieved December 2004 from
 http://www.iet.unipi.it/~luigi/softfec.ps

Rizzo, L. and Vicisano, L., “A Reliable Multicast data Distribution Protocol based
 on software FEC Techniques”, Proceedings of the Fourth IEEE Workshop on
 High Performance Communication Systems (HPCS ’97), 23-25 June 1997,
 Chalkidiki, Greece, IEEE.

Rizzo, L., Sources for an erasure code based on Vandermonde matrices.
 Retrieved December 2004 from
 http://info.iet.unipi.it/~luigi/vdm98/vdm980702.tgz

Rizzo, L. and Vicisano, L., “RMDP: An FEC-based Reliable Multicast Protocol
 for Wireless Environments”, Mobile Computer and Communication Review,
 Vol. 2, n. 2, April 1998. Retrieved December 2004 from
 http://info.iet.unipi.it/~luigi/mccr6.ps

Sall, K., (2003, November 21), “How the US Federal Government is Using XML:
 An Overview of Selected US Federal Agency Efforts”. Proceedings by deepX
 Ltd. retrieved December 2004 from
 http://www.silosmashers.com/pdfDocuments/Sall-How-Gov-Uses-XML.pdf

Sandoz, P., Pericas-Geertsen, S., Kawaguchi, K., Hadley, M., and Pelegri-
 Llopart E., “Fast Web Services”, Internet article, August 2003. Retrieved
 December 2004 from
 http://java.sun.com/developer/technicalArticles/WebServices/fastWS/

Serin, E., “Design and Test of the Cross-Format Schema Protocol (XSFP) for
 Network Virtual Environments”, Master’s Thesis, Naval Postgraduate
 School, Monterey, CA, March 2003. Retrieved December 2004 from
 http://www.movesinstitute.org/Theses/Serinthesis.pdf

Shannon, C.E., “A Mathematical Theory of Communication”. Reprinted with
 corrections from The Bell System Technical Journal, Vol. 27, pp. 379–423,
 623–656, July and October 1948. Retrieved December 2004 from
 http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html

169

Siddiqui, B., (2002, Sep. 18 and Oct. 09), “XML Canonicalization (Part I and II)”.
 Published by O’Reilly Media, Inc. Retrieved December 2004 from
 http://www.xml.com/pub/a/sw/2002/09/08c14n.html

Stirling’s Formula. Retrieved December 2004 from
 http://www.sosmath.com/calculus/sequence/stirling/stirling.html

Wagner, N.R., (2003, June) “The Laws of Cryptology with Java Code”,
 Unpublished online manuscript last accessed December 2004 from
 http://www.cs.utsa.edu/~wagner/lawsbookcolor/laws.pdf

XML Binary Characterization Working Group. Information last retrieved
 December 2004 from http://www.w3.org/XML/Binary/

XML Binary Interchange Workshop Report, (2003, September 24-26), “Report
 From the W3C Workshop on Binary Interchange of XML Information Item
 Sets”, a workshop conducted in Santa Clara, CA, retrieved December 2004
 from http://www.w3.org/2003/08/binary-interchange-workshop/Report.html

XMSF Projects Page retrieved December 2004 from
 http://www.movesinstitute.org/xmsf/xmsf.html

Yumetech Inc. Retrieved December 2004 from http://www.yumetech.com

170

THIS PAGE INTENTIONALLY LEFT BLANK

171

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library

Naval Postgraduate School
Monterey, CA

3. RDML Patrick Dunne, USN

Naval Postgraduate School
Monterey, CA

4. Dr. Donald P. Brutzman

Naval Postgraduate School
Monterey, CA

5. LT Terry D. Norbraten, USN

U.S. Navy
Aptos, CA

6. Mr. Richard G. Norbraten
New York Times
Manhattan, NY

7. Erik Chaum

NUWC
Newport, RI

8. David Bellino

NPRI
Newport, RI

9. Dick Nadolink

NUWC
Newport, RI

10. VADM Roger Bacon (Ret.)

Naval Postgraduate School
Monterey, CA

11. K.C. Stangl

NAVAIR
Paxtuxent River, MD

172

12. Margaret Bailey
Sonalysts
Waterford, CT

13. Dr. Dan Boger

Naval Postgraduate School
Monterey, CA

14. RDML Elizabeth Hight, USN

OPNAV 61-C4
Washington DC

15. Doug Backes

COMPACFLT Science Advisor
Pearl Harbor, HI

16. LT Andrew Hurvitz, USN

FNMOC
Monterey, CA

17. ENS Darin Keeter, USN

FNMOC
Monterey, CA

18. CAPT David Titley, USN

FNMOC
Monterey, CA

19. CAPT Scot Miller, USN

NCTSI
San Diego, CA

20. Dr. Peter Denning

Naval Postgraduate School
Monterey, CA

21. Dr. Alan Washburn

Naval Postgraduate School
Monterey, CA

22. Hans Widmer

COMSUBPAC Science Advisor
Pearl Harbor, HI

173

23. Alan Hudson
Yumetech Inc.
Seattle, WA

24. CDR Susan Matusiak, USN

Naval Postgraduate School
Monterey, CA

