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 ABSTRACT 
 
 
 
A naval electromagnetic railgun would be a considerable asset against a littoral 

environment.  By accelerating projectiles to 3 km/s, a naval railgun would be capable of 

reaching 300-400 nautical miles.  Problems such as rail erosion, energy storage and fire 

control prevent the railgun from becoming a weapon to date. At the Naval Postgraduate 

School, the Physics Department continues to investigate and develop concepts to 

overcome these challenges. As part of the methodology, previous students built a one-

meter railgun system for experimentation. The existing 1.6 mF power supply is 

insufficient to fire this railgun effectively.  To design a sufficient power supply a 

MATLAB code was created to simulate a generated current pulse and to predict the 

subsequent railgun performance. Interrelated factors such as railgun geometry, muzzle 

velocity, current density and contact surface area were taken into consideration.  Also, 

tradeoffs in capacitance, projectile mass and residual current were weighed against one 

another to achieve desired railgun performances.  From numerous simulations, this study 

determined that the one-meter railgun with a 21.5 mF power supply could fire a 0.158-kg 

projectile at a velocity of 1 km/s, and leave a residual current of only 4% of the initial 

energy once the projectile exits the rails.  
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 I. INTRODUCTION  
 

A. SCOPE  

The scope of this thesis is to study and examine the power supply required for a 

pre-existing 1.2-meter railgun, while accounting for numerous factors such as muzzle 

velocity, railgun length, projectile mass, and current density.   In addition, we intend to 

explore a hypothetical power supply for a 10-meter naval railgun. 

 

B. MOTIVATION FOR A NAVAL EM RAILGUN 

Today, the argument for a naval electromagnetic railgun relies upon two 

principles, necessity and feasibility.  The former probes the question of whether or not the 

Navy needs to add a railgun to its current arsenal, and the latter explores the suitability of 

placing such a weapon onboard a naval vessel.  That is to say, a naval railgun must prove 

to be useful in future warfare tactic and yet still fall within a platform’s technological 

constraints, such as power supply and structural design.  Therefore, although an 

electromagnetic railgun has the potential to revolutionize naval warfare, the practicality 

of such a weapon must first hold up to these issues. 

1.   Necessity 

Although the immediate threat of the Soviet Union has diminished, the post-Cold 

War environment has created new challenges for the Navy.  Naval operations have 

endeavored to maintain maritime supremacy by focusing on the littoral regions of the 

world (from the surf zone to the continental shelf).   However, history has shown that this 

volatile environment has posed a formidable, and often deadly, challenge to naval 

operations. [1] Against a littoral backdrop, naval vessels must be ready to face numerous 

threats such as, surf zone mines, land-based forces, coastal defenses, anti-ship missiles, 

and diesel submarines.   Furthermore, other factors may put ships at a disadvantage such 

as sensor degradation due to heavy land clutter, or restricted maneuverability due to 

shallow waters.  Thus, in order to safely transit and operate effectively in these regions, 

naval forces must be able to handle the inherent difficulties of these confined and 
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congested waters. [2] It may be in the Navy’s best interest to remain at large standoff 

distances away from the “constrained” waters of the littorals, and if so, the Navy should 

conceivably still be capable of completing its mission from a range of a hundred miles or 

more.    

Today, the U.S. Navy employs three main types of weapons against targets 

ashore: manned aircraft, tactical missiles, and conventional naval guns. Although the 

“distancing” scenario does not prevent the Navy from using aircraft and missiles to 

project its power ashore from far off distances, the costs of such resources limits their 

usage.  As a result, the Navy must also rely on its conventional guns to accomplish its 

mission. However, the muzzle velocity of the 5”/54 naval gun is about 0.81 km/s, which 

results in a range of only 12-15 nautical miles.  This range falls well within the dangers of 

the littoral region.  Therefore, in order to maintain ships at as safe distance, it may be in 

the Navy’s interest to devise a weapon with an increased muzzle velocity and subsequent 

long-range capability. 

A naval electromagnetic gun has the potential to fulfill the Navy’s needs and 

interests.  Electromagnetic launchers have overcome the velocity limitations of chemical 

propellants such as gunpowder or rocket fuel. [6] Because of friction due the atmosphere, 

velocities greater than 3.0 km/s may be impractical.  However, within a velocity range of 

2.5 - 3.0 km/s, the muzzle velocities would still be sufficient enough to carry the 

projectile to approximately 300-400 nautical miles, fulfilling the Navy’s “long-range” 

requirement. [7] With a velocity of 2.5 km/s, a 60 kg projectile would then have 180 MJ 

kinetic energy, about 15 times the chemical energy of a high explosive 5” round.  

Furthermore, apart from providing a lethal round, the inert rounds could also replace the 

potentially hazardous and explosive rounds stored in ships’ magazines.  Therefore, the 

naval EM gun would not only appear to be a new weapon of choice due to lethality, but 

of ship safety as well.  An electromagnetic railgun would thus enable the Navy to 

supplement its aircrafts and missiles by projecting significant power ashore from ships 

hundreds of miles offshore. [3] 
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2. Feasibility 

With the increased attention towards long-range land attacks, the CNO’s Strategic 

Studies Group (SSG) conducted a study on the feasibility of integrating a naval EM gun 

on board a naval platform.  Performance parameters, such as range, weight, power, and 

cost were developed and taken into account.  The parameters were as given in Table 

1.B.1.  

Range: 300 to 400 nmi 

Projectile Mass: 60 to 70 kg 

Barrel Length: ≤ 15 m 

Muzzle Velocity: 2.5 to 3.5 km/s 

Impact Velocity: 1.5 to 2.5 km/s 

Impact Kinetic Energy:  67 –220 MJ 

Firing Rate:  6 rounds/min 

Power Usage: ~ 60 MW (at max range and rate) 

Time of Flight: ~ 8 min (at max range) 

Cost: ≤ $5K per round 

Table 1.B.1 Performance Parameters for a Hypothetical Naval EM Gun From Ref. [3] 

 

The SSG proposed that with a little time invested in fundamental research, a naval 

electromagnetic railgun system could reasonably be fielded within 20 to 30 years. [3] 

One reason for the optimism was probably due technological advances in energy storage 

and materials.  But in spite of other advances, the main reason for the optimistic outlook 
3 



for a railgun was probably due to the oncoming of an “all-electric” ship.   There was 

reason to believe, that an all-electric ship could utilize an “electric gun”, in this case an 

EM gun.  In January 2000, the Secretary of the Navy announced that the next generation 

Destroyer (DD21) would be designed to incorporate an electric drive and integrated 

power system (IPS). [9] Consequently, this “opened the door” for possibly providing the 

power architecture required for an EM gun. To begin with, DD21’s propulsion plant 

would be capable of providing at least 90 MW power.  With this in mind and the IPS, 

DD21 could realistically tap into the power supply used for propulsion and redirect it 

towards other systems, such as combat systems.  This concept makes the notion of a 

naval electromagnetic railgun appear feasible today. 

In summary, a naval EM gun would be the weapon of choice for future naval 

platforms.  It would enable naval ships to project long-range munitions ashore while 

maintaining safe distances well outside littoral waters.  It would be an ideal weapon for 

the next generation of ships utilizing the all-electric integrated power system.  Having 

enormous amounts of “available and redirected” power makes the EM gun a practical 

weapon. [3] In the meantime, numerous electromagnetic workshops and symposiums 

continue to strive towards the development of a concept demonstration or prototype.  But 

although the railgun effort continues, advances in energy storage, material science, and 

solid-state devices bring the railgun one step closer to reality.  Hence, although the 

development of an EM gun may be in its conceptual stages, the future may not be so far 

off from its actuality. 

 

C. HISTORIC CHALLENGES 

The notion of an electromagnetic railgun is not a new one.  Early research dates 

back as far as 1901 when Birkeland developed the “Patent Electric Canon.” [8] Today, 

the concept of using simple electromagnetic properties to propel an object at high 

velocities remains the same.  The difference may exist in whether or not technological 

advances could make a “usable” railgun a reality.   Numerous countries, including the 

United States, continue to study the problems associated with the railgun, and all would 

probably agree that there are three key problems, which dominate the top of the list. 
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1. Rail Erosion 

 Similar to the problem faced with the “Super-gun” in the 1980’s, bore erosion or 

in this case, “rail” erosion, continues to be a concern.  As a promising future weapon, an 

EM railgun would be of no value if the life expectancy of the barrel were equal to that of 

only a few shots.  Therefore, one of the developmental challenges that engineers must 

face is rail survivability.  For example, it may be of interest to investigate how high 

current densities behave and cause collateral damage to the barrel.   Or, it may be of other 

interest to investigate what types of materials may be able to withstand friction and high 

current at the rail-projectile-rail interface.  These are but a couple of examples, but none-

the-less must still be overcome. 

2. Fire-control and Guidance 

Although not apparently obvious, guiding a projectile to its target is a significant 

challenge.  As civilizations evolve, so does modern warfare tactics.  The need for target 

accuracy is of high importance when it comes to minimizing civilian casualties.   

Therefore, if a naval EM gun is used from hundreds of miles away, a guidance system of 

some sort will have to be employed in order to assist the projectile to its target.  However, 

a projectile accelerating out the barrel of an EM gun may undergo extreme g-forces 

and/or ionization shielding as it travels rapidly through the atmosphere at high velocities.  

Consequently, engineers may want to investigate any further advances in the survivability 

of microelectronics within a “high-g” environment.  Or, another interest may be to study 

the employment of a satellite guidance system for “exo” then “endo”-atmospheric 

projectiles.  These and other problems must be addressed.  

3. Pulsed Power Supply 

Historically, conventional weapon systems were integrated onboard a platform 

such that sufficient prime power or energy storage would be included in the platform to 

allow the weapon and vehicle propulsion to operate independently. [10] However, 

because of the high power requirements to “spark off” an EM railgun, providing an 

independent power supply may be very costly – monetarily and spatially.   Engineering 

challenges include the design of a smaller high-density power source.  Or, with the recent 
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advent of the “all electric” drive, engineers may have to develop an integration and/or 

exploitation scheme so that an EM gun could tap into the power supply normally used for 

propulsion.   Regardless, research is still needed for pulsed power storage and switching 

systems to help bring a railgun into reality today. [3] 

 

D. ELECTROMAGNETIC (EM) GUN THEORY 

1. Electromagnetic Launch 

The basis behind electromagnetic launch technology is the interaction between 

electrical current and magnetic fields.  This interaction is known as the Lorentz Force and 

is defined by: 

( dF q v B= × )                        (1.1) 

As current passes through the rails, a magnetic field builds up between the rails 

according to the Biot-Savart law.   Subsequently, as electrical current passes through the 

projectile/armature, the current drift velocity vector changes such that the magnetic field 

exerts a force upon any charged particles between the rails.  Figure 1.D.1 illustrates this 

interaction. 

Figure 1.D.1 (left) Current and magnetic field interaction  (right) Lorentz Force Law 

 

 However, to obtain a better understanding of the forces involved, we must first re-

examine the Lorentz force.   The magnitude of the Lorentz force can be written as: 

( dF q v B= )      (1.2) 
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where q is an element of charge, vd is the drift velocity of the charge, and B is the 

magnetic field created between the rails.   As we continue to follow the path of the charge 

q over time we undergo a current I, which yields the following: 

d

q It I
v

= =      (1.3) 

where is the distance traveled by the charge q within the projectile.  Figure 1.D.2 

illustrates this relationship.  

Figure 1.D.2 The drift velocity of a charge q along a projectile of height . 

 

Substituting Equation 1.3 into Equation 1.2 and taking an infinitesimal step along the 

armature height we have: 

( ) ( )d d

d

dxd F dq v B I v B BIdx
v

 
= = = 

 
   (1.4) 

Note, that Equation 1.4 now shows a relationship between the magnetic field, the 

electrical current and the Lorentz force acting on the armature in accordance with the 

right hand rule.  However, in order to specifically determine the function of the magnetic 

field B, we return to what we already know from the Biot-Savart Law. The magnetic field 

created from a current within a semi-infinite straight wire is: 

4
I

B
rπ

= oµ      (1.5) 

where µo is permeability of free space, and r is the radial distance from the center of the 

wire.  However, we must now make two assumptions:  1) the current passes through the 

center of the rails, and 2) the magnetic characteristics of the rectangular rails are similar 

to that of long round wires.  Figure 1.D.3 illustrates these assumptions. 
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Figure 1.D.3 The magnetic field created by a current passing through the rails 

 

Therefore, by substituting Equation 1.5 into 1.4 and integrating, the Lorentz force 

between the rails becomes approximately 

2 1 1
4 2

R l

R

I
F d

x R l xπ

+ = + + − ∫oµ x
    (1.6) 

After some integration and simplification we get: 

       
( )22

2

R lI
R

µ
π

 + = 


o

4
F n     (1.7)  



The significance of Equation 1.7 is the term for which we now define in Equation 1.8.  L’ 

is known as the inductance gradient, which has the units of (henries/meter).  It is 

important to note that L’ is not an inductance of the system.  Instead, L’ is a magnetic 

field factor, which is only dependent upon the geometry of the railgun itself.  Therefore, 

L’ remains constant once the railgun has been constructed. 

    
( )2

2'
2

R l
L n

R
µ
π

 +≡ 
  

o 
     (1.8) 

Now, by substituting Equation 1.8 into 1.7, the magnitude of the Lorentz force can now 

be simply expressed as: 

     21 '
2

F L I=      (1.9) 
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2. Circuit Structure 

Apart from directly analyzing the Lorentz force, previous studies at the Naval 

Postgraduate School have recognized that the railgun system could also reasonably be 

modeled as an RLC circuit.   John P. Hartke analyzed the model shown in Figure 1.D.4, 

and derived an expression for the force exerted by the railgun such that it would be 

comparable to the expression in Equation 1.9.    

C E

Lo R

Lr
Figure 1.D.4  An ideal railgun circuit from Ref. [6] 

 

Where C is the capacitive current source, Lo is the characteristic inductance of the system, 

R is the resistance of the system, and Lr is the variable inductance of the system as the 

projectile travels down the rails. 

 

The details can be found in reference [6], but the concluding outcome in Equation 1.10 

can be found from several equation transformations while adhering to the conservation of 

energy and Kirchhoff’s Law.   Subsequently, the force can be expressed as: 

     21
2

dv dLI
dt dx

=m     (1.10) 

Where m is mass of the projectile, x is distance along the rails, and dL
dx

is comparable to 

L’ in form and magnitude.  
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 We can use this circuit model of the railgun to estimate the performance of a 

particular railgun.  We can also use other parameters, such as acceleration, muzzle 

velocity and barrel length to model the design and performance of a future railgun.   In 

this thesis, these parameters will be used to investigate a possible power supply for an 

existing railgun.   
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II. EM GUN OPTIMIZATION 
 

A. EXISTING RAILGUN  

The Naval Postgraduate School (NPS) Physics Department currently possesses a 

1.2-meter electromagnetic railgun designed by Michael M. Lockwood.  The 1.2-meter 

railgun as shown in Figure 2.A.1 allows for experimentation of various projectile sizes 

and rail configurations.  [5]   

Figure 2.A.1 (left) NPS 1.2 meter railgun, (right) Muzzle view from Ref. [5] 

 

1. Launcher Design  

The current railgun design implements a series trans-augmentation configuration 

increasing the inductance gradient L’ and subsequently increasing the magnitude of the 

Lorentz force.  Figure 2.A.2 illustrates this augmentation. 

 

 

 

 

 

 

Figure 2.A.2 (left) Series trans-augmentation configuration  (right) Magnetic field 

generated from a series trans-augmentation configuration after Ref. [5] 
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With the addition of the two outer rails, a greater magnetic field is generated as shown in 

Figure 2.A.2.  As a result, the inductance gradient L’ must be recalculated for this 

specific railgun geometry.  Using a similar method to that used in Equation 1.7, the 

inductance gradient can be found from: 

   
32 1 1 1 1

5 134 4
2 2

R

R

I
F d

x R x R x R xπ

 
 

= + + + 
− − − 

 

∫oµ x   (2.1) 

Again, with a little integration and simplification, we find that the new inductance 

gradient is: 

11 11' 3 3 6.2023 7
2 7 7

L n n n n E
µ
π
 = + + + = 
 

o −   (2.2) 

 

2. Power Unit Design 

In addition to the railgun, Lockwood modified a previous power supply as the 

electrical current source of his gun.  Figure 2.A.3 below displays the power supply. 

Figure 2.A.3  Naval Postgraduate School railgun power supply from Ref [5] 

 

The power supply uses two Maxwell 830µf, 10kV high-energy capacitors, which provide 

up to 83kJ of energy.  Main power switching between the power source and the rails is 
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achieved by using two TVS-40 vacuum switches, where each switch is capable of 

operating up to 20kV/100kA.  To prevent current feedback or oscillation to the 

capacitors, the power unit configuration “crowbars” the capacitors after the current 

reaches its peak value and voltage on the capacitors start to reverse.[5] As a high-energy 

storage unit, the power supply has the potential to effectively fire the railgun at great 

muzzle velocity.  However, in reference [5], it was pointed out that average muzzle 

velocity was only 30 m/s from the 1.2-m railgun.  Hence, if we assume that the friction 

effects were small, compared to the high acceleration of the projectile, then the power 

supply was probably not sufficient.  This thesis examines the capacitance required to fire 

the 1.2-meter railgun with a high muzzle velocity, e.g., 1 km/s. 

 

Figure 2.A.4 Power supply design from Ref. [5] 
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3. Projectile Design 

Although numerous projectiles have been used at the Naval Postgraduate School, 

none were specifically designed for aerodynamic flight or lethality.  Instead, the 

projectiles (Figure 2.A.5) were intended for initial railgun construction, as well as rail 

erosion analysis and experimentation. Nevertheless, each projectile was constructed to 

conduct the current between the rails and be subsequently propelled forward.    

Figure 2.A.5 Lockwood’s 1.2-meter railgun projectiles from Ref. [5] 

 

For the purpose of this thesis, certain assumptions will be made regarding the size, shape, 

and mass of the projectile. We discuss the interactions of these parameters in rail gun 

performance. 

 

B. A MULTI-VARIABLE PROBLEM 

14 

The purpose of this thesis is to design a conceptual power supply and projectile to 

match the 1.2-meter railgun system.  The overall results depend on various trade offs.  

Several factors such as the muzzle velocity, rail length, projectile mass, and maximum 

current density are very much interrelated.  For example, the amount of current applied to 

the railgun for a period of time determines the projectile acceleration and muzzle 

velocity.  A shorter “applied current time” requires a larger current peak and vice-versa.  

Again however, the current peak determines the projectile mass because the projectile 

must have a minimum surface area in order to survive a maximum current density.  

Lastly, increased projectile mass affects the resultant acceleration.   Hence, it is 

reasonable to assume that when it comes to building a railgun, a design must be found to 



optimize or take advantage of each of these parameters.   However, for the scope of this 

thesis, the railgun of interest has already been built.  Therefore, we shall only investigate 

the prospect of providing a power supply, and possibly a subsequent projectile, for the 

existing railgun.  

 

1. Assumptions 

But, before proceeding it is important to note that some assumptions are made for 

the purpose of this thesis.   

a.) All effects of friction are neglected 

b.) All aerodynamic effects are neglected 

c.) The current passes from the rails to the projectile/armature 

homogenously throughout the surface area contact. 

d.) The projectile is solid and rectangular 

 

2. Interdependence 

As mentioned earlier, several factors depend on one another.  Therefore, 

the following interdependencies are taken into consideration: 

a.) Increasing Rail length increases acceleration time 

b.) Increasing Acceleration time decreases peak current 

c.) Increasing Current peak for the maximum current density increases 

projectile’s contact surface area 

d.) Increasing Contact surface area increases projectile mass 

e.) Increasing Projectile mass decreases acceleration  

f.) Increasing Acceleration increases muzzle velocity 
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3. Chosen Parameters for Rail Gun System Model 

The following parameters are used for the existing railgun system: 

 

Rail Length: 1.2 m Muzzle Velocity:  1 km/s Rail Separation:  0.00625 m 

Inductance:  2.50E-6 H/m Resistance:  0.003 Ω L’:  0.6202E-6 H/m 

Voltage:  10 kV Projectile Density:  13.4 g/cm2  

 Table 2.B.1 Parameters for a Desired Naval Postgraduate School Rail Gun 

 

 

C. CONSTANT CURRENT 

Consider the case of constant current.  That is to say, at time t = 0 the current 

would “turn on” with some value Io, then immediately “turn off” once the projectile has 

left the rails at some time t.  Figure 2.C.1 illustrates this ideal situation. 

 Figure 2.C.1 An ideal constant current for a railgun  

 

Therefore, suppose we build a hypothetical power supply such that it would 

deliver enough charge to generate a constant current. If so, then from Equation 1.9, the 

constant current would provide a constant acceleration expressed by: 
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Qa L I L

m m
 = =  
 t     (2.3) 

Where Q is the amount of charge delivered in period of time t. 

Subsequently, in order to find the velocity of the projectile we could integrate 

Equation 2.3 from time t=0 to t=t.  However, since we are assuming a constant 

acceleration a, we can use what we know from simple one-dimensional motion.  

Therefore, the velocity of the projectile can be expressed as: 

              
2'

2 2o
L Q Lv v t I Q
m t m
 = + = 
 

'
o    (2.4) 

Where Vo is the initial voltage of the hypothetical power supply, and the initial velocity vo 

= 0.  Correspondingly, the displacement of the projectile would then be: 

                         
2

21 1'
4 4o

Qx x L t L Q
m t m

 = + = 
 

2'    (2.5) 

With the initial displacement xo = 0.  

Now before proceeding, we must note that although we have simplified the 

expression for the projectile displacement as function of charge or capacitance, the 

expression for the projectile velocity remains as function of charge and peak current.   To 

get a feel for dependence on C and L, take the constant current Io to be the peak current 

from a single capacitor, and Q = CVo.  Calculation of Io is discussed later in this thesis to 

be o o
CI V
L

= .  Substituting this into Equation 2.4, we now get: 
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= =
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L

   (2.6) 

Where Vo is the initial voltage on the capacitor. 

We can use Equations 2.5 and 2.6 to determine the hypothetical amount of 

capacitance required for a “constant current” power supply.  In order to not make this 

case more complicated, we choose an arbitrary projectile mass of 0.222 kg, which we can 

later compare to another model in this thesis. We find the following results apply for a 

0.222-kg projectile and the conditions in Table 2.B.1: 

Figure 2.C.2 Railgun performances for a constant current 

 

Figure 2.C.2 shows that in order for the projectile to accelerate 1.2 meters under a 

constant current, we would require at least 100 mF of capacitance.  In addition, for the 

same amount of capacitance, we would well exceed the desired velocity of 1 km/s. 

Although 100 mF would seem rather large, as compared to a real-life scenario, this would 

agree with the notion of providing a so-called “capacitive constant current” source.  That 

is to say, we would require an enormous amount “charge” delivered in order to simulate a 

steady current.  Nevertheless, the constant current scenario gives us a simple benchmark 
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to compare with later calculations. Now we analyze the characteristic acceleration, 

velocity and displacement of a railgun system, for a one-meter railgun and power supply 

like that in Figure 1.D.4. 

 

D. PULSE POWER 

In reality, although our existing power supply can store high energy densities and 

maintain high voltages, it does not provide a constant source of current to the rail gun.   

Instead it generates a time dependent current pulse, which may vary in magnitude and 

width depending on the voltage, capacitance and inductance of the system.  These same 

factors can be chosen so as to modify the shape of the current pulse.   

Figure 2.D.1  A single current pulse from Lockwood’s railgun power supply[5] 
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Examining Figure 2.D.1, shows that the current pulse appears to rise sinusoidal 

until it reaches its peak Io at some time t’, then falls off exponentially at infinity.  Thus, 

we can reasonably model the rise in current as: 

sin ( )oI I tω=     (2.7) 

Correspondingly, the fall off in current can be modeled as: 

Rt
L

oI I e
−

=       (2.8) 

Figure 2.D.2 MATLAB current pulse model 

  

1. Capacitor Energy Transfer 

Assuming the railgun system acts as a perfect LCR oscillator, the energy is 

transferred from the capacitor when time t = 0 to t = t’.  Therefore, we need to determine 

when t’ occurs.  Beginning with Equation 2.7, the current I reaches its peak Io when  
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    s      (2.9) in( )tω = 1

where 1
LC

ω = .  Substituting ω into Equation 2.9 and solving for t we get: 

     '
2
LCt t π

= =     (2.10) 

where again, t’ is the time at which the capacitor has discharged completely. 

a. Projectile Acceleration Due to Rise in Current 

Now by examining Equation 1.9, it is simple to observe the relationship 

between the acceleration of the projectile and the shape of the current pulse.  The 

acceleration due to the capacitor discharge is directly proportional to  

2 2 2sin ( )oI I tω=       (2.11) 

Figure 2.D.3 Acceleration due to capacitor discharge    
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b. Projectile Velocity Due to Rise in Current 

The velocity from the capacitive discharge can then be determined by 

substituting Equation 2.11 into 1.9 and integrating from time 0 to t’.  Consequently, we 

get: 

  
'

2 2
1

0

1 ' sin ( )
2

t

oI t
m

ω= ∫v L     (2.12) dt

Hence, 
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) 
v v    (2.13) 

From Equation 2.10, we can substitute for t’ and find: 

     2
1

1 '
4 2o o

LCL I
m

π 
= + 

 
v v     (2.14) 

Figure 2.D.4 Velocity due to capacitor discharge  
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c. Projectile Displacement Due to Current Rise 

We can determine the displacement of the projectile within the rails from 

by solving Equation 2.12 as a function of t, then integrate from 0 to t’.   Thus, we get: 

 
( )' '

2
1 1

0 0

sin 21( ) '
2 2 4

t t

o o

ttx v t dt v L I d
m

ω
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∫ ∫ t   (2.15) 

Hence, 
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    (2.16) 

Again substituting for t’ and simplifying, we get: 

( )
2 22

1
' '4 0.7335

2 4 8 2 4
o o

o o
L I L ILC LCx v LC v LC

m m
π π π    −

= + = +           
 (2.17) 

 

Figure 2.D.5 Projectile displacement due to capacitor discharge 

23 



2. Inductive Transfer Phase 

Looking back at Figure 2.D.1, although the inductive energy falls off to zero at 

infinity, the rails are finite and must sustain some “left over” energy when the projectile 

exits the barrel.  However, it may be possible to choose a railgun length such that we are 

left with a desired fraction f of the peak current remaining at the end of the barrel.  In 

order to begin, we must first determine the time t2 at which the desired “cutoff” takes 

place.  Examining Equation 2.8, the “cutoff” occurs when we are left with some fraction f 

of Io.  That is to say, we have the following: 

    
Rt
L

o ofI I e
−

=      (2.18) 

Solving for t we get: 

    ( )2 'f
Lt t t t n f
R

= = − = − ( )     (2.19) 

In addition, it should be noted, that after the capacitor has completely discharged, the 

time t2 is equivalent to the remaining time (tf – t’). 

 

a. Projectile Acceleration Due to Inductance 

From our current pulse model in Figure 2.D.1, the current falls off 

exponentially.  Therefore, we should also expect the acceleration to the fall off 

exponentially.  This is because the acceleration fall off is directly proportional to: 

                    
22 2 2

Rt
L

oI I e f I
−

= = 2
o     (2.20) 

Again however, since we have chosen to leave a fraction f of the peak current at the end 

of the rails, the acceleration fall off will be bounded by the same time frame as that of the 

fall off current.  This is to say the acceleration would only occur from time t = t’ to t = t2.  
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Figure 2.D.6 Acceleration due to inductance versus time.  f = 0.1 at t = 2 ms. 

 

b. Muzzle Velocity  

By using a similar integration technique as that used to determine the 

velocity produced by the capacitive discharge, we can determine the increase in velocity 

during the inductive phase.  However, since we are interested in the final velocity or 

muzzle velocity of the projectile at some time t2, we cannot simply consider the inductive 

curve only from time t’ to t2. This is because the final velocity includes the initial velocity 

due the capacitive discharge at time t’.  Therefore, we begin with: 

2 ( ')2
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1 '
2
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where v1 is the initial velocity due to the capacitive discharge.  So, 
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    (2.22) 
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Substituting Equation 2.19 for (tf – t’) and simplifying, we get: 

    (2
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4f o
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m R

= + − )2v v     (2.23) 

Again substituting Equation 2.14 for v1 and simplifying, we now have: 
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)v v   (2.24) 

Figure 2.D.7 illustrates the velocity profile as the current falls off due to some inductance 

in the system.  Note how the velocity begins to level off as the current falls off. 

Figure 2.D.7 Projectile velocity due to inductance versus time. f = 0.1 at t = 2 ms. 

 

c. Final Projectile Displacement or Barrel Length 

We can now determine how long the rails must be in order to carry a 

projectile with the Lorentz force from start to finish.  Again, the railgun length must take 
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into account the desired fraction of the current peak left at the end of the rail.  By 

including the initial displacement traveled by the projectile due to the capacitive 

discharge up to time t = t’, we have: 

       (2.25) 1
'

( )
ft

f f
t

x x v t d= + ∫ t

By solving Equation 2.21 as function of t instead of tf, we can substitute the result into 

Equation 2.25 to give: 
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So,  
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Again, substituting Equation 2.19 for (tf – t’) and simplifying, we get: 
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Finally, substituting Equation 2.17 for x1 and simplifying, we now have: 
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Figure 2.D.8 Projectile Displacement due to the Lorentz force versus time, from 
Equation 2.25.  f = 0.1 at t = 2 ms. 

 

E. MASS AND CHARGE 

Now that we have a working model derived from our current pulse, the only task 

that remains is to find the required amount charge that needs to be transferred through the 

projectile. In other words, we need to determine how much capacitance we need to add to 

our existing power supply.  However, although we could guess at the amount of required 

capacitance by trial and error, because of the “interdependencies” we must take into 

consideration, a more general approach would probably be more prudent.  The amount of 

acceleration is inversely proportional to the mass of the projectile. As a result, more 

capacitance will be required to accelerate a more massive projectile.  Therefore, a 

generalized look at the barrel length and muzzle velocity as function of mass and 

capacitance would probably serve more useful.  
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1. Peak Current 

Since, we can easily choose a range of capacitances, the projectile mass is the 

variable we are left with.  In order to determine the mass, we must first calculate the 

expected peak current Io.  The amount of charge Q that is transferred from a generated 

current is 

         (2.30) Q Id= ∫ t

dt

Hence, as the capacitor discharges, the transferred charge due to the rise in current is: 

     Q I     (2.31) 
'

0

sin( )
t

c o tω= ∫

Now, integrating, and using Equation 2.10 for t’, we get: 
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o

However, we know from the definition of capacitance that: 

     Q      (2.33) c CV=

By substituting Equation 2.32 into 2.33 we now have: 

o
o

I
CV

ω
=      (2.34) 

Therefore the peak current can be expressed as 

    o o
o

CV V LC CI
L LLC

= = = oV    (2.35) 
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2. Projectile Surface Area 

Figure 2.E.1 Homogeneous current density 

 

Looking back to Chapter 2.B.1, we assumed that the current would pass 

homogeneously throughout the contact surface area of the projectile and rails (Figure 

2.E.1).  If so, the projectile would encounter a uniform current density.  Now, by 

associating the projectile’s “survivability” to the projectile’s ability to withstand a high 

current density, a minimum contact surface area can be calculated for a given maximum 

current density.   Equation 2.36 shows this calculation. 

max

o
surf

I
A

J
=      (2.36) 

Where Asurf is the minimum contact surface area, Io is the peak current, and Jmax is the 

maximum current density. 

3. Projectile Mass 

Subsequently, we can now calculate the projectile mass using the following basic 

steps: 

1.) Calculate the peak current Io 
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2.) Use Io and the maximum current density Jmax, calculate the minimum contact 

surface area Asurf of the projectile 

3.) Use the surface area and the separation between the rails to calculate the 

projectile’s volume 

proj surf railVolume A separation= ×    (2.37) 

4.) Finally, calculate the projectile’s mass by using the volume and a desired 

material density ρ  

projmass Volumeρ= ×     (2.38) 

In summary, with an increase in capacitance, we should expect a larger surface area 

imparted to the projectile to keep the current density J ≤ Jmax.  Of course, with the 

increase in surface area and subsequent volume, we would also expect an increase in the 

projectile mass.   Figure 2.E.2 illustrates this simple concept. 

Figure 2.E.2 Area and mass versus capacitance 
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The mass also depends on the density of the projectile. We can manipulate both the 

volume and materials for which we intend to use to achieve a desired projectile mass.   

 

F. BARREL LENGTH 

We can now calculate a probable barrel length as function of capacitance and 

mass. However, for the purpose of this thesis, the barrel length has already been chosen 

to be 1.2 meters.  Yet, it is important to note that the calculations made by Equation 2.28 

actually tell us how far the Lorentz force should carry the projectile down the barrel for a 

given f.  Therefore, we want have capacitance and mass that permit effective use of the 

entire length of the barrel.  Figure 2.F.1 shows these calculations.    

 

Figure 2.F.1 Barrel lengths as a function of capacitance and mass 
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Analyzing Figure 2.F.1 shows that there is a definite range of capacitance for which we 

can use, depending on the mass of the projectile.  For a projectile mass of about 0.222 kg, 

we would need approximately 21.5 mF to carry the projectile for 1.2 m.   However, if we 

used a material such that the density provided a projectile mass of only 0.145 kg, we 

would only need approximately 15.0 mF to carry the projectile 1.2 m.  A smaller 

projectile mass would require a smaller capacitance.  

 

G. MUZZLE VELOCITY 

The next step would be to look at the respective muzzle velocities for these same 

capacitances and masses as those used in the previous section with f = 0.100.  Therefore, 

the following muzzle velocities are calculated with Equation 2.24. 

Figure 2.G.1 Muzzle velocities as a function of mass and capacitance 
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Analyzing Figure 2.G.1 shows that using 21.5 mF with a 0.222-kg projectile would only 

produce a 0.735 km/s muzzle velocity, which is under the specified goal of 1 km/s.   

Furthermore, if again you were to use a less dense material such that you had a 0.145-kg 

projectile and used 15.0 mF, you would still achieve the same 0.735 km/s muzzle 

velocity.  Consequently, in order to increase the muzzle velocity we must do one of two 

things: 1) Increase the amount of capacitance or 2) Decrease the mass of the projectile.  

 

1. Implication of Increasing Capacitance 

A capacitance can be chosen such that the muzzle velocity of the projectile will 

achieve at least 1 km/s.  For example, if we were to go from 21.5 mF to 36.5 mF, the 

muzzle velocity would increase from 0.735 km/s to 1.05 km/s.  Figure 2.G.2 below 

illustrates this concept.   

Figure 2.G.2 A comparison of muzzle velocity with increased capacitance.  With 21.5 
mF, f = 0.1 at t = 2.3 ms, and with 36.5 mF, f = 0.1 at t = 2.4 ms. 
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Now, we know from Equation 2.35 that an increase in capacitance demands an increase 

the current peak and a subsequent increase in mass.   However, the change in mass may 

not be as significant as another disparity.  Bear in mind that all of the calculations take 

the remaining energy at the end of the barrel into consideration.  That is to say, when the 

projectile leaves the rails we assume a fraction f of the current peak is leftover to 

“discharge” or dissipate in some form or another.  To clarify and illustrate this difference, 

we begin with Figure 2.G.3. 

Figure 2.G.3 A comparison of projectile displacement with increased capacitance. With 
21.5 mF, f = 0.1 at t = 2.3 ms, and with 36.5 mF, f = 0.1 at t = 2.4 ms. 

 

We can see that our original capacitance of 21.5 mF achieves a 1.2-m projectile 

displacement in approximately 2.3 ms. However, as we revisit the “interdependency” 

issues, since there is an increased capacitance, there is an increased projectile 

acceleration.  The projectile will displace more quickly with the increased acceleration.   

We see from Figure 2.G.3 that an increased capacitance of 36.5 mF displaces the 

projectile 1.2-m in only 1.7 ms.   Now, although there is only a half a millisecond 
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difference in the displacement, this small difference will correspond to a more significant 

difference in energy.   By using the same time frame, we can now refer to the current 

pulse profile as shown in Figure 2.G.4. 

 

Figure 2.G.4 A comparison of the current pulse with increased capacitance. With 21.5 
mF, f = 0.1 at t = 2.3 ms, and 36.5 mF, f = 0.1 at t = 2.4 ms. 

 

From Figure 2.G.4, we can immediately see a difference in remaining current at 1.7 ms 

and 2.2 ms.   At 1.7 ms we would have a residual current of approximately 0.22 MA, 

while at 2.2 ms we are left with 0.10 MA.  Consequently, the 0.12 MA-difference in 

residual current translates into an energy difference of approximately 36 kJ.   Therefore, 

if a larger capacitance is used to increase the muzzle velocity, 36 more kilo-Joules must 

either be dissipated by heat, suppressed by a muzzle shunt, or else arc across the rails at 

the instant the projectile exits the rails.   Thus, a change in capacitance may not be the 

prudent choice to increase the muzzle velocity for a given rail length. 
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2. Viable Change in Mass 

Referring back to Figure 2.G.1, we can achieve a higher muzzle velocity by using 

a smaller effective mass for a fixed amount of capacitance.  For example, if we chose to 

use 21.5 mf on 0.222 kg projectile we would achieve a muzzle velocity of about 0.735 

km/s in a 1.2-m barrel. If we use the same 21.5 mF and a 0.158-kg projectile, we can now 

achieve a muzzle velocity of about 1.02 kilometer/second.  Although we can easily 

change the mass of the projectile, this still may not be a practical method for increasing 

the muzzle velocity.  To show its practicality, we need look at Figure 2.G.5. 

Figure 2.G.5 A comparison of projectile displacement with decreased mass 

 

Again, Figure 2.G.5 shows a difference in time for which the projectile will travel the 

length of the barrel.  A projectile of smaller mass would travel the length of the barrel 

more quickly than a more massive projectile. Consequently, we would once again expect 
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to see a difference in the residual current at the end of the rails.  Therefore, we now refer 

Figure 2.G.6. 

 

Figure 2.G.6 A comparison of the current pulse with decreased mass 

 

Here, although the mass of the projectile has changed, Figure 2.G.6 shows only 

one current pulse.  This is because unlike the two previous current pulses in Figure 2.G.4, 

which were dependent on the changing capacitance and subsequent mass, the current 

pulse as seen Figure 2.G.6 is not dependent on the change in mass.  Therefore, it is easier 

to see the difference in residual current.  The 0.222-kg mass exits the barrel with 12.5 kJ 

of energy (f = 0.100) and the 0.160-kg mass exits with 32 kJ (f =0.170).  This translates 

into only 19.5 kJ of extra energy, which is smaller than the 36 kJ in the previous scenario.    
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H. 1.2-METER RAILGUN SYSTEM 

Keep in mind that the purpose of this thesis is to design a power supply for a 

successful 1.2-m railgun system, where we define “successful” as being able to achieve a 

muzzle velocity of 1 km/s while effectively using the entire length of barrel. Therefore, if 

we take into account all of the interdependencies previously discussed, then the system 

must not only include a sufficient power supply and railgun, but a viable projectile as 

well.  Now, by referring to Figure 2.F.1 we have seen that we could provide a power 

supply of about 21.5 mF to achieve the following performance profile: 

Figure 2.H.1 An optimized railgun system with m =0 .222 kg and final f  = 0.100 

 

Analyzing Figure 2.H.1 shows that if one-tenth of the peak current were left at the end of 

the rails, the Lorentz force would have effectively displaced the projectile the entire 1.2-

m. Unfortunately however, the muzzle velocity would have remained under the desired 
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goal of 1 km/s.   Figure 2.G.1 shows that we can choose a smaller mass for the same 

amount of capacitance so as to achieve our desired muzzle velocity.  Now recall, as 

previously shown, if we decrease the mass of the projectile we should expect to see a 

larger fraction f of the peak current left at the end of the rails.  So consequently, for a 

projectile mass of 0.158 kg, we would get the following performance profile 

Figure 2.H.2 An optimized railgun system with m = 0.158 kg and final f  = 0.175 

 

As expected, Figure 2.H.2 shows that from the same 21.5 mF power supply, a 0.158-kg 

projectile would indeed achieve a muzzle velocity of at least 1 km/s.  However, as also 

expected, a larger fraction of the peak current would still be leftover once the projectile 

exits the barrel.   Hence, we must now determine which option is best.  In view of that, it 

may be prudent take a look at the energy trade-offs.  By taking the total kinetic energy 

imparted to the projectile and comparing it to the amount of energy provided to the 
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breach of the gun, we can calculate an “efficiency” for both options.  Equation 2.39 

shows the energy relationship in order to calculate the efficiency. 

2

2

1
2
1
2 o

mv

CV
η =      (2.39) 

Where η is the efficiency, m is mass of the projectile, v is final velocity of the projectile, 

C is the capacitance of the power supply, and Vo is the initial voltage of the power supply.   

Figure 2.H.3 below illustrates the results of this premise: 

 

Figure 2.H.3 1.2-meter railgun efficiency versus time 

 

Figure 2.H.3 confirms that choosing a smaller mass gives a larger efficiency over time 

even though f is larger.  This is because although the residual current f left at the end of 

the rail may differ, Figures 2.H.1 and 2.H.2 show that the current pulse is generally the 
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same.  As a result, the energy provided to the gun breach remains relatively unchanged.  

Thus, when compared to the kinetic energy out, which is proportional v2, the smaller 

mass would get us “more bang for the buck!”  Table 2.H.1 summarizes a successful 1.2-

meter railgun system, i.e. v  = 1 km/s.   

 

RAILGUN POWER SUPPLY PROJECTILE 

Length:  1.2 m Capacitance:  7.6 mF Density:  13.4 g/cm3 (AgW) 

Rail Separation:  0.00625 m Inductance:    2.50e-6 H/m Mass:      0.158 kg 

L-prime:  0.6202e-6 H/m Resistance:     3.0 mΩ  

 f  =  0.175  

Table 2.H.1 Parameters for a 1.2-Meter Naval Postgraduate School Rail Gun System 

 

In summary, Table 2.H.1 shows that by using Lockwood’s 1.2-meter railgun, a minimum 

21.5 mF power supply would be required to effectively fire a 0.158-kg Silver-Tungsten 

projectile at 1 km/s.   As a result, about 4% of the initial energy will be dissipated by 

discharge when the projectile exits or else somehow managed at the end of the rails.  

Note however, that η ≤ 0.07 and approximately 89% of the initial energy is dissipated as 

heat prior to the projectile’ exit.  
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III. A HYPOTHETICAL NAVAL EM RAILGUN 

 

A. 10-METER RAILGUN 

In November 2001, the Institute of Advance Technology at Austin, Texas held a 

workshop to look at the prospect of a naval electromagnetic railgun.  As part of a simple 

scenario, a 10-meter railgun with a characteristic L’ = 0.52 µH/m was investigated.   The 

specifics of the study are not yet published.  However, we can use our current model to 

estimate the required capacitance of a power supply, as that shown in Figure 2.A.3, for 

this hypothetical naval rail gun.  But they want a 20 kg projectile and Vo = 12 kV. 

Figure 3.A.1 Naval railgun lengths as a function of mass and capacitance 

  

Again, assuming a 10-meter barrel and by referring to Table 1.B.1, Figure 3.A.1 shows 

that a 60-kg projectile would require a power supply consisting of approximately 3.7 F of 

capacitance.   This capacitance would take up considerable volume on a ship. 
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B.  MUZZLE VELOCITY OF A 10-METER RAILGUN 

The muzzle velocity profile over the same range of mass and capacitance is as follows: 

Figure 3.B.1 Naval railgun muzzle velocities as a function of mass and capacitance 

 

Figure 3.B.1 shows that a 3.7-F power supply would only accelerate a 60-kg projectile to 

approximately 1.98 km/s.  However, as it was shown previously in section 2.G.2, we can 

achieve a higher muzzle velocity by reducing the mass, but at the cost of a higher residual 

current.  Therefore, consider a 44-kg projectile instead of a 60-kg projectile.  Figure 3.B.1 

shows that the same 3.7 F power supply would accelerate the 44-kg projectile to about 

2.5 km/s. To take a closer look, we refer to the curves in Figure 3.B.2.    
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Figure 3.B.2 10-meter Naval Railgun System Profile 

 

Figure 3.B.2 shows that the performance for a 44-kg projectile, in the same 10-m barrel 

and 3.7 F scenario, would indeed achieve a muzzle velocity of 2.5 km/s.  Furthermore, 

the 10-m railgun would suffer approximately 4.5% of the initial capacitive energy at the 

end of the rails.  Even so, at the cost of a little mass, we were able to achieve a higher 

muzzle velocity and perhaps a still lethal projectile.  

 

C. LETHAL KINETIC ENERGY 

As mentioned earlier in the introduction to this thesis, one advantage of a naval 

railgun would be its lethality.  Projectiles traveling at hyper-velocities on the order of a 

kilometer per second would produce an enormous amount of damage to a target.  To get a 

feel for the magnitude of kinetic energy that a projectile would have, we refer to Figure 

3.C.1.  
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Figure 3.C.1 Kinetic Energy Profile for a Naval Railgun Projectile 

 

Referring to the previous section and Figure 3.C.1, a 60-kilogram projectile traveling at 

1.98 km/s would have a kinetic energy of about 118 MJ.  This energy is comparable to 

approximately 28 kg of TNT.  But a 44-kg projectile traveling at 2.5 km/s would have a 

kinetic energy about 138 MJ.  This energy is comparable to approximately 33 kg of TNT.  

Therefore, the mass reduction in the previous section not only achieved a higher muzzle 

velocity, but a more lethal projectile as well.   

In summary, we now have a reasonable prediction for a full-scale naval 

electromagnetic railgun.  We can specify an expected barrel length and determine the 

amount capacitance required to effectively use that barrel.  We can also determine the 

muzzle velocity as a function of capacitance and projectile mass. The only task that 

remains is to build one.  
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IV. CONCLUSION 

 

 The objective of this thesis was to propose a viable power supply for the existing 

1.2-meter railgun at the Naval Postgraduate School.  By referencing Equation 1.9, a 

MATLAB model was created to show the direct relationship between the current pulse 

and the Lorentz force exerted on a projectile.  As a result, the performance of an ideal 

railgun could reasonably be predicted.  From fixed initial parameters, (maximum current 

density, circuit inductance, and barrel length) the effects of railgun geometry, 

capacitance, residual current, contact surface, projectile mass and projectile mass density 

on muzzle velocity, acceleration and kinetic energy were examined.  Figures 2.F.1 and 

2.G.1 showed that tradeoffs, such as using a smaller mass for a greater muzzle velocity, 

can be made to achieve desired performances.  However, because of the 

interdependencies between several factors, other consequences may result, such as a 

larger residual current.  A recommended power supply having 21.5 mF capacitance 

appeared to be suitable for the 1.2-meter railgun.  Hence, although the power supply 

could have been independently constructed from the railgun and projectile, our model has 

shown that an effective railgun system must be considered as a whole.  For the 1.2-m 

railgun, 21.5 mF should fire a 158-g projectile at about 1 km/s. 
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APPENDIX (A) MATLAB CURRENT MODEL AND PREDICTED 
RAILGUN PERFORMANCE 

 
 
 
% ALLAN FELICIANO 
% RAILGUN THESIS 
% September 01, 2001 
% CURRENT versus TIME and 
% FORCE DISPLACEMENT versus TIME and 
% PROJECTILE VELOCITY versus TIME and 
% PROJECTILE ACCELERATION versus TIME 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                         % 
%   vo        Initial velocity of projectile (m/s)                      % 
%   xo        Initial displacement of the projectile                   % 
%   L_prime   Permeabilty constant for augmented railgun (H/m)         % 
%   Voltage   Initial Voltage (V)                                        % 
%   R        Characteristic resistance of railgun circuit (Ohms)      % 
%   L         Characteristic inductance of the railgun circuit (H/m)  % 
%   C         Capacitance (F)                                            % 
%   Jmax      Maximum current density allowed                           % 
%   height    Separation between the rails                              % 
%   f         Fraction of the Peak Current Io. (A)                    % 
%   Io        Maximum/Peak Current  (A)                                 % 
%   A         Contact Surface Area of projectile (m2)                   % 
%   I_cap     Current due to capacitor discharge (A)                    % 
%   I_induc   Current due to fall off (A)                                % 
%   vf        Muzzle velocity                                            % 
%   xf        Final dispalcement of force (i.e.)length of rails (m)     % 
%                                                                         %  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clear 
 
xo      =   0;                                  % Meters 
vo      =   0;                                  % Meters/Second 
L_prime =   6.202E-7;                     % Henries/meter  
Voltage =   10000;                          % Volts 
R       =   0.0030;                             % Ohms     
L       =   2.5E-6;                              % Henries 
C       =   21.50E-3;                          % Farads 
Jmax    =   350E6;                           % Amps/meter^2 
height  =   0.00625;                        % Meter 
f       =   0.175;                               % Fraction of Peak Current 
rho     =   13400;                             % Kilograms/meter^3 (Silver-tungsten) 
pi      =   3.141592654; 
 
str1 = num2str(R); 
str2 = num2str(L); 
str3 = num2str(C,8); 
str4 = num2str(Voltage); 
str5 = num2str(f); 
str7 = num2str(L_prime); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                               TIME SEGMENTS                                 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
t_prime =        pi*sqrt(L*C)/2                  % Time for capacitor discharge 
tf       =        -(L/R)*log(f)                   % Time for inductor discharge 
 
t_cap   = 0:0.000001:t_prime;                    % 0 to t-prime 
t_induc = t_prime:0.000001:(t_prime+tf); % t-prime to t-final 
 
time = t_prime + tf;                            % Total time  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                              CURRENT PEAK                                 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Io = Voltage * sqrt( C/L );                      % Peak Current in Amps 
 
A  = Io/Jmax;                                     % Surface Area (Meter^2) 
 
m  = rho*A*height;                               % Projectile Mass (kilograms) 
str6 = num2str(m); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                              CURRENT PULSE                                 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
w  =   1 / sqrt(L*C);                             % Frequency (Hertz) 
 
I_cap = Io*sin(w*t_cap);                          % Current due to Capacitor Discharge 
 
I_induc = Io*exp( -(R/L)*(t_induc - t_prime) );  % Current due to Fall Off 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                     PROJECTILE VELOCITY (Within the Rails)                 %    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
accel = L_prime*(Io^2)/(4*m);                   % Acceleration Factor 
 
part1 = sin(2*w*t_cap); 
part2 = 2*w; 
vf1   = accel*(t_cap - (part1/part2));          % Velocity Due to Capacitor Discharge 
 
part3 = accel*(t_prime); 
part4 = exp( -2*R*(t_induc - t_prime)/L ); 
part5 = accel*(L/R)*(1 - part4); 
vf2   = part3 + part5;                           % Velocity Due to Fall Off 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%                     FORCE DISPLACEMENT (Within the Rails)                  % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
element1 = cos(2*w*t_cap)/(4*(w^2)); 
element2 = 1 / (4*(w^2)); 
element3 = (t_cap.^2)/2; 
xf1 = accel*(element3 - (element2 - element1));  % Displacement Due to Capacitor Discharge 

50 



 
elem1   = cos(2*w*t_prime)/(4*(w^2)); 
elem2   = 1 / (4*(w^2)); 
elem3   = (t_prime^2)/2; 
x_prime = accel*( elem3 - (elem2 - elem1) ); 
 
time2    = t_induc - t_prime; 
element4 = t_prime*time2; 
element5 = (L/R)*time2; 
element6 = 0.5*((L/R)^2)*(part4 - 1); 
xf2 = x_prime + accel*(element4 + element5 + element6);   % Displacement Due to Fall Off 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                PROJECTILE ACCELERATION (Within the Rails)                 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
acceleration1 = accel*((sin(w*t_cap)).^2);          % Acceleration Due to Capacitor Discharge 
 
acceleration2 = accel*(exp(-2*R*(t_induc - t_prime)/L ));  % Acceleration Due to Fall Off 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                 PLOTS                                      % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%Current 
figure(1) 
gcf = plot(t_cap,(I_cap/1E6),t_induc,(I_induc/1E6)),grid 
title(['CURRENT PULSE PROFILE','  R = ',str1,' Ohms'... 
'  L_prime = ',str7, 'H/m', '  L = ',str2,' H/m', '  C = ',str3,' F'... 
'  Vo = ',str4,' V','  m = ',str6,' kg','  f = ',str5]) 
xlabel('Time (s)'), ylabel('Current (MA)') 
set(gcf,'LineWidth',1.5) 
hold on 
 
%Muzzle Velocity 
figure(2) 
gcf = plot(t_cap,(vf1/1000),t_induc,(vf2/1000)), grid 
title(['MUZZLE VELOCITY PROFILE', '  R = ',str1,' Ohms'... 
'  L_prime = ',str7, 'H/m', '  L = ',str2,' H/m', '  C = ',str3,' F'... 
'  Vo = ',str4,' V','  m = ',str6,' kg','  f = ',str5]) 
xlabel('Time (s)'), ylabel('Velocity (km/s)') 
set(gcf,'LineWidth',1.5) 
hold on 
 
%Barrel Length 
figure(3) 
gcf = plot(t_cap,xf1,t_induc,xf2), grid 
title(['FORCE DISPLACEMENT PROFILE', '  R = ',str1,' Ohms'... 
'  L_prime = ',str7, 'H/m', '  L = ',str2,' H/m', '  C = ',str3,' F'... 
'  Vo = ',str4,' V','  m = ',str6,' kg','  f = ',str5]) 
xlabel('Time (s)'), ylabel('Displacement (m)') 
set(gcf,'LineWidth',1.5) 
hold on 
 
%Acceleration 
figure(4) 
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gcf = plot(t_cap,(acceleration1/9800),t_induc,(acceleration2/9800)),grid 
title(['ACCELERATION PROFILE', '  R = ',str1,' Ohms'... 
'  L_prime = ',str7, 'H/m', '  L = ',str2,' H/m', '  C = ',str3,' F'... 
'  Vo = ',str4,' V','  m = ',str6,' kg','  f = ',str5]) 
xlabel('Time (s)'), ylabel('Acceleration (kGee)') 
set(gcf,'LineWidth',1.5) 
hold on 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                             COMPARISON PLOTS                               % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
figure(5) 
 
%Current 
subplot(2,2,1) 
gcf = plot(t_cap,(I_cap/1E6),t_induc,(I_induc/1E6)),grid 
title(['CURRENT PULSE PROFILE','  R = ',str1,' Ohms'... 
'  L_prime = ',str7, 'H/m', '  L = ',str2,' H/m', '  C = ',str3,' F'... 
'  Vo = ',str4,' V','  m = ',str6,' kg','  f = ',str5]) 
xlabel('Time (s)'), ylabel('Current (MA)') 
set(gcf,'LineWidth',1.5) 
hold on 
 
%Muzzle Velocity 
subplot(2,2,2) 
gcf = plot(t_cap,(vf1/1000),t_induc,(vf2/1000)), grid 
title(['MUZZLE VELOCITY PROFILE', '  R = ',str1,' Ohms'... 
'  L_prime = ',str7, 'H/m', '  L = ',str2,' H/m', '  C = ',str3,' F'... 
'  Vo = ',str4,' V','  m = ',str6,' kg','  f = ',str5]) 
xlabel('Time (s)'), ylabel('Velocity (km/s)') 
set(gcf,'LineWidth',1.5) 
hold on 
 
%Barrel Length 
subplot(2,2,4) 
gcf = plot(t_cap,xf1,t_induc,xf2), grid 
title(['FORCE DISPLACEMENT PROFILE', '  R = ',str1,' Ohms'... 
'  L_prime = ',str7, 'H/m', '  L = ',str2,' H/m', '  C = ',str3,' F'... 
'  Vo = ',str4,' V','  m = ',str6,' kg','  f = ',str5]) 
xlabel('Time (s)'), ylabel('Displacement (m)') 
set(gcf,'LineWidth',1.5) 
hold on 
 
%Acceleration 
subplot(2,2,3) 
gcf = plot(t_cap,(acceleration1/9800),t_induc,(acceleration2/9800)),grid 
title(['ACCELERATION PROFILE', '  R = ',str1,' Ohms'... 
'  L_prime = ',str7, 'H/m', '  L = ',str2,' H/m', '  C = ',str3,' F'... 
'  Vo = ',str4,' V','  m = ',str6,' kg','  f = ',str5]) 
xlabel('Time (s)'), ylabel('Acceleration (kGee)') 
set(gcf,'LineWidth',1.5) 
hold on 
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APPENDIX (B) MATLAB MODEL FOR BARREL LENGTH AND 
MUZZLE VELOCITY 

 
 
% BARREL LENGTH versus CAPACITANCE and 
% MUZZLE VELOCITY versus CAPACITANCE 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                         % 
%   vo        Initial velocity of projectile (m/s)                      % 
%   xo        Initial displacement of the projectile                    % 
%   L_prime   Permeability constant for augmented railgun (H/m)         % 
%   Voltage   Initial Voltage (V)                                        % 
%   R         Characteristic resistance of railgun circuit (Ohms)      % 
%   L         Characteristic inductance of the railgun circuit (H/m)   % 
%   C         Capacitance (F)                                            % 
%   Jmax      Maximum current density allowed                           % 
%   height    Separation between the rails                              % 
%   f         Fraction of the Peak Current (Io). (A)                    % 
%   Io        Maximum/Peak Current  (A)                                 % 
%   A         Contact Surface Area of projectile (m2)                   % 
%   vf        Muzzle velocity                                            % 
%   xf        Final displacement of force (i.e.)length of rails (m)     % 
%                                                                         %  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clear 
 
xo       =   0;                                     % Meters 
vo       =   0;                                     % Meters/Second 
L_prime =   6.202E-7;                       % Henries/meter  
Voltage  =   10000;                           % Volts 
R        =   0.0030;                          % Ohms     
L        =   2.5E-6;                           % Henries 
Jmax     =   350E6;                           % Amps/meter^2 
height   =   0.00625;                       % Meter 
f        =   0.10;                              % Fraction of Peak Current 
pi       =   3.141592654;  
 
points = 20; 
 
C    = linspace(1.660E-3, 8.000E-3, points);     % Farads 
rho  = linspace(9000, 13400, points);              % Kilograms 
         
        % Create a grid 
        % Assigns values of Capacitance as X and Mass as Y 
        [X,Y] = meshgrid(C,rho); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                               CURRENT PEAK                                 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
        Io = Voltage * sqrt( X/L ); 
    
        %Minimum Surface Area required for each C and maximum current density Jmax  
        A = ( Io/Jmax ); 
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        %Projectile volume from each A and fixed height 
        volume = A*height; 
         
        %Projectile’s effective mass 
        m = Y.*A*height; 
         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                               TIME SEGMENTS                               % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
        %Capacitor discharge time 
        t_prime = (pi/2) * sqrt( L*X );              
 
        %Inductive Energy xfer time 
        tf = -(L/R) * log(f); 
         
        %Total time 
        time  = t_prime + tf; 
                 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                        ACCELERATION FACTOR and Parts                      % 
%             (Not to be confused with actual projectile acceleration)      % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        
        accel_1 = (L_prime*(Jmax^2))*(A.^2);  
         
        accel_2 = 4*m; 
         
        accel =   accel_1./accel_2; 
                        
        Part1 = 0.7335 * ( L*X ); 
         
        Part2 = ( (L/R)^2 ) * ( -log(f) - ((1-(f^2))/2) ); 
         
        Part3 = (L/R) * (1-(f^2)); 
         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                       FINAL FORCE DISPLACEMENT                             % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
        xf = vo*(t_prime + tf) + accel.*( (Part1 + (t_prime*tf)) + Part2 ); 
         
         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                     PROJECTILE MUZZLE VELOCITY                             %    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
        vf = vo + accel.*(t_prime + Part3); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                 PLOTS                                       % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
        %FORCE DISPLACEMENT (Barrel Length) 
        figure(1) 
        [LABEL,h] = contour(X,m,xf,points) 
        clabel(LABEL,h) 
        colormap(cool) 
        j = findobj('Type','patch'); 
        set(j,'LineWidth',1.5) 
        grid 
        title(['BARREL LENGTH PROFILE (meters)','  R = ',str1,' Ohms'... 
        '  L = ',str2,' H/m', ' L_p = ',str3,' H/m'... 
        '  Vo = ',str4,' kV','  f = ',str5,... 
        '  Rho = ',str7,'-',str8,' kg/m^3']) 
        xlabel('Capacitance (F)'), ylabel('Effective Mass (kg)') 
         
         
        %MUZZLE VELOCITY 
        figure(2) 
        [LABEL,h] = contour(X,m,(vf/1000),points) 
        clabel(LABEL,h) 
        colormap(autumn) 
        j = findobj('Type','patch'); 
        set(j,'LineWidth',1.5) 
        grid 
        title(['MUZZLE VELOCITY PROFILE (km/s)', '  R = ',str1,' Ohms'... 
        '  L = ',str2,' H/m', ' L_p = ',str3,' H/m'... 
        '  Vo = ',str4,' kV','  f = ',str5,... 
        '  Rho = ',str7,'-',str8,' kg/m^3']) 
        xlabel('Capacitance (F)'), 
        ylabel('Effective Mass (kg)')      
                
        
        %PROJECTILE SURFACE AREA 
        figure(4) 
        subplot(1,2,1) 
        gcf = plot(C,Area),grid 
        title(['MINIMUM SURFACE AREA (m^2)', '  R = ',str1,' Ohms'... 
        '  L = ',str2,' H/m', ' L_p = ',str3,' H/m'... 
        '  Vo = ',str4,' kV','  f = ',str5,... 
        '  Rho = ',str7,'-',str8,' kg/m^3']) 
        xlabel('Capacitance (F)'), 
        ylabel('Surface Area (m^2)') 
        set(gcf,'LineWidth',1.5) 
         
 
        %PROJECTILE MASS 
        subplot(1,2,2) 
        gcf = plot(C,mass),grid 
        title('PROJECTILE MASS (kg)') 
        xlabel('Capacitance (F)'), 
        ylabel('Mass (kg)') 
        set(gcf,'LineWidth',1.5) 
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