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ABSTRACT 
 

Software is often developed under a process that can at best be described as ad 

hoc.  While it is possible to develop quality software under an ad hoc process, formal 

processes can be developed to help increase the overall quality of the software under 

development.  The application of these processes allows for an organization to mature.  

The software maturity level, and process improvement, of an organization can be 

measured with the Capability Maturity Model.  The scope of this work is to use 

organizationally improved software processes on a small scale software product 

developed by the U.S. Army.  The goal is to establish process improvement based on the 

Capability Maturity Model.   
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I. INTRODUCTION  

A. NEXT GENERATION SOFTWARE ENGINEERING TECHNOLOGY 
AREA 

The Next Generation Software Engineering Technology Area (Next Gen) is part 

of the U.S. Army Tank-automotive Armaments Command (TACOM).  The primary 

mission of Next Gen is to provide software support for the U.S. Army.  The software that 

is developed and managed at Next Gen is used in many of the current fighting vehicles, 

including the Abrams Main Battle Tank, the Bradley Armored Personnel Carrier, the 

Wolverine, and the Future Combat Systems.  Next Gen is a key player in delivering large 

scale software solutions for Army systems. 

Dedicated to process improvement, Next Gen is constantly looking to improve the 

organization.  One of the key tools in the dedication towards process improvement is the 

use of the Software Engineering Institute’s Capability Maturity Model (CMM) [1].  The 

CMM is a tool to rate the process maturity level of an organization.  In August 2001, 

Next Gen was certified at CMM for Software Level 3.  The certification demonstrates the 

organization’s ability to define and follow organizational policies, procedures, and 

practices.  Though Next Gen was certified at Level 3, there were still some opportunities 

for improvement within Level 3.  The main area involved improving metrics collection 

processes. 

In an effort to improve Level 3 processes and progress towards Level 4, Next Gen 

began a small scale software project.  The Skinny Driver’s Instrument Panel was 

proposed as a means to improve Level 3 processes and begin implementing CMM Level 

4 processes.  The scope of this thesis is developing a software product based on CMM 

Level 3 and 4 processes. 
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B. PROCESS IMPROVEMENT THROUGH CMM 

Software development companies are constantly looking to improve the quality of 

their products.  This is often done by defining company processes such as thorough 

software testing and risk management.  The more mature an organization is, the more 

defined - and ultimately refined - a collection of software development processes is.  In 

order to have a benchmark against which to measure the level of software development 

maturity, the Software Engineering Institute established the Capability Maturity Model 

(CMM) [1].  The CMM framework has been applied to focus on different organizational 

practices.  The Capability Maturity Model for Software (SW-CMM) is used to measure 

the software development maturity level of an organization.  The SW-CMM is divided 

into five maturity levels, ranging from Level 1 – Ad hoc to Level 5 – Optimizing.  Each 

maturity level consists of different Key Practice Areas (KPAs).  The different KPAs 

describe different activities defined and established within each maturity level.  As an 

organization advances in maturity new processes are adopted, as well as the continuation 

of performing processes defined from lower maturity levels. 

The current effort is to integrate the different CMM concepts into the Capability 

Maturity Model Integration (CMMI).  At the time of this thesis, however, Next Gen was 

still basing process improvement on the SW-CMM Version 1.1. 
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II. BACKGROUND INFORMATION 

A. NEXT GEN BACKGROUND 

The Next Generation Software Engineering Technology Area (Next Gen) is part 

of the U.S. Army Tank-automotive Armaments Command (TACOM).  The primary 

mission of Next Gen is to provide software support for the U.S. Army.  The software that 

is developed at Next Gen is used in many of the current fighting vehicles, including the 

Abrams Main Battle Tank and the Bradley Armored Personnel Carrier.  Established in 

1994, Next Gen quickly became a key player in the development of army critical 

software.  While the associates were skilled developers, it was determined that the 

processes Next Gen followed needed to be improved upon. 

While supporting the current fighting forces of the U.S. Army, Next Gen is 

dedicated to adopting cutting edge processes to enhance the software that drives the 

United States Army.  By adapting software engineering methodologies, Next Gen was 

able to improve upon its software development processes.  This can be seen through the 

use of the Software Engineering Institute’s Capability Maturity Model for Software (SW-

CMM). 

Discussed in detail below, the SW-CMM is a measurement of an organization’s 

maturity level in developing software products.  In August 2001, Next Gen was certified 

at SW-CMM Level 3.  The certification demonstrates the organization’s ability to 

perform software engineering processes.  Obtaining SW-CMM Level 3 was not the 

ultimate goal of process improvement at Next Gen.  As seen in [2], the return on 

investment of transitioning from Level 3 to Level 4 was seen to be 109%.  While this 

may be just one example, it indicates the benefits of continuous process improvement. 

Currently certified under SW-CMM Level 3, Next Gen adheres to 

organizationa lly established processes in software management, intergroup coordination, 

organizational process definition, software engineering, and the use of peer reviews.  

Certification at Level 3 also entails continuing Level 2 processes.  Though described in 

detail below, a brief description is needed to show the path towards process 
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improvement.  The processes currently defined and followed at Next Gen include a fully 

defined software development plan, risk management processes, software engineering 

processes, and organization processes.  The definition and adherence to established 

processes results in a software development lifecycle where each of the phases is 

completely defined.  The entry and exit requirements, as defined by the organization, are 

completely understood.  Lifecycle metrics, described in detail below, are taken 

throughout the entire project .  These metrics collectively show the status of the entire 

project. 

To transition from SW-CMM Level 3 to Level 4, two key elements have to be 

integrated into the processes of the organization.  The first key element is management 

based on metrics established at the SW-CMM Level 3.  The second key element 

establishes a quantitative representation of software quality based on metrics established 

at the SW-CMM Level 3.  More simply put, a Level 4 organization will make productive 

use of collected measurements to improve product and process within an organization. 

The most fundamental problem of this thesis describes the need for Next Gen to 

improve software development processes from SW-CMM Level 3 to Level 4.  Included 

in this effort would be the Level 3 processes identified as opportunities for improvement, 

mainly Level 3 metrics-based activities.  The second problem can be seen within the 

software development experience of Next Gen.  While Next Gen has experience 

delivering large scale software solutions to the Army, there is little organizational 

experience developing small scale software solutions.  Therefore, initiating SW-CMM 

Level 4 processes with current projects would require large scale organizational changes. 

The proposed solution to both of these problems is the scope of this thesis.  This 

thesis represents the development of a small scale software product to be developed using 

SW-CMM Level 4 processes.  This will help begin the transition from Level 3 to Level 4, 

and give the organization experience developing small scale software solutions.  This 

thesis will describe the process improvement effort on a small scale software product, 

from the point of view a software developer. 
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B. CAPABILITY MATURITY MODEL 

Many software organizations implement software engineering practices.  The 

degree to which those methods are implemented can be measured against established 

models.  One such model is the Capability Maturity Model (CMM).  The CMM is a 

model that can be used to measure the maturity to which different organizational 

procedures are implemented [3].  Developed at the Software Engineering Institute at 

Carnegie Mellon, the CMM concept has been extended to many different models.  

Software Acquisition, People, and Software are examples of three different extensions of 

the CMM concept.  Each of the versions of CMM follows the same structure, but is 

tailored to the specific functional area being performed.  This thesis will focus on the 

CMM for Software (SW-CMM).  Discussed below are the different levels of SW-CMM, 

the Key Process Areas within each level of maturity, and the Key Practices within each 

Key Process Area. 

 

1. CMM Structure  

The SW-CMM can be used to measure the software development maturity level 

of an organization.  The SW-CMM, and each of the other models of CMM, is divided 

into five levels of maturity.  Figure 1, as seen in [1], shows the five levels of CMM.  Each 

level of maturity describes a different set of established activities.  The five levels of 

maturity are Initial, Repeatable, Defined, Managed, and Optimizing.  The least mature 

level of software development, as described by the SW-CMM, is Level 1 - Initial.  Level 

1 is best described as ad hoc.  There are no organizational policies established, or 

followed, on how to develop a software product.  The second level of maturity is the 

Level 2 - Repeatable.  Level 2 describes an organization that follows specific activities 

along the development process.  Another organization at the US Army TACOM just 

received certification at the CMM for Software Acquisition Level 2 [4].  Level 3 - 

Defined describes an organization that follows defined processes to progress through 

each activity.  Level 4 of the SW-CMM, Managed, describes an organization that is 

managed based on measurements taken against the practices established at Level 3.  The 

highest level of maturity, Optimizing, describes an organization that continually improves 
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upon organizational software development activities.  Maturing through the CMM levels 

means acquiring new processes in addition to continuing processes defined at lower 

levels. 

The main benefit of the CMM is to clearly establish what characteristics are 

necessary for each level, and how to improve an organization’s software maturity level 

[5].  Another strength of the CMM is that it is flexible.  The model does not specify what 

engineering standards an organization must adopt; just that policies, standards, and 

procedures are defined and followed.  As seen in [6], the vast number of software 

standards mandates that a model used to determine maturity must not be based on one 

particular standard. 

 

 
Figure 1.   CMM levels (From: [1]) 

 

a. Key Process Areas 

The SW-CMM is structured to determine the software development 

maturity level of an organization.  This can be done by determining the activities that an 

organization performs throughout the development lifecycle.  To eliminate confusion, 

different activities are localized to an individual maturity level.  This will better help map 

an organization’s performance as described by the SW-CMM.  
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Within each SW-CMM maturity level Key Process Areas (KPAs) are 

defined.  The KPAs describe the activities that are needed to be performed for an 

organization to obtain a certain maturity level [7].  Level 1, for example, has no KPAs 

defined.  This coincides with the fact that the Initial Level is ad hoc, with few if any 

established policies.  Level 2 KPAs include requirements management, configuration 

management, and project planning.  Level 3 KPAs include integrated software 

management, software product engineering, and peer reviews.  These KPAs establish that 

a Level 3 organization follows defined processes on performing Level 2 activities.  Level 

4 KPAs are quantitative process management and software quality management.  Level 5 

KPAs are defect prevention and process change management. 

 

b. Key Practices 

To help determine which KPAs are being implemented by an 

organization, Key Practices (KPs) are defined.  The SW-CMM describes several KPs that 

are the specific tasks necessary to show that each KPA is implemented within an 

organization.  A Level 2 KP, for example, is “The software engineering group 

participates on the project proposal team” [1].  Each KP can be traced to a specific 

organization document or defined procedure that is used to show implementation.  Each 

software development project will show examples of performing the specific KP by a 

specific project artifact or process implementation.  

The focus of this thesis is to establish the SW-CMM Level 3 and Level 4 

processes performed within Next Gen as seen on a small scale software product.  This 

thesis, therefore, will focus the KPAs and KPs within Level 3 and Level 4.  Because this 

thesis describes the work performed normally associated with a software developer, only 

the KPAs and KPs normally encountered from a developer’s point of view will be 

presented.  The following sections describe the Level 3 and Level 4 KPAs and KPs that 

will be focused on within this thesis. 

 

 



 8 

2. SW-CMM Level 3 

An organization that is certified at the SW-CMM Level 3 has defined software 

development processes.  These processes are defined in policies established at the 

management, organizational, and engineering level.  Management processes include 

integrated software management and intergroup coordination.  Organizational processes 

include organization process focus, organization process definition, and a training 

program.  Engineering processes include software product engineering and the use of 

peer reviews.  The management, organization and engineering processes map directly to 

SW-CMM KPAs.  The focus of this paper will reflect the work that was done towards 

implementing a potential solution within Next Gen.  The KPAs discussed below, 

therefore, will be Integrated Software Management, Software Product Engineering, and 

Peer Reviews.  Metrics collected within each KPA are also required within Level 3 

activities.  Metrics will also be described in detail below. 

 

a. Integrated Software Management KPA 

The first SW-CMM Level 3 KPA as seen from the developer’s point of 

view is Integrated Software Management.  This Key Process Area describes activities 

including estimating, planning and risk management.  These activities represent what is 

required above and beyond normal software development activities.  Each of these 

activities is described below.  

 

1. Estimating.  The first major activity within the Integrated 

Software Management KPA is estimation.  Project development starts with estimating.  

The two main items that are estimated are cost and schedule [8].  Based on the cost and 

schedule estimates, resources required to develop the product and scope of the product 

can be determined.  The cost can be determined based on source lines of code.  There are, 

however, disadvantages to estimating based on code size.  The programming 

environment, efficiency of the developers, and the availability of software reuse all have 

a variable affect on the amount of code needed for the product.  The most effective means 
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to estimating cost is to combine several different estimating techniques.  Combining 

estimates on code size, developer experience, and function point analysis will result in a 

more reliable estimated cost.  While estimating cost can be somewhat difficult, estimating 

schedule is more straightforward.  The schedule is usually driven by the needs of the 

stakeholders or the resources of the developers.  Once estimates are determined, they can 

be periodically compared to actual schedule and cost measurements throughout the 

project lifecycle. 

 
2. Planning.  The second major activity within Integrated 

Software Management is planning.  Planning is achieved through the use of lifecycle 

models.  The lifecycle model establishes the major project phases, the milestones, and 

what activities must be performed within each phase.  Among the major models are 

waterfall, spiral, and a combination of incremental and iterative.  The first model to be 

adopted was the waterfall.  Each phase of the project was dependent on the completion of 

the previous phase.  Since no phase could be revisited, several drawbacks to this model 

lead to the development of the spiral model.  A major component of the spiral model is 

the use of prototyping.  Early prototypes he lped the developers and stakeholders come to 

an agreement on requirements.  This model also had several disadvantages.  One of the 

biggest drawbacks is that the stakeholders would end up focusing on what they could see 

and not the true functionality of the  product.  Since the prototype was most useful in 

showing interfaces, the spiral model lead to major revisions of requirements for only the 

interfaces.  The most recent lifecycle model to be used is a hybrid incremental and 

iterative model.  This lifecycle model allows for the developers to apply the divide and 

conquer concept, all while incorporating feedback from stakeholders through incremental 

review of the product. 

 
3. Risk management.  In a perfect world, a software product 

can be developed that exceeds the stakeholder needs and be delivered ahead of schedule.  

Of course, this is not a perfect world, and obstacles arise that stand in the way of software 

development.  Project leaders must address the probability that risks may occur by 

implementing risk management, the third major activity of Integrated Software 
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Management.  Risk management is the process of being aware of potential risks and 

determining a course of action to prevent or recover from any risk that may occur [9].  

Risk management is composed of two major items: risk assessment and risk control [10].   

The first item of risk management is determining a list of potential 

risks.  Risks are events that can happen that have a negative effect on developing a 

product.   Once the risks have been identified, each is analyzed for probability of 

occurring and severity of the consequences.  Based on this information, a mitigation 

technique is determined.  The technique may be to prevent the risk from occurring or to 

minimize the consequences once the risk occurs.   

The second item in risk management is tracking potential risks.  

Tracking risks requires a constant awareness of project development status.  To keep 

track of project status, metrics are collected at regular intervals.  Metrics that are 

normally collected are coding status, funding levels, and software defects [11].  These 

and other metrics give an accurate status of possible risks.  By identifying, preparing for, 

and monitoring possible risks, a software development project can mitigate many of the 

unforeseen obstacles that may occur.   

 

b. Software Product Engineering KPA 

The second SW-CMM Level 3 KPA typically encountered by a software 

developer is the Software Product Engineering KPA.  This Key Process Area describes 

activities normally associate with developing software.  Activities within this KPA 

include requirements management, developing software designs, creating the software, 

and testing the final software product.  Each of these activities is described below.  

 

1. Requirements Management.  Of all the responsibilities that 

a development team must undertake, requirements management may be the most 

important.  Requirements management, the first activity of Software Product 

Engineering, can be broken down into two main components: requirements gathering and 

requirements tracking.  Gathering the requirements must include an exhaustive 

interviewing of all the stakeholders to understand what the product must do and the 
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environment under which it must perform [12].  Without a complete and thorough 

collection of requirements, the product will likely fail to meet the needs of the 

stakeholders.  However, even with a complete understanding of the product requirements, 

the product could still be developed incorrectly.  See Figure 2 as an example.  The 

solution to this problem is the second component of requirements management - 

requirements traceability.  This component of requirements management consists of 

tracking each individual requirement.  Tracking starts from the point that it was acquired 

from a stakeholder interview and ends when it is tested before the complete product can 

be delivered [13].  The critical aspect in requirements traceability is the ability to handle 

the large number of requirements that even the most trivial software product is composed 

of.  Both components of requirements management help to assure that the developers 

know the needed characteristics of the product and continue to develop the right product 

throughout the entire development lifecycle. 

 
Figure 2.   Real world requirements management 

 

2. Software Design.  All of the Key Practices encountered so 

far focus on what the product needs to do.  The design phase allows the developers their 

first opportunity to address how the product will accomplish these needs.  Proper 

requirements management enables the development team to work with a fixed set of 

requirements.  How those requirements are to be implemented is determined by the 

software design [14].  Software design, the second major activity in Software Product 

Engineering, focuses on creating an architecture of the product to be developed.  The 

software architecture is a blueprint of how the system comes together as a whole.  An 
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architecture is an overall structure of a system and is composed of many different 

perspectives.  Each of these perspectives represents a view of the system.  Some of the 

different views include hardware, software, and interfaces.  Each of the perspectives 

starts at a high level of abstraction.  Each time the perspective is shown in a diagram, the 

amount of abstraction is decreased until a high enough level of detail exists.  These 

diagrams are then used as the basis for the development.  The designed architecture will 

guide the developers on how the system is to be developed.  

 
Software design is a new and advancing discipline.  New methods 

and concepts are being developed to advance the field.  One of the most influential 

advancement comes in the form of object oriented design.  Object oriented design focuses 

on the use of abstraction to simplify the representation of systems [15].  Diagrams show 

an abstract representation to better communicate than through the use of potentially 

ambiguous text.  Systems can be represented as a collection of subsystems, and 

subsystems can be even further decomposed.  At the most detailed level, the diagrams are 

composed of individual objects.  Similarly, a system can be represented as a collection of 

classes, where each class has key characteristics.  The class diagram can be decomposed 

into more detailed classes, with more specific information.  The final level of 

decomposition is a collection of individual objects [16]. 

 
Abstraction allows the system under development to be 

represented graphically.  With the goal of a common graphical notation, Unified 

Modeling Language (UML) was developed.  UML is a set of standards on how to 

graphically represent a system [17].  Based on its many strengths, UML has become one 

of the most widely accepted standards to use while designing object oriented systems.  

The modeling language is used to standardize the diagrams used in object oriented 

design. 

 
While object oriented design is prominent in the software 

engineering field, agent oriented design is emerging.  Agent oriented design, based on 

object oriented technologies, shifts the focus from a data-centric view towards a process-
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centric view.  One of the most advanced agent oriented architectures is Cougaar [18].  

Based on the human cognitive process, Cougaar performs three main functions.  The first 

function is to decompose larger tasks into smaller tasks.  The second function is to 

allocate resources to those smaller tasks.  The third function is to continually assess the 

smaller tasks. 

 

3. Testing.  Testing, the third activity of Software Product 

Engineering, is the final phase of software development.  After the software product is 

developed based on the system architecture, a rigorous series of tests must be performed.  

These tests are performed by unbiased testers and used to verify that the product was 

developed correctly.  The testing is done in accordance with the Software Test Plan.  

Most common testing techniques include unit, integration, white-box, and black-box 

testing [19].  Unit testing is done at the subsystem level before it is integrated into the 

system as a whole.  The subsystem can be tested without taking into account any 

influences from other subsystems.  Once the subsystem passes unit testing, the product 

undergoes integration testing.  This phase tests all of the subsystems and how they 

interface with each other.  Unit testing and integration testing can be done with 

knowledge of how the system of subsystem works.  White-box testing uses this 

knowledge by testing the inner functions of the systems or subsystems.  Black-box 

testing, on the other hand, simply tests inputs and outputs of the system or subsystem 

being testing.  A combination of white-box and black-box testing results in a more 

thoroughly tested software product than a product that was tested using only one of the 

techniques.  While only a trivial product can be exhaustively tested, automated testing 

tools can help the testing process to be more thorough [20].  A product that passes 

carefully tested procedures is ready for delivery to the stakeholders.  

 
The Integrated Software Management and Software Product 

Engineering KPA describe the major project activities.  These activities are performed 

based on procedures outlined in several lifecycle documents, such as a software 

development plan, software requirements specification, and software test plan.  These 

major program documents establish the basis for how the product will be developed, what 
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the product will do, and how the product will be tested.  The Software Development Plan 

presents an overview of the project development.  It discusses project estimates, the 

schedule, lifecycle model, what artifacts will be created, and when and how the project 

will progress through the entire lifecycle.  The Software Requirements Specifications 

document is the document that will be used for requirements signoff by the stakeho lders.  

It will be used as a bases of requirements management, as described above.  The 

Software Test Plan addresses how the product will be tested.  The specific test procedures 

will be presented in another lifecycle artifact, but the overall testing strategy is the scope 

of the Software Test Plan.  Once the lifecycle documents have been written, the 

development team has a roadmap of the entire development process. 

 

c. Peer Reviews KPA 

The third SW-CMM Level 3 KPA this thesis focuses on is Peer Reviews.  

From the developer’s point of view, peer reviews are an integral and ongoing part of an 

organization certified at Level 3.  Peer reviews, review meetings held with the 

developer’s peers, are used throughout the entire lifecycle to systematically review 

software work products for defects or areas that need changes.  Peer reviews use the 

testing technique of inspection.  Inspection, as seen in [21], is a method for identifying 

defects in a software work product.  Once a work product passes a peer review, it is  

considered by an organization as complete.  While there are other means for eliminating 

defects in a software work product, inspection is a simple and effective way for an 

organization to assure the quality of that work product.  An increase in development time 

of only 15% is required for, but peer reviews ultimately eliminate time spent on 

correcting defects found later in the project lifecycle [22].   The Peer Review KPA 

activities include: conducting peer reviews according to organizational policies, recording 

data collected from peer reviews, and having a software quality assurance representative 

participate in peer reviews. 
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d. Metrics  

While “metrics” is not a specific KPA, the use of metrics appears 

throughout all Level 3 KPAs.  Metrics is discussed in a separate section based on a Next 

Gen organization need.  During the SW-CMM Level 3 certification at Next Gen, metrics- 

based processes were identified as an opportunity for improvement.   

Metrics are quantitative measures of a software process or product.  

Metrics can include defects per lines of code, peer review duration, number of pages of a 

document, or simply the number of lines of code.  The collection and review of metrics 

provides a numerical view of a project’s status.  Based on these metric s, actions can be 

taken if needed.  As seen in [23], the use of metrics at Bull’s Enterprise Servers 

Operation improved the overall quality of project management.  Improvements in 

software product and organizational processes can also be made by collecting and 

analyzing metrics. 

One major concern with the use of metrics is what to measure.  The Goal-

Question-Metric (GQM) approach can be used to determine which metrics are to be 

collected [24].  The GQM is a three step approach.  The first step is listing the goals of 

the organization.  The second step is listing questions that can be asked, whose answers 

determine if the goals have been met.  The final step is to list metrics that can be used to 

answer the questions listed in step two.  As described in [25], another way to determine 

which metrics to use can be determined by the process maturity level of an organization.  

For example, if peer reviews are conducted then peer review metrics are appropriate.  

Once a software development lifecycle is completed, an organization can review 

collected metrics and determine usefulness.  This can be used when determining what 

metrics to collect on future software projects. 

Once collected, the data must be analyzed.  The use of metrics collection 

tools can aid in collection and analysis.  The metrics collection tools used must be based 

on the metrics collected [26].  The information obtained from collected metrics can then 

be used in evaluating activities throughout SW-CMM Level 3. 
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3. SW-CMM Level 4 

An organization that is certified at the SW-CMM Level 4 can be described as 

metrics managed.  Both product and process are quantitatively managed based on metrics 

collected during SW-CMM Level 3 activities.  Progress can be compared numerically 

against estimates and plans established at the start of the project lifecycle.    As seen in 

[27], analysis of metrics, or multiple metrics, can pinpoint problems in individual 

products or in the process itself.  With this knowledge, a Level 4 organization can take 

corrective actions to address any issues that analysis of metrics pinpoints.  The periodic 

evaluation of selected metrics should be performed.   As seen in [28], the usability of 

selected metrics should be periodically reviewed.  This can result in metrics giving a 

better representation of an organization.  The organization will be better informed to 

make metrics-based decisions.  The Key Process Areas defined at Level 4 are 

Quantitative Process Management and Software Quality Management.  Both of the SW-

CMM Level 4 KPAs are within the scope of this thesis, and will be discussed below. 

 

a. Quantitative Process Management 

The first Level 4 KPA is focused on managing processes based on metrics.  

As seen in [29], evolving through the SW-CMM levels increases process productivity 

levels in schedule, effort, and reliability.  These increases can be achieved through the 

Quantitative Process Management KPA.  This KPA is composed of several key practices.  

An organization must follow an established process for managing projects based on 

metrics.  In order to help perform this KPA, a group is established to coordinate 

quantitative process management activities.  In order to fully make use of metrics, 

support must be in place to collect and analyze project metrics.  Once analyzed, the 

information is documented and distributed.  Management decisions can then be made 

based on process metrics collected and analyzed. 

 

 



 17 

 

b. Software Quality Management 

While the first Level 4 KPA focuses on process metrics management, the 

second Level 4 KPA focuses on product metrics management.  The Software Quality 

Management KPA establishes key practices that allow the quality of the software being 

developed to be managed.  Like the first KPA, the second Level 4 KPA requires that 

metrics-based management activities be planned, this time concerning product quality 

issues.  The project must also have defined measurable goals for product quality, see 

[30].  These goals can be derived from how well the organization performs the SW-CMM 

Level 3 Software Product Engineering KPA.  Measurements based on the results of 

requirements management, design, coding, and testing can be used in product metrics-

based management.  Software quality assurance (SQA) is a significant component of the 

Software Quality Management.  As seen in [31], SQA is “a systematic effort to improve 

the delivery condition [of the software product or process].”  One of the roles of SQA is 

performing software product audits [32].  These audits help verify the accuracy of metrics 

used in the Software Quality Management KPA. 

 

4. Summary 

The Software Engineering Institute has developed a model to determine an 

organization’s software development maturity level.  The Capability Maturity Model for 

Software is a five level model.  Each step is composed of increasingly mature software 

engineering processes.  Processes improvement can be accomplished by defining, and 

performing, processes for activities described within each level of the model. 

The Next Generation Software Engineering Technology Area is continuously 

dedicated towards process improvement.  Recent certification at SW-CMM Level 3 is 

just one milestone along the path of process improvement.  To begin the effort required 

for certification at SW-CMM Level 4, Next Gen needed to improve some of the Level 3 

activities identified as opportunities for improvement.  Most notably, these are metrics-

based activities. 
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Due to the large scale nature of the products developed within Next Gen, new 

processes could not easily implemented.  A small scale software product was proposed as 

a pilot project for process improvement.  This project would be developed under 

improved Level 3 processes, along with newly defined Level 4 processes. 
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III. PROPOSED SOLUTION 

A. SKINNY DRIVER’S INSTRUMENT PANEL 

Next Gen is dedicated to the goal of continuous process improvement.  Due to the 

large scale software products normally associated with Next Gen, a small scale project 

was proposed as a means to implement process improvement activities.  The process 

improvement on a small scale project could then be incorporated into the large scale 

projects.  The level of effort was determined to be suitable as a Naval Postgraduate 

School thesis project.  The project was to have two goals: advancing software 

engineering technologies and improving software development processes within Next 

Gen. 

The first project goal was for the finished software product to be used to help 

develop reconfigurable software.  The software, along with supporting design 

documentation, would be delivered to a consortium of government, industry, and 

academic  key players working with reconfigurable software technologies.  This 

consortium was collaborating on a project called Dynamic Assembly for System 

Adaptability, Dependability, and Assurance (DASADA) [33].  Several potential 

contributors were proposed for providing solutions for enabling the DASADA 

technologies.  Next Gen, along with other leading government, industry, and academic 

experts proposed the Dependable Automated Reconfigurable Technology for Software 

(DARTS).  The Next Gen proposal would use the Skinny Driver’s Instrument Panel 

(SDIP) as a test article to help develop the DASADA technologies.  A successful 

DASADA project could potentially affect software technology found in future US Army 

systems. 

The second goal of the SDIP project was to implement processes improvement 

activities within Next Gen.  Recent certification at the Software Engineering Institute’s 

SW-CMM Level 3 was the starting point of process improvement on the SDIP project.  

The SDIP project would improve on the Level 3 activities, and define Level 4 processes.  
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Functionally, the SDIP system would be a reduced functionality simulator of the 

Abrams Main Battle Tank Drivers Independent Display console.  A fully functional 

simulator existed in-house, but could not be release to DASADA/DARTS partners due to 

security issues.  Reducing the functionality of the simulator would result in a non-

classified system that could be released to DASADA/DARTS partners.  Developers had 

access to the source code of the existing simulator, but there would be a short lead time to 

obtaining it. 

Structurally, the SDIP system would be composed of three components.  The first 

component would be the reduced functionality driver’s display.  The second component 

would be a virtual driver, or autopilot, that provided the driver’s display with commands.  

The third component would be a recreation of the existing Abrams data bus structure.  

Figure 3, below, shows the SDIP system level design. 

 Based on the DASADA schedule, the SDIP project would be time-boxed as a six-

month project.  The development would be done with a three man team. 

 

 

 

 

 

 

 

 

 
Figure 3.   SDIP system diagram 
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B. IMPLEMENTATION EFFORT 

A three man team was allocated to implementing the SDIP system.  The author of 

this thesis and two addition developers were to perform all SDIP development activities 

per Next Gen defined processes.  Each developer was pivotal in performing all SW-

CMM Level 3 activities.  The work performed by the author of this thesis is described in 

detail in the Findings chapter.  In summary, the following work was performed by this 

author: 

• Performing initial planning, estimating, and risk management activities 

• Contributing resources to Process Action Team in metrics definition 

• Participating and contributing in peer review activities 

• Contributing in regular group meetings and status reviews 

• Contributing to metrics collection and analysis 

• Providing significant contribution to content of lifecycle documents 

• Performing requirements management activities 

• Making design decisions and communicating design concepts 

• Providing coding assistance in all software components 

• Performing complete coding of Autopilot module  

• Conducting complete analysis of SDIP process improvement efforts 

• Performing normal project activities not specifically mentioned in this thesis 
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IV. FINDINGS 

A. PERFORMANCE TOWARDS SW-CMM LEVEL 3 

While the ultimate goal of the SDIP development project was beginning the 

transition towards SW-CMM Level 4 certification, the project had to first adhere to Level 

3 activities.  From a developer’s point of view, these activities are seen within the 

Integrated Software Management, Software Product Engineering, and Peer Review Key 

Process Areas.  These activities would be performed based on the processes verified 

during the SW-CMM Level 3 certification process. 

The CMM Level 3 goal of the SDIP development project was to incorporate the 

opportunities for improvements cited during the SW-CMM Level 3 certification process.  

The main opportunity for improvement at the Level 3 involves establishing more 

thorough metrics-based development activities.  Metrics collected on previous projects 

tended to be obtained near the end of the development lifecycle.  This resulted in metrics 

that did not have significant value added to the project.  A more detailed process 

concerning metrics was the Level 3 goal of the SDIP development project. 

 

1. Integrated Software Management 

a. Estimating 

The first major activity within the Integrated Software Management KPA 

is estimating.  Estimating was performed by the SDIP development team.  The initial 

project kickoff email, see Appendix A, requested estimates on a schedule and plan, which 

the development team provided. 

The estimation of the development projected consisted of three categories: 

software size, estimated man-hours, and documentation required.  The software size 

estimates, see Table 1, would be used to determine the required workload.  Once the 

workload was determined, it could be used to affect the scope of the project.  The 

estimated workload, see Table 2 for estimates, was consistent with the manpower that 
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was assigned to the project, so the scope remained as established in the project kickoff 

email.   

 

SDIP Computer Software Components KLOC 

SDIP CSC 1.5 

Autopilot CSC 0.5 

1553 Interface CSC 1.5 

Total 3.5 

Table 1.   SDIP code size estimates 

 

 

LABOR CATEGORIES 

ESTIMATES 

(HRS) 

Planning 176 

Tracking 120 

Reviews and Audits 80 

Analysis 152 

Requirements 240 

Design/Code 1104 

Testing 40 

SQA 394 

SCM 40 

Debriefing 8 

TOTALS 2354 

Table 2.   Man-hour estimates for major activities 
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The third category of project estimation was based on the documentation 

required.  During creation of the software development plan, an initial list of lifecycle 

artifacts was created.  Based on this list it was determined that additional resources were 

needed to complete the scope of the project.  Resources were allocated for configuration 

management, quality assurance, testing, and systems engineering.  The additional 

resources were allocated based on the following list of estimated lifecycle artifacts: 

Software Development Plan (SDP) 

Software Requirements Specification (SRS) 

Software Design Document (SDD) 

Software Configuration Management Plan (SCMP) 

Software Quality Assurance Plan (SQAP) 

Software Test Plan (STP) 

Software Test Coverage Outline 

Software Test Cases 

Lessons Learned Report 

SDIP CSC (code) 

Autopilot CSC (code) 

1553 Interface CSC (code) 

User’s Guide and Installation Manual 

 

b. Planning 

The second major activity within the Integrated Software Management  

KPA performed by the SDIP team was project planning.  As seen in [34], determining the 

project schedule is difficult.  The SDIP project, however, did not have this problem.  The 

project was time-boxed based on DASADA requirements, so creating the schedule 
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consisted of allocating the given time to the different lifecycle phases.  The different 

phases were assessed for required effort, and the available resources were used to 

determine the amount of time to allocate to each phase.  Each phase was analyzed to 

determine the required lifecycle artifacts, and the schedule was created.  Though the 

schedule was never base-lined until late in the lifecycle, the majority of the original 

schedule remained the same.  The planned schedule can be seen in Figure 4. 

Based on initial project requirements, the SDIP development effort was to 

follow an iterative and incremental lifecycle model.  An early prototype was necessary to 

demonstrate functionality.  This required the development team to adopt a incremental 

approach.  Based on the aggressive schedule, an iterative approach was also necessary.  

This would allow the development team to implement functionality under the time 

constraints.  Even if the project was not completed by the scheduled date, completed 

iterations could be delivered.  Each iteration would undergo a complete plan, design, 

code, and test phase for the scope of that iteration.  The iteration that was completed by 

the delivery date could still produce an operational DASADA test article. 

The iterative and incremental hybrid lifecycle model underwent traditional 

lifecycle phases.  The first phase the developers encountered was the project planning 

phase.  As seen in the schedule below, the schedule was established and the project 

officially began.  The first phase consisted of Integrated Software Management activities, 

including planning and risk management.  The second phase of the SDIP development 

was the design phase.  The developers broke down the system into computer software 

components and obtained designs for each component.  The third phase the development 

team worked on was the coding phase.  Each computer software component was 

developed and integrated into the system.  By the project cancellation date, the software 

demonstrated functionality consistent with the majority of the initial requirements.  Due 

to the project cancellation, however, the two final phases of the planned lifecycle model 

were not performed.  The limited testing that occurred was only informa l debug testing 

done by individual developers.  Because the project was not completed based on funding 

decisions, there was no maintenance phase encountered. 
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The project planning was represented in the Software Development Plan 

(SDP) document, see Appendix B.  The SDP contained several sections describing 

metrics-based activities to be performed.  This led to a problem completing the planning 

phase.  Because significant effort was allocated for determining which metrics were to be 

collected and how, these sections of the SDP could not be completed on time.  Multiple 

revisions to these sections prevented the planning phase to be completed on schedule.  

Authority was given to being the design phase even though management had not 

approved a final SDP.  It was determined that the concepts were finalized and just minor 

revisions were necessary for the SDP to be completed.  The SDP was finally approved 

late in the project lifecycle. 

 

Figure 4.   Estimated schedule with actual completion dates 

 

 

ID Task Name % Complete Baseline Finish Actual Finish
1 SDIP CSCI 84% Wed 7/17/02 NA

2 Tracking SDIP 68% Thu 6/20/02 NA

3 Team Meeting 100% Wed 6/19/02 Wed 7/17/02

13 IPRs 67% Thu 6/20/02 NA

25 PLANNING SDIP 91% Mon 6/24/02 NA

26 Schedule 71% Fri 5/24/02 NA

30 Requirements SDIP 99% Mon 6/17/02 NA

38 SDP 99% Mon 6/24/02 NA

48 SQAP 100% Wed 5/29/02 Mon 6/17/02

54 SCMP 93% Thu 6/13/02 NA

62 Analysis SDIP 100% Tue 5/21/02 Tue 5/21/02

66 Design SDIP 35% Wed 6/12/02 NA

74 Autopilot CSC 88% Mon 6/24/02 NA

75 Display Screen 100% Tue 6/18/02 Tue 6/4/02

77 Application 89% Fri 6/21/02 NA

85 Instrument Panel CSC 91% Mon 6/24/02 NA

86 Display Screen and Driver 94% Fri 6/21/02 NA

92 Communications Interface CSC 71% Mon 6/24/02 NA

98 1553 API and Emulation CSC 99% Mon 6/17/02 NA

99 Coding 99% Mon 6/17/02 NA

109 Test  Plan SDIP 75% Thu 6/13/02 NA

114 Test Cases 0% NA NA

118 Test Coverage Doc 0% NA NA

125 Post Verification Analysis 0% NA NA

127 SQA Activities 17% NA NA

132 User and Installation  Manual SDIP 0% Thu 7/4/02 NA

138 Project Brief to Customer 0% Mon 7/1/02 NA

142 Project Post Mortem Activities 100% Wed 7/17/02 Fri 9/13/02
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c. Risk Management 

The third major activity within the Integrated Software Management KPA 

is risk management.  During the SW-CMM Level 3 certification, risk management was 

identified as an opportunity for improvement.  Before the SDIP project, risk management 

was an ad hoc process.  Risk management consisted only of presenting risk status at 

monthly In Process Review (IPR) meetings.  The SDIP development team established a 

process for risk management.  The Software Development Plan defined a more mature 

risk management process.  Risk management was defined within four basic categories: 

risk mitigation, risk tracking, configuration management, and quality assurance. 

 

1. Risk Assessment.  The first component of risk management 

that was performed based on defined processes was risk assessment.  During the project 

planning the SDIP development team performed risk assessment.  Resources were 

consulted to add quality assurance and software engineering process perspectives on risk 

management.  Risk identification was performed on all aspects of the development 

lifecycle.  Once the risks were identified, each was given a severity and probability.  The 

risk level was calculated and an appropriate mitigation strategy was identified.  A total of 

twelve major risks were identified.  Table 3 shows a portion of the risk assessment table 

that was developed for the SDIP system.  The complete risk assessment table can be seen 

in Appendix B. 

 

Risk Severity Probability Risk 
Level 

Mitigation Strategy 

Diversion of 
development team to 

other projects 
including GWT. 

High High High Keep management and customer 
up to date on status. 

Inability to meet 
project goals due to 

inexperienced 
development team. 

High High High Make extensive use of Next Gen 
and DCS domain experts and 

NPS course work. 

Requirements creep Medium Low Low Requirements management 
Table 3.   Partial risk assessment matrix 
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During the project lifecycle, there were two major risks that were 

encountered that were not identified in the risk assessment matrix.  The first risk that 

occurred was the delivery of original source code that was not usable by the SDIP 

development team.  This lead to the second risk identified in the risk assessment matrix, 

of development being behind schedule.  The second risk was the cancellation of the 

DASADA/DARTS proposal. 

 
2. Risk Tracking.  The second component of risk management  

that was performed based on defined processes was risk tracking.  Risk tracking was 

accomplished by collecting and analyzing metrics.  Project metrics, described in detail 

below, allowed the project team to numerically track the progress of the project 

development against the initial project estimates.  This would uncover areas of risk.  

Once risks were uncovered, they were formally presented during weekly and monthly 

project meetings.  Risk presentation can be seen in Figure 5 below.  The risk assessment 

matrix was updated throughout the project lifecycle.  The updates were made, however, 

on an irregular basis. 

 
 
 
 
 
 
 
 
 

Figure 5.   Risk status as seen on a monthly briefing chart. 

 

3. Configuration Management.  The third component of risk 

management performed based on defined processes was the use of configuration 

management.  During project planning, the SDIP development team allocated resources 

for configuration management (CM).  The use of CM would help maintain version 

control of all lifecycle artifacts.  The use of CM was a mitigation technique based on the 

risks associated with multiple versions of documents and source code anticipated during 

 
Program Status:              
SCHEDULE Red  
BUDGET       Green   
MANPOWER  Amber  
OVERALL Red 

Comments : 
Many difficulties in maintaining 
progress to schedule 
 
STR work is to begin on 7/29/2002 

Open Issues/Actions/Risks 
• Learning curve due to new processes 

and software (DCS E-Manager)  has 
impacted schedule. 

• Diversion of development team to  
other projects including STRs. 

• No effort expended on Test Outline or 
Test Coverage Documents. 

07/25/02 
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project development.  A configuration management plan was created to establish the role 

of CM during the SDIP system development.  As established by the plan, all 

documentation would pass peer review and customer signoff before being placed under 

control.  Software would also be placed under control after it passed peer review.  The 

Software Configuration Management Plan can be seen in Appendix D.  A breakdown of 

the configuration management performed throughout the SDIP development lifecycle can 

be seen in Table 4. 

Configuration Controlled Items Number of Items 

Lifecycle Documents 4 

Document Revisions 0 

Software Source Files 0 

Table 4.   Items placed under configuration management 

 

4. Quality Assurance.  The fourth component of risk 

management performed based on defined processes was the use of quality assurance.  

The SDIP development team allocated resources for quality assurance to help perform 

risk management.  A software quality assurance representative was pivotal in helping the 

development team identify, collect, and track metrics throughout the entire lifecycle.  As 

stated in the Software Quality Assurance Plan, the quality assurance representative 

participated in project planning activities, metrics tracking activities, risk management, 

and performing reviews and audits of the processes established by planning documents. 

 

2. Software Product Engineering 

a. Requirements Management 

The first major activity within the Software Product Engineering KPA is 

requirements management.  During the SW-CMM Level 3 certification, requirements 

management was identified as an opportunity for improvement.  Before the SDIP project, 

requirements management was an ad hoc process.  The SDIP development team 

established a software requirements specification document.   Though a formal 
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requirements management process was not defined for the organization, requirements 

management activities were defined in the SDIP Software Development Plan. 

The SDIP development team performed requirements management  based 

on a defined project process.  Requirements collection, tracking, and testing activities 

were all defined within the Software Development Plan.  The requirements were 

collected from the customer in an initial project kickoff email.  Appendix A shows the 

project kickoff email from the customer.  After review of the initial requirements list, the 

developers met with the customer to discuss more details of the requested requirements.  

Once an understanding of customer needs was reached, the developers began work on a 

Software Requirements Specification (SRS) document.  The complete SRS can be seen in 

Appendix C. 

The SRS established requirements identification and a means for 

requirements traceability.  Each of the 49 requirement s was given a unique identification 

number and assigned to a single computer software component.  This identification 

number and assignment allowed the developers to assure that each requirement could be 

implemented in the design documentation.  The requirements could then be tracked to a 

specific test procedure to ensure every requirement was implemented in the final software 

product. 

Two sample requirements as seen in the SRS: 

(004) The SDIP CSCI shall maintain the ability to process 1553 data packets in a 

manner consistent with the actual method used within a M1A2 tank.  That is, the SDIP 

and Autopilot CSCs maintain the M1A2 1553 packet specifications for interprocess 

communication of data.   

(025) The following group of Project Critical data packets shall be implemented: 
 

Data Packet ID 
 

Data Packet 
Description 

Source 
LRU 

Destination 
LRU 

DP0400.2_DEV_PWR_ST  Device Power Status TEU DID 
DP0600.2_AUTO_ST  Automotive Status TEU DID 
DP0800.1_NAV_HEADING Pos/Nav Heading TEU DID 
DP0900.2_LOW_RATE_NAV_OUTPUT  Pos/Nav Low Rate Data TEU DID 

DP1800.2_WAYPT_DATA Waypoint Data TEU DID 

Table 5.   Requirement (025) breakdown. 
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b. Software Design 

The second major activity within the Software Product Engineering KPA 

is software design.  The design activities were the least accomplished activities of the 

Software Product Engineering KPA.  Several factors contributed to the inadequate 

amount of design that was performed by the development team.   

The SDIP development was initially based on the existing Abrams M1A2 

system.  Based on this information, the development team chose to use existing design 

documentation to represent the SDIP system.  After the existing source code was deemed 

unusable, the development team had to reevaluate the development plan.  With the level 

of experience of the developers and the aggressive schedule, the development team 

decided that software could not be developed based on existing design documentation.  

After management proposed a new development concept for the system it was clear that 

new design documentation was needed.  The new design would be based on similar 

existing functionality, but be designed with a different architecture.  Due to the delay in 

waiting for the source code, the development team had to make up missed coding time.  

Formal design activities were replaced with quick informal team meetings to discuss the 

new architecture. 

The original SDIP system consisted of three computer software 

components (CSCs).  The first CSC was the existing driver’s display of the M1A2 

system.  The second CSC was the existing 1553 Data Bus.  The third CSC was an 

autopilot module that would act as a virtual driver.  Normal driver commands would be 

sent to the driver CSC via the 1553 CSC.  Because the first two CSCs were based on 

existing systems, the design for those CSCs were the existing system design documents.  

Design effort was only allocated to the third CSC.  When design effort was halted, only 

the design for the AutoPilot CSC was documented.  Estimated to be only 55% complete, 

the design consisted of three levels of detail.  

The first level of detail, the architectural design, is an abstract view of 

system.  The architectural view shows abstract state diagrams, software components, and 

use cases.  The second level of detail, the mechanistic design, is a more detailed view of 
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the system.  The mechanistic design shows detailed use cases, class diagrams, and sample 

sequence diagrams.  The most detailed view of the system is the detailed design.  The 

detailed design shows detailed state diagrams and pseudocode.  It was attempted to bring 

additional resources onto the project to help develop the design documentation.  There 

was not enough resources to help bring the new designers up to speed, so the design 

documentation was never completed. 

 

1. Architectural Design.  The architectural design completed 

on the SDIP project consisted of a system diagram, a list of objects and software 

components, use cases, and a class diagram of the AutoPilot component.  The AutoPilot 

control flow can be seen in the Figure 6. 

C
alls

Gets file name

Calls

Returns to

R
eturns to

C
alls

R
eturns to

Class / Method Diagram

AutoPilot_Main Load_Mission

Choose_File

Pause_MissionRun_Mission

 
Figure 6.   Control flow for the AutoPilot component 

 

2. Mechanistic Design.  The mechanistic design consisted of a 

limited number of detailed use cases and only two sample sequence diagrams.  Some of 

the detailed use cases and sequence diagrams can be seen in Tables 6 through 11 and 

Figures 7 and 8. 
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Use Case ID: 1 
Use Case Name: Load Mission 
Created By: Matt Behnke, Dan 

Turnas 
Last Updated By: Matt Behnke, Dan 

Turnas 
Date Created: 2/26/2002 Date Last Updated: 2/26/2002 
Actor: User, Autopilot 
Description: The Autopilot prompts the user to select a mission file. 
Preconditions: The Autopilot must be started and is in an idle state. 
Postconditions: Mission file selected. 
Normal Course of 
Events: 

1. The user selects the Load Mission command. 
2. Autopilot displays directory tree. 
3. User navigates directory tree. 
4. User selects a file. 
5. User confirms file to be loaded. 

Alternative 
Courses: 

4. User doesn’t find desired file. 
5. User cancels Load Mission 

Exceptions: N/A 
Includes: N/A 
Assumptions: N/A 
Notes and Issues: None 

Table 6.   Detailed Load Mission use case  
 

Use Case ID: 2 
Use Case Name: Run Mission 
Created By: Matt Behnke, Dan 

Turnas 
Last Updated By: Matt Behnke, Dan 

Turnas 
Date Created: 2/26/2002 Date Last Updated: 2/28/2002 
Actor: User, Autopilot 
Description: The Autopilot runs a mission file. 
Preconditions: The Autopilot must be started, be in an idle state, and the mission file must 

be loaded. 
Postconditions: Mission is run. 

Normal Course of 
Events: 

1. User selects Run Mission 
2. Mission file parsed correctly. 
3. Schedules data to be sent according to the duration specified in the 

mission file.  
4. Sends data packet via use case Send Data Packet 

Alternative 
Courses: 

1. Unable to parse mission file. 
2. Alert user that the mission file cannot be parsed. 
3. Put Autopilot in an idle state. 

Exceptions: N/A 
Includes: Send Data Packet (UCID: 3) 
Assumptions: N/A 
Notes and Issues: None 

Table 7.   Detailed Run Mission use case 
 
 



 35 

Use Case ID: 3 
Use Case Name: Send Data Packet 
Created By: Matt Behnke, 

Dan Turnas 
Last Updated By: Matt Behnke, Dan 

Turnas 
Date Created: 2/28/2002 Date Last Updated: 2/28/2002 
Actor: Autopilot, 1553 data bus, User 
Description: Sends information (speed, heading) to the DID through the 1553 

bus. 
Preconditions: Mission is running and data must be scheduled to be sent to the 

DID. 
Postconditions: None 
Normal Course of Events: 1. Scheduled data is sent to the DID 
Alternative Courses: None 
Exceptions: N/A 
Includes: N/A 
Assumptions: N/A 
Notes and Issues: None 

Table 8.   Detailed Send Data Packet use case 
 

Use Case ID: 4 
Use Case Name: Stop Mission 
Created By: Matt Behnke, Dan 

Turnas 
Last Updated By: Matt Behnke, Dan 

Turnas 
Date Created: 2/28/2002 Date Last Updated: 2/28/2002 
Actor: Autopilot, User 
Description: Autopilot cancels mission 
Preconditions: Mission must be running 
Postconditions: Autopilot is idle  
Normal Course of 
Events: 

1. User selects Cancel Mission. 
2. Autopilot pauses mission. 
3. Autopilot asks for confirmation. 
4. User confirms command. 
5. Put Autopilot in an idle state. 

Alternative 
Courses: 

4. User doesn’t confirm command. 
5. Autopilot resumes mission. 

Exceptions: N/A 
Includes: Pause Mission (UCID 5) 
Assumptions: N/A 
Notes and Issues: None 

Table 9.   Detailed Stop Mission use case 
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Use Case ID: 5 
Use Case Name: Pause Mission 
Created By: Matt Behnke, Dan 

Turnas 
Last Updated By: Matt Behnke, Dan 

Turnas 
Date Created: 2/28/2002 Date Last Updated: 2/28/2002 
Actor: Autopilot, User 
Description: Autopilot pauses mission 
Preconditions: Mission must be running 
Postconditions: Autopilot is paused 
Normal Course of 
Events: 

1. User selects Pause Mission. 
2. Autopilot pauses mission. 

Alternative Courses: None 
Exceptions: N/A 
Includes: N/A 
Assumptions: N/A 
Notes and Issues: None 

Table 10.   Detailed Pause Mission use case 
 
 

Use Case ID: 6 
Use Case Name: Resume Mission 
Created By: Matt Behnke, Dan 

Turnas 
Last Updated By: Matt Behnke, Dan Turnas 

Date Created: 2/28/2002 Date Last Updated: 2/28/2002 
Actor: Autopilot, User 
Description: Autopilot resumes mission 
Preconditions: Mission must be paused 
Postconditions: Autopilot is running mission. 
Normal Course of Events: 1. User selects Resume Mission. 

2. Autopilot resumes mission. 
Alternative Courses: None 
Exceptions: N/A 
Includes: N/A 
Assumptions: N/A 
Notes and Issues: None 

Table 11.   Detailed Resume Mission use case 
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Figure 7.   Normal sequence of events 
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Figure 8.   Pause, Resume, and Stop Mission functions 
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3. Detailed Design.  The most design effort was focused on 

the detailed design of the SDIP system.  Complete detailed state diagrams were 

developed, but only for the AutoPilot component.  Pseudocode was not developed for the 

AutoPilot component.  The state diagrams can be seen in Figures 9 through 12.  
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Figure 9.   State diagram for the AutoPilot CSC 
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Figure 10.   State diagram of the Load Mission function 
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Figure 11.   State diagram of the Run Mission function. 
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Figure 12.   State diagram of the Pause Mission function. 

 

c. Testing 

The third major activity within the Software Product Engineering KPA is 

software testing.  The SDIP development project did not reach a formal testing phase.  

Resources were planned and allocated for a thorough testing phase based on Next Gen 

SW-CMM Level 3 processes.  A software test plan was being developed per defined 

processes when the project was officially cancelled.  Upon termination, it was estimated 

that the test plan was approximately 75% complete.  Neither the test coverage outline nor 

the test cases documentation was developed.  These documents were to be created based 

on completion of the software.  Because the first completed software iteration was never 

delivered to the independent test group, all of the test documentation could not be 

completed. 

The software requirements specification document did establish four 

verification methods for tracking each requirement through testing.  Each of the 

requirements was analyzed to determine the testing method used to verify that the 
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requirement was correctly implemented in the SDIP system.  The four verification 

methods (as seen in Appendix C) are: 

Demonstration:  The operation of the system, or a part of the system, that relies on 

observable functional operation not requiring the use of instrumentation, special test 

equipment, or subsequent analysis. 

Test:  The operation of the system, or part of the system, using instrumentation or special 

test equipment to collect data for later analysis. 

Analysis:  The processing of accumulated data obtained from other qualification 

methods.  Examples are reduction, interpolation, or extrapolation of test results. 

Inspection:  The visual examination of system components, documentation, etc. 

Each of the 49 requirements is assigned a verification method in the qualification 

method matrix.  A portion of the matrix can be seen in the Table 12.  The complete table 

can be seen in section 6.2 of the Software Requirements Specification Appendix. 

 

Qualification Method Req 
ID Demonstration Test Analysis Inspection 

(020)   X  
(021) <Requirement Deleted> 
(022)   X  
(023)   X  
(024) <Requirement Deleted> 
(025)   X  
(026)   X  
(027)   X  
(028) <Requirement Deleted> 
(029)   X  
(030)   X  
(031) X    
(032) X    
(033) X    
(034)  X   
(035) X    

Table 12.   Partial table of verification methods to be used in testing each requirement 
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3.  Peer Reviews  

The third SW-CMM Level 3 KPA, from a developer’s point of view, is the Peer 

Reviews KPA.  The Peer Reviews KPA has the fewest number of activities, and was 

understandably the easiest to achieve.  The major peer review activities performed by the 

SDIP team included: conducting peer reviews according to organizational policies, 

recording data collected from peer reviews, and having a software quality assurance 

representative participate in peer reviews.  The peer review process defined by Next Gen 

mandated that all software work products successfully pass a peer review.  The SDIP 

project conducted peer reviews on all of the work products based on the Next Gen 

process.  Metrics were collected for each peer review that was held.  Table 13 shows 

preparation metrics collected during a peer review for the Software Requirements 

Specification document.  Other metrics collected during each peer review included final 

major and minor faults, peer review duration, and faults per page.  Table 13 also shows 

the attendance of the SQA representative during the peer review. 

 

 Chris 
Ostrowski 
(systems 
engineer) 

Karen 
LaFond 
(SQA) 

Dan 
Turnas 

(developer) 

John Bohn 
(developer) 

Joe 
Szafranski 

(SEPG) 

Prep Time 
(in minutes) 

60 30 60 30 45 

Major Faults 0 0 0 0 0 
Minor Faults 21 2 5 0 8 
Questions 3 1 0 0 8 

 
Table 13.   Fault metrics collected at June 12th peer review of SRS document 

 

4. Metrics 

During the Next Gen SW-CMM Level 3 certification process one of the major 

opportunity for improvement that was cited was a need for more thorough metrics-based 

activities.  The CMM Level 3 goal of the SDIP development project was to improve the 

Level 3 processes defining metrics activities.  Based on this goal significant effort was 



 44 

allocated for metrics-based activities.  Project metrics were defined, collected, analyzed, 

and used for product and process improvement. 

Next Gen allocated resources to form a Process Action Team (PAT) to focus on 

SDIP metrics.  The PAT, along with each of the SDIP developers, used the Goal-

Question-Metric process to determine which metrics to collect on the SDIP project.  The 

PAT established six categories of metrics to be collected.  These categories were 

identified by use of the Goal/Question/Metric tables as seen in Appendix B.  In Appendix 

B the full metrics selection tables can be seen.  The appendix also shows a complete 

breakdown of the metrics selected to be collected, analyzed, and reported.  Each of the 

metrics sections is described in detail below.  The six metrics categories are as:  

Delivery of a project on schedule 

Estimation of resource requirements 

Management of project within budgeted costs 

Product quality 

Project communication and collaboration 

Size estimation of project work product deliverables 

Based on adherence to CMM Level 3 activities, metrics usage became a major 

part of the SDIP system development effort.  A metrics tracking tool was developed in-

house to aid the developers in managing the vast amount of metrics that were collected.  

The Labor Metrics Tracking tool was developed and used.  Though complete metrics 

were sometimes not collected, metrics were collected often enough to give an accurate 

description of the project status.  The metrics were reviewed throughout the entire project 

lifecycle and can be used by future projects for planning and estimating purposes.  A 

description and analysis of each metrics category can be seen below.  
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a. Delivery of Project on Schedule 

The SDIP development team tracked metrics on percentage of project 

deliverables that were actually delivered on schedule.  The weekly metrics that were 

collected were based on estimates of percentage completed on each deliverable.  As the 

project was re-planned before a schedule baseline could be established, the final metrics 

are compared to the re-planned schedule.  The variance shown in Table 14 is based on the 

re-plan schedule and a completion date of July 29, 2002.  Based on Table 14, the project 

was 84% complete with only 44.25% of the scheduled tasks completed.  Of the 14 

identified project deliverables 5 were completed, 6 were in progress, and 3 were not 

started.  There were no deliverables completed on time. 

 

PROJECT  

DELIVERABLES  

PLANNED 

COMPLETION 

(Original ) 

PLANNED  

COMPLETION 

(Re -plan) 

ACTUAL  

COMPLETION 

VARIANCE 

(DAYS)  

Development Plan 04/02/02 06/24/02 06/27/02 3 

Configuration Management Plan 04/02/02 06/13/02 93% completed N/A 

Quality Assurance Plan 04/02/02 05/29/02 06/04/02 4 

Requirements Specification 04/17/02 06/17/02 06/18/02 1 

Design Documentation 04/19/02 06/12/02 55% completed N/A 

Test Plan 04/19/02 06/13/02 75% completed N/A 

Software Test Coverage Outline Not scheduled No date specified 0% completed N/A 

Software Test Cases Not scheduled No date specified 0% completed N/A 

Autopilot CSC 05/002 06/24/02 88% completed N/A 

Instrument Panel CSC Not scheduled 06/24/02 91% complete N/A 

Communications Interface CSC Not scheduled 06/24/02 71% complete N/A 

1553 Interface CSC Not scheduled 06/14/02 07/02/02 12 

User’s Guide, Installation Manual 12/04/02 07/04/02 35% completed N/A 

Post Mortem Report  Not scheduled 07/17/02 09/12/02 est. 40 

TOTAL    60 

Table 14.   Final metrics of schedule events 

 



 46 

b. Estimation of Resource Requirements 

Metrics were collected on the SDIP development based on initial planning 

estimates.  The metrics were used to determine the accuracy of planning estimates.  Each 

project lifecycle phase was estimated based on the time-boxed project.  Metrics were then 

collected based on hours spent in each lifecycle phase.  Table 15 shows the variance in 

estimated hours versus actual hours spent on each lifecycle phase. 

While this portion of metrics collection did help in risk management of the 

SDIP development, the usefulness of this metrics category will be seen during initial 

planning on future projects. 

 

 

LABOR CATEGORIES 

ESTIMATES 

(HRS) 

ACTUALS 

(HRS) 

VARIANCE 

(HRS) 

Planning 176 731.50 555.50 

Tracking 120 70.00 -50.00 

Reviews and Audits  80 228.00 148.00 

Analysis  152 130.00 -22.00 

Requirements 240 97.00 -143.00 

Design/Code (not completed) 1104 836.00 -268.00 

Testing (not done) 40 3.00 -37.00 

SQA (SQA hours recorded in other 

categories) 

394 0.00 -394.00 

SCM  (Some SCM hours recorded in other 

categories) 

40 2.00 -38.00 

Debriefing 8 244.25 236.25 

TOTALS 2354 2341.75 -12.25 

Table 15.   Final metrics of resources, taken in man hours 
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c. Management of Project Within Budgeted Costs 

The metrics collected in this section were to be used for tracking budgeted 

costs against costs spent.  After the majority of the cost was estimated to be man hours, 

only work hours were collected for this category.  Based on tracking this metric category, 

it can be seen that each of the developers spent the entire development lifecycle working 

on the SDIP system.  While this conclusion is not remarkable, the metric category was 

still useful.  Future development projects may have costs not limited to man hours. 

 

d. Product Quality 

During the metric category identification phase, the product quality 

category was established.  The means to ensure product quality was determined to be 

regular peer reviews on all lifecycle artifacts.  The product quality category tracked 

metrics associated with peer reviews.  Table 16 shows some of the metrics including 

errors found, major errors, minor errors, meeting duration, and preparation time. 

 

Metric Type Number 

of  Peer 

Reviews 

Metrics Value 

(average) 

Total Errors 12 40.5 

Major Errors 12 0.4 

Minor Errors 12 40.1 

Preparation Time 7 40.2 minutes 

Meeting Duration Time 9 100 minutes 

Table 16.   Final metrics for product quality 
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e. Project Communication and Collaboration 

The fifth metrics category that was identified was communication and 

collaboration.  This category was collected to monitor meetings, action items, and risks 

associated with inter-team communication of ideas.  Monthly In Process Reviews were 

held, though only 75% of the time, to brief the customer and management on project 

status.  

Action items were documented from each of the bi-weekly project 

meetings.  Out of the 9 scheduled project meetings, only 4 were actually held.  While this 

metric might indicate poor communication, it is actually misleading.  The development 

team often met and communicated outside of a formal meeting environment.  No metrics 

were collected to reflect this.   

 

f. Estimation of Project Work Product Deliverables 

The final metrics category identified was based on estimation of lifecycle 

artifacts.  The estimate for software size was determined at the beginning of the project to 

be 3.5 KSLOC.  The software size at the project termination date was 4.3KSLOC. 

This metrics category was also to be used to compare actual lifecycle 

document size to estimated size.  This would then help determine percentage complete 

for each document.  The estimate was never performed at the beginning of the project. 

The goal of future metrics collection of this category would be to estimate 

document size at the beginning of the project lifecycle.  Document metrics from the SDIP 

system will be used to help estimate document sizes from future projects.  Table 17 

shows the final document metrics for the SDIP system. 
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MAJOR DELIVERABLE DOCUMENT # OF PAGES 

Software Development Plan (SDP) 24 

Software Configuration Management Plan (SCMP) 07 (draft document) 

Software Quality Assurance Plan (SQAP) 13 

Software Requirements Specification (SRS) 18 

Software Design Document (SDD) 10 (Draft document) 

Software Test Plan 09 (draft document) 

Table 17.   Final metrics of work product deliverables 
 

Metrics analysis led to two major project changes.  The first change occurred 

based on information obtained from schedule progress metrics.  When it was determined 

that existing source code was not useable, schedule metrics were referred to.  It was 

decided that schedule metrics indicated that the original project design could not be 

implemented.  A new architecture was implemented.  The second major metrics-based 

decision was to extend the delivery date of the project.  At the original deadline, metrics 

indicated that the project was near completion.  A short extension was given to help 

complete the project. 

 
5. SW-CMM Level 3 Summary 

The SDIP development project performed almost all of the SW-CMM Level 3 

activities.  While some planning and design activities were not performed according to 

defined processes, all other processes were followed.  The development team also 

improved on several Level 3 opportunities for improvement that were cited during the 

SW-CMM Level 3 certification process.  Requirements management activities were 

improved, as well as risk management and metrics-based activities.  Table 18 shows a 

sample of how the Level 3 activities within the Integrated Software Management, 

Software Product Engineering, and Peer Reviews KPAs were implemented on the SDIP 

development project. 
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KPA CF KP Key Practice Document 
Defined 

 Project Artifact / 
Implementation 

ISM Co 1 The project follows a written 
organizational policy requiring that the 
software project be planned and managed 
using the organization's standard software 
process and related process assets. 

* ISM Policy 
* ISM Standard 
* ISM Procedure 

* SDP 

ISM 
 
 

Ac 10 The project's software risks are identified, 
assessed, documented, and managed 
according to a documented procedure. 

* ISM Policy 
* ISM Standard 
* ISM Procedure 
* Software Risk 
Management 
Procedure 
* Risk Assessment 
Worksheet 

* Risk matrix in the 
SDP 
* Risk section of 
monthly IPRs 
* IPR Quad Charts 

ISM Ac 11 Reviews of the software project are 
periodically performed to determine the 
actions needed to bring the software 
project's performance and results in line 
with the current and projected needs of 
the business, customer, and end users, as 
appropriate. 

* ISM Policy 
* ISM Standard 
* ISM Procedure 
* In-Process 
Review Procedure 

* Monthly IPRs 
* Quad Charts 

SPE Co 1 The project follows a written 
organizational policy for performing the 
software engineering activities. 

* SPE Policy 
* SPE Standard 
* SPE Procedure 

* Process defined in 
SDP 
* SQA Plan 
* Test Plan 

SPE Ac 2 The software requirements are developed, 
maintained, documented, and verified by 
systematically analyzing the allocated 
requirements according to the project's 
defined software process. 

* SPE Policy 
* SPE Standard 
* SPE Procedure 
* Requirements 
Management 
Procedure 

* Process defined in 
SDP 
* Peer review of 
requirements 
* Test Plan 
 

SPE Ac 3 The software design is developed, 
maintained, documented, and verified, 
according to the project's defined software 
process, to accommodate the software 
requirements and to form the framework 
for coding. 

* SPE Policy 
* SPE Standard 
* SPE Procedure 
* High Level 
Design Procedure 
* Detailed Design 
Procedure 

* SDP 
* SDD 
* Peer review of design 
 

SPE Ac 4 The software code is developed, 
maintained, documented, and verified, 
according to the project's defined software 
process, to implement the software 
requirements and software design. 

* SPE Policy 
* SPE Standard 
* SPE Procedure 
* Code and Unit 
Test Procedure 

* SDP 
* Peer review of code 
* SDD 
* Test Plan 

SPE Me 1 Measurements are made and used to 
determine the functionality and quality of 
the software products. 

 * Test Plan 
* Metrics collection 
reports 

SPE Me 2 Measurements are made and used to 
determine the status of the software 
product engineering activities. 

 * IPR Quad charts 
* Project schedule 
* Weekly project 
meetings 
* Project metrics  

PR Co 1 The project follows a written 
organizational policy for performing peer 
reviews. 

* PR Policy 
* PR Standard 
* PR Procedure 

* Peer review records 

PR Me 1 Measurements are made and used 
determine the status of the peer review 
activities. 

* PR Policy 
* PR Standard 
* PR Procedure 
* PR Templates 

* Peer review records 
on prep time, hours 
spent, errors found 

 
 

Table 18.   SW-CMM Level 3 SDIP Activities 
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B. PERFORMANCE TOWARDS SW-CMM LEVEL 4 

The second goal of the SDIP project was the execution of SW-CMM Level 4 

activities.   The activities within the Quantitative Process Management and Software 

Quality Management KPAs built on experience obtained from SW-CMM Level 3 

activities.  The Level 3 activities based on metrics collection and analysis are used in 

Level 4 activities of product and process metrics-based management.  Two factors lead to 

the prevention of performing Level 4 activities. 

The first factor was the software maturity level of Next Gen.  During the SW-

CMM Level 3 certification process, Next Gen identified metrics-based activities as an 

opportunity for improvement.  This improvement would result in metrics experience 

required to advance towards Level 4 activities.  Toward this goal, significant effort was 

allocated for Level 3 metrics-based activities.  Based on the short lifecycle of the SDIP 

project, resources were not available to both develop Level 3 experience and begin 

performing Leve l 4 activities.  Therefore, resources were only focused on Level 3 

metrics-based activities.  

The second factor preventing Level 4 activities was a decision made shortly after 

the beginning of the project lifecycle.  The original goal of process improvement was 

based on the SW-CMM model.  The next logical process improvement goal with this 

model was certification at Level 4.  Shortly after the beginning of the project, a decision 

was made to transition from SW-CMM Level 4 certification to CMMI Level 3 

certification.  This decision negated the need for the project team to perform Level 4 

activities.  

Based on the software maturity level of Next Gen and the decision to move to the 

CMMI model, SW-CMM Level 4 activities were not performed on the SDIP project. 
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IV. CONCLUSIONS 

Next Gen is dedicated to delivering quality software solutions for major US Army 

systems.  One of the concepts that Next Gen uses to assure the development of quality 

software is process improvement.  Dedication to continuous process improvement allows 

Next Gen to constantly improve the way software is developed.  The use of the Software 

Engineering Institute’s Capability Maturity Model for Software allows Next Gen to 

measure the level of software development maturity.  Recent certification at SW-CMM 

Level 3 is just one milestone on the journey of process improvement.  The next 

organizational goal is certification at SW-CMM Level 4. 

The SDIP was proposed as a pilot project for process improvement within Next 

Gen.  The project was to improve upon SW-CMM Level 3 activities and begin 

implementing Level 4 processes.  The project was developed as a thesis project with 

business value to the organization.  Because the process improvement was performed 

from the developer’s point of view, this thesis focused on activities normally encountered 

by a software developer.  The Level 3 KPAs that were focused on include the Integrated 

Software Management, Software Product Engineering, and Peer Reviews KPAs.  This 

thesis focused on both of the Level 4 KPAs: Quantitative Process Management and 

Software Quality Management. 

 

A. PERFORMANCE OF SW-CMM LEVEL 3 ACTIVITIES 

1. Integrated Software Management 

Estimation was given significant effort by the development team.  Estimates were 

obtained on three major categories: software size, man-hours, and documentation.  

Software size and man-hour estimates were regularly compared to current project status.  

The documentation estimates uncovered a need to allocate resources with quality and 

processes experience to assist in creating the project documents.  Post project analysis 

found that initial estimates were not accurate.  This was directly related to the developers’ 

inexperience with determining initial estimates.  More experience is necessary in 
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determining more accurate initial estimates. The estimating activities performed by the 

development team were found to be consistent with SW-CMM Level 3 requirements. 

The SDIP development team planning activities were based on a hybrid iterative 

and incremental lifecycle model.  The lifecycle model was composed of planning, 

designing, coding, and testing phases.  Activities within each phase were defined.  Due to 

schedule and budget constraints, some of the lifecycle phases were not realized.  The 

development team did not complete the coding phase and did not encounter a formal 

testing phase.  Due to the extra effort required to establish better metrics-based activities, 

significant planning resources were required.  Planning activities were found to be 

opportunities for improvement on the SDIP project based on SW-CMM Level 3 

requirements. 

Risk management activities were performed on the SDIP development project.  

The risk management on the SDIP development project was broken down into four major 

categories.  The first category was risk assessment.  Several risks were identified and 

ranked.  Mitigation techniques were established based on risk severity.  The second 

category was risk tracking.  The identification, collection, and analysis of metrics was 

used to help establish current development status.  The status was then used to help 

monitor potential risks.  The third category of risk management was the use of 

configuration management.  CM was planned as a significant component of the 

development process.  The team did not progress far enough into the development 

lifecycle to require the extensive use of configuration management.  The final category of 

risk management used by the development team was quality assurance.  A quality 

assurance representative was an integral part of the development efforts.  The 

representative assisted in metrics tracking and analysis.  The four major risk management 

activities used on the SDIP project provided significant process improvement based on 

previous organizational processes. 
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2. Software Product Engineering 

Requirements management was seen throughout the entire development lifecycle.  

Requirements were collected from the customer and indexed by a unique identification 

number.  Each requirement was assigned to a particular software component to help track 

the requirement through design and coding.  This tracking method would also be used in 

the testing phase, had the schedule progressed that far.  The requirements management 

activities were found to be consisted with SW-CMM Level 3 requirements. 

Software design activities performance can be seen on the SDIP project.  Initial 

use of existing code allowed the development team to use existing design documents.  

When it was finally determined that existing code could not be used, it was apparent that 

existing design documents could not be used.   By this time, the schedule and resources 

available did not allow for significant effort to be allocated for formal software design 

activities.  At the time of project cancellation, software coding was nearing completion, 

even though only a portion of the design was performed.  Only an estimated 55% of the 

design of only one of the three software components was performed.  Software design 

was the major opportunity for improvement area on the SDIP project.  SW-CMM Level 3 

requirements were not met for software design activities. 

Based on the cancellation of the SDIP project, the development team never 

entered a formal testing phase.  Formal test methods were planned for the SDIP system.  

The verification methods were established for each of the forty-nine identified 

requirements.  Formal test procedures were not yet established at the time of project 

cancellation.  The testing resources had not yet been used to create the formal test 

procedures.  If the schedule would have been extended, there were no factors that would 

have prevented a thorough application of formal testing.  The testing activities performed 

were consistent with processes defined against SW-CMM Level 3 requirements. 

 

3. Peer Reviews  

Next Gen defined processes on peer reviews were followed during the SDIP 

project.  Peer reviews were required on all software work products.  Each work product 
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that was developed had a peer review.  Detailed metrics were collected on each peer 

review that was held.  A Software Quality Assurance representative attended all peer 

reviews.  The peer review activities were performed in accordance to SW-CMM Level 3 

requirements. 

 

4. Metrics 

Metrics-based activities were cons idered a Next Gen Level 3 opportunity for 

improvement.  Considerable resources were allocated for the activities of defining, 

collecting, and analyzing metrics.  A Process Action Team was formed to use the Goal-

Question-Metric process to define which metrics were to be collected.  A software tool 

was developed in-house to collect metrics.  Metrics were analyzed and used to make 

several project decisions.  Both design and schedule decisions were made based on 

metrics collected.  Once the project was completed, the effectiveness of the metrics 

collected was assessed.  A reduced set of metrics was determined to be most effective.  

Projects that began after this assessment used the reduced metrics set.  Significant process 

improvements were made on metrics-based Level 3 activities. 

 

B. PERFORMANCE OF SW-CMM LEVEL 4 ACTIVITIES 

Two factors prevented Level 4 activities from being performed.  The first factor 

was based on limited project resources.  Necessary manpower was not available to both 

implement Level 3 process improvements and begin performing Level 4 activities within 

the short duration of the SDIP project.  The second factor was a decision made after the 

beginning of the project to change the process improvement goal from SW-CMM Level 4 

certification to the CMMI Level 3 certification.  These factors negated the need for Level 

4 activities.  

 

C. SUMMARY 

The SDIP project was to be developed with the goal of process improvement.  

SW-CMM Level 3 activities were to be improved upon and Level 4 processes were to be 
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defined.  Based on the aggressive project schedule, adequate resources were not available 

to both improve Level 3 processes and define Level 4 processes.  The project used 

available resources to improve Level 3 processes.  Integrated Software Management, 

Software Product Engineering, and Peer Reviews KPAs were focused on for this project.  

It was found that significant process improvement was made in risk management, 

requirements management, and metrics-based activities.  Due to effort establishing more 

improved metrics experience, planning activities were found to be opportunities for 

improvement.  Software Product Engineering and Peer Reviews activities were found to 

be consistent with previous process levels.  The most significant process improvement 

was seen on metrics-based activities. 

The SDIP project goal was software development process improvement.  Though 

Level 4 processes were not established, significant improvements were made on Level 3 

processes.  The SDIP project was a successful solution towards the goal of continuous 

process improvement.  Future process improvement activities should use the experience 

gained from the SDIP project. 
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APPENDIX A – INITIAL USER REQUIRMENTS 

The initial user requirements list can be seen in this email. 

 
-----Original Message-----  
From: Saboe, Michael  
Sent: Monday, January 28, 2002 6:01 PM  
To: Turnas, Daniel; Gersky, Douglas; Bohn, John  
Cc: Pradeep, Kris; Nguyen, Danh; Zobair, Hamza; Bankowski, Elena; Miles, Chris; Slominski, Mark; Menko, 
Russell   
Subject: DID Test Article for Research team -- quote required S:7 Feb 02  

 
Gentlemen (Dan, Doug, John)  

 
We are in need of a test article that we can use for experiments. I want an estimate and a 
plan (only for now) from you three to develop a "Skinny" DID with "cruise control". John 
Bohn has had discussions with me about this. 

This means  
• some very small amount of functionality behind a virtual bench fascia.  
• Engine speeds, temp, fuel, ground speed, throttle, break, fuel, pressures  
• heater, lights,  
• way points (lat/long), and  
• a "signal to the engine" via a 1553 data packet  
• to enable a toy cruise control for "drive to" way point sequence.  
• stubs (will send an "inoperable message" or grey out) for all of the other functions 

only at the top level in the DID -- e.g. diagnostics, fault management,  
• This product will be in Ada.  
• It will be built by composing the product from elemental routines already existing in 

the DID.  
• all other DID functionality will be left out.  
• It will use an Ada 95 compiler, using Ada 83 restrictions  
• External Interfaces will use existing DID Ada Specs, (e,g. don't rewrite a 1553 

datapacket or 1553 data handler)  
• Variable names will be identical and /or naming conventions of the tank will be 

used  
• -- minimize the addition of new variables (the cruise control is the exception)  
• estimate the "nice to have" option cost for making this all endian neutral.  

 
At the end of the day,  

• I would like a X windows, PC system (this is similar to the OASIS D2T2 system) 
that I can give to academic and DARPA researchers that is representative of our 
systems.  

• This test article needs to "drop in" to  
• our test environment.  
• a virtual bench environment (D2T2 at the door)  

• It needs to be compatible with the statistical usage test models in the future.  
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You will  

• Keep requirements under control  
• use our development process, and  
• collect metrics,  
• do quality control,  
• CM, and  
• testing as if it were the main battle tank. -- we will use the existing tank test scripts 

and procedures -- this is very important  
• You will have weekly status reports, quad charts and metric reporting  
• Demo incremental capability to me, the customer, (and DARPA PIs as required)  
• stick to a schedule and budget and track it.  
• You will document the interfaces and general structure so that a PI can understand  

• how to interact and  
• install and  
• use the test article in an inexpensive development environment (e.g. free Gnu 

Gnat Ada compiler)  
• You will have to work with our existing lab manuals to document and explain how 

the "drop - in" interface is used for the PI user.  
• Provide transition orientation to NextGen PI staff.  

This will be used in many experiments as a calibration tool. Your effort, schedule, 
defects, etc will be the measure others will try to improve upon. 

If we like your estimate and plan, and you can convince us that you three are the 
ones for establishing the "best we can do", I will determine a start time and make 
appropriate arrangements for us to get this done.  

It would be nice to have an operational product with some functionality and defined 
interfaces to the environment two months after start of work. 

 
Mike  
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1 INTRODUCTION  
The purpose of this document is to describe the Software Development Plan (SDP) for the Skinny Driver’s 
Instrument Panel (SDIP) being developed within the Next Generation (NexGen) software development 
organization. 

1.1 Project Overview  

The goal of the SDIP Project is to produce Abrams M1A2 Main Battle Tank simulation software 
implementing a functionally reduced version of the graphical user interface of the Driver’s Integrated 
Display (DID), and an Autopilot user/system control interface.  The SDIP software is also intended to be 
made available to non-governmental entities such as the TACOM DARPA DARTS Principal Investigators 
for research and testing purposes. 

The project was originally planned to begin February 2002 and end July 01, 2002. 

1.2 Project Deliverables 

The SDIP project has the following deliverables: 

1. Software Development Plan (SDP) 

2. Software Requirements Specification (SRS) 

3. Software Design Document (SDD) 

4. Software Configuration Management Plan (SCMP) 

5. Software Quality Assurance Plan (SQAP) 

6. Software Test Plan (STP) 

7. Software Test Coverage Outline 

8. Software Test Cases 

9. Lessons Learned Report 

10. SDIP CSC (code) 

11. Autopilot CSC (code) 

12. 1553 Interface CSC (code) 

13. User’s Guide and Installation Manual 
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1.3 SDP Revision and Replan 

Whenever there is a significant change to the project, the impact of that change is assessed.  Based on this 
assessment, the changes are negotiated with all affected groups.  Any resulting changes are then 
incorporated into the related software plans or work products. 

The Software Development Plan for this project will be updated if there are significant changes to: 

• Requirements 

• Schedule 

• Manpower resources 

• Major technology changes 

On May 24, 2002 a project re-plan was completed due to major changes in technology assumptions.  
Specifically, it was determined that SDIP would not be based on Oasis Driver’s Integrated Display (DID) 
D2T2 software. 

1.4 Reference Materials 
 

Document Title Document Number 
Software Requirements Specification for the Driver’s 
Integrated Display of the Abrams M1A2 Tank. 

SRS-AS15420 Revision B,  
March 15, 2000. 

Skinny Driver’s Instrument Panel Software Requirements 
Specification. 

 

Version 2.00, 6/18/02. 
Next Generation Software Engineering 
Technology Area. 

US System/Segment Design Document. 
Version SW 2.5.1, Driver’s Station. 
Volume 3-1 of 5. 

SS-US00001 December 1997. 
General Dynamics Land Systems Division. 

Software Design Document for the Driver’s Integrated 
Display of the Block Improved Abrams Tank (M1A2.) 

SDD-SA15420 Revision C, 4 April 1997 
General Dynamics Land Systems Division. 

Data Packet Specifications Volume 2 – DID. 
 

DP-SA15132 Vol 2, Version 5.0, October 
1997. 
General Dynamics Land Systems Division. 

NextGen software policies, standards, and procedure 
documents. 

(Various). 
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1.5 Definitions and Acronyms 
 

Acronym Definition 
AGIL Adaptable Graphics Interface Layer.  A tool for developing graphical user interfaces 

(e.g., application screens) 
API Application Programmer Interface 
CID Commander’s Integrated Display 
COTS Commercial Off the Shelf 
CSC Computer Software Component 
DARPA Defense Advanced Research Projects Agency 
DARTS Dependable Automated Reconfigurable Technology for Software 
DCS DCS Corporation 
Defects Software problems logged as STRs and found after official delivery to the customer 
DID Driver’s Integrated Display 
Errors Software problems logged as STRS and found prior to official delivery to the customer 
E-Team NextGen Software Engineering team 
GB Gigabytes  
GWT Government Witnessed Testing 
H/TEU Hull/Turret Electronics Unit (M1A2 US) 
H/TMPU Hull/Turret Mission Processing Unit 
IPR In-Process Review meeting 
LRU Line Replaceable Unit 
NextGen Next Generation Software Engineering Technology Area 
NPS Naval Postgraduate School 
M1A2 Abrams Main Battle Tank 
MB Megabytes  
POC Point of Contact 
PR Peer Review meeting 
R-Team NextGen Research and Infrastructure team 
SDF Software Development File 
SCCB Software Configuration Control Board 
SCM Software Configuration Management 
SCMP Software Configuration Management Plan 
SCR Software Change Request 
SDD Software Design Document 
SDF Software Development File 
SDIP Skinny Driver’s Instrument Panel  
SDP Software Development Plan  
SEPG Software Engineering Process Group 
SQA Software Quality Assurance 
SQAP Software Quality Assurance Plan 
SRS Software Requirements Specification 
STP Software Test Plan 
STR System Trouble Report 
SW Software 
SWE Software Engineer 
TACOM Tank-automotive and Armaments Command 
TARDEC Tank Automotive Research, Development, and Engineering Center 
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Acronym Definition 
TDP Abrams Common Software Library Technical Data Package 

 

2 PROJECT ORGANIZATION 

2.1 Process Model  

The SDIP project will use the traditional “waterfall” software development model.  Only one iteration of 
software development is planned. 

2.2 Organizational Structure 

The project is wholly contained within the NextGen organization.  The project team is described in Section 
2.4.  

2.3 Organizational Boundaries and Interfaces 

The customer is the NextGen Associate Director, Michael S. Saboe, Ph.D.  The project team will work with 
NextGen’s SCM, SQA, Software Testing, and SEPG representatives as listed in Section 2.4. 

The Point of Contact (POC) is the NextGen Systems Engineer, Chris Ostrowski. 

2.4 Project Responsibilities 

The project staff will follow NextGen software policies, standards, and procedures.  The project staff will 
also follow the project-specific plans. 

 
Function Assigned Responsibilities 

Project Lead John Bohn • Maintain project schedule. 
• Develop SDP (with support from consultant). 
• SW design and coding. 
• Review and maintain the Project Risks table. 
• Participate in Peer Reviews. 
• Approve Test Plan, Test Coverage outline, and Test 

Cases. 
• Develop and present the Lessons Learned report. 

Software Engineer Matt Behnke 
George Hamilton 

• SW design and coding. 
• Participate in Peer Reviews. 
• Provide input into the Lessons Learned report. 

Software Engineer Doug Gersky • Develop SRS. 
• SW design and coding. 
• Participate in Peer Reviews. 
• Provide input into the Lessons Learned report. 

Software Engineer Dan Turnas • Develop SDD. 
• SW design and coding. 
• Participate in Peer Reviews. 
• Provide input into the Lessons Learned report. 
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Function Assigned Responsibilities 
SQA Manager Karen LaFond • Provide input to project planning activities.  

• Develop SQA Plan. 
• Verify the project team activities are compliant with 

policies, standards, and procedures. 
• Facilitate definition of measurable goals for product 

and process quality. 
• Monitor that IPRs, Peer Reviews, and project meetings 

are held as planned. 
• Monitor that project risks are being reviewed, 

recorded, and tracked. 
• Report SQA status and issues to NextGen Associate 

Director. 
• Raise non-compliance issues (that cannot be resolved 

at project level) to Associate Director. 
• Ensure metrics data is collected and recorded. 
• Participate in Peer Reviews or assign SQA 

representative. 
• Provide input into the Lessons Learned report. 

SQA Engineer Karen LaFond’s staff  • Perform reviews and audits per SQAP. 
• Raise concerns of non-compliance issues to Project 

Lead and SQA Manager. 
• Witness system testing activities. 
• Provide input into the Lessons Learned report. 

SEPG Lead Joseph Szafranski • Coach project team on NextGen software policies, 
standards, and procedures. 

• Audit SQA activities. 
• Provide input into the Lessons Learned report. 

SCM Manager Russell Menko • Develop SCM Plan for project. 
• Perform / manage Software Configuration Management 

activities. 
• Provide input into the Lessons Learned report. 

Software Test 
Manager 

Nadia Abadir • Manage testing activit ies. 
• Approve Test Plan, Test Coverage outline, and Test 

Cases. 
• Provide input into the Lessons Learned report. 

Software Test 
Engineer 

Nadia Abadir’s staff • Develops Test Plan, Test Coverage Outline, and Test 
Cases. 

• Perform Testing. 
Systems Engineer Chris Ostrowski • Point of Contact for the project. 

• Assist and coach the project team in project 
management and technical activities. 

• Assist in resolving non-compliance issues that cannot 
be resolved at the project level. 

• Approve SDP, SQAP, and SCMP documents. 
• Approve Test Plan, Test Coverage outline, and Test 

Cases. 
• Participate in Peer Reviews. 
• Provide input into the Lessons Learned report. 
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Function Assigned Responsibilities 
Associate Director Michael S. Saboe, 

Ph.D. 
• NextGen Associate Director. 
• Customer. 
• Resolve non-compliance issues that cannot be 

resolved at the project level. 
• Provide input into the Lessons Learned report. 
• Provide final approval of the SDP. 

 

3 MANAGERIAL PROCESS 

3.1  Management Objectives and Priorities 

The goal of the SDIP Project is to produce Abrams M1A2 Main Battle Tank simulation software 
implementing a functionally reduced version of the graphical user interface of the Driver’s Integrated 
Display (DID), and an Autopilot user/system control interface.   

The SDIP software is also intended to be made available to non-governmental entities such as the TACOM 
DARPA DARTS Principal Investigators for research and testing purposes. 

3.2  Assumptions, Dependencies and Constraints  

Assumptions: 

• The software engineering team is available full time. 

• Ada 95 programming language will be used. 

• PC based Redhat Linux (version 7.3) operating system will be used. 

Dependencies: 

• People are time constrained with other projects and commitments. 

Constraints: 

• The project has been scheduled in a “time box” beginning February 2002 and ending July 01, 2002. 

3.3 Project Tracking Methods   

The Project will be tracked using the following methods: 

• Project Team Meetings  – In these meetings,  the current progress is compared against the 
schedule.  Issues and concerns are discussed and addressed.  New Action Items are reviewed and 
assigned.  Project Meeting minutes will be published within three business days from the meeting 
date. 

• Monthly IPRs  – IPRs are conducted each month with NextGen senior management.  At the IPR, 
the Project Lead reports on the status of project progress, open action items,  deviations from the 
software development plan, project risks, and recommendations for remedial action.  IPRs are the 
primary means of reporting problems to senior management.   

• Action Items  – Action Items for the project will be collected, logged, and tracked to completion.  
The Project Lead manages the Action Items log for the project and reports on their status. 
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3.4 Metrics  

Metrics data are being collected throughout the project.  The main purpose of these metrics is to manage 
the project, gather information about the project, to define software development baseline(s), and to assist 
future process improvement activities. 

The metrics data identified for this project address the following areas: 

1. Delivery of projects on schedule. 

2. Estimation of resource requirements. 

3. Management of project within budgeted cost. 

4. Product Quality. 

5. Project communication and collaboration. 

6. Estimation of project work product deliverables. 

Refer to Appendix A for details on the metrics selected for this project. 

In order to maintain progress on the project, the tracking metrics in the following table will be used.  These 
metrics identify situations requiring immediate attention and specify the actions to be taken to resolve the 
situations. 

 
Tracking Metric Lower Control 

Limit 
Corrective Action – 
Exceeded Lower 
Control Limit 

Upper 
Control 
Limit 

Corrective 
Action – 
Exceeded 
Upper Control 
Limit 

Project Schedule: 

• Number of  tasks and 
milestones actually 
completed by date 
measured.  Metric 1-2.   

70% of tasks 
and milestones 
actually 
completed on or 
ahead of 
schedule. 

• Project Lead 
addresses issues 
affecting schedule. 

• Project Lead re-plans 
the project. 

130% of 
tasks and 
milestones 
actually 
completed 
on or ahead 
of schedule. 

Project Lead 
adjusts 
schedule for 
earlier 
completion. 

Management Reviews: 

• Number of IPR 
meetings held (per 
plan).  Metric 5-2. 

75% of planned 
IPR meetings 
actually held. 

• Project Lead 
coordinates IPR 
meeting with  NextGen 
Associate Director. 

N/A N/A 

Team Communication: 

• Number of project team 
meeting held (per plan).  
Metric 5-9. 

80% of planned 
meetings 
actually held. 

• Project Lead resolves 
issues preventing 
meetings. 

 

N/A N/A 

Process: 

• Number of Peer 
Reviews held (per 
plan).  Metric 5-19. 

85% of work 
products 
completing Peer 
Reviews per 
plan. 

• Project Lead resolves 
issues preventing 
Peer Reviews. 

• Project Lead ensures 
Peer Reviews are 
being held.  

N/A N/A 
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3.5 Risk Management  

The initial set of project risks and their assessment are identified in the table below.  
 

Risk Severity Probability Risk Level Mitigation Strategy 
Diversion of 
development team to 
other projects 
including GWT. 

High High High • Keep management and customer up 
to date on status. 

Inability to meet 
project goals due to 
inexperienced 
development team. 

High High High • Make extensive use of NextGen and 
DCS domain experts and NPS 
course work. 

Inability to meet 
project goals due to 
development and 
implementation of 
CMM related 
processes. 

High High High • Ensure project team gets “on the 
job” training of the new CMM 
related processes. 

• Get assistance from senior 
consultants. 

Aggressive schedule. High Medium High • Develop detailed project plan. 
• Ensure resources are available to 

work on the project. 
• Address schedule delays early. 
• Work with customer in the 

prioritization of functionality to be 
delivered. 

Previously performed 
class work may not be 
sufficient to meet the 
SDIP project specific 
requirements. 

High Medium High • Rework class project to meet SDIP 
project requirements. 

Development 
environment is flawed 
or not understood. 

High Medium Medium • Work with domain experts. 

Domain experts are 
unavailable. 

High Medium Medium • Develop contacts with other 
personnel with required expertise. 

Misunderstood 
requirements. 

High Medium Medium • Work closely with customer.  
 

PC unavailable. High Medium Medium • Acquire PC for project as soon as 
possible. 

Requirements creep. Medium Low Low • Requirements management. 
Hardware failure / 
data loss. 

High Low Low • Backups. 

Illness and vacations. Medium Low Low • Early identification of vacation 
plans. 

 

The SDIP project Risk Management table is located in the SDIP Software Development Folder (SDF).  The 
project risks will be evaluated and the table updated on a periodic basis .  High level risks will be reviewed 
at SDIP IPR meetings. 
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3.6 Staffing Plan  

The team will be composed of NextGen E-Team members who have gained some experience with the tank 
software performing maintenance as required by STRs or testing.  The Project lead and Software Engineers 
are expected to be available at a minimum 65% of their time during the duration of the project.  See Section 
2.4 for Roles, Assignments, and Responsibilities. 

 

4 DEVELOPMENT PROCESS 

4.1 Methods, Tools, and Techniques 

4.1.1 Computing Environment 

The Project requires the following computing environment: 

• PC equipment with the following minimum configuration: 
− Pentium III 450 Mhz processor  
− 128 MB of RAM 
− 10 GB of Disk 
− Display capable of supporting 1024 x 768 resolution 
− Ethernet interface card 

• PC based Readhat Linux (version 7.3) operating system 

• Ada 95 compiler (GNAT) 

• Ada 95 debugger 

• X Windows client software (X Manager) 

• AGIL and related libraries and scripts  

• Microsoft Office 2000 

• Microsoft Project 2000 

• Clearcase (SCM tool) 

• 1553 interface card (optional) 

 

The Project requires the follow Lab environment: 

• M1A2 System Bench for testing. 

• Bench 1553 Emulator software for PC. 
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4.1.2 Software Development Folder 

The Project will maintain a Software Development Folder (SDF) where all project related documents 
and other materials will be maintained.  The electronic project folder is located on the “Ice” NT server 
under the “\\Ice\Nt-shared\Sdip”  directory path. 

At a minimum, the SDF contains the project deliverables listed in Section 1.2. 

4.2 Software Documentation 

The Project’s staff will produce various documents.  See Section 1.2 for the list of Project Deliverables.  See 
Section 6. for details. 

4.3 Project Support Functions 

The SDIP Project is supported by personnel from the SCM, SQA, Test, and SEPG organizations. 

4.3.1 Software Trouble Reports 

Software problems discovered after the start of formal testing by the Software Test organization will 
be logged formally as Software Trouble Reports (STRs).  STRs will be reviewed by a project specific 
SCCB and SCRs will be created as appropriate. 

Significant problems or updates to project documents, discovered after their Peer Review and 
management sign-off, will be logged formally as STRs. 

Software problems logged as STRS and found prior to official delivery to the customer are named 
“errors”.   

Software problems logged as STRs and found after official delivery to the customer are named 
“defects”. 

STRs and SCRs will be stored in the SCM database.  

4.4 Post Delivery Support 

The NextGen R-Team will be responsible for providing software support for the SDIP system after SDIP has 
been released for use. 

4.5 Process Tailoring 

This project will follow the NextGen software development policies, standards, and procedures.  

Project tailoring (deviation from NextGen process), is described in the table below. 

 
Document Title Document Number Tailoring Performed 
None identified   
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5 PROJECT ESTIMATES AND CRITICAL RESOURCES 

5.1 Work Elements 

The project will consist of the activities identified in the master project schedule located in the SDIP 
Software Development Folder (SDF). 

5.2 Dependencies 

The project has the following dependencies: 

• Autopilot software based on previous class work. 

5.3 Resource Estimates 

The project requires four software engineers for the core work and a systems engineer performing technical 
consulting and acting as the POC. 

Software engineers are assumed to be available 65%, which allows for sick time, 1 week trip to NPS, and E-
Team activity support. 

The original estimates for the amount of software to be developed for SDIP are shown below. 

SDIP Computer Software Components KLOC 
SDIP CSC 1.5 
Autopilot CSC 0.5 
1553 Interface CSC 1.5 

Total 3.5 

 

The initial effort estimates below are based on SDIP code size estimate of 3.5 KLOC. 

 
Development Phase/Activity Effort Hrs. Estimate 
Planning 176 
Tracking 120 
Reviews and Audits 80 
Debriefing 8 
Analysis  152 
Requirements 240 
Design/Code 1104 
Testing 40 
SQA 394 
SCM 40 

Total 2354 
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5.4 Budget and Resource Allocation 

The SDIP Project is not managing a detailed budget.  Therefore, a budget was not allocated to the separate 
phases of the project.  Instead, cumulative project costs are determined by the labor metrics collected by 
the project. 

Task assignments and resource allocations are defined and tracked in the project schedule.  For details see 
the project schedule located in the SDIP Software Development Folder (SDF). 

5.5 Schedule 

The schedule will be maintained separately in a Microsoft Project 2000 file located in the SDIP Software 
Development Folder (SDF). 

Below is a high level view of the initial schedule. 

5.6 Project Training Plan 

The project requires the following training: 

• Two day AGIL training course supplied by DCS.  This training was held May 16 and 17, 2002. 
Training session was attended by: John Bohn, Doug Gersky, Dan Turnas, and Chris Ostrowski. 

 

ID Task
1 SDIP

2 Tracking

23 PLANNING

61 Analysis

65 Design

70 Autopilot

84 Instrument Panel

91 Communications

97 1553 API and Emulation

110 Test  Plan

114 System integration and build

115 System Test

116 User and Installation  Manual

122 CM build

123 Project Brief to

127 Project Post Mortem

6/25 6/26
6/27 6/28

7/1 7/1

2/17 3/3 3/17 3/31 4/14 4/28 5/12 5/26 6/9 6/23 7/7 7/21
Februar Marc April May June July
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6 SUPPORT FUNCTIONS 

6.1 Software Configuration Management 

The Software Configuration Management organization plans, advises, and manages (under configuration 
management) the project’s work products and deliverables.  A Software Configuration Management (SCM)  
Plan describes in detail the SCM activities.  The SCM Plan is located in the SDIP Software Development 
Folder. 

All project deliverables will be placed under configuration control after completing their Peer Review and 
management sign-off.  Refer to Section 1.2 for the list of project deliverables. 

Once the SDIP CSCI is ready for testing, the Project Lead will notify the SCM manager.  SCM will then 
perform the software “build” for the SDIP CSCI using scripts or instructions from the development team.  
The SCM software “build” is then turned over to the Software Test organization for testing. 

6.2 Software Quality Assurance 

The SQA organization plans, advises, reviews, and insures the project is following the NextGen policies, 
standards, and procedures.   

The SQA activities for this project include: 

• Planning 

• Tracking 

• Reviewing and Auditing (product and process) 

• Project Debriefing / Post Mortem Analysis  

For further details , see the SQA Plan located in the SDIP Software Development Folder. 

6.3 Software Testing 

The Software Testing organization plans, develops, executes, and documents results of software tests. 

The Software Test Plan, Test Coverage Outline, and Test Cases describe in detail the software testing 
activities for this project.  For further details , see the software test documents located in the SDIP Software 
Development Folder. 
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APPENDIX A – GOAL/QUESTION/METRICS 

 
NOTATIONS: 

• Table cells that are highlighted represent metric collection activities at the end of the project. 

• “Collected by & When” column choices:  Now, At a given Document Review, Monthly IPR, or Post-
Development. 

• “Projected Effort” column scale:  Low (< 10 minutes); Medium (11-30 minutes); High (> 30 minutes) to 
collect.  

 

 

Goal 1: Improve the Ability to Deliver Projects on Schedule 
 

Question # Metric Collected by & 
When 

Projected 
Effort  

To be 
Reported By 

& When 
1-1 Number of tasks and 

milestones planned for 
completion by date 
measured 

 SQA Engineer & 
Project Lead – 
Monthly for IPR 

Low SQA Manager 
for IPR 

1-2 Number of tasks and 
milestones actually 
completed by date measured 

 SQA Engineer & 
Project Lead – 
Monthly for IPR 

Low SQA Manager 
for IPR, Project 
Lead – post 
mortem 

Are projects being 
completed on time? 

1-3 Project duration variance Project Lead – 
Post development 

Medium Project Lead  – 
post mortem 

1-4 Percent of lifecycle phases 
completed on time 

Project Lead – 
Post development 

High Project Lead – 
post mortem 

1-5 Phase duration variance Project Lead – 
Post development 

High Project Lead – 
post mortem 

Are lifecycle 
phases being 
completed on 
schedule? 

1-6 Percent phase 
milestones/tasks completed 
on time 

Project Lead – 
Post development 

High Project Lead – 
post mortem 

1-7 Percent project deliverables 
completed on schedule 

Project Lead – 
Post development 

Medium Project Lead – 
post mortem 

1-8 Delivery variance Project Lead – 
Post development 

Medium Project Lead – 
post mortem 

Are deliverables 
being completed on 
schedule? 

1-9 Average project deliverable 
variance 

Project Lead – 
Post development 

Medium Project Lead – 
post mortem 

Are senior 
management 
reviews conducted 
in a timely manner? 

1-9 Percent senior management 
reviews (IPRs) conducted 
per schedule 

 SQA Engineer – 
Post development 

Medium SQA Manager – 
post mortem 

Are SQA activities 
scheduled? 

1-10 Percent of SQA activities 
scheduled 

 SQA Engineer – 
Post development 

Medium SQA Manager – 
post mortem  

Are SQA activities 1-11 Percent SQA activities  SQA Engineer – Medium SQA Manager – 
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Question # Metric Collected by & 
When 

Projected 
Effort  

To be 
Reported By 

& When 
completed on time? completed on time Post development post mortem 

1-12 Total number of 
requirements 

Project Lead -
Monthly for IPR 

Low Project Lead for 
IPR, Project Lead 
– post mortem 

1-13 Number of requirements 
added 

Project Lead -
Monthly for IPR 

Low Project Lead for 
IPR, Project Lead 
– post mortem 

1-14 Number of requirements 
deleted 

Project Lead -
Monthly for IPR 

Low Project Lead for 
IPR, Project Lead 
– post mortem 

Are project 
requirements 
managed? 

1-15 Number of existing 
requirements that were 
modified 

Project Lead -
Monthly for IPR 

Low Project Lead for 
IPR, Project Lead 
– post mortem 
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Goal 2: Improve Ability to Estimate Resource Requirements 
 

Question # Metric Collected by & 
When 

Projected 
Effort  

To be 
Reported By 

& When 
Is effort estimated 
for the project? 
 

2-1 Project has effort estimates 
(Y/N) 

Project Lead @ 
SDP 

Low *  
# People 
 

Project Lead @ 
1st IPR after SDP 
has Peer Review 

Do project effort 
estimates 
accurately predict 
actual project 
effort? 

2-2 Project effort variance Project Lead @ 
Post development 

Medium Project Lead @ 
Post 
Development 

Is effort estimated 
for each lifecycle 
phase? 

2-3 Percent of lifecycle phases 
with effort estimates 

Project Lead @ 
SDP 

Low *  
# People 
 

Project Lead @ 
1st IPR after SDP 
has Peer Review 

Do lifecycle phase 
efforts estimates 
accurately predict 
actual lifecycle 
phase effort?  

2-4 Phase effort variance Project Lead @ 
Post development 

Medium Project Lead @ 
Post 
Development 

Is effort estimated 
for each phase 
deliverable? 
SRS & SDD 
 

2-5 Percent of deliverables for 
which there are estimates  

Project  Manager 
@ SDP 

Low Project Lead @ 
1st IPR after SDP 
has Peer Review 

Do deliverable 
effort estimates 
accurately predict 
actual deliverable 
effort? 
SRS & SDD 
 

2-6 Variance per deliverable for 
which there are estimates 

Project Lead @ 
Post development 

Medium Project Lead @ 
Post 
Development 

Is risk identification 
being performed? 

2-7 Projects risks been identified 
(Y/N) 

Project Lead @ 
SDP 

Low Project Lead @ 
1st IPR after SDP 
has Peer Review 

Were there any 
unexpected risks? 

2-8 How many per project? Project Lead @ 
Post development 

Medium Project Lead @ 
Post 
Development 
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Goal 3: Manage Project Within Budgeted Cost 
 

Question # Metric Collected by & 
When 

Projected 
Effort  

To be 
Reported By 

& When 
Have all cost 
categories been 
estimated for this 
project? 

3-1 Does the project have costs 
estimated by appropriate 
categories? (Y/N) 
 
Category: Labor hours.  
(Collected by activity, e.g., 
Planning, Tracking, 
Design/Code, ...) 
 
Using average labor rate per 
team member roles. 
 
SDIP project will NOT 
estimate or track costs for 
other categories such as: 
• Materials  
• Training 
• Subcontractors 
• Hardware 
• Software – COTS 
• Travel 

Project Lead @ 
SDP 

Medium Project Manager 
@ SDP 

3-2 Project cost variance overall Project Lead @ 
Post Development 

Medium Project Lead @ 
Post 
Development 

3-3 Percent of project cost 
variance overall 

Project Lead @ 
Post Development 

Medium Project Lead @ 
Post 
Development 

Do project cost 
estimates 
accurately predict 
actual project costs 
by category? 

3-4 Cost variance per category. Project Lead @ 
IPR 

Medium Project Lead @ 
IPR 
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Goal 4: Improve Delivered Quality 
 

Question # Metric Collected by & 
When 

Projected 
Effort  

To be 
Reported By 

& When 
How effective is the 
process in 
detecting defects? 
 

4-1 Number of Project defects 
detected per deliverable after 
the deliverable has been 
signed off. (STRs) 

 SQA Engineer – 
As occurs  

Low SQA Manager @ 
Monthly SQA 
IPR 

How early are 
errors identified? 

4-2 Types of errors detected per 
phase 

 SQA Engineer – 
As occurs  

Low SQA Manager @ 
Monthly IPR 

 4-3 Average Peer Review 
preparation time. 
 

 SQA Engineer – 
As occurs  

Medium SQA Manager @ 
Monthly IPR 

 4-4 Average number of errors 
found at Peer Reviews 

 SQA Engineer – 
As occurs  

Low SQA Manager @ 
Monthly IPR 

 4-5 Average number of major 
errors found at Peer Reviews 

 SQA Engineer – 
As occurs  

Low SQA Manager @ 
Monthly IPR 

 4-6 Average number of minor 
errors found at Peer Reviews 

 SQA Engineer – 
As occurs  

Low 
 

SQA Manager @ 
Monthly IPR 

How effective are 
we in resolving 
defects? 

4-7 Average time to resolve 
project defects (STRs) 

 SQA Engineer – 
As occurs  

Low SQA Manager @ 
Monthly IPR 

How satisfied are 
our customers? 
 

4-8 Customer satisfaction 
survey rating 

 SQA Engineer – 
Post development 

Medium SQA Manager @ 
Monthly IPR 
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Goal 5: Improve Project Communication and Collaboration 
 

Question # Metric Collected by & 
When 

Projected 
Effort  

To be 
Reported By 

& When 
5-1 Number of IPRs planned 

 
 SQA Engineer –  
1 per month 

Low SQA Manager @ 
Monthly IPR 

5-2 Number of IPRs held  SQA Engineer – 
monthly 

Low SQA Manager @ 
Monthly IPR 

5-3 Percent of IPRs for which 
materials to be reviewed 
were distributed on-time 
(within 1 business day) prior 
to the meeting 

 SQA Engineer – 
monthly 

Low SQA Manager @ 
Monthly IPR 

5-4 Number of IPR meetings that 
started on-time – within 5 
minutes of posted meeting 
notice. 

 SQA Engineer – 
monthly 

Low SQA Manager @ 
Monthly IPR 

5-5 Number of IPR meetings 
where action items 
addressed   

 SQA Engineer – 
monthly 

Low SQA Manager @ 
Monthly IPR 

5-6 Total number of SDIP 
Action Items per month 

NextGen Dept. 
Admin. – monthly 

Low SQA Manager @ 
Monthly IPR 

Are senior 
management 
meetings (IPRs) 
planned and 
conducted? 

5-7 Total number of SDIP 
CLOSED Action Items per 
month 

NextGen Dept. 
Admin. – monthly 

Low SQA Manager @ 
Monthly IPR 

5-8 Number of project meetings 
planned 

Project Lead – as 
scheduled 

Low * 
# projects 

SQA Manager @ 
Monthly IPR 

5-9 Number of project meetings 
held 

Project Lead – as 
they occur 

Low * 
# projects 

SQA Manager @ 
Monthly IPR 

5-10 Percent of project meetings 
for which materials to be 
reviewed were distributed 
on-time (within 2 business 
days) prior to the meeting 

 SQA Engineer – 
as they occur 

Low * 
# projects 

SQA Manager @ 
Monthly IPR 

5-11 Number of project meetings 
with an agenda 

 SQA Engineer – 
as they occur 

Low * 
# projects 

SQA Manager @ 
Monthly IPR 

5-12 Number of project meetings 
which addressed at least 
80% of the agenda items  

 SQA Engineer – 
as they occur 

Low * 
# projects 

SQA Manager @ 
Monthly IPR 

5-13 Number of project meetings 
for which minutes were 
published on-time (within 2 
business days) 

 SQA Engineer – 
as they occur 

Low * 
# projects 

SQA Manager @ 
Monthly IPR 

Are project 
meetings planned 
and conducted? 

5-14 Number of project meetings 
that started on-time (within 5 
minutes of posted meeting 
notice) 

 SQA Engineer – 
as they occur 

Low * 
# projects 

SQA Manager @ 
Monthly IPR 
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Question # Metric Collected by & 
When 

Projected 
Effort  

To be 
Reported By 

& When 
5-15 Number of project meetings 

rescheduled due to lack of   
quorum 

 SQA Engineer – 
as they occur 

Low * 
# projects 

SQA Manager @ 
Monthly IPR 

5-16 Total number of Action 
Items (all project meetings) 
per month 

Project Lead – as 
they occur 

Low * 
# projects 

SQA Manager @ 
Monthly IPR 

 

5-17 Total number of CLOSED 
Action Items (all project 
meetings) per month 

Project Lead – as 
they occur 

Low * 
# projects 

SQA Manager @ 
Monthly IPR 

5-18 Number of PRs planned 
 

Project Lead – as 
they occur 

Low * 
# projects 

SQA Manager @ 
Monthly IPR 

5-19 Number of PRs held Project Lead – as 
they occur 

Low * 
# projects 

SQA Manager @ 
Monthly IPR 

5-20 Percent of PRs for which 
materials to be reviewed 
were distributed on-time 
(within 3 business days) 
prior to the meeting 

 SQA Engineer – 
as they occur 

Low * 
# projects 

SQA Manager @ 
Monthly IPR 

5-21 Number of PRs for which 
minutes were published on-
time (within 3 business 
days) 

 SQA Engineer – 
as they occur 

Low * 
# projects 

SQA Manager @ 
Monthly IPR 

5-22 Number of PRs that started 
on-time (within 5 minutes of 
posted meeting notice) 

 SQA Engineer – 
as they occur 

Low * 
# projects 

SQA Manager @ 
Monthly IPR 

5-23 Number of PRs rescheduled 
due to lack of quorum 

 SQA Engineer – 
as they occur 

Low * 
# projects 

SQA Manager @ 
Monthly IPR 

5-24 Planned length of PR 
(minutes) 

 SQA Engineer – 
as they occur 

Low * 
# projects 

SQA Manager @ 
Monthly IPR 

5-25 Actual length of PR 
(minutes) 

 SQA Engineer – 
as they occur 

Low * 
# projects 

SQA Manager @ 
Monthly IPR 

5-26 Average Peer Review 
preparation time (minutes) 

 SQA Engineer – 
as they occur 

Low * 
# projects 

SQA Manager @ 
Monthly IPR 

5-27 Total number of Action 
Items  per month 

Scribe – as they 
occur 

Low * 
# projects 

SQA Manager @ 
Monthly IPR 

Are Peer Reviews 
(PRs) planned and 
conducted? 

5-28 Total number of CLOSED 
Action Items per month 

 SQA Engineer – 
as they occur 

Large SQA Manager @ 
Monthly IPR 

Are project team 
members 
adequately trained 
to conduct 
meetings? 

5-29 Percent of staff who have 
had training or demonstrated 
ability to conduct meetings 

SEPG Manager – 
monthly 

Medium SEPG Manager @ 
Monthly SEPG 
IPR 



Skinny Driver’s Instrument Panel 
Software Development Plan 

 

SDIP-22-4-1 90  Version 2.0 

Goal 6: Improve Ability to Estimate Project Deliverables 
 

Question # Metric Collected by & 
When 

Projected 
Effort  

To be 
Reported By 

& When 
What are the sizes 
of deliverables? 

6-1 Estimated KSLOC at start of 
project 
By category:  New, re-used, 
Modified 

Project Lead @ 
SDP 

Medium Project  Manager 
@ 1st Monthly 
IPR after SDP 
Peer Review 

 6-2 Actual KSLOC at end of 
project by category:  New, 
re-used, Modified 

SCM Manager @ 
Post Development 

Medium 
 
 

SCM  Manager @ 
1st Monthly IPR 
after project 
completion 

 6-3 # pages – SDP SCM Manager @ 
Post Development 

Low 
 

SCM  Manager @ 
1st Monthly IPR 
after project 
completion 

 6-4 # pages – SCMP SCM Manager @ 
Post Development 

Low 
 

SCM  Manager @ 
1st Monthly IPR 
after project 
completion 

 6-5 # pages – SQAP SCM Manager @ 
Post Development 

Low 
 

SCM  Manager @ 
1st Monthly IPR 
after project 
completion 

 6-6 # pages – SRS SCM Manager @ 
Post Development 

Low 
 

SCM  Manager @ 
1st Monthly IPR 
after project 
completion 

 6-7 # pages – SDD SCM Manager @ 
Post Development 

Low 
 

SCM  Manager @ 
1st Monthly IPR 
after project 
completion 

 6-8 # pages – STP SCM Manager @ 
Post Development 

Low 
 

SCM  Manager @ 
1st Monthly IPR 
after project 
completion 

 6-9 # pages – STR SCM Manager @ 
Post Development 

Low 
 

SCM  Manager @ 
1st Monthly IPR 
after project 
completion 
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1 Scope 

1.1 Identification 
This document specifies the engineering and qualification requirements for the Skinny Driver’s 
Instrument Panel (SDIP) computer software configuration item (CSCI).  It will be used as a basis 
for detailed design and testing. 

1.2 SDIP Overview 
The SDIP Project’s goal is to produce M1A2 simulation software, implementing a functionally 
reduced version of the Driver’s Integrated Display (DID) from that vehicle.  This modified DID 
is referred to as the Skinny Driver’s Instrument Panel (SDIP).  The software resulting from the 
SDIP Project is collectively known as the SDIP CSCI.  The SDIP CSCI is intended to be made 
available to non-government entities for research purposes.  The focus of this research will be the 
development and addition of software monitoring probes to U.S. Army weapons systems. 

1.3 Reference Materials 
Document Title Document Number 
Skinny Driver’s Instrument Panel 
Software Development Plan 
 

SDIP-22-4-1, Version 2.0, <Date TBD> 
Next Generation Software Engineering 
Technology Area. 
TARDEC 

US System/Segment Design Document 
Version SW 2.5.1, Driver’s Station 
Volume 3-1 of 5 

SS-US00001 December 1997 
General Dynamics Land Systems Division 

Software Design Document for the Driver’s 
Integrated Display of the Block Improved 
Abrams Tank (M1A2) 

SDD-SA15420 Revision C, 4 April 1997 
General Dynamics Land Systems Division 

Data Packet Specifications Volume 2 – DID 
 

DP-SA15132 Vol 2, Version 5.0, October 1997 
General Dynamics Land Systems Division 

1.4 Requirement Identification & Document Notation 
Within this document, all software requirements are contained in statements that use the verb 
‘shall’.  The notation (###) prefaces all such requirement statements and is utilized to aid 
requirement traceability.  All software requirements identified in this manner shall be met. 
 
Within this document, references to document sections are denoted by the notation [#]. 
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1.5 Acronyms, Terms, and Definitions 
Acronym, Term Definition 
ACSL Abrams Common Software Library 
Ada High level programming language.  
AGIL Adaptable Graphical Interface Library 
API Application Program Interface 
Autopilot CSC A user interface CSC of the SDIP CSCI.  
CDU Commander’s Display Unit 
CID Commander’s Integrated Display 
COTS Commercial Off The Shelf 
CSC Computer Software Component.  A logical collection of CSUs 

associated with a specific set of related software functionalities. 
CSCI Computer Software Configuration Item.  A logical collection of 

CSCs. 
CSU Computer Software Unit.  An element specified in the design of a 

CSC that is separately testable. 
DECU Driver’s Electronic Control Unit 
DID Driver’s Integrated Display 
GCDP Gunner’s Control and Display Panel 
HEU Hull Electronics Unit 
M1A1/2 & M1A2 SEP U.S. Army ‘Abrams’ Main Battle Tank variants. 
MBT Main Battle Tank 
M/OSB Menu Option Select Button 
MPU Mission Processing Unit 
NDI Non-Developmental Item 
NextGen Next Generation Software Engineering Technology Area 
SDIP Skinny Driver’s Instrument Panel 
SDIP CSC A user interface CSC of the SDIP CSCI. 
SDIP CSCI Refers to all constituent CSCs of the SDIP project.  
SDIP Project The combined work effort involved in creating the SDIP CSCI. 
SEP System Enhancement Package 
TACOM Tank-Automotive & Armaments Command 
TARDEC Tank Automotive Research, Development, and Engineering Center 
TEU Turret Electronics Unit 
UI User Interface 
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2 Functional Requirements 

2.1 SDIP CSCI Operating Environment 
(046) The SDIP CSCI shall be developed using the Ada programming language.  (001) The 
SDIP CSCI shall be developed to run in the Linux operating system.  The SDIP project will use 
the Adaptable Graphical Interface Library (AGIL) to develop the user interfaces required by the 
SDIP CSCI. 

2.2 1553 API and Emulation CSC 
(048) The SDIP CSCI shall be developed using the 1553 API and Emulation CSC, an NDI.  This 
NDI offers the ability to transmit/receive 1553 data packets across both a TCP/IP network and a 
1553 Data Bus.  (045) The SDIP CSCI shall be capable of using either TCP/IP or the 1553 Data 
Bus communication protocol for interprocess communication. 

2.3 SDIP CSCI Processes 
The SDIP CSCI is intended to implement a stand-alone, PC based M1A2 simulation centered 
around a virtual DID LRU graphical user interface [4.1] and an Autopilot user/system control 
interface [4.2].  The virtual DID resulting from the requirements contained herein is referred to 
as the SDIP CSC.  (002) The other M1A2 display simulations, the CID and GCDP, shall not be 
available as part of the SDIP CSCI.  The Autopilot defined by the requirements herein is a user 
interface which acts as the system control interface of the SDIP CSCI and is referred to as the 
Autopilot CSC.  The Autopilot CSC and the SDIP CSC run as independent processes when the 
SDIP CSCI is invoked. 

2.4 Processing of 1553 Data Packets 
(004) The SDIP CSCI shall maintain the ability to process 1553 data packets in a manner 
consistent with the actual method used within a M1A2 tank.  That is, the SDIP and Autopilot 
CSCs maintain the M1A2 1553 packet specifications for interprocess communication of data.   

2.4.1 SDIP CSC 
(005) All M1A2 1553 Data Packets transmitted and received by the M1A2 DID shall be 
transmitted and received by the SDIP [3].  (044) The SDIP shall have the ability to receive 
M1A2 1553 Data Packets not normally received by the M1A2 DID.  (006) The SDIP shall 
emulate a subset of M1A2 DID user interface visual reactions/updates to received 1553 data 
packets. This subset of reactions/updates contains the following: 
 

• Update velocity. 
• Update compass heading. 
• Switch to/from “Steer To” screen. 
• Update engine rpm. 
• Change M/OSB conditional states (off/on, low/high, etc.). 
• Fuel Level 
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2.4.2 Autopilot CSC 
(008) The Autopilot shall be capable of transmitting and receiving M1A2 1553 data packets.  
(009) The Autopilot shall be capable of transmitting all M1A2 1553 data packets required to be 
received by the SDIP.  (011) The Autopilot shall be capable of receiving M1A2 1553 data 
packets from the SDIP. 

2.5 Creation of 1553 Data Packets 

2.5.1 Autopilot 1553 Data Packet Creation Methods  
(013) The Autopilot shall create M1A2 1553 data packets through two methods: direct and file.   

2.5.1.1 Autopilot File  
(014) The Autopilot file data creation method shall be started through user interaction with 
menus/widgets of the Autopilot user interface [4.2].  The Autopilot file data creation method 
uses a file that is hereafter referred to as the Mission File.  (015) The Autopilot shall support its 
own proprietary Mission File format.  (016) The Mission File shall contain all data necessary to 
construct valid M1A2 1553 data packets of the types processed by the entire SDIP CSCI [3].  
(017) The Mission File format shall also be used for the data capture capability of the Autopilot 
[4.2]. 

2.5.1.2 Autopilot Direct 1553 Data Packet Creation 
(019) The Autopilot shall allow direct M1A2 1553 data packet creation through manipulation of 
menus/widgets, etc. contained on its user interface [4.2]. 

2.5.2 SDIP Direct 1553 Data Packet Creation 
(047) The SDIP shall allow direct M1A2 1553 data packet creation through manipulation of 
menus/widgets contained on its user interface [4.2]. 
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3 Data Requirements 

3.1 SDIP CSCI M1A2 1553 Data Packet Categories 
(020) The SDIP CSCI shall implement two categories of M1A2 1553 data packets: Project 
Critical and System Status.  The purpose of System Status and Project Critical packets is to 
maintain and augment the complete 1553 data bus schedule, as specified in the document “Data 
Packet Specifications Volume 2 – DID”.  Project Critical packets are intended to be monitored 
for content.  (022) Project Critical packets shall be populated with data that emulates values, as 
would normally be seen in the corresponding data packet as it exists on an operational M1A2 
1553 data bus.  System Status packets are not intended to be monitored for content.  (023) 
System Status packets shall not be required to be populated with data values that emulate data, as 
would normally be seen in the corresponding data packet, as it exists on an operational M1A2 
1553 data bus.   

3.2 Autopilot Transmit / SDIP Receive Functionality 
The Autopilot CSC is the process which transmits M1A2 1553 data packets to the SDIP CSC.  
Both Project Critical and System Status packets are transmitted by the Autopilot CSC  [2.4.1]. 

3.2.1 Project Critical Group A 
This group of packets contains those that are normally transmitted to the M1A2 DID LRU.  In 
the SDIP CSCI the SDIP CSC simulates the DID, the destination of these packets in a M1A2 
system.  In the SDIP CSCI the Autopilot CSC simulates the TEU, the source of these data 
packets in a M1A2 system.  (025) The following group of Project Critical data packets shall be 
implemented: 
 
Data Packet ID 
 

Data Packet 
Description 

Source 
LRU 

Destination 
LRU 

DP0400.2_DEV_PWR_ST Device Power Status TEU DID 
DP0600.2_AUTO_ST Automotive Status TEU DID 
DP0800.1_NAV_HEADING Pos/Nav Heading TEU DID 
DP0900.2_LOW_RATE_NAV_OUTPUT Pos/Nav Low Rate Data TEU DID 
DP1800.2_WAYPT_DATA Waypoint Data TEU DID 

3.2.2 Project Critical Group B 
This group of packets contains those that are not transmitted to the M1A2 DID LRU.  In the 
SDIP CSCI the SDIP CSC simulates the TEU, the destination of these packets in a M1A2 
system.  In the SDIP CSCI the Autopilot CSC simulates the HEU and DECU, the source of these 
data packets in a M1A2 system.  (026) The following group of Project Critical data packets shall 
be implemented: 
 
Data Packet ID 
 

Data Packet 
Description 

Source 
LRU 

Destination 
LRU 

DP2401.DECU_CTL DECU Control HEU TEU 
DP2501.DECU_ST DECU Status DECU TEU 
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3.2.3 System Status  
In the SDIP CSCI the SDIP CSC simulates the DID, the destination of these packets in a M1A2 
system.  In the SDIP CSCI the Autopilot CSC simulates the TEU, the source of these data 
packets in a M1A2 system.  (027) The following group of System Status data packets shall be 
implemented: 
 
Data Packet ID 
 

Data Packet 
Description 

Source 
LRU 

Destination 
LRU 

DP1102_DIAGNOSTIC_ST Diagnostic Status TEU DID 
DP1502_MODE_CTRL Mode Control TEU DID 
DP2601.2_CB_ST Circuit Breaker Status TEU DID 
DP2802_C-W-FLT_SYM C W System Fault Summary TEU DID 
DP2902_BIT_CMD BIT Command TEU DID 

3.3 SDIP Transmit / Autopilot Receive Functionality 
The SDIP CSC is the process which transmits M1A2 1553 data packets to the Autopilot CSC.  
Both Project Critical and System Status packets are transmitted by the SDIP CSC [2.4.2]. 

3.3.1 Project Critical 
In the SDIP CSCI the SDIP CSC simulates the DID, the source of these data packets in a M1A2 
system.  In the SDIP CSCI the Autopilot CSC simulates the TEU, the destination of these 
packets in a M1A2 system.  (029) The following group of Project Critical data packets shall be 
implemented: 
 
Data Packet ID 
 

Data Packet 
Description 

Source 
LRU 

Destination 
LRU 

DP0300.1_DEV_PWR_CTL Device Control DID TEU 
DP1600.1_BK_NAV_UPDATE Pos/Nav Control DID TEU 
DP1900.1_WAYPT_REQ-ST Waypoint Request Status DID TEU 

3.3.2 System Status  
In the SDIP CSCI the SDIP CSC simulates the DID, the source of these data packets in a M1A2 
system.  In the SDIP CSCI the Autopilot CSC simulates the TEU, the destination of these 
packets in a M1A2 system.  (030) The following group of System Status data packets shall be 
implemented: 
 
Data Packet ID 
 

Data Packet 
Description 

Source 
LRU 

Destination 
LRU 

DP1002_DIAGNOSTIC_CTL Diagnostic Control DID TEU 
DP1202.1_NH_TRIM_CAL NH Trim Calibration DID TEU 
DP1702_MODE_REQ-ST Mode Request Status DID TEU 
DP2301.1_CB_CTL Circuit Breaker Control DID TEU 
DP3002_ST_DATA ST Data Element DID TEU 
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4 User Interface Requirements 

4.1 SDIP CSC 
The SDIP CSC user interface models the M1A2 DID display and other user interface 
components of the DID LRU contained in that vehicle.  (031) The SDIP CSC user interface shall 
be based upon the DID user interface as diagrammed in the document “System/Segment Design 
Document, volume 3-1 of 5, Driver’s Station”.  (032) The SDIP CSC user interface shall recreate 
that portion of the DID menu structure that is normally invoked from user interactions with the 
DID display.  (033) The SDIP CSC user interface shall recreate the waypoint “Steer To” display, 
which in the M1A2 system is invoked by actions performed on the CID.  (034) The SDIP CSC 
interface shall invoke its waypoint display based on actions performed on the Autopilot CSC 
user interface [4.2]. 
 
(049)  User selection of an enabled M/OSBs on the SDIP user interface shall cause an icon to be 
displayed on the SDIP user interface, if selecting the corresponding button on an M1A2 DID 
causes an icon to be displayed on its interface.  (035) Only a subset of the M/OSBs available on 
the M1A2 DID shall be enabled on the SDIP user interface.  This subset contains some of those 
M/OSBs whose state is communicated in the Project Critical M1A2 1553 data packets 
transmitted and received by the SDIP CSC.  (036) The SDIP M/OSBs that shall remain enabled 
are listed below and shown in their DID menu positions in the accompanying figure. 
 
v Main Menu (Combat Mode) 
Ø Smoke Gen Off/On 
Ø Lights 
Ø Hi Beam Off/On 
Ø Aux Systems 

 
v Lights (Main Menu M/OSB) 
Ø BO Markers Off/On 
Ø Stop Lights Off/On 
Ø Service Lights Off/On 
Ø Hi Beam Off/On 
Ø DTV Off/On 
Ø Return 

 
v Aux Systems (Main Menu M/OSB) 
Ø Bilge Pump Off/On 
Ø Speed Mph/Kph 
Ø DTV Off/On 
Ø Return 

 
v Heater (Aux Systems Menu M/OSB) 
Ø Heater Off/On 
Ø Heater Temp Low/Hi 
Ø Fan Off/On 
Ø Return 
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4.2 Autopilot CSC 
The Autopilot is the user interface which acts as the system control interface of the SDIP CSCI.  
(037) The Autopilot shall be implemented in a window separate from the SDIP window.  (038) 
The Autopilot shall have two modes of operation; Direct and Mission.  Direct Mode allows real-
time adjustment of velocity and course related data, which in turn is transmitted to the SDIP 
[3.2].  Mission Mode allows the use of a Mission file [2.5.1.1] for data transmission to the SDIP 
[3.2].  (039) Mission Mode functions shall not be available while the Autopilot is in Direct 
mode.  (040) Direct Mode functions shall not be available while the Autopilot is in Mission 
Mode.  (041) The Autopilot UI shall include controls which allow users to perform the following 
functions: 
 
Mode: Function: Description: 
Direct Set Waypoint Perform steps to set a waypoint for use by the SDIP. 
Direct Steer To Waypoint Communicate to SDIP to ‘steer to’ a specific waypoint. 
Direct Adjust Velocity Increase/Decrease the velocity displayed on the SDIP. 
Direct Adjust Heading Allow 0° to 360° adjustment displayed on the SDIP. 
Direct Record Mission Record all Direct Mode adjustments to a Mission file. 
Direct Clear Waypoint Remove a previously set waypoint. 
Mission Load Mission Open an existing Mission file. 
Mission Run Mission Process an open Mission file. 
Mission Pause Mission Suspend processing of an open Mission file. 
Mission Resume Mission Continue processing an open Mission file. 
Mission Stop Mission Stop processing of an open Mission file. 
Any Exit SDIP CSCI Terminate the processes of the SDIP CSCI. 
 

BO
MARKERS
OFF     ON

STOP
LIGHTS

OFF     ON

SERVICE
LIGHTS

OFF     ON

HI BEAM

OFF     ON

DTV

OFF     ON
RETURN

NAV
SMOKE

GEN
OFF  ON

LIGHTS
HI BEAM

OFF   ON

AUX
SYSTEMS

MAINT/
BACKUP

BILGE
PUMP

OFF     ON

FUEL
XFR HEATER

SPEED

MPH  KPH

DTV

OFF     ON
RETURN

HEATER

OFF     ON

HEATER
TEMP

LOW      HI

FAN

OFF     ON
RETURN

(Disabled)

(Disabled)

(Disabled)
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5 Security Requirements 
The SDIP CSCI, as released to principal investigators, includes partial specifications of the 
M1A2 interprocess communication protocol.  That is, a subset of the 1553 data bus, data packet 
format is included as part of the SDIP CSCI.  (042) The SDIP CSCI shall therefore operate under 
the same secur ity requirements as imposed by the M1A2 software system.   (043) All of the 
SDIP CSCI’s documentation, code, and technical specifications are considered ‘Limited 
Dissemination’ material and shall not be released unless directed by the Associate Director of 
NEXTGEN Software, AMSTA-TR-R, Warren MI 48379-5000 or a higher authority.  The 1553 
data bus, data packet specification content of the SDIP CSCI is further covered by the Arms 
Export Control Act (22 USC 2761 et seq) or executive order 12470.  Export is therefore 
restricted. 
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6 Qualification Provisions 

6.1 General 
This section specifies the method(s) to be used to ensure each requirement of Section 3 has been 
satisfied.  Qualification methods include: 
 
a) Demonstration:  The operation of the system, or a part of the system, that relies on 

observable functional operation not requiring the use of instrumentation, special test 
equipment, or subsequent analysis. 

 
b) Test:  The operation of the system, or part of the system, using instrumentation or special test 

equipment to collect data for later analysis. 
 
c) Analysis:  The processing of accumulated data obtained from other qualification methods.  

Examples are reduction, interpolation, or extrapolation of test results. 
 
d) Inspection:  The visual examination of system components, documentation, etc. 
 
A Verification Matrix, which relates software requirements to the specific qualification 
method(s) to be used, is shown in the following section.  Shaded boxes in the matrix indicate 
which test method will be used to verify the software requirement. 

6.2 SDIP Software Requirements Verification Matrix 
Qualification Method Sec 

# 
Req 
ID Demonstration Test Analysis Inspection 

2.1 (001)     
2.3 (002)     

 (003) <Requirement Deleted> 
2.4 (004)     

2.4.1 (005)     
2.4.1 (006)     

 (007) <Requirement Deleted> 
2.4.2 (008)     
2.4.2 (009)     

 (010) <Requirement Deleted> 
2.4.2 (011)     

 (012) <Requirement Deleted> 
2.5.1 (013)     

2.5.1.1 (014)     
2.5.1.1 (015)     
2.5.1.1 (016)     
2.5.1.1 (017)     

 (018) <Requirement Deleted> 
2.5.1.2 (019)     



Skinny Driver’s Instrument Panel 
Software Requirements Specification 

SDIP-21-4-1  Version 2.00 105 

 
Qualification Method Sec 

# 
Req 
ID Demonstration Test Analysis Inspection 

3.1 (020)     
 (021) <Requirement Deleted> 

3.1 (022)     
3.1 (023)     
3.2 (024) <Requirement Deleted> 

3.2.1 (025)     
3.2.2 (026)     
3.2.3 (027)     

 (028) <Requirement Deleted> 
3.3.1 (029)     
3.3.2 (030)     
4.1 (031)     
4.1 (032)     
4.1 (033)     
4.1 (034)     
4.1 (035)     
4.1 (036)     
4.2 (037)     
4.2 (038)     
4.2 (039)     
4.2 (040)     
4.2 (041)     
5 (042)     
5 (043)     

2.4.1 (044)     
2.2 (045)     
2.1 (046)     

2.5.2 (047)     
2.2 (048)     
4.1 (049)     
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Appendix A  Software Requirements / Document Section Mapping 
 
Software 
Requirement 

Document 
Section# / Requirement Description 

(001) 2.1 SDIP System developed to run under Linux OS. 
 

(002) 2.3 CDI & GCDP displays are not part of SDIP CSCI. 
 

(003)  <Requirement Deleted> 
 

(004) 2.4 Process 1553 data bus packets consistent with actual method used in 
M1A2 system. 

(005) 2.4.1 SDIP transmits & receives all 1553 data packets received by M1A2 
DID. 

(006) 2.4.1 SDIP emulates a subset of M1A2 DID updates/reactions to 1553 data 
packets. 

(007)  <Requirement Deleted> 
 

(008) 2.4.2 Autopilot transmits & receives 1553 data packets. 
   

(009) 2.4.2 Autopilot transmits all 1553 data packets required by SDIP. 
 

(010)  <Requirement Deleted> 
 

(011) 2.4.2 Autopilot receives 1553 data packets from SDIP. 
 

(012)  <Requirement Deleted> 
 

(013) 2.5.1 Autopilot creates M1A2 1553 data packets through two methods: 
direct and file. 

(014) 2.5.1.1 Data 1553 data packets created through interaction with Autopilot UI. 
 

(015) 2.5.1.1 Autopilot supports its own proprietary Mission File format. 
 

(016) 2.5.1.1 Mission file contains all data necessary to construct 1553 data packet. 
 

(017) 2.5.1.1 The mission file used for the data capture function of the  Autopilot. 
 

(018)  <Requirement Deleted> 
 

(019) 2.5.1.2 Autopilot allows direct M1A2 1553 data packet creation through 
manipulation of menus/widgets contained on its user interface 

(020) 3.1 Project Critical & System Status packet types. 
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Software 
Requirement 

Document 
Section# / Requirement Description 

(021)  <Requirement Deleted> 
 

(022) 3.1 Project Critical packets are populated with valid simulated data. 
 

(023) 3.1 System Status packets are not required to be populated with valid 
simulated data. 

(024)  <Requirement Deleted> 
 

(025) 3.2.1 Project Critical packets transmitted by Autopilot – DID. 
 

(026) 3.2.2 Project Critical packets transmitted by Autopilot – TEU. 
 

(027) 3.2.3 System Status packets transmitted by Autopilot – DID. 
 

(028)  <Requirement Deleted> 
 

(029) 3.3.1 Project Critical packets transmitted by SDIP – TEU. 
 

(030) 3.3.2 System Status packets transmitted by SDIP – TEU. 
 

(031) 4.1 SDIP UI based on DID UI as specified in DID S/SDD. 
 

(032) 4.1 SDIP recreates a portion of DID menu structure triggered from user 
interactions with DID. 

(033) 4.1 SDIP user interface recreates waypoint “Steer To” display. 
 

(034) 4.1 SDIP waypoint functionality triggered by interaction with Autopilot. 
 

(035) 4.1 Subset of the M/OSBs available on the DID shall be enabled on 
SDIP. 

(036) 4.1 Enabled SDIP M/OSB list. 
 

(037) 
 

4.2 Autopilot implemented in separate window. 

(038) 
 

4.2 Autopilot implements two modes of operation. 

(039) 
 

4.2 Autopilot Mission mode functions not available in Direct mode. 

(040) 
 

4.2 Autopilot Direct mode functions not available in Mission mode. 

(041) 
 

4.2 Controls contained on Autopilot UI. 
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Software 
Requirement 

Document 
Section# / Requirement Description 

(042) 
 

5 SDIP inherits M1A2 system security requirements. 

(043) 
 

5 SDIP System’s documentation, code, and technical specifications 
considered ‘Limited Dissemination’ material. 

(044) 2.4.1 SDIP CSC can receive M1A2 1553 Data Packets not normally 
received by the M1A2 DID.   

(045) 2.2 SDIP CSCI capable of using either TCP/IP or the 1553 Data Bus 
communication protocol for interprocess communication.   

(046) 2.1 SDIP CSCI developed using the Ada programming language.   
 

(047) 2.5.2 SDIP allows direct M1A2 1553 data packet creation through 
manipulation of menus/widgets contained on its user interface 

(048) 2.2 SDIP CSCI development will include the use if the 1553 API and 
Emulation CSC, an NDI.   

(049) 4.1 Selection of enabled M/OSBs on the SDIP user interface will display 
an icon on the SDIP user interface, if selecting the corresponding 
button on an M1A2 DID displays an icon on its interface. 
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1. Introduction 

The purpose of this Software Configuration Management (SCM) Plan (SCMP) is to describe the 
configuration management procedures followed for the Skinny Driver’s Instrument Panel 
(SDIP). 

2. Scope 

This plan applies to all software and Next Generation Software Engineering Technology Area 
(NextGen) developed or modified work products (e.g. software documentation, code, plans, test 
artifacts, processes) within the NextGen organization, as related to the SDIP program.  It shall 
comply with standard NextGen SCM processes and procedures, and shall be in force unless the 
Associate Director of the Next Generation Software Technology Area approves a written 
Request for Deviation (RFD).  It shall also apply to software received from external sources, for 
configuration control purposes. 

3. References 

Document Number Version Date 
Skinny Driver’s Instrument Panel Software Development 
Plan 

SDIP-22-4-1 2.0 June 27, 
2002 

Skinny Driver’s Instrument Panel Software Quality 
Assurance Plan 

SDIP-25-4-1 1.0 June 4, 
2002 

4. Acronyms and Definitions  

Acronyms Definitions  
ClearCase Configuration Control software, from Rational Software Corporation 
Deliverable 
Software 

Software delivered to the customer as called for by the SDP 

NextGen Next Generation Software Engineering Technology Area 
NGSEL Next Generation Software Engineering Laboratory 
RFD  Request For Deviation 
SCCB Software Configuration Control Board 
SCM Software Configuration Management 
SCMDB  SCM Data Base 
SCMP SCM Plan 
SCR Software Change Request 
SDF Software Development Folder 
SDIP Skinny Driver’s Instrument Panel 
SEPG  Software Engineering Process Group 
SQA Software Quality Assurance 
STR System Trouble Report 
Support Software  Non-deliverable software required for building or testing the application 

5. Roles and Responsibilities 

The following table identifies the roles and responsibilities of Project Staff with respect to SCM: 
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Role Responsibilities 
Project Lead • Assign work as appropriate  

• Review all System Trouble Reports (STRs) 
• Provide STR initial/change information to SCM, as changes occur.  
• Chair the Software Configuration Control Board (SCCB). 

Software Developers • Submit source code and related documentation to SCM control, as 
applicable 

• Create and maintain SCM build scripts 
Systems Engineer • Provide input during SCCB Meetings 

• Review and approve SCMP 
Software Test 
Manager 

• Participate in the SCCB  
• Submit all test documentation, including Plan, Procedures, and 

Results, to SCM for placing under configuration control  
Software Test 
Engineer 

• Participate in the SCCB  
• Record all testing results, for placing under configuration control 

SCM Manager • Develop SCM Plan 
• Participate in project reviews 
• Ensure the SCM plan, processes, and standards are followed 
• Participate in SQA audits of SCM activities 

SCM Engineer • Assist the Chair of the SCCB as required 
• Place all submitted items under configuration control 
• Perform all SCM builds in compliance with the schedule posted in 

the SDP 
Software Quality 
Assurance (SQA) 
Manager 

• Participate in the SCCB 
• Perform audits and reviews of SCM-related activities and material 

SQA Engineer • Perform audits and reviews of SCM-related activities and material 

6. Configuration Control 

All deliverable and support software and related documentation used for the SDIP will be placed 
under configuration control.  This includes peer review documentation, test documentation and 
scripts, and meeting minutes and related documents. 
 
SDIP items will be placed under initial configuration control following successful completion of 
a peer review and, for documentation, following completion of the signature cycle.  Third party 
software will be placed under configuration control upon receipt.   

7. Naming Conventions  

Standard NextGen Ada naming conventions shall be followed.  Executables shall be named as 
generated during the build process as defined in scripts provided to SCM by Software 
Development personnel. 
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System releases shall be named using the prefix “SD” to indicate the Skinny DIP program. E.g. 
the first release will be called SD1.0. 

8. Repositories 

SCM shall store all source code and related documentation in Rational ClearCase repositories, 
residing on the artemis2 Sun server, located in the NextGen engineering lab. 

9. Access Control 

Only SCM personnel shall access files within the SCM ClearCase repository.  Source code files 
shall be checked in or out by direction of the SCCB.  All other files, such as test procedures and 
peer reviews, shall be checked in/out by SCM at the request of the User. 

10. Build Management 

SCM shall perform builds per direction of the SCCB.  These builds shall be performed using 
build scripts provided and maintained by Development personnel and shall be built on the Linux 
platform defined in the SDIP Software Development Plan.  Upon completion of a build, the 
executable code shall be delivered to the Project Lead on electronic media and also placed in the 
SCM ClearCase repository. 

11. Change Control 

Change control is performed as follows:   

11.1. Software modifications. 

Problems shall be documented on an STR and brought before the SCCB for direction.  If the 
SCCB decides the STR shall be resolved, the board chair shall direct SCM to open a Software 
Change Request (SCR) in the SCM Data Base (SCMDB).  The SCR is assigned to a designated 
Developer who will examine the software for a probable correction set.  After examination, the 
Developer will bring this recommendation before a subsequent SCCB.  If approved, and if a 
change is required, the SCCB will direct SCM to check out designated files.  These files will be 
placed in a subdirectory under the Developer’s directory, and the SCMDB appropriately updated.  
Once the files have been updated, verified as part of an engineering build, and gone through the 
Peer Review process, the Developer shall return to the SCCB, who will direct SCM to include 
the files in the next SCM build. 
 
SCM will check the files back in to ClearCase, update the SCMDB, and perform an SCM build.  
Following verification by the Test group, and by direction of the SCCB, the files will be “frozen” 
as a baseline within ClearCase; the executables will be delivered to the Project Lead; and the 
SCR and related STR will be closed within the SCMDB. 

11.2. Documentation modifications. 

Problems shall be documented on an STR and brought before the SCCB for direction.  If the 
SCCB decides the STR shall be resolved, the board chair shall direct SCM to open a Software 
Change Request (SCR) in the SCM Data Base (SCMDB).  The SCR is assigned to a designated 
Developer who will examine the documentation for a probable correction set.  After 
examination, the Developer will bring this recommendation before a subsequent SCCB; if 
approved, and if a change is required, the SCCB will direct SCM to check out designated 
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documents.  These will be placed in a subdirectory under the Developer’s directory, and the 
SCMDB appropriately updated. Once the files have been updated and completed the Peer 
Review process, the Developer shall return to the SCCB, who will direct SCM to baseline the 
documents and release copies to all applicable members of the SDIP team. 

12. Metrics 

Metrics for SCM shall be collected according to the guidelines identified within the SDIP SDP. 

13. Tools 

SCM shall use the following tools. 
• Rational ClearCase to control items.   
• The (Microsoft Access) SCMDB to track SCRs/STRs through their life cycle. 
• Build scripts, provided by Software Development personnel. 
• Compilers/linkers, as specified in the SDIP SDP. 

14. Schedule 

SCM schedules shall be in compliance with schedules identified in the SDIP SDP. 
 

15 Resources 

Activity Estimated Hours  
Develop SCM Plan 40 
Support Team Meetings 5 hours 
Support SCCB meetings 1 hour 
Baseline software and documentation 4 hours 
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1 TEST PLAN IDENTIFIER 

SDIP-35-4-1 

2 INTRODUCTION 

2.1 Purpose 
The purpose of this document is to describe the approach of the testing activities for the Skinny Driver’s 
Instrument Panel (SDIP) project in the Next Generation Software Engineering Technology Area 
(NextGen). These complement and support the overall SDIP software development effort. This Test 
Plan shall be used in conjunction with the SDIP Test Coverage and Test Cases. 
The Test Cases shall be used to perform regression testing as applicable. The objective is to create 
repeatable tests for use in proving out and demonstrating a system or group of systems. 

2.2 Background 
The SDIP Project’s goal is to produce M1A2 simulation software, implementing a functionally reduced 
version of the Driver’s Integrated Display (DID) from that vehicle. This modified DID is referred to as 
the Skinny Driver’s Instrument Panel (SDIP). The software resulting from the SDIP Project is 
collectively known as the SDIP CSCI. The SDIP CSCI is intended to be made available to non-
government entities for research purposes. The focus of this research will be the development and 
addition of software monitoring probes to U.S. Army weapons systems. 

2.3 Scope 
This plan is applicable to the SDIP project managed by the Next Generation Software Engineering 
Technology Area. 

2.4 Referenced Documents 
Title Document Reference Number 

Independent Software Test Procedure NGSEL-35-3-5 1.0 7/19/01 
Next Generation Software Engineering Technology 
Area, TARDEC 

M1A2 PDSS Process and Procedures  Pdss_part3.doc 12/16/1998 
NT-Share on ‘ice’:/szfranJ/PDSS Training 

SDIP Software Development Plan SDIP-22-4-1 2.0 TBA 
Next Generation Software Engineering Technology 
Area, TARDEC 

SDIP Software Requirements Specification SDIP-21-4-1 2.0  
Next Generation Software Engineering Technology 
Area, TARDEC 

Software Product Engineering Procedure NGSEL-35-3-1 1.0 7/19/01 
Next Generation Software Engineering Technology 
Area, TARDEC 

Test Case Template NGSEL-35-4-3 1.0 6/05/02 
Next Generation Software Engineering Technology 
Area, TARDEC 

Test Coverage Template NGSEL-35-4-2 1.0 6/05/02 
Next Generation Software Engineering Technology 
Area, TARDEC 

Test Plan Template NGSEL-35-4-1 1.0 6/05/02 
Next Generation Software Engineering Technology 
Area, TARDEC 

Verify Tests Procedure NGSEL-25-3-3 1.0 4/27/99 
Next Generation Software Engineering Technology 
Area, TARDEC 
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3 ROLES AND RESPONSIBILITIES 
Roles Responsibilities 

Associate Director • Approve the project Test Plan, Test Coverage, and Test Cases 
Project Leader • Approve the project Test Plan, Test Coverage, and Test Cases 

• Certify / signal product is ready for test 
• Review test results  

SCM Manager • Place the project Test Plan, Test Coverage, and Test Cases 
materials under CM 

• Provide CM-built software version for testing 
SEPG Lead • Approve any identified tailoring of the organization standard 

software process 
SQA Engineer • Witness software testing 
SQA Manager • Approve the project Test Plan, Test Coverage, and Test Cases 

• Review test results  
Systems Engineer • Approve the project Test Plan, Test Coverage, and Test Cases 

• Review test results  
Test Manager • Coordinate the preparation of the project Test Plan and Test 

Coverage 
• Approve the project Test Plan, Test Coverage, and Test Cases 
• Review test results  

Test Staff • Prepare the Test Cases and update the project Test Coverage 
• Perform the tests per the SDIP Test Cases and record the 

results 
 

4 ACRONYMS AND DEFINITIONS 
Acronym Definition 

API Application Program Interface 
CM Configuration Management 
CSC Computer Software Component 
CSCI Computer Software Configuration Item.  A logical 

collection of CSCs  
DID Drivers Integrated Display 
Next Gen Next Generation Software Engineering Technology 

Area 
NGSEL  
SCM Software Configuration Management 
SCR Software Change Request 
SDIP Skinny Driver’s Instrument Panel 
SDP Software Development Plan 
SEPG Software Engineering Process Group 
SQA Software Quality Assurance 
SRS Software Requirement Specification 
STR System Trouble Report 
TACOM Tank Automotive and Armaments Command 
TARDEC Tank Automotive Research, Development, and 

Engineering Center 
Test Case One test procedure. Results are summarized in the 

SDIP Test Coverage 
Test Coverage  SDIP summary information on product testing 
Test Plan Defines the SDIP test approach 
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5 TEST ITEMS 
The test items are 3 components of the SDIP CSCI.  The following components shall be tested: 

•  SDIP CSC 
• 1553 API and emulation CSC 
• Autopilot CSC 

6 FEATURES TO BE TESTED 
The following features will be tested: 

• SDIP CSC 
o Simulates DID menu structure 
o Reacts as a DID to emulated 1553 packets 

• 1553 API and emulation CSC 
o ‘Project Critical’ packets are maintained 
o ‘System Status’ packets 

• Autopilot CSC 
o Collect and maintain waypoint list 
o Send emulated 1553 packets 
o Reacts to change of status packets 

7 FEATURES NOT TO BE TESTED 
Functions not in the scope of SDIP SRS will not be tested. 

8 TEST PLAN ENTRY CRITERION 
The basic entry criterion for the Test Plan is that the SDIP SRS has been approved. 

9 TESTING INPUTS 
The inputs to testing are: 

• The SDIP schedule 
• The SDIP SRS 
• The SDIP Test Plan 
• The SDIP Test Cases 
• CM Build of SDIP Code 

9.1 Environmental Needs  
The minimum equipment, operating systems, communications software, hardware and firmware needed 
to perform the testing are specified in the SDIP SDP. 

9.2 Schedule 
The SDIP Schedule is an input to this Test Plan.  The Testing Schedule is reflected in the overall 
Project schedule. 

10 TESTING OUTPUTS / DELIVERABLES 
The outputs from the SDIP testing activities are: 

10.1  Outputs from Test Planning 
• Test Plan 
• Test Coverage / Report 
• Test Cases  

10.2 Outputs from Testing 
• Updated Test Plan 
• Updated project schedule 
• As encountered, STR(s) per the SDIP SDP 
• Updated Test Coverage / Report 
• Updated Test Cases with test results  
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11 EXIT CRITERIA 
11.1 Planning Phase 
The exit criteria for the planning phase is that: 
• SDIP Test Plan is reviewed and signed off 
• The Test Coverage fields listed below have been completed for project, the Test Coverage is 

reviewed and signed off 
o The header rows 
o “Requirements” column  
o “Test Cases” column  

• The Test Cases fields listed below have been completed for the project, the Test Cases reviewed 
and signed off 
o “Objective” 
o “Pass/Fail” 
o “Equipment Needed to Perform Test” 
o “Pre-Test Procedures” 
o “Test Procedure” 
o “Test Case Version” 
o “Test Case Revised By” 
o Test Case Revised by “Date” 
o “Test Case Approved By 
o Test Case Approved by “Date” 

11.2 Testing Execution 
The exit criteria for the test executing phase is that: 
• All of the fields in the project's Test Coverage have been completed, including the "Results" 

columns, the document reviewed, and signed off 
• All of the fields in the project's Test Cases have been completed, the document reviewed, and 

signed off 
• If required, this Test Plan is updated, reviewed, and signed off 

 

12 PROCEDURE 
Developed prior to the start of testing, the SDIP Test Coverage shall document the summary information 
for the SDIP Test Cases.  It will  contain the traceability between the SDIP requirements and the individual 
Test Cases.  When testing has been completed, the Test Coverage shall be completed with the summary 
information on the time it took to perform the testing, whether or not rework was involved (by the number 
of iterations before a given Test Case passed), and when the test results were reviewed.  Should regression 
testing be required, the SDIP prior completed Test Coverage shall be used to identify which Test Cases to 
include in the regression testing sequence and to project the estimated time to complete the regression 
testing. 

12.1 Define the Test Methodology/ Approach 
The levels and types of testing which shall be performed for this project are as follows: 
• SDIP CSCI 

Using the SCM controlled Test Coverage template, the Test Manager shall complete an initial draft 
of the Test Coverage. The test location shall be Next Gen Lab.  The SDIP test schedule shall be 
included as part of the SDIP master schedule.  
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• Independent testing (refer to NGSEL-35-3-5 Independent Software Test Procedure) 

Independent testing shall use the formats defined by the Test Coverage  (NGSEL-35-4-2) and Test 
Case (NGSEL-35-4-3).  Independent testing includes, but is not limited to, the following: 
o Black box functional testing, which includes: 

§ Boundary value testing 
§ Robustness testing 
§ Worst case analysis testing 
§ Special value testing 
§ Multiple features testing 

o The types of testing include the following:  
§ Set-up / initialization testing 
§ Communications protocol testing 
§ Feature testing 

12.2 Develop Test Cases 
Once the types of testing have been identified in the SDIP Test Coverage, the Test Staff shall perform 
analysis on the requirement to determine the test cases. Using the SCM controlled Test Case template, 
the Test Staff shall document each test case. This shall include identifying:  
• The test hardware and software configurations 
• The initialization and set up procedure and data  
• The global test environment for each test 
• The test suspension criteria 
• The test results recording methods and applicable storage 
• The expected test results  
• If applicable, the build cycle verification checklist 
The Test Staff may create more than one Test Case to meet the SDIP project requirements. For 
example, all of the tests may have the same shared test set up procedure, with individual tests covering 
communication protocols, specific features, etc. The Test Staff shall update the SDIP Test Coverage as 
needed. 

12.3 Conduct Peer Review   
The SDIP Test Plan, Test Coverage, and Test Cases shall be formally reviewed and signed off per the 
Next Gen NGSEL-37-3-1 Peer Review Procedure prior to the start of the testing using the SDIP Test 
Cases. Any action items arising from the review shall be addressed. Please refer to the SDIP master 
schedule for the planned peer review scheduling. 

12.4 Conduct Testing  
The Test Staff shall perform the testing per the documented Test Cases and shall record the results in 
the appropriate positions on the documents. The Test Staff shall record the Test Plan summary 
information on the SDIP Test Coverage. Should there be any errors encountered during the testing, the 
Test Staff shall write STRs; as per M1A2 PDSS part 3, to document the conditions under which the 
errors were encountered. 

12.5 Post-Verification Activities 
The Test Staff shall review the test results and metrics with the Test Manager, Systems Engineer, 
Project Leader, and the SQA Manager. The materials shall be put under SCM control. Any STRs 
created during the testing shall be tracked to closure. 

12.6 Regression Testing 
Regression testing will be conducted if applicable for this project. 

13 STAFFING AND TRAINING NEEDS 
13.1 Staffing 
The following staff is needed to carry out this SDIP testing activities: 
Role Quantity 
Test Manager 1 
Test Staff 1 
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13.2 Training 
The Test staff shall be trained by a member of the SDIP project team to operate the SDIP CSCI. 

14  RISKS AND CONTINGENCIES 
Refer to the SDIP SDP. 
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