
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2003-06

Next generation software process improvement

Turnas, Daniel

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/895

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36694633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

NEXT GENERATION SOFTWARE PROCESS
IMPROVEMENT

by

Daniel Turnas

June 2003

 Thesis Advisor: Mikhail Auguston
 Second Reader: Christopher D. Miles

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Next Generation Software Process Improvement

6. AUTHOR(S): Daniel Turnas

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Software is often developed under a process that can at best be described as ad hoc. While it is possible to develop
quality software under an ad hoc process, formal processes can be developed to help increase the overall quality of the software
under development. The application of these processes allows for an organization to mature. The software maturity level, and
process improvement, of an organization can be measured with the Capability Maturity Model. The scope of this work is to
use organizationally improved software processes on a small scale software product developed by the U.S. Army . The goal is
to establish process improvement based on the Capability Maturity Model.

15. NUMBER OF
PAGES

143

14. SUBJECT TERMS
CMM, process improvement, software engineering, requirements management, risk management,
software design.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

NEXT GENERATION SOFTWARE PROCESS IMPROVEMENT

Daniel Turnas
Civilian, United States Army TACOM

B.S., University of Michigan, 1999

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2003

Author: Daniel Turnas

Approved by: Mikhail Auguston

Thesis Advisor

Christopher D. Miles
Second Reader

Peter Denning
Chairman, Computer Science Department

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Software is often developed under a process that can at best be described as ad

hoc. While it is possible to develop quality software under an ad hoc process, formal

processes can be developed to help increase the overall quality of the software under

development. The application of these processes allows for an organization to mature.

The software maturity level, and process improvement, of an organization can be

measured with the Capability Maturity Model. The scope of this work is to use

organizationally improved software processes on a small scale software product

developed by the U.S. Army. The goal is to establish process improvement based on the

Capability Maturity Model.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. NEXT GENERATION SOFTWARE ENGINEERING

TECHNOLOGY AREA ..1
B. PROCESS IMPROVEMENT THROUGH CMM2

II. BACKGROUND INFORMATION ...3
A. NEXT GEN BACKGROUND ..3
B. CAPABILITY MATURITY MODEL ...5

1. CMM Structure ..5
a. Key Process Areas ...6
b. Key Practices ...7

2. SW-CMM Level 3 ..8
a. Integrated Software Management KPA8
b. Software Product Engineering KPA10
c. Peer Reviews KPA...14
d. Metrics ...15

3. SW-CMM Level 4 ..16
a. Quantitative Process Management...16
b. Software Quality Management...17

4. Summary...17

III. PROPOSED SOLUTION..19
A. SKINNY DRIVER’S INSTRUMENT PANEL ...19
B. IMPLEMENTATION EFFORT ..21

IV. FINDINGS ..23
A. PERFORMANCE TOWARDS SW-CMM LEVEL 323

1. Integrated Software Management ..23
a. Estimating..23
b. Planning ..25
c. Risk Management ...28

2. Software Product Engineering ..30
a. Requirements Management ..30
b. Software Design ..32
c. Testing ...41

3. Peer Reviews ...43
4. Metrics...43

a. Delivery of Project on Schedule...45
b. Estimation of Resource Requirements...................................46
c. Management of Project Within Budgeted Costs....................47
d. Product Quality...47
e. Project Communication and Collaboration...........................48
f. Estimation of Project Work Product Deliverables.................48

5. SW-CMM Level 3 Summary ..49
B. PERFORMANCE TOWARDS SW-CMM LEVEL 451

 viii

IV. CONCLUSIONS ..53
A. PERFORMANCE OF SW-CMM LEVEL 3 ACTIVITIES53

1. Integrated Software Management ..53
2. Software Product Engineering ..55
3. Peer Reviews ...55
4. Metrics...56

B. PERFORMANCE OF SW-CMM LEVEL 4 ACTIVITIES56
C. SUMMARY..56

IV. BIBLIOGRAPHY..59

APPENDIX A – INITIAL USER REQUIRMENTS ..63

APPENDIX B – SOFTWARE DEVELOPMENT PLAN ..65

APPENDIX C – SOFTWARE REQUIREMENTS SPECIFICATION91

APPENDIX D – SOFTWARE CONFIGURATION MANAGEMENT PLAN109

APPENDIX E – SOFTWARE TEST PLAN ...117

INITIAL DISTRIBUTION LIST...127

 ix

LIST OF FIGURES

Figure 1. CMM levels (From: [1]) ..6
Figure 2. Real world requirements management ...11
Figure 3. SDIP system diagram...20
Figure 4. Estimated schedule with actual completion dates..27
Figure 5. Risk status as seen on a monthly briefing chart. ..29
Figure 6. Control flow for the AutoPilot component ..33
Figure 7. Normal sequence of events ..37
Figure 8. Pause, Resume, and Stop Mission functions ...38
Figure 9. State diagram for the AutoPilot CSC...39
Figure 10. State diagram of the Load Mission function..40
Figure 11. State diagram of the Run Mission function. ..40
Figure 12. State diagram of the Pause Mission function. ..41

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. SDIP code size estimates ...24
Table 2. Man-hour estimates for major activities ..24
Table 3. Partial risk assessment matrix ..28
Table 4. Items placed under configuration management ...30
Table 5. Requirement (025) breakdown. ..31
Table 6. Detailed Load Mission use case...34
Table 7. Detailed Run Mission use case ..34
Table 8. Detailed Send Data Packet use case...35
Table 9. Detailed Stop Mission use case..35
Table 10. Detailed Pause Mission use case..36
Table 11. Detailed Resume Mission use case ..36
Table 12. Partial table of verification methods to be used in testing each requirement ..42
Table 13. Fault metrics collected at June 12th peer review of SRS document43
Table 14. Final metrics of schedule events ..45
Table 15. Final metrics of resources, taken in man hours..46
Table 16. Final metrics for produc t quality..47
Table 17. Final metrics of work product deliverables ...49
Table 18. SW-CMM Level 3 SDIP Activities ...50

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

Appreciation to United Media for reprint approval for the appearance of Dilbert in

this thesis.

Special thanks to Joseph P. Szafranski. His knowledge on CMM and process

improvement provided invaluable reference to this thesis.

Thanks to the SDIP development team, and all those who helped in the

development process:
Christopher Ostrowski
John Bohn
Douglas Gersky
Russell Menko
Karen Lafond
Joseph P. Szafranski

Appreciation to all those who contributed their views and comments on the

content of this thesis.

Special personal thanks to the late Michael S. Saboe, Ph. D. Without his guidance

and foresight, this thesis would not have been possible.

Naval Postgraduate School Advisors
Mikhail Auguston

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. NEXT GENERATION SOFTWARE ENGINEERING TECHNOLOGY
AREA

The Next Generation Software Engineering Technology Area (Next Gen) is part

of the U.S. Army Tank-automotive Armaments Command (TACOM). The primary

mission of Next Gen is to provide software support for the U.S. Army. The software that

is developed and managed at Next Gen is used in many of the current fighting vehicles,

including the Abrams Main Battle Tank, the Bradley Armored Personnel Carrier, the

Wolverine, and the Future Combat Systems. Next Gen is a key player in delivering large

scale software solutions for Army systems.

Dedicated to process improvement, Next Gen is constantly looking to improve the

organization. One of the key tools in the dedication towards process improvement is the

use of the Software Engineering Institute’s Capability Maturity Model (CMM) [1]. The

CMM is a tool to rate the process maturity level of an organization. In August 2001,

Next Gen was certified at CMM for Software Level 3. The certification demonstrates the

organization’s ability to define and follow organizational policies, procedures, and

practices. Though Next Gen was certified at Level 3, there were still some opportunities

for improvement within Level 3. The main area involved improving metrics collection

processes.

In an effort to improve Level 3 processes and progress towards Level 4, Next Gen

began a small scale software project. The Skinny Driver’s Instrument Panel was

proposed as a means to improve Level 3 processes and begin implementing CMM Level

4 processes. The scope of this thesis is developing a software product based on CMM

Level 3 and 4 processes.

 2

B. PROCESS IMPROVEMENT THROUGH CMM

Software development companies are constantly looking to improve the quality of

their products. This is often done by defining company processes such as thorough

software testing and risk management. The more mature an organization is, the more

defined - and ultimately refined - a collection of software development processes is. In

order to have a benchmark against which to measure the level of software development

maturity, the Software Engineering Institute established the Capability Maturity Model

(CMM) [1]. The CMM framework has been applied to focus on different organizational

practices. The Capability Maturity Model for Software (SW-CMM) is used to measure

the software development maturity level of an organization. The SW-CMM is divided

into five maturity levels, ranging from Level 1 – Ad hoc to Level 5 – Optimizing. Each

maturity level consists of different Key Practice Areas (KPAs). The different KPAs

describe different activities defined and established within each maturity level. As an

organization advances in maturity new processes are adopted, as well as the continuation

of performing processes defined from lower maturity levels.

The current effort is to integrate the different CMM concepts into the Capability

Maturity Model Integration (CMMI). At the time of this thesis, however, Next Gen was

still basing process improvement on the SW-CMM Version 1.1.

 3

II. BACKGROUND INFORMATION

A. NEXT GEN BACKGROUND

The Next Generation Software Engineering Technology Area (Next Gen) is part

of the U.S. Army Tank-automotive Armaments Command (TACOM). The primary

mission of Next Gen is to provide software support for the U.S. Army. The software that

is developed at Next Gen is used in many of the current fighting vehicles, including the

Abrams Main Battle Tank and the Bradley Armored Personnel Carrier. Established in

1994, Next Gen quickly became a key player in the development of army critical

software. While the associates were skilled developers, it was determined that the

processes Next Gen followed needed to be improved upon.

While supporting the current fighting forces of the U.S. Army, Next Gen is

dedicated to adopting cutting edge processes to enhance the software that drives the

United States Army. By adapting software engineering methodologies, Next Gen was

able to improve upon its software development processes. This can be seen through the

use of the Software Engineering Institute’s Capability Maturity Model for Software (SW-

CMM).

Discussed in detail below, the SW-CMM is a measurement of an organization’s

maturity level in developing software products. In August 2001, Next Gen was certified

at SW-CMM Level 3. The certification demonstrates the organization’s ability to

perform software engineering processes. Obtaining SW-CMM Level 3 was not the

ultimate goal of process improvement at Next Gen. As seen in [2], the return on

investment of transitioning from Level 3 to Level 4 was seen to be 109%. While this

may be just one example, it indicates the benefits of continuous process improvement.

Currently certified under SW-CMM Level 3, Next Gen adheres to

organizationa lly established processes in software management, intergroup coordination,

organizational process definition, software engineering, and the use of peer reviews.

Certification at Level 3 also entails continuing Level 2 processes. Though described in

detail below, a brief description is needed to show the path towards process

 4

improvement. The processes currently defined and followed at Next Gen include a fully

defined software development plan, risk management processes, software engineering

processes, and organization processes. The definition and adherence to established

processes results in a software development lifecycle where each of the phases is

completely defined. The entry and exit requirements, as defined by the organization, are

completely understood. Lifecycle metrics, described in detail below, are taken

throughout the entire project . These metrics collectively show the status of the entire

project.

To transition from SW-CMM Level 3 to Level 4, two key elements have to be

integrated into the processes of the organization. The first key element is management

based on metrics established at the SW-CMM Level 3. The second key element

establishes a quantitative representation of software quality based on metrics established

at the SW-CMM Level 3. More simply put, a Level 4 organization will make productive

use of collected measurements to improve product and process within an organization.

The most fundamental problem of this thesis describes the need for Next Gen to

improve software development processes from SW-CMM Level 3 to Level 4. Included

in this effort would be the Level 3 processes identified as opportunities for improvement,

mainly Level 3 metrics-based activities. The second problem can be seen within the

software development experience of Next Gen. While Next Gen has experience

delivering large scale software solutions to the Army, there is little organizational

experience developing small scale software solutions. Therefore, initiating SW-CMM

Level 4 processes with current projects would require large scale organizational changes.

The proposed solution to both of these problems is the scope of this thesis. This

thesis represents the development of a small scale software product to be developed using

SW-CMM Level 4 processes. This will help begin the transition from Level 3 to Level 4,

and give the organization experience developing small scale software solutions. This

thesis will describe the process improvement effort on a small scale software product,

from the point of view a software developer.

 5

B. CAPABILITY MATURITY MODEL

Many software organizations implement software engineering practices. The

degree to which those methods are implemented can be measured against established

models. One such model is the Capability Maturity Model (CMM). The CMM is a

model that can be used to measure the maturity to which different organizational

procedures are implemented [3]. Developed at the Software Engineering Institute at

Carnegie Mellon, the CMM concept has been extended to many different models.

Software Acquisition, People, and Software are examples of three different extensions of

the CMM concept. Each of the versions of CMM follows the same structure, but is

tailored to the specific functional area being performed. This thesis will focus on the

CMM for Software (SW-CMM). Discussed below are the different levels of SW-CMM,

the Key Process Areas within each level of maturity, and the Key Practices within each

Key Process Area.

1. CMM Structure

The SW-CMM can be used to measure the software development maturity level

of an organization. The SW-CMM, and each of the other models of CMM, is divided

into five levels of maturity. Figure 1, as seen in [1], shows the five levels of CMM. Each

level of maturity describes a different set of established activities. The five levels of

maturity are Initial, Repeatable, Defined, Managed, and Optimizing. The least mature

level of software development, as described by the SW-CMM, is Level 1 - Initial. Level

1 is best described as ad hoc. There are no organizational policies established, or

followed, on how to develop a software product. The second level of maturity is the

Level 2 - Repeatable. Level 2 describes an organization that follows specific activities

along the development process. Another organization at the US Army TACOM just

received certification at the CMM for Software Acquisition Level 2 [4]. Level 3 -

Defined describes an organization that follows defined processes to progress through

each activity. Level 4 of the SW-CMM, Managed, describes an organization that is

managed based on measurements taken against the practices established at Level 3. The

highest level of maturity, Optimizing, describes an organization that continually improves

 6

upon organizational software development activities. Maturing through the CMM levels

means acquiring new processes in addition to continuing processes defined at lower

levels.

The main benefit of the CMM is to clearly establish what characteristics are

necessary for each level, and how to improve an organization’s software maturity level

[5]. Another strength of the CMM is that it is flexible. The model does not specify what

engineering standards an organization must adopt; just that policies, standards, and

procedures are defined and followed. As seen in [6], the vast number of software

standards mandates that a model used to determine maturity must not be based on one

particular standard.

Figure 1. CMM levels (From: [1])

a. Key Process Areas

The SW-CMM is structured to determine the software development

maturity level of an organization. This can be done by determining the activities that an

organization performs throughout the development lifecycle. To eliminate confusion,

different activities are localized to an individual maturity level. This will better help map

an organization’s performance as described by the SW-CMM.

 7

Within each SW-CMM maturity level Key Process Areas (KPAs) are

defined. The KPAs describe the activities that are needed to be performed for an

organization to obtain a certain maturity level [7]. Level 1, for example, has no KPAs

defined. This coincides with the fact that the Initial Level is ad hoc, with few if any

established policies. Level 2 KPAs include requirements management, configuration

management, and project planning. Level 3 KPAs include integrated software

management, software product engineering, and peer reviews. These KPAs establish that

a Level 3 organization follows defined processes on performing Level 2 activities. Level

4 KPAs are quantitative process management and software quality management. Level 5

KPAs are defect prevention and process change management.

b. Key Practices

To help determine which KPAs are being implemented by an

organization, Key Practices (KPs) are defined. The SW-CMM describes several KPs that

are the specific tasks necessary to show that each KPA is implemented within an

organization. A Level 2 KP, for example, is “The software engineering group

participates on the project proposal team” [1]. Each KP can be traced to a specific

organization document or defined procedure that is used to show implementation. Each

software development project will show examples of performing the specific KP by a

specific project artifact or process implementation.

The focus of this thesis is to establish the SW-CMM Level 3 and Level 4

processes performed within Next Gen as seen on a small scale software product. This

thesis, therefore, will focus the KPAs and KPs within Level 3 and Level 4. Because this

thesis describes the work performed normally associated with a software developer, only

the KPAs and KPs normally encountered from a developer’s point of view will be

presented. The following sections describe the Level 3 and Level 4 KPAs and KPs that

will be focused on within this thesis.

 8

2. SW-CMM Level 3

An organization that is certified at the SW-CMM Level 3 has defined software

development processes. These processes are defined in policies established at the

management, organizational, and engineering level. Management processes include

integrated software management and intergroup coordination. Organizational processes

include organization process focus, organization process definition, and a training

program. Engineering processes include software product engineering and the use of

peer reviews. The management, organization and engineering processes map directly to

SW-CMM KPAs. The focus of this paper will reflect the work that was done towards

implementing a potential solution within Next Gen. The KPAs discussed below,

therefore, will be Integrated Software Management, Software Product Engineering, and

Peer Reviews. Metrics collected within each KPA are also required within Level 3

activities. Metrics will also be described in detail below.

a. Integrated Software Management KPA

The first SW-CMM Level 3 KPA as seen from the developer’s point of

view is Integrated Software Management. This Key Process Area describes activities

including estimating, planning and risk management. These activities represent what is

required above and beyond normal software development activities. Each of these

activities is described below.

1. Estimating. The first major activity within the Integrated

Software Management KPA is estimation. Project development starts with estimating.

The two main items that are estimated are cost and schedule [8]. Based on the cost and

schedule estimates, resources required to develop the product and scope of the product

can be determined. The cost can be determined based on source lines of code. There are,

however, disadvantages to estimating based on code size. The programming

environment, efficiency of the developers, and the availability of software reuse all have

a variable affect on the amount of code needed for the product. The most effective means

 9

to estimating cost is to combine several different estimating techniques. Combining

estimates on code size, developer experience, and function point analysis will result in a

more reliable estimated cost. While estimating cost can be somewhat difficult, estimating

schedule is more straightforward. The schedule is usually driven by the needs of the

stakeholders or the resources of the developers. Once estimates are determined, they can

be periodically compared to actual schedule and cost measurements throughout the

project lifecycle.

2. Planning. The second major activity within Integrated

Software Management is planning. Planning is achieved through the use of lifecycle

models. The lifecycle model establishes the major project phases, the milestones, and

what activities must be performed within each phase. Among the major models are

waterfall, spiral, and a combination of incremental and iterative. The first model to be

adopted was the waterfall. Each phase of the project was dependent on the completion of

the previous phase. Since no phase could be revisited, several drawbacks to this model

lead to the development of the spiral model. A major component of the spiral model is

the use of prototyping. Early prototypes he lped the developers and stakeholders come to

an agreement on requirements. This model also had several disadvantages. One of the

biggest drawbacks is that the stakeholders would end up focusing on what they could see

and not the true functionality of the product. Since the prototype was most useful in

showing interfaces, the spiral model lead to major revisions of requirements for only the

interfaces. The most recent lifecycle model to be used is a hybrid incremental and

iterative model. This lifecycle model allows for the developers to apply the divide and

conquer concept, all while incorporating feedback from stakeholders through incremental

review of the product.

3. Risk management. In a perfect world, a software product

can be developed that exceeds the stakeholder needs and be delivered ahead of schedule.

Of course, this is not a perfect world, and obstacles arise that stand in the way of software

development. Project leaders must address the probability that risks may occur by

implementing risk management, the third major activity of Integrated Software

 10

Management. Risk management is the process of being aware of potential risks and

determining a course of action to prevent or recover from any risk that may occur [9].

Risk management is composed of two major items: risk assessment and risk control [10].

The first item of risk management is determining a list of potential

risks. Risks are events that can happen that have a negative effect on developing a

product. Once the risks have been identified, each is analyzed for probability of

occurring and severity of the consequences. Based on this information, a mitigation

technique is determined. The technique may be to prevent the risk from occurring or to

minimize the consequences once the risk occurs.

The second item in risk management is tracking potential risks.

Tracking risks requires a constant awareness of project development status. To keep

track of project status, metrics are collected at regular intervals. Metrics that are

normally collected are coding status, funding levels, and software defects [11]. These

and other metrics give an accurate status of possible risks. By identifying, preparing for,

and monitoring possible risks, a software development project can mitigate many of the

unforeseen obstacles that may occur.

b. Software Product Engineering KPA

The second SW-CMM Level 3 KPA typically encountered by a software

developer is the Software Product Engineering KPA. This Key Process Area describes

activities normally associate with developing software. Activities within this KPA

include requirements management, developing software designs, creating the software,

and testing the final software product. Each of these activities is described below.

1. Requirements Management. Of all the responsibilities that

a development team must undertake, requirements management may be the most

important. Requirements management, the first activity of Software Product

Engineering, can be broken down into two main components: requirements gathering and

requirements tracking. Gathering the requirements must include an exhaustive

interviewing of all the stakeholders to understand what the product must do and the

 11

environment under which it must perform [12]. Without a complete and thorough

collection of requirements, the product will likely fail to meet the needs of the

stakeholders. However, even with a complete understanding of the product requirements,

the product could still be developed incorrectly. See Figure 2 as an example. The

solution to this problem is the second component of requirements management -

requirements traceability. This component of requirements management consists of

tracking each individual requirement. Tracking starts from the point that it was acquired

from a stakeholder interview and ends when it is tested before the complete product can

be delivered [13]. The critical aspect in requirements traceability is the ability to handle

the large number of requirements that even the most trivial software product is composed

of. Both components of requirements management help to assure that the developers

know the needed characteristics of the product and continue to develop the right product

throughout the entire development lifecycle.

Figure 2. Real world requirements management

2. Software Design. All of the Key Practices encountered so

far focus on what the product needs to do. The design phase allows the developers their

first opportunity to address how the product will accomplish these needs. Proper

requirements management enables the development team to work with a fixed set of

requirements. How those requirements are to be implemented is determined by the

software design [14]. Software design, the second major activity in Software Product

Engineering, focuses on creating an architecture of the product to be developed. The

software architecture is a blueprint of how the system comes together as a whole. An

 12

architecture is an overall structure of a system and is composed of many different

perspectives. Each of these perspectives represents a view of the system. Some of the

different views include hardware, software, and interfaces. Each of the perspectives

starts at a high level of abstraction. Each time the perspective is shown in a diagram, the

amount of abstraction is decreased until a high enough level of detail exists. These

diagrams are then used as the basis for the development. The designed architecture will

guide the developers on how the system is to be developed.

Software design is a new and advancing discipline. New methods

and concepts are being developed to advance the field. One of the most influential

advancement comes in the form of object oriented design. Object oriented design focuses

on the use of abstraction to simplify the representation of systems [15]. Diagrams show

an abstract representation to better communicate than through the use of potentially

ambiguous text. Systems can be represented as a collection of subsystems, and

subsystems can be even further decomposed. At the most detailed level, the diagrams are

composed of individual objects. Similarly, a system can be represented as a collection of

classes, where each class has key characteristics. The class diagram can be decomposed

into more detailed classes, with more specific information. The final level of

decomposition is a collection of individual objects [16].

Abstraction allows the system under development to be

represented graphically. With the goal of a common graphical notation, Unified

Modeling Language (UML) was developed. UML is a set of standards on how to

graphically represent a system [17]. Based on its many strengths, UML has become one

of the most widely accepted standards to use while designing object oriented systems.

The modeling language is used to standardize the diagrams used in object oriented

design.

While object oriented design is prominent in the software

engineering field, agent oriented design is emerging. Agent oriented design, based on

object oriented technologies, shifts the focus from a data-centric view towards a process-

 13

centric view. One of the most advanced agent oriented architectures is Cougaar [18].

Based on the human cognitive process, Cougaar performs three main functions. The first

function is to decompose larger tasks into smaller tasks. The second function is to

allocate resources to those smaller tasks. The third function is to continually assess the

smaller tasks.

3. Testing. Testing, the third activity of Software Product

Engineering, is the final phase of software development. After the software product is

developed based on the system architecture, a rigorous series of tests must be performed.

These tests are performed by unbiased testers and used to verify that the product was

developed correctly. The testing is done in accordance with the Software Test Plan.

Most common testing techniques include unit, integration, white-box, and black-box

testing [19]. Unit testing is done at the subsystem level before it is integrated into the

system as a whole. The subsystem can be tested without taking into account any

influences from other subsystems. Once the subsystem passes unit testing, the product

undergoes integration testing. This phase tests all of the subsystems and how they

interface with each other. Unit testing and integration testing can be done with

knowledge of how the system of subsystem works. White-box testing uses this

knowledge by testing the inner functions of the systems or subsystems. Black-box

testing, on the other hand, simply tests inputs and outputs of the system or subsystem

being testing. A combination of white-box and black-box testing results in a more

thoroughly tested software product than a product that was tested using only one of the

techniques. While only a trivial product can be exhaustively tested, automated testing

tools can help the testing process to be more thorough [20]. A product that passes

carefully tested procedures is ready for delivery to the stakeholders.

The Integrated Software Management and Software Product

Engineering KPA describe the major project activities. These activities are performed

based on procedures outlined in several lifecycle documents, such as a software

development plan, software requirements specification, and software test plan. These

major program documents establish the basis for how the product will be developed, what

 14

the product will do, and how the product will be tested. The Software Development Plan

presents an overview of the project development. It discusses project estimates, the

schedule, lifecycle model, what artifacts will be created, and when and how the project

will progress through the entire lifecycle. The Software Requirements Specifications

document is the document that will be used for requirements signoff by the stakeho lders.

It will be used as a bases of requirements management, as described above. The

Software Test Plan addresses how the product will be tested. The specific test procedures

will be presented in another lifecycle artifact, but the overall testing strategy is the scope

of the Software Test Plan. Once the lifecycle documents have been written, the

development team has a roadmap of the entire development process.

c. Peer Reviews KPA

The third SW-CMM Level 3 KPA this thesis focuses on is Peer Reviews.

From the developer’s point of view, peer reviews are an integral and ongoing part of an

organization certified at Level 3. Peer reviews, review meetings held with the

developer’s peers, are used throughout the entire lifecycle to systematically review

software work products for defects or areas that need changes. Peer reviews use the

testing technique of inspection. Inspection, as seen in [21], is a method for identifying

defects in a software work product. Once a work product passes a peer review, it is

considered by an organization as complete. While there are other means for eliminating

defects in a software work product, inspection is a simple and effective way for an

organization to assure the quality of that work product. An increase in development time

of only 15% is required for, but peer reviews ultimately eliminate time spent on

correcting defects found later in the project lifecycle [22]. The Peer Review KPA

activities include: conducting peer reviews according to organizational policies, recording

data collected from peer reviews, and having a software quality assurance representative

participate in peer reviews.

 15

d. Metrics

While “metrics” is not a specific KPA, the use of metrics appears

throughout all Level 3 KPAs. Metrics is discussed in a separate section based on a Next

Gen organization need. During the SW-CMM Level 3 certification at Next Gen, metrics-

based processes were identified as an opportunity for improvement.

Metrics are quantitative measures of a software process or product.

Metrics can include defects per lines of code, peer review duration, number of pages of a

document, or simply the number of lines of code. The collection and review of metrics

provides a numerical view of a project’s status. Based on these metric s, actions can be

taken if needed. As seen in [23], the use of metrics at Bull’s Enterprise Servers

Operation improved the overall quality of project management. Improvements in

software product and organizational processes can also be made by collecting and

analyzing metrics.

One major concern with the use of metrics is what to measure. The Goal-

Question-Metric (GQM) approach can be used to determine which metrics are to be

collected [24]. The GQM is a three step approach. The first step is listing the goals of

the organization. The second step is listing questions that can be asked, whose answers

determine if the goals have been met. The final step is to list metrics that can be used to

answer the questions listed in step two. As described in [25], another way to determine

which metrics to use can be determined by the process maturity level of an organization.

For example, if peer reviews are conducted then peer review metrics are appropriate.

Once a software development lifecycle is completed, an organization can review

collected metrics and determine usefulness. This can be used when determining what

metrics to collect on future software projects.

Once collected, the data must be analyzed. The use of metrics collection

tools can aid in collection and analysis. The metrics collection tools used must be based

on the metrics collected [26]. The information obtained from collected metrics can then

be used in evaluating activities throughout SW-CMM Level 3.

 16

3. SW-CMM Level 4

An organization that is certified at the SW-CMM Level 4 can be described as

metrics managed. Both product and process are quantitatively managed based on metrics

collected during SW-CMM Level 3 activities. Progress can be compared numerically

against estimates and plans established at the start of the project lifecycle. As seen in

[27], analysis of metrics, or multiple metrics, can pinpoint problems in individual

products or in the process itself. With this knowledge, a Level 4 organization can take

corrective actions to address any issues that analysis of metrics pinpoints. The periodic

evaluation of selected metrics should be performed. As seen in [28], the usability of

selected metrics should be periodically reviewed. This can result in metrics giving a

better representation of an organization. The organization will be better informed to

make metrics-based decisions. The Key Process Areas defined at Level 4 are

Quantitative Process Management and Software Quality Management. Both of the SW-

CMM Level 4 KPAs are within the scope of this thesis, and will be discussed below.

a. Quantitative Process Management

The first Level 4 KPA is focused on managing processes based on metrics.

As seen in [29], evolving through the SW-CMM levels increases process productivity

levels in schedule, effort, and reliability. These increases can be achieved through the

Quantitative Process Management KPA. This KPA is composed of several key practices.

An organization must follow an established process for managing projects based on

metrics. In order to help perform this KPA, a group is established to coordinate

quantitative process management activities. In order to fully make use of metrics,

support must be in place to collect and analyze project metrics. Once analyzed, the

information is documented and distributed. Management decisions can then be made

based on process metrics collected and analyzed.

 17

b. Software Quality Management

While the first Level 4 KPA focuses on process metrics management, the

second Level 4 KPA focuses on product metrics management. The Software Quality

Management KPA establishes key practices that allow the quality of the software being

developed to be managed. Like the first KPA, the second Level 4 KPA requires that

metrics-based management activities be planned, this time concerning product quality

issues. The project must also have defined measurable goals for product quality, see

[30]. These goals can be derived from how well the organization performs the SW-CMM

Level 3 Software Product Engineering KPA. Measurements based on the results of

requirements management, design, coding, and testing can be used in product metrics-

based management. Software quality assurance (SQA) is a significant component of the

Software Quality Management. As seen in [31], SQA is “a systematic effort to improve

the delivery condition [of the software product or process].” One of the roles of SQA is

performing software product audits [32]. These audits help verify the accuracy of metrics

used in the Software Quality Management KPA.

4. Summary

The Software Engineering Institute has developed a model to determine an

organization’s software development maturity level. The Capability Maturity Model for

Software is a five level model. Each step is composed of increasingly mature software

engineering processes. Processes improvement can be accomplished by defining, and

performing, processes for activities described within each level of the model.

The Next Generation Software Engineering Technology Area is continuously

dedicated towards process improvement. Recent certification at SW-CMM Level 3 is

just one milestone along the path of process improvement. To begin the effort required

for certification at SW-CMM Level 4, Next Gen needed to improve some of the Level 3

activities identified as opportunities for improvement. Most notably, these are metrics-

based activities.

 18

Due to the large scale nature of the products developed within Next Gen, new

processes could not easily implemented. A small scale software product was proposed as

a pilot project for process improvement. This project would be developed under

improved Level 3 processes, along with newly defined Level 4 processes.

 19

III. PROPOSED SOLUTION

A. SKINNY DRIVER’S INSTRUMENT PANEL

Next Gen is dedicated to the goal of continuous process improvement. Due to the

large scale software products normally associated with Next Gen, a small scale project

was proposed as a means to implement process improvement activities. The process

improvement on a small scale project could then be incorporated into the large scale

projects. The level of effort was determined to be suitable as a Naval Postgraduate

School thesis project. The project was to have two goals: advancing software

engineering technologies and improving software development processes within Next

Gen.

The first project goal was for the finished software product to be used to help

develop reconfigurable software. The software, along with supporting design

documentation, would be delivered to a consortium of government, industry, and

academic key players working with reconfigurable software technologies. This

consortium was collaborating on a project called Dynamic Assembly for System

Adaptability, Dependability, and Assurance (DASADA) [33]. Several potential

contributors were proposed for providing solutions for enabling the DASADA

technologies. Next Gen, along with other leading government, industry, and academic

experts proposed the Dependable Automated Reconfigurable Technology for Software

(DARTS). The Next Gen proposal would use the Skinny Driver’s Instrument Panel

(SDIP) as a test article to help develop the DASADA technologies. A successful

DASADA project could potentially affect software technology found in future US Army

systems.

The second goal of the SDIP project was to implement processes improvement

activities within Next Gen. Recent certification at the Software Engineering Institute’s

SW-CMM Level 3 was the starting point of process improvement on the SDIP project.

The SDIP project would improve on the Level 3 activities, and define Level 4 processes.

 20

Functionally, the SDIP system would be a reduced functionality simulator of the

Abrams Main Battle Tank Drivers Independent Display console. A fully functional

simulator existed in-house, but could not be release to DASADA/DARTS partners due to

security issues. Reducing the functionality of the simulator would result in a non-

classified system that could be released to DASADA/DARTS partners. Developers had

access to the source code of the existing simulator, but there would be a short lead time to

obtaining it.

Structurally, the SDIP system would be composed of three components. The first

component would be the reduced functionality driver’s display. The second component

would be a virtual driver, or autopilot, that provided the driver’s display with commands.

The third component would be a recreation of the existing Abrams data bus structure.

Figure 3, below, shows the SDIP system level design.

 Based on the DASADA schedule, the SDIP project would be time-boxed as a six-

month project. The development would be done with a three man team.

Figure 3. SDIP system diagram

SDIP AutoPilot

Module

1553 API

 21

B. IMPLEMENTATION EFFORT

A three man team was allocated to implementing the SDIP system. The author of

this thesis and two addition developers were to perform all SDIP development activities

per Next Gen defined processes. Each developer was pivotal in performing all SW-

CMM Level 3 activities. The work performed by the author of this thesis is described in

detail in the Findings chapter. In summary, the following work was performed by this

author:

• Performing initial planning, estimating, and risk management activities

• Contributing resources to Process Action Team in metrics definition

• Participating and contributing in peer review activities

• Contributing in regular group meetings and status reviews

• Contributing to metrics collection and analysis

• Providing significant contribution to content of lifecycle documents

• Performing requirements management activities

• Making design decisions and communicating design concepts

• Providing coding assistance in all software components

• Performing complete coding of Autopilot module

• Conducting complete analysis of SDIP process improvement efforts

• Performing normal project activities not specifically mentioned in this thesis

 22

THIS PAGE INTENTIONALLY LEFT BLANK

 23

IV. FINDINGS

A. PERFORMANCE TOWARDS SW-CMM LEVEL 3

While the ultimate goal of the SDIP development project was beginning the

transition towards SW-CMM Level 4 certification, the project had to first adhere to Level

3 activities. From a developer’s point of view, these activities are seen within the

Integrated Software Management, Software Product Engineering, and Peer Review Key

Process Areas. These activities would be performed based on the processes verified

during the SW-CMM Level 3 certification process.

The CMM Level 3 goal of the SDIP development project was to incorporate the

opportunities for improvements cited during the SW-CMM Level 3 certification process.

The main opportunity for improvement at the Level 3 involves establishing more

thorough metrics-based development activities. Metrics collected on previous projects

tended to be obtained near the end of the development lifecycle. This resulted in metrics

that did not have significant value added to the project. A more detailed process

concerning metrics was the Level 3 goal of the SDIP development project.

1. Integrated Software Management

a. Estimating

The first major activity within the Integrated Software Management KPA

is estimating. Estimating was performed by the SDIP development team. The initial

project kickoff email, see Appendix A, requested estimates on a schedule and plan, which

the development team provided.

The estimation of the development projected consisted of three categories:

software size, estimated man-hours, and documentation required. The software size

estimates, see Table 1, would be used to determine the required workload. Once the

workload was determined, it could be used to affect the scope of the project. The

estimated workload, see Table 2 for estimates, was consistent with the manpower that

 24

was assigned to the project, so the scope remained as established in the project kickoff

email.

SDIP Computer Software Components KLOC

SDIP CSC 1.5

Autopilot CSC 0.5

1553 Interface CSC 1.5

Total 3.5

Table 1. SDIP code size estimates

LABOR CATEGORIES

ESTIMATES

(HRS)

Planning 176

Tracking 120

Reviews and Audits 80

Analysis 152

Requirements 240

Design/Code 1104

Testing 40

SQA 394

SCM 40

Debriefing 8

TOTALS 2354

Table 2. Man-hour estimates for major activities

 25

The third category of project estimation was based on the documentation

required. During creation of the software development plan, an initial list of lifecycle

artifacts was created. Based on this list it was determined that additional resources were

needed to complete the scope of the project. Resources were allocated for configuration

management, quality assurance, testing, and systems engineering. The additional

resources were allocated based on the following list of estimated lifecycle artifacts:

Software Development Plan (SDP)

Software Requirements Specification (SRS)

Software Design Document (SDD)

Software Configuration Management Plan (SCMP)

Software Quality Assurance Plan (SQAP)

Software Test Plan (STP)

Software Test Coverage Outline

Software Test Cases

Lessons Learned Report

SDIP CSC (code)

Autopilot CSC (code)

1553 Interface CSC (code)

User’s Guide and Installation Manual

b. Planning

The second major activity within the Integrated Software Management

KPA performed by the SDIP team was project planning. As seen in [34], determining the

project schedule is difficult. The SDIP project, however, did not have this problem. The

project was time-boxed based on DASADA requirements, so creating the schedule

 26

consisted of allocating the given time to the different lifecycle phases. The different

phases were assessed for required effort, and the available resources were used to

determine the amount of time to allocate to each phase. Each phase was analyzed to

determine the required lifecycle artifacts, and the schedule was created. Though the

schedule was never base-lined until late in the lifecycle, the majority of the original

schedule remained the same. The planned schedule can be seen in Figure 4.

Based on initial project requirements, the SDIP development effort was to

follow an iterative and incremental lifecycle model. An early prototype was necessary to

demonstrate functionality. This required the development team to adopt a incremental

approach. Based on the aggressive schedule, an iterative approach was also necessary.

This would allow the development team to implement functionality under the time

constraints. Even if the project was not completed by the scheduled date, completed

iterations could be delivered. Each iteration would undergo a complete plan, design,

code, and test phase for the scope of that iteration. The iteration that was completed by

the delivery date could still produce an operational DASADA test article.

The iterative and incremental hybrid lifecycle model underwent traditional

lifecycle phases. The first phase the developers encountered was the project planning

phase. As seen in the schedule below, the schedule was established and the project

officially began. The first phase consisted of Integrated Software Management activities,

including planning and risk management. The second phase of the SDIP development

was the design phase. The developers broke down the system into computer software

components and obtained designs for each component. The third phase the development

team worked on was the coding phase. Each computer software component was

developed and integrated into the system. By the project cancellation date, the software

demonstrated functionality consistent with the majority of the initial requirements. Due

to the project cancellation, however, the two final phases of the planned lifecycle model

were not performed. The limited testing that occurred was only informa l debug testing

done by individual developers. Because the project was not completed based on funding

decisions, there was no maintenance phase encountered.

 27

The project planning was represented in the Software Development Plan

(SDP) document, see Appendix B. The SDP contained several sections describing

metrics-based activities to be performed. This led to a problem completing the planning

phase. Because significant effort was allocated for determining which metrics were to be

collected and how, these sections of the SDP could not be completed on time. Multiple

revisions to these sections prevented the planning phase to be completed on schedule.

Authority was given to being the design phase even though management had not

approved a final SDP. It was determined that the concepts were finalized and just minor

revisions were necessary for the SDP to be completed. The SDP was finally approved

late in the project lifecycle.

Figure 4. Estimated schedule with actual completion dates

ID Task Name % Complete Baseline Finish Actual Finish
1 SDIP CSCI 84% Wed 7/17/02 NA

2 Tracking SDIP 68% Thu 6/20/02 NA

3 Team Meeting 100% Wed 6/19/02 Wed 7/17/02

13 IPRs 67% Thu 6/20/02 NA

25 PLANNING SDIP 91% Mon 6/24/02 NA

26 Schedule 71% Fri 5/24/02 NA

30 Requirements SDIP 99% Mon 6/17/02 NA

38 SDP 99% Mon 6/24/02 NA

48 SQAP 100% Wed 5/29/02 Mon 6/17/02

54 SCMP 93% Thu 6/13/02 NA

62 Analysis SDIP 100% Tue 5/21/02 Tue 5/21/02

66 Design SDIP 35% Wed 6/12/02 NA

74 Autopilot CSC 88% Mon 6/24/02 NA

75 Display Screen 100% Tue 6/18/02 Tue 6/4/02

77 Application 89% Fri 6/21/02 NA

85 Instrument Panel CSC 91% Mon 6/24/02 NA

86 Display Screen and Driver 94% Fri 6/21/02 NA

92 Communications Interface CSC 71% Mon 6/24/02 NA

98 1553 API and Emulation CSC 99% Mon 6/17/02 NA

99 Coding 99% Mon 6/17/02 NA

109 Test Plan SDIP 75% Thu 6/13/02 NA

114 Test Cases 0% NA NA

118 Test Coverage Doc 0% NA NA

125 Post Verification Analysis 0% NA NA

127 SQA Activities 17% NA NA

132 User and Installation Manual SDIP 0% Thu 7/4/02 NA

138 Project Brief to Customer 0% Mon 7/1/02 NA

142 Project Post Mortem Activities 100% Wed 7/17/02 Fri 9/13/02

84%

68%

100%

67%

91%

71%

99%

99%

100%

93%

100%

35%

88%

100%

89%

91%

94%

71%

99%

99%

75%

0%

0%

0%

17%

0%

0%

100%

2/10 3/3 3/24 4/14 5/5 5/26 6/16 7/7 7/28 8/18 9/8
Jan '02 Mar '02 May '02 Jul '02 Sep '02

 28

c. Risk Management

The third major activity within the Integrated Software Management KPA

is risk management. During the SW-CMM Level 3 certification, risk management was

identified as an opportunity for improvement. Before the SDIP project, risk management

was an ad hoc process. Risk management consisted only of presenting risk status at

monthly In Process Review (IPR) meetings. The SDIP development team established a

process for risk management. The Software Development Plan defined a more mature

risk management process. Risk management was defined within four basic categories:

risk mitigation, risk tracking, configuration management, and quality assurance.

1. Risk Assessment. The first component of risk management

that was performed based on defined processes was risk assessment. During the project

planning the SDIP development team performed risk assessment. Resources were

consulted to add quality assurance and software engineering process perspectives on risk

management. Risk identification was performed on all aspects of the development

lifecycle. Once the risks were identified, each was given a severity and probability. The

risk level was calculated and an appropriate mitigation strategy was identified. A total of

twelve major risks were identified. Table 3 shows a portion of the risk assessment table

that was developed for the SDIP system. The complete risk assessment table can be seen

in Appendix B.

Risk Severity Probability Risk
Level

Mitigation Strategy

Diversion of
development team to

other projects
including GWT.

High High High Keep management and customer
up to date on status.

Inability to meet
project goals due to

inexperienced
development team.

High High High Make extensive use of Next Gen
and DCS domain experts and

NPS course work.

Requirements creep Medium Low Low Requirements management
Table 3. Partial risk assessment matrix

 29

During the project lifecycle, there were two major risks that were

encountered that were not identified in the risk assessment matrix. The first risk that

occurred was the delivery of original source code that was not usable by the SDIP

development team. This lead to the second risk identified in the risk assessment matrix,

of development being behind schedule. The second risk was the cancellation of the

DASADA/DARTS proposal.

2. Risk Tracking. The second component of risk management

that was performed based on defined processes was risk tracking. Risk tracking was

accomplished by collecting and analyzing metrics. Project metrics, described in detail

below, allowed the project team to numerically track the progress of the project

development against the initial project estimates. This would uncover areas of risk.

Once risks were uncovered, they were formally presented during weekly and monthly

project meetings. Risk presentation can be seen in Figure 5 below. The risk assessment

matrix was updated throughout the project lifecycle. The updates were made, however,

on an irregular basis.

Figure 5. Risk status as seen on a monthly briefing chart.

3. Configuration Management. The third component of risk

management performed based on defined processes was the use of configuration

management. During project planning, the SDIP development team allocated resources

for configuration management (CM). The use of CM would help maintain version

control of all lifecycle artifacts. The use of CM was a mitigation technique based on the

risks associated with multiple versions of documents and source code anticipated during

Program Status:
SCHEDULE Red
BUDGET Green
MANPOWER Amber
OVERALL Red

Comments :
Many difficulties in maintaining
progress to schedule

STR work is to begin on 7/29/2002

Open Issues/Actions/Risks
• Learning curve due to new processes

and software (DCS E-Manager) has
impacted schedule.

• Diversion of development team to
other projects including STRs.

• No effort expended on Test Outline or
Test Coverage Documents.

07/25/02

 30

project development. A configuration management plan was created to establish the role

of CM during the SDIP system development. As established by the plan, all

documentation would pass peer review and customer signoff before being placed under

control. Software would also be placed under control after it passed peer review. The

Software Configuration Management Plan can be seen in Appendix D. A breakdown of

the configuration management performed throughout the SDIP development lifecycle can

be seen in Table 4.

Configuration Controlled Items Number of Items

Lifecycle Documents 4

Document Revisions 0

Software Source Files 0

Table 4. Items placed under configuration management

4. Quality Assurance. The fourth component of risk

management performed based on defined processes was the use of quality assurance.

The SDIP development team allocated resources for quality assurance to help perform

risk management. A software quality assurance representative was pivotal in helping the

development team identify, collect, and track metrics throughout the entire lifecycle. As

stated in the Software Quality Assurance Plan, the quality assurance representative

participated in project planning activities, metrics tracking activities, risk management,

and performing reviews and audits of the processes established by planning documents.

2. Software Product Engineering

a. Requirements Management

The first major activity within the Software Product Engineering KPA is

requirements management. During the SW-CMM Level 3 certification, requirements

management was identified as an opportunity for improvement. Before the SDIP project,

requirements management was an ad hoc process. The SDIP development team

established a software requirements specification document. Though a formal

 31

requirements management process was not defined for the organization, requirements

management activities were defined in the SDIP Software Development Plan.

The SDIP development team performed requirements management based

on a defined project process. Requirements collection, tracking, and testing activities

were all defined within the Software Development Plan. The requirements were

collected from the customer in an initial project kickoff email. Appendix A shows the

project kickoff email from the customer. After review of the initial requirements list, the

developers met with the customer to discuss more details of the requested requirements.

Once an understanding of customer needs was reached, the developers began work on a

Software Requirements Specification (SRS) document. The complete SRS can be seen in

Appendix C.

The SRS established requirements identification and a means for

requirements traceability. Each of the 49 requirement s was given a unique identification

number and assigned to a single computer software component. This identification

number and assignment allowed the developers to assure that each requirement could be

implemented in the design documentation. The requirements could then be tracked to a

specific test procedure to ensure every requirement was implemented in the final software

product.

Two sample requirements as seen in the SRS:

(004) The SDIP CSCI shall maintain the ability to process 1553 data packets in a

manner consistent with the actual method used within a M1A2 tank. That is, the SDIP

and Autopilot CSCs maintain the M1A2 1553 packet specifications for interprocess

communication of data.

(025) The following group of Project Critical data packets shall be implemented:

Data Packet ID

Data Packet
Description

Source
LRU

Destination
LRU

DP0400.2_DEV_PWR_ST Device Power Status TEU DID
DP0600.2_AUTO_ST Automotive Status TEU DID
DP0800.1_NAV_HEADING Pos/Nav Heading TEU DID
DP0900.2_LOW_RATE_NAV_OUTPUT Pos/Nav Low Rate Data TEU DID

DP1800.2_WAYPT_DATA Waypoint Data TEU DID

Table 5. Requirement (025) breakdown.

 32

b. Software Design

The second major activity within the Software Product Engineering KPA

is software design. The design activities were the least accomplished activities of the

Software Product Engineering KPA. Several factors contributed to the inadequate

amount of design that was performed by the development team.

The SDIP development was initially based on the existing Abrams M1A2

system. Based on this information, the development team chose to use existing design

documentation to represent the SDIP system. After the existing source code was deemed

unusable, the development team had to reevaluate the development plan. With the level

of experience of the developers and the aggressive schedule, the development team

decided that software could not be developed based on existing design documentation.

After management proposed a new development concept for the system it was clear that

new design documentation was needed. The new design would be based on similar

existing functionality, but be designed with a different architecture. Due to the delay in

waiting for the source code, the development team had to make up missed coding time.

Formal design activities were replaced with quick informal team meetings to discuss the

new architecture.

The original SDIP system consisted of three computer software

components (CSCs). The first CSC was the existing driver’s display of the M1A2

system. The second CSC was the existing 1553 Data Bus. The third CSC was an

autopilot module that would act as a virtual driver. Normal driver commands would be

sent to the driver CSC via the 1553 CSC. Because the first two CSCs were based on

existing systems, the design for those CSCs were the existing system design documents.

Design effort was only allocated to the third CSC. When design effort was halted, only

the design for the AutoPilot CSC was documented. Estimated to be only 55% complete,

the design consisted of three levels of detail.

The first level of detail, the architectural design, is an abstract view of

system. The architectural view shows abstract state diagrams, software components, and

use cases. The second level of detail, the mechanistic design, is a more detailed view of

 33

the system. The mechanistic design shows detailed use cases, class diagrams, and sample

sequence diagrams. The most detailed view of the system is the detailed design. The

detailed design shows detailed state diagrams and pseudocode. It was attempted to bring

additional resources onto the project to help develop the design documentation. There

was not enough resources to help bring the new designers up to speed, so the design

documentation was never completed.

1. Architectural Design. The architectural design completed

on the SDIP project consisted of a system diagram, a list of objects and software

components, use cases, and a class diagram of the AutoPilot component. The AutoPilot

control flow can be seen in the Figure 6.

C
alls

Gets file name

Calls

Returns to

R
eturns to

C
alls

R
eturns to

Class / Method Diagram

AutoPilot_Main Load_Mission

Choose_File

Pause_MissionRun_Mission

Figure 6. Control flow for the AutoPilot component

2. Mechanistic Design. The mechanistic design consisted of a

limited number of detailed use cases and only two sample sequence diagrams. Some of

the detailed use cases and sequence diagrams can be seen in Tables 6 through 11 and

Figures 7 and 8.

 34

Use Case ID: 1
Use Case Name: Load Mission
Created By: Matt Behnke, Dan

Turnas
Last Updated By: Matt Behnke, Dan

Turnas
Date Created: 2/26/2002 Date Last Updated: 2/26/2002
Actor: User, Autopilot
Description: The Autopilot prompts the user to select a mission file.
Preconditions: The Autopilot must be started and is in an idle state.
Postconditions: Mission file selected.
Normal Course of
Events:

1. The user selects the Load Mission command.
2. Autopilot displays directory tree.
3. User navigates directory tree.
4. User selects a file.
5. User confirms file to be loaded.

Alternative
Courses:

4. User doesn’t find desired file.
5. User cancels Load Mission

Exceptions: N/A
Includes: N/A
Assumptions: N/A
Notes and Issues: None

Table 6. Detailed Load Mission use case

Use Case ID: 2
Use Case Name: Run Mission
Created By: Matt Behnke, Dan

Turnas
Last Updated By: Matt Behnke, Dan

Turnas
Date Created: 2/26/2002 Date Last Updated: 2/28/2002
Actor: User, Autopilot
Description: The Autopilot runs a mission file.
Preconditions: The Autopilot must be started, be in an idle state, and the mission file must

be loaded.
Postconditions: Mission is run.

Normal Course of
Events:

1. User selects Run Mission
2. Mission file parsed correctly.
3. Schedules data to be sent according to the duration specified in the

mission file.
4. Sends data packet via use case Send Data Packet

Alternative
Courses:

1. Unable to parse mission file.
2. Alert user that the mission file cannot be parsed.
3. Put Autopilot in an idle state.

Exceptions: N/A
Includes: Send Data Packet (UCID: 3)
Assumptions: N/A
Notes and Issues: None

Table 7. Detailed Run Mission use case

 35

Use Case ID: 3
Use Case Name: Send Data Packet
Created By: Matt Behnke,

Dan Turnas
Last Updated By: Matt Behnke, Dan

Turnas
Date Created: 2/28/2002 Date Last Updated: 2/28/2002
Actor: Autopilot, 1553 data bus, User
Description: Sends information (speed, heading) to the DID through the 1553

bus.
Preconditions: Mission is running and data must be scheduled to be sent to the

DID.
Postconditions: None
Normal Course of Events: 1. Scheduled data is sent to the DID
Alternative Courses: None
Exceptions: N/A
Includes: N/A
Assumptions: N/A
Notes and Issues: None

Table 8. Detailed Send Data Packet use case

Use Case ID: 4
Use Case Name: Stop Mission
Created By: Matt Behnke, Dan

Turnas
Last Updated By: Matt Behnke, Dan

Turnas
Date Created: 2/28/2002 Date Last Updated: 2/28/2002
Actor: Autopilot, User
Description: Autopilot cancels mission
Preconditions: Mission must be running
Postconditions: Autopilot is idle
Normal Course of
Events:

1. User selects Cancel Mission.
2. Autopilot pauses mission.
3. Autopilot asks for confirmation.
4. User confirms command.
5. Put Autopilot in an idle state.

Alternative
Courses:

4. User doesn’t confirm command.
5. Autopilot resumes mission.

Exceptions: N/A
Includes: Pause Mission (UCID 5)
Assumptions: N/A
Notes and Issues: None

Table 9. Detailed Stop Mission use case

 36

Use Case ID: 5
Use Case Name: Pause Mission
Created By: Matt Behnke, Dan

Turnas
Last Updated By: Matt Behnke, Dan

Turnas
Date Created: 2/28/2002 Date Last Updated: 2/28/2002
Actor: Autopilot, User
Description: Autopilot pauses mission
Preconditions: Mission must be running
Postconditions: Autopilot is paused
Normal Course of
Events:

1. User selects Pause Mission.
2. Autopilot pauses mission.

Alternative Courses: None
Exceptions: N/A
Includes: N/A
Assumptions: N/A
Notes and Issues: None

Table 10. Detailed Pause Mission use case

Use Case ID: 6
Use Case Name: Resume Mission
Created By: Matt Behnke, Dan

Turnas
Last Updated By: Matt Behnke, Dan Turnas

Date Created: 2/28/2002 Date Last Updated: 2/28/2002
Actor: Autopilot, User
Description: Autopilot resumes mission
Preconditions: Mission must be paused
Postconditions: Autopilot is running mission.
Normal Course of Events: 1. User selects Resume Mission.

2. Autopilot resumes mission.
Alternative Courses: None
Exceptions: N/A
Includes: N/A
Assumptions: N/A
Notes and Issues: None

Table 11. Detailed Resume Mission use case

 37

Figure 7. Normal sequence of events

:User :AutoPilot

LoadMissio

:1553 :SDIP

Select Mission

Confirm File

RunMission() ParseData()

Repeat D
for each of
Z lines of
destination
in Mission
File

Period(A1)
= .2 seconds

SendDataPacket ReadDataPacket() DisplayData()

Repeat A for
DurationN

SendDataPacket DisplayData()

current_pos=current

Reset(current_pos)

SendDataPacket DisplayData()

Repeat A for
DurationN

SendDataPacket
DisplayData()

current_pos=current

Reset(current_pos)

 SEQUENCE DIAGRAMS

DisplayFileTree

OpenFile()

ReadDataPacket()

ReadDataPacket()

ReadDataPacket()

Period(A1)
= .2 seconds

 38

Figure 8. Pause, Resume, and Stop Mission functions

:User :AutoPilot

LoadMissio DisplayFileTree

:1553 :SDIP

Select Mission
Confirm File OpenFile()

RunMission()
ParseData()

Period(A1)
= 2 seconds

SendDataPacket ReadDataPac DisplayData()

Reset(current_pos)

SendDataPacket ReadDataPac DisplayData()

PauseMission()

ResumeMissio

SendDataPacket ReadDataPac DisplayData()

SendDataPacket ReadDataPac DisplayData()

StopMission()

Elapsed
Time

AutoPilot
Idle

 39

3. Detailed Design. The most design effort was focused on

the detailed design of the SDIP system. Complete detailed state diagrams were

developed, but only for the AutoPilot component. Pseudocode was not developed for the

AutoPilot component. The state diagrams can be seen in Figures 9 through 12.

Autopilot

Start_Autopilot_Event
Autopilot - Idle

Load Mission

Mission
Running

State Diagram of the Autopilot Module

L
oa

d_
M

is
si

on
_F

ile
_E

ve
nt

[c
ur

re
nt

_p
os

 =
=

1]

Matt Behnke
Dan Turnas
SW4580 - Real Time Embedded Systems
Autopilot Project

Run_Mission_Event
[MFN != NULL]

Pause_Mission_Event

Resume_Mission_Event

[L
oa

d_
A

tt
em

pt
 =

=
Su

cc
es

sf
ul

]
/S

et
_M

is
si

on
_F

ile
na

m
e(

M
FN

 :
=

se
le

ct
ed

F
ile

)

[L
oa

d_
A

tt
em

pt
 =

=
U

ns
uc

ce
ss

fu
l]

/S
et

_M
is

si
on

_F
ile

(M
FN

 :=
 N

U
L

L
)

Mission Paused

Stop_Mission_Event

Stop_Mission_Event

Figure 9. State diagram for the AutoPilot CSC

 40

Load Mission

Display Directory Tree

Entry: Choose_File()

File_Selected_Event
/Set_Mission_Filename(MFN := selectedFile)

Cancel_Load_Event
/Set_Mission_Filename(MFN := NULL)

Autopilot -
Idle

Load_Mission_File_Event
[current_pos == 1]

Matt Behnke
Dan Turnas
SW4580 - Real Time Embedded Systems
Autopilot Project

Figure 10. State diagram of the Load Mission function

Mission Running

 Mission
Paused

Autopilot -
Idle

Run_Mission_Event

[MFN != NULL]

Parse_Mission_File

dataArray = Parse_File(MFN,
current_pos)

[dataArray(0) != EOF]
Schedule_Send_Data_Packet(dataArray)
current_pos = current_pos + 1

Display_File_Read_Error

Display_File_Read_Error()
Force_Event(Stop_Mission)

[PARSE MISSION FILE ERROR]

St
op

_M
is

si
on

_E
ve

nt

Stop_Mission_Event

P
au

se
_M

is
si

on
_E

ve
nt

Re
su

m
e_

M
iss

ion
_E

ve
nt

Matt Behnke
Dan Turnas
SW4580 - Real Time Embedded Systems
Autopilot Project

Figure 11. State diagram of the Run Mission function.

 41

Mission
Paused

Mission Paused

Wait_For_Event()

Mission
Running

Pause_Mission_Event

Resume_Mission_Event

Stop_Mission_Event

Matt Behnke
Dan Turnas
SW4580 - Real Time Embedded Systems
Autopilot Project

Figure 12. State diagram of the Pause Mission function.

c. Testing

The third major activity within the Software Product Engineering KPA is

software testing. The SDIP development project did not reach a formal testing phase.

Resources were planned and allocated for a thorough testing phase based on Next Gen

SW-CMM Level 3 processes. A software test plan was being developed per defined

processes when the project was officially cancelled. Upon termination, it was estimated

that the test plan was approximately 75% complete. Neither the test coverage outline nor

the test cases documentation was developed. These documents were to be created based

on completion of the software. Because the first completed software iteration was never

delivered to the independent test group, all of the test documentation could not be

completed.

The software requirements specification document did establish four

verification methods for tracking each requirement through testing. Each of the

requirements was analyzed to determine the testing method used to verify that the

 42

requirement was correctly implemented in the SDIP system. The four verification

methods (as seen in Appendix C) are:

Demonstration: The operation of the system, or a part of the system, that relies on

observable functional operation not requiring the use of instrumentation, special test

equipment, or subsequent analysis.

Test: The operation of the system, or part of the system, using instrumentation or special

test equipment to collect data for later analysis.

Analysis: The processing of accumulated data obtained from other qualification

methods. Examples are reduction, interpolation, or extrapolation of test results.

Inspection: The visual examination of system components, documentation, etc.

Each of the 49 requirements is assigned a verification method in the qualification

method matrix. A portion of the matrix can be seen in the Table 12. The complete table

can be seen in section 6.2 of the Software Requirements Specification Appendix.

Qualification Method Req
ID Demonstration Test Analysis Inspection

(020) X
(021) <Requirement Deleted>
(022) X
(023) X
(024) <Requirement Deleted>
(025) X
(026) X
(027) X
(028) <Requirement Deleted>
(029) X
(030) X
(031) X
(032) X
(033) X
(034) X
(035) X

Table 12. Partial table of verification methods to be used in testing each requirement

 43

3. Peer Reviews

The third SW-CMM Level 3 KPA, from a developer’s point of view, is the Peer

Reviews KPA. The Peer Reviews KPA has the fewest number of activities, and was

understandably the easiest to achieve. The major peer review activities performed by the

SDIP team included: conducting peer reviews according to organizational policies,

recording data collected from peer reviews, and having a software quality assurance

representative participate in peer reviews. The peer review process defined by Next Gen

mandated that all software work products successfully pass a peer review. The SDIP

project conducted peer reviews on all of the work products based on the Next Gen

process. Metrics were collected for each peer review that was held. Table 13 shows

preparation metrics collected during a peer review for the Software Requirements

Specification document. Other metrics collected during each peer review included final

major and minor faults, peer review duration, and faults per page. Table 13 also shows

the attendance of the SQA representative during the peer review.

 Chris
Ostrowski
(systems
engineer)

Karen
LaFond
(SQA)

Dan
Turnas

(developer)

John Bohn
(developer)

Joe
Szafranski

(SEPG)

Prep Time
(in minutes)

60 30 60 30 45

Major Faults 0 0 0 0 0
Minor Faults 21 2 5 0 8
Questions 3 1 0 0 8

Table 13. Fault metrics collected at June 12th peer review of SRS document

4. Metrics

During the Next Gen SW-CMM Level 3 certification process one of the major

opportunity for improvement that was cited was a need for more thorough metrics-based

activities. The CMM Level 3 goal of the SDIP development project was to improve the

Level 3 processes defining metrics activities. Based on this goal significant effort was

 44

allocated for metrics-based activities. Project metrics were defined, collected, analyzed,

and used for product and process improvement.

Next Gen allocated resources to form a Process Action Team (PAT) to focus on

SDIP metrics. The PAT, along with each of the SDIP developers, used the Goal-

Question-Metric process to determine which metrics to collect on the SDIP project. The

PAT established six categories of metrics to be collected. These categories were

identified by use of the Goal/Question/Metric tables as seen in Appendix B. In Appendix

B the full metrics selection tables can be seen. The appendix also shows a complete

breakdown of the metrics selected to be collected, analyzed, and reported. Each of the

metrics sections is described in detail below. The six metrics categories are as:

Delivery of a project on schedule

Estimation of resource requirements

Management of project within budgeted costs

Product quality

Project communication and collaboration

Size estimation of project work product deliverables

Based on adherence to CMM Level 3 activities, metrics usage became a major

part of the SDIP system development effort. A metrics tracking tool was developed in-

house to aid the developers in managing the vast amount of metrics that were collected.

The Labor Metrics Tracking tool was developed and used. Though complete metrics

were sometimes not collected, metrics were collected often enough to give an accurate

description of the project status. The metrics were reviewed throughout the entire project

lifecycle and can be used by future projects for planning and estimating purposes. A

description and analysis of each metrics category can be seen below.

 45

a. Delivery of Project on Schedule

The SDIP development team tracked metrics on percentage of project

deliverables that were actually delivered on schedule. The weekly metrics that were

collected were based on estimates of percentage completed on each deliverable. As the

project was re-planned before a schedule baseline could be established, the final metrics

are compared to the re-planned schedule. The variance shown in Table 14 is based on the

re-plan schedule and a completion date of July 29, 2002. Based on Table 14, the project

was 84% complete with only 44.25% of the scheduled tasks completed. Of the 14

identified project deliverables 5 were completed, 6 were in progress, and 3 were not

started. There were no deliverables completed on time.

PROJECT

DELIVERABLES

PLANNED

COMPLETION

(Original)

PLANNED

COMPLETION

(Re -plan)

ACTUAL

COMPLETION

VARIANCE

(DAYS)

Development Plan 04/02/02 06/24/02 06/27/02 3

Configuration Management Plan 04/02/02 06/13/02 93% completed N/A

Quality Assurance Plan 04/02/02 05/29/02 06/04/02 4

Requirements Specification 04/17/02 06/17/02 06/18/02 1

Design Documentation 04/19/02 06/12/02 55% completed N/A

Test Plan 04/19/02 06/13/02 75% completed N/A

Software Test Coverage Outline Not scheduled No date specified 0% completed N/A

Software Test Cases Not scheduled No date specified 0% completed N/A

Autopilot CSC 05/002 06/24/02 88% completed N/A

Instrument Panel CSC Not scheduled 06/24/02 91% complete N/A

Communications Interface CSC Not scheduled 06/24/02 71% complete N/A

1553 Interface CSC Not scheduled 06/14/02 07/02/02 12

User’s Guide, Installation Manual 12/04/02 07/04/02 35% completed N/A

Post Mortem Report Not scheduled 07/17/02 09/12/02 est. 40

TOTAL 60

Table 14. Final metrics of schedule events

 46

b. Estimation of Resource Requirements

Metrics were collected on the SDIP development based on initial planning

estimates. The metrics were used to determine the accuracy of planning estimates. Each

project lifecycle phase was estimated based on the time-boxed project. Metrics were then

collected based on hours spent in each lifecycle phase. Table 15 shows the variance in

estimated hours versus actual hours spent on each lifecycle phase.

While this portion of metrics collection did help in risk management of the

SDIP development, the usefulness of this metrics category will be seen during initial

planning on future projects.

LABOR CATEGORIES

ESTIMATES

(HRS)

ACTUALS

(HRS)

VARIANCE

(HRS)

Planning 176 731.50 555.50

Tracking 120 70.00 -50.00

Reviews and Audits 80 228.00 148.00

Analysis 152 130.00 -22.00

Requirements 240 97.00 -143.00

Design/Code (not completed) 1104 836.00 -268.00

Testing (not done) 40 3.00 -37.00

SQA (SQA hours recorded in other

categories)

394 0.00 -394.00

SCM (Some SCM hours recorded in other

categories)

40 2.00 -38.00

Debriefing 8 244.25 236.25

TOTALS 2354 2341.75 -12.25

Table 15. Final metrics of resources, taken in man hours

 47

c. Management of Project Within Budgeted Costs

The metrics collected in this section were to be used for tracking budgeted

costs against costs spent. After the majority of the cost was estimated to be man hours,

only work hours were collected for this category. Based on tracking this metric category,

it can be seen that each of the developers spent the entire development lifecycle working

on the SDIP system. While this conclusion is not remarkable, the metric category was

still useful. Future development projects may have costs not limited to man hours.

d. Product Quality

During the metric category identification phase, the product quality

category was established. The means to ensure product quality was determined to be

regular peer reviews on all lifecycle artifacts. The product quality category tracked

metrics associated with peer reviews. Table 16 shows some of the metrics including

errors found, major errors, minor errors, meeting duration, and preparation time.

Metric Type Number

of Peer

Reviews

Metrics Value

(average)

Total Errors 12 40.5

Major Errors 12 0.4

Minor Errors 12 40.1

Preparation Time 7 40.2 minutes

Meeting Duration Time 9 100 minutes

Table 16. Final metrics for product quality

 48

e. Project Communication and Collaboration

The fifth metrics category that was identified was communication and

collaboration. This category was collected to monitor meetings, action items, and risks

associated with inter-team communication of ideas. Monthly In Process Reviews were

held, though only 75% of the time, to brief the customer and management on project

status.

Action items were documented from each of the bi-weekly project

meetings. Out of the 9 scheduled project meetings, only 4 were actually held. While this

metric might indicate poor communication, it is actually misleading. The development

team often met and communicated outside of a formal meeting environment. No metrics

were collected to reflect this.

f. Estimation of Project Work Product Deliverables

The final metrics category identified was based on estimation of lifecycle

artifacts. The estimate for software size was determined at the beginning of the project to

be 3.5 KSLOC. The software size at the project termination date was 4.3KSLOC.

This metrics category was also to be used to compare actual lifecycle

document size to estimated size. This would then help determine percentage complete

for each document. The estimate was never performed at the beginning of the project.

The goal of future metrics collection of this category would be to estimate

document size at the beginning of the project lifecycle. Document metrics from the SDIP

system will be used to help estimate document sizes from future projects. Table 17

shows the final document metrics for the SDIP system.

 49

MAJOR DELIVERABLE DOCUMENT # OF PAGES

Software Development Plan (SDP) 24

Software Configuration Management Plan (SCMP) 07 (draft document)

Software Quality Assurance Plan (SQAP) 13

Software Requirements Specification (SRS) 18

Software Design Document (SDD) 10 (Draft document)

Software Test Plan 09 (draft document)

Table 17. Final metrics of work product deliverables

Metrics analysis led to two major project changes. The first change occurred

based on information obtained from schedule progress metrics. When it was determined

that existing source code was not useable, schedule metrics were referred to. It was

decided that schedule metrics indicated that the original project design could not be

implemented. A new architecture was implemented. The second major metrics-based

decision was to extend the delivery date of the project. At the original deadline, metrics

indicated that the project was near completion. A short extension was given to help

complete the project.

5. SW-CMM Level 3 Summary

The SDIP development project performed almost all of the SW-CMM Level 3

activities. While some planning and design activities were not performed according to

defined processes, all other processes were followed. The development team also

improved on several Level 3 opportunities for improvement that were cited during the

SW-CMM Level 3 certification process. Requirements management activities were

improved, as well as risk management and metrics-based activities. Table 18 shows a

sample of how the Level 3 activities within the Integrated Software Management,

Software Product Engineering, and Peer Reviews KPAs were implemented on the SDIP

development project.

 50

KPA CF KP Key Practice Document
Defined

 Project Artifact /
Implementation

ISM Co 1 The project follows a written
organizational policy requiring that the
software project be planned and managed
using the organization's standard software
process and related process assets.

* ISM Policy
* ISM Standard
* ISM Procedure

* SDP

ISM

Ac 10 The project's software risks are identified,
assessed, documented, and managed
according to a documented procedure.

* ISM Policy
* ISM Standard
* ISM Procedure
* Software Risk
Management
Procedure
* Risk Assessment
Worksheet

* Risk matrix in the
SDP
* Risk section of
monthly IPRs
* IPR Quad Charts

ISM Ac 11 Reviews of the software project are
periodically performed to determine the
actions needed to bring the software
project's performance and results in line
with the current and projected needs of
the business, customer, and end users, as
appropriate.

* ISM Policy
* ISM Standard
* ISM Procedure
* In-Process
Review Procedure

* Monthly IPRs
* Quad Charts

SPE Co 1 The project follows a written
organizational policy for performing the
software engineering activities.

* SPE Policy
* SPE Standard
* SPE Procedure

* Process defined in
SDP
* SQA Plan
* Test Plan

SPE Ac 2 The software requirements are developed,
maintained, documented, and verified by
systematically analyzing the allocated
requirements according to the project's
defined software process.

* SPE Policy
* SPE Standard
* SPE Procedure
* Requirements
Management
Procedure

* Process defined in
SDP
* Peer review of
requirements
* Test Plan

SPE Ac 3 The software design is developed,
maintained, documented, and verified,
according to the project's defined software
process, to accommodate the software
requirements and to form the framework
for coding.

* SPE Policy
* SPE Standard
* SPE Procedure
* High Level
Design Procedure
* Detailed Design
Procedure

* SDP
* SDD
* Peer review of design

SPE Ac 4 The software code is developed,
maintained, documented, and verified,
according to the project's defined software
process, to implement the software
requirements and software design.

* SPE Policy
* SPE Standard
* SPE Procedure
* Code and Unit
Test Procedure

* SDP
* Peer review of code
* SDD
* Test Plan

SPE Me 1 Measurements are made and used to
determine the functionality and quality of
the software products.

 * Test Plan
* Metrics collection
reports

SPE Me 2 Measurements are made and used to
determine the status of the software
product engineering activities.

 * IPR Quad charts
* Project schedule
* Weekly project
meetings
* Project metrics

PR Co 1 The project follows a written
organizational policy for performing peer
reviews.

* PR Policy
* PR Standard
* PR Procedure

* Peer review records

PR Me 1 Measurements are made and used
determine the status of the peer review
activities.

* PR Policy
* PR Standard
* PR Procedure
* PR Templates

* Peer review records
on prep time, hours
spent, errors found

Table 18. SW-CMM Level 3 SDIP Activities

 51

B. PERFORMANCE TOWARDS SW-CMM LEVEL 4

The second goal of the SDIP project was the execution of SW-CMM Level 4

activities. The activities within the Quantitative Process Management and Software

Quality Management KPAs built on experience obtained from SW-CMM Level 3

activities. The Level 3 activities based on metrics collection and analysis are used in

Level 4 activities of product and process metrics-based management. Two factors lead to

the prevention of performing Level 4 activities.

The first factor was the software maturity level of Next Gen. During the SW-

CMM Level 3 certification process, Next Gen identified metrics-based activities as an

opportunity for improvement. This improvement would result in metrics experience

required to advance towards Level 4 activities. Toward this goal, significant effort was

allocated for Level 3 metrics-based activities. Based on the short lifecycle of the SDIP

project, resources were not available to both develop Level 3 experience and begin

performing Leve l 4 activities. Therefore, resources were only focused on Level 3

metrics-based activities.

The second factor preventing Level 4 activities was a decision made shortly after

the beginning of the project lifecycle. The original goal of process improvement was

based on the SW-CMM model. The next logical process improvement goal with this

model was certification at Level 4. Shortly after the beginning of the project, a decision

was made to transition from SW-CMM Level 4 certification to CMMI Level 3

certification. This decision negated the need for the project team to perform Level 4

activities.

Based on the software maturity level of Next Gen and the decision to move to the

CMMI model, SW-CMM Level 4 activities were not performed on the SDIP project.

 52

THIS PAGE INTENTIONALLY LEFT BLANK

 53

IV. CONCLUSIONS

Next Gen is dedicated to delivering quality software solutions for major US Army

systems. One of the concepts that Next Gen uses to assure the development of quality

software is process improvement. Dedication to continuous process improvement allows

Next Gen to constantly improve the way software is developed. The use of the Software

Engineering Institute’s Capability Maturity Model for Software allows Next Gen to

measure the level of software development maturity. Recent certification at SW-CMM

Level 3 is just one milestone on the journey of process improvement. The next

organizational goal is certification at SW-CMM Level 4.

The SDIP was proposed as a pilot project for process improvement within Next

Gen. The project was to improve upon SW-CMM Level 3 activities and begin

implementing Level 4 processes. The project was developed as a thesis project with

business value to the organization. Because the process improvement was performed

from the developer’s point of view, this thesis focused on activities normally encountered

by a software developer. The Level 3 KPAs that were focused on include the Integrated

Software Management, Software Product Engineering, and Peer Reviews KPAs. This

thesis focused on both of the Level 4 KPAs: Quantitative Process Management and

Software Quality Management.

A. PERFORMANCE OF SW-CMM LEVEL 3 ACTIVITIES

1. Integrated Software Management

Estimation was given significant effort by the development team. Estimates were

obtained on three major categories: software size, man-hours, and documentation.

Software size and man-hour estimates were regularly compared to current project status.

The documentation estimates uncovered a need to allocate resources with quality and

processes experience to assist in creating the project documents. Post project analysis

found that initial estimates were not accurate. This was directly related to the developers’

inexperience with determining initial estimates. More experience is necessary in

 54

determining more accurate initial estimates. The estimating activities performed by the

development team were found to be consistent with SW-CMM Level 3 requirements.

The SDIP development team planning activities were based on a hybrid iterative

and incremental lifecycle model. The lifecycle model was composed of planning,

designing, coding, and testing phases. Activities within each phase were defined. Due to

schedule and budget constraints, some of the lifecycle phases were not realized. The

development team did not complete the coding phase and did not encounter a formal

testing phase. Due to the extra effort required to establish better metrics-based activities,

significant planning resources were required. Planning activities were found to be

opportunities for improvement on the SDIP project based on SW-CMM Level 3

requirements.

Risk management activities were performed on the SDIP development project.

The risk management on the SDIP development project was broken down into four major

categories. The first category was risk assessment. Several risks were identified and

ranked. Mitigation techniques were established based on risk severity. The second

category was risk tracking. The identification, collection, and analysis of metrics was

used to help establish current development status. The status was then used to help

monitor potential risks. The third category of risk management was the use of

configuration management. CM was planned as a significant component of the

development process. The team did not progress far enough into the development

lifecycle to require the extensive use of configuration management. The final category of

risk management used by the development team was quality assurance. A quality

assurance representative was an integral part of the development efforts. The

representative assisted in metrics tracking and analysis. The four major risk management

activities used on the SDIP project provided significant process improvement based on

previous organizational processes.

 55

2. Software Product Engineering

Requirements management was seen throughout the entire development lifecycle.

Requirements were collected from the customer and indexed by a unique identification

number. Each requirement was assigned to a particular software component to help track

the requirement through design and coding. This tracking method would also be used in

the testing phase, had the schedule progressed that far. The requirements management

activities were found to be consisted with SW-CMM Level 3 requirements.

Software design activities performance can be seen on the SDIP project. Initial

use of existing code allowed the development team to use existing design documents.

When it was finally determined that existing code could not be used, it was apparent that

existing design documents could not be used. By this time, the schedule and resources

available did not allow for significant effort to be allocated for formal software design

activities. At the time of project cancellation, software coding was nearing completion,

even though only a portion of the design was performed. Only an estimated 55% of the

design of only one of the three software components was performed. Software design

was the major opportunity for improvement area on the SDIP project. SW-CMM Level 3

requirements were not met for software design activities.

Based on the cancellation of the SDIP project, the development team never

entered a formal testing phase. Formal test methods were planned for the SDIP system.

The verification methods were established for each of the forty-nine identified

requirements. Formal test procedures were not yet established at the time of project

cancellation. The testing resources had not yet been used to create the formal test

procedures. If the schedule would have been extended, there were no factors that would

have prevented a thorough application of formal testing. The testing activities performed

were consistent with processes defined against SW-CMM Level 3 requirements.

3. Peer Reviews

Next Gen defined processes on peer reviews were followed during the SDIP

project. Peer reviews were required on all software work products. Each work product

 56

that was developed had a peer review. Detailed metrics were collected on each peer

review that was held. A Software Quality Assurance representative attended all peer

reviews. The peer review activities were performed in accordance to SW-CMM Level 3

requirements.

4. Metrics

Metrics-based activities were cons idered a Next Gen Level 3 opportunity for

improvement. Considerable resources were allocated for the activities of defining,

collecting, and analyzing metrics. A Process Action Team was formed to use the Goal-

Question-Metric process to define which metrics were to be collected. A software tool

was developed in-house to collect metrics. Metrics were analyzed and used to make

several project decisions. Both design and schedule decisions were made based on

metrics collected. Once the project was completed, the effectiveness of the metrics

collected was assessed. A reduced set of metrics was determined to be most effective.

Projects that began after this assessment used the reduced metrics set. Significant process

improvements were made on metrics-based Level 3 activities.

B. PERFORMANCE OF SW-CMM LEVEL 4 ACTIVITIES

Two factors prevented Level 4 activities from being performed. The first factor

was based on limited project resources. Necessary manpower was not available to both

implement Level 3 process improvements and begin performing Level 4 activities within

the short duration of the SDIP project. The second factor was a decision made after the

beginning of the project to change the process improvement goal from SW-CMM Level 4

certification to the CMMI Level 3 certification. These factors negated the need for Level

4 activities.

C. SUMMARY

The SDIP project was to be developed with the goal of process improvement.

SW-CMM Level 3 activities were to be improved upon and Level 4 processes were to be

 57

defined. Based on the aggressive project schedule, adequate resources were not available

to both improve Level 3 processes and define Level 4 processes. The project used

available resources to improve Level 3 processes. Integrated Software Management,

Software Product Engineering, and Peer Reviews KPAs were focused on for this project.

It was found that significant process improvement was made in risk management,

requirements management, and metrics-based activities. Due to effort establishing more

improved metrics experience, planning activities were found to be opportunities for

improvement. Software Product Engineering and Peer Reviews activities were found to

be consistent with previous process levels. The most significant process improvement

was seen on metrics-based activities.

The SDIP project goal was software development process improvement. Though

Level 4 processes were not established, significant improvements were made on Level 3

processes. The SDIP project was a successful solution towards the goal of continuous

process improvement. Future process improvement activities should use the experience

gained from the SDIP project.

 58

THIS PAGE INTENTIONALLY LEFT BLANK

 59

IV. BIBLIOGRAPHY

[1] Software Engineering Institute. Software, Systems Engineering, and Integrated
Product Development Capability Maturity Models. Spring 2003
<http://www.sei.cmu.edu/cmm/cmms/transition.html>.

[2] Diaz, Michael and King, Jeff. How CMM Impacts Quality, Productivity, Rework,

and the Bottom Line. Published in CrossTalk, March 2002, pp. 9-14.

[3] Paulk et al. The Capability Maturity Model: Guidelines for Improving the Software

Process. New York, NY: Addison-Wesley, 1995.

[4] Olsem, Mike and Schneider, Randy. Achieving SA-CMM Level 2 at PM Abrams.

Published in CrossTalk, August 2002, pp.8-13.

[5] Fisher et al. Applying the Software Acquisition Capability Maturity Model.

Published in CrossTalk, August 2002, pp. 4-7.

[6] Fenton, Norma and Pfleeger, Shari Lawrence. Science and Substance: A Challenge

to Software Engineers. Published in IEEE Software, Vol. 11, No. 4, July 1994

[7] Dymond, Kenneth M. A Guide to the CMM: Understanding the Capability Maturity

Model for Software. Annapolis, Maryland: Process Transition International, Inc.,
2001.

[8] Brooks, Frederick P. JR. The Mythical Man-Month: Essays on Software

Engineering. Reading, MA: Addison-Wesley, 1995.

[9] Leveson, Nancy. Safeware: System Safety and Computers. New York, NY:

Addison- Wesley, 1995.

[10] Boehm, Barry W. Software Risk Management: Principles and Practices. Published

in IEEE Software, Vol. 8, No. 1, January 1991.

[11] Hall, Elaine M. Managing Risk: Methods for Software Systems Development.
New York, NY: Addison-Wesley, 1998.

[12] Hatley, Hruschka, and Pirbhai. Process for System Architecture and Requirements

Engineering. New York, NY: Dorset House Publishing, 2000.

[13] Leffingwell, Dean. Managing Software Requirements: a Unified Approach. New
York, NY: Addison-Wesley, 2000.

 60

[14] Hofmeister, Nord, Soni. Applied Software Architecture. New York, NY: Addison-
Wesley, 2000.

[15] Berzins and Luqi. Software Engineering with Abstractions. New York, NY:

Addison-Wesley, 1991.

[16] Bruegge, B. and Dutoit, A. (2000). Object-oriented Software Engineering:
Conquering Complex and Challenging Systems. Upper Saddle River, NJ:
Prentice-Hall, Inc., 2000.

[17] Larman, C. Applying UML and Patterns: An Introduction to Object-Orientated
Analysis and Design and the Unified Process (2nd Ed.). Upper Saddle River, NJ:
Prentice-Hall, Inc., 2002.

[18] Advanced Logistics Project. Cougaar Open Source Agent Architecture. Winter
2003 <http://www.cougaar.org/index.html>. 16 May 2002.

[19] Binder, Robert V. Testing Object-Oriented Systems. New York, NY: Addison-

Wesley, 2000.

[20] Egyed, A., Medvidovic, N., and Gacek, C. Component-Based Perspective on
Software Mismatch Detection and Resolution. Published in IEE Software
Engineering, Volume 147, Issue 6, December 2000, pp. 225-236.

[21] Gilb, Tom. The 10 Most Powerful Principles for Quality in Software and Software

Organizations. Published in CrossTalk, November 2002, pp. 4-8.

[22] Daich, Gregory T. Document Diseases and Software Malpractice. Published in

CrossTalk, November 2002, pp. 23-25.

[23] Weller, Edward F. Using Metrics to Manage Software Projects. Published in

Computer, Vol. 27, No. 9, September 1994.

[24] Natwick, Gary. Integrated Metrics for CMMI and SW-CMM. Published in

CrossTalk, May 2003, pp. 4-7.

[25] Pfleeger, Shari Lawrence and McGowan, Clement. Software Metrics in the Process

Maturity Framework. Published in J. Systems and Software, Vol. 12, 1990.

[26] Pfleeger, S. L. and Fitzgerald, J. C. Jr. Software Metrics Toolkit: Support for

Selection, Collection, and Analysis. Published in Information and Software
Technology, Vol. 33, No. 7, September 1991.

[27] Pfleeger, Fitzgerald, and Rippy. Using Multiple Metrics for Analysis of

Improvement. Published in Software Quality J., Vol. 1, 1992.

 61

[28] Perkins, Timothy K. The Nine-Step Metrics Program. Published in CrossTalk,

February 2001, pp. 16-19.

[29] Myers, Ware. Control the Software Beast with Metrics-Based Management.

Published in CrossTalk, August 2002, pp. 19-21.

[30] Florence, Al. CMM Level 4 Quantitative Analysis and Defect Prevention.

Published in CrossTalk, February 2001, pp. 20-23.

[31] Rosenberg, Dr. Linda H. What is Software Quality Assurance?. Published in

CrossTalk, May 2002, pp. 22-25.

[32] Oman, Paul W. A Case Study in SQA Audits. Published in Software Quality J.,

Vol. 2, 1993.

[33] Information Technology Office. DASADA Program Site. Winter 2003

<http://www.schafercorp-ballston.com/dasada/index2.html>.

[34] Jones, Capers. Software Cost Estimation in 2002. Published in CrossTalk, June

2002, pp. 4-8.

[35] Fulton, Gregory P. SEI CMM Level 5: Lightning Strikes Twice. Published in

CrossTalk, September 2002, pp. 22-24.

[36] Sheard, Sarah A. Twelve System Engineering Roles. Proceedings of INCOSE

Symposium, 1996.

[37] Wells, David. Using DASADA Runtime Probes and Gauges Throughout the

Software Lifecycle to Improved Software Quality for the Abrams M1A2 Main
Battle Tank. Unpublished Information Paper.

[38] Ray, W. Realizing Adaptive Systems. Proceedings of the OOPSLA 2002
Conference, Seattle, Washington, November 2002.

[39] Pazandak, Paul and Wells, David. ProbeMeister: Distributed Runtime Software

Instrumentation. Proceedings of 1st International Workshop on Unanticipated
Software Evolution, 2002.

 62

THIS PAGE INTENTIONALLY LEFT BLANK

 63

APPENDIX A – INITIAL USER REQUIRMENTS

The initial user requirements list can be seen in this email.

-----Original Message-----
From: Saboe, Michael
Sent: Monday, January 28, 2002 6:01 PM
To: Turnas, Daniel; Gersky, Douglas; Bohn, John
Cc: Pradeep, Kris; Nguyen, Danh; Zobair, Hamza; Bankowski, Elena; Miles, Chris; Slominski, Mark; Menko,
Russell
Subject: DID Test Article for Research team -- quote required S:7 Feb 02

Gentlemen (Dan, Doug, John)

We are in need of a test article that we can use for experiments. I want an estimate and a
plan (only for now) from you three to develop a "Skinny" DID with "cruise control". John
Bohn has had discussions with me about this.

This means
• some very small amount of functionality behind a virtual bench fascia.
• Engine speeds, temp, fuel, ground speed, throttle, break, fuel, pressures
• heater, lights,
• way points (lat/long), and
• a "signal to the engine" via a 1553 data packet
• to enable a toy cruise control for "drive to" way point sequence.
• stubs (will send an "inoperable message" or grey out) for all of the other functions

only at the top level in the DID -- e.g. diagnostics, fault management,
• This product will be in Ada.
• It will be built by composing the product from elemental routines already existing in

the DID.
• all other DID functionality will be left out.
• It will use an Ada 95 compiler, using Ada 83 restrictions
• External Interfaces will use existing DID Ada Specs, (e,g. don't rewrite a 1553

datapacket or 1553 data handler)
• Variable names will be identical and /or naming conventions of the tank will be

used
• -- minimize the addition of new variables (the cruise control is the exception)
• estimate the "nice to have" option cost for making this all endian neutral.

At the end of the day,

• I would like a X windows, PC system (this is similar to the OASIS D2T2 system)
that I can give to academic and DARPA researchers that is representative of our
systems.

• This test article needs to "drop in" to
• our test environment.
• a virtual bench environment (D2T2 at the door)

• It needs to be compatible with the statistical usage test models in the future.

 64

You will

• Keep requirements under control
• use our development process, and
• collect metrics,
• do quality control,
• CM, and
• testing as if it were the main battle tank. -- we will use the existing tank test scripts

and procedures -- this is very important
• You will have weekly status reports, quad charts and metric reporting
• Demo incremental capability to me, the customer, (and DARPA PIs as required)
• stick to a schedule and budget and track it.
• You will document the interfaces and general structure so that a PI can understand

• how to interact and
• install and
• use the test article in an inexpensive development environment (e.g. free Gnu

Gnat Ada compiler)
• You will have to work with our existing lab manuals to document and explain how

the "drop - in" interface is used for the PI user.
• Provide transition orientation to NextGen PI staff.

This will be used in many experiments as a calibration tool. Your effort, schedule,
defects, etc will be the measure others will try to improve upon.

If we like your estimate and plan, and you can convince us that you three are the
ones for establishing the "best we can do", I will determine a start time and make
appropriate arrangements for us to get this done.

It would be nice to have an operational product with some functionality and defined
interfaces to the environment two months after start of work.

Mike

SDIP-22-4-1 65 Version 2.0

APPENDIX B – SOFTWARE DEVELOPMENT PLAN

Skinny Driver’s Instrument Panel (SDIP)
Software Development Plan

June 27, 2002

US ARMY TACOM
Tank Automotive Research, Development and Engineering Center

Next Generation Software Engineering
AMSTA-TR-R
Mailstop #265

Warren, MI 48397-5000

 ___________________________________ __________
 RAUL ONORO, SENIOR CONSULTANT DATE
 AUTHOR

APPROVAL ___________________________________ __________
 CHRISTOPHER OSTROWSKI DATE
 SYSTEMS ENGINEER

APPROVAL ___________________________________ __________
 JOHN BOHN DATE
 PROJECT LEAD

APPROVAL ___________________________________ __________
 KAREN LAFOND DATE
 SQA MANAGER

APPROVAL ___________________________________ __________
 JOSEPH SZAFRANSKI DATE
 SEPG LEAD

FINAL APPROVAL ___________________________________ __________
FOR USE MICHAEL S. SABOE, PH.D DATE
 ASSOCIATE DIRECTOR
 NEXT GENERATION SOFTWARE
 ENGINEERING TECHNOLOGY AREA

Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1 66 Version 2.0

Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1 67 Version 2.0

DOCUMENT REVISION HISTORY

Version Date Author Description

1.0 4/08/92 John Bohn Initial draft of document

1.1 6/11/02 Raul Onoro Document rework after project re-plan made in May 2002.
Document was reformatted and merged into the NextGen SDP
(draft) Template.

1.2 6/18/02 Raul Onoro Document updated with input from Chris Ostrowski on
Jun/12/02 and other inputs.

1.3 6/18/02 Raul Onoro Updates from meeting with Chris Ostrowski.

1.4 6/26/02 Raul Onoro Updates from Peer Review meeting completed 6/25/02.

2.0 6/27/02 Raul Onoro Updates from follow-up Peer Review meeting held 6/27/02. This
version of document was accepted and will be signed-off by
management.

Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1 68 Version 2.0

TABLE OF CONTENTS

1 INTRODUCTION..70

1.1 PROJECT OVERVIEW...70
1.2 PROJECT DELIVERABLES ...70
1.3 SDP REVISION AND REPLAN ...71
1.4 REFERENCE MATERIALS ...71
1.5 DEFINITIONS AND ACRONYMS...72

2 PROJECT ORGANIZATION..73

2.1 PROCESS MODEL ...73
2.2 ORGANIZATIONAL STRUCTURE ...73
2.3 ORGANIZATIONAL BOUNDARIES AND INTERFACES...73
2.4 PROJECT RESPONSIBILITIES..73

3 MANAGERIAL PROCESS..75

3.1 MANAGEMENT OBJECTIVES AND PRIORITIES...75
3.2 ASSUMPTIONS, DEPENDENCIES AND CONSTRAINTS..75
3.3 PROJECT TRACKING METHODS..75
3.4 METRICS...76
3.5 RISK MANAGEMENT ...77
3.6 STAFFING PLAN...78

4 DEVELOPMENT PROCESS...78

4.1 METHODS, TOOLS, AND TECHNIQUES...78
4.1.1 Computing Environment..78
4.1.2 Software Development Folder..79

4.2 SOFTWARE DOCUMENTATION ..79
4.3 PROJECT SUPPORT FUNCTIONS ...79

4.3.1 Software Trouble Reports ...79
4.4 POST DELIVERY SUPPORT ..79
4.5 PROCESS TAILORING...79

5 PROJECT ESTIMATES AND CRITICAL RESOURCES ..80

5.1 WORK ELEMENTS...80
5.2 DEPENDENCIES..80
5.3 RESOURCE ESTIMATES...80
5.4 BUDGET AND RESOURCE ALLOCATION ...81
5.5 SCHEDULE ..81
5.6 PROJECT TRAINING PLAN..81

6 SUPPORT FUNCTIONS..82

6.1 SOFTWARE CONFIGURATION MANAGEMENT ...82
6.2 SOFTWARE QUALITY ASSURANCE ..82
6.3 SOFTWARE TESTING ..82

APPENDIX A – GOAL/QUESTION/METRICS...83

GOAL 1: IMPROVE THE ABILITY TO DELIVER PROJECTS ON SCHEDULE ...83
GOAL 2: IMPROVE ABILITY TO ESTIMATE RESOURCE REQUIREMENTS..85
GOAL 3: MANAGE PROJECT WITHIN BUDGETED COST ...86
GOAL 4: IMPROVE DELIVERED QUALITY ...87
GOAL 5: IMPROVE PROJECT COMMUNICATION AND COLLABORATION...88
GOAL 6: IMPROVE ABILITY TO ESTIMATE PROJECT DELIVERABLES...90

Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1 69 Version 2.0

Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1 70 Version 2.0

1 INTRODUCTION
The purpose of this document is to describe the Software Development Plan (SDP) for the Skinny Driver’s
Instrument Panel (SDIP) being developed within the Next Generation (NexGen) software development
organization.

1.1 Project Overview

The goal of the SDIP Project is to produce Abrams M1A2 Main Battle Tank simulation software
implementing a functionally reduced version of the graphical user interface of the Driver’s Integrated
Display (DID), and an Autopilot user/system control interface. The SDIP software is also intended to be
made available to non-governmental entities such as the TACOM DARPA DARTS Principal Investigators
for research and testing purposes.

The project was originally planned to begin February 2002 and end July 01, 2002.

1.2 Project Deliverables

The SDIP project has the following deliverables:

1. Software Development Plan (SDP)

2. Software Requirements Specification (SRS)

3. Software Design Document (SDD)

4. Software Configuration Management Plan (SCMP)

5. Software Quality Assurance Plan (SQAP)

6. Software Test Plan (STP)

7. Software Test Coverage Outline

8. Software Test Cases

9. Lessons Learned Report

10. SDIP CSC (code)

11. Autopilot CSC (code)

12. 1553 Interface CSC (code)

13. User’s Guide and Installation Manual

Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1 71 Version 2.0

1.3 SDP Revision and Replan

Whenever there is a significant change to the project, the impact of that change is assessed. Based on this
assessment, the changes are negotiated with all affected groups. Any resulting changes are then
incorporated into the related software plans or work products.

The Software Development Plan for this project will be updated if there are significant changes to:

• Requirements

• Schedule

• Manpower resources

• Major technology changes

On May 24, 2002 a project re-plan was completed due to major changes in technology assumptions.
Specifically, it was determined that SDIP would not be based on Oasis Driver’s Integrated Display (DID)
D2T2 software.

1.4 Reference Materials

Document Title Document Number
Software Requirements Specification for the Driver’s
Integrated Display of the Abrams M1A2 Tank.

SRS-AS15420 Revision B,
March 15, 2000.

Skinny Driver’s Instrument Panel Software Requirements
Specification.

Version 2.00, 6/18/02.
Next Generation Software Engineering
Technology Area.

US System/Segment Design Document.
Version SW 2.5.1, Driver’s Station.
Volume 3-1 of 5.

SS-US00001 December 1997.
General Dynamics Land Systems Division.

Software Design Document for the Driver’s Integrated
Display of the Block Improved Abrams Tank (M1A2.)

SDD-SA15420 Revision C, 4 April 1997
General Dynamics Land Systems Division.

Data Packet Specifications Volume 2 – DID.

DP-SA15132 Vol 2, Version 5.0, October
1997.
General Dynamics Land Systems Division.

NextGen software policies, standards, and procedure
documents.

(Various).

Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1 72 Version 2.0

1.5 Definitions and Acronyms

Acronym Definition
AGIL Adaptable Graphics Interface Layer. A tool for developing graphical user interfaces

(e.g., application screens)
API Application Programmer Interface
CID Commander’s Integrated Display
COTS Commercial Off the Shelf
CSC Computer Software Component
DARPA Defense Advanced Research Projects Agency
DARTS Dependable Automated Reconfigurable Technology for Software
DCS DCS Corporation
Defects Software problems logged as STRs and found after official delivery to the customer
DID Driver’s Integrated Display
Errors Software problems logged as STRS and found prior to official delivery to the customer
E-Team NextGen Software Engineering team
GB Gigabytes
GWT Government Witnessed Testing
H/TEU Hull/Turret Electronics Unit (M1A2 US)
H/TMPU Hull/Turret Mission Processing Unit
IPR In-Process Review meeting
LRU Line Replaceable Unit
NextGen Next Generation Software Engineering Technology Area
NPS Naval Postgraduate School
M1A2 Abrams Main Battle Tank
MB Megabytes
POC Point of Contact
PR Peer Review meeting
R-Team NextGen Research and Infrastructure team
SDF Software Development File
SCCB Software Configuration Control Board
SCM Software Configuration Management
SCMP Software Configuration Management Plan
SCR Software Change Request
SDD Software Design Document
SDF Software Development File
SDIP Skinny Driver’s Instrument Panel
SDP Software Development Plan
SEPG Software Engineering Process Group
SQA Software Quality Assurance
SQAP Software Quality Assurance Plan
SRS Software Requirements Specification
STP Software Test Plan
STR System Trouble Report
SW Software
SWE Software Engineer
TACOM Tank-automotive and Armaments Command
TARDEC Tank Automotive Research, Development, and Engineering Center

Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1 73 Version 2.0

Acronym Definition
TDP Abrams Common Software Library Technical Data Package

2 PROJECT ORGANIZATION

2.1 Process Model

The SDIP project will use the traditional “waterfall” software development model. Only one iteration of
software development is planned.

2.2 Organizational Structure

The project is wholly contained within the NextGen organization. The project team is described in Section
2.4.

2.3 Organizational Boundaries and Interfaces

The customer is the NextGen Associate Director, Michael S. Saboe, Ph.D. The project team will work with
NextGen’s SCM, SQA, Software Testing, and SEPG representatives as listed in Section 2.4.

The Point of Contact (POC) is the NextGen Systems Engineer, Chris Ostrowski.

2.4 Project Responsibilities

The project staff will follow NextGen software policies, standards, and procedures. The project staff will
also follow the project-specific plans.

Function Assigned Responsibilities

Project Lead John Bohn • Maintain project schedule.
• Develop SDP (with support from consultant).
• SW design and coding.
• Review and maintain the Project Risks table.
• Participate in Peer Reviews.
• Approve Test Plan, Test Coverage outline, and Test

Cases.
• Develop and present the Lessons Learned report.

Software Engineer Matt Behnke
George Hamilton

• SW design and coding.
• Participate in Peer Reviews.
• Provide input into the Lessons Learned report.

Software Engineer Doug Gersky • Develop SRS.
• SW design and coding.
• Participate in Peer Reviews.
• Provide input into the Lessons Learned report.

Software Engineer Dan Turnas • Develop SDD.
• SW design and coding.
• Participate in Peer Reviews.
• Provide input into the Lessons Learned report.

Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1 74 Version 2.0

Function Assigned Responsibilities
SQA Manager Karen LaFond • Provide input to project planning activities.

• Develop SQA Plan.
• Verify the project team activities are compliant with

policies, standards, and procedures.
• Facilitate definition of measurable goals for product

and process quality.
• Monitor that IPRs, Peer Reviews, and project meetings

are held as planned.
• Monitor that project risks are being reviewed,

recorded, and tracked.
• Report SQA status and issues to NextGen Associate

Director.
• Raise non-compliance issues (that cannot be resolved

at project level) to Associate Director.
• Ensure metrics data is collected and recorded.
• Participate in Peer Reviews or assign SQA

representative.
• Provide input into the Lessons Learned report.

SQA Engineer Karen LaFond’s staff • Perform reviews and audits per SQAP.
• Raise concerns of non-compliance issues to Project

Lead and SQA Manager.
• Witness system testing activities.
• Provide input into the Lessons Learned report.

SEPG Lead Joseph Szafranski • Coach project team on NextGen software policies,
standards, and procedures.

• Audit SQA activities.
• Provide input into the Lessons Learned report.

SCM Manager Russell Menko • Develop SCM Plan for project.
• Perform / manage Software Configuration Management

activities.
• Provide input into the Lessons Learned report.

Software Test
Manager

Nadia Abadir • Manage testing activit ies.
• Approve Test Plan, Test Coverage outline, and Test

Cases.
• Provide input into the Lessons Learned report.

Software Test
Engineer

Nadia Abadir’s staff • Develops Test Plan, Test Coverage Outline, and Test
Cases.

• Perform Testing.
Systems Engineer Chris Ostrowski • Point of Contact for the project.

• Assist and coach the project team in project
management and technical activities.

• Assist in resolving non-compliance issues that cannot
be resolved at the project level.

• Approve SDP, SQAP, and SCMP documents.
• Approve Test Plan, Test Coverage outline, and Test

Cases.
• Participate in Peer Reviews.
• Provide input into the Lessons Learned report.

Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1 75 Version 2.0

Function Assigned Responsibilities
Associate Director Michael S. Saboe,

Ph.D.
• NextGen Associate Director.
• Customer.
• Resolve non-compliance issues that cannot be

resolved at the project level.
• Provide input into the Lessons Learned report.
• Provide final approval of the SDP.

3 MANAGERIAL PROCESS

3.1 Management Objectives and Priorities

The goal of the SDIP Project is to produce Abrams M1A2 Main Battle Tank simulation software
implementing a functionally reduced version of the graphical user interface of the Driver’s Integrated
Display (DID), and an Autopilot user/system control interface.

The SDIP software is also intended to be made available to non-governmental entities such as the TACOM
DARPA DARTS Principal Investigators for research and testing purposes.

3.2 Assumptions, Dependencies and Constraints

Assumptions:

• The software engineering team is available full time.

• Ada 95 programming language will be used.

• PC based Redhat Linux (version 7.3) operating system will be used.

Dependencies:

• People are time constrained with other projects and commitments.

Constraints:

• The project has been scheduled in a “time box” beginning February 2002 and ending July 01, 2002.

3.3 Project Tracking Methods

The Project will be tracked using the following methods:

• Project Team Meetings – In these meetings, the current progress is compared against the
schedule. Issues and concerns are discussed and addressed. New Action Items are reviewed and
assigned. Project Meeting minutes will be published within three business days from the meeting
date.

• Monthly IPRs – IPRs are conducted each month with NextGen senior management. At the IPR,
the Project Lead reports on the status of project progress, open action items, deviations from the
software development plan, project risks, and recommendations for remedial action. IPRs are the
primary means of reporting problems to senior management.

• Action Items – Action Items for the project will be collected, logged, and tracked to completion.
The Project Lead manages the Action Items log for the project and reports on their status.

Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1 76 Version 2.0

3.4 Metrics

Metrics data are being collected throughout the project. The main purpose of these metrics is to manage
the project, gather information about the project, to define software development baseline(s), and to assist
future process improvement activities.

The metrics data identified for this project address the following areas:

1. Delivery of projects on schedule.

2. Estimation of resource requirements.

3. Management of project within budgeted cost.

4. Product Quality.

5. Project communication and collaboration.

6. Estimation of project work product deliverables.

Refer to Appendix A for details on the metrics selected for this project.

In order to maintain progress on the project, the tracking metrics in the following table will be used. These
metrics identify situations requiring immediate attention and specify the actions to be taken to resolve the
situations.

Tracking Metric Lower Control

Limit
Corrective Action –
Exceeded Lower
Control Limit

Upper
Control
Limit

Corrective
Action –
Exceeded
Upper Control
Limit

Project Schedule:

• Number of tasks and
milestones actually
completed by date
measured. Metric 1-2.

70% of tasks
and milestones
actually
completed on or
ahead of
schedule.

• Project Lead
addresses issues
affecting schedule.

• Project Lead re-plans
the project.

130% of
tasks and
milestones
actually
completed
on or ahead
of schedule.

Project Lead
adjusts
schedule for
earlier
completion.

Management Reviews:

• Number of IPR
meetings held (per
plan). Metric 5-2.

75% of planned
IPR meetings
actually held.

• Project Lead
coordinates IPR
meeting with NextGen
Associate Director.

N/A N/A

Team Communication:

• Number of project team
meeting held (per plan).
Metric 5-9.

80% of planned
meetings
actually held.

• Project Lead resolves
issues preventing
meetings.

N/A N/A

Process:

• Number of Peer
Reviews held (per
plan). Metric 5-19.

85% of work
products
completing Peer
Reviews per
plan.

• Project Lead resolves
issues preventing
Peer Reviews.

• Project Lead ensures
Peer Reviews are
being held.

N/A N/A

Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1 77 Version 2.0

3.5 Risk Management

The initial set of project risks and their assessment are identified in the table below.

Risk Severity Probability Risk Level Mitigation Strategy
Diversion of
development team to
other projects
including GWT.

High High High • Keep management and customer up
to date on status.

Inability to meet
project goals due to
inexperienced
development team.

High High High • Make extensive use of NextGen and
DCS domain experts and NPS
course work.

Inability to meet
project goals due to
development and
implementation of
CMM related
processes.

High High High • Ensure project team gets “on the
job” training of the new CMM
related processes.

• Get assistance from senior
consultants.

Aggressive schedule. High Medium High • Develop detailed project plan.
• Ensure resources are available to

work on the project.
• Address schedule delays early.
• Work with customer in the

prioritization of functionality to be
delivered.

Previously performed
class work may not be
sufficient to meet the
SDIP project specific
requirements.

High Medium High • Rework class project to meet SDIP
project requirements.

Development
environment is flawed
or not understood.

High Medium Medium • Work with domain experts.

Domain experts are
unavailable.

High Medium Medium • Develop contacts with other
personnel with required expertise.

Misunderstood
requirements.

High Medium Medium • Work closely with customer.

PC unavailable. High Medium Medium • Acquire PC for project as soon as
possible.

Requirements creep. Medium Low Low • Requirements management.
Hardware failure /
data loss.

High Low Low • Backups.

Illness and vacations. Medium Low Low • Early identification of vacation
plans.

The SDIP project Risk Management table is located in the SDIP Software Development Folder (SDF). The
project risks will be evaluated and the table updated on a periodic basis . High level risks will be reviewed
at SDIP IPR meetings.

Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1 78 Version 2.0

3.6 Staffing Plan

The team will be composed of NextGen E-Team members who have gained some experience with the tank
software performing maintenance as required by STRs or testing. The Project lead and Software Engineers
are expected to be available at a minimum 65% of their time during the duration of the project. See Section
2.4 for Roles, Assignments, and Responsibilities.

4 DEVELOPMENT PROCESS

4.1 Methods, Tools, and Techniques

4.1.1 Computing Environment

The Project requires the following computing environment:

• PC equipment with the following minimum configuration:
− Pentium III 450 Mhz processor
− 128 MB of RAM
− 10 GB of Disk
− Display capable of supporting 1024 x 768 resolution
− Ethernet interface card

• PC based Readhat Linux (version 7.3) operating system

• Ada 95 compiler (GNAT)

• Ada 95 debugger

• X Windows client software (X Manager)

• AGIL and related libraries and scripts

• Microsoft Office 2000

• Microsoft Project 2000

• Clearcase (SCM tool)

• 1553 interface card (optional)

The Project requires the follow Lab environment:

• M1A2 System Bench for testing.

• Bench 1553 Emulator software for PC.

Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1 79 Version 2.0

4.1.2 Software Development Folder

The Project will maintain a Software Development Folder (SDF) where all project related documents
and other materials will be maintained. The electronic project folder is located on the “Ice” NT server
under the “\\Ice\Nt-shared\Sdip” directory path.

At a minimum, the SDF contains the project deliverables listed in Section 1.2.

4.2 Software Documentation

The Project’s staff will produce various documents. See Section 1.2 for the list of Project Deliverables. See
Section 6. for details.

4.3 Project Support Functions

The SDIP Project is supported by personnel from the SCM, SQA, Test, and SEPG organizations.

4.3.1 Software Trouble Reports

Software problems discovered after the start of formal testing by the Software Test organization will
be logged formally as Software Trouble Reports (STRs). STRs will be reviewed by a project specific
SCCB and SCRs will be created as appropriate.

Significant problems or updates to project documents, discovered after their Peer Review and
management sign-off, will be logged formally as STRs.

Software problems logged as STRS and found prior to official delivery to the customer are named
“errors”.

Software problems logged as STRs and found after official delivery to the customer are named
“defects”.

STRs and SCRs will be stored in the SCM database.

4.4 Post Delivery Support

The NextGen R-Team will be responsible for providing software support for the SDIP system after SDIP has
been released for use.

4.5 Process Tailoring

This project will follow the NextGen software development policies, standards, and procedures.

Project tailoring (deviation from NextGen process), is described in the table below.

Document Title Document Number Tailoring Performed
None identified

Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1 80 Version 2.0

5 PROJECT ESTIMATES AND CRITICAL RESOURCES

5.1 Work Elements

The project will consist of the activities identified in the master project schedule located in the SDIP
Software Development Folder (SDF).

5.2 Dependencies

The project has the following dependencies:

• Autopilot software based on previous class work.

5.3 Resource Estimates

The project requires four software engineers for the core work and a systems engineer performing technical
consulting and acting as the POC.

Software engineers are assumed to be available 65%, which allows for sick time, 1 week trip to NPS, and E-
Team activity support.

The original estimates for the amount of software to be developed for SDIP are shown below.

SDIP Computer Software Components KLOC
SDIP CSC 1.5
Autopilot CSC 0.5
1553 Interface CSC 1.5

Total 3.5

The initial effort estimates below are based on SDIP code size estimate of 3.5 KLOC.

Development Phase/Activity Effort Hrs. Estimate
Planning 176
Tracking 120
Reviews and Audits 80
Debriefing 8
Analysis 152
Requirements 240
Design/Code 1104
Testing 40
SQA 394
SCM 40

Total 2354

Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1 81 Version 2.0

5.4 Budget and Resource Allocation

The SDIP Project is not managing a detailed budget. Therefore, a budget was not allocated to the separate
phases of the project. Instead, cumulative project costs are determined by the labor metrics collected by
the project.

Task assignments and resource allocations are defined and tracked in the project schedule. For details see
the project schedule located in the SDIP Software Development Folder (SDF).

5.5 Schedule

The schedule will be maintained separately in a Microsoft Project 2000 file located in the SDIP Software
Development Folder (SDF).

Below is a high level view of the initial schedule.

5.6 Project Training Plan

The project requires the following training:

• Two day AGIL training course supplied by DCS. This training was held May 16 and 17, 2002.
Training session was attended by: John Bohn, Doug Gersky, Dan Turnas, and Chris Ostrowski.

ID Task
1 SDIP

2 Tracking

23 PLANNING

61 Analysis

65 Design

70 Autopilot

84 Instrument Panel

91 Communications

97 1553 API and Emulation

110 Test Plan

114 System integration and build

115 System Test

116 User and Installation Manual

122 CM build

123 Project Brief to

127 Project Post Mortem

6/25 6/26
6/27 6/28

7/1 7/1

2/17 3/3 3/17 3/31 4/14 4/28 5/12 5/26 6/9 6/23 7/7 7/21
Februar Marc April May June July

Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1 82 Version 2.0

6 SUPPORT FUNCTIONS

6.1 Software Configuration Management

The Software Configuration Management organization plans, advises, and manages (under configuration
management) the project’s work products and deliverables. A Software Configuration Management (SCM)
Plan describes in detail the SCM activities. The SCM Plan is located in the SDIP Software Development
Folder.

All project deliverables will be placed under configuration control after completing their Peer Review and
management sign-off. Refer to Section 1.2 for the list of project deliverables.

Once the SDIP CSCI is ready for testing, the Project Lead will notify the SCM manager. SCM will then
perform the software “build” for the SDIP CSCI using scripts or instructions from the development team.
The SCM software “build” is then turned over to the Software Test organization for testing.

6.2 Software Quality Assurance

The SQA organization plans, advises, reviews, and insures the project is following the NextGen policies,
standards, and procedures.

The SQA activities for this project include:

• Planning

• Tracking

• Reviewing and Auditing (product and process)

• Project Debriefing / Post Mortem Analysis

For further details , see the SQA Plan located in the SDIP Software Development Folder.

6.3 Software Testing

The Software Testing organization plans, develops, executes, and documents results of software tests.

The Software Test Plan, Test Coverage Outline, and Test Cases describe in detail the software testing
activities for this project. For further details , see the software test documents located in the SDIP Software
Development Folder.

Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1 83 Version 2.0

APPENDIX A – GOAL/QUESTION/METRICS

NOTATIONS:

• Table cells that are highlighted represent metric collection activities at the end of the project.

• “Collected by & When” column choices: Now, At a given Document Review, Monthly IPR, or Post-
Development.

• “Projected Effort” column scale: Low (< 10 minutes); Medium (11-30 minutes); High (> 30 minutes) to
collect.

Goal 1: Improve the Ability to Deliver Projects on Schedule

Question # Metric Collected by &
When

Projected
Effort

To be
Reported By

& When
1-1 Number of tasks and

milestones planned for
completion by date
measured

 SQA Engineer &
Project Lead –
Monthly for IPR

Low SQA Manager
for IPR

1-2 Number of tasks and
milestones actually
completed by date measured

 SQA Engineer &
Project Lead –
Monthly for IPR

Low SQA Manager
for IPR, Project
Lead – post
mortem

Are projects being
completed on time?

1-3 Project duration variance Project Lead –
Post development

Medium Project Lead –
post mortem

1-4 Percent of lifecycle phases
completed on time

Project Lead –
Post development

High Project Lead –
post mortem

1-5 Phase duration variance Project Lead –
Post development

High Project Lead –
post mortem

Are lifecycle
phases being
completed on
schedule?

1-6 Percent phase
milestones/tasks completed
on time

Project Lead –
Post development

High Project Lead –
post mortem

1-7 Percent project deliverables
completed on schedule

Project Lead –
Post development

Medium Project Lead –
post mortem

1-8 Delivery variance Project Lead –
Post development

Medium Project Lead –
post mortem

Are deliverables
being completed on
schedule?

1-9 Average project deliverable
variance

Project Lead –
Post development

Medium Project Lead –
post mortem

Are senior
management
reviews conducted
in a timely manner?

1-9 Percent senior management
reviews (IPRs) conducted
per schedule

 SQA Engineer –
Post development

Medium SQA Manager –
post mortem

Are SQA activities
scheduled?

1-10 Percent of SQA activities
scheduled

 SQA Engineer –
Post development

Medium SQA Manager –
post mortem

Are SQA activities 1-11 Percent SQA activities SQA Engineer – Medium SQA Manager –

Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1 84 Version 2.0

Question # Metric Collected by &
When

Projected
Effort

To be
Reported By

& When
completed on time? completed on time Post development post mortem

1-12 Total number of
requirements

Project Lead -
Monthly for IPR

Low Project Lead for
IPR, Project Lead
– post mortem

1-13 Number of requirements
added

Project Lead -
Monthly for IPR

Low Project Lead for
IPR, Project Lead
– post mortem

1-14 Number of requirements
deleted

Project Lead -
Monthly for IPR

Low Project Lead for
IPR, Project Lead
– post mortem

Are project
requirements
managed?

1-15 Number of existing
requirements that were
modified

Project Lead -
Monthly for IPR

Low Project Lead for
IPR, Project Lead
– post mortem

Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1 85 Version 2.0

Goal 2: Improve Ability to Estimate Resource Requirements

Question # Metric Collected by &
When

Projected
Effort

To be
Reported By

& When
Is effort estimated
for the project?

2-1 Project has effort estimates
(Y/N)

Project Lead @
SDP

Low *
People

Project Lead @
1st IPR after SDP
has Peer Review

Do project effort
estimates
accurately predict
actual project
effort?

2-2 Project effort variance Project Lead @
Post development

Medium Project Lead @
Post
Development

Is effort estimated
for each lifecycle
phase?

2-3 Percent of lifecycle phases
with effort estimates

Project Lead @
SDP

Low *
People

Project Lead @
1st IPR after SDP
has Peer Review

Do lifecycle phase
efforts estimates
accurately predict
actual lifecycle
phase effort?

2-4 Phase effort variance Project Lead @
Post development

Medium Project Lead @
Post
Development

Is effort estimated
for each phase
deliverable?
SRS & SDD

2-5 Percent of deliverables for
which there are estimates

Project Manager
@ SDP

Low Project Lead @
1st IPR after SDP
has Peer Review

Do deliverable
effort estimates
accurately predict
actual deliverable
effort?
SRS & SDD

2-6 Variance per deliverable for
which there are estimates

Project Lead @
Post development

Medium Project Lead @
Post
Development

Is risk identification
being performed?

2-7 Projects risks been identified
(Y/N)

Project Lead @
SDP

Low Project Lead @
1st IPR after SDP
has Peer Review

Were there any
unexpected risks?

2-8 How many per project? Project Lead @
Post development

Medium Project Lead @
Post
Development

Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1 86 Version 2.0

Goal 3: Manage Project Within Budgeted Cost

Question # Metric Collected by &
When

Projected
Effort

To be
Reported By

& When
Have all cost
categories been
estimated for this
project?

3-1 Does the project have costs
estimated by appropriate
categories? (Y/N)

Category: Labor hours.
(Collected by activity, e.g.,
Planning, Tracking,
Design/Code, ...)

Using average labor rate per
team member roles.

SDIP project will NOT
estimate or track costs for
other categories such as:
• Materials
• Training
• Subcontractors
• Hardware
• Software – COTS
• Travel

Project Lead @
SDP

Medium Project Manager
@ SDP

3-2 Project cost variance overall Project Lead @
Post Development

Medium Project Lead @
Post
Development

3-3 Percent of project cost
variance overall

Project Lead @
Post Development

Medium Project Lead @
Post
Development

Do project cost
estimates
accurately predict
actual project costs
by category?

3-4 Cost variance per category. Project Lead @
IPR

Medium Project Lead @
IPR

Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1 87 Version 2.0

Goal 4: Improve Delivered Quality

Question # Metric Collected by &
When

Projected
Effort

To be
Reported By

& When
How effective is the
process in
detecting defects?

4-1 Number of Project defects
detected per deliverable after
the deliverable has been
signed off. (STRs)

 SQA Engineer –
As occurs

Low SQA Manager @
Monthly SQA
IPR

How early are
errors identified?

4-2 Types of errors detected per
phase

 SQA Engineer –
As occurs

Low SQA Manager @
Monthly IPR

 4-3 Average Peer Review
preparation time.

 SQA Engineer –
As occurs

Medium SQA Manager @
Monthly IPR

 4-4 Average number of errors
found at Peer Reviews

 SQA Engineer –
As occurs

Low SQA Manager @
Monthly IPR

 4-5 Average number of major
errors found at Peer Reviews

 SQA Engineer –
As occurs

Low SQA Manager @
Monthly IPR

 4-6 Average number of minor
errors found at Peer Reviews

 SQA Engineer –
As occurs

Low

SQA Manager @
Monthly IPR

How effective are
we in resolving
defects?

4-7 Average time to resolve
project defects (STRs)

 SQA Engineer –
As occurs

Low SQA Manager @
Monthly IPR

How satisfied are
our customers?

4-8 Customer satisfaction
survey rating

 SQA Engineer –
Post development

Medium SQA Manager @
Monthly IPR

Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1 88 Version 2.0

Goal 5: Improve Project Communication and Collaboration

Question # Metric Collected by &
When

Projected
Effort

To be
Reported By

& When
5-1 Number of IPRs planned

 SQA Engineer –
1 per month

Low SQA Manager @
Monthly IPR

5-2 Number of IPRs held SQA Engineer –
monthly

Low SQA Manager @
Monthly IPR

5-3 Percent of IPRs for which
materials to be reviewed
were distributed on-time
(within 1 business day) prior
to the meeting

 SQA Engineer –
monthly

Low SQA Manager @
Monthly IPR

5-4 Number of IPR meetings that
started on-time – within 5
minutes of posted meeting
notice.

 SQA Engineer –
monthly

Low SQA Manager @
Monthly IPR

5-5 Number of IPR meetings
where action items
addressed

 SQA Engineer –
monthly

Low SQA Manager @
Monthly IPR

5-6 Total number of SDIP
Action Items per month

NextGen Dept.
Admin. – monthly

Low SQA Manager @
Monthly IPR

Are senior
management
meetings (IPRs)
planned and
conducted?

5-7 Total number of SDIP
CLOSED Action Items per
month

NextGen Dept.
Admin. – monthly

Low SQA Manager @
Monthly IPR

5-8 Number of project meetings
planned

Project Lead – as
scheduled

Low *
projects

SQA Manager @
Monthly IPR

5-9 Number of project meetings
held

Project Lead – as
they occur

Low *
projects

SQA Manager @
Monthly IPR

5-10 Percent of project meetings
for which materials to be
reviewed were distributed
on-time (within 2 business
days) prior to the meeting

 SQA Engineer –
as they occur

Low *
projects

SQA Manager @
Monthly IPR

5-11 Number of project meetings
with an agenda

 SQA Engineer –
as they occur

Low *
projects

SQA Manager @
Monthly IPR

5-12 Number of project meetings
which addressed at least
80% of the agenda items

 SQA Engineer –
as they occur

Low *
projects

SQA Manager @
Monthly IPR

5-13 Number of project meetings
for which minutes were
published on-time (within 2
business days)

 SQA Engineer –
as they occur

Low *
projects

SQA Manager @
Monthly IPR

Are project
meetings planned
and conducted?

5-14 Number of project meetings
that started on-time (within 5
minutes of posted meeting
notice)

 SQA Engineer –
as they occur

Low *
projects

SQA Manager @
Monthly IPR

Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1 89 Version 2.0

Question # Metric Collected by &
When

Projected
Effort

To be
Reported By

& When
5-15 Number of project meetings

rescheduled due to lack of
quorum

 SQA Engineer –
as they occur

Low *
projects

SQA Manager @
Monthly IPR

5-16 Total number of Action
Items (all project meetings)
per month

Project Lead – as
they occur

Low *
projects

SQA Manager @
Monthly IPR

5-17 Total number of CLOSED
Action Items (all project
meetings) per month

Project Lead – as
they occur

Low *
projects

SQA Manager @
Monthly IPR

5-18 Number of PRs planned

Project Lead – as
they occur

Low *
projects

SQA Manager @
Monthly IPR

5-19 Number of PRs held Project Lead – as
they occur

Low *
projects

SQA Manager @
Monthly IPR

5-20 Percent of PRs for which
materials to be reviewed
were distributed on-time
(within 3 business days)
prior to the meeting

 SQA Engineer –
as they occur

Low *
projects

SQA Manager @
Monthly IPR

5-21 Number of PRs for which
minutes were published on-
time (within 3 business
days)

 SQA Engineer –
as they occur

Low *
projects

SQA Manager @
Monthly IPR

5-22 Number of PRs that started
on-time (within 5 minutes of
posted meeting notice)

 SQA Engineer –
as they occur

Low *
projects

SQA Manager @
Monthly IPR

5-23 Number of PRs rescheduled
due to lack of quorum

 SQA Engineer –
as they occur

Low *
projects

SQA Manager @
Monthly IPR

5-24 Planned length of PR
(minutes)

 SQA Engineer –
as they occur

Low *
projects

SQA Manager @
Monthly IPR

5-25 Actual length of PR
(minutes)

 SQA Engineer –
as they occur

Low *
projects

SQA Manager @
Monthly IPR

5-26 Average Peer Review
preparation time (minutes)

 SQA Engineer –
as they occur

Low *
projects

SQA Manager @
Monthly IPR

5-27 Total number of Action
Items per month

Scribe – as they
occur

Low *
projects

SQA Manager @
Monthly IPR

Are Peer Reviews
(PRs) planned and
conducted?

5-28 Total number of CLOSED
Action Items per month

 SQA Engineer –
as they occur

Large SQA Manager @
Monthly IPR

Are project team
members
adequately trained
to conduct
meetings?

5-29 Percent of staff who have
had training or demonstrated
ability to conduct meetings

SEPG Manager –
monthly

Medium SEPG Manager @
Monthly SEPG
IPR

Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1 90 Version 2.0

Goal 6: Improve Ability to Estimate Project Deliverables

Question # Metric Collected by &
When

Projected
Effort

To be
Reported By

& When
What are the sizes
of deliverables?

6-1 Estimated KSLOC at start of
project
By category: New, re-used,
Modified

Project Lead @
SDP

Medium Project Manager
@ 1st Monthly
IPR after SDP
Peer Review

 6-2 Actual KSLOC at end of
project by category: New,
re-used, Modified

SCM Manager @
Post Development

Medium

SCM Manager @
1st Monthly IPR
after project
completion

 6-3 # pages – SDP SCM Manager @
Post Development

Low

SCM Manager @
1st Monthly IPR
after project
completion

 6-4 # pages – SCMP SCM Manager @
Post Development

Low

SCM Manager @
1st Monthly IPR
after project
completion

 6-5 # pages – SQAP SCM Manager @
Post Development

Low

SCM Manager @
1st Monthly IPR
after project
completion

 6-6 # pages – SRS SCM Manager @
Post Development

Low

SCM Manager @
1st Monthly IPR
after project
completion

 6-7 # pages – SDD SCM Manager @
Post Development

Low

SCM Manager @
1st Monthly IPR
after project
completion

 6-8 # pages – STP SCM Manager @
Post Development

Low

SCM Manager @
1st Monthly IPR
after project
completion

 6-9 # pages – STR SCM Manager @
Post Development

Low

SCM Manager @
1st Monthly IPR
after project
completion

SDIP-21-4-1 91 Version 2.00

APPENDIX C – SOFTWARE REQUIREMENTS SPECIFICATION

Skinny Driver’s Instrument Panel (SDIP)
Software Requirements Specification

June 18, 2002

U.S. Army TACOM
Tank Automotive Research, Development, and Engineering Center

Next Generation Software Engineering Technology Area
AMSTA-TR-R
Mailstop #265

Warren, MI 48397-5000

 ________________________________ __________
 Douglas J. Gersky Date
 Software Engineer
 Author

Approval ________________________________ __________
 Christopher Ostrowski Date
 Systems Engineer

Approval ________________________________ __________
 John M. Bohn Date
 Project Lead

Approval ________________________________ __________
 Karen A. LaFond Date
 SQA Representative

Final Approval ________________________________ __________
For Use Michael S. Saboe, Ph.D. Date
 Associate Director

Next Generation Software
Engineering Technology Area

Skinny Driver’s Instrument Panel
Software Requirements Specification

SDIP-21-4-1 Version 2.00 92

Revision History

Version Date Author Description
0.01 Draft 03/06/2002 Douglas J. Gersky Initial layout of document and initial content. Not reviewed by

project team.
0.02 Draft 04/10/2002 Douglas J. Gersky Rework of initial draft, based on agreed upon document

formats and requirements discussions. Reviewed by project
team prior to Peer Review.

0.03 Draft 04/15/2002 Douglas J. Gersky Modified with changes from Pre -Peer review of 0.02 Draft.
1.00 04/23/2002 Douglas J. Gersky Modified document with changes from Peer Review of

04/18/2002. 1st version submitted to CM. Baseline SRS.
1.10 06/05/2002 Douglas J. Gersky Major document revision based upon re-plan of SDIP project.

Requirements have been renumbered from previous revision.
This revision is the baseline document for the re -planned SDIP
project.

1.20 06/17/2002 Douglas J. Gersky Modified document with changes from Peer Review of
06/10/2002.

2.00 06/18/2002 Douglas J. Gersky Final Peer Review modifications. Version submited to SQA
for final approval.

Skinny Driver’s Instrument Panel
Software Requirements Specification

SDIP-21-4-1 Version 2.00 93

Table of Contents

Revision History ... 92
Table of Contents.. 93
1 Scope .. 95

1.1 Identification.. 95
1.2 SDIP Overview.. 95
1.3 Reference Materials ... 95
1.4 Requirement Identification & Document Notation ... 95
1.5 Acronyms, Terms, and Definitions .. 96

2 Functional Requirements.. 97
2.1 SDIP CSCI Operating Environment .. 97
2.2 1553 API and Emulation CSC... 97
2.3 SDIP CSCI Processes .. 97
2.4 Processing of 1553 Data Packets ... 97

2.4.1 SDIP CSC ... 97
2.4.2 Autopilot CSC... 98

2.5 Creation of 1553 Data Packets .. 98
2.5.1 Autopilot 1553 Data Packet Creation Methods .. 98
2.5.2 SDIP Direct 1553 Data Packet Creation... 98

3 Data Requirements ... 99
3.1 SDIP CSCI M1A2 1553 Data Packet Categories .. 99
3.2 Autopilot Transmit / SDIP Receive Functionality... 99

3.2.1 Project Critical Group A... 99
3.2.2 Project Critical Group B ... 99
3.2.3 System Status .. 100

3.3 SDIP Transmit / Autopilot Receive Functionality... 100
3.3.1 Project Critical .. 100
3.3.2 System Status .. 100

4 User Interface Requirements .. 101
4.1 SDIP CSC .. 101
4.2 Autopilot CSC ... 102

5 Security Requirements ... 103
6 Qualification Provisions ... 104

6.1 General... 104
6.2 SDIP Software Requirements Verification Matrix.. 104

Appendix A Software Requirements / Document Section Mapping ... 106

Skinny Driver’s Instrument Panel
Software Requirements Specification

SDIP-21-4-1 Version 2.00 94

<This Page Intentionally Left Blank.>

Skinny Driver’s Instrument Panel
Software Requirements Specification

SDIP-21-4-1 Version 2.00 95

1 Scope

1.1 Identification
This document specifies the engineering and qualification requirements for the Skinny Driver’s
Instrument Panel (SDIP) computer software configuration item (CSCI). It will be used as a basis
for detailed design and testing.

1.2 SDIP Overview
The SDIP Project’s goal is to produce M1A2 simulation software, implementing a functionally
reduced version of the Driver’s Integrated Display (DID) from that vehicle. This modified DID
is referred to as the Skinny Driver’s Instrument Panel (SDIP). The software resulting from the
SDIP Project is collectively known as the SDIP CSCI. The SDIP CSCI is intended to be made
available to non-government entities for research purposes. The focus of this research will be the
development and addition of software monitoring probes to U.S. Army weapons systems.

1.3 Reference Materials
Document Title Document Number
Skinny Driver’s Instrument Panel
Software Development Plan

SDIP-22-4-1, Version 2.0, <Date TBD>
Next Generation Software Engineering
Technology Area.
TARDEC

US System/Segment Design Document
Version SW 2.5.1, Driver’s Station
Volume 3-1 of 5

SS-US00001 December 1997
General Dynamics Land Systems Division

Software Design Document for the Driver’s
Integrated Display of the Block Improved
Abrams Tank (M1A2)

SDD-SA15420 Revision C, 4 April 1997
General Dynamics Land Systems Division

Data Packet Specifications Volume 2 – DID

DP-SA15132 Vol 2, Version 5.0, October 1997
General Dynamics Land Systems Division

1.4 Requirement Identification & Document Notation
Within this document, all software requirements are contained in statements that use the verb
‘shall’. The notation (###) prefaces all such requirement statements and is utilized to aid
requirement traceability. All software requirements identified in this manner shall be met.

Within this document, references to document sections are denoted by the notation [#].

Skinny Driver’s Instrument Panel
Software Requirements Specification

SDIP-21-4-1 Version 2.00 96

1.5 Acronyms, Terms, and Definitions
Acronym, Term Definition
ACSL Abrams Common Software Library
Ada High level programming language.
AGIL Adaptable Graphical Interface Library
API Application Program Interface
Autopilot CSC A user interface CSC of the SDIP CSCI.
CDU Commander’s Display Unit
CID Commander’s Integrated Display
COTS Commercial Off The Shelf
CSC Computer Software Component. A logical collection of CSUs

associated with a specific set of related software functionalities.
CSCI Computer Software Configuration Item. A logical collection of

CSCs.
CSU Computer Software Unit. An element specified in the design of a

CSC that is separately testable.
DECU Driver’s Electronic Control Unit
DID Driver’s Integrated Display
GCDP Gunner’s Control and Display Panel
HEU Hull Electronics Unit
M1A1/2 & M1A2 SEP U.S. Army ‘Abrams’ Main Battle Tank variants.
MBT Main Battle Tank
M/OSB Menu Option Select Button
MPU Mission Processing Unit
NDI Non-Developmental Item
NextGen Next Generation Software Engineering Technology Area
SDIP Skinny Driver’s Instrument Panel
SDIP CSC A user interface CSC of the SDIP CSCI.
SDIP CSCI Refers to all constituent CSCs of the SDIP project.
SDIP Project The combined work effort involved in creating the SDIP CSCI.
SEP System Enhancement Package
TACOM Tank-Automotive & Armaments Command
TARDEC Tank Automotive Research, Development, and Engineering Center
TEU Turret Electronics Unit
UI User Interface

Skinny Driver’s Instrument Panel
Software Requirements Specification

SDIP-21-4-1 Version 2.00 97

2 Functional Requirements

2.1 SDIP CSCI Operating Environment
(046) The SDIP CSCI shall be developed using the Ada programming language. (001) The
SDIP CSCI shall be developed to run in the Linux operating system. The SDIP project will use
the Adaptable Graphical Interface Library (AGIL) to develop the user interfaces required by the
SDIP CSCI.

2.2 1553 API and Emulation CSC
(048) The SDIP CSCI shall be developed using the 1553 API and Emulation CSC, an NDI. This
NDI offers the ability to transmit/receive 1553 data packets across both a TCP/IP network and a
1553 Data Bus. (045) The SDIP CSCI shall be capable of using either TCP/IP or the 1553 Data
Bus communication protocol for interprocess communication.

2.3 SDIP CSCI Processes
The SDIP CSCI is intended to implement a stand-alone, PC based M1A2 simulation centered
around a virtual DID LRU graphical user interface [4.1] and an Autopilot user/system control
interface [4.2]. The virtual DID resulting from the requirements contained herein is referred to
as the SDIP CSC. (002) The other M1A2 display simulations, the CID and GCDP, shall not be
available as part of the SDIP CSCI. The Autopilot defined by the requirements herein is a user
interface which acts as the system control interface of the SDIP CSCI and is referred to as the
Autopilot CSC. The Autopilot CSC and the SDIP CSC run as independent processes when the
SDIP CSCI is invoked.

2.4 Processing of 1553 Data Packets
(004) The SDIP CSCI shall maintain the ability to process 1553 data packets in a manner
consistent with the actual method used within a M1A2 tank. That is, the SDIP and Autopilot
CSCs maintain the M1A2 1553 packet specifications for interprocess communication of data.

2.4.1 SDIP CSC
(005) All M1A2 1553 Data Packets transmitted and received by the M1A2 DID shall be
transmitted and received by the SDIP [3]. (044) The SDIP shall have the ability to receive
M1A2 1553 Data Packets not normally received by the M1A2 DID. (006) The SDIP shall
emulate a subset of M1A2 DID user interface visual reactions/updates to received 1553 data
packets. This subset of reactions/updates contains the following:

• Update velocity.
• Update compass heading.
• Switch to/from “Steer To” screen.
• Update engine rpm.
• Change M/OSB conditional states (off/on, low/high, etc.).
• Fuel Level

Skinny Driver’s Instrument Panel
Software Requirements Specification

SDIP-21-4-1 Version 2.00 98

2.4.2 Autopilot CSC
(008) The Autopilot shall be capable of transmitting and receiving M1A2 1553 data packets.
(009) The Autopilot shall be capable of transmitting all M1A2 1553 data packets required to be
received by the SDIP. (011) The Autopilot shall be capable of receiving M1A2 1553 data
packets from the SDIP.

2.5 Creation of 1553 Data Packets

2.5.1 Autopilot 1553 Data Packet Creation Methods
(013) The Autopilot shall create M1A2 1553 data packets through two methods: direct and file.

2.5.1.1 Autopilot File
(014) The Autopilot file data creation method shall be started through user interaction with
menus/widgets of the Autopilot user interface [4.2]. The Autopilot file data creation method
uses a file that is hereafter referred to as the Mission File. (015) The Autopilot shall support its
own proprietary Mission File format. (016) The Mission File shall contain all data necessary to
construct valid M1A2 1553 data packets of the types processed by the entire SDIP CSCI [3].
(017) The Mission File format shall also be used for the data capture capability of the Autopilot
[4.2].

2.5.1.2 Autopilot Direct 1553 Data Packet Creation
(019) The Autopilot shall allow direct M1A2 1553 data packet creation through manipulation of
menus/widgets, etc. contained on its user interface [4.2].

2.5.2 SDIP Direct 1553 Data Packet Creation
(047) The SDIP shall allow direct M1A2 1553 data packet creation through manipulation of
menus/widgets contained on its user interface [4.2].

Skinny Driver’s Instrument Panel
Software Requirements Specification

SDIP-21-4-1 Version 2.00 99

3 Data Requirements

3.1 SDIP CSCI M1A2 1553 Data Packet Categories
(020) The SDIP CSCI shall implement two categories of M1A2 1553 data packets: Project
Critical and System Status. The purpose of System Status and Project Critical packets is to
maintain and augment the complete 1553 data bus schedule, as specified in the document “Data
Packet Specifications Volume 2 – DID”. Project Critical packets are intended to be monitored
for content. (022) Project Critical packets shall be populated with data that emulates values, as
would normally be seen in the corresponding data packet as it exists on an operational M1A2
1553 data bus. System Status packets are not intended to be monitored for content. (023)
System Status packets shall not be required to be populated with data values that emulate data, as
would normally be seen in the corresponding data packet, as it exists on an operational M1A2
1553 data bus.

3.2 Autopilot Transmit / SDIP Receive Functionality
The Autopilot CSC is the process which transmits M1A2 1553 data packets to the SDIP CSC.
Both Project Critical and System Status packets are transmitted by the Autopilot CSC [2.4.1].

3.2.1 Project Critical Group A
This group of packets contains those that are normally transmitted to the M1A2 DID LRU. In
the SDIP CSCI the SDIP CSC simulates the DID, the destination of these packets in a M1A2
system. In the SDIP CSCI the Autopilot CSC simulates the TEU, the source of these data
packets in a M1A2 system. (025) The following group of Project Critical data packets shall be
implemented:

Data Packet ID

Data Packet
Description

Source
LRU

Destination
LRU

DP0400.2_DEV_PWR_ST Device Power Status TEU DID
DP0600.2_AUTO_ST Automotive Status TEU DID
DP0800.1_NAV_HEADING Pos/Nav Heading TEU DID
DP0900.2_LOW_RATE_NAV_OUTPUT Pos/Nav Low Rate Data TEU DID
DP1800.2_WAYPT_DATA Waypoint Data TEU DID

3.2.2 Project Critical Group B
This group of packets contains those that are not transmitted to the M1A2 DID LRU. In the
SDIP CSCI the SDIP CSC simulates the TEU, the destination of these packets in a M1A2
system. In the SDIP CSCI the Autopilot CSC simulates the HEU and DECU, the source of these
data packets in a M1A2 system. (026) The following group of Project Critical data packets shall
be implemented:

Data Packet ID

Data Packet
Description

Source
LRU

Destination
LRU

DP2401.DECU_CTL DECU Control HEU TEU
DP2501.DECU_ST DECU Status DECU TEU

Skinny Driver’s Instrument Panel
Software Requirements Specification

SDIP-21-4-1 Version 2.00 100

3.2.3 System Status
In the SDIP CSCI the SDIP CSC simulates the DID, the destination of these packets in a M1A2
system. In the SDIP CSCI the Autopilot CSC simulates the TEU, the source of these data
packets in a M1A2 system. (027) The following group of System Status data packets shall be
implemented:

Data Packet ID

Data Packet
Description

Source
LRU

Destination
LRU

DP1102_DIAGNOSTIC_ST Diagnostic Status TEU DID
DP1502_MODE_CTRL Mode Control TEU DID
DP2601.2_CB_ST Circuit Breaker Status TEU DID
DP2802_C-W-FLT_SYM C W System Fault Summary TEU DID
DP2902_BIT_CMD BIT Command TEU DID

3.3 SDIP Transmit / Autopilot Receive Functionality
The SDIP CSC is the process which transmits M1A2 1553 data packets to the Autopilot CSC.
Both Project Critical and System Status packets are transmitted by the SDIP CSC [2.4.2].

3.3.1 Project Critical
In the SDIP CSCI the SDIP CSC simulates the DID, the source of these data packets in a M1A2
system. In the SDIP CSCI the Autopilot CSC simulates the TEU, the destination of these
packets in a M1A2 system. (029) The following group of Project Critical data packets shall be
implemented:

Data Packet ID

Data Packet
Description

Source
LRU

Destination
LRU

DP0300.1_DEV_PWR_CTL Device Control DID TEU
DP1600.1_BK_NAV_UPDATE Pos/Nav Control DID TEU
DP1900.1_WAYPT_REQ-ST Waypoint Request Status DID TEU

3.3.2 System Status
In the SDIP CSCI the SDIP CSC simulates the DID, the source of these data packets in a M1A2
system. In the SDIP CSCI the Autopilot CSC simulates the TEU, the destination of these
packets in a M1A2 system. (030) The following group of System Status data packets shall be
implemented:

Data Packet ID

Data Packet
Description

Source
LRU

Destination
LRU

DP1002_DIAGNOSTIC_CTL Diagnostic Control DID TEU
DP1202.1_NH_TRIM_CAL NH Trim Calibration DID TEU
DP1702_MODE_REQ-ST Mode Request Status DID TEU
DP2301.1_CB_CTL Circuit Breaker Control DID TEU
DP3002_ST_DATA ST Data Element DID TEU

Skinny Driver’s Instrument Panel
Software Requirements Specification

SDIP-21-4-1 Version 2.00 101

4 User Interface Requirements

4.1 SDIP CSC
The SDIP CSC user interface models the M1A2 DID display and other user interface
components of the DID LRU contained in that vehicle. (031) The SDIP CSC user interface shall
be based upon the DID user interface as diagrammed in the document “System/Segment Design
Document, volume 3-1 of 5, Driver’s Station”. (032) The SDIP CSC user interface shall recreate
that portion of the DID menu structure that is normally invoked from user interactions with the
DID display. (033) The SDIP CSC user interface shall recreate the waypoint “Steer To” display,
which in the M1A2 system is invoked by actions performed on the CID. (034) The SDIP CSC
interface shall invoke its waypoint display based on actions performed on the Autopilot CSC
user interface [4.2].

(049) User selection of an enabled M/OSBs on the SDIP user interface shall cause an icon to be
displayed on the SDIP user interface, if selecting the corresponding button on an M1A2 DID
causes an icon to be displayed on its interface. (035) Only a subset of the M/OSBs available on
the M1A2 DID shall be enabled on the SDIP user interface. This subset contains some of those
M/OSBs whose state is communicated in the Project Critical M1A2 1553 data packets
transmitted and received by the SDIP CSC. (036) The SDIP M/OSBs that shall remain enabled
are listed below and shown in their DID menu positions in the accompanying figure.

v Main Menu (Combat Mode)
Ø Smoke Gen Off/On
Ø Lights
Ø Hi Beam Off/On
Ø Aux Systems

v Lights (Main Menu M/OSB)
Ø BO Markers Off/On
Ø Stop Lights Off/On
Ø Service Lights Off/On
Ø Hi Beam Off/On
Ø DTV Off/On
Ø Return

v Aux Systems (Main Menu M/OSB)
Ø Bilge Pump Off/On
Ø Speed Mph/Kph
Ø DTV Off/On
Ø Return

v Heater (Aux Systems Menu M/OSB)
Ø Heater Off/On
Ø Heater Temp Low/Hi
Ø Fan Off/On
Ø Return

Skinny Driver’s Instrument Panel
Software Requirements Specification

SDIP-21-4-1 Version 2.00 102

4.2 Autopilot CSC
The Autopilot is the user interface which acts as the system control interface of the SDIP CSCI.
(037) The Autopilot shall be implemented in a window separate from the SDIP window. (038)
The Autopilot shall have two modes of operation; Direct and Mission. Direct Mode allows real-
time adjustment of velocity and course related data, which in turn is transmitted to the SDIP
[3.2]. Mission Mode allows the use of a Mission file [2.5.1.1] for data transmission to the SDIP
[3.2]. (039) Mission Mode functions shall not be available while the Autopilot is in Direct
mode. (040) Direct Mode functions shall not be available while the Autopilot is in Mission
Mode. (041) The Autopilot UI shall include controls which allow users to perform the following
functions:

Mode: Function: Description:
Direct Set Waypoint Perform steps to set a waypoint for use by the SDIP.
Direct Steer To Waypoint Communicate to SDIP to ‘steer to’ a specific waypoint.
Direct Adjust Velocity Increase/Decrease the velocity displayed on the SDIP.
Direct Adjust Heading Allow 0° to 360° adjustment displayed on the SDIP.
Direct Record Mission Record all Direct Mode adjustments to a Mission file.
Direct Clear Waypoint Remove a previously set waypoint.
Mission Load Mission Open an existing Mission file.
Mission Run Mission Process an open Mission file.
Mission Pause Mission Suspend processing of an open Mission file.
Mission Resume Mission Continue processing an open Mission file.
Mission Stop Mission Stop processing of an open Mission file.
Any Exit SDIP CSCI Terminate the processes of the SDIP CSCI.

BO
MARKERS
OFF ON

STOP
LIGHTS

OFF ON

SERVICE
LIGHTS

OFF ON

HI BEAM

OFF ON

DTV

OFF ON
RETURN

NAV
SMOKE

GEN
OFF ON

LIGHTS
HI BEAM

OFF ON

AUX
SYSTEMS

MAINT/
BACKUP

BILGE
PUMP

OFF ON

FUEL
XFR HEATER

SPEED

MPH KPH

DTV

OFF ON
RETURN

HEATER

OFF ON

HEATER
TEMP

LOW HI

FAN

OFF ON
RETURN

(Disabled)

(Disabled)

(Disabled)

Skinny Driver’s Instrument Panel
Software Requirements Specification

SDIP-21-4-1 Version 2.00 103

5 Security Requirements
The SDIP CSCI, as released to principal investigators, includes partial specifications of the
M1A2 interprocess communication protocol. That is, a subset of the 1553 data bus, data packet
format is included as part of the SDIP CSCI. (042) The SDIP CSCI shall therefore operate under
the same secur ity requirements as imposed by the M1A2 software system. (043) All of the
SDIP CSCI’s documentation, code, and technical specifications are considered ‘Limited
Dissemination’ material and shall not be released unless directed by the Associate Director of
NEXTGEN Software, AMSTA-TR-R, Warren MI 48379-5000 or a higher authority. The 1553
data bus, data packet specification content of the SDIP CSCI is further covered by the Arms
Export Control Act (22 USC 2761 et seq) or executive order 12470. Export is therefore
restricted.

Skinny Driver’s Instrument Panel
Software Requirements Specification

SDIP-21-4-1 Version 2.00 104

6 Qualification Provisions

6.1 General
This section specifies the method(s) to be used to ensure each requirement of Section 3 has been
satisfied. Qualification methods include:

a) Demonstration: The operation of the system, or a part of the system, that relies on

observable functional operation not requiring the use of instrumentation, special test
equipment, or subsequent analysis.

b) Test: The operation of the system, or part of the system, using instrumentation or special test

equipment to collect data for later analysis.

c) Analysis: The processing of accumulated data obtained from other qualification methods.

Examples are reduction, interpolation, or extrapolation of test results.

d) Inspection: The visual examination of system components, documentation, etc.

A Verification Matrix, which relates software requirements to the specific qualification
method(s) to be used, is shown in the following section. Shaded boxes in the matrix indicate
which test method will be used to verify the software requirement.

6.2 SDIP Software Requirements Verification Matrix
Qualification Method Sec

Req
ID Demonstration Test Analysis Inspection

2.1 (001)
2.3 (002)

 (003) <Requirement Deleted>
2.4 (004)

2.4.1 (005)
2.4.1 (006)

 (007) <Requirement Deleted>
2.4.2 (008)
2.4.2 (009)

 (010) <Requirement Deleted>
2.4.2 (011)

 (012) <Requirement Deleted>
2.5.1 (013)

2.5.1.1 (014)
2.5.1.1 (015)
2.5.1.1 (016)
2.5.1.1 (017)

 (018) <Requirement Deleted>
2.5.1.2 (019)

Skinny Driver’s Instrument Panel
Software Requirements Specification

SDIP-21-4-1 Version 2.00 105

Qualification Method Sec

Req
ID Demonstration Test Analysis Inspection

3.1 (020)
 (021) <Requirement Deleted>

3.1 (022)
3.1 (023)
3.2 (024) <Requirement Deleted>

3.2.1 (025)
3.2.2 (026)
3.2.3 (027)

 (028) <Requirement Deleted>
3.3.1 (029)
3.3.2 (030)
4.1 (031)
4.1 (032)
4.1 (033)
4.1 (034)
4.1 (035)
4.1 (036)
4.2 (037)
4.2 (038)
4.2 (039)
4.2 (040)
4.2 (041)
5 (042)
5 (043)

2.4.1 (044)
2.2 (045)
2.1 (046)

2.5.2 (047)
2.2 (048)
4.1 (049)

Skinny Driver’s Instrument Panel
Software Requirements Specification

SDIP-21-4-1 Version 2.00 106

Appendix A Software Requirements / Document Section Mapping

Software
Requirement

Document
Section# / Requirement Description

(001) 2.1 SDIP System developed to run under Linux OS.

(002) 2.3 CDI & GCDP displays are not part of SDIP CSCI.

(003) <Requirement Deleted>

(004) 2.4 Process 1553 data bus packets consistent with actual method used in
M1A2 system.

(005) 2.4.1 SDIP transmits & receives all 1553 data packets received by M1A2
DID.

(006) 2.4.1 SDIP emulates a subset of M1A2 DID updates/reactions to 1553 data
packets.

(007) <Requirement Deleted>

(008) 2.4.2 Autopilot transmits & receives 1553 data packets.

(009) 2.4.2 Autopilot transmits all 1553 data packets required by SDIP.

(010) <Requirement Deleted>

(011) 2.4.2 Autopilot receives 1553 data packets from SDIP.

(012) <Requirement Deleted>

(013) 2.5.1 Autopilot creates M1A2 1553 data packets through two methods:
direct and file.

(014) 2.5.1.1 Data 1553 data packets created through interaction with Autopilot UI.

(015) 2.5.1.1 Autopilot supports its own proprietary Mission File format.

(016) 2.5.1.1 Mission file contains all data necessary to construct 1553 data packet.

(017) 2.5.1.1 The mission file used for the data capture function of the Autopilot.

(018) <Requirement Deleted>

(019) 2.5.1.2 Autopilot allows direct M1A2 1553 data packet creation through
manipulation of menus/widgets contained on its user interface

(020) 3.1 Project Critical & System Status packet types.

Skinny Driver’s Instrument Panel
Software Requirements Specification

SDIP-21-4-1 Version 2.00 107

Software
Requirement

Document
Section# / Requirement Description

(021) <Requirement Deleted>

(022) 3.1 Project Critical packets are populated with valid simulated data.

(023) 3.1 System Status packets are not required to be populated with valid
simulated data.

(024) <Requirement Deleted>

(025) 3.2.1 Project Critical packets transmitted by Autopilot – DID.

(026) 3.2.2 Project Critical packets transmitted by Autopilot – TEU.

(027) 3.2.3 System Status packets transmitted by Autopilot – DID.

(028) <Requirement Deleted>

(029) 3.3.1 Project Critical packets transmitted by SDIP – TEU.

(030) 3.3.2 System Status packets transmitted by SDIP – TEU.

(031) 4.1 SDIP UI based on DID UI as specified in DID S/SDD.

(032) 4.1 SDIP recreates a portion of DID menu structure triggered from user
interactions with DID.

(033) 4.1 SDIP user interface recreates waypoint “Steer To” display.

(034) 4.1 SDIP waypoint functionality triggered by interaction with Autopilot.

(035) 4.1 Subset of the M/OSBs available on the DID shall be enabled on
SDIP.

(036) 4.1 Enabled SDIP M/OSB list.

(037)

4.2 Autopilot implemented in separate window.

(038)

4.2 Autopilot implements two modes of operation.

(039)

4.2 Autopilot Mission mode functions not available in Direct mode.

(040)

4.2 Autopilot Direct mode functions not available in Mission mode.

(041)

4.2 Controls contained on Autopilot UI.

Skinny Driver’s Instrument Panel
Software Requirements Specification

SDIP-21-4-1 Version 2.00 108

Software
Requirement

Document
Section# / Requirement Description

(042)

5 SDIP inherits M1A2 system security requirements.

(043)

5 SDIP System’s documentation, code, and technical specifications
considered ‘Limited Dissemination’ material.

(044) 2.4.1 SDIP CSC can receive M1A2 1553 Data Packets not normally
received by the M1A2 DID.

(045) 2.2 SDIP CSCI capable of using either TCP/IP or the 1553 Data Bus
communication protocol for interprocess communication.

(046) 2.1 SDIP CSCI developed using the Ada programming language.

(047) 2.5.2 SDIP allows direct M1A2 1553 data packet creation through
manipulation of menus/widgets contained on its user interface

(048) 2.2 SDIP CSCI development will include the use if the 1553 API and
Emulation CSC, an NDI.

(049) 4.1 Selection of enabled M/OSBs on the SDIP user interface will display
an icon on the SDIP user interface, if selecting the corresponding
button on an M1A2 DID displays an icon on its interface.

SDIP-26-4-1 109 Version 0.4

APPENDIX D – SOFTWARE CONFIGURATION MANAGEMENT PLAN

Skinny Driver’s Instrument Panel
Software Configuration Management Plan

July 12, 2002

US ARMY TACOM
Tank Automotive Research, Development and Engineering Center

Next Generation Software Engineering Technology Area
AMSTA-TR-R
Mailstop #265

WARREN MI 48397-5000

 RUSSELL H. MENKO DATE
 SCM MANAGER
 AUTHOR

APPROVAL
 CHRISTOPHER OSTROWSKI DATE
 SYSTEMS ENGINEER

APPROVAL
 JOHN BOHN DATE
 PROJECT LEAD

APPROVAL
 KAREN LAFOND DATE
 SQA MANAGER
FINAL
APPROVAL FOR USE:
 MICHAEL S. SABOE, PH.D. DATE
 ASSOCIATE DIRECTOR
 NEXT GENERATION SOFTWARE
 ENGINEERING TECHNOLOGY AREA

Skinny Driver’s Instrument Panel
Software Configuration Management Plan

SDIP-26-4-1 110 Version 0.4

Revision History

Version Date Author Description
0.1 12 March 2002 R. Menko Initial Draft
0.2 26 April 2002 R. Menko Update from 1st Peer Review
0.3 19 June 2002 R. Menko Rewrite to address re-plan
0.4 10 July 2002 R. Menko

J. Turner
Incorporate comments from 2nd Peer
Review

Skinny Driver’s Instrument Panel
Software Configuration Management Plan

SDIP-26-4-1 111 Version 0.4

Table of Contents
Revision History ..110
1. Introduction...112
2. Scope..112
3. References...112
4. Acronyms and Definitions ...112
5. Roles and Responsibilities ...112
6. Configuration Control...113
7. Naming Conventions...113
8. Repositories ..114
9. Access Control ...114
10. Build Management ..114
11. Change Control ..114
11.1. Software modifications..114
11.2 Documentation modifications. ...114
12. Metrics ...115
13. Tools...115
14. Schedule ..115
15 Resources ..115

Skinny Driver’s Instrument Panel
Software Configuration Management Plan

SDIP-26-4-1 112 Version 0.4

1. Introduction

The purpose of this Software Configuration Management (SCM) Plan (SCMP) is to describe the
configuration management procedures followed for the Skinny Driver’s Instrument Panel
(SDIP).

2. Scope

This plan applies to all software and Next Generation Software Engineering Technology Area
(NextGen) developed or modified work products (e.g. software documentation, code, plans, test
artifacts, processes) within the NextGen organization, as related to the SDIP program. It shall
comply with standard NextGen SCM processes and procedures, and shall be in force unless the
Associate Director of the Next Generation Software Technology Area approves a written
Request for Deviation (RFD). It shall also apply to software received from external sources, for
configuration control purposes.

3. References

Document Number Version Date
Skinny Driver’s Instrument Panel Software Development
Plan

SDIP-22-4-1 2.0 June 27,
2002

Skinny Driver’s Instrument Panel Software Quality
Assurance Plan

SDIP-25-4-1 1.0 June 4,
2002

4. Acronyms and Definitions

Acronyms Definitions
ClearCase Configuration Control software, from Rational Software Corporation
Deliverable
Software

Software delivered to the customer as called for by the SDP

NextGen Next Generation Software Engineering Technology Area
NGSEL Next Generation Software Engineering Laboratory
RFD Request For Deviation
SCCB Software Configuration Control Board
SCM Software Configuration Management
SCMDB SCM Data Base
SCMP SCM Plan
SCR Software Change Request
SDF Software Development Folder
SDIP Skinny Driver’s Instrument Panel
SEPG Software Engineering Process Group
SQA Software Quality Assurance
STR System Trouble Report
Support Software Non-deliverable software required for building or testing the application

5. Roles and Responsibilities

The following table identifies the roles and responsibilities of Project Staff with respect to SCM:

Skinny Driver’s Instrument Panel
Software Configuration Management Plan

SDIP-26-4-1 113 Version 0.4

Role Responsibilities
Project Lead • Assign work as appropriate

• Review all System Trouble Reports (STRs)
• Provide STR initial/change information to SCM, as changes occur.
• Chair the Software Configuration Control Board (SCCB).

Software Developers • Submit source code and related documentation to SCM control, as
applicable

• Create and maintain SCM build scripts
Systems Engineer • Provide input during SCCB Meetings

• Review and approve SCMP
Software Test
Manager

• Participate in the SCCB
• Submit all test documentation, including Plan, Procedures, and

Results, to SCM for placing under configuration control
Software Test
Engineer

• Participate in the SCCB
• Record all testing results, for placing under configuration control

SCM Manager • Develop SCM Plan
• Participate in project reviews
• Ensure the SCM plan, processes, and standards are followed
• Participate in SQA audits of SCM activities

SCM Engineer • Assist the Chair of the SCCB as required
• Place all submitted items under configuration control
• Perform all SCM builds in compliance with the schedule posted in

the SDP
Software Quality
Assurance (SQA)
Manager

• Participate in the SCCB
• Perform audits and reviews of SCM-related activities and material

SQA Engineer • Perform audits and reviews of SCM-related activities and material

6. Configuration Control

All deliverable and support software and related documentation used for the SDIP will be placed
under configuration control. This includes peer review documentation, test documentation and
scripts, and meeting minutes and related documents.

SDIP items will be placed under initial configuration control following successful completion of
a peer review and, for documentation, following completion of the signature cycle. Third party
software will be placed under configuration control upon receipt.

7. Naming Conventions

Standard NextGen Ada naming conventions shall be followed. Executables shall be named as
generated during the build process as defined in scripts provided to SCM by Software
Development personnel.

Skinny Driver’s Instrument Panel
Software Configuration Management Plan

SDIP-26-4-1 114 Version 0.4

System releases shall be named using the prefix “SD” to indicate the Skinny DIP program. E.g.
the first release will be called SD1.0.

8. Repositories

SCM shall store all source code and related documentation in Rational ClearCase repositories,
residing on the artemis2 Sun server, located in the NextGen engineering lab.

9. Access Control

Only SCM personnel shall access files within the SCM ClearCase repository. Source code files
shall be checked in or out by direction of the SCCB. All other files, such as test procedures and
peer reviews, shall be checked in/out by SCM at the request of the User.

10. Build Management

SCM shall perform builds per direction of the SCCB. These builds shall be performed using
build scripts provided and maintained by Development personnel and shall be built on the Linux
platform defined in the SDIP Software Development Plan. Upon completion of a build, the
executable code shall be delivered to the Project Lead on electronic media and also placed in the
SCM ClearCase repository.

11. Change Control

Change control is performed as follows:

11.1. Software modifications.

Problems shall be documented on an STR and brought before the SCCB for direction. If the
SCCB decides the STR shall be resolved, the board chair shall direct SCM to open a Software
Change Request (SCR) in the SCM Data Base (SCMDB). The SCR is assigned to a designated
Developer who will examine the software for a probable correction set. After examination, the
Developer will bring this recommendation before a subsequent SCCB. If approved, and if a
change is required, the SCCB will direct SCM to check out designated files. These files will be
placed in a subdirectory under the Developer’s directory, and the SCMDB appropriately updated.
Once the files have been updated, verified as part of an engineering build, and gone through the
Peer Review process, the Developer shall return to the SCCB, who will direct SCM to include
the files in the next SCM build.

SCM will check the files back in to ClearCase, update the SCMDB, and perform an SCM build.
Following verification by the Test group, and by direction of the SCCB, the files will be “frozen”
as a baseline within ClearCase; the executables will be delivered to the Project Lead; and the
SCR and related STR will be closed within the SCMDB.

11.2. Documentation modifications.

Problems shall be documented on an STR and brought before the SCCB for direction. If the
SCCB decides the STR shall be resolved, the board chair shall direct SCM to open a Software
Change Request (SCR) in the SCM Data Base (SCMDB). The SCR is assigned to a designated
Developer who will examine the documentation for a probable correction set. After
examination, the Developer will bring this recommendation before a subsequent SCCB; if
approved, and if a change is required, the SCCB will direct SCM to check out designated

Skinny Driver’s Instrument Panel
Software Configuration Management Plan

SDIP-26-4-1 115 Version 0.4

documents. These will be placed in a subdirectory under the Developer’s directory, and the
SCMDB appropriately updated. Once the files have been updated and completed the Peer
Review process, the Developer shall return to the SCCB, who will direct SCM to baseline the
documents and release copies to all applicable members of the SDIP team.

12. Metrics

Metrics for SCM shall be collected according to the guidelines identified within the SDIP SDP.

13. Tools

SCM shall use the following tools.
• Rational ClearCase to control items.
• The (Microsoft Access) SCMDB to track SCRs/STRs through their life cycle.
• Build scripts, provided by Software Development personnel.
• Compilers/linkers, as specified in the SDIP SDP.

14. Schedule

SCM schedules shall be in compliance with schedules identified in the SDIP SDP.

15 Resources

Activity Estimated Hours
Develop SCM Plan 40
Support Team Meetings 5 hours
Support SCCB meetings 1 hour
Baseline software and documentation 4 hours

 116

THIS PAGE INTENTIONALLY LEFT BLANK

SDIP-35-4-1 117 Version 1.0

APPENDIX E – SOFTWARE TEST PLAN

Skinny Driver’s Instrument Panel (SDIP)
Test Plan

July10, 2002

US Army TACOM

Tank Automotive Research, Development, and Engineering Center
Next Generation Software Engineering Technology Area

AMSTA-TR-R/MS 265
Warren, MI 48397-5000

 ________________________ ______
 Eric Jochum Date
 Author, Software Engineer

Approval ________________________ ______
 Nadia Abadir Date
 Test Manager

Approval ________________________ ______
 John Bohn Date
 Project Leader

Approval ________________________ ______

 Christopher Ostrowski Date
 Systems Engineer

Approval ________________________ ______
 Karen LaFond Date
 SQA Manager

Final Approval ________________________ ______
For Use Michael S. Saboe, Ph.D. Date
 Associate Director

 Next Generation Software
 Engineering Technology Area

SDIP-35-4-1 118 Version 1.0

REVISION LOG
Version Date Author Description

0.1 June 13,
2002

Eric Jochum Initial Draft.

0.2 June 20,
2002

Eric Jochum Applied changes generated from Peer Review
held on June 19, 2002.

1.0 July 8,
2002

Eric Jochum First release to be signed off after condition
updates per the and placed under CM.

Skinny Driver’s Instrument Panel (SDIP) Test Plan

SDIP-35-4-1 119 Version 1.0

TABLE OF CONTENTS

1 TEST PLAN IDENTIFIER...120

2 INTRODUCTION...120
2.1 Purpose... 120
2.2 Background... 120
2.3 Scope.. 120
2.4 Referenced Documents ... 120

3 ROLES AND RESPONSIBILITIES ..121

4 ACRONYMS AND DEFINITIONS...121

5 TEST ITEMS ..122

6 FEATURES TO BE TESTED ..122

7 FEATURES NOT TO BE TESTED ...122

8 TEST PLAN ENTRY CRITERION...122

9 TESTING INPUTS ...122
9.1 Environmental Needs .. 122
9.2 Schedule... 122

10 TESTING OUTPUTS / DELIVERABLES ..122
10.1 Outputs from Test Planning ... 122
10.2 Outputs from Testing... 122

11 EXIT CRITERIA ..123
11.1 Planning Phase.. 123
11.2 Testing Execution... 123

12 PROCEDURE...123
12.1 Define the Test Methodology/ Approach... 123
12.2 Develop Test Cases.. 124
12.3 Conduct Peer Review .. 124
12.4 Conduct Testing... 124
12.5 Post-Verification Activities .. 124
12.6 Regression Testing... 124

13 STAFFING AND TRAINING NEEDS ..124
13.1 Staffing... 124
13.2 Training.. 125

14 RISKS AND CONTINGENCIES ...125

Skinny Driver’s Instrument Panel (SDIP) Test Plan

SDIP-35-4-1 120 Version 1.0

1 TEST PLAN IDENTIFIER

SDIP-35-4-1

2 INTRODUCTION

2.1 Purpose
The purpose of this document is to describe the approach of the testing activities for the Skinny Driver’s
Instrument Panel (SDIP) project in the Next Generation Software Engineering Technology Area
(NextGen). These complement and support the overall SDIP software development effort. This Test
Plan shall be used in conjunction with the SDIP Test Coverage and Test Cases.
The Test Cases shall be used to perform regression testing as applicable. The objective is to create
repeatable tests for use in proving out and demonstrating a system or group of systems.

2.2 Background
The SDIP Project’s goal is to produce M1A2 simulation software, implementing a functionally reduced
version of the Driver’s Integrated Display (DID) from that vehicle. This modified DID is referred to as
the Skinny Driver’s Instrument Panel (SDIP). The software resulting from the SDIP Project is
collectively known as the SDIP CSCI. The SDIP CSCI is intended to be made available to non-
government entities for research purposes. The focus of this research will be the development and
addition of software monitoring probes to U.S. Army weapons systems.

2.3 Scope
This plan is applicable to the SDIP project managed by the Next Generation Software Engineering
Technology Area.

2.4 Referenced Documents
Title Document Reference Number

Independent Software Test Procedure NGSEL-35-3-5 1.0 7/19/01
Next Generation Software Engineering Technology
Area, TARDEC

M1A2 PDSS Process and Procedures Pdss_part3.doc 12/16/1998
NT-Share on ‘ice’:/szfranJ/PDSS Training

SDIP Software Development Plan SDIP-22-4-1 2.0 TBA
Next Generation Software Engineering Technology
Area, TARDEC

SDIP Software Requirements Specification SDIP-21-4-1 2.0
Next Generation Software Engineering Technology
Area, TARDEC

Software Product Engineering Procedure NGSEL-35-3-1 1.0 7/19/01
Next Generation Software Engineering Technology
Area, TARDEC

Test Case Template NGSEL-35-4-3 1.0 6/05/02
Next Generation Software Engineering Technology
Area, TARDEC

Test Coverage Template NGSEL-35-4-2 1.0 6/05/02
Next Generation Software Engineering Technology
Area, TARDEC

Test Plan Template NGSEL-35-4-1 1.0 6/05/02
Next Generation Software Engineering Technology
Area, TARDEC

Verify Tests Procedure NGSEL-25-3-3 1.0 4/27/99
Next Generation Software Engineering Technology
Area, TARDEC

Skinny Driver’s Instrument Panel (SDIP) Test Plan

SDIP-35-4-1 121 Version 1.0

3 ROLES AND RESPONSIBILITIES
Roles Responsibilities

Associate Director • Approve the project Test Plan, Test Coverage, and Test Cases
Project Leader • Approve the project Test Plan, Test Coverage, and Test Cases

• Certify / signal product is ready for test
• Review test results

SCM Manager • Place the project Test Plan, Test Coverage, and Test Cases
materials under CM

• Provide CM-built software version for testing
SEPG Lead • Approve any identified tailoring of the organization standard

software process
SQA Engineer • Witness software testing
SQA Manager • Approve the project Test Plan, Test Coverage, and Test Cases

• Review test results
Systems Engineer • Approve the project Test Plan, Test Coverage, and Test Cases

• Review test results
Test Manager • Coordinate the preparation of the project Test Plan and Test

Coverage
• Approve the project Test Plan, Test Coverage, and Test Cases
• Review test results

Test Staff • Prepare the Test Cases and update the project Test Coverage
• Perform the tests per the SDIP Test Cases and record the

results

4 ACRONYMS AND DEFINITIONS
Acronym Definition

API Application Program Interface
CM Configuration Management
CSC Computer Software Component
CSCI Computer Software Configuration Item. A logical

collection of CSCs
DID Drivers Integrated Display
Next Gen Next Generation Software Engineering Technology

Area
NGSEL
SCM Software Configuration Management
SCR Software Change Request
SDIP Skinny Driver’s Instrument Panel
SDP Software Development Plan
SEPG Software Engineering Process Group
SQA Software Quality Assurance
SRS Software Requirement Specification
STR System Trouble Report
TACOM Tank Automotive and Armaments Command
TARDEC Tank Automotive Research, Development, and

Engineering Center
Test Case One test procedure. Results are summarized in the

SDIP Test Coverage
Test Coverage SDIP summary information on product testing
Test Plan Defines the SDIP test approach

Skinny Driver’s Instrument Panel (SDIP) Test Plan

SDIP-35-4-1 122 Version 1.0

5 TEST ITEMS
The test items are 3 components of the SDIP CSCI. The following components shall be tested:

• SDIP CSC
• 1553 API and emulation CSC
• Autopilot CSC

6 FEATURES TO BE TESTED
The following features will be tested:

• SDIP CSC
o Simulates DID menu structure
o Reacts as a DID to emulated 1553 packets

• 1553 API and emulation CSC
o ‘Project Critical’ packets are maintained
o ‘System Status’ packets

• Autopilot CSC
o Collect and maintain waypoint list
o Send emulated 1553 packets
o Reacts to change of status packets

7 FEATURES NOT TO BE TESTED
Functions not in the scope of SDIP SRS will not be tested.

8 TEST PLAN ENTRY CRITERION
The basic entry criterion for the Test Plan is that the SDIP SRS has been approved.

9 TESTING INPUTS
The inputs to testing are:

• The SDIP schedule
• The SDIP SRS
• The SDIP Test Plan
• The SDIP Test Cases
• CM Build of SDIP Code

9.1 Environmental Needs
The minimum equipment, operating systems, communications software, hardware and firmware needed
to perform the testing are specified in the SDIP SDP.

9.2 Schedule
The SDIP Schedule is an input to this Test Plan. The Testing Schedule is reflected in the overall
Project schedule.

10 TESTING OUTPUTS / DELIVERABLES
The outputs from the SDIP testing activities are:

10.1 Outputs from Test Planning
• Test Plan
• Test Coverage / Report
• Test Cases

10.2 Outputs from Testing
• Updated Test Plan
• Updated project schedule
• As encountered, STR(s) per the SDIP SDP
• Updated Test Coverage / Report
• Updated Test Cases with test results

Skinny Driver’s Instrument Panel (SDIP) Test Plan

SDIP-35-4-1 123 Version 1.0

11 EXIT CRITERIA
11.1 Planning Phase
The exit criteria for the planning phase is that:
• SDIP Test Plan is reviewed and signed off
• The Test Coverage fields listed below have been completed for project, the Test Coverage is

reviewed and signed off
o The header rows
o “Requirements” column
o “Test Cases” column

• The Test Cases fields listed below have been completed for the project, the Test Cases reviewed
and signed off
o “Objective”
o “Pass/Fail”
o “Equipment Needed to Perform Test”
o “Pre-Test Procedures”
o “Test Procedure”
o “Test Case Version”
o “Test Case Revised By”
o Test Case Revised by “Date”
o “Test Case Approved By
o Test Case Approved by “Date”

11.2 Testing Execution
The exit criteria for the test executing phase is that:
• All of the fields in the project's Test Coverage have been completed, including the "Results"

columns, the document reviewed, and signed off
• All of the fields in the project's Test Cases have been completed, the document reviewed, and

signed off
• If required, this Test Plan is updated, reviewed, and signed off

12 PROCEDURE
Developed prior to the start of testing, the SDIP Test Coverage shall document the summary information
for the SDIP Test Cases. It will contain the traceability between the SDIP requirements and the individual
Test Cases. When testing has been completed, the Test Coverage shall be completed with the summary
information on the time it took to perform the testing, whether or not rework was involved (by the number
of iterations before a given Test Case passed), and when the test results were reviewed. Should regression
testing be required, the SDIP prior completed Test Coverage shall be used to identify which Test Cases to
include in the regression testing sequence and to project the estimated time to complete the regression
testing.

12.1 Define the Test Methodology/ Approach
The levels and types of testing which shall be performed for this project are as follows:
• SDIP CSCI

Using the SCM controlled Test Coverage template, the Test Manager shall complete an initial draft
of the Test Coverage. The test location shall be Next Gen Lab. The SDIP test schedule shall be
included as part of the SDIP master schedule.

Skinny Driver’s Instrument Panel (SDIP) Test Plan

SDIP-35-4-1 124 Version 1.0

• Independent testing (refer to NGSEL-35-3-5 Independent Software Test Procedure)

Independent testing shall use the formats defined by the Test Coverage (NGSEL-35-4-2) and Test
Case (NGSEL-35-4-3). Independent testing includes, but is not limited to, the following:
o Black box functional testing, which includes:

§ Boundary value testing
§ Robustness testing
§ Worst case analysis testing
§ Special value testing
§ Multiple features testing

o The types of testing include the following:
§ Set-up / initialization testing
§ Communications protocol testing
§ Feature testing

12.2 Develop Test Cases
Once the types of testing have been identified in the SDIP Test Coverage, the Test Staff shall perform
analysis on the requirement to determine the test cases. Using the SCM controlled Test Case template,
the Test Staff shall document each test case. This shall include identifying:
• The test hardware and software configurations
• The initialization and set up procedure and data
• The global test environment for each test
• The test suspension criteria
• The test results recording methods and applicable storage
• The expected test results
• If applicable, the build cycle verification checklist
The Test Staff may create more than one Test Case to meet the SDIP project requirements. For
example, all of the tests may have the same shared test set up procedure, with individual tests covering
communication protocols, specific features, etc. The Test Staff shall update the SDIP Test Coverage as
needed.

12.3 Conduct Peer Review
The SDIP Test Plan, Test Coverage, and Test Cases shall be formally reviewed and signed off per the
Next Gen NGSEL-37-3-1 Peer Review Procedure prior to the start of the testing using the SDIP Test
Cases. Any action items arising from the review shall be addressed. Please refer to the SDIP master
schedule for the planned peer review scheduling.

12.4 Conduct Testing
The Test Staff shall perform the testing per the documented Test Cases and shall record the results in
the appropriate positions on the documents. The Test Staff shall record the Test Plan summary
information on the SDIP Test Coverage. Should there be any errors encountered during the testing, the
Test Staff shall write STRs; as per M1A2 PDSS part 3, to document the conditions under which the
errors were encountered.

12.5 Post-Verification Activities
The Test Staff shall review the test results and metrics with the Test Manager, Systems Engineer,
Project Leader, and the SQA Manager. The materials shall be put under SCM control. Any STRs
created during the testing shall be tracked to closure.

12.6 Regression Testing
Regression testing will be conducted if applicable for this project.

13 STAFFING AND TRAINING NEEDS
13.1 Staffing
The following staff is needed to carry out this SDIP testing activities:
Role Quantity
Test Manager 1
Test Staff 1

Skinny Driver’s Instrument Panel (SDIP) Test Plan

SDIP-35-4-1 125 Version 1.0

13.2 Training
The Test staff shall be trained by a member of the SDIP project team to operate the SDIP CSCI.

14 RISKS AND CONTINGENCIES
Refer to the SDIP SDP.

 126

THIS PAGE INTENTIONALLY LEFT BLANK

 127

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. Luqi
Naval Postgraduate School
Monterey, California

4. Mikhail Auguston

Naval Postgraduate School
Monterey, California

5. Christopher D. Miles
United States Army TACOM
Warren, Michigan

6. Chris Ostrowski
United States Army TACOM
Warren, Michigan

7. Douglas Gersky

United States Army TACOM
Warren, Michigan

8. John Bohn
United States Army TACOM
Warren, Michigan

9. Joe Szafranski

United States Army TACOM
Warren, Michigan

