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ABSTRACT 

In this report, we formally introduce the novel concept of traffic-adaptive, flow-

specific medium access control and show that it outperforms contention, non-contention 

and hybrid medium access schemes. A traffic-adaptive, flow-specific mechanism is 

proposed that utilizes flow-specific queue size statistics to select between medium access 

modes. A general model for traffic-adaptive, flow-specific medium access control is 

developed and it is shown that hybrid medium access as well as traditional contention-

based and non-contention schemes can be seen as special cases of the more general flow-

specific access. The two-flow, two-mode case of the general model is developed in detail 

and it is shown analytically that this queue-based implementation of traffic-adaptive, 

flow-specific medium access outperforms contention, non-contention, and hybrid 

approaches. The proposed traffic-adaptive, flow-specific mechanism is applied to 

Cooperative Wireless Sensor Network Medium Access Control (CWS-MAC) a flow-

specific medium access protocol. Performance is evaluated is evaluated and compared to 

the traditional medium access approaches. Both analytical and simulation results are 

provided including the development of throughput and delay expressions for slotted 

ALOHA with periodic server vacations. 
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I. INTRODUCTION 

Wireless medium access solutions generally fall into two categories: contention-

based and scheduled (contention-free). It has been well established that the collision-free 

approach of scheduled schemes, such as [1], provide high throughput in high demand 

scenarios at the expense of overhead and packet delay. In comparison, contention-based 

approaches, such as [2], [3], provide low delay times at low to moderate network loads, 

but performance begins to degrade rapidly as the network becomes saturated. 

Initial work has been done in the wireless sensor network field to combine the 

benefits of both approaches in response to changing network load. Most notably, [4] 

provides a contention-based approach that utilizes TDMA framing to provide “hints” for 

contention resolution. In these types of approaches, though, medium access is tailored to 

overall network conditions, not to the characteristics of the individual flows.  

In [5], we proposed a solution that has the capability to provide medium access on 

a per flow basis. Designed to support both low demand, delay sensitive control traffic and 

high demand, delay tolerant data traffic, Cooperative Wireless Sensor Medium Access 

Control (CWS-MAC) is a distributed, flow-specific medium access scheme. However, to 

fully realize the potential performance gains, a flow-specific scheme must be responsive 

to changes in traffic characteristics within each flow. Accordingly, the primary objective 

of this work is to present an adaptive medium access solution that can not only 

accommodate multiple flows with different traffic characteristics, but also respond to 

traffic changes within a given flow. 

The contribution of this paper is three-fold. First, traffic-adaptive, flow-specific 

medium access control is formally defined and shown to provide better performance than 

contention-based, non-contention-based and hybrid medium access schemes. Second, a 

general model for a traffic-adaptive, flow-specific medium access control is presented. 

The two-flow, two-mode case is developed in detail and contention-based, contention-

free as well as hybrid approaches are shown to be special cases of this general flow-

specific model. Third, a queue-based, traffic-adaptive, flow-specific medium access 
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control mechanism is proposed and applied to CWS-MAC to provide relevant 

performance analysis and simulation results. 

The organization of this report is as follows. Chapter II formally introduces the 

concept of traffic-adaptive, flow-specific medium access and demonstrates its 

performance advantage over existing approaches. In Chapter III, a queue-based, traffic-

adaptive, flow-specific mechanism is proposed and a general model for a traffic-adaptive, 

flow-specific medium access control is developed. Chapter IV applies this proposed 

mechanism to the CWS-MAC protocol and provides accompanying performance 

analysis. Simulation results are included in Chapter V. 



 
 

 3

II. TRAFFIC-ADAPTIVE, FLOW-SPECIFIC MEDIUM ACCESS 

To provide motivation for traffic-adaptive, flow-specific medium access, we 

begin with an examination of the delay performance of various contention-based and 

non-contention-based medium access schemes. The mean packet delay for Aloha [2], 

slotted Aloha [6], several CSMA variants [3], and TDMA [7] is plotted in Figure 1 as a 

function of the normalized load. This normalized load is equivalent to the steady state 

throughput and is normalized by the channel rate. For the purposes of the plot, channel 

rate is 1 Mbps, packet size is 1000 bits, there are 100 slots in a TDMA frame (each slot is 

one packet length in duration) and a = 0.01 for the CSMA schemes. The CSMA plots 

represent the best case achievable delay at steady state. For these delay curves, we 

assume Poisson arrivals and the appropriate delay equations can be found in [2], [6], [3], 

[7].  

It can be seen that at low loads, the delay performance of the contention schemes 

is better, while at higher loads, the delay performance of the non-contention scheme is 
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Figure 1.  Packet delay plotted as a function of normalized load for TDMA 
and CSMA. Channel rate is 1 Mbps, packet size is 1000 bits, and there are 100 

slots (one packet length in duration) in the TDMA frame. 
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better. It is natural then to ask if we can get the delay performance of CSMA at low loads 

and that of TDMA at high loads. This is precisely the strategy of hybrid approaches such 

as [4],[8] which treat the flows in aggregate and transition from a contention-based 

approach to a non-contention-based approach as the load increases. In an aggregate flow 

that is comprised of both low and high demand flows, these hybrid schemes have the 

disadvantage of increased delay for flows that could take advantage of the lower delays 

associated with the contention-based approaches. In contrast, we propose to treat each 

flow individually to optimize both the overall performance and the performance on a per 

flow basis. 

We now formally define the terms flow-specific medium access and traffic-

adaptive, flow-specific medium access and provide an example to illustrate the concept. 

 

Definition: Flow-specific medium access control is a medium access approach that 

provides medium access on a per flow basis. It is capable of concurrently providing 

different medium access schemes to different traffic flows. 

 

Definition: Traffic-adaptive, flow-specific medium access control is a flow-specific 

medium access approach that is capable of dynamically switching between multiple 

medium access schemes to respond to traffic variations within a given flow. 

 

As an illustrative example, we examine an aggregate flow that is comprised of 

two individual packet flows. We assume that the load of the first flow is low while the 

load of the second flow varies from low to high. The aggregate flow demand, then, will 

vary with the second flow. This example models the behavior of an event-based wireless 

sensor network that includes both a control flow to provide sensor coordination within 

the network and a data flow that corresponds to sensor data transmission to a designated 

sink such as that shown in Figure 2. Prior to event detection, the demand of both flows is 

low (perhaps in a periodic reporting state). Upon event detection, the control flow 

remains relatively low demand (control packets are small in size and are only needed 
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periodically to update sensor parameters) while the data flow will increase dramatically 

as recorded event data is forwarded to the sink. 

In this example, contention-based [2],[3] and non-contention-based [7] schemes 

will treat the flows in aggregate and provide either contention-based or non-contention-

based access to the combined flow. A traffic-adaptive, hybrid scheme [4],[8] will again 

treat the flows together, but will transition from contention-based to non-contention-

based medium access when the demand of the aggregate flow reaches some threshold. In 

contrast, a traffic-adaptive, flow-specific approach will treat the two flows individually 

by continuing to provide contention-based medium access to the low demand control 

flow while the data flow is transitioned from contention-based to non-contention-based 

access as its load increases. 

Defining the aggregate delay performance as the weighted sum of the delay 

performance for the individual flows, we can evaluate and compare the delay 

performance of the different approaches for this two-flow example [3],[4],[7]. In Figure 

3, we plot the mean aggregate packet delay as a function of aggregate load for the four 

approaches. The normalized load of the first flow is fixed at 0.1 while the load of the 

second flow is allowed to vary from 0.0 to 0.8. We can clearly see that while the hybrid 

approach takes advantage of the lower delays of CSMA in the low contention region and 

 
Figure 2.  Battlefield example of a wireless sensor network. The data traffic from 

the video cameras to the command and control point (sink) and the control traffic 
required to manipulate the camera (focus, azimuth, elevation, etc.) form two distinct 

traffic flows. 
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TDMA in the high contention region, the traffic-adaptive, flow-specific approach offers 

better overall delay performance in the high contention region by allowing the low 

demand control flow to remain in the contention-based mode. 

Figure 3 illustrates the advantage of a traffic-adaptive, flow-specific approach in 

this particular example. In the following theorem and associated corollary, we extend this 

to the general case and show that the traffic-adaptive, flow-specific approach outperforms 

contention, non-contention and aggregate hybrid medium access schemes provided that 

the per flow switchover point between the access modes is chosen correctly. 

 

Theorem: Given a suitable switching point is chosen at which a flow will transition 

between medium access schemes, flow-specific medium access will provide as good or 

better delay performance than contention, non-contention, and hybrid medium access 

schemes. 
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Figure 3.  Packet delay plotted as a function of normalized load for slotted 

nonpersistent CSMA [3], TDMA [7], hybrid and flow-specific medium access (using 
CSMA/TDMA). Channel rate is 1 Mbps, packet size is 1000 bits, there are 100 slots 

in a TDMA frame (each slot is one packet length in duration) and a = 0.01 for the 
CSMA schemes. The CSMA plot assumes steady state and represents minimum 

achievable delay. 
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Proof: First, let us consider the case of the contention-based medium access scheme. 

Without a loss of generality, we will assume that the mean packet delays iD  for the N 

individual flows i  are ordered as in 1 2 1m N ND D D D D−≤ ≤ ≤ ≤ ≤ ≤L L . The switching 

point between access schemes is then chosen such that  

 
( )

for all 1:

for all 1 :

c nc
i i
c nc
i i

D D i m

D D i m N

≤ =

> = +
 (1) 

where c
iD  is the contention-based access scheme delay for flow i  and nc

iD  is the non-

contention-based access scheme delay for flow i . The mean aggregate delay for the flow-

specific access scheme is  

 
1

N
i

flow i
i

D D
=

λ⎛ ⎞= ⎜ ⎟λ⎝ ⎠
∑  (2) 

where iλ  is the arrival rate for flow i  and the aggregate arrival rate λ  is the sum of the 

individual flow arrival rates. From (1), the mean overall delay of (2) is equivalent to 

 
1 1

.
m N

c nci i
flow i i

i i m
D D D

= = +

λ λ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟λ λ⎝ ⎠ ⎝ ⎠
∑ ∑  (3) 

Using proof by contradiction, suppose that the contention-based medium access provides 

lower aggregate mean delay than the flow-specific scheme or flow contD D> . Expanding 

these, 

 
1 1 1

m N N
c nc ci i i
i i i

i i m i
D D D

= = + =

λ λ λ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ >⎜ ⎟ ⎜ ⎟ ⎜ ⎟λ λ λ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑  (4) 

Breaking apart the contention-based term on the right side of the inequality, we have 

 1 1

1 1

m N
c nci i
i i

i i m

m N
c ci i
i i

i i m

D D

D D

= = +

= = +

λ λ⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟λ λ⎝ ⎠ ⎝ ⎠
λ λ⎛ ⎞ ⎛ ⎞> +⎜ ⎟ ⎜ ⎟λ λ⎝ ⎠ ⎝ ⎠

∑ ∑

∑ ∑
 (5) 

which can then be reduced to  

 
1 1

N N
nc ci i
i i

i m i m
D D

= + = +

λ λ⎛ ⎞ ⎛ ⎞>⎜ ⎟ ⎜ ⎟λ λ⎝ ⎠ ⎝ ⎠
∑ ∑  (6) 

This implies that  

 ( )for some 1 :c nc
i iD D i m N< = +  (7) 
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which contradicts (1). Thus, flow contD D≤  and flow-specific medium access will provide 

as good or better delay performance than a contention-based scheme. The non-contention 

case is proven in a similar manner. Finally, the hybrid scheme can be considered as the 

either a contention scheme when the aggregate load is below the switching point or a 

non-contention scheme when it is above. Accordingly, it can be broken into two cases 

and is proved in a similar manner as well. Q.E.D. 

 

Corollary: Given a suitable switching point is chosen at which a flow will transition 

between medium access schemes and that there exist at least two flows which are in two 

different medium access modes, flow-specific medium access will provide better delay 

performance than contention, non-contention, and hybrid medium access schemes. 

Proof: This corollary follows directly from the theorem since it can be shown that the 

equality in performance only occurs when m is either 1 or N. The constraint that there 

exists at least one flow in each of the contention and non-contention modes implies that 

1 m N< <  and, therefore, that the delay performance of the traffic-adaptive, flow-specific 

approach is strictly better than the other schemes. 

 

As can be seen from this discussion, the performance of a traffic-adaptive 

medium access scheme is tied to the selection of the switching point [4]. Returning to our 

two-flow example, the impact of the selection of the switching point can be plainly seen 

in Figure 4 where we plot mean aggregate delay versus normalized aggregate load for 

four different switching points. In the next chapter, we propose a queue-based, traffic-

adaptive mechanism to dynamically implement this switching point. 
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Figure 4.  Flow-specific delay plotted against the normalized load and our 

compared to CSMA and TDMA for various switchover points. Channel rate is 1 
Mbps, packet size is 1000 bits, there are 100 slots in a TDMA frame (each slot is one 

packet length in duration) and a = 0.01 for the CSMA schemes. The CSMA plot 
assumes steady state and represents minimum achievable delay. 
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III. TRAFFIC-ADAPTIVE, FLOW-SPECIFIC MEDIUM ACCESS 
MECHANISM 

To realize the potential performance gains identified in the previous chapter, we 

propose a traffic-adaptive, flow-specific mechanism in this section that utilizes flow-

specific queue size statistics and develop a general traffic-adaptive, flow-specific medium 

access control performance model. In the final two subsections, we examine the two-flow 

and single-flow cases in detail and demonstrate that contention, non-contention and 

hybrid schemes are special cases of the general flow-specific model. 

A. TRAFFIC-ADAPTIVE, FLOW-SPECIFIC MEDIUM ACCESS 
MECHANISM 

Assuming each flow (or each set of flows if we choose to group a set of flows 

with similar characteristics together) has its own queue at each node, we use this queue 

size as an indicator of flow-specific traffic contention. Queue size has been used 

extensively, both implicitly and explicitly, as a measure of congestion across a network 

[9]. As local buffers fill up, strategies include explicit control packet information to 

“choke” the flow from the sender as well as different packet dropping approaches, such 

as [10] and its many variants, that lead to retransmissions and implicit congestion 

notification. The use of queue size has also begun to migrate into wireless sensor network 

traffic estimation. For example, although TRAMA [1] does not explicitly exchange queue 

sizes, it does exchange schedules that signal the presence of packets in the local buffers. 

As an alternate to queue size, network load in the form of contention can be estimated 

directly by measuring the loss rate associated with acknowledgement packets or 

indirectly by measuring the channel noise level [4]. The drawback of these approaches to 

traffic estimation is that they are not flow-specific and therefore do not facilitate flow-

specific medium access decisions.  
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The proposed queue-based traffic-adaptive, flow-specific medium access 

mechanism operates as follows. As flow load reaches a predetermined threshold, 

measured in terms of the flow-specific queue size, the flow is switched from one access 

mode to another. Each flow (or each set of flows) will have its own queue and associated 

thresholds. These thresholds, 1, ,f mθ and 2, ,f mθ , define the switching point discussed in the 

previous section and can be unique for each flow f and medium access mode m as shown 

in Figure 5. The single-flow, two-mode (contention and non-contention) case is 

illustrated in Figure 6. When the queue size reaches 1, fθ , flow f is switched from 

...

 
Figure 5.  Flow-specific queues and associated thresholds for general traffic-

adaptive, flow-specific medium access model. 

 
Figure 6.  Single-flow, two-mode version of the proposed traffic-adaptive, flow-

specific mechanism. 
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contention-based to non-contention-based medium access. Similarly, when the queue size 

drops to 2, fθ , the flow is switched from non-contention-based back to contention-based 

medium access. In the next section, we develop a general model that provides insight into 

the choice of these thresholds. 

B. A GENERAL PERFORMANCE MODEL FOR TRAFFIC-ADAPTIVE, 
FLOW-SPECIFIC MEDIUM ACCESS 

Traffic-adaptive, flow-specific medium access can be modeled as a finite state 

machine as shown in Figure 7. Each state is uniquely specified by a vector that reflects 

the access mode of each flow. The number of states required, Φ , is, therefore, a function 

of the number of flows, F, and the number of unique medium access modes, M, as 

( )FMΦ = . If we assume that the underlying, individual queues are M/M/1, then this 

finite-state model can be viewed as a hidden Markov model [11]. To determine the steady 

state probabilities sπ  associated with the individual observable states s, we must first 

derive the state probabilities of the hidden Markov model and then establish the 

relationships between these Markov states and the observable states. In the special case 

where 1, , 2, ,f m f mθ = θ  (i.e., a system with no hysteresis), each probability sπ  is a function 

of a unique, non-overlapping set of the underlying Markov state probabilities. With these 

1,2α 1,αΦ− Φ

2,α Φ

1,α Φ

2, 1α Φ−

1, 1α Φ−

2,1β , 1Φ Φ−β
1,2Φ−β

,1Φβ
,2Φβ1,1Φ−β

 
Figure 7.  General traffic-adaptive, flow-specific finite state model. 



 
 

 14

steady state probabilities, the mean throughput S and delay D for the flow-specific 

medium access scheme can then be developed as 

 
1 1

and  s s s s
s s

S S D D
Φ Φ

= =

= π = π∑ ∑  (8) 

where sS  and sD  are the mean throughput and delay, respectively, experienced in state s. 

In general, the medium access scheme for flow f will transition from one access 

mode im  to the next mode 1im + when the number of packets in the flow-specific queue 

reaches the threshold 1, , if mθ  denoted by , 1s s+α  in Figure 7. Similarly, the transition from 

1s +  to s occurs when the number of packets drops to 2, ,f mθ  denoted by 1,s s+β . The 

probability of these transitions is a function of both the number of packets fN  in the 

flow-specific queue f and the utilization in the current observed state. The utilization 

, ,m s fρ  is defined as the ratio of the packet arrival rate for flow f to the service time for 

flow f and is unique to the state s and the flow f. Given the result for a M/M/1 queue that 

the total number of customers N in the system is [15] 

 
1

N ρ
=

−ρ
, (9) 

the utilization can be derived from Little’s Law [15] as  

 , 1
f s

s f
f s

D
D

λ
ρ =

+ λ
 (10) 

where fλ  is the packet arrival rate for flow f and sD  is the mean delay in state s. In the 

following section, we will examine this relationship closer for the two-flow, two-mode 

case and develop both throughput and delay expressions for the example of Chapter II. 

C. TWO-FLOW, TWO-MODE (CONTENTION, NON-CONTENTION) CASE 

As shown in Figure 8, it requires a four-state model to represent a two-flow, flow-

specific medium access scheme such as one capable of providing both contention and 

non-contention access modes. We can make a set of simplifying assumptions to allow us 

to compare the performance of this traffic-adaptive mechanism to that of the ideal case in 

the example of Chapter II. Without a loss of generality, we assume that it is flow 1 that 
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has a constant arrival rate and remains in the contention-based access mode while flow 2 

is allowed to transition between access modes as its arrival rate varies. Accordingly, 1,2α  

and 2,1β  are the only non-zero transition rates since states S3 and S4 are not achievable 

and the full model of Figure 8 can be reduced to the two-state model of Figure 9.  

Assuming that the underlying Markov process is M/M/1, the bilevel hysteretic 

service rate control work of [12] can be adopted to arrive at the steady state probabilities 

by viewing the system as having two distinct service rates 1μ  and 2μ  (corresponding to 

the states S1 and S2). The states of this underlying Markov Chain are defined by the state 

the system is in (S1 or S2 from Figure 9) and the queue size (number of packets awaiting 

transmission). The transition from 1μ  to 2μ  occurs when the number of packets in the 

S1

[c,c]

S2

[c,nc]

S3

[nc,nc]

S4

[nc,c]

1,2α 3,4α2,3α

1,4α

2,4α1,3α

2,1β 4,3β3,2β

4,1β

4,2β3,1β

 
Figure 8.  Full 4-state model for two-flow flow-specific, medium access. 

2,1β

1,2α

S1Pr[S1] = π S2Pr[S2] = π

 
Figure 9.  Simplified 2-state model for two-flow flow-specific, medium access.  
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queue of flow 2 reaches 1,2θ  and the transition from 2μ  to 1μ  occurs when the number of 

packets in the queue of flow 2 drops to 2,2θ  as shown in Figure 6. Examining the 

underlying Markov model, shown in Figure 10, the state probabilities nP  (where n is the 

queue length) are given by [12]  

 

( )
( ) ( ) ( ) ( )( ) ( )( )

( )( )( )( )
[ ]

( ) ( ) ( )( )
( )( )( )

( ) [ ]

1,2

2,2

1,2

1,2

1,2 0 2,2

1
1,2 2,2 1,2 1,2 1,2 2,2

0

1,2 1,2 2,2

1
1,2 1,2 2,2

1 2,2 0

1,2 2,2

0, 1

1 1
0, 1

1 1 1

1 1
1,

1 1

n
n

i i

i

j

j

P P n

P P i

P P j

θ − Δ

θ + Δ

θ − Δ

θ + − Δ

⎡ ⎤= ρ ⊂ θ −⎣ ⎦

ρ ρ −ρ ρ − ρ − ρ
= ⊂ Δ −

− ρ −ρ −ρ

ρ −ρ − ρ
= ρ ⊂ ∞

− ρ −ρ

 (11) 

where  

 
( )

( ) ( )
( )( )( )

1,2

1
1

1,2 1,2 2,2
0

1,2 1,2 2,2

1
1 1 1

P

−
θ −

Δ

⎛ ⎞
Δ ρ ρ −ρ⎜ ⎟= −⎜ ⎟−ρ − ρ −ρ⎜ ⎟

⎝ ⎠

 (12) 

and 1,2 2,2Δ = θ −θ  captures the extent of the hysteresis loop created by 1,2θ  and 2,2θ . 

Returning to our two-state medium access model of Figure 9, the probability that the 

system is in state S2, 2Sπ , is equivalent to the probability that the system is in service rate 

2μ  which can be shown to be [12] 

 
( ) ( )( )

( )( )( )

1,2 1
1,2 2,2 1,2

2 0

1,2 2,2

1

1 1
S P

θ −

Δ

Δ ρ ρ −ρ
π =

− ρ −ρ
. (13) 

The probability that the system is in state S1 is then simply 1 21S Sπ = − π . The steady state 

probabilities are plotted as a function of 1,2θ  in Figure 11. It can be seen that, as expected, 

for the limiting cases of 1,2θ  approaching zero and 1,2θ  approaching infinity, the 

probability that the flow-specific medium access scheme is in State 2 approaches one 

( 2 1Sπ = ) and zero ( 2 0Sπ = ), respectively. 
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Figure 10.  Underlying Markov Chain for two-flow, two-mode example. 
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Figure 11.  Steady state probability for two-flow, two-mode  model as a function of 

the queue-based threshold, 1θ . 

Following the analysis of Chapter II, the associated state throughputs and delays 

are  
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1 2
1 2 1 2

1 2
1 2 1 2

and

and

c c nc
S S

c c nc
S S

S S S S S

D D D D D

λ λ
= = +

λ λ
λ λ

= = +
λ λ

 (14) 

where cS  and cD  are the throughput and delay, respectively, of the aggregate flow in the 

contention mode, c
fS  and c

fD  are the throughput and delay, respectively, of flow f in the 

contention mode, and nc
fS  and nc

fD  are the throughput and delay, respectively, of flow f in 

the non-contention mode. Substituting (13) and (14) into (8), we can then develop the 

resulting aggregate mean throughput and delay expressions as 
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( )( )( )
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( )( )( )

1,2

1,2

1

1,2 2,2 1,2 1 2
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1
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1 1

c c nc c
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D D P D D D
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ρ ρ ρ λ λ
λ λρ ρ

ρ ρ ρ λ λ
λ λρ ρ

−

Δ

−

Δ

Δ − ⎛ ⎞= + + −⎜ ⎟
⎝ ⎠− −

Δ − ⎛ ⎞= + + −⎜ ⎟
⎝ ⎠− −

 (15) 

This analysis of the special case where the demand of one flow is fixed can be extended 

to the two-flow, M-mode case with 2M >  using the more general variable service rate 

work of [13].  
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Using the parameters of the example in Chapter II, we plot mean aggregate delay 

as a function of normalized load in Figure 12 for 1 220 and 5θ = θ = . It can be seen that, 

as expected, the flow-specific scheme performs as well as CSMA when the aggregate 

load is low and outperforms all three approaches when a flow exists in both the 

contention and non-contention modes. The role of 1θ  as the switching point can be 

clearly seen in Figure 13 where we plot both delay and throughput as a function of load 

for various values of 1θ . At the optimum value for 1θ  (close to 20 packets in this 

example), the mechanism transitions to contention-free operation as the delay curves 

intersect. At values below optimum, the scheme transitions too early and the aggregate 

delay at low loads suffers. For values of 1θ  above optimum, the scheme transitions late 

and the heavy load begins to overwhelm the contention-based mode, the delay grows and 

the throughput saturates (and will eventually drop off).  
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Figure 12.  Packet delay plotted as a function of normalized load for slotted 
nonpersistent CSMA, TDMA, hybrid using CSMA/TDMA and flow-specific 

medium access using CSMA/TDMA with 1 220 and 5θ = θ = . Channel rate is 1 
Mbps, packet size is 1000 bits, there are 100 slots in a TDMA frame (each slot 

is one packet length in duration) and a = 0.01 for the CSMA schemes. The 
CSMA plot assumes steady state and represents minimum achievable delay. 
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Figure 13.  Mean aggregate (a) delay and (b) throughput plotted as a function of the 
normalized aggregate load for multiple values of 1θ . Channel rate is 1 Mbps, packet size 

is 1000 bits, there are 100 slots in a TDMA frame (each slot is one packet length in 
duration) and a = 0.01 for the CSMA schemes. The CSMA plot assumes steady state and 

represents minimum achievable delay. 
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D. SINGLE-FLOW, TWO-MODE CASE: HYBRID MEDIUM ACCESS 

The model of Figure 9 can be further simplified if we examine the single-flow 

case. This case can be shown to be equivalent to the hybrid case where multiple flows are 

treated in aggregation. Thus, hybrid approaches represent a special case of the more 

general flow-specific approach. To demonstrate this, we note that there is a single, 

aggregate queue in a hybrid scheme, so 1,2θ  and 2,2θ reduce to 1θ  and 2θ , respectively, 

and 1,2ρ  and 2,2ρ reduce to 1 cρ = ρ and 2 ncρ = ρ , respectively. Following the analysis of 

the previous section, the state probabilities are  

 
( ) ( )( )

( )( )( )

1 1

0

1

1 1

1

c nc c
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c nc

c nc
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θ −

Δ
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− ρ −ρ

π = − π

 (16) 

where 
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Δ

⎛ ⎞Δ ρ ρ −ρ⎜ ⎟= −⎜ ⎟−ρ⎜ ⎟− ρ −ρ
⎝ ⎠

 (17) 

and 1 2Δ = θ −θ . 

Since 1S  and 2S  are equivalent to cS  and ncS , respectively, and 1D  and 2D  are 

equivalent to cD  and ncD , respectively, the overall mean throughput is 

c nc
c ncS S S= π + π and the mean delay is c nc .c ncD D D= π + π  Substituting (16) into these 

expressions, we arrive at 
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 (18) 

This result is included in Figure 12 for 1 20θ =  and 2 5θ = . 

E. SINGLE-FLOW, SINGLE-MODE CASE 
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Finally, it is straightforward to show that the contention only [2],[3] and non-

contention [7] schemes are trivial single-flow, single-mode cases of the general flow-

specific model. The state probabilities for the contention-based scheme are 1 1S cπ = π =  

and 2 0S ncπ = π =  while they are 1 0S cπ = π =  and 2 1S ncπ = π =  for the non-contention-

based scheme. Substituting these into (8), we arrive cS S=  and cD D=  for the 

contention-based scheme and ncS S=  and ncD D=  for the non-contention-based scheme. 
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IV. TRAFFIC ADAPTIVE CWS-MAC 

We now apply this proposed flow-specific, traffic-adaptive mechanism to the 

Cooperative Wireless Sensor Network Medium Access Control (CWS-MAC) protocol, a 

distributed, flow-specific medium access scheme. We begin with an overview of CWS-

MAC and then discuss the application of the proposed mechanism. We include 

performance analysis using the general model developed in the previous chapter. 

A. OVERVIEW OF CWS-MAC 

CWS-MAC [5] is a fixed, flow-specific medium access control that is designed to 

accommodate multiple flows based on flow demand. Application-aware, it combines the 

low demand delay performance of a contention-based scheme with the high demand 

throughput performance of a non-contention (scheduled) approach. In [5], we refer to the 

“control” and “data” flows. In this report, we generalize these and their respective 

medium access mechanisms to “contention-based” and “non-contention-based.” 

The underlying non-contention-based medium access mechanism is provided by a 

TDMA scheme in which nodes are assigned slots within the TDMA frame for 

transmission of their non-contention flow packets. Slot assignment can be accomplished 

through a dynamic, distributed scheduling algorithm such as [16], [17], [18]. 

The contention-based medium access mechanism is superimposed on top of the 

TDMA framing through the use of an interframe space and a contention beacon that 

effectively give the contention-based flow global (across node) priority over the non-

contention-based flow. A node with contention flow packets to transmit signals its intent 

to seize the current TDMA slot by transmitting a contention beacon of length, tb. 

Although not specifically addressed in [5], in a multi-hop network this beacon must be 

retransmitted to all two-hop neighbors of the originating node. A node with non-

contention packets to transmit must wait for the duration of the interframe space, tIFS, and 

then sense the medium. If the medium is free (i.e., no contention beacon has been 

transmitted in its two-hop neighborhood), the packet may transmit its non-contention 

packets. If a beacon is detected, the slot owner defers and the slot is effectively seized as 

a contention slot. To ensure the non-contention flow is not “choked off,” a portion of the 
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original TDMA slot is set aside in the contention slot for use by the slot owner for non-

contention packet transmission. 

To reduce collisions among competing nodes with contention-based traffic to 

transmit within the two-hop neighborhood, the contention slot is subdivided into a series 

of transmission minislots. A version of slotted ALOHA [6], a node will transmit in a 

minislot with some predetermined probability (calculated as the inverse of the number of 

minislots in [5]) and an acknowledgement mechanism is included to recover from 

collisions. 

An illustration of the CWS-MAC frame is provided in Figure 14. User selectable 

parameters for CWS-MAC include the slot size, ts, the minislot size, tms, the number of 

minislots, k, and the lengths of the control beacon and interframe space. A strategy is 

provided in [5] to select these parameters to optimize throughput and delay performance. 

B. TRAFFIC-ADAPTIVE CWS-MAC 

CWS-MAC gains its performance improvement by handling application flows 

differently based on their traffic characteristics. As implemented in [5], though, medium 

access modes are statically assigned to each flow and CWS-MAC has no capability to 

adapt to changes in traffic flow demand over time. To fully realize the potential 

performance gains of CWS-MAC, the hybrid control must be aware of and respond to 

changes in flow traffic characteristics. We therefore apply the queue-based, flow-specific, 
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Figure 14.  An illustration of the CWS-MAC mechanism and frames.  
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traffic-adaptive mechanism of Chapter III to CWS-MAC. 

The flow-specific queues are maintained at the link layer which implies that the 

link layer mechanism is capable of determining which flow a packet is associated with. 

The queue size measurement is taken whenever a packet is added or removed from the 

applicable queue. It should be noted that while a non-contention mode packet is removed 

from the queue upon transmission, a contention mode packet is not removed until the 

appropriate acknowledgement is received at the sender. Although certainly not required, 

this queue size measurement can be smoothed by applying a moving average to it. When 

a flow is transitioned from one mode to another, all queued packets within that flow are 

transitioned as well. This has the effect of “clearing” out the flow from the prior access 

mode and specifically improves delay and throughput recovery time when a flow is 

transitioned from the contention mode to the non-contention mode. 

The distributed nature of traffic-adaptive CWS-MAC leads to a subtle point that 

should not be overlooked: neighboring nodes may assign the same flow to different 

medium access modes. This is because the state transitions of Figure 8 are based on local 

queue statistics which will vary between neighboring nodes. This does not pose a 

problem in traffic-adaptive CWS-MAC because the medium access mode is specific to 

the sender not the receiver and a receiver needs no prior arrangement to receive a flow in 

a given mode. Hence, although a node may receive a flow in one mode, it requires no 

coordination to switch to reception in the other mode and it is free to retransmit the flow 

in either mode.  

C. PERFORMANCE ANALYSIS OF TRAFFIC-ADAPTIVE CWS-MAC 

In this section, we develop individual expressions for the non-contention and 

contention throughput and delay for traffic-adaptive CWS-MAC. We then combine these 

using (15) to arrive at the overall mean delay and throughput for the example of Chapter 

II.  

1. Non-contention throughput for CWS-MAC 

We begin with the non-contention throughput. At steady state, the arrival rate is 

equivalent to the departure rate and the normalized non-contention throughput, ncS , is 

given by [19] 
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 nc nc ncLS
R

Λ
=  (19) 

where ncΛ  is the mean total arrival rate for the non-contention mode, ncL  is the mean 

packet size (in bits) for the non-contention mode, and R is the channel rate in bps. For a 

TDMA-based scheme, this throughput is bounded by a maximum value that is dependent 

on the per frame overhead. Specifically,  

 max
nc data

f

MTS
t

=  (20) 

where dataT  is the mean time spent in a slot transmitting useful data, ft  is the frame 

length in seconds and we have assumed, without loss of generality, that each node is 

assigned a single slot in the frame. Clearly, data f ovrhdMT t T= −  where ovrhdT  is the mean 

time spent in a frame on overhead and (20) can alternately be written as 

 max 1nc ovrhd

f

TS
t

= − . (21) 

To calculate dataT , we must account for both the non-contention and contention slots in 

Figure 14. In the first case, dataT  for a packet transmitted in a non-contention slot is equal 

to nct . This value is reduced in the case of the contention slot by the overhead associated 

with the contention access mode which can be seen in Figure 14 to be b mst kt+ . 

Combining these cases (and accounting for the IFSt  term), we have 

 for a non-contention slot
for a contention slot

nc
data

nc IFS b ms

tT t t t kt
⎧= ⎨ + − −⎩

 (22) 

for k minislots per slot and 

 nc s IFS prop guardt t t t t= − − − . (23) 

We can calculate dataT  then as 

 [non-contention slot] Pr[non-contention slot]
[contention slot] Pr[contention slot]

data data

data

T T
T

= ×
+ ×

 (24) 

which, from (22), can be written as 

 ( )
Pr[non-contention slot]

Pr[contention slot].
data nc

nc IFS b ms

T t
t t t kt

=
+ + − −

 (25) 
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Assuming that the contention mode arrivals follow a Poisson distribution, the 

probabilities in (25) can be derived as follows. The probability that a slot is designated as 

a non-contention slot is equivalent to the probability that there are no control packet 

arrivals during the previous slot and that no control packet retransmissions are pending 

from the previous contention slot. For now, we will assume that the probability of the 

latter is negligible (we will come back to this point in a follow-on section). Focusing then 

on the first term, 

 Pr[non-contention slot] = Pr[no contention packets arrivals in previous slot]  (26) 

Since the contention packet arrivals are Poisson, this can be shown to be 

 0Pr[non-contention slot] c stp e−Λ≡ =  (27) 

where the aggregate control mode packet arrival rate c cMΛ = λ  for M nodes. The 

Pr[contention slot] is simply 1 Pr[non-contention slot]−  or 

 0Pr[contention slot] 1 1 c stp e−Λ= − = − . (28) 

Substituting (27) and (28) into (25), we have 

 ( )( )1c s c st t
data nc nc IFS b msT t e t t t kt e−Λ −Λ= + + − − − . (29) 

Rearranging terms,  

 ( )( )1 c st
data nc IFS b msT t e t t kt−Λ= + − − − , (30) 

and substituting into (20) 

 
( )( )( )

max

1 c st
nc IFS b msnc

f

M t e t t kt
S

t

−Λ+ − − −
= . (31) 

Recognizing that f
s

t
t

M
= , we finally arrive at 

 
( )( )

max

1 c st
nc IFS b msnc

s

t e t t kt
S

t

−Λ+ − − −
= . (32) 

Combining (32) and (19), we can express the throughput for the non-contention 

mode as 

 max

max otherwise

ncnc
nc nc

nc

L RS
S R L

S

⎧Λ ⎛ ⎞Λ ≤⎪ ⎜ ⎟= ⎨ ⎝ ⎠
⎪⎩

. (33) 
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The capture the effect of the ratio of dataT  for the contention slot to that for a non-

contention slot or, equivalently, the percentage of the bandwidth allocated to the 

contention flow, we define β  as 

 b ms

s

t kt
t
+

β = . (34) 

Thus, [ ]0,1β∈  and, if the timing parameters in (34) are fixed, is proportional to the 

choice of k . A larger value of β  represents a larger percentage of bandwidth allocated to 

the contention mode. A plot of maximum non-contention throughput as a function of the 

probability of a non-contention slot 0p  (which, as we shall see later, is a function of the 

aggregate contention packet arrival rate) for various values of β  is provided in Figure 15. 
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Figure 15.  Maximum non-contention throughput as a function of a function of the 

probability of a non-contention slot 0p  for various values of β . 

2. Non-contention mean delay for CWS-MAC 
Turning our attention to latency, the mean delay of a packet in the non-contention 

mode is comprised of four parts [19]: (1) nc
syncT , the mean delay associated with waiting 

for the next slot boundary (sometimes referred to as the synchronization delay); (2) nc
wT , 

the mean waiting time in the queue, (3) nc
xmtT , the mean transmission time and (4) propt , the 

maximum propagation time of the packet. This is summarized as 
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 nc nc nc nc
sync w xmt propD T T T t= + + + . (35) 

To develop expressions for the first three terms, we must examine the two cases 

identified in the previous section. The first term, nc
syncT , is the same in both cases. Since the 

non-contention packet arrivals are assumed to be purely random (Poisson distributed) and 

the period of arrival is the slot duration st , then the synchronization delay is simply 

 
2

nc s
sync

tT = . (36) 

To calculate the mean waiting time in the queue, nc
wT , we again assume Poisson 

arrivals and can therefore view the network as a set of identical M/G/1 queues where the 

mean arrival rate is ncλ . To develop the effective service time distribution, we begin by 

calculating the effective service time 
1

nc
sT  for a packet that is transmitted in a single non-

contention slot. Without a loss of generality, we will assume that exactly one non-

contention packet is transmitted during a non-contention slot and that each node (i.e., 

queue) is assigned a single slot in each frame. Thus, in this case, each queue services one 

packet in a frame and the effective service time is simply the frame time as in 

 
1

nc
s fT t= . (37) 

Note that since the propagation time is specifically included in our slot time calculations 

(and, hence, our frame time calculations), we have implicitly included it in our effective 

service time.  

If the first slot encountered by a packet is a contention slot, then the effective 

service time of a packet is increased because, as we saw in the previous section, dataT  for 

a contention slot is reduced relative to that for a non-contention slot. Accordingly, the 

packet will be serviced over multiple slots or, equivalently, multiple frames. Let us define 

κ  as the smallest integer, greater than or equal to the ratio of dataT  for the non-contention 

slot to that for a contention slot. From (22), 

 nc

nc IFS b ms

t
t t t kt
⎡ ⎤

κ = ⎢ ⎥+ − −⎢ ⎥
 (38) 
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where ( )f x x= ⎡ ⎤⎢ ⎥  is the ceiling operator. Now, let us examine the case where a packet is 

serviced by a contention slot followed by a non-contention slot. In this case, the effective 

service time will simply be twice the frame time, ft . Given our assumption that exactly 

one non-contention packet is transmitted during a non-contention slot, with some thought 

it can be seen that, in general, a packet service time will terminate when either the packet 

experiences a non-contention slot or it has spanned across κ  contention slots. The 

service time is therefore a discrete random variable that can take on the values 

, 2 ,..., ( 1) ,f f f ft t t t⎡ ⎤κ − κ⎣ ⎦ . By use of the ceiling operator in (38), we have made the 

conservative assumption that when a packet transmission spans multiple slots, any 

residual slot time in the last slot remains unfilled. Accordingly, our service time 

expression can be viewed as an upper bound which can be improved upon by allowing 

subsequent packets to make use this residual slot time. 

We can derive the probability distribution for nc
sT  by examining the individual 

cases. The probability that a packet will encounter a single non-contention slot is simply 

the probability that the first slot it encounters is a non-contention slot which, from (27), is 

0
c stp e−Λ= . The probability that nc

sT  will span exactly two frames is the probability of a 

contention slot followed by a non-contention slot or ( )0 01p p− . Extending this through 

the case of ( )2κ −  contention slots followed by a non-contention slot, we have 

 ( ) 1
0 0Pr 1 for 1nc

s fT t p p α−⎡ ⎤= α = − ≤ α < κ⎣ ⎦  (39) 

where α  is an integer. The probability for the terminating case in which we have either 

( )1κ −  contention slots followed by a non-contention slot or κ  consecutive contention 

slots is then  

 ( )
1

1
0 0

1
Pr 1 1 inc

s f
i

T t p p
κ−

−

=

⎡ ⎤= κ = − −⎣ ⎦ ∑ . (40) 

Substituting 1j i= −  and rearranging, 

 ( )
2

0 0
0

Pr 1 1 jnc
s f

j

T t p p
κ−

=

⎡ ⎤= κ = − −⎣ ⎦ ∑ . (41) 

We can now use the well-known identity  
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1

0

1
1

nn
i

i

cc
c

+

=

−
=

−∑  (42) 

to simplify (41) to 

 ( ) 1
0Pr 1nc

s fT t p κ−⎡ ⎤= κ = −⎣ ⎦ . (43) 

Combining (39) and (43) and accounting for the zero probability case of α > κ , we arrive 

at the distribution of nc
sT  as 

 
( )

( )

1
0 0

1
0

1 for 1
Pr 1 for 

0 for 

nc
s f

p p
T t p

α−

κ−

⎧ − ≤ α < κ
⎪⎪⎡ ⎤= α = − α = κ⎨⎣ ⎦
⎪ α > κ
⎪⎩

. (44) 

This result is logical when we observe that nc
sT  has the form of a modified geometric 

random variable. By this, we mean that we count the consecutive number of unsuccessful 

trials (contention slots, in our case) until the first successful trial (non-contention slot), 

but we are bounded by a maximum number of trials (κ ). The probability and cumulative 

distribution functions for nc
sT  are shown in Figures 16 and 17, respectively 
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Figure 16.  Probability distribution function of nc

sT  with 1ft =  sec and 10κ = . 
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Figure 17.  Cumulative distribution function of nc

sT  with 1ft =  sec and 10κ = . 

Given the distribution of nc
sT , we can now calculate its mean and variance. The 

mean is defined as 

 
1

Pr[ ]
i i

nc nc nc nc nc
s s s s s

i

E T T T T T
∞

=

⎡ ⎤ ≡ = × =⎣ ⎦ ∑ . (45) 

Making the appropriate substitutions from (44), 

 ( ) ( )
1

1 1
0 0 0

1

1 1inc
s f f

i

T it p p t p
κ−

− κ−

=

= − + κ −∑ . (46) 

Rearranging and including the case of 0i =  in the summation, 

 ( ) ( )
1

1 1
0 0 0

0

1 1inc
s f f

i

T t p i p t p
κ−

− κ−

=

= − + κ −∑ . (47) 

To evaluate the summation in the first term, we take the partial derivative of (42) 

 
1

0

1
1

nn
i

i

cc
c c

+

=

⎛ ⎞δ −
=⎜ ⎟δ −⎝ ⎠

∑  (48) 

which, using the linearity property of the derivative operation, is equivalent to  

 
1

0

1
1

nn
i

i

cc
c c c

+

=

⎛ ⎞δ δ −⎛ ⎞ = ⎜ ⎟⎜ ⎟δ δ −⎝ ⎠ ⎝ ⎠
∑ . (49) 

Evaluating this,  
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( ) ( ) ( )

( )

1
1

2
0

1 1 1

1

n nn
i

i

n c c c
ic

c

+
−

=

+ − − −
=

−
∑  (50) 

and making the substitutions 1n = κ −  and 01c p= − , 

 ( )
( )( ) ( )( ) ( )( )

( )( )

1 1 1
1 0 0 01

0 2
0 0

1 1 1 1 1 1 1
1

1 1
i

i

p p p
i p

p

κ− κ− +
κ−

−

=

κ − + − − − − − −
− =

− −
∑ . (51) 

Simplifying, we have 

 ( ) ( ) ( ) 11
1 0 0 0

0 2
0 0

1 1 1
1 i

i

p p p
i p

p

κ κ−κ−
−

=

− − − κ −
− =∑ . (52) 

Substituting (52) into (47), 

 ( ) ( ) ( )
1

10 0 0
0 02

0

1 1 1
1nc

s f f

p p p
T t p t p

p

κ κ−
κ−⎛ ⎞− − − κ −

= + κ −⎜ ⎟
⎜ ⎟
⎝ ⎠

. (53) 

Rearranging, 

 ( ) ( ) ( )1 1
0 0 0 0 0

0

1 1 1 1nc
s f

p p p p p
T t

p

κ κ− κ−⎛ ⎞− − − κ − + κ −
= ⎜ ⎟

⎜ ⎟
⎝ ⎠

 (54) 

Canceling like terms, we finally arrive at the mean of nc
sT  as 

 ( )0

0

1 1nc
s f

p
T t

p

κ⎛ ⎞− −
= ⎜ ⎟

⎜ ⎟
⎝ ⎠

 (55) 

and the square of the mean as 

 ( ) ( ) ( )
2

2 2 0

0

1 1nc
s f

p
T t

p

κ⎛ ⎞− −
= ⎜ ⎟

⎜ ⎟
⎝ ⎠

. (56) 

Checking the limiting cases of 0 1p =  (all non-contention slots) and 0 0p =  (all 

contention slots), we find that, as expected, the mean of nc
sT  is ft  in the former and ftκ  

in the latter. In the 0 0p = case, this result is arrived at through a single application of 

L’Hôpital’s Rule. A plot of the mean of nc
sT  as a function of 0p  for various values of κ  

is provided in Figure 18.  
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Figure 18.  The mean of nc

sT  as a function of 0p  for various values of κ  with 
1 sec.ft =  

The second moment of the effective service time is defined as 

 ( ) ( )22

1
Pr[ ]

i i

nc nc nc nc
s s s s

i
E T T T T

∞

=

⎡ ⎤ = × =⎢ ⎥⎣ ⎦ ∑  (57) 

Which, again from (44), is equivalent to  

 ( ) ( ) ( ) ( ) ( )
12 2 21 1

0 0 0
1

1 1inc
s f f

i

E T it p p t p
κ−

− κ−

=

⎡ ⎤ = − + κ −⎢ ⎥⎣ ⎦ ∑  (58) 

after the appropriate substitutions. Rearranging, we have 

 ( ) ( ) ( ) ( ) ( )
12 2 21 12

0 0 0
1

1 1inc
s f f

i

E T t p i p t p
κ−

− κ−

=

⎡ ⎤ = − + κ −⎢ ⎥⎣ ⎦ ∑ . (59) 

To evaluate the summation in the first term, we multiply (50) by c and again take the 

partial derivative, 

 
( ) ( ) ( )

( )

1
1

2
0

1 1 1

1

n nn
i

i

n c c c
c ic

c c

+
−

=

⎛ ⎞+ − − −δ ⎜ ⎟=
⎜ ⎟δ −⎝ ⎠
∑ . (60) 

Rearranging, 

 
( ) ( ) ( )

( )

1 1

2
0

1 1 1

1

n nn
i

i

n c c c c
i c

c c c

+ +

=

⎛ ⎞+ − − −δ δ ⎜ ⎟=
⎜ ⎟δ δ −⎝ ⎠

∑ . (61) 

Differentiating the left side and multiplying out the right side, 
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 ( ) ( )
( )

2 1 2
2 1

2
0

1 1
1

n n nn
i

i

n c n c c c
i c

c c

+ + +
−

=

⎛ ⎞+ − + − +δ
= ⎜ ⎟

⎜ ⎟δ −⎝ ⎠
∑ . (62) 

Combining like terms, 

 ( )
( )

2 1
2 1

2
0

1
1

n nn
i

i

nc n c c
i c

c c

+ +
−

=

⎛ ⎞− + +δ
= ⎜ ⎟

⎜ ⎟δ −⎝ ⎠
∑  (63) 

and differentiating the right side, 

 
( ) ( )( )( ) ( )( ) ( )

( )

2 21 2 1

2 1
4

0

2 1 1 1 1 2 1

1

n n n n
n

i

i

n nc n c c nc n c c c
i c

c

+ + +

−

=

+ − + + − − − + + −
=

−
∑ . (64) 

Reducing, 

 
( ) ( )( )( ) ( )( )

( )

21 2 1

2 1
3

0

2 1 1 1 2 1

1

n n n n
n

i

i

n nc n c c nc n c c
i c

c

+ + +

−

=

+ − + + − − − + +
=

−
∑  (65) 

and expanding the individual terms, 

 ( )
( ) ( ) ( )

( ) ( )

2 1 2 2 2 1 2 1
3

0

2 2 1

1 { 2 2 1 2
1

1 1 2 2 1 2 }.

n
i n n n

i

n n n

i c n n c n n c c n n c
c

n c nc n c c

− + + +

=

+ +

= + − + + + − +
−

+ + − − + + −

∑
 (66) 

Combining terms, 

 
( )

( ) ( ){ }22 1 2 2 2 1
3

0

1 2 2 1 1 1
1

n
i n n n

i

i c n c n n c n c c
c

− + +

=

= − + − + + − −
−

∑ . (67) 

Again making the substitutions 1n = κ −  and 01c p= − , 

 
( )

( )
( ) ( ) ( ) ( )( )( )

( ) ( ) ( )

1
1 2 1 2 2 1 12

0 0 03
0 0

2 1
0 0

11 { 1 1 2 1 2 1 1 1
1 1

1 1 1 1 1}

i

i
i p p p

p
p p

κ−
− κ− + κ− +

=

κ−

− = κ − − − κ − + κ − − −
− −

+ κ − + − − − −

∑
(68) 

and reducing, 

 
( )

( )
( ) ( ) ( ) ( )( )( )

( ) ( ) ( )

1
1 2 1 22

0 0 03
0 0

2 1
0 0

11 { 1 1 2 1 2 1 1 1

1 1 1}.

i

i
i p p p

p
p p

κ−
− κ+ κ

=

κ−

− = κ − − − κ − + κ − − −
−

+ κ − − − −

∑
 (69) 

Combining terms and moving the negative into the bracketed term, 
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( )

( )
( ) ( ) ( ) ( )( )

( )

1
1 2 12 2

0 0 0 03
0 0

22
0

11 {1 1 [ 1 1 2 2 1 1

1 1]}.

i

i
i p p p p

p
p

κ−
− κ κ−

=

κ−

− = − − κ − − − κ − κ − −

+κ − −

∑
 (70) 

Substituting (70) into (59), 

 
( ) ( )

( )
( ) ( ) ( ) ( )( )

( ) ( ) ( )

2 2 2 12
0 0 0 03

0
22 12

0 0

1 {1 1 [ 1 1 2 2 1 1

1 1]} 1

nc
s f

f

E T t p p p p
p

p t p

κ κ−

κ− κ−

⎡ ⎤ = − − κ − − − κ − κ − −⎢ ⎥⎣ ⎦

+ κ − − + κ −

(71) 

and pulling out the 
2

0

ft
p

⎛ ⎞
⎜ ⎟
⎝ ⎠

 factor, 

 ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

2
2 2 12

0 0 0
0

2 2 12 2
0 0 0

{1 1 [ 1 1 2 2 1 1

1 1] 1 }.

fnc
s

t
E T p p p

p
p p p

κ κ−

κ− κ−

⎛ ⎞⎡ ⎤ = − − κ − − − κ − κ − −⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
+ κ − − + κ −

 (72) 

Combining terms, we finally arrive at the second moment of nc
sT  as 

 
( ) ( ) ( ) ( ) ( )( )

( )( )( )

2
2 2 12

0 0 0
0

2 22
0 0

{1 1 [ 1 1 2 2 1 1

1 1 1]}.

fnc
s

t
E T p p p

p

p p

κ κ−

κ−

⎛ ⎞⎡ ⎤ = − − κ − − − κ − κ − −⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
+ κ − − −

 (73) 

The variance of the effective service time is defined as the square of the mean 

subtracted from the second moment or 

 ( ) ( ) ( )2 2nc nc nc
s s sVAR T E T T⎡ ⎤⎡ ⎤ = −⎣ ⎦ ⎢ ⎥⎣ ⎦

. (74) 

Substituting (56) and (73) into (74), we have 

 

( ) ( ) ( ) ( ) ( )( )

( )( )( )

( )( )

2
2 12

0 0 0
0

2 22
0 0

2
2

0
0

{1 1 [ 1 1 2 2 1 1

1 1 1]}

1 1 .

fnc
s

f

t
VAR T p p p

p

p p

t
p

p

κ κ−

κ−

κ

⎛ ⎞⎡ ⎤ = − − κ − − − κ − κ− −⎜ ⎟⎣ ⎦ ⎝ ⎠
+ κ − − −

⎛ ⎞
− − −⎜ ⎟
⎝ ⎠

 (75) 

Factoring out the 
2

0

ft
p

⎛ ⎞
⎜ ⎟
⎝ ⎠

 term and expanding, 
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( ) ( ) ( ) ( ) ( )( )

( )( )( )
( ) ( )( )

2
2 12

0 0 0
0

2 22
0 0

2
0 0

{1 1 [ 1 1 2 2 1 1

1 1 1]

1 2 1 1 }.

fnc
s

t
VAR T p p p

p

p p

p p

κ κ−

κ−

κ κ

⎛ ⎞⎡ ⎤ = − − κ − − − κ − κ − −⎜ ⎟⎣ ⎦ ⎝ ⎠
+ κ − − −

− − − + −

 (76) 

Combining terms, we finally arrive at 

 

( ) ( ) ( ) ( )( )( )

( )( )
( )( )( )

2
2 2

0 0 0
0

12
0

2 22
0 0

1 [ 1 1 1 1

2 2 1 1

1 1 1].

fnc
s

t
VAR T p p p

p
p

p p

κ κ

κ−

κ−

⎛ ⎞⎡ ⎤ = − − + κ − − −⎜ ⎟⎣ ⎦ ⎝ ⎠
− κ − κ − −

+ κ − − −

 (77) 

Checking the limiting cases of 0 1p =  (all non-contention slots) and 0 0p =  (all 

contention slots), we find that the variance of nc
sT  is zero for both cases. This indicates 

that they are, as expected, deterministic. In the 0 0p = case, this result is arrived at 

through two applications of L’Hôpital’s Rule. A plot of the variance of nc
sT  as a function 

of 0p  for various values of κ  is provided in Figure 19.  
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Figure 19.  Variance of nc

sT  as a function of 0p  for various values of κ  with 
1 sec.ft =  
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We can now make use of the well-known mean waiting time result for an M/G/1 

queue [9], 

 
( )

( )
( )21

2 1
ss

w

s

VAR TTT
T

⎛ ⎞⎛ ⎞⎡ ⎤ρ ⎣ ⎦⎜ ⎟⎜ ⎟= +
⎜ ⎟−ρ ⎜ ⎟

⎝ ⎠⎝ ⎠
 (78) 

where 1sTρ = λ < . The latter term in (78), the variance over the mean squared for the 

service time, is often referred to as the square of the coefficient of variation and, in our 

case, from (56) and (77), is 

 

( )
( ) ( )( )

( ) ( )( )( )

( )( )
( )( )( )

2 20
0 02 2

0

12
0

2 22
0 0

1 [ 1 1 1 1
1 1

2 2 1 1

1 1 1].

nc
s

nc
s

VAR T p p p
T p

p

p p

κ κ

κ

κ−

κ−

⎛ ⎞⎡ ⎤ −⎜ ⎟⎣ ⎦ = − + κ − − −⎜ ⎟
⎜ ⎟− −
⎝ ⎠

− κ − κ − −

+ κ − − −

. (79) 

A value of zero for the coefficient of variation indicates that the service time is 

deterministic while a value of one indicates that it is exponential [9]. Since the variance is 

zero and the mean of the square is non-zero in the limiting cases of 0 1p =  and 0 0p = , 

the coefficient of variation in (79) is zero in both cases, as expected. A plot of the 

coefficient of variation of nc
sT  as a function of 0p  for various values of κ  is provided in 

Figure 20. Interestingly, the coefficient of variation is less than zero and approaches one 

as 0p  becomes small and κ  becomes large. Thus, the distribution of the service time 

approaches exponential as the probability of a non-contention slot decreases and ratio of 

dataT  for the non-contention slot to that for a contention slot increases. 

Finally, from (55), we can substitute 

 ( )0

0

1 1
1nc

nc nc s nc

p
T

p

κ⎛ ⎞− −
ρ = λ = λ <⎜ ⎟

⎜ ⎟
⎝ ⎠

 (80) 
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Figure 20.  Coefficient of variation of nc

sT  as a function of 0p  for various values of 
κ . 

into (78) to arrive at 

 

( )

( )
( )

( )

2

0

0

2

0

0

1 1

1
1 1

2 1

nc
snc

w

s
nc

p
p VAR T

T
Tp

p

κ

κ

⎛ ⎞− −
λ ⎜ ⎟ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎡ ⎤⎝ ⎠ ⎣ ⎦⎜ ⎟⎜ ⎟= +

⎜ ⎟⎜ ⎟⎛ ⎞⎛ ⎞− − ⎝ ⎠⎝ ⎠⎜ ⎟−λ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

. (81) 

Again, looking at the limiting cases, we find that 

 

( )
( )

( )
( )

0

0

2

1

2

0

lim and
2 1

lim
2 1

nc fnc
wp

nc f

nc fnc
wp

nc f

t
T

t

t
T

t

→

→

λ
=

−λ

λ κ
=

−λ κ

 (82) 

which agree with the deterministic case solved by Lam in [7]. A plot of nc
wT  as a function 

of 0p  for various values of κ  is provided in Figure 21, while a plot of nc
wT  as a function 

of ncρ  for various values of 0p  is provided in Figure 22. 
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Figure 21.  nc

wT  as a function of 0p  for various values of κ  with 1 sec.ft =  
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Figure 22.  nc

wT  as a function of ncρ  for various values of 0p  with 1 sec.ft =  
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Turning our attention to nc
xmtT , this is simply the mean time required to transmit a 

packet once its waiting time is complete. We begin by calculating nc
xmtT  for a packet that is 

transmitted in a single non-contention slot, denoted 
1

nc
xmtT . Again assuming that exactly 

one non-contention packet is transmitted during a non-contention slot, the transmission 

time for a packet transmitted in a non-contention slot is, from (22), 

 
1

nc
xmt IFS ncT t t= +  (83) 

where IFSt  is included to account for the delay between the slot boundary and the actual 

start of the transmission. For a packet that is transmitted in a contention slot, the actual 

transmission will span across frames, as discussed above. Examining the case where a 

packet is transmitted in a contention slot followed by a non-contention slot, denoted 

2

nc
xmtT ,we have, again from (22),  

 ( ) ( )
2

nc
xmt f IFS nc nc IFS b msT t t t t t t kt= + + − + − −  (84) 

where, as in (83), the first term ft  accounts for the single frame time to get to the second 

(non-contention) slot, the second term ( )IFS nct t+  accounts for the packet transmission in 

this final non-contention slot, and the third term ( )nc IFS b mst t t kt+ − −  reduces the 

transmission time required in this final non-contention slot by the amount of the packet 

that was transmitted in the prior contention slot. Extending this argument to the general 

case in which we have 1α −  consecutive contention slots followed by a non-contention 

slot, where α ≤ κ  in (38), 

 ( ) ( ) ( )( )1 1nc
xmt f IFS nc nc IFS b msT t t t t t t kt

α
= α − + + − α − + − − . (85) 

Following the development of (39), the probability nc
xmtT

α
 is a function of both α  and 0p  

and is given by 

 ( ) 1
0 0Pr 1 for 1nc nc

xmt xmtT T p p
α

α−⎡ ⎤= = − ≤ α ≤ κ⎣ ⎦ . (86) 

Here, as opposed to (39), we have included κ  in the range of α  because we must 

explicitly account for the case of 1κ −  consecutive contention slots followed by a non-

contention slot as well as the case of κ  consecutive contention slots. For this latter case, 

we have  
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 ( ) ( ) ( ) 21 1
c

nc
xmt f b ms nc ncT t t kt t t

κ
= κ − + + + − κ −⎡ ⎤⎣ ⎦  (87) 

where the second term ( )b mst kt+  now accounts for the fact that the final slot is a 

contention slot and we have defined 2nc nc IFS b mst t t t kt= + − − . The probability of this case 

is  

 ( )0Pr 1
c

nc nc
xmt xmtT T p

κ

κ⎡ ⎤= = −⎣ ⎦ . (88) 

We can calculate the mean transmission time nc
xmtT  by combining (85) through (88) 

which, after a little algebraic manipulation, is 

 
( )( ) ( )

( )( ) ( )

1
2 0 0

1

2 0

1 1

1 1 .

inc
xmt f nc IFS nc

i

f nc b ms nc

T i t t t t p p

t t t kt t p

κ
−

=

κ

⎡ ⎤= − − + + −⎣ ⎦

⎡ ⎤+ κ − − + + + −⎣ ⎦

∑
 (89) 

Rearranging terms, 

 
( ) ( )( ) ( )

( )( ) ( )

1
2 2 0 0

1

2 0

1

1 1

inc
xmt f nc f IFS nc nc

i

f nc b ms nc

T i t t t t t t p p

t t t kt t p

κ
−

=

κ

⎡ ⎤= − − − + + −⎣ ⎦

⎡ ⎤+ κ − − + + + −⎣ ⎦

∑
 (90) 

and distributing, 

 
( )( ) ( )( )( )

( )( ) ( )

1 1
0 2 0 2 0

1

2 0

1 1

1 1 .

i inc
xmt f nc f IFS nc nc

i

f nc b ms nc

T p i t t p t t t t p

t t t kt t p

κ
− −

=

κ

⎡ ⎤= − − − − + + −⎣ ⎦

⎡ ⎤+ κ − − + + + −⎣ ⎦

∑
 (91) 

Pulling the appropriate terms out of the summation and distributing it across, 

 

( ) ( )

( )( ) ( )

( )( ) ( )

1
2 0 0

1

1
2 0 0

1

2 0

1

1

1 1 .

inc
xmt f nc

i

i
f IFS nc nc

i

f nc b ms nc

T t t p i p

t t t t p p

t t t kt t p

κ
−

=

κ
−

=

κ

= − −

− − + + −

⎡ ⎤+ κ − − + + + −⎣ ⎦

∑

∑  (92) 

Adjusting the indices on the summations, 

 

( ) ( )

( )( ) ( )

( )( ) ( )

1
2 0 0

0
1

2 0 0
0

2 0

1

1

1 1

inc
xmt f nc

i

j
f IFS nc nc

j

f nc b ms nc

T t t p i p

t t t t p p

t t t kt t p

κ
−

=

κ−

=

κ

= − −

− − + + −

⎡ ⎤+ κ − − + + + −⎣ ⎦

∑

∑  (93) 
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and using (42), (67) and the appropriate substitutions, we have  

 

( )
( )( ) ( )( ) ( )( )

( )( )

( )( ) ( )

( )( ) ( )

1
0 0 0

2 0 2
0

1 1
0

2 0
0

2 0

1 1 1 1 1 1

1 1

1 1
1 1

1 1 .

nc
xmt f nc

f IFS nc nc

f nc b ms nc

p p p
T t t p

p

p
t t t t p

p

t t t kt t p

κ κ+

κ− +

κ

κ + − − − − − −
= −

− −

− −
− − + +

− −

⎡ ⎤+ κ − − + + + −⎣ ⎦

 (94) 

Simplifying and rearranging terms, 

 

( ) ( )( ) ( )( ) ( )

( )( ) ( )
( )

( )( ) ( )

1 1
0 0 0

2
0

0
2 0

0

2 0

1 1 1 1 1 1

1 1

1 1

nc
xmt f nc

f IFS nc nc

f nc b ms nc

p p p
T t t

p

p
t t t t p

p

t t t kt t p

κ+ κ κ+

κ

κ

κ + − − κ + − − − +
= −

− −
− − + +

−

⎡ ⎤+ κ − − + + + −⎣ ⎦

 (95) 

and further algebraic manipulation leads to 

 

( ) ( )( )

( ) ( )( )
( )( ) ( )

1
0 0

2
0

2 0

2 0

1 1 1 1

1 1

1 1 .

nc
xmt f nc

f IFS nc nc

f nc b ms nc

p p
T t t

p

t t t t p

t t t kt t p
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κ

κ
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⎝ ⎠
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⎡ ⎤+ κ − − + + + −⎣ ⎦

 (96) 

Expanding, 

 

( ) ( )( )

( ) ( )
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2
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2 2 2 0
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1 1 1 1
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xmt f nc

f nc f nc b ms nc f IFS nc nc
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p p
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p
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t t t t

κ+ κ

κ
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⎡ ⎤= − ⎜ ⎟⎣ ⎦ ⎜ ⎟

⎝ ⎠
⎡ ⎤+ κ − − + + + + + − − − −⎣ ⎦

− + + +

 (97) 

and, finally, simplifying to arrive at 

 

( ) ( )( )

( ) ( )

1
0 0

2
0

2 0

2

1 1 1 1

1

.

nc
xmt f nc

f nc IFS b ms

f IFS nc nc

p p
T t t

p

t t t t kt p

t t t t

κ+ κ

κ

⎛ ⎞κ − − κ + − +
⎡ ⎤= − ⎜ ⎟⎣ ⎦ ⎜ ⎟

⎝ ⎠
⎡ ⎤+ κ − − + + −⎣ ⎦

− + + +

 (98) 
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Checking the limiting cases of 0 1p =  (all non-contention slots) and 0 0p =  (all 

contention slots), we obtain the expected results from (83) and (87) of 

 
( ) ( )

0

0

1

20

lim and

lim 1 1 .

nc
xmt IFS ncp

nc
xmt f b ms nc ncp

T t t

T t t t t t
→

→

= +

= κ − + + κ + − κ −⎡ ⎤⎣ ⎦
 (99) 

The latter result is arrived at through a single application of L’Hôpital’s Rule. A plot of 

the mean transmission time as a function of 0p  for various values of κ  is provided in 

Figure 23. 
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Figure 23.  The mean transmission time as a function of 0p  for various values of κ  

with 1 sec.ft =  

We can finally arrive at an expression for the total mean packet delay for the 

contention mode by substituting (36), (81), and (98) into (35), 
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p
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p

t t t t kt p
t t t t t

κ

κ

κ+ κ

κ

⎛ ⎞− −
λ ⎜ ⎟ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎡ ⎤⎝ ⎠ ⎣ ⎦⎜ ⎟⎜ ⎟= + +

⎜ ⎟⎜ ⎟⎛ ⎞⎛ ⎞− − ⎝ ⎠⎝ ⎠⎜ ⎟−λ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞κ − − κ + − +

⎡ ⎤+ − ⎜ ⎟⎣ ⎦ ⎜ ⎟
⎝ ⎠

⎡ ⎤+ κ − − + + −⎣ ⎦
− + + + +

 (100) 

where 

 

( )
( ) ( )( )

( ) ( )( )( )

( )( )
( )( )( )

2 20
0 02 2

0

12
0

2 22
0 0

1 [ 1 1 1 1
1 1

2 2 1 1

1 1 1].

nc
s

nc
s

VAR T p p p
T p

p

p p

κ κ

κ

κ−

κ−

⎛ ⎞⎡ ⎤ −⎜ ⎟⎣ ⎦ = − + κ − − −⎜ ⎟
⎜ ⎟− −
⎝ ⎠

− κ − κ − −

+ κ − − −

. (101) 

A plot of the mean total packet delay as a function of 0p  for various values of κ  is 

provided in Figure 24, while it is plotted as a function of ncρ  for various values of 0p  is 

provided in Figure 25. Finally, it is plotted in Figure 26 as a function of the aggregate 

non-contention load, ncΛ , for various values of 0p . 
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Figure 24.  Non-contention mode mean total packet delay as a function of ncρ  for 

various values of 0p  with 1 sec.ft =  
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Figure 25.  Non-contention mode mean total packet delay as a function of 0p  for 

various values of κ  with 1 sec.ft =  
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Figure 26.  Non-contention mode mean total packet delay as a function of ncΛ  

(aggregate packet arrival rate) for various values of 0p  with 1 sec.ft =  

 
3. Slotted Aloha model with periodic server vacations 
We begin our analysis of the contention mode by developing a model for a Slotted 

Aloha system with periodic server vacations. By this we mean that the service will be 

governed by a fixed cycle composed of alternating active and inactive periods. During the 

inactive period, the server will “shut down” and not be available to serve the queued 

packets. We also make the assumption that once a server has entered an active period, all 

subsequent packet arrivals will be deferred to the next active period (i.e., a packet must 

arrive prior to an active period to be eligible for service in that period). We define K  as 

the number of slots in an active period. Following the work of [20] and [19], we make 

use of the model in Figure 27. Here, a node attempts transmission in a given slot with 

probability p and, if the transmission is unsuccessful, the packet is requeued.  
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Figure 27.  Model of a slotted ALOHA channel with q backlogged nodes [after [19]]. 

To develop the associated discrete Markov chain, we define a state by the number 

of nodes with a packet queued for transmission and derive the associated state transition 

probability matrix, P . We define ,i jp  as the probability that the system will transition 

from state i  to state j  in a given slot. We begin by recognizing that the probability of a 

transition from i  to j  where j i>  is zero during the active period because we have 

assumed that all additional arrivals are deferred to the next active period. Furthermore, 

the probability of a transition where 1j i< −  is also zero because there can only be at 

most one successful transmission per slot. The case of 1j i= +  represents a single 

successful transmission. This will occur when any one of the i  nodes with a packet 

queued attempts to transmit and all of the other nodes do not. Since a node will attempt a 

transmission with probability p , this is simply 

 1 1
, 1 (1 ) (1 )

1
i i

i i

i
p p p ip p− −

−

⎛ ⎞
= − = −⎜ ⎟
⎝ ⎠

. (102) 

This leaves the probability that a node will remain in the current state which is 

 1
, , 11 1 (1 )i

i i i ip p ip p −
−= − = − − . (103) 

Combining these, we have 

 
1

, 1

0 1
(1 ) 1

1 (1 )
0

i

i j i

j i
ip p j i

p
ip p j i

j i

−

−

< −⎧
⎪ − = −⎪= ⎨
− − =⎪

⎪ >⎩

. (104) 

Defining 1(1 )ip p −σ = − , the corresponding ( ) ( )1 1M M+ × +  probability transition 

matrix is  
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1 0

P 0

1

0

0

⎡ ⎤−σ
⎢ ⎥

= σ⎢ ⎥
⎢ ⎥σ −σ⎣ ⎦

O  (105) 

where M  is the number of nodes with a packet queued for transmission at the start of the 

active period.  

The state probability vector ( )p k  is defined as  

 

0

1

( )
( )

( )

( )

T

M

p k
p k

p k

p k

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

M
 (106) 

where ( )ip k  is the probability of state i  at the end of slot k  and XT  is the transpose of 

X . Thus, for the resulting Markov chain in Figure 28,  

 ( ) 2

(1) (0) P,

(2) (1) P (0) P P (0) P ,

p p

p p p p

=

= = =
 (107) 

and 

 
1 0

( ) (0) P (0) 0

1

0

0

k

kp k p p
⎡ ⎤−σ
⎢ ⎥

= = σ⎢ ⎥
⎢ ⎥σ −σ⎣ ⎦

O  (108) 

where (0)p  is the initial state probability vector at the start of the active period. Note that 

the mean number of nodes with packets queued in a given slot k , denoted ( )Q k , is 

simply the mean of the appropriate state probability vector as in 

 

0 0
1 0

1 1
( ) ( ) (0) 0

1

0

0

k

Q k p k p

M M

⎡ ⎤ ⎡ ⎤⎡ ⎤−σ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= = σ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥σ −σ⎣ ⎦⎣ ⎦ ⎣ ⎦

O
M M

. (109) 

For an active period of K slots, the state probability vector at the end of the active period 

is given by  
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1 0

( ) (0) P (0) 0

1

0

0

K

Kp K p p
⎡ ⎤−σ
⎢ ⎥

= = σ⎢ ⎥
⎢ ⎥σ −σ⎣ ⎦

O . (110) 

and the mean number of nodes with packets queued at the end of an active period is 

( )Q K .  

 
Figure 28.  Markov chain for Slotted Aloha with server vacations. 

For a cycle time (defined as one active period followed by one inactive period) of 

duration cycleT  and an arrival rate of λ , the initial mean number of nodes with packets 

queued at the start of the next active period, denoted '(0)Q , is  

 '(0) ( ) cycleQ Q K T= + λ . (111) 

We then define steady state as the condition where '( ) ( )p k p k=  which implies that 

 '(0) (0), '( ) ( )Q Q Q K Q K= =  (112) 

and, from (111),  

 (0) ( ) cycleQ Q K T− = λ . (113) 

We now use the results from this model to derive the throughput and delay for slotted 

ALOHA with periodic server vacations. 
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Figure 29.  Mean number of backlogged nodes (nodes with a packet queued for 

transmission) as a function of slot number for various initial state conditions. For this 
plot, the probability of transmission in a slot, p, is 0.3. 

 

4. Throughput for Slotted Aloha with periodic server vacations 
The throughput for slotted ALOHA with periodic server vacations is then simply 

the difference between the mean number of nodes with packets queued at the beginning 

of an active period and the mean number at the end of the active period divided by the 

cycle time, or  

 (0) ( )Throughput
cycle

Q Q K
T
−

= . (114) 

From (113), this implies, as expected, that the throughput at steady state equals the arrival 

rate. To be consistent with the literature, we can normalize (114) by multiplying it by the 

packet transmission time c
xmtT  to arrive at 

 (0) ( )c c
xmt

cycle

Q Q KS T
T
−

= . (115) 

We plot the throughput as a function of the offered load (0)Q  in Figure 30 for various 

values of κ . 
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Figure 30.  Raw throughput per active period as a function of offered load for various 
number of slots per active period (K). For this plot, the probability of transmission in a 

slot, p, is 0.3. 

 
5. Delay for Slotted Aloha with periodic server vacations 

As in (35), we can calculate the mean total packet delay for slotted ALOHA with 

periodic server vacations as the sum of (1) the mean time to synchronize to an active 

period, (2) the mean waiting time, (3) the mean transmission time and (4) the mean 

propagation time or 

 sync w xmt propD T T T t= + + + . (116) 

The first term can be calculated as in (36) to be 

 
2

cycle
sync

T
T = . (117) 

and, because we are assuming that a packet can be transmitted in a single slot,  

 xmt
LT
R

=  (118) 

where L  is the mean packet length (in bits) and R is the channel data rate (bps). 

Turning our attention once again to the waiting time, we view the entire system as 

a single M/G/1 queue and we develop the service time distribution using the model 
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developed above. A packet transmitted in the first slot of the active period will 

experience a service time of xmtT  while a packet transmitted in the second slot will wait 

through the first slot and then transmit for a service time of slot xmtT T+ . This can be 

generalized for slot k in the active period as 

 ( )( ) 1s slot ovhd xmtT k k T T T= − + +  (119) 

where we have included the overhead ovhdT  in the transmission slot. A packet can also 

wait across active periods as well. This would occur if the probability of at least one 

packet queued for transmission at the end of an active period was non-zero. Following 

the same logic, then, a packet that is transmitted in the thm  active period would have to 

wait an additional 1m −  cycle times or 

 ( ) ( )( , ) 1 1s cycle slot ovhd xmtT m k m T k T T T= − + − + + . (120) 

Thus, the service time is a discrete random variable that can take on the values indicated 

in (120). To develop the distribution, we must now calculate the probabilities of the 

discrete values.  

The probability that a packet will be successfully transmitted in the first slot of an 

active period is the probability that one node will transmit and that the remaining 

(0) 1Q −  nodes will not. Since a node transmits in a slot with probability p, this 

probability is 

 ( ) (0) 1Pr[ (0,1)] 1 Q
s sT T p p −= = − . (121) 

The probability that a node will successfully be transmitted in the second slot of an active 

period is the probability that it wasn’t successfully transmitted in the multiplied by the 

probability that it is transmitted in the second slot and none of the other (1) 1Q −  nodes 

transmit or 

 ( )( ) ( )(0) 1 (1) 1Pr[ (0, 2)] 1 1 1Q Q
s sT T p p p p− −= = − − − . (122) 

Looking at the next slot, we must include the probability that it was not successfully 

transmitted in either of the first two slots as in 

 ( ) ( )( ) ( ) ( )(0) 1 (0) 1 (1) 1 (2) 1Pr[ (0,3)] 1 1 1 1 1 1Q Q Q Q
s sT T p p p p p p p p− − − −⎡ ⎤= = − − − − − − −

⎣ ⎦
(123) 

or, rewriting it as a recursion, 
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 ( ) (3) 1Pr[ (0,3)] 1 (Pr[ (0,1)] Pr[ (0,2)]) 1 Q
s s s s s sT T T T T T p p −= = − = + = − . (124) 

Extending this by induction to the general case in the first active period, we have 

 ( )
1

( 1) 1

1

Pr[ (0, )] 1 Pr[ (0, )] 1
k

Q k
s s s s

i

T T k T T i p p
−

− −

=

⎛ ⎞= = − = −⎜ ⎟
⎝ ⎠

∑ . (125) 

Assuming steady state (i.e. '( ) ( )Q k Q k= ), we can also extend this across cycles by 

adding a second summation as in 

 ( )
1 1

( 1) 1

0 1
Pr[ ( , )] 1 Pr[ ( , )] 1

m k
Q k

s s s s
j i

T T m k T T j i p p
− −

− −

= =

⎛ ⎞
= = − = −⎜ ⎟

⎝ ⎠
∑∑ . (126) 

This is a recursive equation and can be solved numerically to some desired level of 

accuracy. The distribution of sT  is then defined by (120) and (126) and we can also 

numerically calculate its mean and variance to some desired degree of accuracy. The 

probability distribution and cumulative distribution function for the service time of 

slotted ALOHA with periodic server vacations are plotted in Figures 31 through 34. 
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Figure 31.  Service time probability distribution in log-linear scale. For this plot, the 

probability of transmission in a slot, p, is 0.3. 



 
 

 55

10-2 10-110-3

10-2

10-1

100

Service time, Ts (sec)

PD
F

Q(0) = 1

Q(0) = 3

Q(0) = 5
Q(0) = 10

Q(0) = 12

 
Figure 32.  Service time probability distribution in log-log scale. For this plot, the 

probability of transmission in a slot, p, is 0.3. 
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Figure 33.  Service time cumulative distribution in linear scale. For this plot, the 

probability of transmission in a slot, p, is 0.3. 
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Figure 34.  Service time cumulative distribution in linear-log scale. (Probability of 

transmission in a slot, p, is 0.3). 

Given the distribution for the service time, we can now use the M/G/1 waiting 

time equation of (78) to numerically calculate the waiting for slotted ALOHA with 

periodic server vacations. Substituting this as well as (117) and (118) into (116), we can 

then solve for the mean total delay of slotted ALOHA with periodic server vacations. 

This mean total delay is plotted as a function of packet arrival rate in Figure 35 for 

various values of K. 
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Figure 35.  Mean total delay as a function of the packet arrival rate for various 

numbers of slots in an active period. (Probability of transmission in a slot, p, is 0.3). 
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6. Contention throughput and delay for CWS-MAC 

Applying the parameters of CWS MAC from Figure 14 to the throughput and 

delay results of the previous two sections, the cycle time is equivalent to the slot time st , 

the duration of the active period is k minislots of mst each, and the overhead within an 

active period is the beacon time bt . From (115), the normalized mean throughput for the 

contention mode of CWS-MAC is then  

 (0) ( )c c

s

LQ Q kS
t R

⎛ ⎞−
= ⎜ ⎟
⎝ ⎠

 (127) 

where cL  is the contention packet size in bits. The normalized throughput for CWS-MAC 

is plotted as a function of aggregate contention packet arrival rate in Figure 36 for various 

values of k. Similarly, we can use the results from Section 5 to numerically calculate the 

mean contention mode delay for CWS-MAC. These results are plotted in Figure 37 again 

as a function of the aggregate arrival rate for various values of k. 

We have also plotted the mean residual packets remaining at the end of an active 

period as well as the contention mode utilization as a function of the aggregate arrival 

rate in Figures 38 and 39 for various values of k. As the utilization approaches one, the 

mean number of residual packets begin to rise sharply. This is an indication of the 

saturation of the contention mode. 
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Figure 36.  Normalized throughput as a function of the aggregate arrival rate for the 
contention mode of CWS MAC for various values of k. For this plot, the probability of 

transmission in a slot, p, is 0.3. 
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Figure 37.  Mean total delay as a function of the aggregate arrival rate for the 

contention mode of CWS MAC for various values of k. For this plot, the probability of 
transmission in a slot, p, is 0.3. 
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Figure 38.  Mean residual packets remaining at the end of the active period as a 

function of the aggregate arrival rate for the contention mode of CWS MAC for various 
values of k. For this plot, the probability of transmission in a slot, p, is 0.3. 
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Figure 39.  Utilization as a function of the aggregate arrival rate for the contention 

mode of CWS MAC for various values of k. For this plot, the probability of transmission 
in a slot, p, is 0.3. 
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7. Overall mean delay and throughput for traffic-adaptive CWS-MAC 

The results of the previous section can now be applied to the traffic-adaptive 

model derived in Section III.C for the example of Section II. State 1 of Figure 9 now 

represents the case where both flows are in the contention mode of traffic-adaptive CWS-

MAC while State 2 represents the case where one flow is in the contention mode, but the 

other has been transitioned to the non-contention mode of traffic-adaptive CWS-MAC. 

Accordingly, the contention performance parameters cS  and cD  in (15) can be 

calculated from (115) and the numerical results of Section IV.C.5, respectively, using the 

combined aggregate flow arrival rate (calculated as the sum of the aggregate arrivals rates 

for flow 1 and flow 2). Similarly, 1
cS  and 1

cD  can also be calculated rom (115) and the 

numerical results of Section IV.C.5, respectively, this time using the arrival rate of flow 1 

(assumed to be the flow that is constant and remains in the contention mode). The non-

contention performance parameters 2
ncS  and 2

ncD  can be calculated from (33) and (100), 

respectively. The results for the mean total delay for the example of sections II and II.C 

are plotted in Figures 40 and 41 as function of the combined aggregate packet arrival rate 

for the various medium access approaches. As expected, traffic-adaptive CWS-MAC 

outperforms both the contention only and the non-contention only modes as well as the 

hybrid approach. It can also be seen that, as again expected, the performance of traffic-

adaptive CWS-MAC is dependent on the effective choice of the queue-based threshold. 
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Figure 40.  Mean total delay as a function of aggregate arrival rate for contention 
mode, non-contention mode, hybrid and flow-specific modes for the example of the 

previous section. For this plot, the probability of transmission in a slot, p, is 0.3, channel 
rate is 1 Mbps, packet size is 1000 bits, and there are 100 slots (one packet length in 

duration) in the TDMA frame. 
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Figure 41.  Mean total delay as a function of aggregate arrival rate for various values 
of 1θ  for flow-specific mode for the example of the previous section. For this plot, the 

probability of transmission in a slot, p, is 0.3, channel rate is 1 Mbps, packet size is 1000 
bits, and there are 100 slots (one packet length in duration) in the TDMA frame. 
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V. SIMULATION RESULTS 

In this section, simulation results using the OPNET Modeler suite are provided to 

demonstrate the effectiveness of the traffic-adaptive, flow-specific scheme. For the 

simulations, flow 1 load is kept steady at 800 bits/sec (8 packets/sec with a packet size of 

100 bits). Flow 2 load is ramped up from zero to a maximum of the channel data rate of 1 

Mbps (using a packet size of 1000 bits). Flow 1 represents the fixed rate control flow in 

the example of Section II, while flow 2 represents the variable data flow. In both cases, 

the packet size is constant and the packet interarrival times are exponentially distributed. 

The results were generated with a neighborhood size of 8 nodes where each node is 

assigned a single slot, a slot size of 0.1 s, a minislot size of 1 ms, a control beacon length 

of 1 ms, an interframe space of 0.1 ms, and 50 minislots per time slot. The transmission 

probability in each minislot was chosen as the inverse of the size of the neighborhood. 

The plotted results are based on Monte Carlo simulations averaged across 100 runs. 

End-to end delay and normalized throughput for both flows are presented in 

Figures 42(a) and 42(b), respectively. With 1 3θ = close to optimum, it can be seen that 

the scheme transitions flow 2 from contention-based to contention-free access as the 

contention-based mode becomes saturated and the end-to-end packet delay begins to rise. 

This transition protects the delay bound on flow 1 while providing higher throughput for 

the heavy load of flow 2. In Figures 43(a) and 43(b), we can compare the performance of 

different values of 1θ by taking a closer look at the delay of flow 1 and the throughput of 

flow 2. For the non-optimum choice of 1 200θ = , we see that the contention-based mode 

become saturated prior to transition and the flow 1 delay in Figure 43(a) rises sharply 

while the flow 2 throughput in Figure 43(b) levels off. Figures 44(a) and 44(b) provide a 

comparison of the flow-specific end-to-end delay and throughput to that of CSMA and 

TDMA, respectively. It can be seen that the delay of flow 1 at low loads is better than 

TDMA while the throughput of flow 2 at high loads is better than CSMA. The CSMA 

results provided represent best case delay performance as they assume head-of-the-queue 

privilege for flow 1 and do not include an acknowledgment mechanism. 
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Figure 42.  (a) End-to-end delay and (b) normalized throughput for flow 1 (control) 
and flow 2 (data) plotted against normalized aggregate load ( )1 3 .θ =  

0 0.2 0.4 0.6 0.8 1
10-2

10-1

100

101

Normalized aggregate load

En
d-

to
-e

nd
 D

el
ay

 (s
ec

)

 

 

θ1 = 3

θ1 = 200

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Normalized aggregate load

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

 

 

θ1 = 3

θ1 = 200

 
                 (a)           (b) 

Figure 43.   (a) Flow 1 end-to-end delay plotted as a function of normalized aggregate 
load for 1 13 and 200.θ = θ =  (b) Flow 2 throughput plotted as a function of normalized 

aggregate load for 1 13 and 200.θ = θ =  
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Figure 44.   (a) Flow 1 end-to-end delay and (b) flow 2 throughput compared to 
CSMA and TDMA for 1 3.θ =  
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VI. CONCLUSIONS 

In this report, we formally introduced the concept of traffic-adaptive, flow-

specific medium access and showed that, given a suitable switching point, it outperforms 

traditional contention, non-contention, and hybrid medium access schemes. We proposed 

a queue-based, traffic-adaptive mechanism and developed a general performance model 

for traffic-adaptive, flow-specific medium access. We examined the two-flow, two-mode 

case in detail and also demonstrated that the contention, non-contention, and hybrid 

approaches are simply special cases of this general medium access model. Finally, we 

applied the traffic-adaptive mechanism to CWS-MAC, a fixed, flow-specific medium 

access scheme and provided both performance analysis and simulation results that 

validated the effectiveness of the traffic-adaptive, flow-specific approach. The 

performance analysis included delay and throughput analysis for slotted ALOHA with 

periodic server vacations. 
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