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ABSTRACT 
 

Effective software project management is the key to successful completion of IT 

software projects. A positive theory of software project management helps to illuminate 

the path to effective management. Here, we introduce a simple, yet powerful, software 

project management theory that helps us to understand the conditions and drivers that 

lead to functional and dysfunctional project behavior. We identify a set of criteria for 

assessing current and future modeling tools. Finally, we introduce a formal and visual 

modeling language for management of software projects. 
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I. INTRODUCTION 

A. STATEMENT OF THE PROBLEM 
Software project management is a complex task by its nature. The project 

manager and the management team have to effectively deal with the complexities of 

project management. One way to overcome or reduce this complexity is to enable them 

with tools to make this endeavor simpler and visual. Therefore, our goal is to develop a 

project management modeling language. However, the software project management 

discipline lacks a general applicable theory. Therefore, we also introduce such a theory to 

guide us in developing the modeling language.  

 

B. SIGNIFICANCE OF THE PROBLEM 
IT software projects are still suffering from lack of delivering successful results. 

According to a recent IT projects survey results scheduled to appear in IEEE Software, 

the most-up-date numbers indicate that 26%-34% of IT software project fail [8]. This 

study argues some of the results that has been widely become known as CHAOS study, in 

which the IT projects completed on time and on budget only goes up to 16% [2]. There 

are also some other studies that report various success and failure rates [11,14,15,23]. 

Even with the lowest failure rates reported in these studies, software projects are failing 

significantly when compared to projects in other fields. In [25], current project 

management issues in leading project-based industries are listed. Among nine industries, 

in only software industry column, overruns and poor performance is explicitly listed as an 

issue among others. The average software project is likely to be six to 12 months behind 

schedule and 50 to 100 percent over budget [31]. One would expect that our record in 

software projects should have been much better with all the advancements in software 

engineering. However, we believe relying merely on technological advances would be 

misleading. We also need significant advances in software project management field to 

achieve better results in software projects. Therefore, proposals and discussions for 

applicable and viable theories, models, tools and practices in software project 

management are important steps in this direction.  
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DeMarco and Lister state that “For overwhelming majority of the bankrupt 

projects we studied, there was not a single technological issue to explain the failure.” in 

their seminal book Peopleware [6]. Robertson et. al. emphasize that “In several decades 

of project experience, we have never seen a project fail for technical reasons. It has 

always been human failures that have caused otherwise good projects to grind to a halt.” 

[22]. Defense Science’s Board report on 2000, indicates that management is one of the 

hardest part of software task [5]. According to Weinberg, the three causes of software 

project failures are “people, people, and people.” [30]. It is possible to increase the 

number of references [7,19,26]. Simply put, project management related issues are the 

determining factors for our failures and successes in software projects. We need better 

methods to address the challenges of management side of software projects if we want to 

improve our odds of success in IT software projects. Pinto stresses out the importance of 

modeling the business, technical, financial, environmental, and other dimensions of the 

project before committing any significant resources or even before the go-ahead [20]. 

The dimensions or aspects of the project should be modeled as far as possible and as cost-

effectively as possible. Therefore, we focus on this need in software project management 

and propose a modeling tool to enable practitioners to model and visualize various 

aspects of the project management at the same time.  

 

C. LITERATURE REVIEW 
Project Management Body of Knowledge (PMBOK) is a significant guideline in 

project management literature [21]. It outlines the field of project management and 

provides guidelines in nine management knowledge areas listed in the document. 

Capability Maturity Model Integration (CMMI) ver 1.2 is the result of years of work by 

Software Engineering Institute [4]. It is a process improvement approach for 

organizations wanting to improve their processes to achieve better project results. CMMI 

identifies five maturity levels for organizations based on the processes they employ in the 

development of projects. It establishes requirements for process areas in order to achieve 

higher maturity levels. It puts a certain amount of emphasis on project management 
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related issues and includes process areas such as integrated project management, project 

planning, project monitoring and control, risk management, quantitative project 

management etc. IEEE’s Software Engineering Body of Knowledge (SWEBOK) 2004 

version is a first baseline for the body of knowledge for the field of software engineering 

[13]. The guideline employs ten knowledge areas for software engineering field and one 

of them is software engineering management. These guidelines and standards are among 

the most important documents in the literature and embodies decades of knowledge and 

experiences. However, none of the documents is able to provide a theory of project 

management or a formal approach to project management.  

In 2006, Rodney Turner, the editor of International Journal of Project 

Management, wrote a series of editorials. In these editorials, he pointed out that the 

project management field was not yet recognized as a proper academic discipline. One 

reason is that we lack a theory of project management. In that and following editorials, he 

introduced a normative theory of project management. A normative theory merely 

expresses what the norm should be. With the theory, Turner explained the domain, the 

nature of project management, its governance and the functions of project management 

[27,28,29]. One year later, in 2007, Sauer and Reich wrote a response as guest editorials 

[24]. While promoting the idea of having a normative theory, they expressed the need for 

a theory that helps us to understand the conditions, constraints, and drivers leading to 

functional and dysfunctional behaviors. Therefore, we can influence such behavior to 

reach intended results.  

Even though there have been many advances in software engineering, there have 

been far fewer advances in software project management. Most of the tools that are 

widely used such as project evaluation and review technique (PERT) [16], critical path 

method (CPM) [16], GANTT charts [10], work breakdown structure (WBS) [3], decision 

tree diagrams for risk assessment [21], network planning models [12] etc. were developed 

decades ago. Microsoft Project, Oracle Projects, OpenProj, Attask, Project.net, Daptiv, 

and Celoxis are just a few examples among many automated project management tools. 

These automated tools from different vendors only offer the classic tools in various forms 
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and interfaces. Some of them combine a few classic tools. Brief discussions about the 

most widely used tools are provided. 

Work Breakdown Structure (WBS): A work breakdown structure (WBS) is a tool 

to hierarchically decompose the project into phases, activities or tasks. A WBS may be 

graphical or textual. It is used for planning purposes. Using WBS, we divide the project 

into smaller manageable pieces. Developing a work breakdown structure is about 

identifying what needs to be done. They are often used as the basis for project cost and 

effort estimation.  

Project/Program Evaluation and Review Technique (PERT): It is a statistical 

approach to develop the schedule of a project. PERT charts use three different 

estimations for identifying the duration of activities. These are optimistic, pessimistic and 

most likely durations. Therefore, it is also referred as probabilistic approach.  A specific 

graphical notation is used while developing PERT charts. Before developing a PERT 

chart for a project, the activities and their dependencies have to be identified.  

Critical Path Method (CPM): Critical path method is similar with PERT. It was 

developed in 1958. CPM is also used to develop a project schedule and has a specific 

graphical notation. The difference between CPM and PERT is that CPM only uses one 

estimate while PERT uses three. A project may include simultaneous activities. However, 

there is always a critical path in the project such that the delay in one of the activities in 

the path will delay the project. The focus of the CPM is this critical path.  

Gantt Charts: Gantt charts take its name after Henry Gantt who designed and 

published his chart in 1910. Gantt charts graphically present the sequence of activities on 

a timeline. They are used in project planning and project monitoring. A Gantt chart is a 

simple but very useful tool in project and program management. On a Gantt chart, there 

is a timeline on the horizontal axis and there is a list of tasks on the vertical axis. The bars 

on the chart represent the length of the task on the calendar. The main purpose of a Gantt 

chart is the scheduling a project based on the start and end dates of each tasks comprising 

the project.  
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Organizational Charts: Organizational charts are widely used in project 

management to communicate the hierarchical structure of the project organization. The 

hierarchical dependence of people, roles, teams, or departments is represented in a 

graphical form. In organizations, they reduce the occurrence of unnecessary 

communications and miscommunications.  

A software project manager or the management team has to combine the tools 

mentioned above and other tools not mentioned here in order to manage the complexities 

of managing IT software projects. A tool that addresses various aspects at the same time 

is an added benefit. This is important since the nature of project management is complex 

and requires multitasking. According to Jones, successful projects employ effective 

project management tool suites [14] while unsuccessful ones generally do not. He also 

provides statistics on the kind of tools the leading, average and lagging projects employ. 

In terms of number of project management tools deployed, there is a 6-to-1 ratio between 

the leading and lagging projects. Jones emphasize that managers on failing projects are 

naïve to assume that project planning and estimating are simple enough to be conducted 

with rules of thumb and manual methods. The modeling tool provided here addresses 

various project management aspects at the same time. Jaafari provides a very simplified 

highest-level representation of a project model and lists the ideal requirements for a 

project model [18]. He stresses that we still have a long way to go in realizing such 

sophisticated modeling systems. We believe the modeling language proposed is a step in 

this direction with its capability to address multiple aspects.  
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II. A THEORY OF SOFTWARE PROJECT MANAGEMENT  

We believe that the project management field would benefit from a simple, yet 

powerful theory. The theory should be able to capture the essence of vast nature of 

projects. It should employ common concepts and guide us in developing tools to 

understand, plan, analyze, and document the projects.  

The project management theory employs the following definitions: A project is an 

output of the project management function, which is limited over a specific time. The 

inputs for this function are a limited number of activities and entities related to any part 

of the project. An activity is a named process, function or task that occurs over limited 

time. An entity is something that has a distinct, a separate existence, though it does not 

need to be a material existence.  

We treat the project management as a function. The output of this function is a 

project. The project consists of all the deliverables, services and products. This project 

management function takes some inputs. These inputs are in two categories: Activities 

and entities. We categorize everything related to project management into these two 

simple concepts. Examples of activities include requirements analysis, design, hiring 

staff, project status meetings, code reviews, testing, risk identification and even parties. 

Examples of entities include business need, requirements, system architecture, 

stakeholders, documents, project manager, code, use cases, customer etc.  

Notice a couple of important issues resulting from the definition. The project is 

limited in time. No project continues forever. Some projects end with the intended 

product, service or results. Some other projects are cancelled or, among the ones that are 

completed, their results are not the intended ones. Thus, in the theory, the project 

definition takes into account different project results. In addition, since the project 

management is defined as a function, various different inputs results in different project 

results. Consider a software project management function that takes the business need, 

some staff and coding activity as its only inputs. The resulting project will likely to be 

different from the project management function that takes the business need, all 
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stakeholders, requirements management, design, coding, a proven architecture, testing, 

independent verification and identification etc. as its inputs. We define the activities and 

entities in the broadest sense. Even abstract concepts such as leadership, teamwork, 

communication may be entities.  

We formulate a mathematical function using the definition:  

1 2 3 1 2 3( (), (), (),..., (), , , ,..., )m nP PM a a a a e e e e=   

P denotes the project. PM is the project management function.  

1 2 3(), (), (),..., ()ma a a a  are various activities conducted during the project. 1 2 3, , ,..., ne e e e  

are various entities related to the project. Here, activities are presented as functions. This 

is the basic difference from an entity. To signify the differences between different 

activities and entities, a subscript notation is used.  These activities and entities are used 

as basic building blocks of a project management modeling language.  
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III. PROMOL: PROJECT MANAGEMENT MODELING 
LANGUAGE  

A. CRITERIA FOR ASSESSMENT OF PROJECT MANAGEMENT TOOLS 
There are various tools used in project management. Most of these tools are used 

for project planning, monitoring and analysis purposes and there are various commercial 

applications automating these tools. These tools include Work Breakdown Structure 

(WBS), Project/Program Evaluation and Review Technique (PERT), Critical Path 

Method (CPM), Gantt Charts, and Organizational Charts. 

It is important to know the strengths, weaknesses and capabilities of project 

management tools in order to maximize the benefit from them. To the best of our 

knowledge, there has not been an established set of criteria for assessing project 

management tools. Here, we introduce such criteria. Having a set of criteria will enable 

us to evaluate existing project management tools while guiding the development of new 

tools.  

1. Simplicity: A quick overview of the tools mentioned previously would yield 

that all of them have a common aspect. They are simple in concept and easy to apply. A 

project management tool should be simple. It should be easy to understand, learn, and 

apply. Simplicity increases the likelihood of wide acceptance from practitioners. While 

being simple, the tool should be comprehensive and scalable enough for its intended 

purpose.  

2. The tool reasonably addresses at least one aspect of project management: 

Obviously, the project management tool should provide a means to reasonably address at 

least one concern regarding the project management issues. Project managers’ 

responsibility is to complete the project within defined scope, expected quality, supplied 

budget and estimated schedule while dealing with stakeholders and the project 

development team. The tool should help the management in dealing with one or more of 

these and other aspects. For example, it may provide alternatives for project scheduling 

under different constraints; list alternative cost estimates under various conditions; help 

to manage or synchronize stakeholder involvements.  
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3. The tool allows for formal analysis: Formality may be simply defined as 

following a set of prescribed rules. A formal tool does not necessarily have to include 

complex mathematical concepts. Even though the tool may have very few rules, but a 

well-defined set of rules, it is still a formal tool. Therefore, it enables us to conduct 

formal analysis on projects. A formal tool lays the foundation for common understanding 

and misinterpretations due to different views are eliminated.  

4. The tool is based on the concepts extracted from the project management 

environment: The project management environment has certain common concepts such 

as stakeholders, deliverables, inputs, outputs, tasks, activities, work items etc. The project 

management tool should be based on these concepts and be suitable for this specific 

environment. Even though it may be possible to use the tools developed from other 

domains, it will be intuitive for project managers when the tool utilizes the same concepts 

and terms.  

 

B. PROMOL (PROJECT MANAGEMENT MODELING LANGUAGE): A 
VISUAL AND FORMAL MODELING TOOL FOR MANAGEMENT OF 
SOFTWARE PROJECTS 
Using the project management theory and criteria for assessment of project 

management tools described above, we developed a formal, visual modeling language 

(PROMOL) for management of software projects. PROMOL simply consists of a 

predefined set of relations between the concepts derived from the definitions in the 

project management theory. The relations are used to build models of management of 

software projects. First, we will define the mathematical relations, and then we will 

explain its visual counterparts. 

1.  Relation “CREATE” 
During a project, we create an entity as a result of an activity. Such relation 

between an entity and an activity is depicted via the “create” relation. For example, an 

entity such as project staff is created as a result of a hiring activity. This relation is 

defined as follows: 

( )y xe a=  
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Where “e” represents an entity whereas “a” represents the activity. Subscripts are 

used to distinguish different entities and activities. Specific entity or activity names may 

also be used.  

staff = hiring ( ) 

An activity is followed by a parenthesis. This differentiates the representation of 

an entity from an activity. Activities may be considered as mathematical functions. In the 

“hiring” example inputs to the activity may be a group of possible candidates or a set of 

criteria for the job positions. In some cases it is not necessary to identify the inputs to 

activities. The necessity of an input or inputs for most cases leads to the second relation, 

“transform”. 

2.  Relation “TRANSFORM” 
The relation “transform” is one of the basic relations. Whenever an activity takes 

an input and results in an output, such relation is represented with a “transform” relation. 

It is defined as follows: 

( )1 2 3, , ,...,y x ne a e e e e=  

For example, an entity like product specification may be transformed into an 

entity, product design documentation, as the result of the design activity.  

product design documentation = design (product specification) 

It is possible to have multiple inputs. In cases, where there are multiple outputs, 

for every output it is necessary to provide another transform relation. This is especially 

required to ensure traceability of various outputs or deliverables. An example for a 

“transform” relation with multiple input is as follows: 

product design documentation = design (product specification, specific design 

patterns) 

In the example above, the project manager specifically requires the development 

team to use specific design patterns to ensure good practices.  
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It is important to note the similarity with the “transform” relation and the project 

management function defined in the project management theory. In fact, the project 

management function is defined as a “transform” relation at the highest level.  

3.  Relation “DIVIDE” 
An activity or an entity may be divided into its smaller activities or entities. Such 

a relation between activities or entities is represented with the “divide” relation. This 

relation is denoted with the word “DIVIDE” in capital letters.  

( )( ) ( ) ( ) ( ) ( ){ }1 2 3, , ,..., mDIVIDE a a a a a=  

( ) { }1 2 3, , ,..., nDIVIDE e e e e e=  

For example, a testing activity may be divided as component testing and 

integration testing. An entity such as design may be divided as high-level design and low-

level design.  

This relation helps us to achieve different levels of granularities when modeling 

project managements. It provides a hierarchical structure among some activities and 

entities. 

4.  Relation “AGGREGATE” 
Some activities and entities may be aggregated to depict a certain activity or 

entity. The “aggregate” relation is used for such purpose. This relation is denoted with the 

word “AGGREGATE” in capital letters. 

( ) ( ) ( ) ( ) ( )( )1 2 3, , ,..., ma AGGREGATE a a a a=  

( )1 2 3, , ,..., ne AGGREGATE e e e e=  

For example, entities such as project schedule, cost estimate, staffing requirement, 

and risk analysis may be aggregated to the entity project plan.  

 

project plan = AGGREGATE(project schedule, cost estimation, staffing 

requirement, risk analysis) 
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5.  Relation “NEXT” 
Arrangement of various activities is of particular interest for project managers. 

Some activities occur in a sequence while others occur in parallel. In order to represent 

the ordering between the activities and entities, the relation “next” is used. For activities, 

this relation is based on the order of occurrence. For entities, this relation is based on a 

logical ordering between entities. This logical ordering may also be the time of 

occurrence whereas it may be a hierarchical arrangement of entities. The relation “next” 

is depicted with a right arrow between activities or entities. 

( ) ( )1 2a a→  

1 2e e→  

For example, a design activity is followed by a coding activity. An entity such as 

design may be followed by an entity code. Another example of the relation “next” 

between entities is the management relation between a technical lead and his developers.  

leader developerA→  

leader developerB→  

6.  Relation “PREVIOUS” 
The relation “previous” is similar with the relation “next”, except it is based on 

the relation of what precedes what. It is depicted with a left arrow. 

( ) ( )2 1a a←  

2 1e e←  

7.  Relation “REQUIRE” 
The relation “require” is used when an activity or an entity requires other 

activities or entities in order to occur or exist. This relation helps us to understand various 

dependencies among entities and activities. Stakeholder management is one of the key 

issues for project managers. It is particularly important to track the concerns of various 

stakeholders for different specific activities. For example, the project sponsor may be 

required to be included in the loop during project planning activities. However, the end 
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user may need to be involved during requirements definition and product specification 

while the end user may have no interest in planning activities. Therefore, the 

requirements definition requires the end user and project planning requires the project 

sponsor. Such inherent aspect of project management is included in PROMOL via the 

“require” relation. This relation is depicted with the word “REQUIRE” in capital letters.  

=

=
1 2 3 1 2 3

1 2 3 1 2 3

( ()) { (), (), (),..., (), , , ,..., }
( ) { (), (), (),..., (), , , ,..., }

m n

m n

REQUIRE a a a a a e e e e
REQUIRE e a a a a e e e e

 

8.  Relation “DECISION” 
Decision-making is another important aspect of project management. It is 

important for the project decision makers to choose a particular activity path based on 

various conditions. Such issue is represented with the relation “decision”. As a decision 

maker, a project manager may come to a certain milestone in the project where he/she 

may need to choose between going forward and repeating a set of activities due to 

unsatisfying results. The relation is depicted with the word “DECISION” in capital 

letters. 

( )

( ){ }
( ){ }
( ){ }

( ){ }

1 1

2 2

1 2 3 3 3

, ,

, ,

, , ,..., , ,

...,

,

m

n n

decision a

decision a

DECISION e e e e decision a

decision a

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 

The relation “decision” takes various entities as inputs. At least one of the entities 

is the condition or the criteria to guide the decision-making. The others are the outputs of 

activities leading to this decision point. In order to decide, we use the criteria to assess the 

other entities, which are the outputs of previous activities. The output of this function is a 

set of tuples. The first part of the tuple is the specific decision and the second part of the 

tuple is the activity to go after the decision. This relation helps us to follow different 

activity paths based on various decisions.  

For example, we conduct a testing activity in our project. The testing activity will 

produce the entity, test results. We also have a condition that says in order to move 
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forward, we have to achieve above a testing coverage threshold. This threshold entity is 

our criterion. If we achieved less than our threshold, we repeat the testing activity. 

9.  Relation “EXIST” 
This relation is for the purpose of formal analysis. It questions the model for the 

existence of its input. It checks whether certain activities, entities or model components 

exists in the model. In real life, this may correspond to analyzing a project for certain best 

practices in project management. Its output is either true or false. It is defined as follows: 

( )( )1 /EXIST a true false=  

( )1 /EXIST e true false=  

( ) ( )( )1 2 /EXIST a a true false→ =  

For example, it may be required to check the model to see if a requirement 

definition activity exists before a design activity. 

10.  Reserved Definitions 
There are also some reserved definitions such as start and end. When they are 

specified in capital letters (START, END), they represent the beginning and end of a 

project. When they appear in small letters, they illustrate the start and end of a specific 

activity or an entity under a hierarchy. 

11.  Visual Aspect 
We put special effort and emphasis on limiting the number of relations 

introduced. According to Miller’s Law [17] short-term memory is limited to 7±2 chunks 

of information. Even though, it is possible to introduce many different concepts and 

specialized relations for specific purposes, the ideal is to make it simple, usable, and as 

optimal as possible while still maintaining the capability to be applicable and scalable. 

Thus, the modeling language has very few number of relations.  

Mathematical models enable formality. However, they are less preferable to work 

on than visual models. The argument for visual models is obvious for software 

professionals [31]. The success of UML is an example of the achievements with visual 

models. Therefore, we also introduce the visual counterparts of the defined relations.  
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An activity is depicted with a rectangle. The name of the activity is written inside 

this rectangle. An entity is depicted with an ellipse and its name appears inside this 

ellipse. The next and previous relations are represented with arrows. The require relation 

is shown with a line between the activities and entities. The input for an activity is 

represented with a line ending with an empty small circle, while the output is represented 

with a line ending with a full small circle. Decisions are illustrated with a diamond. The 

start of a project is shown with an empty circle, while the end is shown with a full circle. 

Figure 1 presents the corresponding diagrams for the relations.   

 
Figure 1.   Diagrams and Corresponding Relations 

It is important to note a specific notation for the modeling language. Even though, 

an activity or an entity is referred more than once in different places, they point to the 

same activity or entity. We made this choice during the design. It eliminates the problems 

in referring to the same activity or entity among different levels of hierarchy. It also 
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simplifies the model diagrams by eliminating the difficulty of trying to draw lines to just 

one activity or entity representation. 

 

C. STEP-BY-STEP MODEL DEVELOPMENT 
Below, we present a step-by-step method for model development: 

1) Identify the main activities in the project.  

2) Identify the stakeholders, deliverables, inputs and outputs for activities and other 

entities in the project. 

3) Write down the project management function as described in the project 

management theory. This is the highest-level model of the project management. 

4) Specify the relations between these activities and entities using the definitions 

from the modeling language. Also, specify the decision points.  

5) Detail the project management model by dividing the activities and entities.  

6) Repeat the fifth step until it satisfies the planning needs in a particular project 

phase.  
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IV. CONCLUSIONS AND FUTURE WORK  

A. CONCLUSIONS 
There are many advantages in having a modeling language for project 

management. Project management is complex in nature and building models helps us to 

simplify the complexities.  

• PROMOL helps with the project planning activities. Project planning is 

one of the major responsibilities of the project manager. Using the models, 

a project manager is able to plan the activities in the project and to 

investigate alternative solutions under different resource constraints during 

project planning phase. 

• It is possible to track the inputs and outputs of activities. Thus, it helps 

with managing the project artifacts and deliverables.  

• PROMOL helps with stakeholder management. Stakeholder management 

is a key issue in project management. The modeling tool allows us to 

relate various stakeholders with activities.  

• The models developed using PROMOL easily adapts to changes. The 

project plans change during execution. Therefore, it is important that a 

project management tool reflect this inherent aspect of projects. Using 

PROMOL, it is possible to build high-level models at the beginning of the 

project and later add detail to the model using the “divide” relation. The 

language allows hierarchy and dynamism in planning. Change in some 

part of the model does not necessitate change in other parts.  

• It is formal. Communicating the project plan is important. PROMOL 

eliminates the ambiguity in communicating the project plan to different 

stakeholders. Everybody understands the same thing. It allows for 

development of automated tools and formal analysis of management of 

projects. We can investigate whether certain best practices are being 

followed. It is also possible to develop project management metrics.  
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• It is visual. Diagrams are easy to understand. Lots of information can be 

presented with just one diagram. It also helps with documenting and 

communicating project plans.  

• PROMOL allows visualizing various aspects of project management at 

once. The models include activities, developers, inputs, outputs, 

stakeholders, and the relations among them.  

• It is possible to create templates. Process standardization is an issue in big 

organizations.  Achieving a certain level of quality in different projects is 

important in these organizations. It is possible to create model templates to 

ensure that certain practices are followed.  

• PROMOL allows for extensions. As long as it does not conflict with the 

preexisting relation definitions, it is possible to extend the language. 

However, there is a trade-off. Over-specification may defeat the purpose 

of keeping it simple.  

The project management theory introduced here, and PROMOL, a visual 

modeling language, provide software project managers with a method for planning and 

monitoring software projects that includes many of the most important project aspects.  

PROMOL helps to manage the project artifacts and deliverables, helps to relate 

stakeholders with activities, incorporates project dynamics, eliminates ambiguity through 

formality, and provides ease of understanding through visual modeling. 

 

B. FUTURE WORK 
Project cost estimation, project scheduling, resource and risk management are 

among other key responsibilities of project managers or management teams [1,9,19] and 

currently, the modeling language lacks the capability to illustrate these aspects. Our 

investigation showed that it is possible to include these aspects and currently we are 

working on methods to integrate these aspects into the language.  The language also does 

not have automated support. Therefore, we are working on an automated tool that will 

enable practitioners to work just with visual models.  
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