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Abstract 

Testing of complex systems is a fundamentally difficult task whether locating 

faults (diagnostic testing) or implementing upgrades (regression testing).  Branch 

paths through the system increase as a function of the number of components and 

interconnections, leading to exponential growth in the number of test cases for 

exhaustive examination.  In practice, the typical cost for testing in schedule or in 

budget means that only a small fraction of these paths are investigated.  Given some 

fixed cost, then, which tests should we execute to guarantee the greatest information 

returned for the effort?  In this work, we develop an approach to system testing using 

an abstract model flexible enough to be applied to both diagnostic and regression 

testing, grounded in a mathematical model suitable for rigorous analysis and Monte 

Carlo simulation.  The goal of this modeling work is to construct a decision-support 

tool for the Navy Program Executive Office Integrated Warfare Systems (PEO IWS) 

offering quantitative information about cost versus diagnostic certainty in system 

testing.  

Keywords: diagnostic testing, regression testing, automated testing, Monte 

Carlo simulation, sequential Bayesian inference 
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1. Overview 

Testing of complex systems is a fundamentally difficult task whether locating 

faults (diagnostic testing) or implementing upgrades (regression testing).  The number 

of branch paths through the system typically grows as a function of the number of 

components and interconnections, leading to near-exponential growth in test cases for 

an exhaustive examination.  This study examines optimal system testing by using 

classic fault diagnosis scenarios as the basis from which to develop a mathematical 

model that is flexible enough to extend to regression testing cases.   

In this research, we establish the groundwork for a decision-support tool for the 

Navy Program Executive Office Integrated Warfare Systems (PEO IWS).  This tool will 

provide quantitative information about trade-offs among cost, risk, and the degree of 

system testing conducted.  Initially, we seek to answer the question: given a failure in an 

operational system, what is the best test-risk-cost strategy to locate the failed unit of 

replacement?  Further development of this model will investigate the question: given an 

engineering upgrade to a module, how much regression testing must we accomplish on 

the system for a given level of risk?  

The scientific contribution of this work lies in a novel, information-driven approach 

to testing.  Having characterized our system in terms of probabilities of failure of 

individual components, we can assess at any time the information entropy associated 

with that knowledge and assess the change in entropy possible by applying particular 

tests from our diagnostic inventory. We can then more readily assess quantitatively the 

information returned for the cost incurred by a test or battery of tests.  

We expect the practical results of this work will be useful throughout the system 

lifecycle, from acquisition to fielding and maintenance. The decision-support prototype 

tools delivered should, for example, yield significant insight into designing test suites for 

new weapons systems and for improving the use of existing suites in current systems, 

such as the Aegis combat system. This work should also be useful for optimizing 

decisions within the corrective maintenance (courses of action) module within the 
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condition-based maintenance (CBM) and distance support (DS) systems for the Surface 

Warfare Enterprise.  
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2. Background  

Mathematical models of component and system reliability have roots in the 

work of von Neumann (1952) and Moore and Shannon (1956), as well as in the 

seminal text by Barlow and Proschan (1965). The focus of these early works is 

generally on assessing the overall system reliability, particularly with regard to the 

economics of preventative vice reactive maintenance (see, for example, Bovaird, 

1961). In the present work, the focus is on efficiently identifying a defective-by-

design or failed component in a complex system.  

This fault diagnosis, sometimes referred to as the test-sequencing problem, 

has also been well studied (see, for example, Sobel & Groll, 1966; Garey, 1972; 

Fishman, 1990; Barford, Kanevsky, & Kamas, 2004). In general, these investigators 

start with a system in a known, failed state with the goal of finding the most cost-

effective sequence of diagnostics to locate the failed component (or components) 

under a given set of assumptions.  

In contrast to fault diagnosis, the general case of regression testing appears 

to have received less attention in the open literature, with more specific cases 

examined in the realm of software engineering (see, for example, Weyuker, 1998; 

White, 1992; Tsai, 2001; Mao & Lu, 2005; Leung, 1991; Rothermel, 2001). These 

studies typically start with a fully functioning system that is undergoing component 

modification or upgrade, with the task of establishing that component modifications 

have not introduced new defects into the system.  

In the present study, we treat testing as a unified activity, with risk and cost as 

the common tension regulating the degree of testing required. From a fault-diagnosis 

perspective, we consider both the cost of module replacement and the cost of 

testing. We want to replace the fewest number of components as quickly as possible 

while ensuring the system is restored to perfect functionality.  From a regression-

testing perspective, we test our system following a component or system upgrade to 

ensure what our system remains in perfect function under load.  The element of risk 
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from this perspective is that costs incurred for perfect knowledge may rapidly 

approach infinity.  From an operational perspective, then, we must accept with some 

level of confidence (e.g., 99%, 95%) that our diagnosis or prognosis is correct.  
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3. Model Formulation 

The growing use of commercial off-the-shelf technologies in current weapons 

systems (Caruso, 1995; Dalcher, 2000), coupled with the complexity of end-to-end 

systems (Athans, 1987), suggests that we may never have enough information to 

fully specify our system as a white box, with all software, hardware and 

communication interfaces perfectly characterized.  We thus construct our model with 

broad parameters that can be constrained as narrowly as available information 

permits.  

We characterize the model system as a collection of modules comprising the 

system and a collection of tests used to interrogate the system.  When the system is 

down, we assume that one or more modules have failed.  We examine the system 

through this test suite to locate the correct module or modules to replace.  We 

assume that tests return ambiguous information about the state of modules within 

the system and that some sequences of tests must typically be applied to arrive at a 

correct diagnosis.  Stochastic simulation of the model system provides a framework 

in which different strategies may be applied and measured for further insight.  Using 

this Monte Carlo approach, we may also test the bounds of our initial assumptions 

with additional simulation.  

3.1 System and Module Objects 
We form the model system S as a collection of modules or units of 

replacement.  Each module Mi represents the smallest diagnostic unit, which does 

not necessarily correspond to a single physical component in the modeled system.  

We consider, for example, a computer server comprised of motherboard, hard drive 

and power supply, each of which may cause the computer server to fail.  This would 

be modeled as a single module labeled Server if the standard corrective 

maintenance action is to replace the entire unit.  A fundamental assumption in this 

abstraction is that the physical system is decomposable into these units of 

replacement.  We note that even in this example, a separate diagnostic model could 
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be applied to the server, treating each of its subcomponents (motherboard, hard 

drive, power supply) as replaceable units.  

We assume S is always in one of two states: fully functioning (UP) or 

inoperable (DOWN).  Each module is similarly assessed as GOOD or BAD.  We 

take S as UP if and only if every Mi is GOOD.  In practice, this means that if we find 

S inoperable, then we may assume that one or more modules have failed.   In this 

event, we seek to replace the fewest number of modules with the least testing and in 

the shortest time. 

Each Mi is modeled as the unit circle Ai.  Defects, when present, are assumed 

uniformly distributed on this circle.  We assume that while multiple modules may be 

defective, only one defect exists per module.  A defect in Mi is modeled as a random 

point on Ai or, equivalently, a random point on the interval [0, 1].  

Fundamental to this aspect of the model is a source of failure-rate data for the 

system components.  These failure rates become the a priori data in the larger 

probability model and so do not necessarily need to be precise to add value to 

simulation results.  The relative rates among the modeled components (e.g., the 

Server module fails about five times as often as the Router module) should be close 

to the observed data in the physical system to provide the most realistic 

convergence in testing to a correct diagnosis. 

3.2 Test Objects 
Tests are modeled as system objects that, when executed, provide an 

ambiguous assessment of one or more modules within S. This ambiguity stems from 

two essential elements that map the tractable model to physical reality.   

The first aspect is that any given test likely exercises only a portion of the 

functionality within a module.  Although the module is the unit of replacement, we 

parameterize the sub-module details by treating them as a continuous space 

covered, in part, by a given test.   
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Figure 1.  The simple coverage of test Tj on module Mi indicated by the solid arc Aij.  
The measure of this coverage λ(Aij) = αij represents the fraction of Mi exercised by Tj.

 

We model the coverage of test Tj on module Mi as the arc Aij (see Figure 1).  

When Tj is executed, or applied to the model system, the arc Aij on Mi is inspected 

for a defect.  Given the assumption that defects appear uniformly on this unit circle, 

the probability that a defect in Mi will be detected by Tj is the measure of this arc or 

λ(Aij) = αij.   The scalar probability of detection by a test is precisely the user-

specified functionality exercised by the test.  This element of our language of 

description permits some ambiguity in characterizing the physical system (e.g., built-

in self-test 3 exercises about 45% of the functionality of the graphics processing unit) 

without loss of rigor in modeling these tests and modules.  In practice, given a 

sufficient number of real-world cases from the physical system, this estimate for Aij 

could be refined through analysis of simulation results. 

The second ambiguous aspect of results from testing is that any given test 

likely covers multiple modules, such that any test result must be interpreted as 

applying to all modules covered by that test (see Figure 2).  For example, a positive 

result (FAIL) from a diagnostic test that covers the modules Carburetor, Distributor 

Cap, and Spark Plug Wiring indicates that at least one of these modules contains a 

defect (has failed), though additional testing would be required to identify which of 

these modules is the culprit.  Because we expect that a given test exercises multiple 

modules in the system, we speak more generally of the coverage of Tj on S (see 

Figure 2). 
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Figure 2.  Notional depiction of the coverage of Tj on S, with multiple modules exercised 

upon execution of this test.  A FAIL result from Tj indicates that at least one of the subset 

{Mx, My, Mz} has failed.  

 

Within the model, a test when executed assumes one of two values: PASS or 

FAIL.  A PASS result for a given test Tj indicates that no region covered by this test 

contains a defect.  A FAIL result indicates that at least one of the modules covered 

by Tj contains a defect, or is BAD in the model definition.  While a FAIL result should 

reduce the set of modules that may need to be replaced, a perfect result—replacing 

only those modules that have failed—will typically require some sequence of tests.  

Indeed, for a particular configuration of tests and modules this perfect result may not 

be achievable.  Analysis of simulation results should help to identify those cases 

where further testing will yield no new information.   

The use of vector arcs to model the coverage relationship between tests and 

modules enables precision when specifying the coverage by multiple tests on a 

single replaceable unit (see Figure 3).  Although several tests in the system suite 

may exercise a given module, it is likely in the physical system that these tests 

overlap significantly.   This language of description, then, permits a user 

specification of the physical system in broad terms (e.g., the Remote Control test 

and Obstacle Detection test both exercise about 70% of the Garage Door Motor 
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module, with about 20% overlap between the two tests).  Even if these data are 

estimated from the physical system, existing case data and simulation results could 

be used to provide better specification of these joint coverages. 

 
 

Figure 3.  Overlapping coverage between tests Tj and Tk are characterized with the arcs Aij 

and Aik.  The joint coverage is computable as the intersection of these arcs. 

 

3.3 Summary 
This conceptual model captures the essential elements of a system with 

respect to diagnostic testing and module repair or replacement.  The physical 

system is specified in terms of modules, tests, and coverages, with model elements 

constructed in such a way that imperfect information can still be used as an initial 

state.  Although the model requires that the physical system be decomposable into 

discrete units of replacement, this does not limit the usefulness of this approach.   

The fundamental diagnostic techniques could easily be applied at the sub-module 

level by treating a given module as a system, with sub-components then modeled as 

modules.  In the present study, we limit our investigation to a single-layer model, 

though future work could nest diagnostic levels across a complex system.  We next 

formalize these model elements in mathematical language to construct a suitable 

computer simulation to investigate these testing strategies. 
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4. Mathematical Fundamentals 

Our goal in system testing is to maximize certainty at minimum cost.   In 

developing a probability framework to model this process, we first form simple 

objective measures to characterize knowledge of the system state.  We next 

examine a simple, step-wise strategy to predict a test sequence that will maximize or 

minimize these measures.  We then extend these simple strategies by considering a 

variable cost per test to examine diagnosis under limited resources.   

4.1 Objective Measures of the System State 
Let Bi be the event that module Mi is BAD, with probability P(Bi) = bi.  Given a 

system S comprised of m modules, we can characterize our knowledge of the 

system state as a vector of these probabilities:  

  { }1
t t t

mb b= …K   (4.1)

 
The index t is time-like, indicating the number of tests that have been applied 

to the system.  At t = 0, no tests have been applied and all bi are set to their initial 

failure rates.  Fundamental to our conceptual model is a source of failure-rate data, 

or an a priori probability that a particular replaceable unit is defective.   

We desire a diagnosis in which the components of K are only zero or one, 

meaning that we know with absolute certainty that a particular module is GOOD or 

BAD.  In practice, this ideal diagnosis may be too costly or simply impossible to 

determine (see, for example, Cover & Thomas, 1991, Ch. 7).   Instead, we take a 

step-wise approach in which we apply tests from our suite of diagnostics to 

incrementally improve our knowledge of S.  

One intuitive measure of Kt is the information entropy (Shannon, 1948).   For 
a single module, we compute the entropy hi as:  

 
  2 2log (1 ) log (1 )i i i i ib bh b b= − − − −   (4.2)
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We see that as bi tends to zero or one, hi is minimized (see Figure 4).   By 

applying tests from our diagnostic suite, we should become more certain about the 

state of a module (GOOD or BAD).  We measure this improvement in certainty as a 

reduction in the individual module entropy.  Across the system, we take the 

aggregate measure as:    

  1 1
2 2

1 1
log (1 ) log (1 )

m m

i i i i
t t

im m
i i

t t t th b b b bH
= =

= = − − − −∑ ∑  
(4.3)
 

Using this measure, we seek an ordering of k tests such that: 

  0 1 kH HH ≥ ≥…≥  

That is, each test applied should act to modify some subset of module bi to 

reduce the entropy of Kt.  An optimal step-wise strategy, then, would seek to 

maximize ∆H = Ht – Ht+1 for each test applied to the system under diagnosis. 

 
 
Figure 4.  Module entropy h(bi), with notional module probability bi indicated.  Note 
that by symmetry, h(bi) = h(1 – bi), with distance 2δ between these states. 

 

Entropy is computationally attractive, though hi may be less intuitive when 

deciding which modules to replace.  The probability bi offers some insight into the 

likelihood that the module Mi should be replaced, such that a reasonable decision 

criterion Di would be: 
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min( ,1 )
REPLACE if 
KEE

max( ,
P 

1
i

)
f i i i

i
i i i

b
D

b b
b b b
= −

=
= −

⎧
⎨
⎩  

 

(4.4)
 

 

In effect, if the probability that Mi is bad is above ½, then we should replace it, 

and if the probability is below ½, then we should keep it.  If, for example, a particular 

module has a bi = 0.70, then we replace it knowing that this informed guess should 

be correct 70% of the time; 30% of the time we will unnecessarily replace a GOOD 

module.  Our number of correct guesses across the system will increase as each bi 

is adjusted by testing away from ½ towards either zero or one (see Figure 4).  Thus, 

minimizing system entropy H in a step-wise process is equivalent to maximizing the 

number of correct replacement decisions, or correct diagnoses. 

4.2 Simple Step-wise Testing 
We seek to minimize the entropy of the probability vector K (Equation 4.1) by 

applying tests in step-wise fashion to update the component probabilities.  For each 

candidate Tj in our diagnostic suite, we can compute a candidate ∆H, and then 

choose that test which causes the maximum reduction in entropy (largest ∆H).    

In forming these predicted ∆H, we must account for both possible test 

outcomes.  Let the event Pj represent the execution of test Tj with a PASS result.  

Similarly, let Fj represent the event of a FAIL result.  To estimate the reduction in 

entropy possible by execution of test Tj at some point t in testing, we use the 

weighted sum: 

  ( ) ( ) | ) ) | )( ( (t
j j i j

i i
j i jH T H P P Ph B P h FF BΔ = −− ∑ ∑  

 

(4.5)
 

The entropy of the Bayesian result from either outcome is computed with: 

  2 2

2 2

( | ) ( | ) log ( | ) ( | ) log ( | )

( | ) ( | ) log ( | ) ( | ) log ( | )

i j i j i j i j i j

i j i j i j i j i j

h

h

B P P B P P B P P G P P G P

B F P B F P B F P G F P G F

− −

−

=

= −
 

(4.6)
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We first consider those probabilities that describe whether a test will likely 

PASS or FAIL.  If Tj only covers one module, then the simple probability that this test 

will PASS becomes: 

 

 

) is GOOD) is BAD but undetected)
)

( (  (  
1 )( (1

1

j i i

i ij i

i ij

P P P M P M
b b

b
α

α

=
= −
= −

+ −
U

 

 
We note that if Tj has no coverage on Mi then αij = 0 and this test will always 

PASS.   Similarly:  

 

 

) is BAD and detect( e( ) dj i

ij i

P F P
b

M
α

=
=  

 
We note that if Tj has perfect coverage on Mi (αij = 1), then the probability that 

this test will pass reduces to the probability that the covered module is BAD. 

In practice, we expect a given Tj will cover multiple modules, requiring that for 

a PASS event all modules are either GOOD or BAD but undetected.   

 

 1

( (1) )j i i

m

i
jbP P α

=

= −∏
 

 

(4.7)
 

We can then compute a FAIL event for Tj as the complement of a PASS, thus: 

 

 1

( 1 ( )1)
m

i
j ij iP F bα

=

= − −∏
 

 

(4.8)
 

Even though these products (Equations 4.7, 4.8) are computed over all 

modules in the system, we note that for those modules with no coverage by Tj, αij 

reduces to zero and the product is unaffected.  
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The Bayesian results required for Equation 4.6 can be computed with: 

 

 

) ( )
)

) ( ) ( ) ( )

) ( )
)

) (

(
(

(

(
) (( (

(
) )

j i i
i j

j i i j i i

j i i
i j

j i i j i i

P F
P B F

P F

P P
P

B P B
B P B P F G P G

B P B
P

B P B P P
B

P P G P G

+

+

=

=

∣
∣

∣ ∣
∣

∣
∣ ∣

 

 

(4.9)
 

Individual terms are computed as:  

  ( Given  is BAD, probability  will FAIL
( Given  is GOOD,probability  will FAIL 1 (1

( Given  is BAD, probability  will PASS 1
( Given  i

)
)

s GOO

)

)
)

j i i j ij i

j i i j kj k

j i i j ij

i
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We note that in the case of P(Fj|Gi) and P(Pj|Gi) we must examine all other 

modules covered by test Tj to compute these probabilities. 

This analysis provides a tractable, one-step method for sequencing tests by 

maximum reduction in entropy, though the computation grows approximately as the 

product of the number of modules, m, and number of tests, p.  Additional insight may 

be possible by considering in our prediction the next best two tests, or perhaps n 

tests, in reducing entropy, though the computational cost grows as mpn.  

We have assumed implicitly in this analysis that all tests carry the same cost 

in some unified measure of time and money.  We next discuss briefly the analysis 

with variable cost per test. 
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4.3 Variable Cost per Test 
We can estimate the information gain possible with any test in our model 

system (Equation 4.5).  With the  inclusion of information about the cost per test 

C(Tj), we can modify our objective function to compute, in effect, a cost per bit or:  

 

 

( )
( )

( )
j

j
j

TH
T

C T
Δ

Φ =
 

 

(4.10)
 

Our step-wise strategy, then, is to choose not the largest ∆H but the largest 

Φ.  Although the analysis in Section 4.2 does not change, this additional model 

element permits a broader range of investigation in computational scenarios. 

For example, with this extension of the present analysis (Equation 4.10), we 

could examine a scenario where the diagnostic resources were limited by some 

finite purse (in terms of C) that, when exhausted, required the operators to make a 

replacement decision.  In this case, a simple step-wise scenario would likely be less 

effective.  Indeed, this particular example is more similar to the classic knapsack 

problem (see, for example, Corman, Leiserson, & Rivest, 1990). 

Given data on both test and module cost, we could also examine, at every 

iteration, whether the next best test (or next best n tests) cost more than simply 

replacing the current “best” candidates in the system of modules.  Stochastic 

simulation of this scenario, given approximate real-world data, should yield 

significant insight into the physical systems under maintenance.  

4.4 Summary 
We have presented a mathematical framework to support the conceptual 

model of testing described in Section 3.  Upon finding our system is down, our 

notional diagnostic algorithm is: 

1. Form the initial vector K0 from the given module failure rates. 
2. From our diagnostic test suite, choose that Tj which maximizes ∆H. 
3. After performing the selected test, update Kt to Kt+1. 
4. If we have not reached our stopping criteria, then return to (2).   
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In practice, stopping criteria might include 
a. System entropy is very close to zero,  
b. Time or resources have expired, 
c. Cost of the next test exceeds cost of replacing  candidate modules, or 
d. Actual change in entropy on this cycle is very close to zero. 

Using entropy reduction as an objective measure, a simple analysis 

demonstrates the general utility of this approach while additional physical data (e.g., 

cost per test) could easily be incorporated into the computation.  We next discuss 

the implementation of these ideas in a computer simulation and then review results 

from idealized scenarios.   
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5. Simulation Results and Analysis 

To demonstrate the feasibility of the ideas developed in this study, a 

simulation was developed suitable for desktop computing.  Because no physical 

system data were immediately available, distributions of modules and test coverages 

were constructed, randomly subject to certain design constraints.  While these 

scenarios provide some insight into this approach to systems testing, sufficient 

flexibility exists in the computer code to extend the model easily to real-world 

systems.  

5.1 Model Details 
A Java development environment was selected based on the strong 

numerical facilities available under most implementations and the widely portable 

nature of most Java code.  Simulations were run primarily on a Windows Vista (x64) 

workstation while portability tests were run on both Ubuntu Linux 8.04 and Mac OS 

X 10.5 (Leopard) machines. 

The code implements object models of tests and modules, collected under a 

system object.  In most scenarios, 30 modules and 60 tests were constructed within 

the system, with test coverages spread randomly by test over some number of 

modules, nominally no fewer than 2 and no more than five.  That is, for each test Tj, 

a random integer q was chosen from {2, 3, 4, 5}, and then q modules were randomly 

selected from the system set and connected to Tj with random coverages.  Initial 

failure rates were assigned to modules from a uniform distribution on the interval 

(0,1).  While the code is quickly reconfigurable for more robust or physically realistic 

scenarios, these parameters were fixed for an initial comparison among simple test 

strategies. 

The best-next test strategy, based on reduction of entropy, was described in 

Section 4.  To make at least initial comparisons with the simulation code, a worst-

next test strategy was implemented within the software to explore a pathological 

case where every test selected maximized entropy, or equivalently, increased 



 

- 20 - 

uncertainty.  As a baseline scenario, a random test strategy was implemented as 

well, with tests selected at random from the system suite.    

Prior to the start of a set of trials, a failure deck was created based on the 

relative failure rates of modules within the system.  Similar to a deck of playing 

cards, modules appear in the failure deck based on their standing relative to the 

minimum failure rate in the system; thus, if the minimum failure rate across the 

system is 0.2, then a module with a failure rate of 0.6 will appear three times within 

this failure deck.  The same deck is employed across all trials to simulate the relative 

appearance of failures in a physical system. 

Prior to the start of a simulation, a test deck with one entry for each test is 

created (copied) from the system configuration.  Strategies that compute the next-

best (or next-worst) test operate on this deck.  As a test is executed, it is removed 

from the deck, insuring that no test in our system will be executed more than once 

per trial.  This also reduces the search space for the next test.  A new test deck must 

be generated with each trial. 

A single trial is processed in the following manner: 

1. All module bi are initialized from failure-rate data. 
2. A module is selected from the failure deck, and a defect is planted in this 

module. 
3. A test is chosen based on a simple strategy (best, random, worst). 
4. The test is applied to the system object. 
5. All affected bi are updated based on the outcome of (4). 
6. If we still have a test in the test deck, then we return to (3). 

Using a 2 GHz Intel processor, a simulation of 1,000 trials required on 

average about 2.5 minutes for a randomized configuration with 60 tests and 30 

modules.  For a larger system configuration with 100 tests and 50 modules, run-time 

averaged about 5 minutes for 1,000 trials.   In general, a ratio of 2:1 between tests 

and modules appeared to guarantee a correct diagnosis was obtainable with the 

random configuration of coverages between tests and modules constrained to no 

fewer than 2 and no more than 5 modules per test. 
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5.2 Results from Initial Experiments 
Over some number of trials (nominally 100 to 1,000), the module traces for 

each strategy were aggregated.   In these initial experiments, no stopping criteria 

were applied, and with the idealized scenario, the best-next strategy showed little 

improvement after 40 tests (out of 60) were executed (see Figure 5).  

   

 
 
Figure 5.  Mean diagnostic traces from 100 trials using best, random, and worst 
next-test strategies.  Both system entropy (bottom traces) and maximum probability 
(top traces) are depicted, with all 60 tests applied, though in practice we would likely 
stop sooner. 

 

Entropy variance (see Figure 6) for the best-next strategy shows a peak at 

about test 19, with the caveat that test 19 would be a different system object for 

each of the trials.  This peak is consistent with the reduction in steepness of descent 

in the best-next mean entropy trace (see Figure 5) and the increase of the maximum 

probability function to greater than 90%.   

The distribution of model probabilities from one of the best-next trials shows 

the evolution of a correct diagnosis (see Figures 7 and 8) as system testing unfolds.  



 

- 22 - 

Although solid lines are used to highlight this dynamic in Figures 7 and 8, the 

module probabilities are, in fact, discrete.  Early in testing, about test 5, the module 

probabilities seem unremarkable compared to the true state (see Figure 7); the best-

next strategy strongly identifies Module 2 as the defective candidate, though several 

other modules still keep the aggregate entropy relatively high (H = 0.40, see Figure 

7).   By test 25, however, Module 2 shows a relatively large bi = 0.84 with an overall 

aggregate entropy (H=0.25, see Figure 8).  Additional testing refines the individual 

module probabilities so that by test 30, a correct diagnosis appears evident (see 

Figure 8).   

 

 
 
Figure 6.  Diagnostic trace of variance in entropy from 100 trials using best, random, 
and worst next-test strategies, with all 60 tests applied. 
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Figure 7.  From a best-next test trial, module probabilities (bi, in green) are shown 
versus the true state (in red) after test 5 (top) and test 19 (bottom).  After test 5, 
H=0.64, and after test 19, H = 0.40.    
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Figure 8.  From the same best-next test trial as Figure 7, module probabilities (bi, in 
green) are shown versus the true state (in red) after test 25 (top) and test 30 
(bottom).  After test 25, H=0.25, and after test 30, H = 0.15. 
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6. Summary and Future Work 

In this study, we have developed a simple but effective framework to examine 

the testing of complex systems.  The idealized numerical experiments conducted in 

this study support the use of entropy reduction as an effective means to guide 

diagnostic testing, though these initial simulations can provide only simple insights.  

Real-world failure rates and coverages are needed to further investigate the 

usefulness of this approach for diagnosing physical systems. 

Additional avenues of research will open up with more realistic scenarios with 

which to exercise and develop this model.  For example, simulation studies could 

inform the design of test suites for new weapons systems.  By using available cost 

data for both tests and replaceable units, further research could help to develop or 

refine a diagnostic strategy to balance the cost of expensive, granular testing against 

the cost of routine maintenance.  When modeling a fielded system, real-time, failure-

rate data could be used to update the simulation and further improve fidelity. 

By using the flexible but precise language of our conceptual model, we can 

investigate the underlying probabilistic relationships of existing, complex systems.  

Although the original motivation for this work was the diagnostic testing of 

mechanical and electronic systems, with little modification classic regression testing 

scenarios could be modeled in simulation code to estimate the degree and cost of 

testing following system upgrades.  
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