
Calhoun: The NPS Institutional Archive

Reports and Technical Reports All Technical Reports Collection

2008-06

Use of Trusted Software Modules for

Emergency-Integrity Display

Levin, Timothy E.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/538

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36694279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NPS-CS-08-012

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

 Approved for public release; distribution is unlimited.

Prepared for NSF and DARPA

Use of Trusted Software Modules for

Emergency-Integrity Display

by

Timothy E. Levin, Thuy D. Nguyen, Paul C. Clark, Cynthia E. Irvine,
David J. Shifflett, Timothy M. Vidas

June 2008

This page left intentionally blank

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

Daniel T. Oliver Leonard A. Ferrari
President Executive Vice President and
 Provost

This report was prepared for and funded by National Science Foundation and the Defense
Advanced Research Projects Agency.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Timothy E. Levin
Research Associate Professor

Reviewed by: Released by:

________________________ ______________________________
Peter J. Denning Dan C. Boger
Department of Computer Science Interim Vice President and
 Dean of Research

This page left intentionally blank

REPORT DOCUMENTATION PAGE

Form approved

OMB No 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden
estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for
information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
 21 November 2007

3. REPORT TYPE AND DATES COVERED
 Research; 7/1/07 – 7/1/08

4. TITLE AND SUBTITLE

 Use of Trusted Software Modules for Emergency-Integrity Display

5. FUNDING

6. AUTHOR(S)

Timothy E. Levin, Thuy D. Nguyen, Paul C. Clark, Cynthia E. Irvine, P. David J.
Shifflett, Timothy M. Vidas

 Grant number: CNS-0430566
 and CNS-0430598

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Center for Information Systems Security Studies and Research (NPS CISR)
1411 Cunningham Rd., Monterey, CA 93943

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 NPS-CS-08-012

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

 National Science Foundation, 4201 Wilson Blvd. 1175 N. ArlingtonVA22230
DARPA, 3701 Fairfax Drive, Arlington, VA 22203

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

 Not applicable

11. SUPPLEMENTARY NOTES

The views expressed in this report are those of the authors and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

 Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words.)

This report provides summary of the interface, mechanisms and semantics for high integrity display of information in a secure computer
system, based on the use of a high assurance separation kernel and trusted software modules in both the application domain and the
trusted software domain.

14. SUBJECT TERMS

Operating systems: Separation Kernel; secure display; trusted software module; security; security
architecture

15. NUMBER OF
PAGES

 17

 16. PRICE CODE

17. SECURITY
CLASSIFICATION
 OF REPORT
 Unclassified

18. SECURITY
CLASSIFICATION
 OF THIS PAGE
 Unclassified

19. SECURITY CLASSIFICATION
 OF ABSTRACT
 Unclassified

20. LIMITATION OF
 ABSTRACT
 UU

NSN 7540-01-280-5800 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std 239-18

This page left intentionally blank

| Technical Report: NPS-CS-08-012

Trustworthy Commodity Computation and
Trustworthy Commodity Computation and
Communication

Use of Trusted Software Modules for
High Integrity Data Display

Timothy E. Levin, Thuy D. Nguyen, Paul C. Clark, Cynthia

E. Irvine, David J. Shifflett and Timothy M. Vidas

June, 2008

This material is based upon work supported by the National Science Foundation
under Grant No. CNS-0430566 with support from DARPA ATO. Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National
Science Foundation or of DARPA ATO.

Author Affiliations

Timothy E. Levin, Thuy D. Nguyen, Paul C. Clark, Cynthia E. Irvine, David J.
Shifflett and Timothy M. Vidas:

Naval Postgraduate School
Center for Information Systems Security Studies and Research
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

Abstract

This report provides summary of the interface, mechanisms and semantics for secure display of
information in a secure computer system based on the use of a high assurance separation kernel
and trusted software modules in both the application domain and the trusted software domain.

This page is intentionally blank.

NPS / CISR 1

Use of Trusted Application Modules for
High Assurance Data Display1

Timothy E. Levin, Thuy D. Nguyen, Paul C. Clark, Cynthia E. Irvine,
David J. Shifflett and Timothy M. Vidas

During emergencies, there may be a need for applications to have direct access to the TCB
interface in order to provide assurance that their output is securely displayed to the user. In the
SecureCore architecture, an SP-based trusted software module (TSM) provides a context for high
integrity code execution in the application domain, but requires underlying support for trusted
display. We describe a Trusted Application Display conduit between an application-level TSM
and the system display device that provides high assurance that when the submitted data is
displayed, it is done so correctly, and that preserves the confidentiality and certain integrity
properties of the data against attacks from the client OS and its applications.

As the data traverses through different software components, its integrity and confidentiality are
cryptographically protected by SP hardware mechanisms and the TML. However, availability
and context of the data depends on the TSM’s processing environment including the ability of
the TSM to execute without attacks on its code, data buffers, or communications to the TML.
Our analysis shows that the Trusted Application Display conduit can protect the confidentiality
of the data, as well as protect it from direct modification. With freshness validation included in
the message protocol, and TSM interfaces appropriately restricted from affecting message
display, the correct context of the data submitted to the TCB can be ensured. However the
conduit cannot ensure availability in the face of a misbehaving client OS or application. Before
describing the design of this capability, this report briefly reviews the SecureCore architecture,
including the management of devices and communication channels.

SecureCore Overview
The trusted computing base of the SecureCore transient trust architecture[5] is provided by the
SP processor[6][2], the Trusted Management Layer (TML), a Trusted Executive (TE) that
provides execution services for high integrity applications, and the Trusted Path Application
(TPA); see Figure 1.

1 This document describes an on-going research effort of the SecureCore project [4], and assumes readers are
somewhat familiar with the SP hardware [6] and SecureCore software architecture [5][1].

NPS / CISR 2

The SP processor provides tamper detection of trusted software modules (TSMs) and TSM-
designated in-cache data. Certain SP registers are available only to TSMs, which can use them
to store cryptographic keys. The DRK register is available only to TSMs, and only indirectly
through the sp_derive instruction, which hashes data with the DRK.

Figure 1. Transient Trust Architecture

The TML is composed of the Least Privilege Separation Kernel (LPSK) [8][1][12] and a trusted
security services layer (TSL). The LPSK controls all system resources, and exports a subset of
them for the use of OSes and other applications.

The TSL virtualizes certain LPSK resources and applies human readable labels to partitions. It is
also responsible for emergency state management, in which it establishes trusted communication
channels with the central authority, detects and verifies emergency signals from the central
authority, and ensures that the user can access the emergency partition only during an
emergency.

The TML provides a partitioned processing environment [13], much like a hypervisor, in which
a separate client OS in each partition can manage its own applications without interference from
other partitions. In this environment there are three types of partitions: trusted, emergency, and
normal.

The trusted partition hosts a minimal Trusted Executive (TE) that provides execution services for
high integrity applications, such as the Trusted Path Application. The secure attention key (SAK)
keystroke sequence allows users to invoke the Trusted Path Application (TPA). The LPSK
services the SAK interrupt and passes control to the TSL, which invokes the Trusted Path
Application in the trusted partition.

NPS / CISR 3

The emergency partition provides an isolated environment for processing of sensitive
information during emergencies; and normal partitions host commercial client OSes and
commercial applications for day-to day use.

The TML manages a small, reserved area of the screen, for display of system messages. The
messages must be short and non-graphical to accommodate the limited screen area and the
simplicity of mechanisms required of high assurance TCBs. The new Trusted Application
Display conduit, described below, uses this reserved area.

The TML exports both synchronous and asynchronous devices. Each exported device has two
labels associated with it: a read-class and a write class.[9] A device where both labels are equal
is a single-level device; a device for which the two labels are different is a multilevel device.

Management of Devices and Communication Channels

Device management is characterized in three ways. First, certain devices may be virtualized by
the TML for “concurrent”2 use by two or more partitions, which can have different security
levels. The TML presents the client OSes with a virtual hardware device, and prevents
undesirable interference between partitions, while the client operating systems (including the TE)
may simultaneously share the services of the physical device.

Depending on the functional requirements, a concurrent-use device can be multi-level, or single-
level (e.g., all partitions can read from a system low device, but if both reading and writing are
required by partitions at different sensitivity levels, a multilevel device is required).

Second, a device may be assigned solely to a particular partition, in which case a single-level
device at the level of the partition is usually used. For example, memory-mapped devices may be
used so that they interact with processes through dedicated memory regions. Here device
management is vectored by the LPSK to the client OS for its exclusive use.

Finally, devices can be allocated to one partition at a time, serially, in which case a multilevel
device is used that features a “current level” (and strict object remnant cleanup). Administrators
can change the current level within the device’s label range, such that the device effectively has a
“single level at a time.” Using this device abstraction, the TML supports I/O focus management
by allowing a given partition temporary exclusive access to the keyboard, mouse, and screen
(except for the reserved screen area).

The user can change focus via the TPA interface, which allocates the keyboard, mouse and
screen to a different partition. Partition multitasking is independent from focus changes, so while
keyboard and mouse input is vectored to the selected partition, all partitions can continue to
update their screen buffers. When the user changes focus, the TML first updates the screen with
the new partition’s screen buffer before passing control to the programs in the partition.

Both “serial” and “concurrent” forms of multilevel devices that support single-level partitions
appear to (the processes in) each partition as single level devices, since: (1) subjects in a given
partition can only read data from the device that is labeled at or below the level of that partition

2 Either via multitasking or through multi-core or multiple processor technology

NPS / CISR 4

(assuming the LPSK is configured to enforce typical MLS information flow rules); and (2) data
written to the device by those subjects is labeled by the TSL at the level of their partition. Note
that another form of multilevel device supports concurrent use by multilevel partitions, in which
case applications that write data to the device also must provide a label for each datum, and the
applications are trusted to apply the correct labels.

The system also supports a configuration with tiled windowing, so that output from partitions
with sensitivity levels dominated by the user’s current session level can be simultaneously
displayed to respective partition windows. For partitions with a level higher than the current
session level, the TSL will maintain their screen output until the user establishes a session at a
high enough level. Thus, instead of having to shut down activity at a particular session level to
make the device available at a different level, e.g. [10][11], all partitions can continue to execute
according to the predefined (multitasking) schedule.

Partitions may host network-capable client operating systems. The TML multiplexes
communications among its partitions and to external nodes while ensuring enforcement of the
system’s information flow policy. It associates implicit or explicit labels with information based
upon the properties of the communicating entities. It also provides support for the establishment
of secure communication channels, e.g. VPNs, with external nodes. For example, since network
communication protocols are bidirectional, in a partition-to-partition communication channel,
both partitions must be the same sensitivity level or, in the case of multilevel partitions, have
transmission and reception ranges commensurate with the intended MLS policy.

High Integrity Display of Data
The Trusted Application Display mechanism (conduit) is exported to applications in normal,
emergency and trusted partitions, and provides a simple way for information to be securely
displayed without the need for the user to invoke a trusted display program.

Figure 2 illustrates how the conduit can be configured for access by an application TSM in an
Emergency partition that interacts with a companion TSM in the TML. The TSM communicates
with a remote central authority (the Authority) through a channel that is encrypted with the SP
hardware-based Device Root Key (DRK).[6][2] The application TSM can invoke the available
services of the client OS or the TML – in particular it can access the TML’s trusted display
conduit.

Information is first received through a trusted channel managed by the TML (see Figure 2), and is
then passed via the client OS to the Comm App. The Comm App stores the information in buffer
1, and enters CEM mode as part of invoking the TSM (steps 1 through 3). The TSM reads and
decrypts the data using SP-protected keys (4 and 5), and then stores the clear text in SP-protected
memory using SP Secure_Store instructions, to prevent other applications from viewing or
modifying it. Cryptographic validation of data integrity is performed (the validation protocol is
outside the scope of this report) and if the validation fails, a resend of the message is requested,
or the TSM exits with an appropriate error message. The application TSM then invokes a TML
TSM module, through a TML call gate (6). The TML TSM reads the clear text using SP
Secure_Load and then uses regular store instructions to write the data to a TML buffer (buffer 2)
(7). The TML TSM then exits CEM mode (8) and invokes the TML’s Trusted Screen Handler,
which sends the data to the Trusted Screen Driver for display in the restricted display region,

NPS / CISR 5

labeling the data as appropriate (9,10). Finally, the TML TSM code re-enters CEM mode (11)
and returns execution control to the application-TSM (12), with a return value or similar
mechanism indicating the success or failure of the display operation.

Only certain partitions will be configured to have access to the Trusted Application Display
interface. Least privilege within a partition is provided in different ways: LPSK subject-resource
restrictions are used in partitions that utilize kernel-based processes; in the Emergency partition,
only TSMs can utilize the interface, as it vectors into another TSM.

The reserved area of the screen is divided into a system area and an application area, so that
messages from the TML and from applications can be displayed simultaneously. Where multiple
partitions have the capability to use the application portion of the reserved screen, they must
synchronize their use to avoid user confusion. For example, if an application from a high
sensitivity partition is accessing the reserved area, the TML cannot block a low sensitivity
application from writing to the reserved area, as a covert channel would result.

Figure 2. Trusted Application Display

NPS / CISR 6

Security Analysis
High assurance computer systems provide a trusted path for users to securely interact with the
trusted computing base (TCB), including a keyboard for user input and a display device for the
TCB to output information to the user. The TCB may also provide interfaces for programs to
write to a display device under its control such that there is high assurance that data written to the
interface is displayed to the user without modification or leakage to other programs. Such
assurance can be established through the program’s direct access to a securely designed TCB
interface, along with the ability of the TCB to protect itself. The Trusted Application Display
conduit provides such a direct interface. However, this type of arrangement does not necessarily
address the security of data – confidentiality, integrity, and availability – before it gets to the
TCB interface.

Components that can modify an object can lower its integrity value3 if they corrupt it. Given an
execution path of components through which an object is passed, the object’s integrity might be
lowered by any component in the path that might modify, create or delete it, or control such
operations. Even if a component does not modify the data directly, it may request that the
modification be done by another component. Since the requesting component might request the
wrong modification (e.g., in terms of related processing parameters), we consider that it might
lower the object’s integrity. Similarly, the availability of data is part of its integrity value in
some contexts (e.g., a jittery picture that results from uneven signal availability has low integrity
– or fidelity to the original). Even a high assurance computer system is powerless to protect the
integrity of data that can be modified by untrusted user applications.

A component may be trusted – and deemed trustworthy – to only modify objects as, if, and when
it is directed to do so. So, we say that the integrity of a modifiable object can be no higher than
the greatest lower bound of the integrity, or trustworthiness, of the components on an execution
path through which it is passed.[3] But, how trustworthy is a component? A component can be
evaluated to determine how well it conforms to its specification and is free of hidden functions
(here, “evaluated” means that the software is certified by a third party to have a level of
assurance commensurate with the integrity of the data it is assigned to handle). However,
components may depend on other components to provide functions, services, and environmental
assurances, so additionally, a component can be trustworthy only to the extent that the
components it depends on are trustworthy.[7] A key to this analysis is that the application TSM
does not depend on the untrusted client OS functionally, as it does not “call” the client OS.

In a separation kernel (or “hypervisor”) environment in which the separation kernel comprises
the TCB, the execution path can involve a remote computing environment and the internet (if the
data originates remotely), the TCB, the client OS, the program that writes directly to the TCB
interface, as well as other applications (e.g., the Comm App in Figure 2, or a user interface app if
the data originates with the local user). Additionally, applications that are not in the (intended)
data path can potentially affect the security of the data.

The security of remote processing and network transmission are outside of the scope of this
report, although technology for that security probably exists (e.g., through cryptographic

3 As opposed to its integrity label

NPS / CISR 7

protection of IP packets). We also assume that the data, as created, reflects the creator’s intent.
With respect to local components:

a) We assume that the TCB is validated to be correct and self-protecting.[12]

b) In the SecureCore architecture, the SP processor protects TSM applications at the cache-line
level: if they have been modified, the processor will not allow their execution. We assume
that the submitting program is a TSM and is, a priori, correct (e.g., has been completely
evaluated by a third party), and that if it executes, it does so securely (although, through no
fault of its own, it may not execute or may execute too slowly to preserve the value of time-
sensitive data).

This leaves only the client OS and its applications (including the Comm App) as components
that could undermine the security of the data to be displayed (a component could be natively
malicious or could have been corrupted so as to misbehave). The threats from misbehavior of
these components are:

• Blocking the data. In this category, we include delays that invalidate the data.

• Changing the data – direct modification of the data

• Changing the context of the data submission to the TCB, such that the intent of the sender
of the data is subverted. This includes corrupting related parameters, and replay of old
messages.

• Leaking the data to a different partition – i.e., to a lower sensitivity level

• Leaking the data to other components within the same partition – to components within
the same level that are not supposed to see the data according to the security policy
allocated to the client OS.

Table 1 shows a summary of the protection provided by the Trusted Application Display conduit,
in terms of the threats to the data from misbehavior of components before the program submits it
to the TCB. Items lettered “c” through “g” are discussed below; other items are discussed under
“a” and “b” above:

c) Block or Delay Data. The client OS and application components process the data before it is
passed to the application TSM. These components can potentially delete the TSM's buffer,
alter the buffer content so as cause the integrity check to fail, hog the CPU, insert previous
messages, kill the TSM, etc.

In the worst case, the message is never given to the application TSM because the components
refuse to process the data or a message that fails an integrity check cannot be replaced.4

4 A replaceable object can be made non-modifiable, in a sense, by signing or “sealing” it
cryptographically, and then discarding and replacing any instantiation that does not conform to its seal.
For example, the integrity of data in a virtual private network is ensured during its transit through
untrustworthy intermediary systems: modification and insertion of packets is detected, and TCP
guarantees that missing or discarded datagrams are resent. This is also related to previous research which

NPS / CISR 8

Table 1. Methods for Preventing Misbehavior of Components

 MISBEHAVING COMPONENT

THREATS
TO DATA

Client OS & Application
Components

Application TSM
Program

TML (TCB)

Block Data
(c) Efficient design of TSM;
Assured protection not
identified.

(b) A priori correct;
protected by SP and TML

(a) A priori correct;
self-protecting

Modify Data
(d) Data is signed by sender and
validated by TSM; data is
protected in CEM memory.

(b) A priori correct;
protected by SP and TML

(a) A priori correct;
self-protecting

Modify Data
Context

(e) Restricted TSM and TML
interfaces; Validate in-band data
freshness information

(b) A priori correct;
protected by SP and TML

(a) A priori correct;
self-protecting

Leak Across
Domains

(f) Sender encrypts data with
key material shared with TSM;
data is protected in CEM
memory; also LPSK will stop
information flow that violates
policy.

(b) A priori correct;
protected by SP and TML

(a) A priori correct;
self-protecting

Leak Within
Domain

(g) Sender encrypts data with
key material shared with TSM;
data is protected in CEM
memory

(b) A priori correct;
protected by SP and TML

(a) A priori correct;
self-protecting

Other misbehavior can result in a delay of the message, through slowed TSM processing or
by necessitating a resend of a corrupted message. For example, an attacker can invalidate the
TSM code integrity seal, necessitating a restart of the TSM, or can invalidate the message
CEM integrity seal while it is in CEM memory, or simply modify the buffer to invalidate the
application-level integrity seal.

If the message is not time-sensitive, delays are not relevant and we can assume that its
temporal and syntactic integrity are intact when received by the application TSM.
Otherwise, time-sensitive messages can be invalidated if the original message or its
replacement are not received and displayed by the TML within the message’s time-sensitivity
bounds.

Assuming a benign environment, the TSM must be able to process messages efficiently
enough to meet the time-sensitive requirements one would expect in an emergency-response
network. But, ultimately, if the OS or applications block or delay the data in the ways

enables a low confidentiality object to be sent into a high confidentiality untrusted domain and returned as
low information, only if the object’s cryptographic seal (including the low label) is intact.

NPS / CISR 9

described above, neither the TSM nor the underlying TML can prevent or mitigate such
activity.

d) Modify Data. This threat can be addressed. Data is signed by sender and validated by the
TSM. The keys for validation are protected by the TSM. TSM uses CEM memory to
cryptographically protect the data when it is being processed.

e) Modify Data Context. We identify two forms of data context modification that can invalidate
the integrity of the data: parameter corruption and message replay. Both of these data
context threats can be addressed. If any of the parameters involved with invoking the
application TSM or the TML TSM affect the content of the message to be displayed, and
those parameters could be distorted by the client OS or by other applications, then the
integrity of the displayed data could be compromised. For example, a parameter could call
for the substitution of certain words, or determine when to display the message. To minimize
these problems, we designed the interfaces to the application TSM and the TML TSM to
have no parameters that affect the message content.

If messages are intercepted, and resent in a different temporal context, they may have little
integrity. It is possible that a trusted communication channel could guarantee the freshness of
IP packets received by the TML, however, the client OS or applications could replay the
packets. To minimize the threat of replay, we require that the message itself has freshness
information that the application TSM or the user can validate.

f) Leak Across Domains. This threat has been addressed in our trusted display design, using SP
and LPSK security features. The sender encrypts data with key material shared with TSM.
The keying material is based on the DRK, which only the TSM can access. The data is
protected during processing in CEM memory.

LPSK will prevent any information flow between partitions that violates policy, e.g., write
downs are prohibited.

g) Leak Within Domain. This threat has been addressed in our trusted display design, using SP
security features. The sender encrypts data with key material shared with TSM. The keying
material is based on the DRK, which only the TSM can access. The data is protected during
processing in CEM memory.

In the emergency partition, the client OS is configured with a single process and a single data
segment, from which it creates and exports more granular resources. Therefore intra-
partition flows between these OS exported resources are not constrained by the LPSK policy,
as are leakages across domains.

Summary
This report presents an innovative high-level design to support secure display from an
application software module. The design of the Trusted Application Display utilizes both
hardware and software protection mechanisms to preserve data confidentiality and integrity.
This capability affords a high level of confidence that the data seen on the display device has not
been viewed by unauthorized subjects or tampered with by untrusted programs executing in the
application domain. Our analysis also shows that with freshness validation included in the

NPS / CISR 10

message protocol, and TSM interfaces appropriately restricted from affecting message display,
the correct context of the data submitted to the TCB can be ensured; but the Trusted Application
Display does not ensure availability in the face of misbehaving client OS or applications.

REFERENCES
[1] Paul C. Clark, Cynthia E. Irvine, Timothy E. Levin, Thuy D. Nguyen and Timothy M. Vidas,

SecureCore Software Architecture: Trusted Path Application (TPA) Requirements, NPS Technical
Report NPS-CS-07-001, Naval Postgraduate School, Monterey, CA, December 2007.

[2] Dwoskin, J. and Lee, R. “Hardware-rooted Trust for Secure Key Management and Transient Trust.”
CCS’07, October 2007, Alexandria, Virginia, USA

[3] Cynthia Irvine and Timothy Levin. “A Cautionary Note Regarding the Data Integrity Capacity of
Certain Secure Systems.” Proceedings of the working conference on integrity and internal control
IFIP, Brussels, Belgium. November 2001

[4] Irvine, C., Collaborative Research: SecureCore for Trustworthy Commodity Computing and
Communications, www.fastlane.nsf.gov, Award 0430566. 31 Mar. 2005.

[5] C. E. Irvine, T. E. Levin, P. C. Clark, and T. D. Nguyen, “A Security Architecture for Transient
Trust,” to appear in Proc. Computer Security Architecture Workshop, ACM, November 2008.

[6] R. Lee, P. Kwan, J. McGregor, J. Dowskin, and Z. Wang, “Architecture ror Protecting Critical
Secrets in Microprocessors,” in Proc. 32nd International Symposium on Computer Architecture,
(Madison, Wisconsin), pp. 2–13, IEEE Computer Society, June 2005.

[7] T. E. Levin and C. E. Irvine and T. V. Benzel and G. Bhaskara and P. C. Clark and T. D. Nguyen.
Design Principles and Guidelines for Security. Naval Postgraduate School NPS-CS-07-014
Monterey, CA November 2007

[8] T. E. Levin, C. E. Irvine, C. Weissman and T. D. Nguyen, “Analysis of Three Multilevel Security
Architectures.” in Proc. Computer Security Architecture Workshop, Fairfax, Virginia, USA
November 2007.

[9] T. F. Lunt, P. G. Neumann, D. E. Denning, R. R. Schell, M. Heckman, and W. R. Shockley, Secure
Distributed Data Views Security Policy and Interpretation for DMBS for a Class A1 DBMS, Tech.
Rep. RADC-TR-89-313, Vol I, Rome Air Development Center, Griffiss, Air Force Base, NY,
December 1989.

[10] National Computer Security Center, XTS- 300 Final Evaluation Report, Wang Federal Incorporated,
CSC-EPL- 92/003.B, July 11, 1995.

[11] National Computer Security Center, Gemini Trusted Network Processor Final Evaluation Report,
Report No. 34-94, June 28, 1995.

[12] National Information Assurance Partnership, U.S. Government Protection Profile for Separation
Kernels in Environments Requiring High Robustness. Version 1.03 ed., 29 June 2007.

[13] J. Rushby, “Design and Verification of Secure Systems,” in Proc. of the 8th ACM Symposium on
Operating Systems Principles, pp. 12–21, 1981.

11

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library, Code 013 1
Naval Postgraduate School
Monterey, CA 93943

3. Research Office 1
Naval Postgraduate School
Monterey, CA 93943

4. Paul C. Clark 2

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

5. Cynthia Irvine 2

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

6. Timothy Levin 2
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

7. Karl Levitt 1

National Science Foundation
4201 Wilson Blvd.
Arlington, VA 22230

8. Thuy Nguyen 2

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

9. David J. Shifflett 2
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

12

10. Timothy M. Vidas 2
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

	COVER
	blank copy 1
	SIGNPAGE
	blank copy 2
	298
	blank copy
	CISR-trustedScreenl-080825c
	DISTpage

