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Use of Trusted Application Modules for  
High Assurance Data Display1 

Timothy E. Levin, Thuy D. Nguyen, Paul C. Clark, Cynthia E. Irvine,  
David J. Shifflett and Timothy M. Vidas 

 

During emergencies, there may be a need for applications to have direct access to the TCB 
interface in order to provide assurance that their output is securely displayed to the user. In the 
SecureCore architecture, an SP-based trusted software module (TSM) provides a context for high 
integrity code execution in the application domain, but requires underlying support for trusted 
display.  We describe a Trusted Application Display conduit between an application-level TSM 
and the system display device that provides high assurance that when the submitted data is 
displayed, it is done so correctly, and that preserves the confidentiality and certain integrity 
properties of the data against attacks from the client OS and its applications.  

As the data traverses through different software components, its integrity and confidentiality are 
cryptographically protected by SP hardware mechanisms and the TML.  However, availability 
and context of the data depends on the TSM’s processing environment including the ability of 
the TSM to execute without attacks on its code, data buffers, or communications to the TML. 
Our analysis shows that the Trusted Application Display conduit can protect the confidentiality 
of the data, as well as protect it from direct modification. With freshness validation included in 
the message protocol, and TSM interfaces appropriately restricted from affecting message 
display, the correct context of the data submitted to the TCB can be ensured.  However the 
conduit cannot ensure availability in the face of a misbehaving client OS or application. Before 
describing the design of this capability, this report briefly reviews the SecureCore architecture, 
including the management of devices and communication channels. 

SecureCore Overview 
The trusted computing base of the SecureCore transient trust architecture[5] is provided by the 
SP processor[6][2], the Trusted Management Layer (TML), a Trusted Executive (TE) that 
provides execution services for high integrity applications, and the Trusted Path Application 
(TPA); see Figure 1. 

                                                
1 This document describes an on-going research effort of the SecureCore project [4], and assumes readers are 
somewhat familiar with the SP hardware [6] and SecureCore software architecture [5][1]. 
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The SP processor provides tamper detection of trusted software modules (TSMs) and TSM-
designated in-cache data.  Certain SP registers are available only to TSMs, which can use them 
to store cryptographic keys.  The DRK register is available only to TSMs, and only indirectly 
through the sp_derive instruction, which hashes data with the DRK.  

 

Figure 1. Transient Trust Architecture 

The TML is composed of the Least Privilege Separation Kernel (LPSK) [8][1][12] and a trusted 
security services layer (TSL). The LPSK controls all system resources, and exports a subset of 
them for the use of OSes and other applications.  

The TSL virtualizes certain LPSK resources and applies human readable labels to partitions. It is 
also responsible for emergency state management, in which it establishes trusted communication 
channels with the central authority, detects and verifies emergency signals from the central 
authority, and ensures that the user can access the emergency partition only during an 
emergency.   

The TML provides a partitioned processing environment [13], much like a hypervisor, in which 
a separate client OS in each partition can manage its own applications without interference from 
other partitions. In this environment there are three types of partitions: trusted, emergency, and 
normal. 

The trusted partition hosts a minimal Trusted Executive (TE) that provides execution services for 
high integrity applications, such as the Trusted Path Application. The secure attention key (SAK) 
keystroke sequence allows users to invoke the Trusted Path Application (TPA). The LPSK 
services the SAK interrupt and passes control to the TSL, which invokes the Trusted Path 
Application in the trusted partition.  
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The emergency partition provides an isolated environment for processing of sensitive 
information during emergencies; and normal partitions host commercial client OSes and 
commercial applications for day-to day use. 

The TML manages a small, reserved area of the screen, for display of system messages. The 
messages must be short and non-graphical to accommodate the limited screen area and the 
simplicity of mechanisms required of high assurance TCBs.  The new Trusted Application 
Display conduit, described below, uses this reserved area.  

The TML exports both synchronous and asynchronous devices. Each exported device has two 
labels associated with it: a read-class and a write class.[9]  A device where both labels are equal 
is a single-level device; a device for which the two labels are different is a multilevel device.  

Management of Devices and Communication Channels  

Device management is characterized in three ways.  First, certain devices may be virtualized by 
the TML for “concurrent”2 use by two or more partitions, which can have different security 
levels. The TML presents the client OSes with a virtual hardware device, and prevents 
undesirable interference between partitions, while the client operating systems (including the TE) 
may simultaneously share the services of the physical device.   

Depending on the functional requirements, a concurrent-use device can be multi-level, or single-
level (e.g., all partitions can read from a system low device, but if both reading and writing are 
required by partitions at different sensitivity levels, a multilevel device is required).   

Second, a device may be assigned solely to a particular partition, in which case a single-level 
device at the level of the partition is usually used. For example, memory-mapped devices may be 
used so that they interact with processes through dedicated memory regions. Here device 
management is vectored by the LPSK to the client OS for its exclusive use. 

Finally, devices can be allocated to one partition at a time, serially, in which case a multilevel 
device is used that features a “current level” (and strict object remnant cleanup). Administrators 
can change the current level within the device’s label range, such that the device effectively has a 
“single level at a time.”  Using this device abstraction, the TML supports I/O focus management 
by allowing a given partition temporary exclusive access to the keyboard, mouse, and screen 
(except for the reserved screen area).  

The user can change focus via the TPA interface, which allocates the keyboard, mouse and 
screen to a different partition. Partition multitasking is independent from focus changes, so while 
keyboard and mouse input is vectored to the selected partition, all partitions can continue to 
update their screen buffers.  When the user changes focus, the TML first updates the screen with 
the new partition’s screen buffer before passing control to the programs in the partition. 

Both “serial” and “concurrent” forms of multilevel devices that support single-level partitions 
appear to (the processes in) each partition as single level devices, since: (1) subjects in a given 
partition can only read data from the device that is labeled at or below the level of that partition 

                                                
2 Either via multitasking or through multi-core or multiple processor technology 
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(assuming the LPSK is configured to enforce typical MLS information flow rules); and (2) data 
written to the device by those subjects is labeled by the TSL at the level of their partition.  Note 
that another form of multilevel device supports concurrent use by multilevel partitions, in which 
case applications that write data to the device also must provide a label for each datum, and the 
applications are trusted to apply the correct labels. 

The system also supports a configuration with tiled windowing, so that output from partitions 
with sensitivity levels dominated by the user’s current session level can be simultaneously 
displayed to respective partition windows.  For partitions with a level higher than the current 
session level, the TSL will maintain their screen output until the user establishes a session at a 
high enough level. Thus, instead of having to shut down activity at a particular session level to 
make the device available at a different level, e.g. [10][11], all partitions can continue to execute 
according to the predefined (multitasking) schedule.  

Partitions may host network-capable client operating systems. The TML multiplexes 
communications among its partitions and to external nodes while ensuring enforcement of the 
system’s information flow policy. It associates implicit or explicit labels with information based 
upon the properties of the communicating entities. It also provides support for the establishment 
of secure communication channels, e.g. VPNs, with external nodes. For example, since network 
communication protocols are bidirectional, in a partition-to-partition communication channel, 
both partitions must be the same sensitivity level or, in the case of multilevel partitions, have 
transmission and reception ranges commensurate with the intended MLS policy.  

High Integrity Display of Data 
The Trusted Application Display mechanism (conduit) is exported to applications in normal, 
emergency and trusted partitions, and provides a simple way for information to be securely 
displayed without the need for the user to invoke a trusted display program.  

Figure 2 illustrates how the conduit can be configured for access by an application TSM in an 
Emergency partition that interacts with a companion TSM in the TML. The TSM communicates 
with a remote central authority (the Authority) through a channel that is encrypted with the SP 
hardware-based Device Root Key (DRK).[6][2]  The application TSM can invoke the available 
services of the client OS or the TML – in particular it can access the TML’s trusted display 
conduit. 

Information is first received through a trusted channel managed by the TML (see Figure 2), and is 
then passed via the client OS to the Comm App.  The Comm App stores the information in buffer 
1, and enters CEM mode as part of invoking the TSM (steps 1 through 3). The TSM reads and 
decrypts the data using SP-protected keys (4 and 5), and then stores the clear text in SP-protected 
memory using SP Secure_Store instructions, to prevent other applications from viewing or 
modifying it. Cryptographic validation of data integrity is performed (the validation protocol is 
outside the scope of this report) and if the validation fails, a resend of the message is requested, 
or the TSM exits with an appropriate error message. The application TSM then invokes a TML 
TSM module, through a TML call gate (6).  The TML TSM reads the clear text using SP 
Secure_Load and then uses regular store instructions to write the data to a TML buffer (buffer 2) 
(7). The TML TSM then exits CEM mode (8) and invokes the TML’s Trusted Screen Handler, 
which sends the data to the Trusted Screen Driver for display in the restricted display region, 
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labeling the data as appropriate (9,10). Finally, the TML TSM code re-enters CEM mode (11) 
and returns execution control to the application-TSM (12), with a return value or similar 
mechanism indicating the success or failure of the display operation. 

Only certain partitions will be configured to have access to the Trusted Application Display 
interface. Least privilege within a partition is provided in different ways: LPSK subject-resource 
restrictions are used in partitions that utilize kernel-based processes; in the Emergency partition, 
only TSMs can utilize the interface, as it vectors into another TSM.    

The reserved area of the screen is divided into a system area and an application area, so that 
messages from the TML and from applications can be displayed simultaneously. Where multiple 
partitions have the capability to use the application portion of the reserved screen, they must 
synchronize their use to avoid user confusion. For example, if an application from a high 
sensitivity partition is accessing the reserved area, the TML cannot block a low sensitivity 
application from writing to the reserved area, as a covert channel would result.  

 
Figure 2. Trusted Application Display 
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Security Analysis  
High assurance computer systems provide a trusted path for users to securely interact with the 
trusted computing base (TCB), including a keyboard for user input and a display device for the 
TCB to output information to the user.  The TCB may also provide interfaces for programs to 
write to a display device under its control such that there is high assurance that data written to the 
interface is displayed to the user without modification or leakage to other programs.  Such 
assurance can be established through the program’s direct access to a securely designed TCB 
interface, along with the ability of the TCB to protect itself.  The Trusted Application Display 
conduit provides such a direct interface.  However, this type of arrangement does not necessarily 
address the security of data – confidentiality, integrity, and availability – before it gets to the 
TCB interface.   

Components that can modify an object can lower its integrity value3 if they corrupt it. Given an 
execution path of components through which an object is passed, the object’s integrity might be 
lowered by any component in the path that might modify, create or delete it, or control such 
operations.  Even if a component does not modify the data directly, it may request that the 
modification be done by another component.  Since the requesting component might request the 
wrong modification (e.g., in terms of related processing parameters), we consider that it might 
lower the object’s integrity.  Similarly, the availability of data is part of its integrity value in 
some contexts (e.g., a jittery picture that results from uneven signal availability has low integrity 
– or fidelity to the original).  Even a high assurance computer system is powerless to protect the 
integrity of data that can be modified by untrusted user applications.  

A component may be trusted – and deemed trustworthy – to only modify objects as, if, and when 
it is directed to do so.  So, we say that the integrity of a modifiable object can be no higher than 
the greatest lower bound of the integrity, or trustworthiness, of the components on an execution 
path through which it is passed.[3] But, how trustworthy is a component? A component can be 
evaluated to determine how well it conforms to its specification and is free of hidden functions 
(here, “evaluated” means that the software is certified by a third party to have a level of 
assurance commensurate with the integrity of the data it is assigned to handle).  However, 
components may depend on other components to provide functions, services, and environmental 
assurances, so additionally, a component can be trustworthy only to the extent that the 
components it depends on are trustworthy.[7]  A key to this analysis is that the application TSM 
does not depend on the untrusted client OS functionally, as it does not “call” the client OS. 

In a separation kernel (or “hypervisor”) environment in which the separation kernel comprises 
the TCB, the execution path can involve a remote computing environment and the internet (if the 
data originates remotely), the TCB, the client OS, the program that writes directly to the TCB 
interface, as well as other applications (e.g., the Comm App in Figure 2, or a user interface app if 
the data originates with the local user).  Additionally, applications that are not in the (intended) 
data path can potentially affect the security of the data. 

The security of remote processing and network transmission are outside of the scope of this 
report, although technology for that security probably exists (e.g., through cryptographic 

                                                
3 As opposed to its integrity label 
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protection of IP packets).  We also assume that the data, as created, reflects the creator’s intent.  
With respect to local components: 

a) We assume that the TCB is validated to be correct and self-protecting.[12]   

b) In the SecureCore architecture, the SP processor protects TSM applications at the cache-line 
level: if they have been modified, the processor will not allow their execution. We assume 
that the submitting program is a TSM and is, a priori, correct (e.g., has been completely 
evaluated by a third party), and that if it executes, it does so securely (although, through no 
fault of its own, it may not execute or may execute too slowly to preserve the value of time-
sensitive data).  

This leaves only the client OS and its applications (including the Comm App) as components 
that could undermine the security of the data to be displayed (a component could be natively 
malicious or could have been corrupted so as to misbehave). The threats from misbehavior of 
these components are:  

• Blocking the data.  In this category, we include delays that invalidate the data. 

• Changing the data – direct modification of the data 

• Changing the context of the data submission to the TCB, such that the intent of the sender 
of the data is subverted.  This includes corrupting related parameters, and replay of old 
messages. 

• Leaking the data to a different partition – i.e., to a lower sensitivity level 

• Leaking the data to other components within the same partition – to components within 
the same level that are not supposed to see the data according to the security policy 
allocated to the client OS. 

Table 1 shows a summary of the protection provided by the Trusted Application Display conduit, 
in terms of the threats to the data from misbehavior of components before the program submits it 
to the TCB.  Items lettered “c” through “g” are discussed below; other items are discussed under 
“a” and “b” above: 

c) Block or Delay Data. The client OS and application components process the data before it is 
passed to the application TSM.  These components can potentially delete the TSM's buffer, 
alter the buffer content so as cause the integrity check to fail, hog the CPU, insert previous 
messages, kill the TSM, etc.   

In the worst case, the message is never given to the application TSM because the components 
refuse to process the data or a message that fails an integrity check cannot be replaced.4  

                                                
4 A replaceable object can be made non-modifiable, in a sense, by signing or “sealing” it 
cryptographically, and then discarding and replacing any instantiation that does not conform to its seal.  
For example, the integrity of data in a virtual private network is ensured during its transit through 
untrustworthy intermediary systems: modification and insertion of packets is detected, and TCP 
guarantees that missing or discarded datagrams are resent. This is also related to previous research which 
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Table 1. Methods for Preventing Misbehavior of Components 

 MISBEHAVING COMPONENT 

THREATS 
TO DATA 

Client OS & Application 
Components 

Application TSM 
Program 

TML (TCB) 

Block Data 
(c) Efficient design of TSM; 
Assured protection not 
identified.  

(b) A priori correct; 
protected by SP and TML  

(a) A priori correct; 
self-protecting 

Modify Data 
(d) Data is signed by sender and 
validated by TSM; data is 
protected in CEM memory. 

(b) A priori correct; 
protected by SP and TML  

(a) A priori correct; 
self-protecting 

Modify Data 
Context 

(e) Restricted TSM and TML 
interfaces; Validate in-band data 
freshness information 

(b) A priori correct; 
protected by SP and TML  

(a) A priori correct; 
self-protecting 

Leak Across 
Domains 

(f) Sender encrypts data with 
key material shared with TSM; 
data is protected in CEM 
memory; also LPSK will stop 
information flow that violates 
policy. 

(b) A priori correct; 
protected by SP and TML  

(a) A priori correct; 
self-protecting 

Leak Within 
Domain 

(g) Sender encrypts data with 
key material shared with TSM; 
data is protected in CEM 
memory 

(b) A priori correct; 
protected by SP and TML  

(a) A priori correct; 
self-protecting 

 

Other misbehavior can result in a delay of the message, through slowed TSM processing or 
by necessitating a resend of a corrupted message. For example, an attacker can invalidate the 
TSM code integrity seal, necessitating a restart of the TSM, or can invalidate the message 
CEM integrity seal while it is in CEM memory, or simply modify the buffer to invalidate the 
application-level integrity seal.    

If the message is not time-sensitive, delays are not relevant and we can assume that its 
temporal and syntactic integrity are intact when received by the application TSM.  
Otherwise, time-sensitive messages can be invalidated if the original message or its 
replacement are not received and displayed by the TML within the message’s time-sensitivity 
bounds.   

Assuming a benign environment, the TSM must be able to process messages efficiently 
enough to meet the time-sensitive requirements one would expect in an emergency-response 
network. But, ultimately, if the OS or applications block or delay the data in the ways 

                                                
enables a low confidentiality object to be sent into a high confidentiality untrusted domain and returned as 
low information, only if the object’s cryptographic seal (including the low label) is intact.  
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described above, neither the TSM nor the underlying TML can prevent or mitigate such 
activity. 

d) Modify Data. This threat can be addressed. Data is signed by sender and validated by the 
TSM.  The keys for validation are protected by the TSM.  TSM uses CEM memory to 
cryptographically protect the data when it is being processed. 

e) Modify Data Context. We identify two forms of data context modification that can invalidate 
the integrity of the data: parameter corruption and message replay.  Both of these data 
context threats can be addressed.  If any of the parameters involved with invoking the 
application TSM or the TML TSM affect the content of the message to be displayed, and 
those parameters could be distorted by the client OS or by other applications, then the 
integrity of the displayed data could be compromised. For example, a parameter could call 
for the substitution of certain words, or determine when to display the message. To minimize 
these problems, we designed the interfaces to the application TSM and the TML TSM to 
have no parameters that affect the message content. 

If messages are intercepted, and resent in a different temporal context, they may have little 
integrity. It is possible that a trusted communication channel could guarantee the freshness of 
IP packets received by the TML, however, the client OS or applications could replay the 
packets.  To minimize the threat of replay, we require that the message itself has freshness 
information that the application TSM or the user can validate.   

f) Leak Across Domains. This threat has been addressed in our trusted display design, using SP 
and LPSK security features. The sender encrypts data with key material shared with TSM.  
The keying material is based on the DRK, which only the TSM can access.  The data is 
protected during processing in CEM memory.   

LPSK will prevent any information flow between partitions that violates policy, e.g., write 
downs are prohibited. 

g) Leak Within Domain. This threat has been addressed in our trusted display design, using SP 
security features. The sender encrypts data with key material shared with TSM.  The keying 
material is based on the DRK, which only the TSM can access.  The data is protected during 
processing in CEM memory.   

In the emergency partition, the client OS is configured with a single process and a single data 
segment, from which it creates and exports more granular resources.  Therefore intra-
partition flows between these OS exported resources are not constrained by the LPSK policy, 
as are leakages across domains. 

Summary 
This report presents an innovative high-level design to support secure display from an 
application software module.  The design of the Trusted Application Display utilizes both 
hardware and software protection mechanisms to preserve data confidentiality and integrity.  
This capability affords a high level of confidence that the data seen on the display device has not 
been viewed by unauthorized subjects or tampered with by untrusted programs executing in the 
application domain. Our analysis also shows that with freshness validation included in the 
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message protocol, and TSM interfaces appropriately restricted from affecting message display, 
the correct context of the data submitted to the TCB can be ensured; but the Trusted Application 
Display does not ensure availability in the face of misbehaving client OS or applications. 

REFERENCES 
[1] Paul C. Clark, Cynthia E. Irvine, Timothy E. Levin, Thuy D. Nguyen and Timothy M. Vidas, 

SecureCore Software Architecture: Trusted Path Application (TPA) Requirements, NPS Technical 
Report NPS-CS-07-001, Naval Postgraduate School, Monterey, CA, December 2007. 

[2] Dwoskin, J. and Lee, R. “Hardware-rooted Trust for Secure Key Management and Transient Trust.” 
CCS’07, October 2007, Alexandria, Virginia, USA 

[3] Cynthia Irvine and Timothy Levin. “A Cautionary Note Regarding the Data Integrity Capacity of 
Certain Secure Systems.” Proceedings of the working conference on integrity and internal control 
IFIP, Brussels, Belgium. November 2001 

[4] Irvine, C., Collaborative Research: SecureCore for Trustworthy Commodity Computing and 
Communications, www.fastlane.nsf.gov, Award 0430566. 31 Mar. 2005. 

[5] C. E. Irvine, T. E. Levin, P. C. Clark, and T. D. Nguyen, “A Security Architecture for Transient 
Trust,” to appear in Proc. Computer Security Architecture Workshop, ACM, November 2008. 

[6] R. Lee, P. Kwan, J. McGregor, J. Dowskin, and Z. Wang, “Architecture ror Protecting Critical 
Secrets in Microprocessors,” in Proc. 32nd International Symposium on Computer Architecture, 
(Madison, Wisconsin), pp. 2–13, IEEE Computer Society, June 2005. 

[7] T. E. Levin and C. E. Irvine and T. V. Benzel and G. Bhaskara and P. C. Clark and T. D. Nguyen. 
Design Principles and Guidelines for Security. Naval Postgraduate School NPS-CS-07-014 
Monterey, CA November 2007  

[8] T. E. Levin, C. E. Irvine, C. Weissman and T. D. Nguyen, “Analysis of Three Multilevel Security 
Architectures.” in Proc. Computer Security Architecture Workshop, Fairfax, Virginia, USA 
November 2007.  

[9] T. F. Lunt, P. G. Neumann, D. E. Denning, R. R. Schell, M. Heckman, and W. R. Shockley, Secure 
Distributed Data Views Security Policy and Interpretation for DMBS for a Class A1 DBMS, Tech. 
Rep. RADC-TR-89-313, Vol I, Rome Air Development Center, Griffiss, Air Force Base, NY, 
December 1989.  

[10] National Computer Security Center, XTS- 300 Final Evaluation Report, Wang Federal Incorporated, 
CSC-EPL- 92/003.B, July 11, 1995.  

[11] National Computer Security Center, Gemini Trusted Network Processor Final Evaluation Report, 
Report No. 34-94, June 28, 1995.  

[12] National Information Assurance Partnership, U.S. Government Protection Profile for Separation 
Kernels in Environments Requiring High Robustness. Version 1.03 ed., 29 June 2007. 

[13] J. Rushby, “Design and Verification of Secure Systems,” in Proc. of the 8th ACM Symposium on 
Operating Systems Principles, pp. 12–21, 1981. 



 

 
11 

INITIAL DISTRIBUTION LIST 
 
 

1. Defense Technical Information Center     2 
8725 John J. Kingman Rd., STE 0944 
Ft. Belvoir, VA  22060-6218 
 

2. Dudley Knox Library, Code 013      1    
Naval Postgraduate School 
Monterey, CA 93943 
 

3. Research Office        1 
Naval Postgraduate School 
Monterey, CA 93943 

 
4. Paul C. Clark        2 

Department of Computer Science  
Naval Postgraduate School 
Monterey, CA   93943 

 
5. Cynthia Irvine        2 

Department of Computer Science  
Naval Postgraduate School 
Monterey, CA   93943 
 

6. Timothy Levin        2 
Department of Computer Science  
Naval Postgraduate School 
Monterey, CA   93943 

 
7. Karl Levitt         1 

National Science Foundation   
4201 Wilson Blvd.  
Arlington, VA   22230 

 
8. Thuy Nguyen        2 

Department of Computer Science  
Naval Postgraduate School 
Monterey, CA   93943 
 

9. David J. Shifflett        2 
Department of Computer Science  
Naval Postgraduate School 
Monterey, CA   93943 
 



 

 
12 

10. Timothy M. Vidas        2 
Department of Computer Science  
Naval Postgraduate School 
Monterey, CA   93943 


	COVER
	blank copy 1
	SIGNPAGE
	blank copy 2
	298
	blank copy
	CISR-trustedScreenl-080825c
	DISTpage

