
Calhoun: The NPS Institutional Archive

Reports and Technical Reports All Technical Reports Collection

2007-09

A framework for computer-aided validation

Michael, James Bret

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/525

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36694266?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NPS-CS-07-010

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

 Approved for public release; distribution is unlimited

 Prepared for: NASA IV&V Facility
 100 University Drive
 Fairmont, WV 26554

A Framework for Computer-aided Validation

By

D. Drusinsky, J. B. Michael, and M. Shing

September 2007

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

Daniel T. Oliver Leonard A. Ferrari
President Provost

This report was prepared for and funded by the NASA IV&V Facility.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Man-Tak Shing
Associate Professor of Computer Science
Naval Postgraduate School

Reviewed by: Released by:

________________________ _______________________
Peter J. Denning, Chairman Dan C. Boger
Department of Computer Science Interim Associate Provost and
 Dean of Research

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2007

3. REPORT TYPE AND DATES COVERED
Technical Report

4. TITLE AND SUBTITLE: Title (Mix case letters)
A Framework for Computer-aided Validation

6. AUTHOR(S)
D. Drusinsky, J.B. Michael, and M. Shing

5. FUNDING NUMBERS

NNG07LD01I

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER NPS-CS-07-010

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
NASA IV&V Facility, 100 University Drive, Fairmont, WV 26554

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this report are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This paper presents a framework to incorporate computer-based validation techniques to the independent validation
and verification (IV&V) of software systems. The framework allows the IV&V team to capture its own understanding
of the problem and the expected behavior of any proposed system for solving the problem via an executable system
reference model, which uses formal assertions to specify mission- and safety-critical behaviors. The framework uses
execution-based model checking to validate the correctness of the assertions and to verify the correctness and
adequacy of the system under test.

15. NUMBER OF
PAGES

22

14. SUBJECT TERMS
Validation and verification, formal methods, model checking, runtime verification

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

1. Introduction

According to the IEEE Std. 1012-2004 [1],

the validation process provides evidence whether the software and its
associated products and processes
1) Satisfy system requirements allocated to software at the end of

each life cycle activity;
2) Solve the right problem (e.g., correctly model physical laws,

implement business rules, use the proper system assumptions);
3) Satisfy intended use and user needs.

In short, validation is an attempt to ensure that the right product is built, that is,

the product fulfills its specific intended purpose. However, the current IEEE Standard for
Software V&V [1], the IEEE Guide for Developing System Requirements Specifications
[2] and the IEEE Standard Glossary of Software Engineering Terminology [3] all define
validation as “the process of evaluating a system or component during or at the end of the
development process to determine whether a system or component satisfies specified
requirements,” and verification as “the process of evaluating a system or component to
determine whether a system of a given development phase satisfies the conditions
imposed at the start of that phase.” These definitions give rise to a lot of computer-based
validation and verification tools for checking the correctness of a target system or
component against a formal model that is derived from the natural language
requirements, and the consistency and completeness of the models, without ensuring that
the developer understands the requirements and that the formal models correctly match
the developer’s cognitive intent of the requirements.

It is important for the independent validation and verification (IV&V) team to

…formulate its own understanding of the problem and how the proposed
system is solving the problem … [because] technical independence (“fresh
viewpoint”) is an important method to detect subtle errors overlooked by
those too close to the solution. [1]

The IV&V team’s independent requirements effort should develop a description of the
necessary attributes, characteristics, and qualities of any system developed to solve the
problem and satisfy the intended use and user needs. The IV&V team must ensure that
their cognitive understanding of the problem and the requirements for any system solving
the problem are correct before performing IV&V on developer-produced systems.

In order to use computer-based V&V technology, the IV&V team needs to

develop formal, executable representations of the system properties. These properties can
be expressed as a set of desired system behaviors, which in turn can be divided into the
following two classes:

 2

(1) Logical behavior - This class describes the cause and effect of a computation,
typically represented as functional requirements of a system.

(2) Sequencing behavior – This class describes the behaviors that consist of sequences of

events, conditions and constraints on data values, and timing. In its vanilla form,
sequencing behavior specifies sets of legal (or illegal) sequences, such as the
following automotive body-logic requirement:

Once engine is turned off, compartment lights must be on until driver door is
opened.

On top of pure sequencing, this kind of behavior can specify two types of constraints:

(a) Timing constraints – describe the timely start and/or termination of successful
computations at a specific point of time, such as the deadline of a periodic
computation or the maximum response time of an event handler.

(b) Time-series constraints – describe the timely execution of a sequence of data
values within a specific duration of time. For example,

Whenever the track count (cnt) Average Arrival Rate (ART) exceeds 80% of
the MAX_COUNT_PER_MIN, cnt ART must be reduced back to 50% of the
MAX_COUNT_PER_MIN within 2 minutes and cnt ART must remain below
60% of the MAX_COUNT_PER_MIN for at least 10 minutes.

This paper presents a framework to incorporate advanced computer-aided

validation techniques to the IV&V of software systems. The framework allows the IV&V
team to capture its own understanding of the problem and the expected behavior of any
proposed system for solving the problem via an executable system reference model. For
the rest of this paper, we shall use the term “developer-generated requirements” to mean
the requirements artifacts produced by the developer of a system (which include both
functional and non-functional requirements), and use the term “System Reference
Model” to denote the artifacts developed by the IV&V team’s own requirements effort.

2. Creation and Validation of the System Reference Models

In this paper, we advocate the use of a system reference model (SRM) to capture

the IV&V team’s understanding of the problem. A SRM is made up of a set of use cases,
Unified Modeling Language (UML) artifacts (e.g., activity diagrams, sequence diagrams,
and object class diagrams), and a set of formal assertions to describe precisely the
necessary behaviors to satisfy system goals (i.e., to solve the problem) with respect to:
(a) what the system should do, (b) what the system should not do, and (c) how the system
should respond under non-nominal circumstances.

 3

2.1 The Use Cases and UML Artifacts of the System Reference Model

The starting point of both understanding and documenting system behaviors is to

identify the high-level use cases (and use case scenarios) from the stakeholder’s input,
which could be in the form of mission statements, user expectations, and operation
concepts (and other concept-level documents). The use cases help the system analysts
understand the problems to be solved and the objectives to be accomplished by the
perceived system(s). The high-level use cases are goal-oriented (instead of function-
oriented), and typically are used to describe the workflow of a business (or operation)
process instead of interactions among system components. Mapping the scenarios of the
use cases to activity diagrams helps both highlight the assignment of responsibilities and
the interdependencies among the different components (of an organization or system).

For the purpose of the IV&V of software systems, the high-level use cases must

be reified into mission threads (i.e., detailed use cases) that capture the interactions
among the component systems (or sub-systems). Mapping the detailed use cases to
sequence diagrams helps highlight the system events and the corresponding responses to
be exhibited by the system. In addition to capturing interactions, the analysts need to
record all relevant system attributes and constraints that they discover as they refine the
use cases. A use case typically describes what the system should do. However, the
analysts may need to develop misuse cases [4] to capture what the system should not do.

Concurrent to the development of use cases (and their scenarios), and activity and

sequence diagrams, the analysts must also develop a conceptual model (in the form of an
object class diagram) to capture the essential concepts and manage the namespace of the
problem.

2.2 The Formal Assertions of the System Reference Model

IV&V traditionally relies on manual examination of software requirements and

design artifacts, manual and tool-based code analysis, and the systematic or random
independent testing of target code. Most of these techniques are ineffective for validating
the correctness of the developer’s cognitive understanding of the requirements.
Moreover, as software-intensive systems become increasingly complex, manual IV&V
techniques are inadequate for locating the subtle errors in the software. For example,
there are intricate and abstruse sequencing behaviors that are only observable at runtime
and at such a fine level of granularity of time that human intervention at runtime is not
practical. Software automation holds the key to the validation and verification of these
types of system behaviors, and formal specification of system behaviors is the enabling
factor for software automation.

In [5], we classify formal behavioral specifications into two categories –

assertion- and model-oriented specifications.

 4

With assertion-oriented specifications, high-level requirements are decomposed

into more precise requirements that are mapped one-to-one to formal assertions. For
example, we may start with a high-level requirement

R1. The track processing system can only handle a workload not exceeding 80%
of its maximum load capacity at runtime.

and derive the lower level requirement

R1.1 Whenever the track count (cnt) Average Arrival Rate (ART) exceeds 80%
of the MAX_COUNT_PER_MIN, cnt ART must be reduced back to 50% of the
MAX_COUNT_PER_MIN within 2 minutes and cnt ART must remain below
60% of the MAX_COUNT_PER_MIN for at least 10 minutes.

The requirement R1.1 will, in turn, be mapped to a formal assertion expressed as a
Statechart assertion A1 shown in Figure 1, which is made up of a combination of UML
statecharts and flowcharts. The statechart assertions are written from the standpoint of an
observer and can be used for runtime monitoring of the target application [6]. (Readers
can refer to Section 7.1 for an explanation of the Statechart assertion A1.)

Figure 1. A sample Statechart assertion A1

 5

With model-oriented behavioral specifications, a single monolithic formal model

(either as a state- or an algebraic-based system) captures the combined expected behavior
described by the lower level specifications of behavior. Note that this formal model
describes the expected behavior of a conceptualized system from the IV&V team’s
understanding of the problem space. It may differ significantly from the system design
models created by the developers in their design space.

We favor the assertion-oriented specification approach due to its following

advantages over the model-oriented specification approach:

(1) Requirements are written by humans and need to be traceable in the formal
specification. Requirements are indeed traceable in the assertion-oriented formal
specification approach because they are represented, one-to-one, by assertions (acting
as watchdogs for the requirements).

A monolithic model specification on the other hand is the sum of all concerns. Hence,
on detecting a violation of the formal specification, it is difficult to map that violation
to a specific human-driven requirement.

(2) When a requirement changes, it is harder to adjust the monolithic model without

affecting the behavior related to other requirements. Hence, assertion-oriented
specifications have a lower maintenance cost in this regard than the model-oriented
counterpart.

(3) Particular assertions can be constructed to represent illegal behaviors, whereas the

monolithic model typically only represents “good behavior.”

(4) It is much easier to trace the expected and actual behaviors of the target system to the

required behaviors in the requirements space with assertion-oriented specifications
than with the model-oriented specifications. The formal assertions can be used
directly as input to the verifiers in the verification dimension.

(5) The conjunction of all the assertions becomes a “single” formal model of a

conceptualized system from the requirement space, and can be used to check for
inconsistencies and other gaps in the specifications with the help of computer-aided
tools.

2.3 Validation of the Formal Assertions

We argue that the formal assertions must be executable to allow the modelers to

visualize the true meaning of the assertions via scenario simulations. For example, the
Software Cost Reduction (SCR) Toolset contains a simulator for use in executing a series
of scenarios against the executable model to determine whether the specification captures

 6

the intended behavior [7]. In [8], we presented an iterative process that allows the
modeler to write formal specifications using Statechart assertions, and then validate the
correctness of the assertions via simulated test scenarios within the JUnit test-framework
(Figure 2).

Figure 2. Validation of statechart assertion via scenario-based testing

For example, the IV&V team can test the Statechart assertion A1 with a scenario

in which the system receives more than eight newTracks in one minute, then successfully
reduces the workload to fewer than five per minute in the next two minutes followed by
fewer than six per minute in the following ten-minute period, resulting in a successful test
outcome. The IV&V team may choose to exercise the Statechart assertion on other
scenarios to increase their confidence that the assertion is correct. For example, they may
test the Statechart assertion with another scenario in which the system receives more than
eight newTracks in one minute, then attempts recovery (fewer than five per minute in the
next two minutes), but fails at the end because there are more than six newTracks per
minute in the following ten-minute period. (Readers can refer to Sections 7.2 and 7.3 for
the Java source code of the two scenarios.)

2.4 A Process for Formal-specification and Computer-aided Validation of Complex
System Behavior

Using the executable SRM and the execution-based validation technique, the

IV&V team can formally capture its understanding of the problem and the requirements
for any system solving the problem, and validate the correctness of their cognitive
understanding with the process shown in Figure 3. First, individual assertions are tested
using the scenario-based test cases, like those shown in Sections 7.2 and 7.3, to validate
the correctness of the logical and temporal meaning of the assertions (circuit #1 in Figure
3). Then, the assertions are tested using the scenario-based test cases subjected to the
constraints imposed by the objects in the SRM conceptual model (circuit #2 in Figure 3).
For example, the conceptual model may impose a limit on the number of vehicles the
system has to monitor during operation. Finally, the IV&V team can use the white-box
automatic tester to exercise all assertions together to detect any conflicts in the formal
specification (circuit #3 in Figure 3).

 7

Figure 3. A process for formal specification and computer-aided validation

3. Application of the System Reference Models

One major benefit of using an executable SRM is its support for conducting

runtime verification of the software produced by the developer. Runtime Verification
(RV) is a verification technique that monitors the runtime execution of a system and
checks the observed runtime behavior against the system’s formal specification. Hence,
RV serves as an automated observer of the program’s behavior and compares it with the
expected behavior per the formal specification. To use RV, the software artifacts
produced by the developer needs to be instrumented, with the degree of instrumentation
being dependent on the software methodologies used by the developer.

In the following two sections, we illustrate the application of RV in two different

scenarios. Section 3.1 describes a scenario where state-based design models are available
as part of the developer’s development process, while Section 3.2 describes a different
scenario where only executable code is available to the IV&V team.

 8

3.1 Verification of State-based Design Models

In the event that the state-based design models are available to the IV&V team,

the IV&V team can apply Execution-based Model Checking (EMC) to verify the state-
based models against the SRM. EMC is a combination of RV and Automatic Test
Generation (ATG). Some ATG tools that, when combined with RV tools, create an EMC
technique are the StateRover’s white-box automatic test-generator [9] and NASA’s Java
Path Finder (JPF) [10]. With EMC, a large volume of automatically generated tests are
used to exercise the program or system under test, using RV on the other end to check the
SUT’s conformance to the formal specification.

With this approach, the IV&V team will need to re-enter the state-based design

models as StateRover statecharts (called the primary statecharts) and embed the statechart
assertions of the SRM as sub-statecharts of the resultant statechart model. The IV&V
team then uses the StateRover code generator to create an executable model from the
instrumented statecharts, and test the model with the white-box tester (Figure 4).

Figure 4. Execution-based model checking of state-based design models

The StateRover’s automatic white-box tester constructs a JUnit TestCase class

from a given statechart model and the associated embedded assertions. A typical JUnit
white-box test case consists of hundreds of thousands of runs of the statechart under test
(SUT). The auto-generated tests are used in three ways:

(1) To search for severe programming errors, of the kind that induces a JUnit error status,

such as NullPointerException.

(2) To identify test cases which violate temporal assertions.1

1 To help statechart designers pinpoint specific errors, each failed test run is reported

with an identification number. The causes of failure for a specific run can be
investigated in detail by running the automatic white-box tester in single test/run mode.
Such a mechanism helps developers to eliminate errors in their design in an efficient
manner.

 9

(3) To identify input sequences that lead the SUT to particular states of interest.

The StateRover generated WBTestCase creates sequences of events and
conditions for the SUT. The WBTestCase is nontrivial in the following regard: it creates
only sequences consisting of events that the SUT or some assertion is sensitive to, by
repeatedly observing all events that potentially affect the SUT when it is in a given
configuration state, selects one of those events and fires the SUT using this event. The
WBTestCase auto-generates three artifacts:

(1) Events, as described above.

(2) Time-advance increments, for the correct generation of timeoutFire events.

(3) External data objects of the type that the statechart prototype refers to.

The above procedure describes the model-based aspect of the StateRover’s White-
Box Automatic Test Generator (WBATG). However, the WBATG actually observes all
entities, namely, the SUT and all embedded assertions. It collects all possible events from
all of those entities, thus creating a hybrid model- and specification-based WBATG.

3.2 Verification of Target Code

In the event that only executable code is available, the IV&V team can use the

StateRover white-box tester in tandem with the executable assertions of the SRM to
automate the testing of the target code produced by the developer using the architecture
shown in Figure 5.

The white-box tester acquires the set of all possible “next” events from the

statechart assertions, and selects one of those events and sends the event to the SUT and
to the assertion statecharts. The white-box tester also maintains a timer that controls the
tempo of the test. The white-box tester advances the timer to the next meaningful value
whenever a timeoutFire event is selected.

The statechart assertions of the SRM have the following responsibilities in the

proposed test architecture: (i) keeping track of the set of possible next events to drive the
SUT, and (ii) serving as the observer for the RV during the test.

 10

Figure 5. Automated testing using the system reference model

3.3 Manual Examination of the Developer Generated Requirements

Although not as effective as execution-based model checking, the IV&V team can

also use the SRM to validate the textual descriptions of the requirements produced by the
developer. The IV&V team will start by associating the developer-generated
requirements with the use cases. This will provide the context for assessing the
requirements. Next, the IV&V team can trace the developer-generated requirements to
the other artifacts. For example, tracing the requirements to the activity and sequence
diagrams can help the analyst identify the subsystems or components responsible for the
system requirements and trace the developer-generated requirements to the domain model
to identify the correct naming of the objects and events. These requirement traces may
also help in identifying the critical components of the target system for more thorough
testing.

4. Conclusion

In this paper, we discussed the importance for the IV&V team to capture its own

understanding of the problem to be solved and the expected behavior of any system for
solving the problem, using a SRM. We argued that complex system sequencing behaviors
can mainly be understood and their formal specifications can most effectively be
validated via execution-based techniques, and advocate the use of assertion-oriented
specification over the model-oriented specification for the SRM. We presented a
framework for incorporating computer-aided validation into the IV&V of complex
reactive systems, and showed how the SRM can be used to automate the testing of the
software artifacts produced by the developer of the system.

 11

5. Acknowledgement

We thank the members of the NASA IV&V Facility’s Core Modeling Group for

reviewing this report. The research was funded in part by a grant from the National
Aeronautics and Space Administration. The views and conclusions in this talk are those
of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the U.S. Government.

6. References

[1] IEEE Std. 1012-2004, IEEE Standard for Software Verification and Validation,
IEEE, 2004.

[2] IEEE Std. 1233-1998, IEEE Guide for Developing System Requirements

Specifications, IEEE, 1998.

[3] IEEE Std. 610.12-1990, IEEE Standard Glossary of Software Engineering
Terminology, IEEE, 1990.

[4] I. Alexander, “Misuse Cases: Use Cases with Hostile Intent,” IEEE Software, 20, 1

(2003), pp. 58-66.

[5] D. Drusinsky, B. Michael and M. Shing, The Three Dimensions of Formal
Validation and Verification of Reactive System Behaviors, Tech. Rpt. NPS-CS-07-
008, Dept. of Computer Science, Naval Postgraduate School, Monterey, Calif.,
August 2007.

[6] D. Drusinsky, Modeling and Verification Using UML Statecharts - A Working

Guide to Reactive System Design, Runtime Monitoring and Execution-based Model
Checking, Elsevier, 2006.

[7] C. Heitmeyer, “Formal Methods for Specifying, Validating, and Verifying

Requirements,” J. Universal Computer Science, 13, 5 (2007), pp. 607-618.

[8] D. Drusinsky, M. Shing, and K. Demir, “Creating and Validating Embedded

Assertion Statecharts,” IEEE Distributed Systems Online, 8, 5 (2007), art. no. 0705-
o5003.

[9] D. Drusinsky, Modeling and Verification Using UML Statecharts - A Working

Guide to Reactive System Design, Runtime Monitoring and Execution-based Model
Checking, Elsevier, 2006.

 12

[10] K. Havelund and T. Pressburger, “Model Checking Java Programs using Java
PathFinder,” Int’l J. Software Tools for Technology Transfer, 2, 4 (2000), pp. 366-
381.

7. Appendix

7.1 Description of the Statchart Assertion A1

The statechart assertion A1 realizes the natural language requirement R1.1 as

follows. After initializing the local variables nTime to the current time and cnt to zero, the
startchart assertion enters the Init state to observe the arrival of the newTrack events.
With the arrival of each newTrack event, it updates the variables cnt and t and evaluates
the condition in the first decision box to see if track count (cnt) Average Arrival Rate
(ART) exceeds 80% of the MAX_COUNT_PER_MIN. The statechart assertion will reset
cnt to zero, start the 2-minute timer (timer120), and enter the RequireFiftyPercent state if
the condition becomes true. The statechart assertion stays in the RequireFiftyPercent state
and keeps tracks of the number of newTrack events for two minutes. When the timer120
fires, it evaluates the condition in the second decision box to see if cnt ART falls below
50% of the MAX_COUNT_PER_MIN. It will enter the Error state and sets bSuccess to
false, indicating the violation of the assertion, if the condition is false. Otherwise, the
statechart assertion will reset cnt to zero, start the 10-minute timer (time600), and enter
the RequireSixtyPercent state. The statechart assertion keeps tracks of the number of
newTrack events for ten minutes in the RequireSixtyPercent state, and, when the
timer600 fires, it evaluates the condition in the third decision box to see if cnt ART
remains below 60% of the MAX_COUNT_PER_MIN. It will enter the Error state and sets
bSuccess to false, indicating the violation of the assertion, if the condition is false.
Otherwise, it will reset nTime to the current time and cnt to zero, and returns to the Init
state.

Note that the statechart assertion A1 represents one of the many possible

interpretations of the natural language requirement R1.1. A different analyst from the one
who constructed A1 could have a separate interpretation of the meaning of the track
count (cnt) Average Arrival Rate (ART). This highlights the importance of expressing
natural language requirements as formal assertions to gain a deeper understanding of the
system behavior being specified, and to uncover inconsistencies, ambiguities and
incompletenesses in behavior specifications of the behavior of the system.

 13

7.2 Test Scenario 1

 Here is the Java source code of scenario 1.

import junit.framework.*;

public class TestVVFrameworkExample1 extends TestCase {
 private VVFrameworkExample assertion = null;
 private MockupPrimary mockupPrimary = null;

 protected void setUp() throws Exception {
 super.setUp();
 /**@todo verify the constructors*/
 assertion = new VVFrameworkExample(false);
 mockupPrimary = new MockupPrimary(assertion);
 // mock the relationship primary <-> assertion
 assertion.setTRPrimary(mockupPrimary);
 }

 protected void tearDown() throws Exception {
 assertion = null;
 mockupPrimary = null;
 super.tearDown();
 }

 // Test scenario 1
 // More than 8 newTracks in 1 min, then recovery (fewer than
 // 5 per min in 2 min followed by fewer than 6 per min in 10
 // min period)
 public void testExecTReventDispatcher() {
 mockupPrimary.setTime(0); //start time
 assertion.newTrack(); // 1
 mockupPrimary.setTime(10);
 assertion.newTrack(); // 2
 mockupPrimary.setTime(20);
 assertion.newTrack(); // 3
 mockupPrimary.setTime(30);
 assertion.newTrack(); // 4
 mockupPrimary.setTime(35);
 assertion.newTrack(); // 5
 mockupPrimary.setTime(40);
 assertion.newTrack(); // 6
 mockupPrimary.setTime(45);
 assertion.newTrack(); // 7
 mockupPrimary.setTime(50);
 assertion.newTrack(); // 8
 assertTrue(assertion.isState("Init"));
 mockupPrimary.setTime(62);
 assertion.newTrack(); // 9 -- more than 8
 assertTrue(assertion.isState("RequireFiftyPercent"));

 // now fewer than 5 per min for 2 min
 assertion.newTrack(); // 1
 mockupPrimary.setTime(65);
 assertion.newTrack(); // 2

 14

 mockupPrimary.setTime(70);
 assertion.newTrack(); // 3
 mockupPrimary.setTime(71);
 assertion.newTrack(); // 4
 mockupPrimary.setTime(75);
 assertion.newTrack(); // 5
 mockupPrimary.setTime(115);
 assertion.newTrack(); // 6
 mockupPrimary.setTime(120);
 assertion.newTrack(); // 7
 mockupPrimary.setTime(125);
 assertion.newTrack(); // 8
 assertTrue(assertion.isState("RequireFiftyPercent"));
 mockupPrimary.setTime(200); // by now 2 min have elapsed
 assertTrue(assertion.isState("RequireSixtyPercent"));
 assertTrue(assertion.isSuccess());

 // now fewer than 6 per min for 10 min
 assertion.newTrack(); // 1
 mockupPrimary.setTime(300);
 assertion.newTrack(); // 2
 mockupPrimary.setTime(400);
 assertion.newTrack(); // 3
 mockupPrimary.setTime(900); // trigger second timer

 assertTrue(assertion.isSuccess());
 }
}

7.3 Test Scenario 2

 Here is the Java source code of scenario 2.

 // Test scenario 2:
 public void testExecTReventDispatcher() {
 mockupPrimary.setTime(0); //start time
 assertion.newTrack(); // 1
 mockupPrimary.setTime(10);
 assertion.newTrack(); // 2
 mockupPrimary.setTime(20);
 assertion.newTrack(); // 3
 mockupPrimary.setTime(30);
 assertion.newTrack(); // 4
 mockupPrimary.setTime(35);
 assertion.newTrack(); // 5
 mockupPrimary.setTime(40);
 assertion.newTrack(); // 6
 mockupPrimary.setTime(45);
 assertion.newTrack(); // 7
 mockupPrimary.setTime(50);
 assertion.newTrack(); // 8
 assertTrue(assertion.isState("Init"));
 mockupPrimary.setTime(62);

 15

 assertion.newTrack(); // 9 -- more than 8
 assertTrue(assertion.isState("RequireFiftyPercent"));

 // now fewer than 5 per min for 2 min
 assertion.newTrack(); // 1
 mockupPrimary.setTime(65);
 assertion.newTrack(); // 2
 mockupPrimary.setTime(70);
 assertion.newTrack(); // 3
 mockupPrimary.setTime(71);
 assertion.newTrack(); // 4
 mockupPrimary.setTime(75);
 assertion.newTrack(); // 5
 mockupPrimary.setTime(115);
 assertion.newTrack(); // 6
 mockupPrimary.setTime(120);
 assertion.newTrack(); // 7
 mockupPrimary.setTime(125);
 assertion.newTrack(); // 8
 assertTrue(assertion.isState("RequireFiftyPercent"));
 mockupPrimary.setTime(200); // by now 2 min have elapsed
 assertTrue(assertion.isState("RequireSixtyPercent"));
 assertTrue(assertion.isSuccess());

 // now more than 6 per min for 10 min
 assertion.newTrack(); // 1
 mockupPrimary.setTime(300);
 assertion.newTrack(); // 2
 mockupPrimary.setTime(400);
 assertion.newTrack(); // 3
 mockupPrimary.setTime(400);
 assertion.newTrack(); // 3
 for (int i = 0; i < 97; i++) {
 mockupPrimary.setTime(500+i);
 assertion.newTrack();
 }
 mockupPrimary.setTime(600);
 assertion.newTrack();
 mockupPrimary.setTime(620);
 assertion.newTrack();
 mockupPrimary.setTime(900); // trigger second timer

 assertFalse(assertion.isSuccess());

 }

 16

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library, Code 52
Naval Postgraduate School
Monterey, CA

3. Research Office, Code 09
Naval Postgraduate School
Monterey, CA

4. Dr. Butch Caffall

NASA IV&V Facility
Fairmont, WV

5. LTC Thomas Cook

Naval Postgraduate School
Monterey, CA

6. Dr. Doron Drusinsky

Naval Postgraduate School
Monterey, CA

7. Dr. Bret Michael

Naval Postgraduate School
Monterey, CA

8. Dr. Man-Tak Shing

Naval Postgraduate School
Monterey, CA

9. Dr. Rudy Panholzer

Naval Postgraduate School
Monterey, CA

