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THESIS ABSTRACT 
 
Brian Daniel Penserini 
 
Master of Science 
 
Department of Geological Sciences 
 
June 2015 
 
Title: Debris Flow Network Morphology and a New Erosion Rate Proxy for Steepland 

Basins with Application to the Oregon Coast Range and Cascadia Subduction Zone 
 
 

Reaches dominated by debris flow scour and incision tend to greatly influence 

landscape form in steepland basins. Debris flow networks, despite their ubiquity, have 

not been exploited to develop erosion rate proxies. To bridge this gap, I applied a 

proposed empirical function that describes the variation of valley slope with drainage 

area in fluvial and debris flow reaches of steepland channel networks in the Oregon Coast 

Range. I calibrated a relationship between profile concavity and erosion rate to map 

spatial patterns of long-term uplift rates assuming steady state. I also estimated the 

magnitude and inland extent of coseismic subsidence in my study area. My estimates 

agree with field measurements in the same area along the Cascadia margin, indicating 

that debris flow valley profiles can be used to make interpretations from spatial patterns 

of rock uplift that may better constrain physical models of crustal deformation. 

This thesis includes unpublished co-authored material. 



 

 v 

CURRICULUM VITAE 
 
NAME OF AUTHOR:  Brian Daniel Penserini 
 
 
GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED: 
 
 University of Oregon, Eugene, OR 
 California Institute of Technology, Pasadena, CA 
 
 
DEGREES AWARDED: 
 
 Master of Science, Geological Sciences, 2015, University of Oregon 
 Bachelor of Science, Geology, 2013, California Institute of Technology 
 
 
AREAS OF SPECIAL INTEREST: 
 
 Geomorphology and Surface Processes 
 
 
PROFESSIONAL EXPERIENCE: 
 
 Graduate Teaching Fellow, University of Oregon  
   September 2013-June 2015 
 
 Undergraduate Teaching Assistant, California Institute of Technology 
  April 2013-June 2013 
 
 Summer Undergraduate Research Fellow, California Institute of Technology 
   July 2012-September 2012 
 



 

 vi 

ACKNOWLEDGMENTS 
 

I would like to express my sincere appreciation to Professor Roering for his 

assistance in the preparation of this manuscript and guidance throughout this project. In 

addition, special thanks are due to Professors Dorsey and Fonstad for their 

recommendations and editing help. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 



 

 vii 

TABLE OF CONTENTS 

Chapter Page 
 
 
I. INTRODUCTION .................................................................................................... 1 

II. DEBRIS FLOW MORPHOLOGY AND A NEW EROSION RATE  

PROXY FOR STEEPLAND BASINS WITH APPLICATION TO THE 

OREGON COAST RANGE AND CASCADIA SUBDUCTION ZONE .............. 2 

 1. Introduction ........................................................................................................ 2 

 2. Theory ................................................................................................................ 8 

 2.1. Fluvial Channel Model ............................................................................. 8 

 2.2. Debris Flow Valley Model ........................................................................ 10 

 3. Regional Context ............................................................................................... 12 

 4. Methods.............................................................................................................. 14 

 4.1. Topographic Analysis ............................................................................... 14 

 4.2. Correlating Erosion Rate to Morphology ................................................. 17 

 5. Results ................................................................................................................ 18 

 6. Application to the OCR and CSZ ...................................................................... 21 

 7. Discussion .......................................................................................................... 27 

 7.1. Debris Flow Parameters ............................................................................ 28 

 7.2. Uplift Rates and CSZ Deformation ........................................................... 30 

 8. Conclusion ......................................................................................................... 34 

APPENDICES ............................................................................................................. 36 

 A. TABLE OF PARAMETERS AND VARIABLES ........................................... 36 

 B. CRN DERIVED EROSION RATE ESTIMATES ........................................... 37 



 

 viii 

Chapter Page 
 

REFERENCES CITED ................................................................................................ 39 



 

 ix 

LIST OF FIGURES 
 
Figure Page 
 
 
1. Debris Flow Catchments ........................................................................................ 6 
 
2. a1 Variation Plots ................................................................................................... 12 
 
3. Regional Map ......................................................................................................... 16 

4. Parameter Distributions ......................................................................................... 19 

5. Erosion Rate Function ............................................................................................ 20 

6. Subduction Zone Profile ........................................................................................ 23 

7. Inland Variation Plots ............................................................................................ 26 

8. a1 Comparisons ...................................................................................................... 30 

9. Subduction Zone Influence Hypothesis ................................................................. 32



 

 x 

LIST OF TABLES 

 
Table Page 
 
 
1. Table of Parameters and Variables ........................................................................ 36 
 
2. CRN Sample Analyses ........................................................................................... 38 

  



 

 1 

CHAPTER I 

INTRODUCTION 

 The following chapter (Chapter II) is an inclusive work documenting the entirety 

of the research I completed for fulfillment of the requirements for the degree of Master of 

Science in Geological Sciences. Chapter II will be submitted for publication with Josh 

Roering as a co-author, however I completed the entirety of the work independently.  
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CHAPTER II 

DEBRIS FLOW MORPHOLOGY AND A NEW EROSION RATE PROXY FOR 

STEEPLAND BASINS WITH APPLICATION TO THE OREGON  

COAST RANGE AND CASCADIA SUBDUCTION ZONE 

 

 The work described in this chapter was conducted entirely by myself. Josh 

Roering provided editing help and will be listed as a co-author upon submission for 

publication, however I did all of the writing. The following chapter is presented in the 

style of the journal Earth and Planetary Science Letters. 

 

1. Introduction  

Changes in base level driven by relative rock uplift rate influence the shape of 

river profiles as the channel network responds to newly imposed boundary conditions. 

When steady state conditions have been attained, these graded streams have channel 

slopes that are adjusted to the minimum allowed slope to accommodate the transport of 

supplied material and incise bedrock at a pace commensurate to rock uplift (Mackin, 

1948; Whipple and Tucker, 1999). As a result, slope angles in adjusted channel reaches 

tend to decrease downstream as stream discharge increases and sediment grain size 

decreases. This forms a concave profile, the shape of which can be examined to extract 

information on the rate of base level change (Kirby and Whipple, 2001; Wobus et al., 

2006a). For example, if the rate of base level fall were to suddenly increase to a new 

value, channel slopes would steepen in response to the change in boundary condition and 

over time a new equilibrium long profile would be formed. By comparing the shapes of 



 

 3 

the different equilibrium long profiles, one can extract information about rock uplift rate 

(Hack, 1973; Kirby and Whipple, 2001; Perron and Royden, 2013; Wobus et al., 2006a). 

However in addition to rock uplift rate, climate and lithology also influence the 

amount of sediment supplied to stream channels and the ability of a stream to transport 

that material, which in turn dictates the shape of the long profile. Furthermore, spatial or 

temporal variations in these factors may lead to segmented profiles that are controlled by 

locally imposed boundary conditions (i.e. knickpoints). In practice, it is difficult to 

deconvolve the relative influences of uplift rate, climate, and lithology on channel profile 

form without additional constraints on these factors. Therefore, analysis of long profiles 

to extract variations in rock uplift rate requires that lithology and climate are relatively 

constant over the study region, or at least insignificantly variable. 

The stream power law is a geomorphic transport law, a functional relationship 

that relates landscape form to erosion process, that allows spatial variations in relative 

rock uplift to be inferred from an examination of fluvial long profiles (Ahnert, 1970; 

Binnie et al., 2007; Dietrich et al., 2003; Howard and Kerby, 1983; Milliman and 

Syvitski, 1992). It is built on the assumption that the incision rate along a channel bed is a 

function of the shear stress, or alternatively the unit stream power, acting on the channel 

bed (Howard and Kerby, 1983; Whipple and Tucker, 1999). The general form of the 

stream power law states that incision rate is equivalent to the power law product of 

channel slope and drainage area (Whipple, 2004). For equilibrated channel profiles, 

where uplift and incision rates are balanced, the stream power law reduces to an inverse 

power law relationship between channel slope and drainage area. In a recent review 

paper, Kirby and Whipple (2012) summarize and synthesize existing studies that have 
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used the stream power law to make tectonic interpretations. They describe the following 

three case studies: measuring differential rock uplift across a fault-bend fold in the 

Siwalik Hills (Hurtrez et al., 1999; Kirby and Whipple, 2001; Lague and Davy, 2003), 

determining how abruptly rock uplift rate increases from the Lesser to Higher Himalaya 

(Kirby and Ouimet, 2011; Kirby et al., 2003; Wobus et al., 2003; Wobus et al., 2006b), 

and inferring tectonic history from the geomorphic response to fault throw in eastern 

California (Whittaker et al., 2007). 

While the stream power law has proven to be an effective reconnaissance tool for 

detecting spatial and temporal variations in deformation, its scope is limited by the fact 

that it applies to only to fluvial river channels. Because the stream power law integrates 

upstream areas, it is difficult to uniquely associate rock uplift rate variations implied by 

changing values of channel steepness in a spatially explicit fashion. Upstream of the 

fluvial-dominated regime of most mountainous areas, debris flow scour is the dominant 

sediment transport and incision process (Benda, 1990; Dietrich and Dunne, 1978; Stock 

and Dietrich, 2003). These debris flow-dominated reaches are typically found at 

relatively small drainage areas (<0.1-1 km2), where topography is convergent but fluvial 

features indicative of channelization are absent (Stock and Dietrich 2003) (Figure 1). 

Termed colluvial valleys (Montgomery and Buffington, 1997), these reaches represent 

the transition from hillslopes to the channelized portion of the landscape and are zones of 

accumulation of coarse, unconsolidated material that can mobilize debris flows.  

The morphology of debris flow reaches deviates significantly from the 

characteristic concave profile of fluvial networks. Longitudinal profiles of debris flow-

dominated reaches tend to be steeper and less concave, approaching a constant slope at 
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very small drainage areas (~103 m2), coincident with unchanneled valleys. It has been 

proposed that these colluvial reaches are simply described by a separate inverse power 

law relationship (Lague and Davy, 2003; Whipple and Tucker, 1999), however the 

advent of high-resolution laser altimetry has enabled resolution of a curved log-log slope-

area relation for debris flow valleys (Stock and Dietrich, 2003; Stock and Dietrich, 2006). 

Hypothetically, this curved relation could be approximated by numerous power law 

relationships, each describing a separate debris flow valley long-profile, but this approach 

lacks a physical, mechanistic basis and is not supported by field evidence (Stock and 

Dietrich, 2006). While investigating the topographic signature of debris flows at small 

drainage areas in steepland landscapes, Stock and Dietrich (2003) developed an empirical 

function to describe the shape of valley slope-area data in these reaches. Their relatively 

simple function describes the transition from the constant slope morphology seen at small 

drainage areas to the inverse power law relationship of fluvial channels at larger drainage 

areas. Using their function to describe the form of debris flow valleys worldwide, Stock 

and Dietrich (2003) documented that as erosion rates increased for a given lithology, the 

profile of debris flow valleys became increasingly linear, forcing the transition from 

debris flow to fluvial dominated reaches to occur more abruptly.  

Given topographic data of sufficient resolution, debris flow catchments have the 

potential to serve as local recorders of rock uplift rate as their valley profiles are 

influenced by local base level. Hurtrez et al. (1999) observed a correlation between relief 

and uplift rate at length scales shorter than 600m, implying that colluvial valleys adjust to 

tectonically driven changes in base level. The relatively small size of debris flow 

catchments, as compared to large downstream, integrated fluvial networks, highlights the 



 

 6 

possibility of mapping base level (and thus rock uplift rate) from profile form in a 

spatially extensive fashion. This poses the following question: Can the shape of debris 

flow valley profiles and transitional reaches be used to interpret patterns of rock uplift 

rate in active orogens?  

 

 

Figure 1: Debris Flow Catchments. This image shows characteristic debris flow 
dominated catchments in the Oregon Coast Range. The drainage network originates near 
the ridgecrests at colluvial hollows, where sediment accumulates over time. Evacuation 
of accumulated sediment and debris by shallow landsliding during large storm events 
trigger debris flows, which traverse the network and scour to bedrock. 
 

In convergent settings (i.e. active margins), uplift is typically punctuated by 

earthquakes that release the elastic strain accumulated during interseismic periods of the 

earthquake cycle. Observations of pre- and coseismic deformation before and after the 

1946 M=8 earthquake in the Nankai Trough of Southwest Japan indicates that coseismic 

displacement recovers the majority of accumulated interseismic strain, but the existence 

of topography suggests that some amount of permanent strain accumulates (Hyndman 
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and Wang, 1995). Most generally, coastlines along active margins distinguish the 

boundary between regions of long-term net relative uplift and regions of long-term net 

relative subsidence or zero net relative elevation change. However, it is unclear how 

rapidly this transition occurs in coastal areas and therefore it is uncertain how far 

increasing long-term uplift rates extend into the coastal margin of mountain ranges where 

changes in uplift and sea level control base level changes. Given these complications in 

near coastal settings, few studies have attempted to reconcile earthquake deformation 

with long-term rock uplift rates, so the relative contribution of deformation associated 

with the earthquake deformation cycle in the long-term uplift of these environments is 

poorly constrained. By combining uplift rate patterns from an analysis of debris flow 

valley profiles in coastal active orogens with the spatial pattern of interseismic 

deformation rates, it may be possible to distinguish the relative contribution of coseismic 

and interseismic deformation along the margins of active orogens. 

The Cascadia Subduction Zone is a well-studied active margin that experiences 

significant coseismic deformation along coastal regions from Oregon to British 

Columbia. Since the last major megathrust rupture along its margin in 1700 AD, most 

coastal areas in this region have experienced interseismic uplift that exceeds rates of 

long-term rock uplift and erosion. Along the Oregon Coast lies the Oregon Coast Range 

(OCR), an active orogen believed to be sustained, at least in part, by uplift induced by 

inelastic strain caused by the convergence of the Juan de Fuca Plate on the North 

American Plate. We focused our analysis on the central OCR, a well-documented 

steepland landscape with consistent bedrock and climate, and applied the empirical 

function of Stock and Dietrich (2003) to numerous small (<10 km2) debris flow-
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dominated catchments proximal to the coast (Figure 1). Using several cosmogenic 

radionuclide-derived catchment average erosion rates, we developed a function that 

relates debris flow valley form to erosion rate. By applying this erosion rate function to 

our study catchments, we were able to map long-term uplift rate estimates in the central 

OCR. By comparing the pattern of long-term uplift rates to the pattern of current uplift 

rates derived from leveling surveys, we estimated coseismic subsidence attributable to 

Cascadia megathrust earthquakes. 

 

2. Theory 

2.1. Fluvial Channel Model 

Fluvial channels typically exist at drainage areas greater than 0.1-1.0 km2, where 

valley slopes are less than 0.03-0.10 (Stock and Dietrich, 2003). The relationship between 

incision rate, channel slope, and drainage area in these reaches is often expressed by the 

general form of the stream power law: 

𝐸 = 𝐾𝐴!𝑆! 

where E is the rate of bedrock channel incision, K is the erosion coefficient, A is drainage 

area, S is local channel slope, and m and n are empirically derived constants (Whipple, 

2004) (parameters and variables discussed herein are listed in the Table 1 in Appendix 

A). This form of the stream power law is practical since it is formulated in terms of local 

channel slope and upstream drainage area, two parameters that are easily estimated from 

digital elevation models (DEMs). Furthermore for a landscape in steady state, the stream 

power model can be rewritten as Flint’s Law (Flint, 1974): 
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𝑑𝑧
𝑑𝑡 = 𝑈 − 𝐸 = 𝑈 − 𝐾𝐴!𝑆! = 0 

𝑈 = 𝐾𝐴!𝑆! 

𝑆 =
𝑈
𝐾

!
!
𝐴!

!
!  

𝑆 = 𝑘!𝐴!! 

where !"
!"

 is the rate of change of the bed elevation, U is the relative rock uplift rate, 

𝑘! =
!
!

!
! and is referred to as the channel steepness index with units (length2θ) (Snyder 

et al. 2000), and 𝜃 = !
!

 and is referred to as the concavity index, which is unitless. This 

form of the stream power law demonstrates an inverse power law relationship between 

drainage area and channel slope that produces a linear trend in log-log slope-area space, 

as long as equilibrium conditions are met and K is constant. Studies that have examined 

the variability of both ks and θ between different catchments with uplift rate being the 

only variable and these studies indicate that θ does not systematically vary with uplift 

rate. Meanwhile, ks is very sensitive to changes in uplift (Duvall et al., 2004; Kirby and 

Whipple, 2001; Lague et al., 2000; Snyder et al., 2000). Since the units of channel 

steepness index depend on the corresponding θ value, a fixed value of θ called the 

reference concavity, θref, is used in order to compare steepness indices between profiles. 

The steepness index that results from the best fitting power law with θ = θref  is called the 

normalized channel steepness index, ksn.  This has led to the formulation of many linear 

and nonlinear relationships between incision rate and normalized channel steepness, 

which can be used to estimate uplift rate variations across a given landscape assuming all 

else equal (Binnie et al., 2007; Cyr et al., 2010; DiBiase et al., 2010; Duvall et al., 2004; 
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Harkins et al., 2007; Kirby and Whipple, 2001; Kirby and Whipple, 2012; Koons and 

Kirby, 2007; Lague and Davy, 2003; Ouimet et al., 2009; Snyder et al., 2000, 2003a, b; 

Whipple and Tucker, 1999; Wobus et al., 2006a).  

 

2.2. Debris Flow Valley Model 

At drainage areas lower than 0.1-1.0 km2, the relationship between slope and area 

deviates from the power law trend associated with fluvial regions. Unlike the linear 

relation demonstrated by fluvial reaches, these reaches are described by a curved 

relationship in log-log slope-area space, representing a scaling break from the log-log 

linear stream power relationship (Stock and Dietrich, 2003; Stock and Dietrich, 2006). 

The function proposed by Stock and Dietrich (2003) to fit the slope-area relationship for 

debris flow valleys is as follows:  

𝑆 =
𝑠!

1+ 𝑎!𝐴!!
 

where s0 is an empirical constant with units of (length/length) that represents valley head 

slope (slope at negligible drainage area), a1 is an empirical constant (with units of 

1/(length2)a2) that is inversely proportional to the curvature of the relationship and 

represents the sharpness of the transition is in slope-area space and in profile, and a2 is a 

unitless empirical constant that is analogous to θ in the sense that it represents a power 

law slope at large drainage areas (Stock and Dietrich, 2003). Stock and Dietrich (2003) 

recognized that these three parameters can account for curved slope-area relationships 

from debris flow dominated reaches in diverse geologic settings. This function condenses 

to a constant slope (S~s0) at small drainage areas and to an inverse power law, similar to 

the stream power law, at large drainage areas (𝑆~ !!
!!
𝐴!!!), thus emulating the transition 
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between regimes that we see in real slope-area data. Because s0 is theoretically controlled 

by shallow landslide mechanics in colluvial hollows, it may not vary dramatically with 

uplift (or erosion) rate. Additionally, a2 is not believed to vary with uplift/erosion rate 

assuming that basin geometry and erosional process remains constant. 

Stock and Dietrich (2003) inferred a potential correlation between a1, which can 

be conceptualized as the convexity of the transition between the debris flow and fluvial 

portions of slope-area relationships, and both rock uplift rate and lithology. Using data 

collected from 12 regions of similar lithology in the U.S. they note that as uplift rate 

increases, there is a propensity for a1 to decrease and, thus, curvature of the slope-area 

relation to increase (Figure 2). They hypothesize that as uplift rate increases, lower 

threshold slopes migrate to larger drainage areas in a manner similar to the responses of 

fluvial systems in the models of Howard (1997) and Tucker and Bras (1998) (Stock and 

Dietrich, 2003). Debris flow valley slopes at small drainage areas are relatively invariant 

due to landslide initiation mechanics at values close to the friction angle of soil (Stock 

and Dietrich, 2003). Further down the network, valley slopes begin to decrease as the 

sublinear debris flow dominated reaches transition to channelized fluvial reaches. Debris 

flows in the confined valleys of this transitional realm tend to deposit at slopes of ~0.03-

0.1 as they are unable to overcome the forces resisting downslope movement (Stock and 

Dietrich, 2003; Stock and Dietrich, 2006). This physical limit marks the lower extent of 

the curved slope-area relation and likely remains unchanged with increasing uplift rate. 

Therefore increasing rock uplift rate potentially shifts debris flow valley slopes to greater 

drainage areas, which effectively concentrates long-profile and slope-area curvature 
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downstream and produces a more abrupt transition that is reflected by lower a1 values 

(Figure 2). 

 

 

Figure 2: a1 Variation Plots. The top figure demonstrates the response of increasing a1, 
all else being equal. Dashed curves represent the debris flow dominated portion of the 
network while solid lines represent the fluvial portion. All curves converge to the upper 
threshold slope controlled theoretically by shallow landsliding and represented by s0. The 
slope at which debris flows are deposited marks the down-network extent of the debris 
flow dominated reaches and serves as a lower threshold that debris flows are physically 
unable to travel beyond. The lower figure shows the approximate corresponding valley 
profiles with debris flow reaches characterized primarily by a more linear shape. 
 

3. Regional Context 

The OCR is a humid, unglaciated, forested, soil-mantled, mountainous landscape 

characterized by steep topography and relatively evenly spaced ridges and valleys. The 

bedrock of the central OCR is largely composed of the Eocene Tyee Formation, a ~3 km 
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thick, sand-rich sequence of turbidites with gently dipping, undeformed strata of 

relatively uniform lithology (Baldwin, 1956; Dietrich and Dunne, 1978; Heller and 

Dickinson, 1985; Reneau and Dietrich, 1991; Snavely et al., 1964). East-west facies 

variability is minimal, but there exists a south to north reduction in formation thickness 

and sandstone to siltstone ratio due to the orientation of the delta-fed submarine margin at 

the time of deposition (Heller and Dickinson, 1985; Lovell, 1969). Uplift of the OCR was 

initiated in the Miocene and is driven by subduction of the Juan de Fuca plate at the 

offshore Cascadia Subduction Zone, located 60-100 km west of the Oregon coast 

(McNeill et al., 2000). Positive net uplift continues today as evidenced by prominent 

wave-cut platforms with long-term rates ranging from 0.1-0.3 mm/yr along the central 

Oregon coast from Newport to Coos Bay (Kelsey et al., 1996). Additionally, long-term 

uplift rates derived from measurements of strath terraces throughout the central OCR also 

range from 0.1-0.3 mm/yr, indicating spatially uniform long-term uplift rates throughout 

the central OCR (Personius, 1995). Local structures account for the majority of the 

variability in both of these measures.  

Erosion rate estimates derived from several methods, including suspended 

sediment yield, colluvial sediment flux, cosmogenic radionuclides, and radiocarbon, 

suggest long-term values of around 0.1 mm/yr throughout the central OCR (Beschta, 

1978; Bierman et al., 2001; Heimsath et al., 2001; Reneau and Dietrich, 1991). This 

agreement between long-term uplift and erosion rates implies that the central OCR is an 

approximate steady state landscape over timescales of 104-105 years as the estimated 

characteristic hillslope adjustment timescale is 50 kyr (Roering et al., 2001). However 

despite this apparent balance, there exists local, small-scale transience (both temporally 
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and spatially) in the form of deep-seated landslides, drainage capture and reorganization, 

and differential stream incision associated with rock strength variations and bedrock 

meandering (Almond et al., 2007; Roering et al., 2005). 

In the OCR, reaches dominated by debris flow scour and incision tend to 

substantially influence landscape form as they account for >80% of network length as 

well as the vast majority of valley network relief (Benda and Dunne, 1997). Debris flow 

runouts tend to stop upstream of channel slopes of ~0.03-0.1, where step-pool bed forms 

begin to appear and long-term fluvial processes become dominant (Montgomery and 

Buffington, 1997; Stock and Dietrich, 2006). In the OCR, these slopes tend to correspond 

with the aforementioned slope-area scaling break at 0.1-1.0 km2 that is typical for 

steepland areas. Below this scaling break lies the fluvial-dominated portion of the 

channel network, however the extent of the fluvial regime is limited by the appearance of 

alluvial processes that can emerge at areas of ~3 km2 in many coastal catchments.  

 

4. Methods 

4.1. Topographic Analysis 

The Oregon Coast Range serves as an ideal testing ground for a method to extract 

incision rate information from debris flow-dominated catchment valley profiles due to the 

prevalence of debris flow dominated reaches, relatively uniform lithology and climate, 

and an approximate balance between long-term uplift and erosion rates. Using high-

resolution 1m airborne laser altimetry (Lidar) data provided by the Oregon Department of 

Geology and Mineral Industries (DOGAMI), we fit the empirical function of Stock and 

Dietrich (2003) to a study group of 83 catchments between 0.4 and 3.0 km2. We selected 
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catchments from a region near the outlet of the Umpqua River to the North, South, and 

East of the town of Reedsport (Figure 3). This area is void of major faults and has 

minimal folding. The major anticline that runs approximately N-S through our study area 

is gentle with dips of ~4-6° away from the fold (Marshall and Roering, 2014). We 

assume that the mapped folds in our study area do not influence topography since 

anticlinal structures in the Tyee Formation do not lead to elevated relief (Marshall and 

Roering, 2014).  We attempted to avoid selecting catchments where base level is 

influenced by transient features, such as large scale lithologic knickpoints and deep-

seated landslides. We extracted the valley network from each catchment using 

TopoToolbox 2, a MATLAB based geoprocessing toolbox, and with a minimum drainage 

area of 250 m2 (Schwanghart and Scherler, 2013). This threshold corresponds to the 

downslope extent of the hillslope regime and the onset of shallow landsliding in 

topographic hollows (Roering, 2008). Valley network elevations were then smoothed1 

using a 15m smoothing window with a first-order Savitzky-Golay filter and local slopes 

and drainage areas were calculated from the smoothed network (Roering et al., 2010). 

Slope and area values were log-transformed and subsequently binned to reduce the 

overwhelming number of data points in each catchment and reduce scatter2. The 

smoothed, log-transformed, and binned slope-area values were then fit with the empirical 

function proposed by Stock and Dietrich (2003) using the MATLAB Curve Fitting 

Toolbox. Each point was weighted by the number of measurements included in each bin, 

which weights each pixel along the profiles equally (Stock and Dietrich, 2003). Data 

points with channel gradients less than 0.03, the lower slope limit at which debris flows 

                                                
1 ChannelSmoother code generously provided by Scott Miller. 
 
2 Binning code generously provided by Taylor Perron. 
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tend to deposit in the OCR (Stock and Dietrich, 2003), were eliminated to isolate the fit 

to debris flow-dominated and transitional reaches. Best fitting parameters (a1, a2, and s0) 

for each catchment, as well as 95% confidence intervals, degrees of freedom, and R2 

values, were recorded. We retained catchments that had R2 values greater than 0.85 in 

order to eliminate obviously anomalous catchments that contained transient influences or 

a lack of debris flow processes that led to anomalous best-fitting model parameters. Since 

a single threshold could not precisely differentiate between catchments with and without 

transience, we inspected valley profiles of the remaining catchments and eliminated those 

that displayed prominent knickpoints. 

 

 

Figure 3: Regional Map. Our study area is located just north of Coos Bay along the 
Oregon Coast. Major towns are labeled and shown in red. Our study catchments are 
represented by polygons with coloration indicative of the best fitting a1 value using a 
fixed a2 of 0.73. There are no major faults in this area and all major folds are shown. 
Folds are gentle and are not believe to directly influence topography. The blue line is the 
surface projection of the -20 km downdip contour of the subducting slab from McCrory 
et al. (2004). 
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We examined the distributions of a1, a2, and s0 to determine the extent to which 

each of the parameters vary between the catchments of our study group. Since the units of 

a1 are dependent upon the value of a2, we used a reference value approach similar to that 

used in numerous studies of normalized channel steepness in order to compare a1 values 

between our study catchments (Duvall et al., 2004; Kirby and Whipple, 2001; Lague et 

al., 2000; Snyder et al., 2000). Following Wobus et al. (2006a), we determined the 

reference a2 value to be the regional average of our set of catchment a2 values. We then 

refit catchment slope-area data with the same empirical function, but with a fixed a2 value 

equivalent to our reference value.  

 

4.2. Correlating Erosion Rate to Morphology 

 We estimated erosion rates from six cosmogenic radionuclide (CRN) samples 

(five previously unpublished samples collected by J. Roering and J. Marshall and one 

from Heimsath et al. (2001)) from channel sediment using the CRONUS online 

calculator (Balco et al., 2008) (see Appendix B and Table 2 for additional details). Each 

sample integrates erosion rate information over the upstream drainage area from the 

sample location, which in our case is less than 10 km2 for all samples. After erosion rate 

estimates were calculated, we fit the slope-area data from the corresponding catchment 

valley networks with the empirical slope-area relation, including our determined 

reference a2 value. We proceeded to take the resulting best-fit a1 values and obtained a 

power law relationship between a1 and erosion rate for these catchments. To account for 

the error in each of the CRN-derived erosion rate estimates, we used an inverse-variance 

weighting scheme when fitting. Using this relationship, we were then able to produce 
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erosion rate estimates for all catchments in our study group. Under the assumption that 

the OCR is in steady-state equilibrium over the integration timescale of the CRN erosion 

rate estimates, we interpreted these erosion rate predictions to reflect long-term uplift rate 

(DiBiase et al., 2010).  

 

5. Results 

 Fitting the empirical model of Stock and Dietrich (2003) to the 83 catchments in 

our study group generate average parameter values (mean ± SD) of 0.626 ± 0.091, 15.5 ± 

6.4 𝑘𝑚!!!!, and 0.732 ± 0.079 for s0, a1, and a2, respectively (Figure 4). The a1 

distribution is very dispersed compared to the distributions of s0 and a2 with a coefficient 

of variation (mean/SD) of 0.41 compared to 0.15 and 0.11, respectively. This distribution 

of a1 does, however, contain values with conflicting units due to the dependence of the 

units of a1 on the corresponding best fitting a2. The relative insensitivity of s0 agrees with 

the hypothesis of Stock and Dietrich (2003) that valley slopes at small drainage areas are 

controlled by threshold-driven shallow landslides. Given that a2 is also fairly consistent 

throughout the study group, we are confident that taking a reference a2 approach is 

appropriate in this case in order to produce a1 values with consistent units. Maintaining a 

fixed reference a2 value of 0.73, we refit the empirical slope-area function to all of our 

catchments. This resulted in average parameter values (mean ± SD) of 0.624 ± .091 and 

14.8 ± 4.9 km-1.46 and for s0 and a1, respectively (Figure 4). The corresponding 

coefficients of variation for s0 and a1 for these reference a2 fits are 0.15 and 0.33, 

respectively.  
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Figure 4: Parameter Distributions. The top row of distributions represents the best 
fitting parameters (s0, a1, and a2) for the 83 catchments in this study. The bottom row of 
distributions represents the best fitting parameters (s0 and a1) for model fits with a fixed 
a2 of 0.73.  
 
 

 We proceeded to fit the following power law to the catchment averaged erosion 

rate estimates and their corresponding best-fit a1 parameters, with a2 = 0.73: 

𝐸 = 𝑝!𝑎!!! 

, where E is in units of (mm/yr) and a1 is in units of (km-1.46) and the best fitting values 

for p1 and p2 were 0.328 mm/yr/km0.524 and -0.359, respectively (Figure 5). The value of 

p1 in this case represents the erosion rate for a catchment with an a1 value of 1.0 km-1.46, 

while p2 controls the how sensitive erosion rate is to variations in a1 and serves as the 

power law slope in log-log space. Therefore, increasingly negative values of p2 suggest 

that erosion rates are more sensitive to differences in a1, and the opposite case is true for 

less negative p2 values.  
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Figure 5: Erosion Rate Function. Black squares represent cosmogenic nuclide derived 
erosion rates and the associated best fitting a1 values (a2=0.73). Error bars extend one 
standard error away from the mean value. The black dashed line is the best fit power law 
relationship, which we then use to make estimates of long-term uplift rate for our study 
catchments. 

 

Since cosmic rays penetrate to depths of ~0.6m in rock and estimated erosion 

rates for the OCR range from ~0.1 – 0.2 mm/yr, the estimated integration timescales of 

these erosion rates are on the order of 103-104 years (DiBiase et al., 2010). Under the 

assumption that the OCR has been in a state of topographic steady state over these 

timescales, we interpret predicted erosion rates from this function as predicted uplift rates 

over the same timescales. By applying this function to the best-fit a1 values of the 

catchments in our study group, we produced a map of long-term uplift rate predictions to 

display potential spatial patterns. Our results indicate that long-term uplift rates increase 

inland from the coastline since a line fit to the long-term uplift rate estimates against 

distance from the -20 km downdip contour of McCrory et al. (2004) results in a 

statistically significant trend (p<0.00001). 
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6. Application to the OCR and CSZ 

Convergent margins, such as the Cascadia Subduction Zone (CSZ), are typically 

associated with the occurrence of large magnitude earthquakes (>Mw = 8) as a 

consequence of plate subduction [e.g. Tohoku 2011(Mw 9.0), Sumatra 2004 (Mw 9.1), 

Alaska 1964 (Mw 9.2), Chile 1960 (Mw 9.5)]. The dynamic processes that lead to these 

large subduction zone earthquakes are thought to be cyclical in nature although no single 

subduction zone has been geodetically monitored long enough to record a complete cycle 

(Thatcher, 1984). The concept of an earthquake cycle was first proposed by Reid (1910) 

as part of elastic-rebound theory, which suggests that earthquakes are the result of the 

release of elastic strain energy that accumulates during interseismic periods. Thatcher 

(1984) observed that there are at least two regimes of permanent deformation related to 

interactions at subduction zones: a zone of “coseismic overshoot” close to the trench 

where coseismic vertical displacement of the overlying plate is positive (up), and a zone 

of “unrecovered interseismic straining” that occurs further inland where coseismic 

vertical displacement is negative (down) (Figure 6). This zone of unrecovered strain 

experiences the greatest magnitude of coseismic vertical displacement near the surface 

expression of the down-dip limit of the coseismic fault and decreases in magnitude 

gradually inland (Thatcher, 1984). Wherever the accumulated vertical strain is greater 

than the vertical strain released during coseismic displacement, net rock uplift can be 

imagined to have occurred. 

While subduction zone earthquakes are not uncommon, there is no observational 

evidence or record of a large CSZ earthquake because European-American settlement in 

the Pacific Northwest is relatively recent. There is substantial indirect evidence for 
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several large magnitude events in Cascadia over the past ~6700 years (Witter et al., 

2003). The most recent large magnitude earthquake to occur along the CSZ is thought to 

have been a ~Mw 9.0 event that ruptured the entire length of the subduction zone on 

January 26, 1700 AD, according to historical documentation of a tsunami that struck 

Japan as well as radiocarbon dating of buried trees and grass from onshore tsunami 

deposits in coastal Washington (Atwater and Yamaguchi, 1991; Satake et al., 1996). 

Additional buried marshes and forests in coastal Washington and Oregon are thought to 

be reflective of multiple episodes of coseismic subsidence and corresponding tsunamis, 

which inundated coastal regions and rapidly deposited sediment (Atwater, 1987; 

Darienzo and Peterson, 1990; Nelson and Personius, 1991). The presence of multiple 

buried soils, as well as an extensive record of seismically initiated turbidite deposits, 

indicate the occurrence of multiple previous subduction earthquakes of similar magnitude 

and frequency. Witter et al. (2003) recognized twelve buried soils at the Coquile River 

estuary that represent events of coseismic subsidence over the past 6500-6720 years, 

leading to an average recurrence interval of 570-590 years. An examination of buried 

soils at Yaquina Bay by Graehl et al. (2015) produce an estimate of recurrence interval of 

420-580 years. Dating of offshore turbidite deposits, believed to have been triggered by 

coseismic shaking, produced recurrence interval estimates between 500-530 years for 

full-margin rupture events (Goldfinger et al., 2012). Not every subduction earthquake 

leads to a full-margin rupture since large magnitude earthquakes can result from localized 

rupture along segments of the plate interface. Goldfinger et al. (2012) used local turbidite 

records to determine additional recurrence intervals for these localized ruptures of 

segments along the CSZ. After accounting for the occurrence of both full-margin and 
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localized rupture related events, the corresponding recurrence interval of subduction 

earthquakes along the central Oregon Coast is 300-380 years (Goldfinger et al., 2012). In 

addition to large magnitude megathrust events, there exists a considerable amount of 

earthquake activity in the form of offshore and onshore crustal earthquakes in both the 

North American and Juan de Fuca plates. However, these events tend to be of much 

lower magnitudes and cannot account for the onset and correlation of buried soils and 

turbidite deposits along coastal Washington and Oregon (Clague, 1997). Additionally, 

there is no crustal structural feature that can account for temporal agreement of coseismic 

subsidence along the Cascadia margin (Clague, 1997). 

 

 

Figure 6: Subduction Zone Profile. Modified from Clague (1997). During interseismic 
periods, accumulated strain results in crustal shortening and uplift in the upper plate near 
the coast. When a great earthquake occurs, elastic strain is recovered and crustal 
extension and subsidence results. A zone of interseismic uplift and coseismic subsidence 
at the coast is shown in grey.  
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To demonstrate a potential application of debris flow valley profile morphology 

analysis, we used our estimates of long-term uplift rates for OCR debris flow catchments, 

in conjunction with estimated recurrence intervals and measured interseismic uplift rates, 

to provide estimates of coseismic subsidence for large subduction zone earthquakes. We 

assume that subduction earthquakes are periodic with respect to a constant recurrence 

interval and that the measured interseismic uplift rates are constant throughout each 

interseismic period and over past cycles. The total amount of uplift accumulated during 

the interseismic period can be expressed with the following equation: 

𝛥𝑧! = 𝑈!𝑇! 

where 𝛥𝑧! is the surface uplift due to a constant interseismic uplift rate, 𝑈!, over a 

subduction earthquake recurrence interval of 𝑇!. We interpreted the rate of long-term 

permanent deformation to be reflected by long-term uplift rates in the Oregon Coast 

Range, which results from inelastic vertical strain accumulation in each period of the 

earthquake cycle. The amount of net uplift accumulated after accounting for coseismic 

subsidence is expressed by a similar equation: 

𝛥𝑧!" = 𝑈!"𝑇! 

, where 𝛥𝑧!" is the net surface uplift from a complete earthquake cycle and 𝑈!" is the 

long-term uplift rate. Subtracting 𝛥𝑧!" from 𝛥𝑧! results in the coseismic subsidence for a 

characteristic subduction zone earthquake. Combining the above equations, we can write 

the coseismic subsidence (𝛥𝑧!) as: 

𝛥𝑧! = 𝑇!(𝑈! − 𝑈!") 



 

 25 

allowing us to input various recurrence interval estimates, current interseismic uplift 

rates, and our debris flow profile derived long-term uplift rates to calculate a suite of 

spatially variable coseismic subsidence estimates.  

Interseismic uplift rates were obtained from the dataset of Burgette et al. (2009), 

who used leveling and tidal gauge records to investigate the pattern of locking along the 

CSZ plate interface. Their measured interseismic uplift rates along the Oregon Coast and 

in the OCR are typically an order of magnitude greater than estimated long-term uplift 

rates, greatest at the coast, and decrease inland, eventually approaching values consistent 

with long-term uplift rate estimates. While there is significant along-strike (N-S) 

variation in interseismic uplift rate along the Oregon Coast, we focused on the Central 

Oregon Coast dataset of Burgette et al. (2009), which lacks significant along-strike 

variability and contains W-E transects of measurements taken near South Bay and 

Charleston in addition to a N-S survey along the coastline bounded by these transects. 

This Central Oregon Coast subset overlaps spatially with our study catchments, enabling 

us to compare W-E variations in interseismic and long-term uplift rate estimates. We 

plotted these measurements of interseismic uplift rate, as well as our long-term uplift rate 

estimates, as a function of the distance from surface projection of the -20 km downdip 

contour of the subducting slab, in order to maintain consistency with the geophysical 

observations of (Burgette et al. (2009)). Furthermore, we fit an exponential function to 

the plotted interseismic uplift rates and a linear function to the long-term uplift rate 

estimates in order to compare the inland variation of interseismic uplift rate with that of 

long-term uplift rates (Figure 7ab). When fitting the interseismic uplift rates, we 

subsampled data points taken from the N-S coastal survey of the Central Oregon Coast in  
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Figure 7: Inland Variation Plots. A: Interseismic uplift rates plotted against distance 
from the -20km contour. Black dots represent measurements with the green line the best-
fit exponential function to the central coast data from Burgette et al. (2009). The shaded 
region represents the 95% CI of the fit. This represents only the portion of the central 
coast data that overlaps with our study area. B: i.) A subset from A focusing on the 
interseismic uplift rates within the study area. ii.) Catchment debris flow profile derived 
long-term uplift rates v. distance from the -20 km contour. Black dots represent the raw 
values obtained by using the erosion rate function from Figure 5 and assuming steady 
state. The shaded region represents the 95% CI of the trendline. iii.) Coseismic 
subsidence estimates using the best-fit trends from A and B and subduction earthquake 
recurrence intervals of 300 (blue) and 500 (red) years. Shaded regions are 95% CIs. 
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order to eliminate a sampling bias when fitting our exponential function. Additionally, we 

weighted both fits using the same inverse-variance weighting scheme used to fit the 

erosion rate prediction function. 

By subtracting the long-term uplift rate function from the interseismic uplift rate 

function, we produced plots of the corresponding estimates of coseismic subsidence for a 

range of subduction zone earthquake recurrence intervals (Figure 7b). In all of our plots, 

coseismic subsidence is highest near the coast and decreases inland, consistent with the 

model predictions of Hyndman and Wang (1995) and Dragert et al. (1994). Coseismic 

subsidence estimates for the central Oregon Coast directly above the -20 km slab contour 

are 0.420 ± 0.060 m, 0.559 ± 0.080 m, and 0.70 ± 0.10 m (mean with 95% CI) for 

recurrence intervals of 300, 400, and 500 years. Historical subduction zone earthquakes 

in Alaska, Chile, and Japan had corresponding zones of coseismic subsidence, extending 

parallel to the subduction zones, which were approximately as wide as the zone of 

rupture (Ando, 1975; Plafker, 1969; Plafker and Savage, 1970; Thatcher, 1984). This 

indicates that the consideration of recurrence intervals corresponding to local subduction 

zone ruptures, rather than just entire-margin ruptures, might give a more accurate 

estimate of coseismic subsidence.  

 

7. Discussion 

 Debris flows play a vital role in unglaciated steepland landscapes, transporting 

material derived from hillslopes and lowering reaches that lie above the channelized 

network. Additionally, valleys scoured by debris flows account for over 80% of the 

length of the valley network in large steepland basins (Stock and Dietrich, 2003). By 
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developing a method to extract information on local base level from the longitudinal 

profiles of these reaches, a large portion of the landscape that has previously largely been 

eschewed can be exploited to make inferences on patterns of uplift rate and lithologic and 

climate variations. Furthermore, current earthquake records in the Pacific Northwest are 

too short to accurately describe the deformation associated with Cascadia subduction 

zone earthquakes. Debris flow valley profiles have the potential to preserve long-term 

uplift rates over 104 year timescales and are abundant throughout the Oregon Coast 

Range. Since the long-term uplift history of the Coast Ranges represents an integral effect 

of CSZ related deformation, debris flow valley derived uplift rates could help constrain 

physical models by providing field derived evidence of the long-term effects of the 

subduction earthquake cycle. 

 Our analysis of debris flow valleys only takes into consideration the upper most 

portion of the valley network where debris flows traverse and scour the valley floor, 

eventually depositing the accumulated material at slopes of 0.03-0.1. These slopes 

typically coincide with the scaling break between slope and drainage area and are 

occupied by transitional reaches where debris flow runouts and long-term fluvial features 

can be found (Stock and Dietrich, 2003). By selecting a minimum slope threshold of 

0.03, we ensure that our analyses capture the entire debris flow dominated portion of the 

network as well as the transitional reaches where debris flow deposits are found.  

 

7.1. Debris Flow Parameters 

 There does not appear to be a strong correlation between any of the parameters 

and drainage area. While a1 and s0 do not have significant trends (p = 0.068 and p = 0.61, 
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respectively), a2 decreases with drainage area (slope = -2.47E-8 m-2, p = 0.0021). Given 

that we fix a2 in our analyses, this trend should not influence our results in any way. 

Furthermore, to ensure that the choice of the fixed a2 did not influence the results, we 

conducted a sensitivity analysis by fitting several versions of the empirical slope-area 

function with extreme fixed a2 values to our catchment derived data. Since a2 ranges from 

0.495 to 0.927 in our study group, we repeated our fixed a2 analysis using fixed values of 

0.5 and 0.9 to see if the spatial pattern of long-term uplift rate estimates changed. We 

compared the resulting a1 value datasets with each other (a1 calculated for fixed a2 of 0.5, 

0.73, and 0.9) and the three datasets were very well correlated with each other, indicating 

that no information on the relative degree of slope-area curvature is lost due to the choice 

of the fixed a2 (Figure 8). We also used the best-fitting erosion rate functions for a1 values 

with fixed a2 values of 0.5 and 0.9 to create two new sets of long-term uplift rate 

estimates for the catchments. We then ran linear regressions of these long-term uplift rate 

datasets against distance from the -20 km contour and conducted two-sample t-tests to 

determine whether the trends were significantly different. The resulting regression slopes 

relating distance from the -20km contour to long-term uplift rate were not significantly 

different from each other and from the original regression slope from our analysis using a 

fixed a2=0.73 (p>0.85 for all comparisons). Additionally, the y-intercepts for the linear 

regressions with fixed a2 values of 0.5 and 0.9 were both 0.1038 mm/yr, which compares 

to the value from our original regression (a2=0.73) of 0.1039 mm/yr. Due to the nature of 

the empirical function, a2 will always influence a1 as it serves as a boundary condition by 

determining the trajectory of the curved, debris flow dominated portion of the network. 

However, the choice of a reference a2 does not seem to influence the results of our study. 
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Figure 8: a1 Comparisons. Different sets of a1 values using different fixed values of a2 
are very well correlated. This indicates that choice of the fixed a2 value used in our 
analysis should not inflence the results. 

 

 

7.2. Uplift Rates and CSZ Deformation 

While our calculated trend in long-term uplift rate with distance from the -20 km 

contour is statistically significant at the 95% confidence level, there are only a few data 

points gathered from catchments near the coast and from distances greater than 20 km 

from the -20 km contour. Near the coast the prevalence of debris flows vanishes, 

presumably due to low long-term uplift rates (<0.1 mm/yr) that result in shallower valley 

slopes. Additionally, marine terraces near the coast disrupt the uniform valley-ridge OCR 

morphology that is typical of inland catchments. Meanwhile, the inland extent of our 

study region is limited by the current availability of high-resolution lidar data of the 

OCR. While DOGAMI and NSF have done a tremendous job in making data available 

and have helped ensure that Oregon is one of the leading states in terms of lidar coverage, 

there are still large voids in many areas that are key to this work. This eastern limit of the 

lidar coverage area prevented our estimates of long-term uplift rates from extending 

inland more than 25 km from the -20 km downdip contour of McCrory et al. (2004). 

Applying our erosion rate proxy to additional inland catchments would have enabled us 
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to determine the inland extent of the increasing trend in long-term uplift. This is 

especially important as this trend may be reflective of relative sea level fluctuations due 

to the earthquake deformation cycle. For a catchment that subsides during a subduction 

zone earthquake, relative sea level rises and raises the local base level, possibly 

inundating previously incised valley floors. This would severely inhibit the ability of the 

network to incise and would reduce incisional efficiency until base level falls to an 

appropriate level due to interseismic uplift. The degree to which incision is inhibited may 

be related to the proportion of the interseismic cycle where higher order valleys are 

inundated. Furthermore, this trend might indicate that greater permanent vertical 

deformation may occur inland from the coast over multiple earthquake deformation 

cycles. 

Permanent deformation and uplift along convergent margins has been attributed to 

deep-seated flow, underplating, and/or aseismic shortening within the accretionary wedge 

(Pavlis and Bruhn, 1983; Personius, 1995). Despite evidence indicating that the Oregon 

Coast Range is undergoing steady, constant long-term uplift, our results indicate that the 

rate of long-term uplift decreases at the coast despite an absence of major structure. Over 

this same region, interseismic uplift rates tend to increase near the coast, indicating a 

potential transition of dominant uplift processes. At the coast, interseismic uplift rates 

that are an order of magnitude greater than the long-term rates, as well as field evidence 

of coseismic subsidence associated with large magnitude subduction zone earthquakes, 

indicate that subduction earthquake cycle driven deformation controls the long-term rate 

of rock uplift (Figure 9). Further inland, interseismic uplift rates approach the long-term 

rates, indicating that there is minimal surface elevation change during megathrust 
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earthquakes. We attempted to estimate the inland extent of coseismic subsidence using 

the current uplift rates and our debris flow profile-based long-term rates, but the eastern 

limit of the lidar coverage area prohibited us from estimating the inland extent of this 

transition.  

 

 

Figure 9: Subduction Zone Influence Hypothesis. Near the coast, interseismic uplift 
rates are high but long-term rates are low, indicating a potential dominance of earthquake 
deformation cycle related processes on topography. Inland from the coast, interseismic 
uplift rates approach the long-term rates, indicating that coseismic subsidence is 
approaching zero and therefore the influence of the earthquake deformation cycle on 
topography is minimal. Labeled values are approximate coseismic subsidence estimates 
for each earthquake cycle. 

 

We compared our estimates of coseismic subsidence with previous measurements 

made from buried soils. Leonard et al. (2004) aggregated several estimates of coastal 

coseismic subsidence from previous studies of buried marshes and found that coseismic 

subsidence ranged from 0-2 m along Cascadia. For sites that overlap with our study area 
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(Umpqua and Coos Bay) coseismic subsidence estimates are 0.46 ± 0.31 m and 0.61 ± 

0.32 m (mean ± standard deviation), respectively (Briggs, 1994; Darienzo and Peterson, 

1995; Nelson, 1992; Nelson et al., 1996; Nelson et al., 1998; Peterson and Darienzo, 

1989). Our estimates of coseismic subsidence at the -20 km contour, which approximates 

the coastline, are all in agreement with these observed values. 

While our results agree with observed values of coseismic subsidence and suggest 

that topographic analysis can be a useful tool for making estimates, we make several 

assumptions that oversimplify subduction earthquake dynamics. Wang et al. (2012) 

provided a more detailed description of the subduction earthquake cycle, where afterslip 

along the fault as well as viscoelastic relaxation of the mantle occur prior to relocking. 

Since these processes have never been observed along the CSZ, it is difficult to determine 

what their influence on coastal uplift is and if they contribute to the long-term pattern of 

uplift in the OCR. These processes are, however, believed to occur over timescales of a 

few months to a few years with fault locking occurring over the vast majority of the 

interseismic period (Wang et al., 2012).  Given that the measured uplift rates of Burgette 

et al. (2009) represent a snapshot of the interseismic period, we are also unsure if these 

rates remain constant or if they change over time from cycle to cycle or even within a 

single interseismic period. While slip along the plate interface may be constant over time, 

this does not imply that the deformation rate has also been held constant due to changing 

geometries over the earthquake cycle. Subduction dynamics is an area of active research 

and given that observations of the subduction earthquake cycle are limited, it is difficult 

to constrain all aspects of earthquake related deformation along active margins. 
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Therefore, it is difficult to confirm or refute the existence of periodic, characteristic 

events that have the potential to influence the OCR landscape in a predictable way.  

 

8. Conclusion 

Surface deformation along the Oregon coast is due to the long-term effects of 

multiple subduction earthquake cycles, however current earthquake records are too short 

to accurately describe this deformation (Personius, 1995). Given that the Oregon Coast 

Range is presumed to exist in a relatively steady state, the corresponding valley networks 

may be able to preserve information on deformation over multiple cycles, which may 

give greater insight to the long-term effects of subduction dynamics from interpretations 

of surface topography. Since debris flow valleys account for the vast majority of network 

length in the Oregon Coast Range, we developed a method using a previously proposed 

empirical relation between valley slope and upstream drainage area for debris flow 

valleys to relate profile form to long-term uplift rate. Our results indicate that there may 

be a trend of increasing long-term uplift rate inland from the coast in the central OCR, 

reflecting increased magnitudes of vertical inelastic strain accumulation over multiple 

subduction earthquake cycles. This contrasts with the pattern of elastic deformation seen 

during interseismic periods, where uplift rates are typically highest at the coast and 

decrease inland. Using subduction megathrust earthquake recurrence interval estimates in 

conjunction with the inland patterns of interseismic and long-term uplift rates, we were 

able to produce a spatial pattern of expected coseismic subsidence that extended further 

inland than previous field based measurements. This application demonstrates that the 
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shape of debris flow valley profiles in steepland regions may be used to help constrain 

models of subduction zone dynamics. 
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APPENDIX A 

TABLE OF PARAMETERS AND VARIABLES 

 
Table 1: Table of Parameters and Variables. 
 
Parameter  Name Units 
a1 Concavity Coefficient (length)!!!!  

a2 Fluvial Exponent Unitless 
K Coefficient of Erosion (length)!!!!(time)-1 
ks Channel Steepness Index (length) 
m Area Scaling Exponent Unitless 
n Slope Scaling Exponent Unitless 
s0 Ideal Valley Head Slope (length/length) 
θ Concavity Index Unitless 
   
Variable Name Units 
A Upstream Drainage Area (length)2 
E Vertical Erosion Rate (length)/(time) 
S Channel (Valley) Gradient (length/length) 
𝑇! Subduction Earthquake Recurrence Interval (time) 
𝑈! Interseismic Uplift Rate (length)/(time) 
𝑈!" Long-term Uplift Rate (length)/(time) 
𝛥𝑧!  Coseismic Subsidence (length) 
𝛥𝑧! Interseismic Elevation Change (length) 
𝛥𝑧!" Earthquake Cycle Elevation Change (length) 
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APPENDIX B 

CRN DERIVED EROSION RATE ESTIMATES 

 The cosmogenic radionuclide-derived erosion rates used to calibrate the 

functional relationship with a1 were derived from one published and five previously 

unpublished stream sediment samples. Beryllium-10 concentrations were obtained for all 

samples except for the sample from Heimsath et al. (2001), for which aluminum-26 

concentration was measured. We used the CRONUS online calculator to calculate 

catchment-averaged surface erosion rates (Balco et al., 2008). Table 2 contains relevant 

information for the six samples used in this study. Samples CRN 501 and CRN 502 

correspond to non-overlapping areas of the Sullivan Creek catchment. Sample Stream B-

R corresponds to a region that overlaps with the regions described by CRN 501 and CRN 

502 and a mixing relationship was used to derive the erosion rate for the downstream area 

corresponding only to sample Stream B-R (Granger et al., 1996). Errors are 1σ 

propogated from Accelerator Mass Spectrometry (AMS). 

  



 

 38 

Table 2: CRN Sample Analyses. Samples of cosmogenic radionuclide concentrations 
derived from stream sediment in the Oregon Coast Range. Concentrations were obtained 
using AMS and the CRONUS calculator was used to make erosion rate estimates. 

  

Sample Location 
(Decimal 
Degrees) 

Concentration 
(atoms g-1 
quartz) 

Error  
(atoms g-1 
quartz ) 

Erosion 
Rate 
(mm/yr) 

Error 
(mm/yr) 

Notes 

CRN 500 Upper Smith 
River  
(-123.811°, 
43.964°) 

70902.91 
(10Be) 
 

3408.59  
 

0.1023 0.0049 Collected by 
Josh Roering 
(JR) and Jill 
Marshall (JM) 

CRN 501 Sullivan 
Creek 
(-124.105°, 
43.470°) 

53211.86 
(10Be) 
 

22369.24  
 
 

0.124 0.052 Collected by 
JR and JM 

CRN 502 Sullivan 
Creek 
(-124.104°, 
43.468°) 

56073.93 
(10Be) 

5376.31  
 

0.109 0.011 Collected by 
JR and JM 

CRN 503 Franklin 
Creek 
(-123.905°, 
43.670°) 

44164 (10Be) 2592  0.1559 0.0049 Collected by 
JR and JM 

HadsCRN Hadsall Creek 
(-123.824°, 
43.985°) 

33766.10 
(10Be) 

4666.26  0.203 0.091 
 

Collected by 
JR and JM 

Stream B-R Sullivan 
Creek 
(-124.113°, 
43.469°) 

287899 (26Al) 
 

89864 
 

0.262 
(0.165) 

0.081 
(0.066) 

Heimsath et al. 
(2001), values 
in parentheses 
are raw values 
before mixing 
correction. 



 

 39 

REFERENCES CITED 

Ahnert, F., 1970. Functional relationships between denudation, relief, and uplift in large, 
mid-latitude drainage basins. American Journal of Science 268, 243-263. 

 
Almond, P., Roering, J., Hales, T., 2007. Using soil residence time to delineate spatial 

and temporal patterns of transient landscape response. Journal of Geophysical 
Research: Earth Surface (2003–2012) 112. 

 
Ando, M., 1975. Source mechanisms and tectonic significance of historical earthquakes 

along the Nankai Trough, Japan. Tectonophysics 27, 119-140. 
 
Atwater, B.F., 1987. Evidence for great Holocene earthquakes along the outer coast of 

Washington State. Science 236, 942-944. 
 
Atwater, B.F., Yamaguchi, D.K., 1991. Sudden, probably coseismic submergence of 

Holocene trees and grass in coastal Washington State. Geology 19, 706-709. 
 
Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J., 2008. A complete and easily accessible 

means of calculating surface exposure ages or erosion rates from 10 Be and 26 Al 
measurements. Quaternary geochronology 3, 174-195. 

 
Baldwin, E.M., 1956. Geologic map of the lower Siuslaw River area, Oregon. 
 
Benda, L., 1990. The influence of debris flows on channels and valley floors in the 

Oregon Coast Range, USA. Earth Surface Processes and Landforms 15, 457-466. 
 
Benda, L., Dunne, T., 1997. Stochastic forcing of sediment supply to channel networks 

from landsliding and debris flow. Water Resources Research 33, 2849-2863. 
 
Beschta, R.L., 1978. Long‐term patterns of sediment production following road 

construction and logging in the Oregon Coast Range. Water Resources Research 
14, 1011-1016. 

 
Bierman, P., Clapp, E., Nichols, K., Gillespie, A., Caffee, M.W., 2001. Using 

cosmogenic nuclide measurements in sediments to understand background rates 
of erosion and sediment transport, Landscape Erosion and Evolution Modeling. 
Springer, pp. 89-115. 

 
Binnie, S.A., Phillips, W.M., Summerfield, M.A., Fifield, L.K., 2007. Tectonic uplift, 

threshold hillslopes, and denudation rates in a developing mountain range. 
Geology 35, 743-746. 

 
Briggs, G.G., 1994. Coastal crossing of the elastic strain zero-isobase, Cascadia margin, 

south central Oregon coast. Portland State University. 
 



 

 40 

Burgette, R.J., Weldon, R.J., Schmidt, D.A., 2009. Interseismic uplift rates for western 
Oregon and along‐strike variation in locking on the Cascadia subduction zone. 
Journal of Geophysical Research: Solid Earth (1978–2012) 114. 

 
Clague, J.J., 1997. Evidence for large earthquakes at the Cascadia subduction zone. 

Reviews of Geophysics 35, 439-460. 
 
Cyr, A.J., Granger, D.E., Olivetti, V., Molin, P., 2010. Quantifying rock uplift rates using 

channel steepness and cosmogenic nuclide–determined erosion rates: Examples 
from northern and southern Italy. Lithosphere 2, 188-198. 

 
Darienzo, M., Peterson, C., 1995. Magnitude and frequency of subduction-zone 

earthquakes along the northern Oregon coast in the past 3,000 years. 
 
Darienzo, M.E., Peterson, C.D., 1990. Episodic tectonic subsidence of late Holocene salt 

marshes, northern Oregon central Cascadia margin. Tectonics 9, 1-22. 
 
DiBiase, R.A., Whipple, K.X., Heimsath, A.M., Ouimet, W.B., 2010. Landscape form 

and millennial erosion rates in the San Gabriel Mountains, CA. Earth and 
Planetary Science Letters 289, 134-144. 

 
Dietrich, W., Dunne, T., 1978. Sediment budget for a small catchment in a mountainous 

terrain. 
 
Dietrich, W.E., Bellugi, D.G., Sklar, L.S., Stock, J.D., Heimsath, A.M., Roering, J.J., 

2003. Geomorphic transport laws for predicting landscape form and dynamics. 
Prediction in geomorphology, 103-132. 

 
Dragert, H., Hyndman, R., Rogers, G., Wang, K., 1994. Current deformation and the 

width of the seismogenic zone of the northern Cascadia subduction thrust. Journal 
of Geophysical Research: Solid Earth (1978–2012) 99, 653-668. 

 
Duvall, A., Kirby, E., Burbank, D., 2004. Tectonic and lithologic controls on bedrock 

channel profiles and processes in coastal California. Journal of Geophysical 
Research: Earth Surface (2003–2012) 109. 

 
Flint, J., 1974. Stream gradient as a function of order, magnitude, and discharge. Water 

Resources Research 10, 969-973. 
 
Goldfinger, C., Nelson, C.H., Morey, a.E., Joel E, J., Patton, J., Karabanov, E., Gutierrez-

Pastor, J., Eriksson, A., Gracia, E., Dunhill, G., Enkin, R., Dallimore, A., Valiier, 
T., 2012. Turbidite Event History — Methods and Implications for Holocene 
Paleoseismicity of the Cascadia Subduction Zone. U.S. Geological Survey 
Professional Paper 1661-F, 170 p.-170 p. 

 



 

 41 

Graehl, N.A., Kelsey, H.M., Witter, R.C., Hemphill-Haley, E., Engelhart, S.E., 2015. 
Stratigraphic and microfossil evidence for a 4500-year history of Cascadia 
subduction zone earthquakes and tsunamis at Yaquina River estuary, Oregon, 
USA. Geological Society of America Bulletin 127, 211-226. 

 
Granger, D.E., Kirchner, J.W., Finkel, R., 1996. Spatially averaged long-term erosion 

rates measured from in situ-produced cosmogenic nuclides in alluvial sediment. 
The Journal of Geology, 249-257. 

 
Hack, J.T., 1973. Stream-profile analysis and stream-gradient index. Journal of Research 

of the US Geological Survey 1, 421-429. 
 
Harkins, N., Kirby, E., Heimsath, A., Robinson, R., Reiser, U., 2007. Transient fluvial 

incision in the headwaters of the Yellow River, northeastern Tibet, China. Journal 
of Geophysical Research: Earth Surface (2003–2012) 112. 

 
Heimsath, A.M., Dietrich, W.E., Nishiizumi, K., Finkel, R.C., 2001. Stochastic processes 

of soil production and transport: Erosion rates, topographic variation and 
cosmogenic nuclides in the Oregon Coast Range. Earth Surface Processes and 
Landforms 26, 531-552. 

 
Heller, P.L., Dickinson, W.R., 1985. Submarine ramp facies model for delta-fed, sand-

rich turbidite systems. AAPG Bulletin 69, 960-976. 
 
Howard, A.D., 1997. Badland morphology and evolution: Interpretation using a 

simulation model. Earth Surface Processes and Landforms 22, 211-227. 
 
Howard, A.D., Kerby, G., 1983. Channel changes in badlands. Geological Society of 

America Bulletin 94, 739-752. 
 
Hurtrez, J.E., Sol, C., Lucazeau, F., 1999. Effect of drainage area on hypsometry from an 

analysis of small‐scale drainage basins in the Siwalik Hills (Central Nepal). 
Earth Surface Processes and Landforms 24, 799-808. 

 
Hyndman, R., Wang, K., 1995. The rupture zone of Cascadia great earthquakes from 

current deformation and the thermal regime. Journal of Geophysical Research: 
Solid Earth (1978–2012) 100, 22133-22154. 

 
Kelsey, H.M., Ticknor, R.L., Bockheim, J.G., Mitchell, E., 1996. Quaternary upper plate 

deformation in coastal Oregon. Geological Society of America Bulletin 108, 843-
860. 

 
Kirby, E., Ouimet, W., 2011. Tectonic geomorphology along the eastern margin of Tibet: 

insights into the pattern and processes of active deformation adjacent to the 
Sichuan Basin. Geological Society, London, Special Publications 353, 165-188. 

 



 

 42 

Kirby, E., Whipple, K., 2001. Quantifying differential rock-uplift rates via stream profile 
analysis. Geology 29, 415-418. 

 
Kirby, E., Whipple, K.X., 2012. Expression of active tectonics in erosional landscapes. 

Journal of Structural Geology 44, 54-75. 
 
Kirby, E., Whipple, K.X., Tang, W., Chen, Z., 2003. Distribution of active rock uplift 

along the eastern margin of the Tibetan Plateau: Inferences from bedrock channel 
longitudinal profiles. Journal of Geophysical Research: Solid Earth (1978–2012) 
108. 

 
Koons, P.O., Kirby, E., 2007. The Role of Surface Processes in Fault Evolution. Tectonic 

Faults: Agents of Change on a Dynamic Earth 95, 205. 
 
Lague, D., Davy, P., 2003. Constraints on the long‐term colluvial erosion law by 

analyzing slope‐area relationships at various tectonic uplift rates in the Siwaliks 
Hills (Nepal). Journal of Geophysical Research: Solid Earth (1978–2012) 108. 

 
Lague, D., Davy, P., Crave, A., 2000. Estimating uplift rate and erodibility from the area-

slope relationship: Examples from Brittany (France) and numerical modelling. 
Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 25, 543-
548. 

 
Leonard, L.J., Hyndman, R.D., Mazzotti, S., 2004. Coseismic subsidence in the 1700 

great Cascadia earthquake: Coastal estimates versus elastic dislocation models. 
Geological Society of America Bulletin 116, 655-670. 

 
Lovell, J., 1969. Tyee Formation: a study of proximality in turbidites. Journal of 

Sedimentary Research 39. 
 
Mackin, J.H., 1948. Concept of the graded river. Geological Society of America Bulletin 

59, 463-512. 
 
Marshall, J.A., Roering, J.J., 2014. Diagenetic variation in the Oregon Coast Range: 

Implications for rock strength, soil production, hillslope form, and landscape 
evolution. 1395-1417. 

 
McCrory, P.A., Blair, J.L., Oppenheimer, D.H., Walter, S.R., 2004. Depth to the Juan de 

Fuca slab beneath the Cascadia subduction margin: A 3-D model for sorting 
earthquakes. US Department of the Interior, US Geological Survey. 

 
McNeill, L.C., Goldfinger, C., Kulm, L.D., Yeats, R.S., 2000. Tectonics of the Neogene 

Cascadia forearc basin: Investigations of a deformed late Miocene unconformity. 
Geological Society of America Bulletin 112, 1209-1224. 

 



 

 43 

Milliman, J.D., Syvitski, J.P., 1992. Geomorphic/tectonic control of sediment discharge 
to the ocean: the importance of small mountainous rivers. The Journal of 
Geology, 525-544. 

 
Montgomery, D.R., Buffington, J.M., 1997. Channel-reach morphology in mountain 

drainage basins. Geological Society of America Bulletin 109, 596-611. 
 
Nelson, A.R., 1992. Holocene tidal-marsh stratigraphy in south-central Oregon-Evidence 

for localized sudden submergence in the Cascadia subduction zone. 
 
Nelson, A.R., Jennings, A.E., Kashima, K., 1996. An earthquake history derived from 

stratigraphic and microfossil evidence of relative sea-level change at Coos Bay, 
southern coastal Oregon. Geological Society of America Bulletin 108, 141-154. 

 
Nelson, A.R., Ota, Y., Umitsu, M., Kashima, K., Matsushima, Y., 1998. Seismic or 

hydrodynamic control of rapid late-Holocene sea-level rises in southern coastal 
Oregon, USA? The Holocene 8, 287-299. 

 
Nelson, A.R., Personius, S.F., 1991. The potential for great earthquakes in Oregon and 

Washington; an overview of recent coastal geologic studies and their bearing on 
segmentation of Holocene ruptures, central Cascadia subduction zone. US 
Geological Survey. 

 
Ouimet, W.B., Whipple, K.X., Granger, D.E., 2009. Beyond threshold hillslopes: 

Channel adjustment to base-level fall in tectonically active mountain ranges. 
Geology 37, 579-582. 

 
Pavlis, T.L., Bruhn, R.L., 1983. Deep‐seated flow as a mechanism for the uplift of 

broad forearc ridges and its role in the exposure of high P/T metamorphic 
terranes. Tectonics 2, 473-497. 

 
Perron, J.T., Royden, L., 2013. An integral approach to bedrock river profile analysis. 

Earth Surface Processes and Landforms 38, 570-576. 
 
Personius, S.F., 1995. Late Quaternary stream incision and uplift in the forearc of the 

Cascadia subduction zone, western Oregon. Journal of Geophysical Research: 
Solid Earth (1978–2012) 100, 20193-20210. 

 
Peterson, C., Darienzo, M., 1989. Episodic, abrupt tectonic subsidence recorded in late 

Holocene deposits of the South Slough syncline: An on-land expression of shelf 
fold belt deformation from the southern Cascadia margin, Geological Society of 
America Abstracts with Programs, p. 129. 

 
Plafker, G., 1969. Tectonics of the March 27, 1964, Alaska earthquake. US Government 

Printing Office. 
 



 

 44 

Plafker, G., Savage, J., 1970. Mechanism of the Chilean earthquakes of May 21 and 22, 
1960. Geological Society of America Bulletin 81, 1001-1030. 

 
Reid, H.F., 1910. The mechanics of the earthquake. Carnegie institution of Washington. 
 
Reneau, S.L., Dietrich, W.E., 1991. Erosion rates in the southern Oregon Coast Range: 

Evidence for an equilibrium between hillslope erosion and sediment yield. Earth 
Surface Processes and Landforms 16, 307-322. 

 
Roering, J.J., 2008. How well can hillslope evolution models “explain” topography? 

Simulating soil transport and production with high-resolution topographic data. 
Geological Society of America Bulletin 120, 1248-1262. 

 
Roering, J.J., Kirchner, J.W., Dietrich, W.E., 2001. Hillslope evolution by nonlinear, 

slope‐dependent transport: Steady state morphology and equilibrium adjustment 
timescales. Journal of Geophysical Research: Solid Earth (1978–2012) 106, 
16499-16513. 

 
Roering, J.J., Kirchner, J.W., Dietrich, W.E., 2005. Characterizing structural and 

lithologic controls on deep-seated landsliding: Implications for topographic relief 
and landscape evolution in the Oregon Coast Range, USA. Geological Society of 
America Bulletin 117, 654-668. 

 
Roering, J.J., Marshall, J., Booth, A.M., Mort, M., Jin, Q., 2010. Evidence for biotic 

controls on topography and soil production. Earth and Planetary Science Letters 
298, 183-190. 

 
Satake, K., Shimazaki, K., Tsuji, Y., Ueda, K., 1996. Time and size of a giant earthquake 

in Cascadia inferred from Japanese tsunami records of January 1700. Nature 379, 
246-249. 

 
Schwanghart, W., Scherler, D., 2013. Short Communication: TopoToolbox 2 – an 

efficient and user-friendly tool for Earth surface sciences. Earth Surf. Dynam. 
Discuss. 1, 261-275. 

 
Snavely, P.D., Wagner, H.C., MacLeod, N.S., 1964. Rhythmic-bedded eugeosynclinal 

deposits of the Tyee formation, Oregon Coast Range. Kansas Geological Survey 
Bulletin 169, 461-480. 

 
Snyder, N.P., Whipple, K.X., Tucker, G.E., Merritts, D.J., 2000. Landscape response to 

tectonic forcing: Digital elevation model analysis of stream profiles in the 
Mendocino triple junction region, northern California. Geological Society of 
America Bulletin 112, 1250-1263. 

 
 



 

 45 

Snyder, N.P., Whipple, K.X., Tucker, G.E., Merritts, D.J., 2003a. Channel response to 
tectonic forcing: field analysis of stream morphology and hydrology in the 
Mendocino triple junction region, northern California. Geomorphology 53, 97-
127. 

 
Snyder, N.P., Whipple, K.X., Tucker, G.E., Merritts, D.J., 2003b. Importance of a 

stochastic distribution of floods and erosion thresholds in the bedrock river 
incision problem. Journal of Geophysical Research: Solid Earth (1978–2012) 108. 

 
Stock, J., Dietrich, W.E., 2003. Valley incision by debris flows: Evidence of a 

topographic signature. Water Resources Research 39. 
 
Stock, J.D., Dietrich, W.E., 2006. Erosion of steepland valleys by debris flows. 

Geological Society of America Bulletin 118, 1125-1148. 
 
Thatcher, W., 1984. The earthquake deformation cycle, recurrence, and the time‐

predictable model. Journal of Geophysical Research: Solid Earth (1978–2012) 89, 
5674-5680. 

 
Tucker, G.E., Bras, R.L., 1998. Hillslope processes, drainage density, and landscape 

morphology. Water Resources Research 34, 2751-2764. 
 
Wang, K., Hu, Y., He, J., 2012. Deformation cycles of subduction earthquakes in a 

viscoelastic Earth. Nature 484, 327-332. 
 
Whipple, K.X., 2004. Bedrock rivers and the geomorphology of active orogens. Annu. 

Rev. Earth Planet. Sci. 32, 151-185. 
 
Whipple, K.X., Tucker, G.E., 1999. Dynamics of the stream‐power river incision 

model: Implications for height limits of mountain ranges, landscape response 
timescales, and research needs. Journal of Geophysical Research: Solid Earth 
(1978–2012) 104, 17661-17674. 

 
Whittaker, A.C., Cowie, P.A., Attal, M., Tucker, G.E., Roberts, G.P., 2007. Contrasting 

transient and steady‐state rivers crossing active normal faults: New field 
observations from the Central Apennines, Italy. Basin Research 19, 529-556. 

 
Witter, R.C., Kelsey, H.M., Hemphill-Haley, E., 2003. Great Cascadia earthquakes and 

tsunamis of the past 6700 years, Coquille River estuary, southern coastal Oregon. 
Geological Society of America Bulletin 115, 1289-1306. 

 
Wobus, C., Whipple, K.X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, 

B., Sheehan, D., 2006a. Tectonics from topography: Procedures, promise, and 
pitfalls. Geological Society of America Special Papers 398, 55-74. 

 



 

 46 

Wobus, C.W., Hodges, K.V., Whipple, K.X., 2003. Has focused denudation sustained 
active thrusting at the Himalayan topographic front? Geology 31, 861-864. 

 
Wobus, C.W., Whipple, K.X., Hodges, K.V., 2006b. Neotectonics of the central Nepalese 

Himalaya: Constraints from geomorphology, detrital 40Ar/39Ar 
thermochronology, and thermal modeling. Tectonics 25. 

 

 


