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DISSERTATION ABSTRACT

Joseph William Loubert
Doctor of Philosophy
Department of Mathematics
June 2015

Title: Affine Cellularity of Finite Type KLR Algebras, and Homomorphisms Between
Specht Modules for KLR Algebras in Affine Type A

This thesis consists of two parts. In the first we prove that the Khovanov-
Lauda-Rouquier algebras R, of finite type are (graded) affine cellular in the sense
of Koenig and Xi. In fact, we establish a stronger property, namely that the affine
cell ideals in R, are generated by idempotents. This in particular implies the
(known) result that the global dimension of R, is finite.

In the second part we use the presentation of the Specht modules given by
Kleshchev-Mathas-Ram to derive results about Specht modules. In particular, we
determine all homomorphisms from an arbitrary Specht module to a fixed Specht
module corresponding to any hook partition. Along the way, we give a complete
description of the action of the standard KLR generators on the hook Specht
module. This work generalizes a result of James.

This dissertation includes previously published coauthored material.
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CHAPTER I

INTRODUCTION

There is a collection of Z-graded algebras defined by Khovanov and Lauda
(14; 15) and Rouquier (32), called Khovanov-Lauda-Rouquier algebras. For every
Lie type I there is a corresponding KLR algebra R := R(I'), categorifying the
upper half of the quantum group of type I'. The theory of proper standard modules
for KLR algebras of finite Lie type was established by Kleshchev and Ram (21)
and in more generality by McNamara (30). These modules categorify the dual
PBW basis. Koenig and Xi introduce the concept of affine cellular algebras in (24).
This extends the usual theory of finite-dimensional cellular algebras to infinite-
dimensional algebras. In particular, one gets a theory of standard modules and
proper standard modules for any affine cellular algebra. Kleshchev defines the
related notions of affine highest weight categories and affine quasthereditary algebras
n (23). Such algebras have many nice properties; for instance under some natural
assumptions these algebras have finite global dimension. The first of our two main
theorems in this paper establishes the affine cellularity and affine quasiheredity of
KLR algebras of finite types. This work is joint with Alexander Kleshchev.

Let &,, denote the symmetric group on n letters, and F' any field. Brundan
and Kleshchev (1) put a nontrivial Z-grading on the group algebras F'S,, and
Hecke algebras for complex reflection groups of type G(I, 1, d), which include
symmetric groups. The Brundan-Kleshchev grading comes from an isomorphism
between the Iwahori-Hecke algebras H, and certain cyclotomic quotients R*
of KLR algebras in (affine) type A. The Specht modules S* were first given a

compatible grading by Brundan, Kleshchev and Wang (4). Kleshchev, Mathas,
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and Ram (20) provide a presentation for the Specht modules as modules over the
full KLR algebra R, thus redefining these classical objects purely in the context of
the KLR algebras. Our second main theorem determines Hom(S*, S*) when \ is a

hook.

Affine Cellularity of KLR Algebras of Finite Types

The content of chapter II has already been published as (18). The goal of
chapter II is to establish (graded) affine cellularity in the sense of Koenig and Xi
(24) for the Khovanov-Lauda-Rouquier algebras R, of finite Lie type. In fact, we
construct a chain of affine cell ideals in R, which are generated by idempotents.
This stronger property is analogous to quasi-heredity for finite dimensional
algebras, and by a general result of Koenig and Xi (24, Theorem 4.4), it also
implies finiteness of the global dimension of R,. Thus we obtain a new proof of
(a slightly stronger version of) a recent result of Kato (13) and McNamara (30)
(see also (3)). As another application, one gets a theory of standard and proper
standard modules, cf. (13),(3). It would be interesting to apply this paper to prove
the conjectural (graded) cellularity of cyclotomic KLR algebras of finite types.

Our approach is independent of the homological results in (30), (13) and (3)
(which relies on (30)). The connection between the theory developed in (3) and
this paper is explained in (23). This paper generalizes (19), where analogous results
were obtained for finite type A.

We now give a definition of (graded) affine cellular algebra from (24,
Definition 2.1). Throughout the paper, unless otherwise stated, we assume that
all algebras are (Z)-graded, all ideals, subspaces, etc. are homogeneous, and all

homomorphisms are homogeneous degree zero homomorphisms with respect to the



given gradings. For this introduction, we fix a noetherian domain k& (later on it will
be sufficient to work with k& = 7Z). Let A be a (graded) unital k-algebra with a
k-anti-involution 7. A (two-sided) ideal J in A is called an affine cell ideal if the

following conditions are satisfied:

2. there exists an affine k-algebra B with a k-involution ¢ and a free k-module
V' of finite rank such that A := V ®, B has an A-B-bimodule structure, with
the right B-module structure induced by the regular right B-module structure
on B;

3. let A" := B ®; V be the B-A-bimodule with left B-module structure induced
by the regular left B-module structure on B and right A-module structure
defined by

(b®v)a=s(t(a)(v®0D)), (1.1)

where s : V ®r B — B®, V, v ®b — b ® v; then there is an A-A-bimodule

isomorphism p : J = A ®p A/, such that the following diagram commutes:

J . A®p A (1.2)
T Lv@b@b’@wn—yw@a(b’)@a(b)@v

J - A@p A,

The algebra A is called affine cellular if there is a k-module decomposition A =
Ji®Jy® - @ J, with 7(J]) = J] for 1 <1 < n, such that, setting J,,, := @,", J/,

we obtain an ideal filtration

0:JOCJ1CJ2C"'CJn:A
3



so that each J,,/J,,_1 is an affine cell ideal of A/J,, ;.

To describe our main results we introduce some notation referring the reader
to the main body of the paper for details. Fix a Cartan datum of finite type, and
denote by &, = {f,...,On} the set of positive roots, and by @ the positive
part of the root lattice. For @ € ). we have the KLR algebra R, with standard
idempotents {e(z) | 2 € (I),}. We denote by II(«) the set of root partitions of c.
This is partially ordered with respect to a certain bilexicographic order ‘<’.

To any 7 € II(a) one associates a proper standard module A(7) and a word
i, € (I),. We fix a distinguished vector v; € A(r), and choose a set B, C R, so
that {bv- | b € B} is a basis of A(m). We define polynomial subalgebras A, C

R,—these are isomorphic to tensor products of algebras of symmetric polynomials.

We also explicitly define elements 6, D, € R, and set e, := D,6,. Then we set

I := k-span{be, A D, (V)" | b,V € B},

Io.=> . I' and I.. = > __ _I'. Our main results are now as follows

o> o) o>t o”

Main Theorem. The algebra R, is graded affine cellular with cell chain given by
the ideals {I, | m € II(a)}. Moreover, for a fived m € II(a), we set Ry = Ry/Isy

and h := h+ I, for any h € R,. We have:

() Ir = Yo Ruclin) Ras

(ii) é; is an idempotent in Ry;

(iii) the map A, — erxRuaCr, [ erfex is an isomorphism of graded algebras;
(iv) Raéy is a free right &; Ro€r-module with basis {bé, | b € B, };

(v) exRy is a free left e, Roer-module with basis {e; D b" | b € B, };
4



(vi) multiplication provides an isomorphism

— ~ — —

Raéﬂ ®é,,1_%aé7r éﬂRa — RaéwRa;

(Vi) RobrRo = I;/Isy.

(viil) For each m € Il(«), let X be a homogeneous basis of Ar. Then

{bexfD(V)" | w € II(a), bb" € By, [ Xr}

1s @ homogeneous k-basis for R,,.

We give an example that the reader can consult with while reading this paper

further.

Example. Let the Cartan datum be of type By, and a = a3 + 2as. The set I1(a)
has three elements: m; := (a3, ), T = (9, a1 + o), and 73 := (a1 + 2a3).

For m; we have: A(m) = L(ag)®?0L(a;). The modules L(a;) and L(aw) are 1-
dimensional with basis elements v, and v, respectively, and v, =9 ®v,, Q@v,, &

vy, We have B, = {1,192, Y1102, Y2, a2y, ¥1¢2y2}. The algebra A, is Ay ® klys],

where A, denotes the symmetric polynomials [y, y»]%2. Finally, D, = v¥1e(2,2,1),
O, = y2€(2,2,1), and e,, = ¥1y0e(2,2,1).
For 1y we have: A(my) = L(ay) o L(ay + ay). The module L(ag + ap) is 1-

dimensional with basis element v, and v, = 1@ v,, @ V4 1a,- We have B, =

a1+ag?

{1,41, 10911 }. The algebra A, is kly1, ys]. Finally, e, = Dy, = 6., = €(2,1,2).
For 73 we have: A(m3) = L(a; + 2a3). The module L(a; + 2ay) is 2-

dimensional with basis {v;, 94, ¥3Va, 120, > a0d V5, = Uy 1o,,. We have B, =



{1,y3}. The algebra A, is k[y1]. Finally, D, = 1¥»e(1,2,2), 6., = yse(1,2,2), and
er, = Voysze(l,2,2).
Main Theorem(vii) shows that each affine cell ideal I,./I~, in Ry /I~ is

generated by an idempotent. This, together with the fact that each algebra A, is

a polynomial algebra, is enough to invoke (24, Theorem 4.4) to get

Corollary. If the ground ring k has finite global dimension, then the algebra R,

has finite global dimension.

This seems to be a slight generalization of (13),(30),(3) in two ways: (13)
assumes that k is a field of characteristic zero (and the Lie type is simply-laced),
while (30),(3) assume that k is a field; moreover, (13),(30),(3) deal with categories
of graded modules only, while our corollary holds for the algebra R, even as an
ungraded algebra.

The paper is organized as follows. Section 2 contains preliminaries needed for
the rest of the paper. The first subsection contains mostly general conventions that
will be used. Subsection 2.1 goes over the Lie theoretic notation that we employ.
We move on in subsection 2.1 to the definition and basic results of Khovanov-
Lauda-Rouquier (KLR) algebras. The next two subsections are devoted to recalling
results about the representation theory of KLR algebras. Then, in subsection 2.1,
we introduce our notation regarding quantum groups, and recall some well-known
basis theorems. The next subsection is devoted to the connection between KLR
algebras and quantum groups, namely the categorification theorems. Finally,
subsection 2.1 contains an easy direct proof of a graded dimension formula for the

KLR algebras, cf. (3, Corollary 3.15).



Section 3 is devoted to constructing a basis for the KLR algebras that is
amenable to checking affine cellularity. We begin in subsection 2.2 by choosing
some special word idempotents and proving some properties they enjoy.

Subsection 2.2 introduces the notation that allows us to define our affine cellular
structure. This subsection also contains the crucial Hypothesis 2.2.9. Next,

in subsection 2.2, we come up with an affine cellular basis in the special case
corresponding to a root partition of that is a power of a single root. Finally, we use
this in the last subsection to come up with our affine cellular basis in full generality.

In section 4 we show how the affine cellular basis is used to prove that the
KLR algebras are affine cellular.

Finally, in section 5 we verify Hypothesis 2.2.9 for all positive roots in all
finite types. We begin in subsection 2.4 by recalling some results concerning
homogeneous representations. In subsection 2.4 we recall the definition of special
Lyndon orders and Lyndon words, which will serve as the special words of
subsection 2.2. The next subsection is devoted to verifying Hypothesis 2.2.9 in the
special case when the cuspidal representation corresponding to the positive root is
homogeneous. We then employ this in subsection 2.4 to show that the hypothesis
holds in simply-laced types. Finally, we have subsection 2.4, wherein we verify the

hypothesis by hand in the non-symmetric types.

Homomorphisms between Certain Specht Modules

Let H; be an Iwahori-Hecke algebra for the symmetric group &, with
deformation parameter ¢, over a field F'. Define e to be the smallest integer so that
14+q+---+q¢° 1 =0, setting e = 0 if no such value exists. To every partition \ of d,

there is a corresponding Specht module S* over Hy. Brundan and Kleshchev show



in (1) that H, is isomorphic to a certain algebra R%° known as a cyclotomic KLR
(Khovanov-Lauda-Rouquier) algebra of type Aél_)l when e # 0, and type A, when
e = 0. The Specht modules are described in (4) as modules over the cyclotomic
KLR algebras. This result is extended by Kleshchev, Mathas, and Ram in (20), in
which Specht modules for the (full) KLR algebras R, are explicitly defined in terms
of generators and relations. The purpose of chapter III is to use this presentation
to completely determine Hompg, (S*, S*) when p is an arbitrary partition and X is a
hook. Of course, when e = 0 there are no nontrivial homomorphisms. Furthermore,
our methods do not apply when e = 2, so we make the assumption that e > 3.

To state the main theorem, we need some notation. The element z# € S*
is the standard cyclic generator of weight ", see Definition 3.2.1. When the 2"-
weight space of S* is nonempty, it will turn out that its top degree component
is one-dimensional. In this case we take [0,] € S* to be any non-zero vector
of that component. For any weakly decreasing sequence of positive integers

a = (ay,...,ay) we define its Garnir content Ge(a) € F by

Gc(a):gcd{(z) |1 <k<a—1, 1§i§N—1}

with the convention that ged(2) = 0.

Main Theorem. Let p be an arbitrary partition and X\ = (d — k,1%) for k > 0.
Then Homg, (S*, S?) is at most one-dimensional, spanned by a map satisfying z*
[0,], and dim Homg, (5", S*) = 1 if and only if one of the following conditions

holds:



1. there existn € {1,...,k+1}, a € (Z=o)", and 0 < m < e such that Ge(a) =0
and

_ k—n-+1
p=(are,...,an_1€,a,e —m,1 ),

2. e divides d, there existn € {1,...,k}, a € (Z=o)", and 0 < m < e such that

Ge(a) =0 and

— k—n—+2
w=(are, ... an_1€,a,e —m,1 ), or

3. there existn >k +1, a € (Zsy)" and 0 < m < e such that Ge(a) =0 and

w=(are,...,ae,ap 1 —1,... a1 —1,a,e — 1 —m).

This theorem generalizes James (11, Theorem 24.4), which corresponds to
k = 0. Our Specht modules are the dual of the Specht modules defined in (11). We
note here that the main theorem also allows us to determine all homomorphisms
between Specht modules when the source is a hook, as follows; see (20) for details.
For any partition v we define v/ to be the conjugate partition and S, to be the dual

of S”. There is an automorphism sgn of Ry such that S, = (S¥)*8" and so

Hompg, (S*, SA) = Hompg, (Sy, S,) = Hode((S)‘,)Sgn, (S”/)Sgn)

>~ Hompg, (S, S").

Clearly, A is a hook if and only if X’ is.
Section 2 introduces the notation to be used throughout the paper. In

addition, we collect a few elementary facts which will be necessary in later sections.



Section 3 reviews the definitions of the affine and cyclotomic KLR algebras, and
their universal Specht modules as introduced in (20). Section 4 provides a study of
the structure of the Specht modules S*, where ) is a hook. Specifically, there is a
basis for S* given by standard tableaux on A, and in Theorem 3.3.3 we determine
how the generators of the KLR algebra act on this basis. In section 5, we look at
homomorphisms from an arbitrary Specht module S* to S*, where \ is a hook. In

section 6, we consider some examples.
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CHAPTER II

AFFINE CELLULARITY OF KLR ALGEBRAS

The content of this chapter has already been published as (18).

Preliminaries and a Dimension Formula

In this section we set up the theory of KLR algebras and their connection to
quantum groups following mainly (14) and also (21). Only subsection 2.1 contains

some new material.

Generalities

Throughout the paper we work over the ground ring O which is assumed
to be either Z or an arbitrary field F'. Most of the time we work over F' and then

deduce the corresponding result for Z using the following standard lemma

Lemma 2.1.1

Let M be a finitely generated Z-module, and {z,}aca a subset of M.
Then {z,} is a spanning set (resp. basis) of M if and only if {1r ® x,}

is a spanning set (resp. basis) of F' ®z M for every field F.

Let ¢ be an indeterminate, Q(q) the field of rational functions, and A :=
Zlq,q7'] € Q(q). Let ~: Q(¢) — Q(q) be the Q-algebra involution with ¢ = ¢~*,
referred to as the bar-involution. For f,g € Z[[q,q ]|, write f < g if and only if
9= f € Zxolla.q7']]-

For a graded vector space V. = @,z V,, with finite dimensional graded
components its graded dimension is dim, V :=3" . (dimV,)¢" € Z[[g, ¢~ "]).

11



For any graded F-algebra H we denote by H-Mod the abelian category
of all graded left H-modules, with morphisms being degree-preserving module
homomorphisms, which we denote by hom. Let H-mod denote the abelian
subcategory of all finite dimensional graded H-modules and H-proj denote the
additive subcategory of all finitely generated projective graded H-modules. Denote
the corresponding Grothendieck groups by [H-mod] and [H-proj|, respectively.
These Grothendieck groups are A-modules via ¢"[M] := [M(m)], where M (m)
denotes the module obtained by shifting the grading up by m: M(m),, := M,_,,.
Forn € Z,let Homy(M,N), = hompg(M(n), N) denote the space of

homomorphisms of degree n. Set Homy (M, N) := ,,., Homp (M, N),,.

Lie theoretic data

A Cartan datum is a pair (I, -) consisting of a set [ and a Z-valued symmetric
bilinear form ¢, j — i - j on the free abelian group Z[I| such that i -i € {2,4,6,...}
for all i € I and 2(i-5)/(i-i) € {0,—1,—2...} for all i # j in I. Set a;; :== 2(i-7)/(i-
i) for 4, j € I and define the Cartan matriz A := (a;j); jer- Throughout the paper,
unless otherwise stated, we assume that A has finite type, see (12, §4). We have
simple roots {; | ¢ € I}, and we identify a; with i. Let Q4 = €D, Z>o0;. For
a € @, we write ht(«) for the sum of its coefficients when expanded in terms of
the ;’s. Denote by ®, C @ the set of positive roots, cf. (12, §1.3), and by W the
corresponding Weyl group. A total order on &, is called convez if 8,v,8 +~v €
and f <y imply B < B+4+7 <.

Given 8 € Z[I], denote

BBY2 [n)g =

qs=q 8= (g5 — 3" /(g —q5"), [n] == [nlsln —1s...[1]s.



In particular, for i € I, we have g;, [n];, [n]}. Let A be a Q-graded Q(q)-algebra,
0 € A, fora € Q4+, and n € Z>i. We use the standard notation for quantum
divided powers: 6 := 6" /[n]"..

Denote by (I) := | |;5, ¢ the set of all tuples 4 = iy ...iq of elements of I,
which we refer to as words. We consider (I) as a monoid under the concatenation
product. If ¢ € (), we can write it in the form ¢ = ji" ... 5/ for jy,...,j, € I such

that js # jeu1 for all s =1,2,...,r — 1. Denote

. !

[3]! == [y [ma]; (2.1)
For ¢ = iy...4gset |t| := a;; + -+ + a;, € Q4. The symmetric group S; with
simple transpositions s, ..., s4_1 acts on I on the left by place permutations. The

Sq-orbits on I¢ are the sets (I), := {¢ € I? | |i| = o} parametrized by the elements

a € @ of height d.

Khovanov-Lauda-Rouquier algebras

Let A be a Cartan matrix. Choose signs ¢;; for all 4, j € I with a;; < 0 so that

;€51 = —1, and define the polynomials {Q;;(u,v) € Flu,v] | i,j € I}

0 if 1 = j;
Qij(u,v) =< 1 if a; = 0; (2.2)

Eij(u“‘” — ’U_aji) if i < 0.

13



In addition, fix @ € Q4 of height d. Let R, = R,(I', O) be an associative graded

unital O-algebra, given by the generators

{e(@) [ie (D} U{y, - yat U{n, ... Y}

and the following relations for all ¢,j € (/) and all admissible r, ¢:

e(i)e(g) = dije(d),  Dlieqn, €(d) = 1; (2.3)
yre(d) =e(D)yr: Yl = Yol (2.4)

Ure(d) = e(srt)ih; (2.5)

yrths = Usyr  (r#s,s+1); (2.6)

(Yethr = rys,(0)€(8) = 03y iy (Or1 — Orp)e(2); (2.7)
Ure(i) = Qi iy (Yrs Yra1)e(4) (2.8)

Vb = by (|r =t > 1); (2.9)

(wr+1wr¢r+l - wrwr+1w7‘)e<i)

Qir,ir+1 (yr’+2’ y7"+1) — Qi“i”l (yr’ yH—l) 6(’1/)
Yr+2 — Yr

(2.10)
=6

ir'yir+2

The grading on R, is defined by setting:

deg(e(z>> - O’ deg(yre(7’>) - 7:7" : ira deg(¢re<z)) - _l.r : Z'r—‘rl‘

In this paper grading always means Z-grading, ideals are assumed to be

homogeneous, and modules are assumed graded, unless otherwise stated.

14



It is pointed out in (15) and (32, §3.2.4) that up to isomorphism the graded
QO-algebra R, depends only on the Cartan datum and «. We refer to the algebra
R, as an (affine) Khovanov-Lauda-Rouquier algebra. It is convenient to consider

the direct sum of algebras R = € R,. Note that R is non-unital, but it

aeQ+
is locally unital since each R, is unital. The algebra R, possesses a graded anti-

automorphism

T: Ry = Ry, v— 2" (2.11)

which is the identity on generators.
For each element w € S, fix a reduced expression w = s,, ...s,, and set
Yy = Yy, ..., . In general, 1, depends on the choice of the reduced expression of

w.

Theorem 2.1.2

(14, Theorem 2.5), (32, Theorem 3.7) The following set is an O-basis of

Ro: {wy™ ...y e(d) | w e Sy, ma,...,mq € Lo, T € (1)}

In view of the theorem, we have a polynomial subalgebra

Pd:O[yla"'vyd] C R,. (212)

Let v1,...,7 be elements of ), with v, +---+7, = a. Then we have a natural

embedding
by ey R% SO R”/z%Ra (2.13)

15



of algebras, whose image is the parabolic subalgebra R, . ., < R,. This is not a

77777

unital subalgebra, the image of the identity element of R,, ® --- ® R, being

An important special case is where @ = day; is a multiple of a simple root,
in which case we have that Ry, is the d'* nilHecke algebra Hy generated by

{Y1,. -y Ya, Y1, ..., %4_1} subject to the relations

Uy =0 (2.14)

Urihs = stpy  ifjr —s| > 1 (2.15)
Vrbr1tr = Yrp1 et (2.16)
Ulgs = ystby  if s AT+ 1 (2.17)
VrYr1 = Yrbr + 1 (2.18)
Yre1¥r = Uryr + 1. (2.19)

The grading is so that deg(y,) = «; - a; and deg(¢),) = —aq; - ;. Note that here the
elements 1, do not depend on a choice of reduced decompositions.

Let wy € G4 be the longest element, and define the following elements of Hy:

8d = Y23 - - - yif’l, eq := Vuwy04.

It is known that

6dwwo = ¢wo7 (220)

16



and in particular e4 is an idempotent, see for example (14, §2.2). The following is a
special case of our main theorem for the case where o = do;, which will be used in

its proof. It is known that the center Z(Hy) consists of the symmetric polynomials

Oly, .-, ya] ™.

Theorem 2.1.3

(19, Theorem 4.16) Let X be a O-basis of O[yi, ..., y4 and let
B be a basis of Olyi,...,y4] as an Ofyi, . . ., y4®-module. Then
{beqfihy, (V)" | b0 € B, f € X} is a O-basis of Hy.

Basic representation theory of R,

By (14), every irreducible graded R,-module is finite dimensional, and there
are finitely many irreducible R,-modules up to isomorphism and grading shift. For
t € (I),and M € R,-Mod, the ¢-word space of M is M; := e(¢)M. We have a
decomposition of (graded) vector spaces M = P, 1, Mi. We say that 4 is a word
of M if M; # 0.

We identify in a natural way:

[R-mod] = @ [R,-mod], [R-proj] = EB [R,-proj.

acQ+ acQ+

Recall the anti-automorphism 7 from (2.11). This allows us to introduce the
left R,-module structure on the graded dual of a finite dimensional R,-module
M-—+the resulting left R,-module is denoted M®. On the other hand, given any
left R,-module M, denote by M™ the right R,-module with the action given by

mx = 7(x)m for x € R,,m € M. Following (15, (14)), define the Khovanov-Lauda
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pairing to be the A-linear pairing

(+,-) : [Ra-proj] x [R4-proj] — A - HH

i€l a= 1 _ql

such that ([P],[Q]) = dim, (P™ ®g, Q).
Let o, 8 € Q4. Recalling the isomorphism ¢y 3 : R ® Rz = Rap € Rays,

consider the functors

Indaﬁ = Ra+51 BOR, 5 Rag Mod — Ra+5 Mod,

Resa,ﬂ = 104,,3R01+,3®Ra+5? : Ra+g—MOd — Rawg—MOd.

For M € R,-mod and N € Rg-mod, we denote M o N := Ind, s(M X N). The
functors of induction define products on the Grothendieck groups [R-mod] and
[R-proj] and the functors of restriction define coproducts on [R-mod] and [R-proj.
These products and coproducts make [R-mod] and [R-proj| into twisted unital and
counital bialgebras (14, Proposition 3.2).
Leti € Tandn € Zso. As explained in (14, §2.2), the algebra R,

has a representation on the polynomials Flyi, ..., y,] such that each y, acts as
multiplication by g, and each 1, acts as the divided difference operator 0, : f —
=T et P(i™) denote this representation of R, viewed as a graded R, -

Yr—Yr+1

module with grading defined by

deg(yy™ -+ yp™) = (i - ;) (my + -+ + my, —n(n —1)/4).
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By (14, §2.2), the left regular R, -module decomposes as P(i") = [n]\ - P(i™). In

particular, P(i™) is projective. Set

0™ .= Indy pa. (? B P(i™)) : Re-Mod — Rena,-Mod,

()™ := Hompg,  (P(i™),?) : Rayna;-Mod — R,-Mod,

where R, = 1® Rua;, € Rana,- These functors induce A-linear maps on the

corresponding Grothendieck groups:
92(”) : [Ra'proj] — [RoHrnai_prOj]a (@k)(n) : [RaJrnai'mOd] — [Ra'm()d]‘

Cluspidal and standard modules

Standard module theory for R, has been developed in (21; 9; 5; 30). Here we
follow the most general approach of McNamara (30). Fix a reduced decomposition
Wy = Sj, ... S, of the longest element wy € W. This gives a convex total order on

the positive roots

Oy ={B1 > >bn},

with Syi1-k = siy - Si,_, (i)

To every positive root f € @, of the corresponding root system ®, one
associates a cuspidal module L(). This irreducible module is uniquely determined
by the following property: if 4,7 € (), are non-zero elements such that § = § + ~
and Res;s,L(B) # 0, then ¢ is a sum of positive roots less than 5 and v is a sum of
positive roots greater than (.

A standard argument involving the Mackey Theorem from (14) and convexity

as in the proof of (3, Lemma 2.11), yields:
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Lemma 2.1.4

Let 8 € &, and ay,...,a, € Z>o. All composition factors of

.....

anﬁL(ﬁ)o(al+"'+an) are of the form L(ﬂ)oal K.-..X L(ﬂ)o‘l“_

Let o € Q4. A tuple m = (p1,...pn) € ZJZVO is called a root partition of « if
P11+ -+ pnPn = a. We also use the notation 7 = (57, ..., S5 ). For example,
if « = np for § € &, we have a root partition (5") € II(«). Denote by II(«) the
set of all root partitions of a. This set has two total orders: <; and <, defined as
follows: (p1,...,pn) <i (S1,...,8n) (resp. (p1,...,0N) <» (S1,...,8n)) if there
exists 1 < k < N such that p, < s and p,, = s, for all m < k (resp. m > k).

Finally, we have a bilexicographic partial order:

T<o<=r<cand7w <, 0 (m,0 € (a)). (2.21)

The following lemma is implicit in (30); see also (3, Lemma 2.5).
Lemma 2.1.5

Let f € &, and p € Z>(. Given any 7 € II(pf), we have m > (/7).

For a root partition m = (py,...,pn) € [I(a) as above, set sh(w) := Z]kvzl(ﬁk .

Br)pe(pr — 1)/4, and define the corresponding proper standard module

A(m) :== L(B1)P o0 L(Bn)PN (sh(m)). (2.22)

For m = (B, ..., B%Y), we denote

Res; := Resplﬁl ,,,,, PNBN*



Theorem 2.1.6

(30) For any convex order there exists a cuspidal system {L(3) | 8 €

. }. Moreover:

(i) For every m € II(«), the proper standard module A(7) has

irreducible head; denote this irreducible module L(r).

(ii) {L(m) | = € I(a)} is a complete and irredundant system of

irreducible R,-modules up to isomorphism.

(iv) [A(m): L(7)], = 1, and [A(7) : L(0)], # 0 implies o < 7.

(v) L(p)°™ is irreducible for every 8 € &, and every n € Z-q.

(vi) Res;A(c) # 0 implies 0 > 7, and Res,A(m) ~ L(f)" X --- X

L(Bn)°PN.

Note that the algebra R, (F) is defined over Z, i.e. Ry (F) ~ R, (Z) @z F. We
will use the corresponding indices when we need to distinguish between modules
defined over different rings. The following result shows that cuspidal modules are

also defined over Z:

Lemma 2.1.7

Let § € @4, and v € L(f)g be a non-zero homogeneous vector. Then
L(B)z == Rs(Z) - v C L(B)q is an Rg(Z)-invariant lattice such that

L(8)z @z F ~ L(S)r as Rg(F)-modules for any field F.

Proof.  Note using degrees that L()z is finitely generated over Z, hence it is a
lattice in L(f)q. Furthermore ch, L(8)z ®z F' = ch, L(/)q, whence by definition

of the cuspidal modules, all composition factors of ch, L(8)z @z F are of the form
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L(B)r. But there is always a multiplicity one composition factor in a reduction
modulo p of any irreducible module over a KLR algebra, thanks to (17, Lemma

4.7). O

Quantum groups

Following (27, Section 1.2), we define the algebra 'f to be the free Q(q)-

! in keeping with the

algebra with generators '0; for i € I (our ¢ is Lusztig’s v~
conventions of (14)). This algebra is @, -graded by assigning the degree a; to '0;
for each i € I, so that 'f = @ueq, fa. fz € 'f,, we write 2] = . For
i = (i1,...,1,) € (I), write'8; = "0, ...'0,,. Then {'0; | i € (I),}isa
basis for 'f,. In particular, each 'f, is finite dimensional. Consider the graded
dual 'f* := Paeq, ('fo)*. We consider words ¢ € (I) as elements of 'f*, so that
i('0;) = 0;;. That is to say, {¢ | ¢ € (I),} is the basis of 'f% dual to the basis
{0; i€ (1)},

Let 4f be the A-subalgebra of 'f generated by {('0;,)™ | i € I,n € Zsg}.
This algebra is Q4-graded by f = ®acq, sfa, where £, := £ N'f,. Given
i = jit..gmoe (I) with j, # jpyiforl < n < m, denote ;) =

('0;,)) ... (';,)") € /f. Then

{0 i€ (D).} (2.23)

is an A-basis of ,f,. We also define ,f* := {z € 'f* | z(4f) C A}, and assign it the

induced Q. -grading. For every a € @, the A-module ,f? is free with basis

{lZ)'i |2 € (1)} (2.24)
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dual to (2.23).

There is a twisted multiplication on 'f®'f given by (z®@y)(z@w) = ¢ W@
yw for homogeneous z,y, z,w € 'f. Let r: 'f — 'f®'f be the algebra homomorphism
determined by r('0;) ='0; @ 1 +1®'0; for all i € I. By (27, Proposition 1.2.3) there

is a unique symmetric bilinear form (-,-) on 'f such that (1,1) = 1 and

5
(/(91‘,/9]') = 1 o 5 fOI‘ Z,j € I,

(zy,2) = (x ®y,7(2)),

(2, 92) = (r(z),y ® 2),

where the bilinear form on 'f ® 'f is given by (x @ 2,y @ ¢/') = (z,y)(z',¥/).

Define f to be the quotient of 'f by the radical of (-,-). Denote the image of
'0; in f by 6;. The Q,-grading on 'f descends to a Q-grading on f with |0;] = 1.
Let 4f be the A-subalgebra of f generated by 9§") for ¢ € I,n € Z>(. This algebra
is Q;-graded by 4f, = ,£Nf,. Giveni = ji*...j50m € (I) with j, # j,41 for
1 <n < m, denote 0; :== 07 ...0;" and

Oy =0 .6 € L f. (2.25)

JIm

We recall the definition of the PBW basis of 4f from (27, Part VI). Recall
that a reduced decomposition wy = s;, ...s;, yields a total order on the positive
roots &, = {8, > --- > pn}, with Bny1-k = Siy ... 5i,_, (s, ). Now, embed ,f
into the upper half of the full quantum group via 6, — FE; and take the braid group
generators T; := T}, from (27, 37.1.3). For 1 <k < N, we define

EﬁN+17k = Til .- Ek—l(elk) € AfﬁNka'
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For a sequence m = (py,...py) € Z]ZVO, we set

and also define

Iy = HH1 ! -~ (2.26)

The next theorem now gives a PBW basis of ,f,.

Theorem 2.1.8

The set {E, | m € II(a)} is an A-basis of 4f,. Furthermore:

(Ewa Eo) = 57r,0l71"

Proof.  This follows from Corollary 41.1.4(b), Propositions 41.1.7, 38.2.3, and

Lemma 1.4.4 of Lusztig (27). O

Consider the graded dual £* := ®,cq f;. The map r* : £* ® f* — £* gives f*

the structure of an associative algebra. Let
Ko 1 (2.27)

be the map dual to the quotient map £ : 'f—-f. Set f* := {z € £* | z(,f) C A}
with the induced );-grading. Given ¢ € I, we denote by 6/ : £* — f* the dual map
to the map f — f, o~ 26;. Then the divided power (67)™ : f* — f* is dual to the

map r — m@l(n). Clearly (07)™ stabilizes ,f*. For 8 € @, define Ej € 4f} to be
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dual to E3. We define
(Ep)m = qg<m—1>/2(E;)m and  Er = (E5)®) .. (B, )P (2.28)

for m > 0, and any sequence 1 = (py,...pN) € Z]ZVO. The next well-known result

gives the dual PBW basis of ,f*.

Theorem 2.1.9

The set {E} | m € II(«)} is the A-basis of 4f¥ dual to the PBW basis of

Theorem 2.1.8.

Proof. 1t easily follows from the properties of the Lusztig bilinear form, the
definition of the product on f* and Theorem 2.1.8 that the linear functions (F,, —)

and [ E* on f are equal. It remains to apply Theorem 2.1.8 one more time. O

Example 2.1.10

Let C' = Ay, and wy = s15251. Then Ey, 1o, = 17, (F2) = E1Ey — qEy By,
and, switching back to 6’s, the PBW basis of 4f,, 44, is {6261, 6102 —
q620,}. Using the defining properties of Lusztig’s bilinear form, one can
easily check that (Eu,Ea,, Fa,Fa,) = ﬁ, (Eortass Bartas) = (1,—1(12)7

and (Eay,Fayy Eayta,) = 0. Finally the dual basis is {(12), (21) + ¢(12)}.

Categorification of 4f and ,£*

Now we state the fundamental categorification theorem proved in (14; 15),
see also (32). We denote by [Ro| the class of the left regular representation of the

trivial algebra Ry = F'.
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Theorem 2.1.11

There is a unique A-linear isomorphism v : ,f = [R-proj] such that
1 [Ry) and v(z6™) = 6™ (v(z)) for all z € 4f,i € I, and n > 1.

Under this isomorphism:
(1) v(afa) = [Ra-projj;

2) the multiplication ,f, ® ,fz — ,4f,.5 corresponds to the product
A Alp = alatp

on [R-proj] induced by the exact functor Ind, g;
(3) for ¢ € (I), we have v(0;) = [Rne(2)];
(4) for 2,y € 4f we have (2,y) = (v(2),7(y))-

Let M be a finite dimensional graded R,-module. Define the g-character of

M as follows:

chy M := > (dim, M;)i € 4f*.
ie(l),

The g-character map ch, : R,-mod — 4f* factors through to give an A-linear map

from the Grothendieck group
ch, : [Ro-mod] — 4f*. (2.29)

We now state a dual result to Theorem 2.1.11, see (21, Theorem 4.4).

Theorem 2.1.12

There is a unique A-linear isomorphism v* : [R-mod] = ,f* with the
following properties:
(1) v ([Ro]) = 1;

(2) 7 ((67)" () = (67)"™(y*(2)) for all @ € [Rmod], i € I, n > 1
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(3) the following triangle is commutative:

! px
af

TN
*

[R-mod] ! f

(4) v*([Ro-mod]) = 4 for all v € Q;
(5) under the isomorphism ~*, the multiplication 4f}, ® ,f5 — 45,4
corresponds to the product on [R-mod] induced by Ind, g;
We conclude with McNamara’s result on the categorification of the dual

PBW-basis (see also (13) for simply laced Lie types):

Lemma 2.1.13

For every 7 € II(a) we have v*([A(n)]) = E=.

T

Proof. By (30, Theorem 3.1(1)), we have v*([L(8)]) = Ej for all 3 € ®,. The
general case then follows from Theorem 2.1.12(5) and the definition (2.22) of A(r).

O

A dimension formula

In this section we obtain a dimension formula for R,, which can be viewed as
a combinatorial shadow of the affine quasi-hereditary structure on it. The idea of
the proof comes from (2, Theorem 4.20). An independent but much less elementary
proof can be found in (3, Corollary 3.15).

Recall the element ;) € 4f from (2.25) and the scalar [3]! € A from (2.1). We
note that Lemma 2.1.14 and Theorem 2.1.15 do not require the assumption that the

Cartan matrixz A is of finite type, adopted elsewhere in the paper.
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Lemma 2.1.14

Let V1,..., V™ € R,mod, and let v" := ~*([V"]) € ,f for
n = 1,...,m. Assume that {v',... o™} is an A-basis of ,f7. Let

{vi,...,vn} be the dual basis of 4f,. Then for every ¢ € (I)_, we have

in: dlmq V”

Proof.  Recall the map k from (2.27) dual to the natural projection ¢ : 'f—f. By

Theorem 2.1.12 we have for any 1 < n < m:

w(0") = (7 (V) = chy (V) = 3 (dimg V)i = 3 %H'

ie(I),, ie(l),

Recalling (2.23) and (2.24), {"0¢) | i € (I),} and {[i]!s | i € (I),} is a pair of
dual bases in 4f, and 4f*. So, using our expression for x(v"), we can now get by

dualizing:

Oy = E(0) = Y v (€(0s)))vm
n=1
@ , - dim, V7
= ZR(U")( 0iy)vn = Z [ ?], L5115 ('05) )vn
n=1 n=1je&(I),, JI:
S dim, V" “ dim, V"
_Z [J]' €, n_z [’l,]' Un,

as required. O
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Theorem 2.1.15

With the assumptions of Lemma 2.1.14, for every ¢, j € (I)_, we have

dimy (e(é)Rae(5)) = > (dimg V;*)(dimy V}) (v, v).
n,k=1
In particular,
dim, (R,) = Z (dim, V™)(dim, V*)(v,, o).
n,k=1

Proof.  Theorem 2.1.11(3) shows that [R.e(z)] = v(0;) = v([2]!0)). Using the

definitions and Theorem 2.1.11(4), we have

dim, (e(i) Rae(§)) = dim, ((Rae())” @, Rae(3))

= ([Rae(d)], [Rae(3)]) = ([¢]'00), [5]'05))-

Now, by Lemma 2.1.14 we see that

m n

(16166, [3]105) = (D (dim, V" on, > (dim, V) ).

n=1 k=1
which implies the theorem. O

Recall the scalar [; from (2.26), the module A(x) from (2.22), and PBW-basis

elements F, from §2.1.
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Corollary 2.1.16

For every ,j € (I),, we have

dimg (e(é)Rae(5)) = > (dimy A(7);)(dimg A(w);)Lr.

mell(a)

In particular,

dim, (Re) = Y (dimy A(7))?Ls.

mell(a)

Proof. By Lemma 2.1.13, we have v*(A(w)) = E? for all 7 € II(a). Moreover,
by Theorem 2.1.9, {E* | # € Il(«)} and {E, | 7 € II(«)} is a pair of dual bases
in 4f* and ,f,. Finally, (E,, E;) = .0, by Theorem 2.1.8. It remains to apply

Theorem 2.1.15. 0O

Affine Cellular Structure

Throughout this section we fix & € @ and a total order < on the set II(«) of

root partitions of «, which refines the bilexicographic partial order (2.21).

Some special word idempotents

Recall from Section 2.1 that for each 8 € &, , we have a cuspidal module
L(B). Every irreducible R,-module L has a word space L; such that the lowest
degree component of L; is one-dimensional, see for example (17, Lemma 2.30) or (3,
Lemma 4.5) for two natural choices. From now on, for each § € &, we make an

arbitrary choice of such word s for the cuspidal module L(f).
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For m = (B, ..., B%) € II(«v), define

sy  .__ D1 yPN
Ur =g ... 15},

L. = Z Rue(i,) R,

o>T

I, = Z R,e(i5) Ry,

o>T

the sums being over o € II(a). We also consider the (non-unital) embedding of
algebras:

e = lp1p1,...pNBN * Rp1ﬁ1 Q- ® RPN,BN(—>R0¢7

whose image is the parabolic subalgebra

Rr = 181, PNBN -

Lemma 2.2.1
If a two-sided ideal J of R, contains all idempotents e(i,) with 7 €
II(a), then J = R,

Proof. If J # R,, let I be a maximal left ideal containing J. Then R, /I = L(7)
for some w. Then e(2,)L(m) # 0, which contradicts the assumption that e(z,) € J.

This argument proves the lemma over any field, and then it also follows for Z. O

Lemma 2.2.2

Let 7 € II(a) and e € R, a homogeneous idempotent. If eL(c) = 0 for

all o0 < 7, then e € I..

Proof.  Let I be any maximal (graded) left ideal containing I~,. Then R, /I =

L(o) for some o € II(«) such that ¢ < m. Indeed, if we had ¢ > 7 then by
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definition e(i,) € I., C I, and so e(i,)L(0) = e(i,)(Ry/I) = 0, which is a
contradiction.

We have shown that e is contained in every maximal left ideal containing I-.
By a standard argument, explained in (19, Lemma 5.8), we conclude that e € I-.

|

Corollary 2.2.3

Suppose that a = pf for some p > 1 and f € ®,. Let ¢ € (I),. If

e(1)L(BP) = 0, then e(2) € I (gr).

Proof.  This follows from Lemma 2.1.5 together with Proposition 2.2.2. O

Lemma 2.2.4

Let m = (61" ... B%Y) € II(a). Then R, C I,.

Proof. By Lemma 2.2.1, we have

anﬁn - Z anﬂne(iﬂ'("))anﬁn

7™ €Tl (pBn)

for all n =1,..., N. Therefore the image of ¢+, equals

> Reeliz) .. i) Ra (2.30)

where the sum is over all 7! € I(p1f1),...,7™) € H(pyBy). Fix 7™ € T(p,f,)
forallm = 1,...,N. If 7™ = (B2) for every n, then 4_q)...4 vy = i, and the
corresponding term of (2.30) is in I, by definition.

Let us now assume that 7 £ (87*) for some k. In view of Lemma 2.1.5, we

have 7¥) > (8P*). For any o € II(a) we have e(i,q) . ..i.v)A(0) C Res A(0),
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and by Theorem 2.1.6(vi), if ¢ < 7 then Res,A(c) = 0. Furthermore, for 0 = 7 we

have, by Theorem 2.1.6(vi) applied again

e(tr) - ) )A(T) = e(dr0) - . Grvy )Resr A(m)
=e(i,a) ... iW(N))(A(ﬂfl) X-. X A( %N))

C (Res,mA(B1")) K- - K (Res,n A(BRY)),

which is zero since Res,mA(By*) = 0 by Theorem 2.1.6(vi) again. We have
shown that for all o < 7 we have e(i,q) ...4.m)A(c) = 0, and consequently
e(i ... .1 )L(c) = 0. Applying Lemma 2.2.2, we have that e(i.q)...%,.x)) €

I..CI.. 0O

The following result will often allow us to reduce to the case of a smaller

height.

Proposition 2.2.5

Let v1,...,%m € Q4,1 < k < m,and my € II(~;). Assume that

m € I(y + -+ 4 vm) is such that all idempotents from the set

E={e(i,0...9,m)| 7™ €l(y,) foralln=1,...,m and 7 > 7y}

annihilate the irreducible modules L(o) for all o < 7. Then

by ..., ’Ym(R’Yl Q- R’qu ® I>7F0 ® R’Yk+1 - R’Ym) - [>7T' (2'31)

Proof.  We may assume that 7, # 0 since otherwise I~,, = 0, and the result

is clear. By Lemma 2.2.1, we have R, = > (¢, [n€(ixm) Ry, for all n =
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1,...,m, and by definition, we have I-,, = > R, e(i,m )R, . Therefore the

(k) >0

left hand side of (2.31) equals ) .p Ry, 468, .- The result now follows by

applying Lemma 2.2.2. O

Recall from Lemma 2.2.4 that im(¢,) C L.

Corollary 2.2.6

Let m = (B, ...,0%) € I(a) and 1 < k < N. Then
L7r<Rp161 Q- ® Rpk—lﬁk—l ® I>(BZ’“) ® Rpk+1,8k+1 Q& RpNBN) C Ir.

In particular, the composite map R, —~ I, — I,/I- factors through

the quotient Ry, g, /1, (gr1) ® -+ ® RPNBN/I>(511’)VN).

Proof.  Apply Proposition 2.2.5 withm = N, v, = p,8,, for1 < n < N,
m = (BY%), and 1 = w. We have to prove that any e = e(¢,q)...%,n) € E
annihilates all L(o) for ¢ < 7. We prove more, namely that e annihilates A(c) for

all o < w. By Theorem 2.1.6(vi):

eA(0) = eRes; A(0) = e o (L(B1)P* K- - K L(S;)°"")

= (57“0 6(’1:7T(1))L(51>Op1 IE v X’ 6(iﬂ(N)>L(ﬁN>OpN,

which is zero since

e(r0 ) L(Br)P* = e(im )Res o L(Pr)P* =0

by Theorem 2.1.6(vi) again. O
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Corollary 2.2.7

For g € ®, and a,b,c € Z>( we have

Laﬁ,bﬁ,cﬁ(Rag ® [>(5b) ® Rcﬁ) - [>(,8a+b+c)'

Proof. ~ We apply Proposition 2.2.5 with m = 3, k =2, 4 = a8, 72 = b8, 73 = ¢0,
7o = (B°) and m = (B4T0+¢). Pick an idempotent ¢ = e(i,.1)%,2 %) € E. Since
is the minimal element of II((a + b + ¢)3), it suffices to prove that eL(mw) = 0. Note
that eL(m) = eResuppp.esL(m), so using Lemma 2.1.4, we just need to show that

e(L(8)** B L(8)* K L(5)**) = 0. But

e(L(B)** B L(B)*" W L(B)™) = e(4r ) L(B)** B e(ina) L(B)™ B e(ir) L(B)*

is zero, since e(2,))L(3)*° = e(i,2 )Res, @ L(3)°?® = 0 by Theorem 2.1.6(vi). O
Repeated application of Corollary 2.2.7 gives the following result.

Corollary 2.2.8

For 8 € &, and p € Z-( we have

16,..8(Rg® - @ L5 ® - ® Rg) C I gn).

Basic notation concerning cellular bases

Let 8 be a fixed positive root of height d. Recall that we have made a choice
of 45 so that in the word space e(ig)L(5) of the cuspidal module, the lowest
degree part is 1-dimensional. We fix its spanning vector vy defined over Z, see

Lemma 2.1.7. Similarly, the highest degree part is spanned over Z by some vg.
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We consider the element of the symmetric group ws, € 6,4

d
wg, = [[((r = D+ k,rd + k).

k=1

which permutes the rth and the (r + 1)st ‘d-blocks’. Now define

Vg = Yuy, € Ryp.

Moreover, for u € &, with a fixed reduced decomposition v = s,, ...s,,, , define the

elements

W i= Wory -+ Wory, € Gpa,

Vs =V - Vs € Rpp.
In Section 2.4, we will explicitly define homogeneous elements
0, Ds, ys € elig)Rge(ip)

and eg := Dgdg so that the following hypothesis is satisfied:

Hypothesis 2.2.9

We have:

(i) 6%3 —ep c ]>(5).
(i) dp, Ds and yg are T-invariant.
(ili) dpvy = vy and Dgvf = vy,

(iv) ys has degree /5 -  and commutes with dg and Dy,
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(v) The algebra (egRges + I-(g))/I>(s) is generated by egyges + I~ (g).
(vi) 18,8(Dp @ Dg)s1 = hpatps(Dp ® Dg).

From now on until we verify it in Section 2.4, we will work under the
assumption that Hypothesis 2.2.9 holds. It turns out that this hypothesis is

sufficient to construct affine cellular bases.

Lemma 2.2.10

Rpeplis + In(5) = Rp
Proof.  This follows as in the proof of Lemma 2.2.1 using egL(3) # 0. O

Fix p € Z~¢, and define the element
Vi) = Ve ® (v5)F € A(BP),
where wy € &, is the longest element. Using Lemma 2.1.7, we can choose a set
Br) C Ryp
of elements defined over Z such that
{bvigey | b € Ban)}
is an O-basis of L(/)a5. Define the elements

Yoo = Lr-1pa0-ns(1QYs ©1) € Rpg (1 <7 <p).
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Further, define the elements of Rz

egmp 1= g, g€, ..., €8), (2.32)
d(gr) = y572y§’3 o yg;%“_ﬁ(% ® - ®dz), (2.33)
Dgpy := Vganelp...s(Dp @ -+ ® Dg), (2.34)
egry = D(gr)d(ary = wg,woyg,gy;?, .. .yg;leﬂxp. (2.35)

It will be proved in Corollary 2.2.24 that e%ﬂp) — e(gry € Is(pry generalizing part (i)
of Hypothesis 2.2.9. Tt is easy to see, as in (19, Lemma 2.4), that there is always a

choice of a reduced decompositon of wq such that

U wo = Vo (2.36)
We have the algebras of polynomials and the symmetric polynomials:
Sp
Pry = Olys1,-..,ysp] and Agry = P(Bp) (2.37)

While it is clear that the ysz, commute, we do not yet know that they are
algebraically independent, but this will turn out to be the case. For now, one can
interpret A(gr) as the algebra generated by the elementary symmetric functions in
Ya1,---,Ysp. Note using Hypothesis 2.2.9(iv) that
AN |
dimg Ay < [[ —=- (2.38)

2s
s=1 1 - Q5
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Given a € @4 of height d and a root partition 7 = (A, ..., 58Y) € II(a) we
n 1 N

define the parabolic subgroup
Gr = Gpmea) X - X Gpyne(sy) € Ga,
and we denote by &7 the set of minimal left coset representatives of &, in &4. Set
Br = {Yulr(b1 ®---Qby) |w e &, b, € Bgeny forn=1,... N}

Using the natural embedding of L(£3;)"* X --- X L(Bx)°*N C A(rm), we define the

element

®"'®'U(

v =,

m = Vg ny € A(T)

which belongs to the word space of A(7) corresponding to the word
RS z‘gll zgx

From definitions we have

Lemma 2.2.11

Let € (). Then {bv; | b € B, } is a basis for A(r).

39



Define

Or 1= Lu(O(p1) @ - @ O(gnw)),

Dy := tx(Digry @ -+ @ Dygony),

er = tx(e(n) @ - - @ €grn)) = Drdy,
A(r) = ((Raer + Inr) [ Tsr){deg(vy)),
A'(7) := ((ex Ra + Isx) [ Isx)(deg(vy)),

A= ta(Mgry © - © Agry).
Note by (2.38) and (2.26) that
dimy Ar <. (2.39)

Choose also a homogeneous basis X for A,. The following lemma is a consequence

of Hypothesis 2.2.9(ii),(vi) and (2.36).

Lemma 2.2.12

We have D] = D, and d] = 9.

Powers of a single root

Throughout this subsection g € ®, and p € Z~ are fixed. Define o := pg,
and o := (p?) € ().
Define R, = R, /Iss, and given r € R, write 7 for its image in R,. The

following proposition is the main result of this subsection.

Proposition 2.2.13

We have that
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(i) {bfe, | b€ B,, f € X,} is an O-basis for A(o).
(ii) {esfDyb" | b € By, f € X, } is an O-basis for A'(0).

(iii) {be, fD, (V)" | b,b' € B,, f € X,} is an O-basis for R,.

(iv) The elements g1, ..., Yz, are algebraically independent.

The proof of the Proposition will occupy this subsection. It goes by induction
on pht(8) = ht(a). If 8 a simple root, then R, = R, is exactly the nil-Hecke
algebra, and we are done by Theorem 2.1.3. For the rest of the section, we assume
the Proposition holds with o = (7°) € II(s7y) whenever v € &, and sht(y) < pht(5)

and prove that it also holds for ¢ = (57). We shall also assume that O = F'is a

field, and then use Lemma 2.1.1 to lift to Z-forms.

Lemma 2.2.14

Assume that p = 1. Then Proposition 2.2.13 holds.

Proof.  Since L(f3) is the unique simple module in Rg-mod and

Homp, (A(B), L(B)) = esL(B) = Fug

is one-dimensional by Hypothesis 2.2.9, it follows that A(5) is the projective cover
of L(B) in Rg-mod under the map é5 vy . All composition factors of A(f3) are
isomorphic to L(f). Therefore, lifting the basis {bvy | b € Bs} of L(3) to A(B) we

see that A(3) is spanned by

{bo(es) | b € B, ¢ € Endp, (A(B))}.
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By Hypothesis 2.2.9(v), Endg, (A(8)) ~ esRsep is generated by ésyses = Y5
Thus

A(ﬁ) = F—span{gféﬁ | b e %5, fe Xﬁ}

Analogously, A’() is the projective cover of L(3)™ as right Rg-modules under
the map &3 — vy. As above, lifting the basis {vg Dsb” | b € B} of L(5)7 to A'(f)
we see that

A'(B) = F-span{eg fDsb" | b € By, f € Xz}

Therefore by Lemma 2.2.10 and Hypothesis 2.2.9(iv),
R/B = RﬁéﬁR/j = F—span{Béngg(l;')T | b, Ve B, [ € Xﬁ}.

Let m = (A", ..., B%) > (B). By definition and (14, Proposition 2.16) we

have

I, = Rﬁ@(’i,ﬂ)Rg + Isr

= > VuRne(in) Rt + Lon © Y Rt + g,

u,vES™ u,vEG™

because e(i,) € R,. The opposite inclusion follows from Lemma 2.2.4.

Forn=1,..., N, define

Bn = {be(ﬁgn)fD/Bgn (b,)T | b, b, S %(Bgn), f S X(Bﬁ")}'
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By part (iii) of the induction hypothesis, for n = 1,..., N, the image of B, in R, g,

is a basis. Let

B, = {Lﬂ-(bl R ® bN) ’ b, € %(ﬁfl), .. .,bN € %(5PNN)}.

By Corollary 2.2.6 and definitions from Section 2.2,

R+ I.;=F-span{i(m ®- - @ry) |rp € Byforn=1,... N} + I,

= F-span{be, D, (V') | b,b' € By, f € Xz} + Iox

and therefore

I, = F-span{tybes f D (V)07 | u,v € &7, 0,6 € By, f € X} + Lo

By definition of B, we have

I, = F-span{be, fD,.(b")" | b,V € B, f € Xy} + Ior, (2.40)
Ry = Y F-span{be.fD (V)" | b,V € B, f € X.}. (2.41)
mell(B)
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Using (2.39) and the equality deg(D,) = 2deg(v; ) for all 7 € II(5), we get

dimy(Rg) = Z dim, (F-span{be, fD, (V') | b, € B, f € X,})

mell(B)
Z (Z qdeg >d1m deg;(D7T (Z qdeg >
well(B beB beB
( qdeg (bvx) ) -
W; bEZ‘Bw
Z dim,(A(7))?l, = dim,(Rp),
mell(B

by Corollary 2.1.16. The inequalities are therefore equalities, and this implies that
the spanning set {be,fD,(b')" | m € II(B),b,b' € B, f € X} of Rg is a basis and
dim, A, = [ for all 7. These yield (iii) and (iv) of Proposition 2.2.13 in our special
case p = 1.

To show (i) and (ii), we have already noted that the claimed bases span
A(B) and A’(B), respectively. We now apply part (iii) to see that they are linearly

independent. O

Corollary 2.2.15

We have

(i) egRpép is a polynomial algebra in the variable gzés.
(ii) A(B) is a free right €5 Rzés-module with basis {bes | b € B4}
(iii) A’(B) is a free left 3 Rzes-module with basis {e5Dsb™ | b € B3}
Proof. By the lemma, we have Proposition 2.2.13 for p = 1. Now, (i) follows from
parts (i) and (iv) of the proposition. The remaining statements follow from parts
(i) and (ii) of the proposition. O
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Corollary 2.2.16

In the Grothendieck group, we have [A(3)] = [L(8)]/(1 — ¢3).

Lemma 2.2.17

Up to a degree shift, A(3)? = R,gésmp.

Proof. By Corollary 2.2.8 we have a map

By Frobenius reciprocity, we obtain a map

p: A(B)” — Rppégmn, 1g

.....

We now show that I- g A(B)°? = 0. It is enough to prove that Res,A(5)? =
for all 7 > (fP). Since all composition factors of A(J) are isomorphic to L(f), it

follows that all composition factors of A(f3)°P are isomorphic to L(5)°? = L(f?). By

.....

-----

-----

The homomorphisms g, v map the evident cyclic generators to each other, and so

are inverse isomorphisms. O

Lemma 2.2.18

There exists an endomorphism of A(8)oA() which sends 15 5®(€5®ep)

to Yp1ls s ® (éﬁ ® éﬁ).
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Proof.  Apply the Mackey theorem to Resg s(A(B) o A(B)). We get a short exact

sequence of Rz X Rg-modules

0 — A(B) BA(B) = Resg s(A(B) o A(B)) = (A(B) KAL) (=5 - B) =0,

where V31155 @ (€5 @ €3) € Resgg(A(B) o A(B)) is a preimage of the standard
generator of (A(B) KA(B))(—p - B).
We now show that this is actually a sequence of Rg X Rg-modules. It is

sufficient to show that for any 7 > (3), we have that

Res; g 0 Resp g(A(B) o A(S)) = 0 = Respr 0o Resg g(A(B) o A(B)).

We show the first equality, the second being similar. All composition factors
of A(p) are isomorphic to L(/3), so all composition factors of A(5) o A(S) are
isomorphic to L(5) o L(B), and thus all composition factors of Resg 3(A(8) o A(B))
are isomorphic to L(8) X L(/). Theorem 2.1.6 now tells us that Res,(L(3)) = 0 for
all T > ().

By the projectivity of A(8) as Rs-module, the short exact sequence splits,

giving the required endomorphism by Frobenius reciprocity. 0O

Corollary 2.2.19

T,E/&léﬁ&Q - éﬁ&2&57165®2 .

Proof.  Let ¢ be the endomorphism of A(5) o A(f) constructed in Lemma 2.2.18,

regarded as an endomorphism of Rwéﬁm by Lemma 2.2.17. Then

’Ij)@léﬁxm = gO(éﬁlzm) = @(é%gg) = éﬁﬁng(éﬁgz) = éﬁﬁz’&ﬁ,lé@z&,
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as required. 0O

Corollary 2.2.20

We have éﬁlﬁpé(ﬁp)éﬁ&p = é(ﬂp)

Proof.  Follows from (2.35), Corollary 2.2.19 and Hypothesis 2.2.9. O

Lemma 2.2.21

The set {€gmny3!; - - .ggf’p@/;&wéﬁxp | w e 6,,a1,...,a, > 0} gives a linear

basis of €gmp R,é 3% -

Proof.  The elements above are linearly independent by Lemmas 2.2.17 and
2.2.18, and Corollary 2.2.15. We use Frobenius reciprocity, Corollary 2.2.16, and

(3, Lemma 2.11) to see that

,,,,,

—5p(P=1)[ 11
=q;°"" lple/ (1 = @)
By the formula for the Poincaré polynomial of &,, we have shown that

—2l(w)
Zweep g

dlm e IleRaé Xp S 9
e (1—a3)r

showing that the proposed basis also spans. 0O

The next two lemmas are proved using ideas that already appeared in the

proofs of (3, Lemmas 3.7, 3.9).
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Lemma 2.2.22

We have that

@ngéﬂxp =0, for1<r<p-1,
@/;57T@/;57Séﬂgp = ﬁg,siﬁ/ﬂéﬁgp, for [r —s| > 1, and
&ﬂ,rl/_’ﬂ,r+11/_fﬁ,réﬁ@z7 = &ﬁ,mﬂﬁﬁ,ﬂﬁg,mﬁg&p, for1 <r<p-—2.

Proof.  We use Lemma 2.2.17 to identify R,ségm, with A(3)°. It is enough to
prove the first relation in the case p = 2. The Mackey theorem analysis in the proof
of Lemma 2.2.18 shows that, as a graded vector space

(A(B) 0 A(B))iz = e(if) @ (A(B) BA(B)) & vge(if) @ (AB) KWA(B)).  (2.42)

B

The vector €5 € A(S);, is of minimal degree, and thus 31¢(i3) ® (65 ® &p) is of

i
minimal degree in (A(f3) o A(ﬁ))i%. The degree of wéle(i%) ® (és ® €p) is smaller by
(- 3, so the vector is zero.

The second relation is clear from the definitions. To prove the third relation,
it is sufficient to consider p = 3. Let w, := wg,, and set wy := wywow,. Using the
defining relations of Rs, we deduce that (52081082 — ¥s1tp21p1)e(}) @ (€5 @
€5 ® ég) is an element of degree 3deg(vy) —63-8in S:=>" _ Pue(il) @ (A() K
A(B)KA(S)), where < denotes the Bruhat order. By a Mackey theorem analysis as

in the proof of Lemma 2.2.18, we see that

S = > bue(il) ® (A(B) BA(B) K A(B)).

we{l,w1,w2,w1w2,waw1 }
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The lowest degree of an element in S is therefore 3 deg(vy) — 48 - 3, and the third

relation is proved. O

Lemma 2.2.23

There exists a unique choice of eg = £1 such that

&B,rgﬁ,séﬁ‘zp = gﬁ,s&,@,régﬁp, for s 7& T+ 1,
l/jﬁwgﬁgﬁ,r—l-léﬁ@p = (?B?jﬁ,ﬂzﬁ,r + 1)55&;, for 1 <r < p, and
sYsrr1VsrEg0 = (Vg rE5Ys,r + 1)Egun, for 1 <r < p.

Proof.  The first relation is clear from the definitions. It is enough to prove the
remaining relations for p = 2. Using the defining relations of R,3 and a Mackey

theorem analysis as in the proof of Lemma 2.2.18, we deduce that

(Vp1Ys2 — Ypabp)Esme € Z @Dw@(’i%) ® (A(B) X A(B))

w<wg, 1

= () ® (AB) R A(B)),

and the only vector of the correct degree is €zx2. Therefore (working over Z) we

must have that

(V51782 — Up,108,1) a2 = CyCpmn

for some c; € Z. Similarly, we obtain

(77/7}571@/371 — ﬂ@g’l])ﬁ,l)éﬁlzm = C_éﬁgz
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for some c_ € Z. We compute

(Vp1Us1Yp2 — @ﬁ,lﬂm%,l)éﬁm = (Ypotbp1 + c_)Ysa — Ys2(Vp1Up2 — ct)
= (c- + ¢4)Yp2€pm
(Vp1Ys10p2 — ?75,1?76,21/_15,1)5@2 = (Jpa¥p1 + )1 — Usa(Vpals1 — )

= (cy +c_)yp1€pm2

and since yg 16522 and yp1€gx2 are linearly independent by Lemma 2.2.21, we must
have c. = —cy. We now fix a prime p and extend scalars to [F,. Suppose that

eg = 0 € I, so that

J’ﬁ,lgﬁﬂéﬂm = gﬁ,ﬂz,&légm

1;571:&/371@5&2 = §572@E5’165®2 .

Define S to be the submodule of A(5) o A(3) generated by ¥ 1652 and Yz 2€4m2.
The above equations show that the endomorphism defined by right multiplication
by 15,1€4%: leaves S invariant. On the other hand, A(8) o A(8)/S = L(B) o L(B)
is irreducible. Since the endomorphism algebra of an irreducible module is one
dimensional, we have a contradiction. Therefore 5 # 0 when reduced modulo

any prime, i.e. eg = +1. O

Corollary 2.2.24

The homomorphism from the nilHecke algebra H,, determined by

C: Hy — €gm0 RaCpmp, Yr — €573,rE5%0, Uy — V3 rE5mp
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is an isomorphism. Under this isomorphism the idempotent e, € H, is

mapped onto é,.

Proof.  Using Lemmas 2.2.22 and 2.2.23, we see that the map exists. By
Lemma 2.2.21, the map is an isomorphism. The second statement now follows using

Corollary 2.2.20. O

Corollary 2.2.25

Given f € A,, f commutes with 0,, é,, and &,D,.

Proof. 1t follows directly from Hypothesis 2.2.9(iv) and the definitions that J,
commutes with every element of P,, and in particular with every element of the

subalgebra A,. Denote by w, the longest element of &,. Then by Corollaries 2.2.19
and 2.2.24

echo- = 1/_}6,100@672 . gg;léﬁgp’lﬁﬁ,woL(Dﬁ ® Ce ® DB)
- (éﬁgpwﬁ,woéﬁlzlp)(51872 “ .. gg;)l)(éﬂﬁpwﬁ,woéﬁxp)[/(Dﬁ ® o . ® Dﬁ)

= C(wwo)(gﬁﬂ s gg;l)C(,@bwo)L(Dﬁ Q- ® Dﬁ)

Any f € A, commutes with ¢(Dg ® --- ® Dg) by Hypothesis 2.2.9(iv). It is
well known that the center of the nilHecke algebra H, is given by the symmetric
functions A,. In particular, every element of A, commutes with v,,,. Let g € A,

be such that ((9) = &g Then C(Wuy)f = ((Yung) = ((9ue) = FC(u,). This

implies the claim. 0O

We can now finish the proof of Proposition 2.2.13. Corollary 2.2.24 provides
an isomorphism H, = Endg, (Ra€gx,) under which the idempotent e, corresponds

to right multiplication by e,. But e, is a primitive idempotent, so the image
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R.é, = A(0) of this endomorphism is an indecomposable projective R,-module.

We may identify

Endg, (A(0)) 2 é,Raé, = ((e,Hpep) = ((Aye,) = E,M08, 2 A, (2.43)

where the action of A, on A(c) = R,é, is given by right multiplication which
makes sense in view of Corollary 2.2.25. Therefore A(o)—L(0),é, — v,

is a projective cover in R,-mod. Furthermore, since R,-mod has only one
irreducible module, every composition factor of A(c) is isomorphic to L(o) with
an appropriate degree shift. We can lift the basis {bv, | b € B,} for L(o) to
the set {be, | b € B,} C A(o). Using the basis X, for A,, we get a basis
{bfe, | beB,, feX,} for Ao).

Similarly, A’(o)—=L(0)", &, + v} is a projective cover in R%P-mod. It is
immediate that {v;D,b" | b € B,} is a basis of L(o)". Lifting as above, we have
that {e,fD,b" | b € B,, f € X,} is a basis for A'().

Finally, applying the multiplication map and Corollary 2.2.25 we have that

{be, fD, (b)) | b,b' € B,, f € X,} spans R,. Therefore by induction,

Ry = F-span{be, fD, (b)) | 7 € Il(a), b,V € B, f € X, },

and comparing graded dimensions with Corollary 2.1.16 as in the proof of

Lemma 2.2.14, this set is therefore a basis.

General case

In this section we use the results of the previous subsections to obtain
affine cellular bases of the KLR algebras of finite type. Fix « € @, and 7 =
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(B, ..., B € TI(«). Define R, := R,/I~,, and write ¥ € R, for the image of
an element r € R,,.

We begin with some easy consequences of the previous section.

Corollary 2.2.26

We have

(i) Given f € A,, f commutes with 0, &, and &,D,.
(ii) Up to a grading shift, A(m) = A(S]") o--- o A(BRY).
(ili) The map A, — Endg_(A(7)) sending f to right multiplication by
€ f €, is an isomorphism of algebras.

(iv) The map A, — Endg_ (A'(7)) sending f to left multiplication by

e, feér is an isomorphism of algebras.

Proof.  Claim (i) follows directly from Corollary 2.2.25 and the definitions.

The proof of claim (ii) is similar to that of Lemma 2.2.17. To be precise, by

Corollary 2.2.6 we have a map
A(ﬁfl) K-.-X A( %N) — ResWA(ﬂ), é(ﬁfl) R & é(ﬁifl\’) — €,
which by Frobenius reciprocity determines a homomorphism
e A(ﬁfl) 0O---0 A( ]IifN) N A(T{'), 17r ® (é(ﬁfl) R+ ® é(B%N)) = €.

We now claim that Is (A(57") o--- o A(SRY)) = 0. It is enough to prove that
Res, (A(S7) o--- 0 A(BRY)) = 0 for all o > 7. By exactness of induction, it follows
that A(BY")o---0A(BRY) has an exhaustive filtration by L(37*)o---oL(BRY) = A().

By Theorem 2.1.6(vi), Res,(A(n)) = 0, which proves the claim.
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Since

erlr ® (Egrty @ -+ ®Erprn)) = 17 ® (Egr) ® -+ ® E(gony),

N 1 N

we obtain a map

viAm) = A ) o0 A(BRY), Ex = 1n @ (Egmy @ -+ ® Egony).

The homomorphisms g, v map the evident cyclic generators to each other, and so
are inverse isomorphisms.
We use claim (ii) to identify A(w) with A(87') o ... A(BRY). As noted in the

proof of claim (ii), A(m) has an exhaustive filtration by

A(m) = Sueshuls @ (A(BY) K- BIA(BYY)).

By Theorem 2.1.6(vi), Res;A(m) picks out the summand corresponding to w = 1.
Therefore Res, A(m) = A(B]") X --- K A(SRY). Applying Frobenius reciprocity and

(2.43), we obtain

Endg, (A(7)) = Homg, (A(B}") 0 - - 0 A(BY), A(BY") 0 -+ 0 A(BY))
~ Homp_ (A(S") W - - - KA(BIY), Resz(A(B]") 0 - - - 0 A(BLY)))
~ Endg, (A(B") B --- WA(BY))
~ Endg, , (A(B")) © - @ Endg, , (A(B™))

This proves claim (iii), and claim (iv) is shown similarly. O
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Proposition 2.2.27

We have that

(i) {bfe, | b€ B, f € X,} is an O-basis for A(n),
(ii) {exfDb" | b€ B, f € X} is an O-basis for A'(r), and

(iii) {be-fD-(V) | b, € B, f € X} is an O-basis for I.

Proof. Forn=1,..., N, define
Bn = {Bfé(ﬁzn) | b S %(ﬁzn),f S X(Bﬁn)}

By Proposition 2.2.13, B, is a basis of A(g¢~) for eachn = 1,...,N. Let i :
Rp5, @ ® Ry, 5, — Ro be the map induced by ¢, as in Corollary 2.2.6. Using

(14, Proposition 2.16), and computing as in the proof of Lemma 2.2.14, we have

A(m) = Y duRetr = Y dutn(ABP) @ - @ ABRY))

wesT weST
= O-span{ti (b ® --- @ by) | w € &, b, € B,}

= O-span{bfe, | b€ B,, f € X,}.

We have shown that the set in (i) spans A(m). A similar argument shows that the
set in (ii) spans A’(7). Now, applying the multiplication map A(7)® A'(7)— I, and
using Corollary 2.2.26(i) yields the spanning set of (iii). Letting 7 vary over II(«),
we have

Ro= Y O-span{be.fD. (V)" | bt € B, f € X},

mell(a)
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Using (2.39) and the equality deg(D,) = 2deg(v,) for all 7 € II(«), we get

dimg(Ra) = Y dimg(O-span{be, f D (V)" | b,/ € By, f € X,})

mell(a)

< Z ( Z qdeg b)) dlm deg (Dx) (Z qdeg )
mell(a) bEDBR beDB

<

Z ( Z qdeg(bv;)> I

rell(a)  bEBx

= ) dimy(A(m))*L, = dimy(Ra),

mell(a)

by Corollary 2.1.16. The inequalities are therefore equalities, and this implies that
the spanning set {be,fD,(b') | 7 € II(«), b,V € B, f € X} of R, is a basis and
dim, Ar = [; for all .

To show (i) and (ii), we have already noted that the claimed bases span
A(fB) and A’(S), respectively. We now apply part (iii) to see that they are linearly

independent. O

Corollary 2.2.28

The set {be,fD.(0')" | m € II(a), b0 € B, f € X} is an O-basis for
R,.

Proof.  Apply Proposition 2.2.27(iii) and the fact that the filtration by the ideals

I, exhausts R,, which follows from Lemma 2.2.1. O

Affine Cellularity

Recall the notion of an affine cellular algebra from the introduction. In this
section, we fix @« € @, and prove that R, is affine cellular over Z (which then

implies that it is affine cellular over any k).
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For any 7 € II(«), we define

I := Z-span{be A\, D, (V)" | b,b' € B, }.

By Corollary 2.2.28, we have R, = ®rer(a)ls. Moreover, 7(I.) = I..
Indeed, ¢, commutes with elements of A, in view of Hypothesis 2.2.9(iv). So by
Lemma 2.2.12, we have

7(I.) = Z-span{0/DIATOTDTb"™ | b,V € B}

T T

= Z-span{l/ D 6. A D b" | b0 € B, } = I..

By Proposition 2.2.27, we have I, = @®,>,1., and we have a nested family
of ideals (Ir)rem(a)- To check that R, is affine cellular, we need to verify that I, =
I./1I~, is an affine cell ideal in R, = R,/I-:. As usual we denote T := z+1-, € R,
for x € R,

The affine algebra B in the definition of a cell ideal will be the algebra
A, with the automorphism o being the identity map. The Z-module V' will
be the formal free Z-module V, on the basis B,. By Corollary 2.2.26(i) and

Proposition 2.2.27, the following maps are isomomorphisms of A,-modules.

e Ve ®zAr = A(m),0R f +— Efém

n Ay @z Ve — A7), f @b e fDb.

This allows us to endow V, ®z A, with a structure of an (R,, A;)-bimodule and

A, ®z Vi with a structure of an (A, R,)-bimodule.
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In view of Corollary 2.2.26(iii),(iv) we see that A(m) (resp. A’(7)) is a right

(resp. left) A;-module, and so we may define an R,-bimodule homomorphism

Vp  A(m) @p, N () = I ) Isg, Ter @ ExT > Fe,T .

By Proposition 2.2.27, v, is an isomorphism. Let u, := v_'. This will be the map

in the definition of a cell ideal.

Theorem 2.3.1

The above data make R, into an affine cellular algebra.

Proof.  To verify that I is a cell ideal in R,, we first check that our (Ar, Ry )-
bimodule structure on A, ®z V, comes from our (R,, A,)-bimodule structure on
Vy @z A via the rule (1.1). Let s, : V; ®z Ay — A, ®z V; be the swap map. This

is equivalent to the fact that the composition map
/y—1 —1
o AN T A @ VT Ve @s A T Ar) = Al (2.44)

is an isomorphism of right R,-modules. We already know that this is an

isomorphism of Z-modules, and so it suffices to check that

0l fDRET) = 7 p(ErfDrC")

for all f € Ay, ¢ € B,, and r € R,. Note that ¢(é;fD,¢") = éfé,. So we have to
check

0(exfDrCT) =T Cfe,. (2.45)
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By Proposition 2.2.27(ii) we can find {f, | b € B,} C A, such that

Also, by Corollary 2.2.26(i), we have
e.fD.¢" = fe.D,¢" =é,D,fc"

Using this and the 7-invariance of D, and 0., we get (2.45) as follows:

FTefe, =7 cfer =7 ef DI D

beB
= ( SwaSﬂDﬂbeT)T = Z BﬁDﬂgﬂDﬂgﬂ = Bibii
beB beB beDB
= Z beém
beB

which equals the left hand side of (2.45) by definition of ¢.

(2.46)

To complete the proof, it remains to verify the commutativity of (1.2). This is

equivalent to

Tovro (@1 )((b® f) @ (f @) = vr o (0 @1z) (V'@ f1) @ (f @)
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for all b,/ € B, and f, f' € A,. The left hand side equals

which equals v; o (- @ ) (V' ® f') ® (f ® b)), as required. O

Verification of the Hypothesis

In this section we verify Hypothesis 2.2.9 for all finite types. In ADE
types (with one exception) this can be do using the theory of homogeneous
representations developed in (22). This theory is reviewed in the next subsection.
We use the cuspidal modules of (9).

Throughout the section 3 is a positive root, and Ry := Rg/I-g), T =1+ 155

for r € Rg.

Homogeneous representations

In this section we assume that the Cartan matrix A is symmetric. In this
subsection we fix a € Q4 with d = ht(a). A graded R,-module is called
homogeneous if it is concentrated in one degree. Let ¢ € (I),. We call s, € Sy

an admissible transposition for € if a; = 0. The word graph G, is the graph

7:7'+1
with the set of vertices (/),, and with 4,5 € (/) connected by an edge if and only
if 3 = s, for some admissible transposition s, for 2. A connected component C' of

G, is called homogeneous if for some @ = (i1,...,iy) € C the following condition
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holds:

if 7, = 1, for some r < s then there exist ¢, u
(2.47)

such that r <t <wu < s and a,, ;, = a;,;, = —1.

Theorem 2.4.1

(22, Theorems 3.6, 3.10, (3.3)) Let C' be a homogeneous connected
component of G,. Let L(C) be the vector space concentrated in degree

0 with basis {v; | 2 € C'} labeled by the elements of C'. The formulas

1]'1],' = 04,55 (] € <I>a7 1€ O),
yv; =0 (1<r<d, teC),
vs,; if s, € C

vy = (1<r<d, 1€0C)
0 otherwise;

define an action of R, on L(C'), under which L(C) is a homogeneous
irreducible R,-module. Furthermore, L(C) % L(C") if C' # C’, and every
homogeneous irreducible R,-module, up to a degree shift, is isomorphic

to one of the modules L(C).

We need to push the theory of homogeneous modules a little further. In

Proposition 2.4.3 below we give a presentation for a homogeneous module as a

cyclic
of G,
as w

a=1

modules generated by a word vector. Let C' be a homogeneous component
and 2 € C. An element w € &, is called i-admissible if it can be written
= Sy, ...5p,, Where s,, is an admissible transposition for s, ., ...s,,? for all

,...,b. We denote the set of all z-admissible elements by 2;.
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Lemma 2.4.2

Let C' be a homogeneous component of G, and 4 € C. Then {¢,v; |

w € D;} is a basis of L(C).

Proof.  Note that if w,w’ are admissible elements, then w = w’ if and only if
wi = w't. Indeed, it suffices to prove that w? = 4 implies w = 1, which follows from

the property (2.47). The lemma follows. O

Proposition 2.4.3

Let C be a homogeneous component of G, and ¢ € C. Let J(2) be the

left ideal of R, generated by

{1, huls | 1<r <d, je (), \i we&Sz\D;}. (2.48)

Then R,/J, ~ L(C) as (graded) left R,-modules.

Proof.  Note that the elements in (2.48) annihilate the vector v; € L(C'), which

generates L(C'), whence we have a (homogeneous) surjection

Ro/Ja—L(C), h+ Jo > hv;.

To prove that this surjection is an isomorphism it suffices to prove that the
dimension of R,/J, is at most dim L(C') = |C|, which follows easily from

Lemma 2.4.2. 0O

Special Lyndon orders

Recall the theory of standard modules reviewed in §2.1. We now specialize to

the case of a Lyndon convex order on ¢, as studied in (21). For this we first need
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to fix a total order ‘<’ on I. This gives rise to a lexicographic order ‘<’ on the set
(I). In particular, each finite dimensional R,-module has its (lexicographically)
highest word, and the highest word of an irreducible module determines the
irreducible module uniquely up to an isomorphism. This leads to the natural notion
of dominant words (called good words in (21)), namely the elements of (/) which
occur as highest words of finite dimensional R,-modules.

The dominant words of cuspidal modules are characterized among all
dominant words by the property that they are Lyndon words, so we refer to them

as dominant Lyndon words. There is an explicit bijection

¢, — {dominant Lyndon words}, 5+ g,

uniquely determined by the property |i5] = (. Note that this notation ¢z will be
consistent with the same notation used in §2.2.

Setting 8 < v if and only if 45 < 4, for 5,7 € @, defines a total order
on ¢, called a Lyndon order. It is known that each Lyndon order is convex, and
the theory of standard modules for Lyndon orders, developed in (21), fits into the

general theory described in §2.1. However, working with Lyndon orders allows us to

be a little more explicit. In particular, given a a root partition 7 = (py,...,py) €
(), set
PBES zgll .. zgz e (1), (2.49)
Lemma 2.4.4

(21, Theorem 7.2) Let m € II(«w). Then %, is the highest word of L(m).
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From now on, we fix the notation for the Dynkin diagrams as follows:

A (£>1) By (£>2) C, (€>3)
1 2 £—1 £ 1 2 £—1 L 1 2 £—1 )
OoO——=o0O O @] Oo——O O=—==0 Oo——=oO O==0
D, (£>4) E, ((=6,7,8) Fy Gy
1 2 £—2 £-—-1 1 2 £—-3 £—-2 £—-1 1 2 3 4 1 2
Oo——oO oO——-0O Oo——oO0 @] @] @] @] @] O O @)

O¢ O¢
Also, we choose the signs ¢;; as in §2.1 and the total order < on [ so that ¢;; = 1

and i < j if the corresponding labels ¢ and j satisfy ¢ < j as integers.

Homogeneous roots

We stick with the choices made in §2.4. Throughout the subsection, we
assume that the Cartan matrix is of ADE type and 5 € & is such that 25 is
homogeneous. Let d := ht(). The module L(3) is concentrated in degree 0, and
each of its word spaces is one dimensional. Set Dg := D;,. Then we can take
B = {Yuwe(ip) | w € Dg}. Let d5 = Dg = e(ip), and define yg = yqe(ig).
All parts of Hypothesis 2.2.9 are trivially satisfied, except (v). In the rest of this

subsection we verify Hypothesis 2.2.9(v).

Lemma 2.4.5

Let w € Gy \ @5. Then wwpde(i/j) c I>(5).

Proof.  We have 9, = 1., ..., for a reduced decomposition w = s,, ...s, .

Let k be the largest index such that s,, is not an admissible transposition of

.. Sp0g. By Theorem 2.4.1, s,, ...s,, 15 is not a word of L(/3). So by

Srt1
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Corollary 2.2.3,

Vry, - - - ¢rdee<i6) = e(sm cee srmi6)¢rk - -@Drmpde(iﬁ) C L),

whence 1., Pie(ig) C Isp). O

Lemma 2.4.6

Given 1 < 7,5 < d, we have (y, — y,)e(3) € I5(5).

Proof. ~ We prove by induction on s = 1,...,d that (ys — y,)e(ig) € I for all
1 <r < s. The base case s = 1 is trivial. Let s > 1, and write i3 = (i1,...,4q). If

i, -1s =0 for all 1 <r < s, then

(Tsy 01,09+« s 0s1, 05415+, 0d)

is a word of L(/3). On the other hand, Lemma 2.4.4 says that 45 is the largest word
of L(B) and so i5 < i;. But then ¢z is not a Lyndon word, which is a contradiction.
Thus there exists some r < s with i, - iy # 0. Since the Cartan matrix is assumed to
be of ADE type, either ¢, - i, = —1 or 7,, = 7,. In the second case, by homogeneity
(2.47) we can find r < v’ < s with 4,» - i, = —1. This shows that the definition

t := max{r | r < s and i, - iy, = —1} makes sense. Once again by homogeneity
we must have that i, - iy = 0 for any r with ¢ < r < s. Therefore, using defining

relations in R,, we get

(Vsm1 - ) (e - Ps1)e(ip) = £(ys — ye)e(ip).
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On the other hand, the cycle (¢,¢ + 1,...,s) is not an element of ®z. By
Lemma 2.4.5 we must have ¢ ..., 1e(ig) € I5(). This shows that (ys — yi)e(ig) €
I. (), and therefore by induction that (y, — yr)e(is) € Is(g) for every r with

1<r<s. 0O
Recall the notation R := R/l gy and 7 :=1r + I. () € Rg for r € Rg.

Corollary 2.4.7

We have that 5 Rsép is generated by ¥s.

Proof. By Theorem 2.1.2, an element of egRges is a linear combination of terms
of the form 1, yi" ... y;%e(ig) such that wig = ig. If w ¢ Dy, then ez € Isp
by Lemma 2.4.5. Otherwise, Lemma 2.4.2 shows that w = 1. Therefore, ;3 Rsép
is spanned by terms of the form g7 ...yj%€s. In view of Lemma 2.4.6, we see that

esRses is generated by §5 = yg. O

Types ADE

Throughout the subsection, we assume again that the Cartan matrix is of
ADE type. By (9), with a correction made in (3, Lemma A7), if § € &, is any
positive root, except the highest root in type Ejg, then 25 is homogeneous. We have
proved in the previous subsection that Hypothesis 2.2.9 holds in this case.

Now, we deal with the highest root

0 := 2aq + 3an + 4az + bay + 6as + dag + 2a7 + 3ag

in type Es. By (3, Example A.5), the corresponding Lyndon word is

19 = 12345867564534231234586756458.
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Define the positive roots

91 = —{—Q{2—|—O{3—|—2a4+3a5+2a6 +OZ7+20(8, (250)

92 = +20[2 +3043 +30£4+30é5+20[6+(1/7+048. (251)

Then the root partition (1, 65) is a minimal element of TI(#) \ {(6)}. Moreover,
19, = 1234586756453423 and 19, = 1234586756458. Indeed, one sees by
inspection that these words are highest words in the corresponding homogeneous
representations and are Lyndon. Finally, we have 2y = 2,10, .

Denote by vy, and vy, non-zero vectors in the 2y,- and 2¢,-word spaces in the
homogeneous modules L(6;) and L(6y), respectively. Note that L(6;) X L(6s) is
naturaly a submodule of L(;) o L(fs), so we can consider vy, ® vy, as a cyclic
vector of L(6,) o L(6s), and similarly vp, ® vy, as a cyclic vector of L(6y) o L(6;).
By definition, L(6;) o L(fy) is the proper standard module A(f,6y), and let vy, g,
be the image of vg, ® vg, under the natural projection A(6;,0y)—L(6,605). Denote
by w(#) the element of &y9 which sends (1,...,29) to (17,...,29,1,...,16). The
following has been established in (3), see especially (3, Theorem A.9, Proof), but

we sketch its very easy proof for the reader’s convenience.

Lemma 2.4.8

The multiplicity of the highest word 4 in L(#) is one. Moreover, there
is a non-zero vector vy in the #-word space of L(#) and homogeneous

Rg-module maps

p 2 L(01,02) (1) — L(62) o L(61), v,,0, = Vu(e)(ve, ® Vg, ),
v L(Qg) o L(@l) — L(@), Vg, @ Vg, > Vg,
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such that the sequence

0 — L(61,60,)(1) & L(6y) o L(6,) % L(A) — 0

is exact. Finally,

ch, L(0) = (ch, L(62) o ch, L(6;) — qch, L(6;) o ch, L(6,))/(1 — ¢*).

Proof. By (21, Theorem 7.2(ii)), the multiplicity of the word g, %9, in L(6;) o
L(6y) is 1. Moreover, an explicit check shows that the multiplicity of ¢y in L(6;) o
L(6) is q. We conclude using Theorem 2.1.6 and the minimality of (0, 6;) in T1(0)\
{(#)} that the standard module L(6;) o L(6s) is uniserial with head L(6;,6,) and
socle L(A)(1). The result follows from these observations since L(0y,605) is ®-self-

dual and (L(61) o L(65))® ~ L(63) o L(01)(—1) in view of (25, Theorem 2.2). O

Consider the parabolic subgroup G g,) X Guys,) € &4 and define

992,91 = {(w27w1) E Ght(eg) X 6}1‘5(91) ’ w2 e 9927 wl e 991}

With this notation we finally have:
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Lemma 2.4.9

The cuspidal module L(0) is generated by a degree 0 vector vy subject

only to the relations:

(e(g) — 6j,4,)ve =0, forall j e (I),, (2.52)
yrvg =0, forallr=1,... ht(d), (2.53)
¢wvg =0, for all w € (6ht(92) X Ght(el)) \ @92791, (254)

Yu(e)ve = 0. (2.55)

Proof.  The theorem follows easily from Proposition 2.4.3 applied to homogeneous

modules L(0;) and L(6;), and Lemma 2.4.8. O

We now define 69 = Dy = e(ig),and yg = ynoe(e). All
parts of Hypothesis 2.2.9 are trivially satisfied, except (v). We now verify

Hypothesis 2.2.9(v).

Lemma 2.4.10

We have

192,60, (1> (05) ® Ro, + Ry, @ I5(9,)) C I 9.

Proof.  Apply Proposition 2.2.5 twice with m = 2, 41 = 0y, 79 = 61, 7 = (), and

either k =1 and my = (0), or k =2 and my = (¢1). O

Lemma 2.4.11

We have that eyRyéy is generated by .

Proof. By Theorem 2.1.2, an element of ey Rgeq is a linear combination of terms

of the form 1, y" ...y %e(ip) such that wiy = 9. f w € (Guy(p,) X Sne(er)) \
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Do,,0,, then 1,69 € 159 by Lemmas 2.4.10 and 2.4.5. So we may assume that

w = uv with u € &Mt 0) 1, ¢ D, , . Tt is easy to check that the only such
permutation that fixes 4¢ is the identity. We therefore see that ey Rgéy is generated
by ¥1,- -, Yne(o)-

Note that ht(fy) = 16 and ht(f;) = 13. Using the cases = 0, and § = 6,
proved above and Lemma 2.4.10, we have that (y, — ys)e(ig) € 59 if 1 < 7,5 < 16
or 17 <r,s < 29. It remains to show that (y,. — ys)e(ip) € Is(p) for some 1 <7 < 16
and 17 < s < 29. Let w € Gyg be the cycle (27,26, ...,16). By considering words

and using Corollary 2.2.3, one can verify that

Vuthwe(te) = (Y16 — yor)e(te) (mod Is(g)).

On the other hand, by the formula for the character of L(#) from Lemma 2.4.8, we
have that wiy is not a word of L(#). Therefore, by Corollary 2.2.3, we have that
Ywe(tg) € Is(p), 50 (Y16 — Yor)e(t0) € Is(p), and we are done. O

Non-symmetric types

Now we deal with non-symmetric Cartan matrices, i.e. Cartan matrices of

BCFG types.

Lemma 2.4.12

Suppose that dg, Dz € e(i3)Rge(ts) have been chosen so that
Hypothesis 2.2.9(iii) is satisfied. If the minimal degree component of
e(ig)Rge(is) is spanned by Dg, then Hypothesis 2.2.9(i) and (vi) are

satisfied.
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Proof.  Since DgdzDpg has the same degree as Dg, the assumption above implies
that DgdgDp is proportional to Dg. Acting on vy and using Hypothesis 2.2.9(iii)
gives DgdgDg = Dg, which upon multiplication by dg on the right gives the
property e% = e, which is even stronger than (i).

To see (vi), we look at the lowest degree component in e(igis)Rope(isis)

using (21, Lemma 5.3(ii)) and commutation relations in the algebra Res. O

It will be clear in almost all cases that the condition of Lemma 2.4.12 will
be satisfied, and moreover Hypothesis 2.2.9(ii) and (iv) are easy to verify by

inspection. This leaves Hypothesis 2.2.9(v) to be shown in each case.

Type B

The set of positive roots is broken into two types. For 1 < ¢ < j < [ we have
the root a; +---+a;, and for 1 <+¢ < j <[ we have the root oy; + -+ oj_1 +2a; +
<o 4 20y.

Let 8 :=a; +---+ ;. Then i3 := (4,...,7), and the irreducible module L(f)
is one-dimensional with character ig. Define dg := Dg := e(ig) and yz := yqe(is).
Using Corollary 2.2.3 one sees that ¢,eg € I (g for all r, which by Theorem 2.1.2
shows that Rgés = F[y1,. .., Ja)és. This also shows that for 1 < r < d we have the

elements of I g):

wg (yr—yz+1>€6> lfj:l a;nd?":d—]_
r€p =
(Yr — Yry1)eg, otherwise.

It follows that Rzés = F[ijs]és, and thus ézRsés is generated by ésy5¢5.
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Consider 8 = o; + -+ + o1 + 20 + -+ + 20y4. In this case,
ig = (4,...,0,1,...,7), and ch, L(B) = (q + q ")ig. Define d5 := y;_;2e(ip),
Dg = _;11e(ig), and ys3 = y1e(ig). Using Corollary 2.2.3, one sees that
Yre(ig) € Isp) for r # 1 —i+ 1. It is also clear that ¢;_;;1e5 = 0, and therefore
by Theorem 2.1.2, Rgés = F[yi,. .., Jales. We also have the following elements of
L (g

(

(yr_yr—l—l)@('iﬂ), for 1 STSZ—Z—L
(Yi-i — Yiis1)e(ds), for r =1 —1;

(Yi—its — Ui iyo)e(tg), forr=1—i+2;

(Yrt1 — yr)e(ip) forl —i4+3<r<d-1.
\

Taken together, these show that Rzé(ig) = F[Ji—it1, Yi—is2)€(35). Multiplying on

both sides by és and using the KLR / nil-Hecke relations, we have
esRpes = Flyi—it1 + Yi—ir2: Yi—i+1Y1—i+2)€5-

Furthermore, (yl—i—i-l + yz-¢+2)¢1—i+16(i5) = ¢1—i+1¢z2_¢%/fl—i+1€(iﬁ) € I>(ﬁ)7 and so in

fact

esRses = Flyi_i1)es = Fliles.
Type C;

The set of positive roots is broken into three types. For 1 < i < 5 <[ we have
the root a; + --- + o, for 1 <7 < j < [ we have the root o; + -+ 4+ a;_1 + 20 +
-+ 2a5_1 + oy, and for 1 <17 < [ we have the root 2a; + -+ - 4+ 201 + .
Consider f = a; + -+ + ;. Then i = (4,...,7) and ch, L(f) = i3. Define
ds = Dg := e(ig). Define yg := yie(ig). Using Corollary 2.2.3 one sees that
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Yreg € Is(g) for all r, which by Theorem 2.1.2 shows that Rgés = F[yi, ..., Jdles.

This also shows that for 1 < r < d we have the elements of I (g):

) (2 — yr1)es, ifj=landr=d—1
Yres =
(Yr — Yry1)ep, otherwise.

Consequently, é3Rgép is generated by €333¢5.

Consider 8 = a; + -+ aj—1 + 20 + - - + 2,1 + 4. Then ig = (7,...,1 —
1L,l,l—1,...,j) and ch, L(B) = (¢,...,l—1,1,1 —1,...,7). Define d3 = Dg := e(ip),
and ys := y1e(ip). Using Corollary 2.2.3 one sees that 1,es € I (g) for all r, which

by Theorem 2.1.2 shows that Rsés = F[g,...,%a)és. This also shows that for

1 <r < d we have the elements of I g:

(

(Yr — Yrs1)es, for1<r<l—i-—1;
(yl2—i - yl—i—i—l)eﬂ, for r =1 —i;

(ylZ—i—l—Z — Y—it1)eg, forr=1—i+1;

(Yrt+1 — Yr)eB forl—i+2<r<d-1.
\
It follows that Rzés = F[yi_i, Ui—i+2)€s. Furthermore, by the relation (2.10),
(Yi—i + Yi—ir2)es = (Vi—ip1Vi—i¥i—iy1 — Vi—ihi—ipihi—i)es € Is(p)

and therefore Rﬁéﬁ = F[gjl_i]elg = F[gg]éﬁ.

Consider f = 2a; + -+ - +2a;_1 + oy. Then 45 = (4,...,1—1,4,...,1) and

chy L(B) = q((iy ..., 1 —1) o (i,...,1 = 1)) - ().
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Let w € &4 be the permutation that sends (1,2,...,d)to (I — i+ 1,...,d —
1,1,...,1 —i,d), and define Dg := e(ig). Define also dg := y4—1€(23) and yz :=
yqe(ig). Set v = o + -+ + oy_y. Since I (42) is generated by idempotents e(z) with

1 > z'?/, and i3 = iiil is the highest word of Lg, we see that

Loyor(Is(42) @ Ray) C Isp)

Let p : Ry, X R,, — Rg be the induced map. Note that every word of L(f3) ends
with [, so that 1,e(ig) € I unless u € G411, by Corollary 2.2.3. Therefore,
applying (2.43) in the type A case of (y?) (which has already been verified), we

obtain

éBRBé,B = #(é(%)RQvé(ﬁ) ® Ra,) = €gOYi—i + Ya1—2i, Yi—iY21—2i> Ya|€s-

Furthermore,

(G—i + You—2i)e(ip) = Vi - . '@EQZ—Qi—l'J]gl—QiJ}Ql—%—l . -%El—ié(’iﬁ) =0

and (§3,_o; — Ja)é(ip) = ¥3_,.e(i5) = 0. Thus esRzéps is generated by €354€5.
Type F}

We write § = ciaq + coan + czas + cqaq € O If ¢4 = 0, then this root lies in
a subsystem of type B3 with the same order as in section 2.4 and we are done.
Ifp =a;+---+a;forsomel <i < j <4 thenig = (i,...,7) and

chy L(B) = (4,...,7). In this case we take Dg = d3 = e(ig), and set yg = yny(g)e(%s).
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The following table shows the choice of data for the remaining roots, except
for the highest root 8 = 2a; + 3an + 4a3 4+ 2ay, which we discuss separately. In each
of these cases, the hypotheses may be verified by employing the same methods used
above. For example, in each case either Hypothesis 2.2.9(i)-(iv),(vi) may be verified

directly or with the help of Lemma 2.4.12 when it applies.

i Dg 0p Ys
2343 e(ig) e(ip) | yse(ip)
12343 e(ip) e(ig) | yse(ip)
23434 Vshabaibse(ig) | yse(ig) | yre(ip)

123432 e(ig) e(ig) | yse(is)
123434 Uabsthsae(ig) | wyeelip) | yae(ip)
1234323 e(ig) e(ip) | yse(ip)
1234342 | Ygbsthstoae(is) | yeelis) | yae(is)
12343423 | utbshsthae(ip) | weelip) | yse(ip)
123434233 | Y4ts0504vse(ig) | Yoyoe(is) | yre(is)
1234342332 | hatbsbsianbse(ip) | ysyoe(ip) | yioe(ip)

Consider now = 203 + 3as + 4o + 2ay, where i3 = (12343123432). Let
w € &11 be the permutation that sends (1,...,11) to (6,7,8,9,10,1,2,3,4,5,11),
and set D = ¢e(ip). Let 0 = y10e(2s), and yg = y11€(tp). Define v = oy + g +
2a3 + ay. There is a map p : ng X R,, — Rg. This map is not surjective, but one

can show that

é(ig)Raé(ip) = p(é(i2) Raye(i2) @ Ra,)
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and thus

éﬁRﬁéﬁ = “(6(72)R2’Yé(’}/2) & ROQ) = ;L(O[ﬂg, + Y10, g5g10]é(72) ® RO@)

= O[¥s + Y10, Y5710, Y11]€p-

We also compute (cf. (30, §5)):

which is zero because it contains the word (12341234323), and this is not a word of

L(B). Since y116(i5) = y3,€(i5), we see that égRsés = O[ij11]ég, as required.
Type Go

B=oq: 15 = (1), Dg =63 = e(ip), and yz = y1e(ip).

B =g ig=(2), Dg = 0p = e(ig), and yz = yie(ip).

B =a;+as ig = (12), Dg = dz = e(ip), and yz = y1e(ig).

B =201+ ag: ig = (112), Dy = re(ip), 05 = yae(ip), and yz = (y1 + y2)e(ip).

B = 3a; + ag: 15 = (1112), Dg = Y1hathie(ip), 0 = yayie(is), and ys =
Y1y2yze(is).

Let ;1 be the composition Rs, X Ry, Rs—Rs. If w ¢ S5, then ¢,e(is) €
I (), and so y is surjective. Furthermore, ég = p(es) ® 1). Thus esRges =
Oy, Ua, U3, Ja]S*1€5. Since (73 — y4)e(ig) = ¥2é(ig) = 0, we have that ezRgés is

generated by O[y1, J2, U3]%*€5. Observe using (19, Theorem 4.12(i)) that

(1 + U2 + U3)85 = Egtihatbies € I
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and

(Th + 2+ U3)> — (T2 + U1 U3 + 9213))Es = Etharbses € s (p).

Therefore e3Rgés is generated by 717273
B = 3ay + 20y i = (11212), Dy = rhathathathise(ip), dp = yayie(ip), and
ys = y1y2yse(iz). We first prove

Claim: If w # 1 then e(ig)Ywes € Is(s).

This is clearly true unless w is one of the twelve permutations that stabilizes the
word 2g. Of these, six produce a negative degree. Since Dg spans the smallest
degree component of e(i3)Rge(is) we the Claim holds for these six permutations.
Two of the remaining six permutations end with the cycle (12). Since ¢y Dz = 0,
this implies that the Claim holds for them too. Finally, reduced decompositions for
the remaining non-identity permutations may be chosen so that e(i3)1., € Is(g) by
Lemmas 2.2.2 and 2.4.4.

Now we combine the Claim with Theorem 2.1.2 to see that esRsép is
generated by €gO[yi, ..., Us|€és. Next, by a word argument and quadratic relations,
(ys —y3)e(is), (ys — yi)e(is) € Is(s). Thus ésRses = €5O[y1, Y2, Yales. This can then
be seen to be equal to O[y, J2, Ua]%*€5, arguing as in the case of the root 3a; +
above. Again as in the case of the root 3a; + s, one then shows using specific
elements of I gthat (71 + 2 + ya)és = 0 and (7192 + J1Us + §29s)és = 0, so that

esRses = Olihaiales.
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CHAPTER III

HOMOMORPHISMS BETWEEN SPECHT MODULES

Preliminaries
Lie theoretic notation

We collect some notation that will be used in the sequel; the interested reader
is refered to (20) for more details. Let e € {3,4,...} and [ := Z/eZ. Let " be
the quiver with vertex set I, with a directed edge from ¢ to j if j = ¢ — 1. Thus I’
is a quiver of type Aél_)l. We denote the simple roots by {a; | i € I}, and define
Q+ = @,c; Z>oa; to be the positive part of the root lattice. For o € Q4 let ht(c)
be the height of a. That is, ht(«) is the sum of the coefficients when « is expanded
in terms of the q;’s.

Let &, be the symmetric group on d letters and let s, = (r,r + 1), for 1 <
r < d, be the simple transpositions of &;. Then &, acts on the left on the set I by
place permutations. If ¢ = (iy,...,iq) € I? then its weight is |t :== ay; + -+ ay, €

Q.. The G4-orbits on I¢ are the sets

(1), = {i € I | a = |il}

parametrized by all a € Q4 of height d.
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Partitions

Let &4 be the set of all partitions of d and put & := | |5, Pa. The Young

diagram of the partition pu € &2 is
{(a,0) € Zsg X Zso [ 1 < b < pa}-

The elements of this set are the nodes of . More generally, a node is any element
of Z~o X Z~y.
To each node A = (a,b) we associate its residue, which is the following
element of I = Z/eZ:
resA=(b—a) (mod e). (3.1)

An i-node is a node of residue ¢. Define the residue content of p to be

cont () := ZaresA €Q,. (3.2)

Acp

Denote

Py ={pe P |cont(u) =a} (v e Qy).

A node A € p is a removable node (of ) if pu \ {A} is (the diagram of) a
partition. A node B ¢ p is an addable node (for ) if p U {B} is a partition. We

use the notation

pa=p\{A}, " =pU{B}.
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Tableauz

Let p € Z;. A p-tableau T is obtained from the diagram of p by inserting the
integers 1,...,d into the nodes, allowing no repeats. If the node A = (a,b) € p is
occupied by the integer r in T then we write r = T(a, b) and set resr(r) = resA. The
residue sequence of T is

i(T) = (iy,...,iq) € 1% (3.3)

where i, = resr(r) is the residue of the node occupied by r in T (1 <r < d).

A p-tableau T is row-strict (resp. column-strict) if its entries increase from
left to right (resp. from top to bottom) along the rows (resp. columns) of each
component of T. A p-tableau T is standard if it is row- and column-strict. Let St(u)
be the set of standard p-tableaux.

Let pe€ &,1 € I, and A be a removable i-node of . We set

addable i-nodes of removable i-nodes of
daln) = #{ i b - #{ " JE Y
strictly below A strictly below A

Given p € Py and T € St(u), the degree of T is defined in (4, section 3.5)
inductively as follows. If d = 0, then T is the empty tableau &, and we set
deg(T) := 0. Otherwise, let A be the node occupied by d in T. Let Toy € St(ua)

be the tableau obtained by removing this node and set

deg(T) := da(p) + deg(T<q). (3.5)

The group &4 acts on the set of u-tableaux from the left by acting on the

entries of the tableaux. Let T# be the u-tableau in which the numbers 1,2,...,d
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appear in order from left to right along the successive rows, working from top row
to bottom row.
Set

i = i (TH). (3.6)

For each p-tableau T define permutations w™ € &4 by the equation

w'TH =T. (3.7)

Binomial coefficients

In this section, we state some elementary theorems about binomial coefficients

that will be useful later. Let p be a fixed prime.

Definition 3.1.1

For n € Z~y we define
1. vy(n) = max{i | p' divides n}
2. ly(n) = min{i | p* > n}.
We also set £,(0) = —oo.
The following can be easily derived from (11, Lemma 22.4).

Lemma 3.1.2

For any a,b € Z~q, one has
p‘(Z) for k=1,...,b & vp(a) > €,(b).

Recall the definition of Ge(ay, . .., ax) from the introduction. Then
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Corollary 3.1.3

We have p | Ge(ay, ..., ay) if and only if

vp(ai) > y(aj — 1) for 1 <i < N —1.

Shuffles

In this section, we fix e € {0,3,4,5,...} and [ := Z/eZ. Given a,b € Z>q we

define
Sh(a,b) :=={0 € Suyp | 0(l) <---<o(a)and o(a+1) <--- < o(a+b)}.
For 4 € I%,4' € I write 43’ € I°* for their concatenation, and define

Shuf(i,') := {0 - 44’ | 0 € Sh(a,b)},
Sh(j:4,4) := {o € Sh(a,b) | o - 4d' = 7}, and

H(2) := (s | smt =1) < &,.

For ¢ € I, define the elements of I

St(i,a) = (i,i+1,....i+a—1), (3.8)

S™(i,a) = (i,i—1,...;i—a+1). (3.9)

Fix j,k € I, a,b € Z>g, and write ST := S7(j,a) and S~ := S~ (k,b). If
¢ € Shuf(S™,S7) then ¢ cannot contain three or more equal adjacent indices. In

this case H(%) is an elementary 2-subgroup of & 4.
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Proposition 3.1.4

For every ¢ € Shuf(S™*,S7), there is a unique element o; € Sh(z;. S, 57)

of minimal length. Furthermore, Sh(%; S*,S7) = {ho; | h € H(3)}.

Proof.  Write ST = (j1,...,Ja) and S~ = (ky, ..., k), and for every integer d > 1

introduce the following notation. For ¢ € &,4, define Fo € &,4_1 by

a(r), forr=1,...,07(d) - 1;
Eo(r) =

o(r+1), forr=07'd),...,d—1.

Similarly, for ¢ = (iy,...,iq) € 1%, define Fi = (i1,...,iq_1).

The proposition will be proved by induction on a +b. If a +b = 1 or 2, or if
a = 0 or b = 0 the claim follows immediately. Suppose a + b > 3, with a,b > 1,
and assume the induction hypothesis. Fix 4 € Shuf(S*,S™). We distinguish several
cases based on the values of i,.4, 10161, Ju, and k.

Case 1: i, = Jq, and either j, # ky or igip-1 = iqpp — 1. Given

o € Sh(¢; S, S7), we must have o(a) = a + b. Then the map

Sh(é;S*,57) — Sh(Fi; EST,S7), o — Eo

is a bijection, and moreover {(FEo) = {(c) — b and H(¢) = H(E%). We define o; by
FEo; = ogi, which completes the induction in this case.

Case 2: i44p = ky and either j, # kp or 14141 = iqrp + 1. Here the map

Sh(¢;S*,57) — Sh(F4; ST, ES™), 0 — Eo

gives a bijection as above.
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Case 3: iqg1p = Gaip-1 = Jja = kp. We must either have o(a) = a + b and
ola+b) =a+b—1loro(a) =a+b—1and o(a+b) = a+b. Thus, we get a

well-defined map

Sh(¢;S%,57) — Sh(EEi; EST,ES™), 0 — EEo

which is two-to-one, with s, ;10 and o having the same image. This proves the

claim, since H(i) = H(EFE) X (Sqyp-1). O

KLR Algebras and Universal Specht Modules
KLR algebras

Let O be a commutative ring with identity and o € (.. There is a unital
O-algebra R, = R,(O) called a Khovanov-Lauda-Rouquier (KLR) algebra, first
defined in (14; 15; 32). We follow the notations and conventions of (20), so R, is

generated by elements

fe@) i€ (D), U{yr,. ., yal U{tn, ... daat, (3.10)

subject to some explicit relations.
The algebras R, have Z-gradings determined by setting e(2) to be of degree 0,
yy of degree 2, and ve(?) of degree —a;, ;,,, for all r and 4 € ().

For a graded vector space V. = @,z V,, with finite dimensional graded

components its graded dimension is dim, V := 3" . (dimV,)q" € Z[[q, ¢ "]).
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Universal Specht modules

Fix u € &,. In this section we define the Specht module S* over R,, mostly
following (20). A node A = (z,y) € p is called a Garnir node of p if also (z,y+1) €
p. We define the Garnir belt of A to be the set B4 of nodes of x containing A and
all nodes directly to the right of A, along with the node directly below A and all

nodes directly to the left of this node. Explicitly,

BA={(z,2)ep|y<z<ptU{le+Llz)epn|l<z<y)

We define an A-brick to be a set of e successive nodes in the same row

{(w,2),(w,z+1),...,(w,z+e—1)} CBA

such that res(z,w) = res(A). Let k > 0 be the number of bricks in B4, We label
the bricks
B} B3, ..., B

Y

going from left to right along row x, and then from left to right along row x + 1.
Define C4 to be the set of nodes in row = of B4 not contained in any A-brick, and
D4 to be the set of nodes in row = + 1 of B4 not contained in any A-brick. Define
f to be the number of A-bricks in row x of B4,

Let u,u + 1,...,v be the values in B4 in the standard tableau T#. We obtain
a new tableau T4 by placing the numbers u,u + 1...,v from left to right in the
following order: D4, B{, B', ..., B{f, C4. The rest of the numbers are placed in

the same positions as in T*. Define i* := 4(T4).
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Assume that k& > 0, and let n = T4(A). Define

n+re—1
wh = H (z,24¢€) € Sy (1<r<k).

z=n-+re—e

Informally, w;! swaps the bricks B# and BZ, . The elements wi', ws', ... wil; are

Coxeter generators of the group
GSA’Z:: <lUf3QU§;7"-7QU£tJ> = Gsk'

By convention, if k = 0 we define &“ to be the trivial group.

Recall that f is the number of A-bricks in row  of BA. Let D4 be the set of
minimal length left coset representatives of &5 x &;_s in 64 = &,. Define the
elements of R,

ot = @Dw;fxe(iA) and 7= (02 + De(i?).
Let v € DA with reduced expression u = w,f‘l e w,f}l . Since every element of D4 is
A

fully commutative, the element 74 := T .Té does not depend upon this reduced

expression. We now define the Garnir element to be

gA - Z TfiﬁTA € R,.

u€hA

Definition 3.2.1

Let a € @4, d = ht(a), and p € Z,. Define the following left ideals of
R,.

(1) Ji' = (e(d) = . | 5 € (I)o);

(i) J5 = (g [r=1,....d);
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(iii) J§ = (¢, | rand r + 1 appear in the same row of TH);

(iv) J§ = (g | Garnir nodes A € p).

Let J+ = Ji' + J) + JY + Ji and define the universal graded Specht

module S* := R, /J"(deg(T*)). Define z := 1+ Jt € S¥.

Specht Modules Corresponding to Hooks

For the rest of the paper, we assume that e > 3. In this section we fix two
integers d > k > 0. We set A := (d — k,1¥) and o := cont()\). We write Sh* for
the image of Sh(d — k — 1, k) under the embedding 6,1 — &, determined by
S; — Si11. For 0 € Sh*, we define (0] == 1,2* € S* of weight i, = oi*. Note
that Sh* = {0 € &, | oT" is standard}. Therefore, by (20, Corollary 6.24), the set
{[o] | & € Sh*} is a basis of S*.

Remark 3.3.1

Recall that in order to define the element ¢, € R, we needed to
fix a reduced decomposition for o. However, every o € Sh” is fully
commutative, and so the element 1), is independent of this choice. Thus

(0] € S* only depends on o.

Definition 3.3.2

Given o € Sh?*, the strands in the braid diagram of ¢ beginning at
positions 2,3, ...,d — k are called arm strands, and we define Arm(o) =
{0(2),...,0(d — k)}. Similarly, the strands beginning at positions d —

k+1,...,d are called leg strands, and Leg(o) = {o(d —k+1),...,0(d)}

The following theorem tells us how the KLR generators act on the standard

basis of S*.
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Theorem 3.3.3

Let o € Sh* and write i, = (41,...,1q). Then
1. For j € (I),, e(3)[o] = 6, ;]0].

2. For 1 <r <d,

—[sro], if i, =441, 7 € Leg(o), and r + 1 € Arm(o)

yrlo] = [s_10], ifi,_1 =14, r— 1€ Leg(o), and r € Arm(o)

0, otherwise.

3. We have ¢;[0] =0, and for 2 <r <d —1,

[s.0], if r € Arm(o) and r + 1 € Leg(o), or if i, # 4,41

[Sr118-0], if r € Leg(o), r+ 1,7 +2 € Arm(o), and i, — 4,41
—[srSp+10], ifr—1,r € Leg(o), r+1¢€ Arm(o), and i, < i,41
Prlo] =

[$r8r_10], if r— 1€ Leg(o), r,r+1 € Arm(o), and 4, = 4,4

—[sr_18.0], ifr,r+1¢€Leg(o), r+2¢€ Arm(o), and 4,41 = i,49

\ 0, otherwise.

Proof. (i) Immediate from the definitions.

(ii) We define Sh*(3) = {r € Sh* | wt([r]) = i}. By Proposition 3.1.4
there is a unique element 7 € Sh*(4,) of minimal length, and ¢ = A7 for some
h € H(i,). Choosing any reduced decomposition h = s,, ...s,,, it follows that

o] = ¥y, ...y, [0i]. Moreover deg([7]) — deg([o]) = 2a, and so [7] is the unique
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vector of weight ¢, with largest degree. In particular, ys[7] = 0 for 1 < s < d. Since

H(%,) is commutative, at most one of 7 — 1 and r is an element of {ry,...,7,}.
Suppose that » € {ry,...,r,}. This is equivalent to i, = i1, 7 € Leg(o)

and r + 1 € Arm(o). Since the 1,, commute with each other, we may assume that

r =r;. We compute

yrlo] = yethtly, - Uy, [03]
= (VY1 = Dty - O [04]
= Oty - Yria [0 = vy A [0]
= Py, [03] = —s,0].

Similarly, r — 1 € {ry,...,r.} is equivalent to i,_; = i, r — 1 € Leg(o),
and r € Arm(o). An argument similar to the above shows that y,.[o] = [s,_10]. If
neither r nor r — 1 is among {r1,...,7,}, then y, commutes with each 15, , and thus
Yrtsy, - e 03] = Uy -,y [T] = 0.

(iii) Observe that wt([o]) begins with either (0,1,...) or (0,e — 1,...). By
weight, we must have ¢ [o] = 0. We break down the rest of the proof into many
cases.

Case 1: Assume r € Arm(o) and 7 + 1 € Leg(o). Clearly ¢, [o] = [s,0].

Case 2: Assume r € Leg(o), 7 + 1 € Arm(o). Then [o] = ,[s,0], and so
Uplo] = v?[s.0]. If i, £ i,11 then ¥2[s,0] = [s,0], and if 4, = 4,41 then ?[s,0] = 0.

If i, — ip41, then ¥2[s,.0] = (Y, — yr11)[s,0]. Since r € Arm(s,o), part (ii)
of this theorem shows that if y,[s,0] # 0 then r — 1 € Leg(s,0) and i,_1 = i41.
This is seen to be impossible by considering weights, and so y,[s,0| = 0. Similarly,

r+ 1 € Leg(s,0), so part (ii) says that y,,1[s,0] = 0 unless r + 2 € Arm(s,0)
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and i, = i,49. But r + 2 € Arm(s,0) if and only if r + 2 € Arm(o), in which case
ipyo = ipy1 + 1 = 4,. We then conclude that y,,1[s,0] = —[s,415.0]. To summarize,
if 3, — i,y then

[$r418:0], ifr+2€ Arm(o)
Urlo] =

0, otherwise.

Now suppose 7, < i,.1. An argument similar to the one above shows that

—[sp8p410], ifr—1¢€ Leg(o)
Yplo] =

0, otherwise.

Case 3: Assume 7,7 + 1 € Arm(o). We prove the following statement by

induction on t: If 7 € Sh* satisfies ¢, + 1 € Arm(7) we have

[sts¢110], ift —1 € Leg(7) and 4,1 = i
Y1) =

0, otherwise.

The base case of t = 1 has been shown above.

We proceed with the induction, fixing t > 1, 7 € Sh* with ¢,t + 1 € Arm(7)
and assuming the claim holds for all smaller values of t. Let u be the largest value
of Leg(7) which is less than ¢. If no such value exists, then ¢y[7] = ), 2> =

Pz = 0. Otherwise, there is a reduced expression for 7 beginning with
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Sy . ..Si—18¢ Write 7/ = s;8,_1...5,7. Then

@Z)t [T] = m(% .- -wt—2)¢t—1¢t [T/] = (@bu .- -%—2)%%—1% [T/]
= (y . V2) (V11 + 033, ) [T']
= Yy - V) [T] + Oiyi (Vs - r0)[T].

Assume that ¢ — 1 € Arm(7). Then the first term is zero by induction.
Furthermore, the second term is zero unless i; = i, and (by induction) u = ¢t — 2,
t —3 € Leg(r), and ¢;_3 = i;_;. But since i,y = iy — 1 and 4;_3 = i, + 1, this is
impossible. Therefore the second term is zero as well.

Now suppose that u = ¢ — 1. We can see that the first term is zero using an
argument similar to the above. If the second term appears, it is visibly nonzero.
We have thus proved the induction step.

Applying this to case 3, we have

[srs,_10], ifr—1¢€ Leg(o), and 4, = 4,4
Yrlo] =

0, otherwise.

Case 4: Assume r,r + 1 € Leg(c). This situation is entirely analogous to case

3, except now induction runs backwards from t = d — 1 to t = 2. We find that

—[sy_18.0], ifr+2¢€ Arm(o), and i1 = 40
Yrlo] =

0, otherwise.
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Corollary 3.3.4

Suppose that e(4)S* # 0. Then

{vee(@)sS |yv=0 forr=1,...,d} = Olo;].

Proof. By Theorem 3.3.3, we have y,.[o;] =0 for r = 1,...,d. Suppose given

v = Z co[o] € e(3)S?,

o€Sh?

and let h = s,,...s,, € H(t) be areduced expression for an element of
maximal length for which ¢;,, # 0. Apply Theorem 3.3.3 to obtain y,, ...y, v =

(—1)™cpgy, 03] # 0. Therefore v is killed by every y, if and only if v € Ofo;]. O

Homomorphisms into S*

We again fix two integers d > k > 0, X := (d — k,1%) and a := cont(\). We
also fix u = (p1, ..., pun) a partition of d. The goal of this section is to determine
Homp, (S#,S*), and the answer is given in Theorem 3.4.1. In order for a nonzero
homomorphism to exist 2 must be a weight of S*. We assume this, so in particular
we are able to define 0, := o;». This determines a mapping from g to A in which
the node containing r in T* is sent to the node containing r in ¢, T*. We define arm
nodes and leg nodes of ;1 to be the nodes which under this map are sent to the arm

or the leg of A, respectively.

Theorem 3.4.1

There is a homomorphism S* — S* satisfying z# + v for v # 0 if and

only if
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1. there exist ¢ € {1,...,k+ 1}, a € (Z+¢)¢, and 0 < m < e such that

v € Annp(Ge(a))[o,] and

o k—c+1
p=(are,...,a._1e,a.e —m,l ),

2. e divides d, there exist ¢ € {1,...,k}, a € (Zs¢)*,and 0 < m < e

such that v € Annp(Ge(a))[o,] and

_ k—c+2
w=(are,...,a._1e,a.e —m,1 ), or

3. N > k + 1, there exist @ € (Z-o)Y and 0 < m < e such that

v € Annp(Ge(a))[o,] and

pw=(ae,...,are,ap1e —1,...;ay_1e — l,aye — 1 —m).

The proof of this will follow from several lemmas. Recall the ideals J! of

Definition 3.2.1.

Lemma 3.4.2

A nonzero v € S satisfies (Ji' + J4 + J{')v = 0 if and only if v € Olo,],

and all leg nodes of p are in the first column of its Young diagram.

Proof.  Assume that (J}" + J§ 4+ J{)v = 0. Corollary 3.3.4 implies that v = y[o,)]
for some v € O. By considering weights we see that (1,2) cannot be a leg node.
Suppose that (a,b) # (1,2) is a leg node of p with b > 2, and define r = T#(a, b).
Then since J{v = 0 we must have ¢,_jv = 0. Furthermore (a,b — 1) must be an

arm node, for in ¢" = (iy,...,i4) we have i, = i,_; + 1, whereas if they were both
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leg nodes we would have 4, = 4,_; — 1. By Theorem 3.3.3 we have 1,_1v[o,] =
v[sr—10,] # 0, a contradiction.

Conversely, assume that v = v[o,] and all leg nodes of x are in the first
column. Suppose that » and r 4+ 1 are in the same row of T#, and so in particular
r 4+ 1 is an arm node. If the node of p containing r in T# is a leg node then by
considering Theorem 3.3.3 we see that 1,v = 0 unless the node containing r — 1 is
also a leg node. But then the nodes containing » — 1 and r are both in the first
column of T# forcing r + 1 (and every subsequent node) to also be in the first
column. This contradicts the assumption that r» and r 4+ 1 appear in the same row
of T#, and so necessarily ¥,v = 0.

If the node of u containing 7 in T is an arm node, then write ¢ = (i1, ...,14q).
Referring again to Theorem 3.3.3 we see that 1,v = 0 unless the node containing
r—11is a leg node, and furthermore i,_; = 7,. But if the the node containing r—1 is
a leg node, then by assumption it is in the first column. Once again the assumption
that r and r + 1 are in the same row of T* forces the node containing » — 1 to be
directly to the left of the node containing . But in this case 7,_; = i, — 1 and once

again we see that ¢,v =0. O

Proposition 3.4.3

If there is a nonzero element v € S* with J#v = 0, then the leg nodes of

w are precisely (2,1),(3,1),...,(k+1,1).

Proof.  Let v = 7[o,] be such an element. By Lemma 3.4.2, the leg nodes appear
in the first column of p. Suppose that (a,1) is a leg node. Then a # 1, and so
we may consider the Garnir node A = (a — 1,1). Define r = T#(a — 1,1) and

s = T#(a,1). It is clear that g = @Z)TA = Y(rrt1,..5) Where (r,7 +1,...,5) is a cycle
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of the entire Garnir belt. In particular, if a > 3 and (a—1, 1) is not a leg node, then
g%o.] = [(r,r +1,...,5)0,]. But this is a nonzero basis element by Lemma 3.4.2,
contradicting Jj'v = 0. This contradiction shows that for every leg node (a, 1) with
a > 3, the node (a — 1, 1) is also a leg node, which is equivalent to the statement of

the proposition. O

As a consequence of this proposition, we see that the leg nodes of y are
mapped to exactly the same nodes of A\, and therefore that U#TA is the tableau
obtained by moving all of the arm nodes of T# to the first row. This suggests the

following definition.

Definition 3.4.4

Let = (g1, ..., puy) be a partition of d with N > k + 1. Define T,

to be the A-tableau obtained as follows. Let S = {T#(A) | A € p\ A}
We fill in the rows of A from left to right and from top to bottom using
the following procedure. Let A € X and suppose we have filled in all

of the nodes to the left of A or in a previous row. If A € u then define
T)(A) = T#(A). Otherwise define T)(A) to be the smallest element of
S, and then delete this value from S. Repeat this process until all nodes

have been filled. Furthermore, define ‘7//) =T e &,

If we have a nonzero homomorphism S* — S*, then Corollary 3.3.4 tells us
it must send z* to a multiple of [0,]. On the other hand, Proposition 3.4.3 requires
the image of 2 to be a multiple of [0)]. Since [0,] and [0} are elements of an O-
basis of S*, a necessary condition for a homomorphism is that [o,,] = [0)]. The next

two results tell us when this happens.
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Lemma 3.4.5

Let pt = (pa, ..., ) be a partition of d such that N > k + 1. Then [o}]

has weight ¢" if and only if p is of one of the following three forms.

1. N =k+1, and there exist c € {1,...,k+ 1}, a1,...,a. € Z~( and

0 < m < e such that p = (aye, ..., ac_1€, a.e —m, 1F7¢F1),

2. N >k+1and pg 1 =1, and there exist ¢ € {1,...,k}, a1,...,a. €
Z~o and 0 < m < e satisfying m + ¢ = k + 2 (mod e) such that

_ k—ct1
p=(ae,...,a._1e,a.e —m, 1571 1),

3. N > k+1and pgyy > 1, and there exist ay,...,ay € Z~o and
0 < m < esuch that u = (ase,...,are, a6 — 1,... ay_1e —

lLiaye — 1 —m).

Proof.

Define (i1, ... ,7q) := wt([o}]) and (ji, ..., ja) = @". Define r, = T#(x +1,1)
forx = 1,2,... k. Sincer, = TH(z + 1,1) = Tﬁ(m + 1,1), it is immediate that
ip, = jr, for x =1,... k. Letting S = {1,2,...,d} \ {r1,...,7rr}, we therefore have
that wt([o}]) = 4" if and only if i, = j, for all s € S.

For p=1,2,...,n — k, let s, be the p'" element of the set S (under the usual
ordering). It is clear that s, = T(1,p). In particular, we see that iy, , = i,, + 1
forp = 1,...,d — k — 1. Since j;, = i, we have Wt([Uﬁ]) = 4" if and only if

Jspor = Js, T 1forp=1,....d—Fk—1
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Set 7o = 0. Note that the condition r; # rg + 1 is automatically satisfied, so

xg = max{x | r, # ry_1+1 where 1 <z < k} is well defined. We divide S as follows

(51,82,...,871,]6)I<1,2,...,T1—1,
7"1+1,...,’l”2—1,
Tgo—1 + 1, 7 — 1,

Tk—i-l,...,d).

Now, (ry_1 + 1,...,7p — 1) = (T*(,2),...,T*(z, ) for x < xg, so it is clear
that jp41 = jp + 1 whenr, 1 +1 < p < r, — 2. Furthermore, for x < x, we
have r, — 1 = TH(z, p,) while r, + 1 = T(x + 1,2). If we let i = res(x,1), then
Jro—1 = res(z, ) = i+ pp, — 1 (mod e), and j,, 11 = res(zx + 1,2) = i. Thus
Jrot1 = Jr.—1 + 1 if and only if p, = a,e for some a, € Z-y.

At this point we have shown that i, = j, for p = 1,..., 7 if and only if for
every x < x( there exist a, € Z~( such that u, = a,e.

Suppose that N = k + 1. If r, = d, then we set ¢ = x( choose a., m so that
te = ac.e — m. This clearly is of the form in part (i) of the Lemma. Otherwise,
o = kand ry + 1,...,d are all on row k + 1 of T#. The same analysis as above
shows that [0}] has weight 4" if and only if for every z < k there exist a, € Zsg
such that u, = a,e. In this case we set ¢ = k + 1 and choose a., m as required. We
have established part (i) of the Lemma.

Suppose that N > k + 1 and pp; = 1. Set ¢ = x¢ choose a., m so that
fe = ace —m. Then (rp +1,...,d) = (T"(k+2,1),...,T#(N,1)). Let ¢ = res(c, 1).

Then j,.—1 = res(c, i) = i + pto — 1 (mod e), and j,, 41 =i+ k+ 1 — ¢ (mod e).
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Thus jr41 = jr,,—1 + 1ifand only if p. =k +1—c¢ (mod e). But p. = a.e —m, so
this is equivalent to ¢ +m = k + 1 (mod e). This is exactly the requirement in part
(ii) of the Lemma. Finally, suppose that N > k 4 3. Then ryp + 1 = T#(k + 2,1) and
ry +2 = T(k + 3,1). In this case we see that j,, +o2 = jr,+1 — 1 # jro+1 + 1. Thus
part (ii) of the Lemma is finished.

Finally, suppose that N > k + 1 and pgy; > 1. Then x5 = k. Once again
the analysis of the N = k + 1 case shows that 7, = j, forp = 1,...,7 + 1 if and
only if for every x < k there exist a, € Z-( such that u, = a,e. Furthermore, a
similar analysis shows that ¢, = j, for p = 1,...,d if and only if additionally for
every k +1 < x < N there exist a, € Z~ such that u, = a,e — 1. This is exactly

the situation of part (ili). O

Corollary 3.4.6

If yu is as in Lemma 3.4.5, then (J§ + J§)[o}] = 0. In particular, [0}] =

[Uﬂ]‘

Proof.  Let (iy,...,iq) = wt([o}]). It is clear that in each of the cases above if
ir = ip41 then r € Arm(o) and 7 + 1 € Leg(o;,). This implies that J)[o}] = 0. In
turn, this implies that [0] = [0,], by Corollary 3.3.4. Lemma 3.4.2 now shows us

that J{[op] =0. O

As expected, the Garnir relations are the most difficult to verify.

Lemma 3.4.7

Suppose that p has one of the forms in Lemma 3.4.5 and let A =
(x,y) € w be a Garnir node. Define r, s, and ¢ to be the values in T#

of the nodes (x,y), (xr + 1,1), and (z + 1, y) respectively so that the
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Garnir belt is as in the following picture

r : L
|

»

Then
t+1,t,...,8)00, ifx <k y=0(mode), and y < piz11
m
A . _
wTA[O)\] [<T7T+ 1""78)0-”]’ it x S k7 Yy = 1 (mod 6), and Yy >1
"
0')\7 if x >kand y=0 (mod e
o
0, otherwise

Proof.  We begin with the case x < k and y = 0 (mod e). Define s, = s + pe for

p € N. Using braid diagrams, we compute 1™ [a;}].

(3.11)
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using the defining relations of R, and Theorem 3.3.3(ii). We note that this is of the
same form as (3.11) above. An easy induction argument allows us to conclude that

this is equal to

S0 t
Given our assumptions in this case, it is easy to see that the condition t + 1 €
Arm(aﬁ‘) is equivalent to y < p,11. If this holds, then Theorem 3.3.3 says the above

element is equal to

as claimed. Otherwise, we get zero.
We next consider the case that A = (z,y) with 1 <x <kandy=1. If z =1,

then ™" [03] = 0 by the Garnir relation for the node (1,1) € A. Otherwise A is a
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leg node, and so is (z + 1,1). Therefore, " (03] takes the following form.

which is zero by Theorem 3.3.3(iii).
Suppose now that A = (z,y) with 1 <x <k, y =1 (mod €), and y # 1. Here,

P (0] takes the following form.

which is [(r,r +1,...,5)07].
Consider now the case A = (x,y) € p is a Garnir node with 1 < z < k,
and y Z 0,1 (mod e). If p is as in Lemma 3.4.5(i) or (ii) then the requirement that
A is Garnir and y # 1 (mod e) together imply that = < ¢. Therefore pu, = age,
and it is easy to deduce from this that C4 and D* each contain at least two nodes.

The portion of wTA [Uﬁ] showing the crossing between C4 and D is depicted in the

following picture




which is zero by Theorem 3.3.3(iii).

We next check the special case that A = (kK + 1,1). If g is asin

Lemma 3.4.5(ii), then the picture we have is as follows.

Suppose now that A = (x,y) with z > k and y Z 0 (mod e). Furthermore
assume that A # (k+1,1). We see that C* is nonempty, and so 1™ [aj] is as in the

following picture

Finally, if we choose A = (x,y) with z > k and y = 0 (mod e) one may easily

see that T4 = T#. Clearly then ¢™" = 1, and so ™" o3l =o)]. O
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Lemma 3.4.8

Suppose that p is as in Lemma 3.4.5 and let A € p be a Garnir node.

Let r,s,t be as in Lemma 3.4.7. Then for 1 < f < a,,; — 1 we have

(

(Ot +1,,...,8)00], if A= (z, fe) with z <k

(“(r,r +1,...,8)0)], if A= (z, fe+1) with x <k

f "
9] =
(af)[aﬁ]a if A= (x, fe) with z > k
0, otherwise.

Proof.  If ™ [Jﬁ] = 0 there is nothing to show, so assume otherwise.

Recall the definitions of sz and 7'1;4 from Section 3.2. In each of the three
cases in Lemma 3.4.7 for which ¢ [Uﬁ] # 0, one sees that multiplying o'
with ¢ (0] has the effect of shuffling e arm strands past e arm strands. By
Theorem 3.3.3, we have that ag‘wTA [03] = 0. Thus TZ;“@DTA 03] = P 0] for all

p. This furthermore implies that 7.4¢™" [o)] = e [0}] for all w € &*. Therefore

o =" rtm o] = D T o] = [pA ¢ o).

u€DA ueb4

The problem is reduced to calculating ‘DA’ in each of the three cases above,

which follows immediately from the definitions. O

Proof of Theorem 3.4.1 By the discussion preceding Lemma 3.4.5, any
homomorphism S* — S* is of the form z#* — 4[o}] for some y € O. By
the discussion preceding Lemma 3.4.5 if there is a nonzero homomorphism, then

[0,] = [07]. Lemma 3.4.5 tells us for which partitions this happens.
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Suppose now that yu is as in Lemma 3.4.5. Corollary 3.4.6 ensures that (J!' +
Jy + J§)vlo)] = 0. By Lemma 3.4.8, Ji'y[o,] = 0 if and only if for each z =
1,...,N — 1, we have (“;)7 =0for f=1,...,a,41 — 1. But Ge(a) is the greatest

common divisor of these binomial coefficients. Therefore ~[o}] satisfies the Garnir

relations if and only if Ge(a)y = 0. This is exactly the claim of the theorem.

Examples

We now present some examples of Theorem 3.4.1. We will restrict our
attention to the case that O is a torsion-free algebra over either Z or F, for some
prime p > 3. In this case for any r € Z the submodule Annep(r) is either (0) or O,
and so in Theorem 3.4.1 all of our homomorphism spaces will be free O-modules.
In particular, we can talk about their dimensions.

In characteristic 0 the situation simplifies. The following corollary covers in

particular Hecke algebras over C at a root of unity.

Corollary 3.5.1

Let p be an arbitrary partition, and A = (d — k, 1*). Then Hom(S*, 5*)
is at most one-dimensional, and dim Hom(S*, $*) = 1 if and only if one

of the following holds:

1Lou=X\
2. e divides d and p = (d — k — 1, 1¥+1);

3. k =0 and there exist n > 0, a > 0, and 0 < m < e such that

p=(ae —1,(e—1)",m);
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4. k> 1, there exist 0 < n < k, a € Z~o, and 1 < m < e such that

1= (ae,e”,m, 1771,

5. k> 1, thereexist n >k +1, a € Z-o and 1 < m < e such that

1= (ae, ", (e — 1"+ m);

6. k > 2, e divides d, there exist 0 < n < k — 2,a € Zg, and

1 < m < e such that

p = (ae, e, m, 157 ™).

For the rest of the section we assume that O is an F,-algebra, with p > 3, and
we furthermore assume that e = p. This applies in the case of symmetric groups in

positive characteristic.

The trivial module

Let A = (d). The module S* is referred to as the trivial module. It is one-
dimensional over O having basis z*. We recover the following graded version of the

result of James (11, Theorem 24.4).

Corollary 3.5.2

Let 1 = (u1,...,un) be a partition of d. Then Hompg,_ (S*,S*) = 0
unless there exist ai,...,ay € Z~o and m € {0,...,p — 1} such that

w=(ap—1,...,ay-1p — l,ayp — 1 — m), and furthermore v,(a,) >
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lp(az+1 — 1) for 1 <x < N . In this case,

N
dim, Homp, (S*,S*) = ¢" where r = N — [ il m-‘ .
p
Proof.  Theorem 3.4.1(i) can only occur if p = A, and Theorem 3.4.1(ii) never
occurs because there are no valid choices for ¢. Therefore Theorem 3.4.1(iii) and
Corollary 3.1.3 tell us the form that u must take.
To calculate the degree of the homomorphisms, we calculate the degrees of

T* and T#. For any partition v with M parts, we have deg(T") = Zi\il [%J In

particular we get deg(T*) = YN a, — N and deg(T") = 32V | ¢, — (NP#L and

=1

deg(T) — deg(T") — N — [N + ﬂ |

p

The standard module

Let A= (d—1,1). Then S* is referred to as the standard or reflection module.

We have the following Corollary.

Corollary 3.5.3

For any partition p # A, dim Homp, (S*,S*) = 0 with the following

exceptions:

1. if there are a1, as € Z~g and 0 < m < p such that

H= (a1p7 oD — m)?
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and futhermore v,(a;) > £,(as — 1), then

1, ifpld—1
dim, Homp,_ (S*,S*) =

q, otherwise;

2. if p divides d and p = (d — 2,1, 1), then dim, Homp_ (5", S*) = ¢;

3. if there are 0 < m < p, N > 3, and ay,...,ay € Z~q such that

n = (a1p7a2p_17a3p_17"'aaN—1p_1aaNp_1_m)7

and furthermore v,(a;) > €,(a;41 — 1) fori = 1,..., N — 1, then

dim, Hompg_ (S*, S*) = ¢" where

(
-1, ifpld-1
N+m
T—N—{ W+<L if p|d
p
\ 0, otherwise.

Proof.  Everything follows directly from Theorem 3.4.1 and Corollary 3.1.3

except the degree calculations. The degree in cases (i) and (ii) is straightforward
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to calculate, and for case (iii) we can make the following calculations.

deg(TH) Zax N +1

N
deg( T’\ Zax [ —i—m—‘

0, ifp|ld—1

deg([o,]) = deg(TY) + {2, it p|d

1, otherwise.
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