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DISSERTATION ABSTRACT 
 
Kristin L. Sikkink 
 
Doctor of Philosophy 
 
Department of Biology 
 
June 2014 
 
Title: Experimental Evolution of Phenotypic Plasticity for Stress Resistance in the 
Nematode Caenorhabditis remanei 
 

Many organisms can acclimate to new environments through phenotypic 

plasticity, a complex trait that can be heritable, be subject to selection, and evolve. 

However, the rate and genetic basis of plasticity evolution remain largely unknown. 

Experimentally evolved populations of the nematode Caenorhabditis remanei were 

created by selecting for stress resistance under different environmental conditions. This 

resource was used to address key questions about how phenotypic plasticity evolves and 

what the genetic basis of plasticity is. 

Here, I highlight ways in which a fuller understanding of the environmental 

context influences our interpretation of the evolution of phenotypic plasticity. In a 

population selected to withstand heat stress, an apparent case of genetic assimilation did 

not show correlated changes in global gene regulation. However, further investigation 

revealed that the induced plasticity was not fixed across environments, but rather the 

threshold for the response was shifted over evolutionary time. 

Similarly, the past environment experienced by populations can play a role in 

directing the multivariate response to selection. Correlated responses to selection between 

traits and across environments were examined. The pattern of covariation in the 

evolutionary response among traits differed depending on the environment in which 
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selection occurred, indicating that there exists variation in pleiotropy across the stress 

response network that is highly sensitive to the external environment. 

To understand how the patterns of pleiotropy are altered by environment and 

evolution, there is a pressing need to determine the structure of the molecular networks 

underlying plastic phenotypes. Using RNA-sequencing, the structure of the gene 

regulatory network is examined for a subset of evolved populations from one 

environment. Key modules within this network were identified that are strong candidates 

for the evolution of phenotypic plasticity in this system. 

Together, the data presented in this dissertation provide a comprehensive view of 

the myriad ways in which the environment shapes the genetic architecture of stress 

response phenotypes and directs the evolution of phenotypic plasticity. Additionally, the 

structure of transcriptional network provides valuable insight into the genetic basis of 

adaptation to environmental change and the evolution of phenotypic plasticity. 

This dissertation includes both previously published and co-authored material. 
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CHAPTER I 

 

INTRODUCTION 

 

WHAT IS PHENOTYPIC PLASTICITY?  

Natural environments are constantly changing. Some changes are predictable, 

such as changes in light availability over the course of a day or seasonal fluctuations in 

temperature. Other environmental challenges—exposure to an environmental toxin or 

introduction of a new competing species—may happen sporadically and without warning. 

In order to flourish, organisms must be able to acclimate to these shifts in the 

environment. If the population is to persist then subsequent adaptive evolution must also 

occur. 

It has long been recognized that the environment is critically important as a 

selective agent changing allele frequencies over time (Darwin 1859). However, many 

organisms can respond to environmental change through phenotypic plasticity.  

Phenotypic plasticity is defined as the ability of a genotype to consistently produce a 

different phenotype in response to environmental stimulus (Bradshaw 1965), and can 

encompass a range of phenotypic responses. Some of the most striking examples of 

phenotypic plasticity are morphological changes resulting from altered developmental 

pathways. Spadefoot toads (Gomez-Mestre and Buchholz 2006), Daphnia (Parejko and 

Dodson 1991), Onthophagus dung beetles (Moczek 1998), and Pheidole ants (Wilson 

1984) are a few of the many species that can dramatically alter their appearance in 

response to environmental cues. For many morphological traits, the decision to produce 
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one phenotype or another is irreversible. However, examples also exist of reversible 

morphological plasticity, e.g., seasonal coat color in hares (Keogh 1967), and plumage in 

finches (Hill et al. 2002). Plasticity can also manifest in physiological traits, without 

leading to obvious changes in morphology. Cellular responses to heat stress induce the 

production of chaperone proteins to mitigate damage (Lindquist and Craig 1988; Wu 

1995; Åkerfelt et al. 2010), while acclimation to high altitude might lead to its own set of 

cellular responses to hypoxia (Cheviron et al. 2013). Finally, animal behaviors are a 

classic example of a highly plastic phenotype (West-Eberhard 1989; Sih et al. 2004). 

While phenotypic plasticity does not need to be adaptive, induced responses that 

have a perceived benefit to the organism are often the most interesting for evolutionary 

biology. Many examples exist in which it has been demonstrated that the plastic response 

is adaptive, spanning the tree of life from bacteria (Justice et al. 2006; Kümmerli et al. 

2009) to plants (Schmitt et al. 1995; Agrawal 1998) to animals (Aubret et al. 2004; 

Charmantier et al. 2008; Muschick et al. 2011). However, it is still unclear what the role 

of phenotypic plasticity is in evolution. Does plasticity, for example, speed up or slow 

down genetic evolution (West-Eberhard 2003)? Can plasticity lead to innovation and 

novelty (Pfennig et al. 2010; Moczek et al. 2011)? What is the genetic basis of 

phenotypic plasticity, and how does it evolve (Snell-Rood et al. 2010)? In many natural 

models of phenotypic plasticity, the paucity of information about the historical evolution 

of plasticity makes addressing these fundamental questions prohibitively difficult. 
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THE GENETIC BASIS OF PLASTICITY 

Most ecologically and evolutionarily important traits are complex. In traditional 

quantitative genetics, phenotypes are considered to be products of additive genetic effects 

(G), environmental effects (E) and interactions between genes and the environment 

(GxE). These traditional evolutionary genetics models are often simplified by assuming 

that organisms exist primarily in one set of environmental conditions. However, 

organisms can regularly or periodically experience novel and often stressful 

environments. In this context, the full significance of each effect—G, E, and GxE—

within populations can be appreciated. These effects can be represented as reaction norms 

(Fig. 1.1), in which each line represents a unique genotype raised in alternative 

environments. Phenotypes produced by purely genetic effects in two environments will 

differ due to genetic variation, but the phenotype will not change for any given genotype 

even when raised in a novel environment (Fig. 1.1A). Phenotypic plasticity is manifest in 

two distinct types of effects. Additive environmental effects (E) result in parallel 

phenotypic changes among all genotypes (Fig. 1.1B). In this case, the genetic variation 

(G) and the environmental effect (E) act in an additive manner across environments. In 

contrast, genotype-by-environment (G-by-E) interactions can be visualized as crossing 

developmental reaction norms (Fig. 1C). 

Different genotypes exhibit differing 

directions and magnitudes of phenotypic 

change when transferred to a novel 

environment. The effect of the  

Figure 1.1.  Genotype (A), environment (B), 
and genotype-by-environment interaction 
(C) effects observed in a phenotype when a 
given genotype is raised in two different 
environments.  Each line represents a single 
genotype raised in alternative environmental 
conditions. 
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environment upon phenotype is therefore dependent upon which genotype is being 

considered. 

An important correlate of GxE interactions is that some alleles may be 

differentially associated with phenotypic variation depending on environmental 

conditions. Therefore, underlying the non-additive effects observed in GxE interactions is 

so-called cryptic genetic variation (CGV), which is defined as the genetic variation that 

does not contribute to the phenotype under normal conditions, but which becomes 

expressed when the organism is exposed to environmental or mutational perturbations 

(Gibson and Dworkin 2004; Paaby and Rockman 2014). The accumulation of CGV is a 

direct consequence of canalization, a process by which organisms evolve decreased 

sensitivity to the genetic and environmental variability they commonly experience 

(Waddington 1942). Canalization buffers developmental pathways to stabilize 

phenotypes against common changes, and some genetic variation becomes hidden as 

CGV, not contributing to the observed phenotypic variance in the organism over its 

normal environmental range (Gibson and Dworkin 2004; Paaby and Rockman 2014). 

However, outside of the range of conditions in which canalization evolved, the robustness 

of canalized phenotypes breaks down, and CGV immediately contributes to the 

phenotype of the individual, resulting in increased phenotypic variance (McGuigan and 

Sgrò 2009; Paaby and Rockman 2014). 

The exposure of CGV in both epistatic and GxE interactions is of significant 

importance for rapid phenotypic adaptation. Cryptic genetic variation can accumulate 

neutrally under a permissive environment, but when a population experiences a novel 

environment alleles are immediately available in significant frequencies to contribute to 
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evolution (Paaby and Rockman 2014). In addition, environmentally-induced CGV has 

particularly strong implications for defining the role of phenotypic plasticity in directing 

the evolutionary process. In this case, the environment becomes not just the selective 

agent, but also has a large role in exposing the subset of genetic variation to become 

expressed in the phenotype. The uncovering of similar types of CGV during the 

independent exposure of different populations to the same novel environments could be a 

mechanism for parallel evolution. Furthermore, the sudden exposure of, and subsequent 

selection on, cryptic mutations can lead to dramatic phenotypic change and rapid 

adaptation to novel environments through the process of genetic accommodation 

(Waddington 1953; West-Eberhard 2003; Moczek 2007). 

A few studies have examined the evolution of plastic responses in natural 

populations of birds (Nussey et al. 2005), threespine stickleback (Wund et al. 2008; 

McGuigan et al. 2011), and tiger snakes (Aubret and Shine 2009). These studies, 

however, were limited in their ability to prove that CGV was selected on in historical 

populations, and none could dissect the genetic basis of CGV underlying the traits 

examined. In laboratory populations, where the evolutionary process can be directly 

observed in a controlled environment, genetic accommodation has been convincingly 

demonstrated in the evolution of polyphenisms in Drosophila  (Waddington 1953; 1956; 

Gibson and Hogness 1996; Rutherford and Lindquist 1998), and tobacco hornworm 

(Suzuki and Nijhout 2006; 2008). These studies, as well as others in Drosophila  (Gibson 

et al. 1999; Dworkin et al. 2003), Arabidopsis  (Sangster et al. 2008a,b) and ribozymes 

(Hayden et al. 2011), have provided some insights into the molecular genetic basis of 

CGV and genetic accommodation. Despite being important advances, this previous work 
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provides an incomplete understanding of CGV in rapid evolution. First, the phenotypes 

uncovered and selected in these studies would probably be deleterious for natural 

populations. In addition, the relative importance of genetic accommodation to evolution 

of natural populations remains controversial, and the genetic basis of CGV in natural 

populations is largely unknown. 

 

BRIEF OUTLINE OF THIS DISSERTATION 

Despite the widespread occurrence of phenotypic plasticity in natural populations, 

much is still unknown about its role in evolution. Does plasticity contribute to 

evolutionary novelty? How quickly does plasticity evolve in natural populations? Still 

less is understood about the molecular basis of phenotypic plasticity.  Many examples for 

which the molecular basis of plasticity has been worked out have used unnatural stresses, 

unlikely to be encountered by natural populations. Other studies have used mutant strains, 

not representative of the naturally segregating variation in the population. This 

dissertation addresses these limitations by harnessing a powerful experimental evolution 

framework to select on natural, segregating variation for resistance to ecologically 

relevant stresses. 

Experimental evolution is a powerful system for studying evolutionary processes 

(Rose et al. 1990; Huey et al. 1991; Lenski et al. 1991; Matsumura 1996; Callahan 2005), 

because it probes the relevant components of the genetic architecture of traits. In 

organisms that can be cryogenically stored, such as bacteria and nematodes, this approach 

is particularly useful, as the ancestral and evolved populations can be compared 
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simultaneously, thus controlling for temporal effects in the phenotypic assay (Lenski et 

al. 1991). 

Previous studies have used experimental evolution to investigate the evolution of 

phenotypic plasticity in organisms (Waddington 1953, 1956; Suzuki and Nijhout 2006). 

However, such studies have suffered from several drawbacks. In Waddington’s classic 

experiments in Drosophila melanogaster, the phenotypes measured, differences in 

crossvein patterning (1953) or partial duplication of the thoracic elements (1956), have 

no clear adaptive benefit. In the latter case, it can be argued that the induced phenotypes 

would be maladaptive in a natural environment. In a more recent study (Suzuki and 

Nijhout 2006), the black mutant strain of the tobacco hornworm Manduca sexta was 

selected for the ability to change color from black to green following heat shock. While 

heat stress could be relevant in nature, this study did not demonstrate that plasticity in the 

color phenotype had any effect on fitness.  

The nematode Caenorhabditis remanei is an ideal model for experimental 

evolution. Like its sister species C. elegans, C. remanei can be cryogenically stored 

(Brenner 1974), enabling direct comparison between ancestral and evolved populations. 

Unlike C. elegans, however, C. remanei is an obligately outcrossing species. Because of 

this, populations display two key properties—an abundance of genetic variation 

(Graustein et al. 2002; Jovelin et al. 2003; Cutter et al. 2006) and ample recombination—

which facilitate a rapid response to selection (Morran et al. 2009). Evolved lines were 

created by selecting on their ability to withstand heat or oxidative shock during early 

larval development in three different environmental conditions. Both traits display 

significant heritable variation in natural populations of C. remanei (Reynolds and Phillips 
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2013). Furthermore, both heat and oxidative stress are likely to be ecologically relevant 

to natural populations, and by measuring and selecting on survival, the importance of the 

trait for fitness is much clearer.  

Chapter II is in press to be published in G3: Genes-Genomes-Genetics (Sikkink et 

al. 2014b), and is the result of collaboration between Rose M. Reynolds, Catherine M. 

Ituarte, William A. Cresko, Patrick C. Phillips and myself. We describe the rapid loss of 

phenotypic plasticity for heat stress resistance in lines evolved to withstand heat stress 

under permissive conditions. The loss of plasticity appeared to have resulted from the 

genetic assimilation of the inducible response to heat in the non-inducing environment. 

However, analyses of transcriptional variation via RNA-sequencing from the selected 

populations revealed no global changes in gene regulation correlated with the observed 

changes in heat stress resistance. Instead, assays of the phenotypic response across a 

broader range of temperatures revealed that the induced plasticity was not fixed across 

environments, but rather the threshold for the response was shifted to higher temperatures 

over evolutionary time. These results demonstrate that apparent genetic assimilation can 

result from shifting thresholds of induction across environments and that analysis of the 

broader environmental context is critically important for understanding the evolution of 

phenotypic plasticity. 

In Chapter III, I explore further the consequences of the broader environmental 

context on the evolution of stress resistance. In addition to myself, R. M. Reynolds, W. 

A. Cresko and P. C. Phillips contributed significantly to the work described in this 

chapter. Current knowledge of the molecular pathways underlying stress resistance in C. 

elegans suggest that resistance to heat and oxidative stress resistance should share a 
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genetic basis, and thus evolve in a coordinated fashion. Surprisingly, we found that 

correlated responses to selection did not generally occur. However, we find that the 

environmental context—in this case the environment experienced during the past 

selection—altered the nature of the genetic correlations within the network. Similar 

contingencies on the selective environment were observed for each trait individually 

when considering genetic correlations across environments. Such observations are 

difficult to explain within the canonical quantitative genetic framework. We propose that 

the patterns of pleiotropy underlying the stress response networks are fundamentally 

altered by the environmental conditions. To determine precisely how that contingency 

arises, however, quantitative genetic theory is not sufficient. Instead we require 

knowledge of the molecular interactions in the stress response networks. 

Analysis of the gene regulatory networks using RNA-seq is one method that can 

be used to understand the structure of the stress response network. Chapter IV is the 

result of collaboration between R. M. Reynolds, C. M. Ituarte, P. C. Phillips, W. A. 

Cresko, and myself. Here, we investigate for the first time the structure of the gene 

regulatory network in the context of experimentally evolved populations in order to 

understand the evolution of plasticity. We describe the structure of the network 

determined from the lines evolved under one of the three environments described in 

Chapter II. Furthermore, we identify subgroups, or modules, within the larger network 

that may contribute to the evolution of plasticity in our system. 

Finally, Chapter V summarizes the results from Chapters II – IV and discusses 

how they contribute to our understanding of the role of phenotypic plasticity in evolution. 
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CHAPTER II 

 

RAPID EVOLUTION OF PHENOTYPIC PLASTICITY AND SHIFTING 

THRESHOLDS OF GENETIC ASSIMILATION IN THE NEMATODE 

CAENORHABDITIS REMANEI 

 

This work is in press, to be published in the journal G3: Genes | Genomes | Genetics in 

2014. R. M. Reynolds and I created the experimental selection lines used in this study. C. 

M. Ituarte and I made the transcriptional profiling libraries. I performed the statistical 

analyses. W. A. Cresko and P. C. Phillips were the principal investigators for this work. 

 

INTRODUCTION 

Organisms regularly experience changes in their environments to which they must 

adapt in order to survive. As a consequence, many organisms have evolved the capacity 

to respond to stressful changes in environmental conditions by coherently altering their 

phenotypic attributes. This phenotypic plasticity, defined as the ability of a genotype to 

consistently produce an alternate phenotype in response to environmental variation 

(Bradshaw 1965), is known to be an important contributor to fitness in many organisms, 

including bacteria (Justice et al. 2006; Kümmerli et al. 2009; Butler et al. 2010), plants 

(Dudley and Schmitt 1996; Huber 1996; Agrawal 1998; Harder and Johnson 2005), and 

animals (Parejko and Dodson 1991; Warkentin 1995; Aubret et al. 2004; Charmantier et 

al. 2008; Cheviron et al. 2013).  
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Like any other character of organisms, phenotypic plasticity itself has a genetic 

basis that can change in response to evolutionary processes. One extreme evolutionary 

outcome of adaptation to a novel environment is the complete loss of ancestral 

phenotypic plasticity after selection, which is known as genetic assimilation (Waddington 

1953; 1956). More generally, adaptation in one environment can lead to changes in 

phenotypic plasticity across other environments due to genetic correlations generated by 

the pleiotropic effects of genes responding to both environments or by genetic linkage of 

genes with independent effects within each environment. Quantitative genetic models 

(Via and Lande 1985; Gomulkiewicz and Kirkpatrick 1992; Gavrilets and Scheiner 1993) 

predict that these genetic correlations across environments determine how plasticity 

across environments evolves over time.  

Although there has been renewed interest in the evolution of phenotypic plasticity 

and its importance for affecting the rate and direction of evolution of populations 

experiencing novel environments (Matesanz et al. 2010; Pfennig et al. 2010; Moczek et 

al. 2011), it is still unclear how fast phenotypic plasticity can evolve or what the 

molecular genetic basis underlying this evolution actually is. Except for a few classes of 

genes, most notably the heat shock proteins (hsps), which have been well characterized 

for their role in regulating physiological responses to stress (Lindquist and Craig 1988) 

and acting as a capacitor for environmentally-sensitive variation (Rutherford and 

Lindquist 1998; Cowen and Lindquist 2005; Sangster et al. 2008a; Jarosz and Lindquist 

2010; Rohner et al. 2013), little is known about where genetic variation for phenotypic 

plasticity resides in organisms’ genomes. For example, from a mechanistic standpoint, it 

is not known to what extent the evolution of phenotypic plasticity occurs primarily via 
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changes in frequencies of alleles affecting protein-coding regions of genes as compared 

to regulatory changes affecting differential expression of genes. Dissecting the genetic 

basis of evolutionary change in phenotypic plasticity is particularly important because 

both the rate of evolution of phenotypic plasticity itself and the structure of genetic 

correlations across environments depend on the genetic architecture of phenotypic 

plasticity. Although it is likely that multiple mechanisms play a role in the evolution of 

plasticity, a readily testable hypothesis is that rapid evolution of phenotypic plasticity is, 

at least initially, more likely to involve genetic variation in transcriptional regulation.  

In addition to this evolutionary context, there is increasing interest in a variety of 

fields as to how environmental factors such as nutrition or exposure to stress influence a 

wide variety of health-related outcomes such as aging (Gems and Partridge 2013). 

Although the direct negative effects of some environments, such as exposure to 

pathogens, are clear, in some cases brief exposure to stress at one point in the life cycle 

can lead to increased resistance to stress at a later time period—a phenomenon known as 

hormesis (Gems and Partridge 2008; Le Bourg 2009). In general, it appears that 

protection via a hormetic response is generated by the induction of stress response 

pathways (e.g., heat shock proteins; Volovik et al. 2012) in advance of when they are 

actually needed during exposure to a more severe stressor. Hormesis is a classic example 

of adaptive phenotypic plasticity, although the intellectual traditions of the two fields are 

largely distinct. 

Here we address this broad set of evolutionary and functional questions using 

experimental evolution in nematodes to investigate changes in phenotypic plasticity for 

an ecologically relevant trait: resistance to heat stress. Experimental evolution has proven 
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to be a powerful system for studying evolutionary processes (Rose et al. 1990; Huey et 

al. 1991; Lenski et al. 1991; Matsumura 1996; Callahan 2005), including the genetic 

assimilation of phenotypically plastic traits (Waddington 1953; 1956; Suzuki and Nijhout 

2006). Experimental evolution is particularly useful when ancestral and evolved 

populations can be compared simultaneously (Lenski et al. 1991). 

We evolved the nematode Caenorhabditis remanei, which, like its sister species 

C. elegans, can be frozen indefinitely and recovered later (Brenner 1974). Unlike C. 

elegans, however, C. remanei populations display an abundance of genetic variation 

(Graustein et al. 2002; Jovelin et al. 2003; Cutter et al. 2006) and ample recombination 

because of obligate outcrossing, both of which facilitate a rapid response to selection 

(Morran et al. 2009). We evolved lines by selecting on their ability to withstand heat 

shock during early larval development, a trait that displays significant heritable variation 

in natural populations of C. remanei (Reynolds and Phillips 2013). Plasticity for heat 

stress resistance was measured in populations that were raised in the selective conditions 

(standard lab environment at 20°) and in a high temperature environment at 30° which 

the populations had not experienced during selection. We further investigated the 

transcriptional changes occurring in the selective populations across environments. 

Together, these data enable a detailed investigation of adaptive physiological and 

transcriptional changes in phenotypic plasticity in an ecologically important trait in C. 

remanei. 
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MATERIALS AND METHODS 

Creation of ancestral population 

To obtain a heterogeneous population, we collected wild isolates of C. remanei. 

200 woodlice (terrestrial isopods of the Family Oniscidea, also known as sowbugs or 

pillbugs) from Koffler Scientific Reserve at Jokers Hill, King City, Toronto, Ontario 

(+44° 1′ 46.88″, -79° 31′ 41.69″) were graciously provided to us by the Cutter laboratory 

(University of Toronto) and express-mailed to the Phillips laboratory (University of 

Oregon). All woodlice were collected within 300 meters of the main building of the field 

station. Of the 200 woodlice, approximately 20% contained C. remanei. From each of 

these we collected and maintained one mating pair, yielding 26 “isofemale strains.” 

Isofemale populations were immediately expanded to a large population size following 

the initial mating (approximately 100-1000 offspring per line in the first generation and 

very large population sizes in subsequent generations). All collected strains were frozen 

within three generations of collection to minimize lab adaptation. To create a cohort 

representative of naturally segregating variation for experimental evolution, we thawed 

samples from each of the 26 isofemale strains and crossed them in a controlled fashion to 

promote equal contributions from all strains, including from mitochondrial genomes and 

X chromosomes. The resulting genetically heterogeneous population (PX443) was frozen 

after creation and served as the ancestral population for the experimental evolution. 

Polymorphism in this species is ~5% (Jovelin et al. 2003; Cutter et al. 2006; Jovelin et al. 

2009), so there should have been abundant segregating variation present at the initiation 

of selection. All natural isolates, as well as the lines used in the experiment described 
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below, were grown on nematode growth media (NGM) seeded with E. coli strain OP50 

(Brenner 1974). 

Stress response phenotype 

An acute stress in the context of this experiment is one that challenges the stress 

response of the worm within a 4-hr period. Given the short average lifespans of 

Caenorhabditids (~20 d from L4), we reasoned that any exposure in excess of 6 hr might 

be treated by the worm as a chronic stress and could potentially invoke a fundamentally 

different class of cellular stress response. To test resistance to acute heat stress, worms 

were stage-synchronized via a bleaching procedure (“hatch off”) that kills adults and 

leaves only developing embryos. Embryos were rinsed, suspended in buffer without food, 

and given 18 to 24 hr to develop into L1 larvae. L1 larvae enter developmental arrest in 

the absence of food (Baugh 2013). Worms in L1 diapause suspended in liquid buffer 

were then exposed to an acute heat stress at 36.8° in a shaking incubator (70 rpm) for 4 hr 

in a sealed microcentrifuge tube. As a control, a subset of the population was kept at 20° 

under similar conditions. After acute stress shock, worms were transferred into a Petri 

dish containing Nematode Growth Medium-lite (NGM-lite, U.S. Biological) seeded with 

E. coli strain OP50. Survival was estimated 3 to 4 d later, when most worms had 

developed into fourth-stage L4 larvae but had yet to lay eggs. Acute heat shock resistance 

was quantified as the proportion of the phenotyped population that survived the heat 

shock and matured to adulthood, relative to the average survival of the control samples. 

Experimental evolution 

We propagated four laboratory-adaptation control replicates and two acute heat-

selected replicates. Each replicate population comprised 1000 to 2000 mating individuals. 
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Exposure to acute stress occurred either every second generation or when the population 

produced ≥24,000 eggs, whichever occurred later. At that point, worms were stage-

synchronized as described previously and subjected to the stress phenotyping protocols as 

described above. The control populations were randomly culled to 1000 L1 larvae during 

each selective generation and subjected to similar treatment as the heat shock lines, but at 

20°. In the heat-selected populations, 10,000 of the L1 worms were randomly selected to 

undergo acute stress selection at an average temperature of 36.8°. This intensity of heat 

shock induces ~70% larval death in the ancestral population (s = 0.7). To maintain a 

similar strength of selection (s between 0.7 and 0.8) throughout the experiment as the 

heat-selected population adapted, the heat shock temperature was increased incrementally 

(up to 37.2° in the final generation of selection). The populations were maintained in 

standard laboratory conditions at 20° between selective events. Selection was continued 

until each replicate line had experienced 10 total selective events. 

Each population was frozen (N  ≥ 100,000 individuals) after approximately every 

second generation of experiencing acute stress shock in order to retain a record of 

evolutionary change in the populations over time and to ensure that worms did not lose 

the ability to survive freeze and thaw. Approximately 5000 individuals from the frozen 

populations were thawed to continue the evolution experiment, whereas the remaining 

95,000 worms remained frozen for future phenotyping and genetic and genomic analyses. 

Populations were thawed for selection after a minimum of 24 hr at -80°. In half of the 

selection lines (two control and one heat-selected population), freezing occurred a total of 

three times during selection, whereas this occurred five times in the remaining 

populations. 
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Phenotypic plasticity across environments 

To measure phenotypic plasticity for heat shock resistance across environments, 

the parents of phenotyped individuals were reared in either typical lab conditions (20°) or 

mild heat stress (30°). Their offspring were stage-synchronized, grown, and phenotyped 

in the parental rearing environment, e.g., worms whose parents experienced 30° were 

raised entirely at 30°. The heat shock assays were performed as described above, except 

that the control samples were also kept at the same rearing temperature during the 

phenotyping assay. 

Additionally, we chose the ancestor and one representative population from each 

selective regime to measure resistance to heat shock at a range of temperatures, from 

36.5° to 37.8°. The temperature during heat shock was recorded at 5-min intervals using 

two Thermochron iButton devices (Maxim Integrated). The average heat shock 

temperature was defined as the average measured temperature for both devices over 4 hr. 

Heat stress across the range of heat shock temperatures was measured as described for the 

standard (36.8°) heat resistance assays. 

Statistical analysis of phenotyping data 

We tested for differences in survival following heat shock using a mixed model 

ANCOVA using JMP10.0 (SAS Institute). Fixed effects in the model included the 

cultivation temperature for phenotyping (20° or 30°), the selection regime (ancestor, 

control-selected, or heat-selected), and the interaction between phenotyping temperature 

and selection regime. Independently derived replicate lines from each experimental block 

were nested within selection regime and treated as a random factor using Satterthwaite’s 

approximation for degrees of freedom (Winer et al. 1991). As the dependent variable, we 
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used square-root transformed counts of survivors from each heat-shocked plate. We 

included the square-root transformed average count of worms from the control plates for 

each phenotyping assay as a covariate in the model to control for variation in the 

estimated number of worms in each assay. The interaction between replicates and 

phenotyping environment was also included in the full model as a random factor, but its 

effect was very small and not significant and produced a slightly negative variance 

component estimate. Therefore, we set the variance component equal to zero for this term 

in order to carry out further hypothesis testing. 

Differences between reaction norms over the range of heat shock temperatures 

were tested by fitting a logistic regression model implemented in R (R Development Core 

Team 2013). We used a quasi-binomial model to allow for overdispersion in the response 

variable. The total number of individuals in each trial was assumed to be the average 

count from controls from the same treatment group that were assayed concurrently. The 

number of survivors from each heat shock trial was taken to be the successes in the 

model. In any case in which the number of survivors was greater than the assumed total, 

the number of survivors was assumed to be equal to the total (100% survival). Two 

factors, rearing environment and selection regime, as well as one continuous variable, 

average heat shock temperature, and all interactions were tested in the full model. We 

also tested for environment and environment-by-heat shock temperature interactions 

within each selection line. 

Transcriptional profiling of pooled populations 

To obtain tissue for transcriptional profiling experiments, we thawed frozen 

stocks of worms from the ancestral population, one representative control population, and 
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one heat-selected population. Worms were raised at 20° for a minimum of three 

generations, or until the population was at least 250,000 individuals. Each population was 

then allowed to lay eggs, which were age-synchronized as described above. Age-

synchronized embryos were allowed to hatch and develop for 20 hr in liquid medium, at 

which time most individuals had entered L1 diapause. Half of the larvae developed at 20° 

during this period, which we define as the larval development environment, while the 

remainder developed at 30°. After 20 hr, larval worms were passed through a 20-µm 

Nitex screen to remove unhatched eggs and dead adults. Approximately 15 µl of pelleted 

L1 tissue (~100,000 individuals) was flash-frozen in TRIzol (Ambion) and stored at -80° 

until RNA isolation. For each treatment condition from each line, 6 replicates were 

collected from a minimum of two independently thawed populations from each line. We 

extracted total RNA from L1 tissue using standard TRIzol methods, and from this pool 

mRNA was isolated using the Dynabeads mRNA purification kit (Ambion). Purified 

mRNA was sheared to 200- to 600-nt fragments using a buffered zinc solution (RNA 

Fragmentation Reagent; Ambion). cDNA was synthesized using Superscript III reverse-

transcriptase (Invitrogen), and sequencing libraries were created through ligation of 

adaptors with inline barcodes to enable multiplexing of samples. Samples were 

sequenced in five lanes on an Illumina HiSequation 2000 at the University of Oregon 

Genomics Core Facility. 

Analysis of differential gene expression 

We performed quality filtering of raw sequence reads using the 

process_shortreads component of the software Stacks (Catchen et al. 2011; 2013), which 

discards reads with ambiguous sample identity, reads with uncalled bases, and reads 
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failing Illumina purity filters. Reads with ambiguous barcodes were rescued if they had 

fewer than two mismatches from a known barcode. We obtained more than 342 million 

reads that passed initial quality filters. We aligned all reads that passed the quality filters 

to the C. remanei genome (C_remanei-15.0.1 assembly) available at Ensembl Metazoa 

(metazoa.ensembl.org/ ) using GSNAP (Wu and Nacu 2010). To help guide the alignment 

across exon boundaries, we used existing annotated gene models for protein-coding genes 

obtained from Ensembl Metazoa, while allowing GSNAP to identify novel splice sites as 

well. For this study, we chose to focus on previously annotated protein-coding genes. 

While this approach may miss responses in genes that are not currently annotated, this 

dataset does include 31,518 transcripts, including many of the genes that might be 

expected to respond to heat stress (e.g., hsps). We then used the htseq-count tool from the 

Python package HTSeq (http://www-huber.embl.de/users/anders/HTSeq/) to count all 

reads aligning to protein-coding genes. Reads were counted against the gene models 

using the “union” mode in htseq-count, so that reads were only counted if they 

unambiguously overlapped a single gene model. 

For each selection line, we tested only those genes for which we could confidently 

detect expression. Genes expressed at very low levels are unlikely to be detected in all 

libraries and are more likely to be affected by sampling variance (Bloom et al. 2009), 

thereby reducing the power for detecting differential expression among treatments. We 

modified the filtering procedure commonly implemented in the edgeR package (Robinson 

and Oshlack 2010; Anders et al. 2013) to remove these uninformative genes prior to 

analysis. Genes that had less than one count per million (cpm) were considered to be 

unexpressed in a given sample. In our smallest sequenced libraries, 1 cpm is equivalent to 
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about two reads aligned to a given gene. Because we were interested primarily in the 

effect of environmental treatment, we excluded genes for analysis unless they met the 

detection threshold (>1 cpm) in at least four of the six replicates for one of the 

temperature treatments for any line.  

Differential gene expression analysis was conducted using the DESeq package 

(Anders and Huber 2010) in R, which utilizes a negative binomial distribution to test for 

differential expression among treatments to better accommodate the well known 

phenomenon of overdispersion in RNA-seq data. We tested for differences in gene 

expression between larval environments within each of the selection lines. Two factors, 

larval development temperature and replicate thaw, were included in the full model as 

additive effects. To assess the effect of temperature on expression, we compared the full 

model to a reduced model that excluded temperature. Larval development temperature 

was deemed to have a significant effect on the regulation of a gene if the full model fit 

significantly better than the reduced model at a 5% false discovery rate (FDR) after 

adjusting for multiple comparisons using the Benjamini-Hochberg method (Benjamini 

and Hochberg 1995). Similarly, we tested for the effect of evolution within the 20° larval 

environment by testing for significant expression differences between each pair of 

populations.  

To understand how transcriptional plasticity evolved in the selected lines, we 

compared differential expression (log2 fold change between larval environments) of each 

evolved population to the ancestor. Because of differences in power to detect differential 

expression among the three lines, we used a regression approach to compare the average 

change across environments in each selected line and the ancestor. Three genes that were 
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expressed in only one environment were excluded from this regression analysis, because 

the log2 fold change is infinite. Furthermore, we excluded from this analysis all genes that 

were expressed below the detection limit in either compared line, as gene silencing 

potentially represents a different mechanism for genetic assimilation. Finally, we also 

excluded genes that did not show significant inducible expression (FDR <5%) in at least 

one of the two lines under comparison. We fit an ordinary least squares (OLS) linear 

model (using the lm function in R) to the log2 transformed fold change of the 

significantly differentially expressed genes for each pairwise comparison of the evolved 

lines with the ancestor. 

Gene ontology enrichment analysis 

We used the software program Blast2GO (Conesa et al. 2005) to look for over-

representation of GO terms (The Gene Ontology Consortium 2000) in the sets of 

significantly upregulated or downregulated genes in the 30° larval environment. 

Blast2GO computes a Fisher’s Exact Test with a FDR correction to test for significant 

over-representation of GO terms in a test set. Two test sets were created for each 

population: one with significantly upregulated genes (FDR <1%), and one with 

downregulated genes (FDR <1%). We tested for over-representation of generic GOSlim 

ontology terms using a one-tailed test against a reference set of the genes which were not 

differentially expressed between larval environments in the same population (FDR >5%). 

Ontology information was visualized using Cytoscape 3.0 (Smoot et al. 2011). 
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RESULTS 

Selection increases resistance to heat stress in the selective environment 

When raised in standard lab conditions at 20°, approximately 30% of individuals 

from the ancestral population survived a 36.8° heat shock treatment during the early 

larval period and were subsequently able to develop to adulthood (Figure 2.1A). 

Following ~30 generations of propagation under standard laboratory conditions, control 

populations maintained a level of heat stress resistance that was approximately 

comparable to that of the ancestor (F1,4 = 0.99, P = 0.3825). Some variation among 

independently evolved replicates was observed, potentially reflecting genetic drift among 

these populations. In contrast, selection via periodic exposure to heat shock increased 

resistance to high temperatures. Comparing the time points from the heat-selected lines 

reveals a linear increase in survival over the course of selection (linear model with time: 

F1,4 = 10.04, P = 0.0397; quadratic terms: F1,5 = 0.23, P = 0.6485), culminating with 

nearly 85% of individuals surviving heat shock in the final generation. 

Plasticity for acute heat shock resistance evolves rapidly 

In addition to measuring larval heat resistance following cultivation at 20°, which 

is the standard environment during the selection experiment, we also exposed individuals 

from each population to a novel environment: elevated temperature (30°) during 

embryogenesis. Note that C. remanei is much more resistant to high temperatures than C. 

elegans, which tends to have an upper thermal limit of 26° to 27° (Anderson et al. 2011). 

After cultivation at 30°, survival of the ancestral population increased to 63% after heat 

shock (F1, 111 = 33.52, P < 0.0001, Figure 2.1C), reflecting a high degree of plasticity 

across environments for the heat resistance phenotype (Figure 2.1B), apparently via 
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induction of heat resistance pathways at this sub-lethal temperature. In the populations 

evolved under control conditions, the novel 30° environment induced a similarly large 

plastic response as in the ancestral population, with no significant population-by-

Av
er

ag
e 

Pl
as

tic
ity

Pr
op

or
tio

n 
Su

rv
iv

in
g 

H
ea

t S
ho

ck

A B

C

Ancestor Heat
(10 events)

Heat
(~5 events)

Control
(10 events)

*
*

Phenotyping Environment

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Ancestor 10 events~5 events

Ancestor Control (10 events) Heat (10 events)Heat (~5 events)

Pr
op

or
tio

n 
Su

rv
iv

in
g 

H
ea

t S
ho

ck

20°C 20°C 20°C30°C 30°C 30°C

+0.6

+0.3

+0.2

+0.1

+0.0

1.2

-0.2

Control

Heat-Selected

1.2

-0.2
20°C 30°C

+0.5

+0.4

-0.1

Figure 2.1  Evolved changes in heat shock resistance in selected lines of C. remanei. (A) 
Proportion of heat-shocked worms surviving to adulthood relative to control treated 
replicates for populations subjected to heat selection (red) and control populations (blue). 
(B) Plasticity for heat stress resistance, defined as the difference between survival at 30° 
and survival at 20° for ancestral (gray), control (blue), and heat-evolved (red) 
populations. Asterisks denote populations with a significant (P < 0.05) effect of 
environment (i.e., plasticity) on survival. (C) Reaction norms for replicate evolved lines 
in the 20° and 30° environments. Least squared means from the ANOVA with 95% 
confidence intervals are plotted. 
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environment interaction (F1, 113 = 2.82, P = 0.0959, Figure 2.1B). Despite some variation 

in average survival at each cultivation temperature, plasticity in survival was highly 

consistent across all controls (Figure 2.1C). 

In lines selected for heat-shock resistance, there was no significant increase in 

survival in the novel environment at 30° compared to the ancestor (F1, 4 = 1.84, P = 

0.2462), which contrasts sharply with the response observed at 20°. Consequently, 

plasticity across environments declined dramatically during selection, until the complete 

loss of environmental sensitivity occurred after 10 generations of selection for heat 

resistance (F1, 112 = 1.11, P = 0.6558). Loss of plasticity occurred in this case because the 

phenotype in the 20° environment evolved to match that of the 30° environment. Note 

that this result is not simply a matter of scale, as these populations were still relatively far 

from the upper bound of 100% survival. These results support an apparent genetic 

assimilation of the heat-induced phenotype following selection. 

Global transcriptional response to environmental change is unchanged 

Given the observed pattern of rapidly evolved plasticity for heat stress resistance 

across environments, we hypothesized that the phenotypic evolution may be manifested 

in differences in gene expression profiles across environments in a large proportion of 

genes. Furthermore, we predicted that the phenotypic assimilation might be matched by a 

pattern of transcriptional assimilation as well. Specifically, genes that are differentially 

expressed between the 20° and 30° environments in the ancestral population would be 

expected to become constitutively expressed in the heat-evolved lines to match the 

observed phenotypic change in those populations (Figure 2.2). To test this hypothesis, we 

used RNA-sequencing (henceforth RNA-seq) on pooled samples from the ancestor, 
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 control, and heat-evolved populations, which were divided and raised at either 20° or 30° 

for 20 hr prior to tissue collection.  

Of the genes that were expressed above our threshold for detection, we identified 

8,377 genes that were differentially expressed across environments in at least one of the 

three populations (Appendix A, Table S2.1). Not surprisingly, exposure to the 30° 

environment caused upregulation of genes involved in mediating response to stress 

(Figure S2.1 and Table S2.2), as well as enrichment of biological processes related to 

metabolism, growth, and development. Processes relating to ion transport and cellular 

communication were downregulated at 30°. These processes were similarly enriched in 

all three selection lines. 

To understand how expression plasticity has evolved in the selected populations, 

we compared the inducibility (measured as the log2 fold change in expression between 

environments) of the differentially expressed genes between selection lines and the 

ancestor (Figure 2.2). When comparing the expression change across environments 

between different lines, the null expectation is that these should have equal expression 

differences in both lines for the majority of genes (Figure 2.2A). Alternatively, under a 

genetic assimilation model, we would expect to observe expression differences in the 

control and ancestral populations but constitutive expression of these genes in the heat-

evolved population.  

When comparing the expression change in the ancestral population to the 

expression difference in either evolved population, there was a slight reduction in the 

slope term of the linear model, suggesting that many genes are somewhat less responsive 

to environmental change (Figure 2.2, B and C). However, this effect was apparent in both 
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the control (b = 0.648; t7751 = -59.49; P < 0.0001) and heat-evolved populations (b = 

0.686; t6743 = -60.63; P < 0.0001), indicating that this observed pattern may be a signature 

of laboratory adaptation, rather than genetic assimilation of heat stress resistance. The 

reduction of slope was slightly more pronounced in the control populations than in those 

selected for heat resistance (t14494 = 4.78, P < 0.0001). Furthermore, a significant 

correlation between the responsiveness of expression in the ancestor and evolved 

populations remains, implying that general transcriptional assimilation is not responsible 

for the phenotypic assimilation. 

Inducibility of candidate heat shock proteins is unchanged 

Genetic assimilation may not be generated by constitutive gene expression at a 

global level, but rather by changes in specific pathways such as those regulating heat 

response. To test this hypothesis we analyzed the response of heat shock proteins, which 

are particularly strong candidates for regulating a heat-specific response because of their 

key role in mitigating damage due to cellular stress (Lindquist and Craig 1988). In 

addition, hsp70 genes have been shown to respond to selection at different temperatures 

in Drosophila melanogaster (Bettencourt et al. 2002), and the inducibility of hsp70 

differs among related Drosophila species adapted to different thermal environments 

(Krebs 1999; Calabria et al. 2012), making these genes likely targets for adaptation to 

heat stress. We identified 89 genes in C. remanei belonging to four families of heat shock 

proteins: the HSP70 superfamily, the HSPC (HSP90) family, the DNAJ (HSP40) family, 

and small heat shock proteins in the HSPB family, many of which are inducible in 

response to heat stress in the genus Caenorhabditis (Heschl and Baillie 1990; Stringham 

et al. 1992; Nikolaidis and Nei 2003). As expected, most of the hsps exhibited a high 
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degree of plasticity across environments. However, they also retained an equivalent 

degree of plasticity in both evolved populations (Figure 2.2). In addition, there was no 

evidence that the basal level of hsp expression at 20° differed among populations. A few 

genes did show altered expression over evolutionary time (Table S2.3), but there was no 

clear pattern of constitutive upregulation across stress response pathways. Thus, despite 

their canonical role in mediating heat shock response, hsps do not appear to play a role 

here in the apparent genetic assimilation of heat shock resistance in the selected 

population. 

Genetic assimilation of heat resistance is only apparent and is context-dependent  

Given the discordance in evidence for assimilation at physiological and 

transcriptional levels, we sought to understand whether the transcriptional response to 

temperature might underlie a more complex relationship between the environment and 

phenotype by exploring the evolved norms of reaction for survivorship over a broader 

range of heat shock temperatures. As in the single temperature assays, we observed a 

significant interaction between heat shock temperature, population and rearing 

environment (F2, 240 = 8.17, P = 0.0004), indicating that evolved differences in plasticity 

due to rearing environment affect the rate of survival across the range of heat shock 

temperatures (Figure 2.3). In particular, as above, rearing environment had strong effects 

on resistance within the ancestor (rearing environment-by-heat shock temperature 

interaction: F1, 176 = 18.95, P < 0.0001), and control lines (interaction: F1, 176 = 53.17, P < 

0.0001). However, rearing the worms at 30° also induced increased heat shock resistance 

in the heat selected lines when the heat shock occurred at temperatures above the 

selection temperature (>37°; interaction F1, 35 = 20.75, P < 0.0001). In fact, the heat-
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selected populations appear to have evolved greater plasticity at high heat shock 

temperatures, largely by improving inducible heat shock resistance after being raised at 

30°. Thus, while assimilation is evident at the specific temperature utilized under direct 

selection, plasticity is maintained—and even enhanced—at a broader spectrum of 

formerly lethal temperatures. 

 

DISCUSSION 

Organisms live in a constantly varying world. In response to this environmental 

variation, numerous lineages have evolved the ability for individuals to predictably 

modify their phenotypes in response to environmental heterogeneity. The importance of 

phenotypic plasticity in influencing ecological and evolutionary processes—such as 

modifying the probability of extinction or influencing the trajectory of evolutionary 

response—has long been known by biologists (Baldwin 1896a,b; Morgan 1896; 

Waddington 1942; Schmalhausen 1949; Bradshaw 1965; West-Eberhard 2003). Despite 
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this recognition, studies of the origin and evolution of phenotypic plasticity, in particular 

how quickly it can evolve and the genetic basis of plasticity, have been unsatisfactorily 

inconclusive. One reason is that labile phenotypes that vary in response to environmental 

change could naively be seen as lacking any genetic basis and therefore unable to evolve. 

However, evolutionary biologists now correctly understand that the ability to coherently 

respond to environmental variation is itself a trait that can evolve and that genetic 

variation for this trait can be sorted within and among populations (Via 1984). A more 

important reason for the lack of progress is the difficulty of using comparative studies of 

phenotypic plasticity in evolved populations to directly address questions of evolutionary 

rate and genetic mechanism. In this study, we have tackled these holes in our 

understanding of the evolution of phenotypic plasticity by using a powerful experimental 

evolution approach. 

One specific form of plasticity of broad interest to molecular as well as 

evolutionary biologists is the increased hardiness that can often be induced by low doses 

of a toxin or brief exposure to a stressful environment (Calabrese and Baldwin 2003). 

The induced response, or hormesis, is presumably caused by the upregulation of stress-

resistance factors in the initial exposure that then serve a protective function in 

subsequent, and potentially harsher, exposures (Gems and Partridge 2008). Within C. 

elegans, brief exposure to high temperatures has been shown to yield increased resistance 

to high temperatures (Lithgow et al. 1995), as well as increases in longevity (Gems and 

Partridge 2008; Le Bourg 2009). Hormesis is not usually discussed in the context of 

phenotypic plasticity—although it is precisely that—and in this case serves as example of 

adaptive phenotypic plasticity. There is evidence for genotype-by-environment 
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interaction for this response in C. elegans (Rodriguez et al. 2012), which is a necessary 

precursor to the evolution of a plastic response. Here we find an essentially similar (if not 

stronger) hormetic response in populations of the closely related and genetically diverse 

nematode C. remanei that have been recently collected from nature. Thus, this pattern of 

plasticity appears to be highly conserved across this group of nematodes. 

Despite this conservation, selection for resistance to nearly lethal high 

temperatures rapidly produced a complete loss of plasticity for resistance to heat stress in 

independently evolved replicate lines. Dramatically increased fitness and a complete loss 

of plasticity were observed after only 10 generations of selection (Figure 2.1). This 

pattern of genetic assimilation was very similar to that predicted by Waddington (1953; 

1956) over 60 years ago, but it occurred much more quickly than what may have been 

otherwise expected. The tempo of this plasticity change could only be assayed in an 

experimental evolution framework and led to an important subsequent question: how 

could such rapid evolution occur? Changes in the frequencies of alleles that affect coding 

sequences of genes or alleles of regulatory elements affecting the levels of expression of 

different genes could be responsible. We addressed the latter hypothesis and found that 

the global patterns of gene expression have not been altered in a way that matches the 

genetic assimilation of the phenotype (Figure 2.2).  

In contrast to the expectation of global genetic assimilation in transcription, a 

more focused hypothesis is that particular candidate pathways would experience genetic 

assimilation. For example, given what is known about the genetics of heat shock 

resistance (Lindquist and Craig 1988; Morimoto 1998; Volovik et al. 2012), one simple 

means of achieving this pattern of assimilation would be the constitutive upregulation of 
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heat shock protein genes at permissive temperatures, thereby allowing these proteins to 

provide ready-made protection without the need for them to be induced before rapid 

exposure to lethal temperatures. Surprisingly, we also did not observe the predicted 

changes in gene expression levels in these key proteins. Instead, most of the hsp genes 

that showed differential expression in one or more selection lines showed a high degree 

of correlation in expression across treatments, and most of the decrease in the 

environmental induction of expression seemed to result from laboratory adaptation rather 

than specific assimilation in the heat-selected line. Thus, neither global nor hsp-focused 

gene expression patterns evolve in a pattern consistent with the genetic assimilation of 

the phenotype. 

There are several explanations for the divergent observations of genetic 

assimilation at the level of the phenotype but concurrent lack thereof at the level of gene 

expression. First, the phenotypic response may be a result of changes in a few key stress 

response genes. However, the strongest candidates for regulating the heat shock response, 

the hsps, respond similarly in all lines. A second possibility is that the basal level of gene 

expression among lines is more important in the heat-selected line, and additional 

induction of expression under heat stress does not further improve survival. A few genes 

may be in this category and require further study (Table S2.3). Alternatively, constitutive 

upregulation may be important, but the target of regulation (e.g., protein degradation or 

post-translational modification) might not be revealed from an analysis of transcript 

levels. 

In contrast to these strictly genetic explanations, another possibility is that our 

initial finding of phenotypic assimilation is only apparent (Figure 2.3). In addition to the 
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shift of the reaction norm when raised at 20°, there appears to be a correlated shift in the 

30° reaction norm as well, so that plasticity is actually increased at temperatures beyond 

those initially assayed. This indicates that strong genetic correlations for heat resistance 

exist between the stressful and permissive environments, as predicted by Via and Lande 

(1985), and that such correlations may strongly influence the phenotype across multiple 

environments. Thus, genetic assimilation of the heat resistance response was apparent 

only and limited to a narrow window of possible environmental perturbations. 

It has been long recognized that the specifics of phenotypically plastic responses 

are dependent on the exact environments in which they are measured (Bradshaw 1965). 

For example, Waddington saw genetic assimilation as a specific form of canalization, or 

reduction in phenotypic variation, and hypothesized that canalization could be broken 

outside the range of environmental variation under which assimilation occurred 

(Waddington 1942). Our results clearly support this point of view. Even in the context of 

a significantly reduced set of environmental stimuli, as examined here, it is apparent that 

the phenotypic and environmental space is complex and multidimensional. Although the 

evolution of genetic assimilation might be seen as potentially limiting subsequent 

evolutionary change, traits that presumably exhibit canalization in one range of 

environmental variation are likely to be periodically exposed to ranges of environmental 

conditions under which canalization is broken. Therefore, rather than limiting the 

evolutionary response to selection via the induction of genetic canalization, changing 

environments instead likely provide a continually shifting substrate for the evolution of 

plasticity. The dynamic balance between canalization and plasticity is therefore one of 

the major drivers—and outcomes—of evolution in a complex environmental milieu. 
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BRIDGE 

 In Chapter II, we examined a case in which genetic assimilation appeared to have 

evolved rapidly in selected lines of C. remanei. However, this observation was shown to 

be an illusion resulting from a myopic perspective of the environmental context in which 

the organisms exist. Therefore, consideration of the broader environmental context is 

vital in any study of phenotypic plasticity. In Chapter III, we investigate this problem 

further by asking whether evolution under different environmental conditions affects 

responses to selection by altering genetic correlations among traits and across 

environments. 
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CHAPTER III 

 

VARIABLE PLEIOTROPY AND ENVIRONMENTALLY INDUCED CHANGES IN 

CORRELATED RESPONSES TO SELECTION 

 

This work is in preparation for submission to the journal Evolution in 2014. The 

experimental selection lines were created and phenotyped by R. M. Reynolds and myself. 

I performed all statistical analyses. W. A. Cresko and P. C. Phillips were the principal 

investigators for this work. 

 

INTRODUCTION 

All phenotypic evolution is dependent on environmental context for at least two 

reasons. First, the fundamental idea of evolution by natural selection is that the specific 

circumstance of the environment causes individuals with particular phenotypes to have 

higher probabilities of surviving or reproducing in greater numbers than individuals with 

other phenotypes (Darwin 1859). Second, an individual’s phenotype is itself the result of 

the complex interplay between the genetic information encoded in that individual’s DNA 

and a potentially wide variety of attributes of a given environment that influence the 

manifestation of the genetic information in the phenotype. The distinction and interplay 

between these two roles of the environment is exemplified in the case of the snowshoe 

hare (Lepus americanus). A brown snowshoe hare starkly stands out to predators when 

found on the snow, while a white snowshoe hare is highly visible against the burnt grass 

of the late summer. Yet whether a given hare is brown or white depends on season-
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specific signals that alter pigment-controlling pathways within that individual’s hair 

follicles (Keogh 1967). Mismatches between the phenotype and environment are not 

always so readily apparent, however, because the environment includes not only external 

factors, but also the microenvironment of the individual itself. For example, cytoplasmic 

factors contributed by an individual’s maternal parent can interact with paternal 

zygotically expressed proteins to negatively affect the functioning of the cell and thus the 

fitness of the organism (Reed et al. 2008). 

These truisms of the environment being the filter of genetic change into the 

phenotype, and a key arbiter of the distribution of genetic variation via the fitness effects 

on the associated phenotypes, have rightly served as the basis for evolutionary ecology 

for the last century and a half (Falconer and Mackay 1996; Roff 1997; Lynch and Walsh 

1998). However, individuals do not exist as single phenotypes in a well-defined set of 

environments. Each individual is composed of an effectively infinite number of 

phenotypic dimensions that are influenced by a wide array of systematic and stochastic 

environmental exposures. The unique life trajectory of each individual is the result of the 

interaction of the specific set of environmental exposures and the combination of alleles 

represented in their genome. Which elements of the environment generate fitness 

differences and which have direct influences on phenotype? Which of the thousands of 

phenotypic attributes can be said to be the targets of natural selection and which simply 

covary as a result of that selection or related environmental perturbations? These are the 

essential questions of modern evolutionary quantitative genetics. 

One consequence of the complexity of interactions within an organism is that 

changes in one feature or in a subset of traits should have ramifications that spread 
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throughout the organism. This can be due to the direct functional interactions of the traits 

involved (Arnold 1983), or, more subtly, because the traits are coupled together because 

of a shared genetic basis (Lande 1979). This genetic coupling can be generated by either 

pleiotropy, when a single allele influences more than one trait, or by linkage, when alleles 

at two or more loci tend to be inherited with one another, usually via physical linkage on 

a chromosome (Falconer and Mackay 1996). More than a half-century of work in 

molecular biology has revealed that most organismal traits are underlain by genetic 

networks of dozens to many hundreds of genes. The existence of such networks supports 

the view of universal pleiotropy first espoused by Sewall Wright during the formation of 

modern evolutionary genetics (Wright 1968), suggesting that genetic coupling among 

traits should be the rule rather than the exception.  

Evolutionary quantitative genetics provides a strong conceptual framework for 

untangling the patterns of natural selection and genetic inheritance for suites of 

interacting complex traits. For the most part, these approaches have relied on statistical 

associations—among traits, between traits and fitness, and among relatives—for making 

inferences. Such associations are necessarily averages over genes, genetic networks, 

traits, and individuals within a population. The existence of complex genetic networks 

begs the question of whether variation in the nature and structure of pleiotropy should 

have an important influence on evolutionary outcomes or whether a perspective of 

pleiotropy developed nearly 100 years ago remains sufficient for understanding the 

evolution of complex traits. 
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When multiple traits are affected by natural or artificial selection, the multivariate 

formulation of the breeder’s equation (Lande 1979; Lande and Arnold 1983) describes 

the responses to selection among the set of phenotypes as: 

 , (1) 

where  is the vector of average phenotypic responses to selection, G is the additive 

genetic variance-covariance matrix, and  is the vector of selection gradients for each 

trait. Equation (1) can be used to describe the evolution of multiple traits within a single 

environment (e.g., brain size and body size; Lande 1979), as well as related traits across 

multiple environments (e.g., body size at high and low temperatures; Via and Lande 

1985; Via 1987).  In either case, genetic correlations can lead to correlated responses to 

selection (Lande 1979; Via and Lande 1985). Evolutionary trajectories will be biased by 

the genetic covariation to adapt along the “genetic lines of least resistance” (Arnold 1992; 

Schluter 1996; McGuigan and Blows 2007). If these genetic lines correspond with 

selective gradients on a fitness landscape then evolution will occur unimpeded. However, 

in extreme cases when genetic covariances and fitness landscapes are in conflict, 

populations can be slowed or prevented from achieving certain phenotypic combinations, 

even if such combinations are strongly favored by selection (Steppan et al. 2002).  

Despite the fundamental role that this framework has played in our understanding 

of the evolution of quantitative characters, recent studies have demonstrated that genetic 

correlations between traits (Grant and Grant 1995; Fischer et al. 2007) and across-

environments (Czesak et al. 2006; Stinchcombe et al. 2010) do not necessarily predict the 

realized evolutionary response. First, because the G-matrix is symmetric, the naïve 

expectation is that genetic correlations will result in symmetry in the correlated responses 
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to selection as well (Lande 1979). However, this is rarely the case when selection occurs 

over multiple generations (e.g., Falconer 1960; Shiotsugu et al. 1997; Cortese et al. 

2002). Proposed reasons for the asymmetry include changes in allelic effects due to allele 

frequency changes (Bohren et al. 1966) and changes in linkage disequilibrium 

(Villanueva and Kennedy 1992). Furthermore, it is apparent that the genetic architecture 

of complex traits can be strongly influenced by the environment (Hoffmann and Merilä 

1999; Charmantier and Garant 2005; Paaby and Rockman 2014), which also contributes 

to the unpredictability of the evolutionary response. However, the effect of the 

environment on correlated responses to selection has very rarely been tested (Baker and 

Cockrem 1970; Fry 2001). Do we need a better understanding of the genetic architecture 

underlying quantitative trait variation in order to more fully understand the evolution of 

complex phenotypes? 

The G-matrix itself is a composite of wide variety of possible influences on 

genetic variation and covariation, averaged over all of the loci in the genome. Using the 

two-trait case for simplicity, and ignoring possible contributions of between-gamete 

disequilibria, the G-matrix can be decomposed as 

   (2) 

where xi1 is a random variable describing the average effect of a particular allele at locus i 

on trait 1, x j2 is the average effect of a particular allele at locus j on trait 2, etc., and the 

expectation (E) is taken over all alleles at all possible pairwise combinations of n genes 

(Lande 1980; Phillips and McGuigan 2006). Terms on the diagonal describe the 

contributions of single and pairs of linked loci on the additive genetic variation for a 
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given trait. Terms involving xi1 and xi2 in the off-diagonal describe the influence of 

pleiotropy on the additive genetic covariance between traits, whereas terms involving xi1

and x j2 (and vice versa) describe the effects of linkage on these covariances. The critical 

point here is that genetic covariances (and therefore predicted correlated responses to 

selection) are averages over alleles at a given locus and over many loci within the 

genome. Variability in these allelic effects yield the overall pattern of genetic variation 

and covariance, but strong heterogeneity in these effects has the potential to generate 

evolutionary responses beyond those predicted by G alone (Barton and Turelli 1987). We 

were only beginning to glimpse the molecular underpinnings of pleiotropy when this 

theory was just being formulated. In the light of core understanding of genetic networks 

from the field of molecular biology, however, it now seems clear that these patterns must 

be deeply complex for most biological systems (Phillips 2008; Costanzo et al. 2011). 

One important example of a suite of complex traits that are regulated by linked 

genetic networks is the response to environmental stress. For example, in C. elegans, 

many of the proteins that respond to stressors such as heat, oxidative damage, or 

starvation are known, and their interactions within the stress response network have been 

characterized in detail. In most instances, they display strong pleiotropies with one 

another (Fig. 3.1). One particularly well-studied pathway is the insulin/insulin-like 

growth factor signaling (IIS) pathway. Notably, IIS regulates nuclear localization of the 

FoxO transcription factor, DAF-16 (Lee et al. 2001; Lin et al. 2001). Genes directly 

regulated by DAF-16 contribute to resistance to heat stress (Hsu et al. 2003; Morley and 

Morimoto 2004), oxidative stress (Honda and Honda 1999; 2002; Oh et al. 2006), 

osmotic stress (Lamitina and Strange 2005), heavy metals (Barsyte et al. 2001), and 
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pathogens (Evans et al. 2008). In addition, IIS likely interacts with HSF-1, a transcription 

factor known to regulate a number of heat shock proteins to mediate heat stress response 

(Wu 1995), and SKN-1, whose regulatory targets are important for resistance to oxidative 

stress (An and Blackwell 2003). The IIS pathway clearly plays a central role in mediating 

response to a variety of stresses, mediated through a core set of regulatory hubs, such as 

DAF-16, which simultaneously affect resistance to a diverse array of cellular stressors. 

Therefore, the molecular biology of this system would predict that pleiotropy should 

influence evolution of the different stress responses, leading to correlated responses to 

selection on any stress phenotype.� 

Figure 3.1.  Stress response network in C. elegans. Many stressors activate IIS, which 
regulates several key transcription factors, such as DAF-16, SKN-1, and HSF-1. As a 
group, the target genes of these transcription factors are responsible for resistance to 
many different types of cellular stress, leading to an expectation of strong pleiotropy 
within the molecular network. Image courtesy of John Willis.  
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Traditionally, the G-matrix has been estimated using controlled breeding 

experiments, often including hundreds of families (Lynch and Walsh 1998; Steppan et al. 

2002). However, different combinations of pleiotropic effects can lead to the same 

estimate of genetic correlation between traits, but will place different constraints on the 

evolutionary response (Gromko 1995). An alternative approach is to use experimental 

evolution in the laboratory to study patterns of changes in the covariances among traits 

and across environmental conditions (Rose et al. 1990). Experimental evolution guided 

by laboratory selection enables the impact of genetic correlations among traits to be more 

accurately estimated. Here, we use this approach to investigate variation in patterns of 

pleiotropy both between traits and across environments. We imposed selection on two 

traits, heat stress resistance and oxidative stress resistance, for which the shared 

molecular pathways lead to a prediction of pleiotropy. We measured both direct and 

correlated responses to selection in three different selective environments. In particular, 

we asked whether correlated responses to selection were symmetrical and constant across 

environments as predicted by theory, or if instead the selective environment alters the 

patterns of pleiotropy within the stress response network. 

 

METHODS 

Experimental evolution 

The ancestral population used for selection was created as previously described 

(Sikkink et al. 2014b). In brief, natural isolates collected from Ontario, Canada, were 

used to create 26 isofemale strains. These strains were crossed in a controlled manner to 

create a population that was representative of the naturally segregating genetic variation. 
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The genetically heterogeneous population obtained from the crosses (PX443) was frozen 

after its creation, prior to use for experimental evolution. All natural isolates and the 

selection lines described below were raised on Nematode Growth Medium-lite (NGM-

lite, U.S. Biological) seeded with Escherichia coli strain OP50 (Brenner 1974). 

We evolved populations of C. remanei in three different chronic environments 

within which they spent their entire lives (Fig. 3.2). Worms evolved in the chronic 

control environment were raised at 20°C on plates containing NGM-lite seeded with E. 

coli strain OP50—standard lab conditions for worm husbandry (Brenner 1974). The 

chronic heat environment differed from the control environment in that the temperature 

was increased to 30°C.  To apply a chronic oxidative stress, 160µM paraquat (methyl 

viologen) was added to the NGM-lite before the plates were poured. After thawing the 

ancestral population in standard lab conditions at 20°C, we allowed two generations in 

those conditions for recovery from the freeze. Worms were then divided among lines in 

each of the chronic environments (Generation 0), and lines were maintained within that 

environment for the entirety of the experimental evolution.  

 

Figure 3.2.  Schematic of the experimental evolution design. Lines were raised 
throughout selection (~30-40 generations total) in one of three chronic selective 
environments. In each environment, selection lines were generated by selecting 
individuals at random (Control), or by selecting survivors of an acute heat shock or 
oxidative shock. 
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Within each of the chronic environments, evolved lines experienced one of three 

different acute treatments: a control, acute heat stress, or acute oxidative stress (Fig. 3.2, 

Table 3.1). An acute stress in the context of this experiment was one that challenged the 

stress response of the worm within a four-hour period. In contrast to the chronic 

environmental treatments, acute stressors were a very high-intensity stress applied during 

a single developmental stage of the lifecycle over a relatively short period of time.  

Acute selection occurred either every second generation or when the population 

produced �24,000 eggs, whichever occurred later. At that point, worms were treated with 

a bleach solution (Stiernagle 2006), and allowed to develop into L1 larvae in buffer. 

Without food, C. remanei enter diapause at the L1 stage (Baugh 2013), resulting in a 

population that is fully stage-synchronized. During the development period, the 

conditions of the buffer matched the chronic selection conditions. That is, lines that were 

typically raised at 30°C, experienced the same thermal environment during stage 

synchronization. Similarly, 160µM paraquat was added to the buffer for lines selected 

 
Table 3.1. Experimental evolution lines and selective conditions. 
 

Chronic Selection Acute Selectiona No. of Lines 
Control 20°C, NGM Control — 4 
Control 20°C, NGM Heat 36.8-37.1°C 2 
Control 20°C, NGM Oxid. 1-1.5 mM H2O2 2 

Heat 30°C, NGM Control — 2 
Heat 30°C, NGM Heat 36.8-37.8°C 2 
Heat 30°C, NGM Oxid. 1-2.25 mM H2O2 2 
Oxid. 20°C, NGM + 160µM paraquat Control — 2 
Oxid. 20°C, NGM + 160µM paraquat Heat 36.4-36.8°C 2 
Oxid. 20°C, NGM + 160µM paraquat Oxid. 0.75-2 mM H2O2 2 

aAcute selection increased during experimental evolution in order to maintain a strength 
of selection (s) of ~0.7-0.8 throughout. 
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under chronic oxidative stress (but note that this treatment was applied to only one 

replicate of each chronic oxidative line during selection; the other replicate was treated 

the same as those from the control environment). Synchronized L1s were then selected 

via one of the acute selection regimes described below. 

Acute heat-stress populations. After age-synchronization, approximately 10,000 

individuals were haphazardly selected to undergo acute heat selection. L1 larvae were 

placed in a shaking incubator (70 rpm) in a sealed microcentrifuge tube for four hours. 

Initially, heat shock occurred at an average temperature of 36.8°C. This intensity of heat 

shock induces ~70% mortality in the ancestor (s = 0.7). The heat shock temperature for 

each line was increased incrementally to maintain a similar strength of selection in all 

environments throughout the experiment. Heat-selected lines from the control 

environment were the same as those analyzed in Sikkink et al. (2014b). 

Acute oxidative-stress populations. To select for resistance to oxidative stress, 

approximately 10,000 worms were haphazardly selected to undergo acute oxidative 

selection. L1 larvae were placed in a sealed microcentrifuge tube containing a solution of 

1mM hydrogen peroxide (H2O2) and rotated at 70 rpm for four hours. Because hydrogen 

peroxide decomposition is temperature-dependent, oxidative selection occurred at 20°C, 

regardless of the chronic environment for the line. In the ancestral population, 1mM H2O2 

induces ~80% larval death (s = 0.8). The concentration of H2O2 was increased as 

necessary to maintain a similar strength of selection for all environments. 

Control populations. In the acute control populations, populations were 

haphazardly culled to 1000 L1 larvae during each selective generation. To maintain 

consistency with the other selective regimes, the selected larvae were rotated in sealed 
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microcentrifuge tubes for four hours. Control lines from the chronic heat environment 

were kept at 30°C during this period, while those from the chronic control and chronic 

oxidative environments were maintained at 20°C. Paraquat was not added to the buffer in 

the chronic oxidative lines during acute selection. Control lines from the chronic control 

environment are the same as those analyzed in Sikkink et al. (2014b). 

For each selection line, we propagated two independently evolved replicates 

(Table 3.1), each derived from independently thawed ancestral stocks. One exception was 

the lab-adapted lines from the chronic control environment. Four replicate populations 

(two from each ancestral thaw) were propagated under these conditions, because we 

expected selection to have the weakest effect. Selection was continued until each 

replicate line had experienced 10 total selective events in the acute stress environment. 

We froze each population (N � 100,000 individuals) after approximately every 

second generation of acute stress selection. This was done to ensure that worms did not 

lose the ability to survive freeze and thaw, and also to provide a record of evolutionary 

change over time in each of the populations. Approximately 5000 individuals from each 

population were thawed to continue the evolution experiment after a minimum of 24 

hours at -80°C. The remaining worms remained frozen for future analyses. In one 

replicate set of evolved lines, freezing occurred a total of 3 times during selection, while 

this occurred 5 times in the second set of populations. 

Stress response phenotypes and measures of phenotypic plasticity 

To test resistance to acute stress, frozen stocks of worms that had undergone 10 

generations of acute selection were thawed in the chronic maintenance environment they 

had experienced during the course of their evolution. We allowed populations to recover 
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in their maintenance environment for two generations prior to phenotyping to minimize 

effects attributable to freezing. In the third generation, populations from each of the 

maintenance conditions were divided into three different environmental treatments, 

matching the three chronic environments used during selection: the standard lab 

environment (20°C), chronic heat stress (30°C), or chronic oxidative stress (160µM 

paraquat). Note that for one third of the individuals from a given selection regime, these 

environmental treatments would be identical to the maintenance environment they had 

experienced during the previous 30-40 generations, while the remaining two-thirds would 

be experiencing a novel growth environment. When a population had produced eggs, 

worms were stage-synchronized as described previously, in conditions matching the 

environment during the third generation. 

Worms in L1 diapause suspended in liquid buffer were then exposed to either an 

acute heat stress or an acute oxidative stress.  These stresses were administered in a 

manner similar to the acute selection described above. The acute heat stress occurred at 

an average temperature of 36.8°C (recorded in 5-minute intervals using two Thermochron 

iButton devices (Maxim Integrated)) in a shaking incubator for four hours in a sealed 

microcentrifuge tube. As a control, a subset of the population was kept under similar 

conditions in the respective environmental treatment for the population. Acute oxidative 

stress was assayed in a microcentrifuge tube in liquid buffer containing 1mM H2O2 for 

four hours on a rotator kept at 20°C. A subset of the population was maintained in liquid 

buffer under similar conditions without H2O2 as a control for the oxidative stress assays. 

After acute heat or oxidative shock, worms were transferred into a Petri dish containing 

NGM-lite seeded with E. coli strain OP50 and maintained at their respective chronic 
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environmental treatment during the remainder of development. Survival was estimated 2-

4 days later, when most worms were L4 larvae and had yet to lay eggs. Acute stress 

resistance was quantified as the proportion of the phenotyped population that survived the 

acute stress and matured to adulthood, relative to the average survival of the control 

samples from the same treatment. 

Statistical analysis 

Reflecting the nature of the selection imposed, resistance to acute stress is best 

interpreted as the proportion of individuals surviving following the acute shock 

challenge. The total number of individuals in each trial was assumed to be the average 

count from the three control plates from the same line that were concurrently subjected to 

a mock treatment. In any case in which the number of surviving worms from the shock 

treatment was greater than this total, the number of survivors was assumed to be equal to 

the total (100% survival). 

We tested for evolved differences in acute heat or oxidative resistance using a 

generalized linear mixed model (GLMM) with a logit link and binomial error 

distribution, using a maximum likelihood estimation based on the Laplace approximation 

implemented in the lme4 package (Bates et al. 2014) in R (R Development Core Team 

2013). The evolutionary replicate was included as a random effect in the model. We also 

included observation level random effects to correct for overdispersion. The acute 

selection regime was modeled as a fixed effect, and we performed contrasts between each 

evolved line and the ancestral population. If this contrast for a selection line was 

significant, then we classified that population as having a significant response to 

selection. 
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To test for correlated responses to selection between traits, separate analyses were 

performed for each chronic environment and each acute stress resistance phenotype. We 

define a direct response to selection as one that occurs on the same phenotype as was 

under selection, while a correlated response occurs in a phenotype that was not under 

selection in that evolved line. The ancestral population was included in all models. Only 

data collected in the 20°C phenotyping environment were included to enable comparison 

between chronic environments while accounting for phenotypic plasticity. 

In addition, we tested for across-environment responses by analyzing the set of 

acute heat or acute oxidative selection lines from all the chronic selection regimes. In this 

second set of models, responses in each phenotyping environment were tested in separate 

models, with the ancestor included each time. In this case, we define the direct response 

to selection as the response to selection when the phenotyping environment matches the 

chronic environment experienced during evolution. A correlated response to selection 

occurs in either of the two other phenotyping environments. 

 

RESULTS 

Direct response to selection for stress resistance phenotypes 

To minimize the confounding effects of phenotypic plasticity, we first measured 

acute heat and oxidative stress resistance in the most permissive conditions—the 20°C 

control environment—regardless of the chronic selective environment previously 

experienced by the evolved lines. Heat stress resistance increased significantly in all lines 

that had experienced acute heat selection, regardless of the chronic selective environment 

in which selection occurred (Fig. 3.3, Table 3.2). We also observed slight, but significant, 
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increases in heat resistance in the lines selected in the 30°C chronic heat treatment, even 

in the absence of acute heat selection (Fig. 3.3D). Therefore, the mild, chronic heat stress 

imposed by the 30°C selective environment leads to adaptation to a more severe heat 

shock, even when the more stressful environment had never been experienced by that 

population (see also Sikkink et al. 2014b).� 

Similarly, acute oxidative selection increased resistance to hydrogen peroxide 

stress, a related but distinct oxidative stress (Fig. 3.3, Table 3.2). This direct response to 

selection occurred in under each of the three chronic selection environments. Unlike heat 

stress, however, exposure to chronic mild oxidative stress throughout selection did not 

increase oxidative stress resistance in the control lines. 

Correlated responses among phenotypic traits are contingent on chronic selective 

environment 

In worms, heat and oxidative stress are expected to share aspects of their 

respective stress response pathways (Fig. 3.1). Furthermore, hyperthermia has been 

reported to increase reactive oxygen species in cells (Flanagan et al. 1998), potentially 

requiring heat-stressed populations to adapt simultaneously to heat and oxidative 

challenges even in the absence of pleiotropy within the stress response network. We 

therefore hypothesized that such pleiotropic or physiological links between different 

stress types would lead to significant correlated responses in traits that were not under 

direct selection in our evolved lines of C. remanei. Surprisingly, heat and oxidative stress 

resistance were not generally correlated in our selected lines. In lines evolved under 

permissive conditions (the “chronic control” environment), we saw no evidence for 

correlated responses to selection in either of the selected populations (Fig. 3.3, Table 3.2). 
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Figure 3.3.  Direct and correlated responses to selection between traits in experimentally 
evolved lines. Response to selection is defined as the mean difference in survival between 
the selected line and the ancestral population. Responses in both heat shock resistance 
(dark grey) and oxidative shock resistance (light grey) are shown for populations evolved 
under chronic control (A-C), heat (D-F), or oxidative (G-I) environmental conditions. 
Data are conditional means from the GLMM for all independently evolved replicates for 
each treatment combination, measured at 20°C in all lines (±95% CI). Significant 
deviation from the ancestral population is indicated by * P<0.05, ** P<0.01, *** 
P<0.001 
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Table 3.2.  GLMM results indicating effect of selection on heat and oxidative resistance 
phenotypes in each chronic environment. 
 

  Heat resistance Oxidative resistance 
Chronic 

Selection 
Acute 

Selection � (SE) z value P-value � (SE) z value P-value 

Control 

Intercepta -1.09 (0.22) -4.88 <0.001* -1.61 (1.01) -1.60 0.111 
Control -0.47 (0.35) -1.34 0.181 -0.85 (1.14) -0.74 0.457 

Heat 2.96 (0.41) 7.25 <0.001* -0.02 (1.26) -0.01 0.990 
Oxid. 0.56 (0.44) 1.26 0.209 3.24 (1.26) 2.58 0.010* 

Heat 

Intercepta -1.08 (0.19) -5.82 <0.001* -1.60 (0.10) -16.05 <0.001* 
Control 0.65 (0.33) 1.96 0.050 -0.17 (0.21) -0.83 0.405 

Heat 3.41 (0.34) 9.92 <0.001* -0.24 (0.18) -1.32 0.187 
Oxid. 0.82 (0.37) 2.23 0.026* 1.12 (0.22) 5.19 <0.001* 

Oxid. 

Intercepta -1.09 (0.40) -2.74 0.006* -1.61 (0.14) -11.45 <0.001* 
Control 0.55 (0.62) 0.89 0.374 -0.25 (0.26) -0.98 0.325 

Heat 1.71 (0.58) 2.94 0.003* -1.45 (0.29) -5.03 <0.001* 
Oxid. 2.15 (0.62) 3.46 <0.001* 4.22 (0.33) 12.91 <0.001* 

aModel intercept indicates the mean phenotype in the ancestral population. 
*Response to selection is significant at P<0.05. 
 

A similar lack of correlated responses was observed when selection occurred in the 

chronic heat environment. As noted above, the significant increase in heat resistance 

observed in the oxidative-selected line in this environment is more parsimoniously 

attributed to the direct effect of adaptation to the chronic heat selective environment, 

rather than a correlated response to acute oxidative selection, as the response is 

essentially identical to that observed in the control treatment. 

A very different pattern was observed when selection occurred in the chronic 

oxidative selection environment. In the acute heat-selected line evolved under these 

conditions, there was a significant negative correlated response in oxidative stress 

resistance (Fig. 3.3H). In these lines, resistance to acute oxidative stress actually 

decreased in comparison to the ancestor despite long-term maintenance in an oxidative 

environment. In the acute oxidative-selected line from the same environment, the 
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correlation between the two stress resistance phenotypes flipped sign, leading to increases 

in both heat and oxidative stress resistance under acute oxidative selection (Fig. 3.3I). 

This change in direction of the correlated response was observed in both sets of 

independently evolved lines, suggesting that the pattern is unlikely to be explained by 

random drift (Appendix B, Fig. S3.1). Overall, then, the realized genetic covariance 

between these phenotypes is highly contingent on the environment in which selection 

occurs, and can be rapidly altered by selection for a given trait. Furthermore, the 

asymmetry in the response indicates that the correlated response is not attributable solely 

to linkage disequilibrium between heat-adaptive and oxidative-adaptive loci, but rather 

requires variation in pleiotropy in the underlying genetic network.  

Across-environment correlations are contingent on selective environment 

In our ancestral population, exposure to mild heat stress (30°C) prior to acute 

stress induced a plastic response that protected against both heat and oxidative stress, 

which made preconditioned individuals up to twice as likely to survive subsequent acute 

stress (Fig. 3.4; Sikkink et al. 2014b). Raising worms in the oxidative environment did 

not improve resistance to either acute stress. In fact, prior exposure to paraquat decreased 

resistance to heat stress in the ancestral population. 

Although selection occurred entirely within a single chronic stress environment, 

genetic correlations across environments could lead to evolved changes in phenotypic 

plasticity for a single trait. A direct response to selection occurred if the phenotyping 

environment matched the chronic selective environment for that particular line. If genetic 

correlations exist, then they should lead to correlated increases or decreases in survival in 

the other (novel) phenotyping environments as well.� 
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Across-environment correlations were observed more frequently than between-

trait correlations in our selected lines (Fig. 3.5). In acute heat-selected lines, we always 

observed a significant direct response to selection (Table 3.3). In addition, a correlated 

increase in heat resistance was detected in lines selected under each of the three 

environmental conditions. However, as above, the precise pattern of the correlated 

response depended on the chronic environment in which selection occurred. For example, 

when populations were selected to withstand heat stress in the control environment, 

resistance to the acute stress showed a significant correlated response in the paraquat 

environment, but not in the 30°C environment (Fig. 3.5A). In contrast, if selection 

occurred in the chronic heat selective environment, correlated improvements in heat 

resistance are apparent in the 20°C environment, but are absent from the paraquat 

phenotyping environment. If selection occurred in the chronic oxidative selective 

environment, there was a correlated response at 20°C, but no corresponding change at 

30°C (Fig. 3.5A). 

Figure 3.4.  Phenotypic plasticity 
for stress resistance in the 
ancestral population. Mean 
survival (±95% CI) is shown for 
individuals raised in each of the 
three phenotyping environments. 
Pairwise comparisons across 
environments which show 
significant plastic effects on 
survival are indicated by * 
(Tukey HSD; P<0.05). 
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The pattern of across-environment correlations also varied depending on the trait 

under selection. In the oxidative-selected lines, we observed significant direct responses 

to selection in every selective environment (Table 3.3). Unlike the heat-selected lines, 

however, there were also significant correlated responses in nearly every phenotyping 

condition, regardless of the selection environment. The only correlated response which 

was not statistically significant occurred at 30°C when selection happened in the chronic  
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Figure 3.5.  Direct and across-environment correlated responses to selection for acute 
stress-selected lines. Differences in survival from the ancestral population for (A) the 
acute heat-selected lines or (B) oxidative-selected lines are plotted (±95% CI). Dark grey 
bars indicate the effects of direct selection, i.e. the phenotyping environment matches the 
chronic selective environment. Light grey bars indicate across-environment correlated 
responses for the selected trait. Significant deviation from the ancestral population is 
indicated by * P<0.05, ** P<0.01, and *** P<0.001 
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Table 3.3.  GLMM results for across-environment correlated responses to selection 
within the acute stress-selected lines. 
 

  
Heat resistance 

(Heat-Selected Lines) 
Oxidative resistance 

(Oxidative Selected Lines) 

Chronic 
Selection 

Phenotyping 
Environment � (SE) z value P-value � (SE) z value P-value 

Control 
20°C 2.96 (0.41) 7.25 <0.001* 3.24 (1.26) 2.58 0.010* 
30°C 0.59 (0.38) 1.56 0.118 1.52 (1.01) 1.50 0.133 
PQ 1.39 (0.51) 2.72 0.006* 3.18 (1.14) 2.79 0.005* 

Heat 
20°C 3.41 (0.34) 9.92 <0.001* 1.12 (0.22) 5.19 <0.001* 
30°C 1.35 (0.60) 2.26 0.024* 1.99 (0.70) 2.85 0.004* 
PQ 0.77 (0.40) 1.91 0.056 0.97 (0.30) 3.20 0.001* 

Oxidative 
20°C 1.71 (0.58) 2.94 0.003* 4.22 (0.33) 12.91 <0.001* 
30°C 0.72 (0.48) 1.47 0.140 2.69 (0.49) 5.48 <0.001* 
PQ 1.21 (0.59) 2.06 0.039* 3.23 (0.46) 7.02 <0.001* 

*Response to selection is significant at P<0.05. 
 

control environment (Fig. 3.5B). Even in this case, the mean increase in oxidative stress 

resistance was generally positive and large, although the variability in the response 

prevented it from reaching statistical significance. Overall, then, the patterns of 

covariation across environments for oxidative stress resistance differ markedly from 

those observed for heat stress resistance. Thus, even for single traits compared across 

environments, we see evidence for changes in genetic architecture that are dependent on 

the specifics of the prior selective history. 

 

DISCUSSION 

Organisms live in a world that is constantly changing, and they must be able to 

cope with fluctuations in the external environment in order to persist. Phenotypic 

plasticity can provide immediate, short-term acclimation to shifting conditions, while 

natural selection enables adaptation to more persistent changes in the environment. 
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Understanding the functional and genetic integration of complex organisms in the face of 

this environmental variation has been one of the central themes of evolutionary biology 

for the last century (Berg 1960; Cheverud 1984; Klingenberg et al. 2001). The 

perspective that has emerged from evolutionary quantitative genetics over that time 

period has focused on patterns of multivariate selection (e.g., correlational selection, 

Lande and Arnold 1983; Phillips and Arnold 1989) and genetic covariation among traits 

(Lande 1979; 1980; 1984) as central drivers of this integration, and these must almost 

certainly be the central agents that structure these systems. However, is the current 

formulation of this theory sufficient to capture the potential complications that may arise 

from the heterogeneous structure of complex genetic networks and the shifting patterns of 

selection imposed variable environments? Consistent with theory, we find that the 

multivariate response to selection depends strongly on the environmental context in 

which that selection occurs. However, the nature of the correlated response to selection 

can itself vary with the environment in non-canonical ways, both in responses within and 

between environments (i.e., the evolution of phenotypic plasticity). In particular, even 

when strong pleiotropy is predicted on the basis of the molecular structure of the 

phenotypic response network (Fig. 3.1), we tend to not observe correlated responses to 

selection. When we do observe correlated responses to selection within specific 

environments, they can be asymmetrical and of opposite sign (Fig. 3.3 and Fig. 3.5). We 

walk through each of these issues in turn. 

For our two-trait system, the standard result for multivariate selection displayed in 

Equation (1) can be broken into parts as: 

  (3) 
  

�zH = GHH�H +GHO�O

�zO = GOO�O +GHO�H
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where H and O subscripts denote the responses to heat and oxidative shock, respectively. 

We seek to understand two fundamental aspects of our results: (1) that different 

environments display different patterns of correlated responses to selection and (2) that 

the correlated responses to selection can sometimes be asymmetrical. Note that the 

conditions encapsulated in the �terms in (3) were held constant across all environments. 

Thus, one possible explanation for the changing pattern of correlated responses is that the 

elements of G change across environments, in other words, that there is “cryptic genetic 

covariation” for the relationship between heat and oxidative stress. In terms of the 

underlying components of G (Equation (2)), this would mean that the allele-specific 

effects (x) vary across environments; i.e., genomic components contributing to both trait 

variances and covariances display environment-specific norms of reaction.  

Estimating norms of reaction and genotype-by-environment influences on genetic 

variances for the same trait across multiple environments is a fairly regular part of studies 

of phenotypic plasticity (e.g., Schmalhausen 1949; Scheiner and Lyman 1991; Gutteling 

et al. 2006; Beckerman et al. 2010; Diamond and Kingsolver 2010). Norms of reaction 

for genetic correlations across traits are less frequently studied (e.g., Donohue and 

Schmitt 1999; Bégin and Roff 2001; Pollott and Greeff 2004). Note that in this instance 

we are talking about shifting patterns of pleiotropic effects for three different classes of 

genetic correlation: across multiple traits within the same environment, across the same 

trait across multiple environments, and across multiple traits across multiple 

environments. Our analysis of correlated responses both within and between 

environments shows that each of these can shape the correlated responses to selection and 

that they can vary by environmental context. 

�
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In contrast to the “cryptic covariance” hypothesis, there is also a “cryptic 

selection” hypothesis. Under this scenario, shifting to a different environment does not 

change the structure of the G-matrix but instead reveals selection operating on 

components of the multivariate phenotype. For instance, moving from the relatively 

benign lab environment to a condition of chronic oxidative stress may induce selection on 

different aspects of the stress response pathway, which are in turn also correlated with the 

acute heat and oxidative stress phenotypes directly measured here. The multivariate 

response to selection under this scenario would look something like: 

  (4) 

where the subscript U represents a new, unmeasured trait under selection in the new 

environment that is also genetically correlated to the measured traits. The possible action 

of selection on unmeasured traits is one of the weaknesses of the canonical representation 

of multivariate selection, which fundamentally assumes that one is measuring all of the 

relevant traits (Mitchell-Olds and Shaw 1987; Wade and Kalisz 1990). However, unlike 

natural populations, our experimental evolution design allows us to measure the system 

under the case of no direct selection on the measured traits (i.e., when in (4)). 

This should reveal any cryptic selection generated by shifts in the environment. We did 

indeed observe some increases in stress resistance in some of chronic environments in the 

absence of acute selection (Fig. 3.3), indicating that is not zero in many cases. 

However, in no cases did this source of selection change the interpretation of the 

presence or absence of the correlated response to selection of one acute selection 

treatment on the other. Thus, the and terms are either not very large or operate in 

  

�zH = GHH�H +GHO�O +GHU�U
�zO = GOO�O +GHO�H +GOU�U

�H = �O = 0

�U

GHU GOU
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the same direction as selection on the acute responses. We therefore conclude that 

“cryptic selection” is not the cause of the results that we observe. 

The final possibility, then, is that the conditions of Equation (3) hold, but that G is 

changing not because of environmentally induced changes in allelic effects, but because a 

rapid response to selection in the different environments generates different components 

of the pleiotropic gene network to change in frequency in different conditions. Under this 

scenario, the effects of any particular allele in Equation (2) do not change with the 

environment, but the structure of G itself changes because different subsets of alleles are 

responsible for the response to selection in different environments, and these alleles in 

turn display different patterns of pleiotropy across the genetic network. This can generate 

a feedback loop that generates a correlated response to selection in some environments 

and not others. This hypothesis is especially appealing as an explanation for the 

asymmetry in correlated responses that we observed in the chronic oxidative stress 

environment (Fig. 3.3). Shifting frequencies of alleles with different patterns of 

pleiotropy is one of the predominant explanations for asymmetrical responses to selection 

(Bohren et al. 1966). A related possibility is that the response to selection is not solely 

determined by the additive pleiotropic effects. Instead, alleles that display strongly 

asymmetrical effects cause higher order moments of the genetic distribution beyond the 

variance/covariance (e.g., multivariate skewness) to contribute to the response to 

selection (Barton and Turelli 1987). 

We cannot currently distinguish between the “cryptic genetic covariance” and 

“rapid evolutionary response” hypotheses. Indeed, they are not mutually exclusive. 

Nevertheless, both of these scenarios suggest that variance in pleiotropy across the 
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genetic network and/or variance in pleiotropy across environments is the primary 

determinant of the results we observe here. Determining whether one or both of these 

possibilities is correct will require actually determining the alleles responsible for the 

evolutionary change we observe and then measuring their pleiotropic effects across 

multiple environments. Such an effort is at least conceivable using this model system. 

Conclusions 

We have measured all possible responses in a 3x3x3 response hypercube (Fig. 

3.6). The edges of this cube are determined on two sides by the various combinations of 

selection imposed on the population (acute vs. chronic). The remaining side is the current 

environment experienced by the population when its phenotypic response is assayed. One 

way of viewing these responses as a metaphor for various kinds of evolutionary change is 

that the acute selection treatments represent periodic bouts of strong selection (“past 

transient” events), whereas the chronic selection treatments represent more stable 

changes in the environment (“past consistent” events). The phenotyping environment 

then represents the present environmental circumstances (Fig. 3.6). Here we observe a 

multitude of possible responses that fill the 

hypercube in unexpected ways. In most 

systems we can only observe the “present” 

and wonder how the population came to 

achieve this specific state. Using an 

experimental evolution framework allows 

us to capture the entire suite of complexity 

induced by historical, as well as 
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Figure 3.6.  Selection history of a 
population represented as a hypercube. 
Various aspects of the past and present 
environmental influences on evolution are 
depicted on each face. 
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ephemeral, shifts in the environment. It is sobering to consider that this hypercube 

represents a very small subset of the entire multidimensional evolutionary and phenotypic 

space filled by this species. 

Modern evolutionary quantitative genetics, as codified primarily by the Chicago 

School (Lande 1979; 1980; Lande and Arnold 1983; Lande 1984; Arnold and Wade 

1984), has tended to emphasize either the separation of genetics from the selective 

context of the environment (in order to describe the multivariate response to natural 

selection; Lande 1979), or the separation of the complexities of environmentally 

contingent natural selection in favor of better describing the environment-specific 

expression of phenotypes via phenotypic plasticity (Via and Lande 1985). Both 

approaches rely on an assumption that we know and can measure all of the attributes of 

both the environment and of the individual that matter (Barton and Turelli 1989). Here 

we observe that the multivariate response to selection, as well as the evolution of 

phenotypic plasticity, is highly contingent on environmental context. This is perhaps not 

surprising in and of itself. However, the manner in which it is contingent—changes in 

genetic covariance structure via direct environmental perturbations or via the response to 

multivariate selection—are unknown. Indeed, we believe that they are fundamentally 

unknowable from the analysis of phenotypes alone. The structure of the molecular 

genetic network that underlies the G-matrix, particularly varying patterns of pleiotropy 

across the network, needs to be determined. 
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BRIDGE 

In Chapter III, we showed that genetic correlations both between traits and across 

environments are strongly influenced by the environmental context, which can lead to 

very different responses to selection. Changes in pleiotropy in the underlying stress 

response networks likely explain the observed variation in correlated responses. 

However, we suggested that it is impossible to disentangle the effects of cryptic 

covariation and multivariate selection without knowledge of the underlying molecular 

networks. Chapter IV is a critical first step toward addressing these fundamental 

questions. In this chapter, we elucidate the structure of the gene coexpression network in 

the subset of our lines that was evolved in permissive control conditions, and identify 

modules within the network that may contribute to the evolution of phenotypic plasticity. 
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CHAPTER IV 

 

MODULARITY OF REGULATORY NETWORKS CONTRIBUTING TO THE 

EVOLUTION OF PHENOTYPIC PLASTICITY FOR STRESS RESISTANCE 

 

The experimental evolution lines described in this chapter were created in collaboration 

with R. M. Reynolds. C. M. Ituarte and I collected samples and constructed the libraries 

sequencing for transcriptional profiling, and I performed the analyses of the data. P. C. 

Phillips and W. A. Cresko were the principal investigators for this study. 

 

INTRODUCTION 

When faced with novel and stressful environmental conditions, individual 

organisms must be able to acclimate in order to survive, and populations of organisms 

will often need to adapt to flourish in the new conditions. The induction of novel trait 

values via phenotypic plasticity is one mechanism by which organisms can increase their 

fitness when faced with an environmental challenge (Bradshaw 1965). Like other 

complex phenotypes, phenotypic plasticity has a genetic basis, and therefore can evolve 

in response to selection (West-Eberhard 2003; Moczek et al. 2011). The adaptive 

response of a population to new, stressful conditions may therefore involve the evolution 

of novel patterns of phenotypic plasticity (Via and Lande 1985; Gomulkiewicz and 

Kirkpatrick 1992; Gavrilets and Scheiner 1993; Lande 2009; 2014). Furthermore, 

adaptation to novel environments in the wild may require the change of myriad characters 

in response to numerous stresses, and leading to a potential correlated response in both 
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mean phenotypes in one environment, as well as covariance in patterns of phenotypic 

plasticity of different traits across environments if the plastic responses share a genetic 

basis. 

Plasticity has been studied in the laboratory and the field for the last century at the 

phenotypic level (Baldwin 1896a,b; Clausen et al. 1940; Waddington 1953; 1956; 

Schmitt et al. 1995; Bennett and Lenski 1997; DeWitt 1998; Nussey et al. 2005; Cheviron 

et al. 2013), and has been shown to be adaptive in many different systems (e.g., Dudley 

and Schmitt 1996; Agrawal 1998; Aubret et al. 2004; Charmantier et al. 2008). Despite 

the long body of work on phenotypic plasticity and its documented importance in 

adaptation to novel environments, little is known about the molecular basis of plasticity, 

or the adaptive evolution of molecular systems that underlie phenotypic plasticity. 

Furthermore, little is known about the shared genetic basis of correlated phenotypic 

plasticity of different traits across environments.  

In a few recent cases, the roles of a handful of candidate genes have been 

characterized (e.g., Gottlieb and Ruvkun 1994; Gibson and Hogness 1996; Ragsdale et al. 

2013). In one classic example, genetic assimilation of the ether-induced Ultrabithorax 

phenocopy described by Waddington (1956) was later attributed to allelic variation 

segregating in the Ubx gene (Gibson and Hogness 1996). Even more recently, studies of 

transcriptional regulation using microarray and RNA-seq approaches have enabled the 

identification of additional genes that are differentially expressed in response to particular 

environmental stresses (e.g., Gasch et al. 2000; Swindell et al. 2007; Badisco et al. 2011; 

Schunter et al. 2014). In such whole-transcriptome studies, the focus has primarily been 

to identify the specific genes that are most differentially expressed across environments, 
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and not necessarily to study changes in the networks of transcriptional regulation 

associated with plastic phenotypes (but see Promislow 2005; Barchuk et al. 2007). 

Because research on the regulatory networks that form the basis of phenotypic 

plasticity is in its infancy, numerous fundamental questions remain (Snell-Rood et al. 

2010). It is unclear how many loci regulate phenotypic plasticity, and importantly how 

segregating alleles at these genes affect the pathways in which they reside. Furthermore, 

it is not known whether these plasticity loci are central nodes in, and therefore key 

regulators of, developmental networks, or if they are peripheral to the network, perhaps 

functioning as specific modifiers. More basically, it is unknown how modular—i.e., 

nodes within a subnetwork are highly connected, but share fewer connections with 

adjacent subnetworks—the networks are that underlie plastic responses to the 

environment. We also do not know to what extent these modular patterns change across 

environments, and to what extent modules are shared between related, but none-the-less 

distinct, environments such as temperature and chemical stresses. Most importantly, it is 

unclear if modules of differentially expressed genes evolve in concert with the evolution 

of phenotypic plasticity, and if so whether the evolution occurs via the large-scale 

rewiring of central nodes and modules, changes on the periphery of the network, or some 

combination of both. 

Systems biology approaches, newly enabled by advances in next-generation 

sequencing and computational analysis strategies, provide a means to more 

systematically address these questions about the evolution of phenotypic plasticity 

(Barabási and Oltvai 2004; Alon 2006). While holistic studies of biological systems can 

occur at a variety of levels, from macromolecular interactions to changes in metabolites 
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or interactions between hosts and their microbiota, a productive focus for phenotypic 

plasticity is to examine changes in gene regulatory network (GRN) to determine patterns 

of covariation across genes in different environments and evolutionary outcomes. A 

central goal of GRN analyses is to identify coregulated sets of genes, which are likely to 

have similar functions (Eisen et al. 1998; Wolfe et al. 2005). While network approaches 

have been applied to understand the basis of plasticity in response to environmental 

variation (Promislow 2005; Barchuk et al. 2007), this approach has heretofore not been 

used to ask how GRNs evolve in accord with changes in plasticity in an experimental 

evolution framework. Performing systems analyses of plasticity within an evolutionary 

context provides a powerful opportunity to simultaneously identify the loci or pathways 

responsive to environmental perturbation, as well as the nature of evolution within those 

pathways over time. Here we present the findings from the first study to take a GRN 

approach to the evolution of phenotypic plasticity in experimentally evolved populations 

of nematode worms. 

We evolved populations of the nematode C. remanei in the laboratory, selecting 

for resistance to heat stress and oxidative stress under several environmental conditions 

(Sikkink et al. 2014a,b). As a result of selection, most populations exhibited changes in 

phenotypic plasticity across environments (Sikkink et al. 2014a). Here we used an RNA-

sequencing (RNA-seq) approach to determine the structure and evolution of the GRN in a 

small sample of populations in this experimental framework. We used deep and highly 

replicated sampling to obtain transcriptional profiles of the ancestor, and the three 

selected lines evolved in a permissive environment. Transcription was measured in both 

permissive and heat stress conditions, providing an estimate of transcriptional plasticity 
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in response to stress. Using a powerful multivariate statistical approach, we were able to 

probe the patterns of differentiation in gene regulation across treatments and between 

evolved populations. We then constructed the coexpression network to identify 

transcriptional modules associated with the plastic response to stress or the evolution of 

that response. In particular, we asked whether adaptation to stress involved the same co-

regulated modules, and therefore likely the same pathways, in lines selected to withstand 

different stressors. Additionally, we sought to understand whether gene modules invoked 

to regulate a plastic response to the environment in the ancestor were the same as those 

targeted by evolution in the selected lines, and if not, did they differ from the ancestral 

plasticity modules in their function or regulation. 

 

METHODS 

Experimental evolution of C. remanei 

We used the experimentally evolved populations of C. remanei that have 

previously been described by Sikkink et al. (2014a,b). Briefly, 26 isofemale strains of C. 

remanei were isolated from terrestrial isopods (Family Oniscidea) collected from Koffler 

Scientific Reserve at Jokers Hill, King City, Toronto, Ontario. These strains were crossed 

in a controlled fashion to promote equal genetic contributions from all strains. The 

resulting genetically heterogeneous population (PX443) was the ancestral population for 

the experimental evolution. 

A subset of the ancestral population was used for transcriptional profiling. In 

addition to the ancestor, three experimentally evolved populations were sampled for 

RNA-sequencing. All selection lines had been evolved at 20°C as described in Sikkink et 
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al. (2014a,b). One representative control population, one heat-selected population, and 

one oxidative-selected population were used. The heat-selected line was generated by 

exposing age-synchronized L1 larval worms to a 36.8°C heat shock approximately every 

second generation. The oxidative-selected was similarly treated with a 1mM solution of 

hydrogen peroxide. The control populations received a mock selection treatment, from 

which worms were selected at random to continue the selected line. All lines were frozen 

after every two selection events. Final populations for phenotyping and transcriptomics 

had experienced a total of 10 acute selection events and five freeze-thaw cycles. 

Transcriptional profiling of pooled populations 

We collected L1 tissue from the ancestral, control, heat-selected, and oxidative-

selected populations to use for transcriptional profiling (Fig 4.1). All lines except the 

oxidative-selected population were previously analyzed in Sikkink et al. (2014b). Briefly, 

we thawed frozen stocks of worms from each population. Except in the oxidative-

selected population, 6 replicates per treatment were collected from a minimum of two 

independently thawed populations from each line. For the oxidative-selected line, all 

replicates were collected from a single thawed population of worms. Worms were raised 

at 20°C until the population was large enough to collect enough individuals for RNA 

isolation. Age-synchronized L1 larvae were raised for 20 hours in liquid medium at either 

20°C or 30°C (Fig 4.1). Prior to tissue collection, larval worms were passed through a 20-

µm Nitex screen to remove unhatched eggs and dead adults. Total RNA was isolated 

from approximately 100,000 pooled individuals using standard TRIzol methods. 

Sequencing libraries were prepared according to the protocols as previously described 

(Sikkink et al. 2014b). Samples were sequenced from a single end, to a length of 100 
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nucleotides in six lanes on an Illumina 

HiSeq 2000 at the University of Oregon 

Genomics Core Facility.	
   

Analysis of differential gene expression 

Initial quality filtering of raw 

sequence reads was performed using the 

process_shortreads component of the 

software Stacks (Catchen et al. 2011; 

2013). Reads were discarded if they failed 

Illumina purity filters, contained uncalled 

bases, or if sample identity could not be 

determined due to sequencing errors in the barcode sequence. Reads with ambiguous 

barcodes were recovered if they had fewer than two mismatches from a known barcode. 

Using the alignment software GSNAP (Wu and Nacu 2010), we aligned all reads that 

passed the quality filters to the C. remanei genome (C_remanei-15.0.1 assembly) publicly 

available from Ensembl Metazoa (metazoa.ensembl.org/ ). We then used the htseq-count 

tool from the Python package HTSeq (http://www-huber.embl.de/users/anders/HTSeq/) 

to count all reads unambiguously aligning to gene models. 

Multivariate analysis of transcriptional variation 

We first normalized the gene counts from all samples to account for differences in 

library size, using the scaling procedure implemented in the DESeq2 package (Anders 

and Huber 2010; Love et al. 2014) in R (R Development Core Team 2013). The 

expression dataset was next filtered to exclude the lower quartile of genes based on their 
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Figure 4.1. Schematic of the transcriptional 
profiling experiment. Four populations were 
considered: the ancestor and three 
experimentally evolved populations selected 
under different stress conditions. The 
induction of transcriptional plasticity was 
assessed in each line across two different 
thermal environments. 
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average expression across all treatments. Independent filtering of genes with very low 

expression across treatments generally improves power in subsequent analyses (Bourgon 

et al. 2010; Anders et al. 2013).  

We used non-metric multidimensional scaling (nMDS), which is an unsupervised 

ordination method that enables highly-dimensional data to be projected onto a few axes 

for visualization. For RNA-seq data, nMDS may preferable as an ordination method, 

because it does not assume linear relationships within the data, enabling nMDS 

algorithms to robustly extract complex patterns from gene expression data (Taguchi and 

Oono 2005). One drawback of this nonparametric approach, however, is that the scores  

for variables mapped onto ordination axes can not be easily interpreted (in contrast to 

principal component scores, for example), and other methods may be required to identify 

genes contributing to differences between groups. 

To carry out the nMDS ordination, a dissimilarity matrix was calculated for the 

filtered dataset using Bray-Curtis dissimilarities (Bray and Curtis 1957). Using other 

distance metrics did not substantially alter the ordination plot. Data transformation, 

ordination, and scaling were performed in 5 dimensions using the vegan package 

(Oksanen et al. 2013). We tested for significant differences among populations and 

treatments using a permutational analysis of variance performed on the Bray-Curtis 

dissimilarity matrix. Population, treatment, and the interaction term were included as 

effects in the model, and 1000 permutations were run. 

Gene coexpression network analysis 

Weighted gene coexpression network analysis was used to identify groups of 

genes with highly correlated patterns of expression across samples. We used the package 
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WGCNA (Langfelder and Horvath 2008; 2012) implemented in R to build an undirected 

network in which each node represents a gene, and each edge describes the correlation in 

expression patterns between a pair of genes. A variance-stabilizing transformation was 

performed on the count data using DESeq2 prior to network analysis (Anders et al. 2013; 

Giorgi et al. 2013). WGCNA utilizes a soft thresholding strategy to infer network 

topology, which emphasizes strong correlations between pairs of genes by raising the 

correlation coefficient to a power (Langfelder and Horvath 2008). We used a soft 

threshold power of 10, which maximized the scale-free fit of the network topology. 

Modules containing a minimum of 30 coexpressed genes were identified using the 

Dynamic Tree Cut method (Langfelder et al. 2008). In an unsigned network, these 

modules contain both positively and negatively correlated genes. The eigengene for each 

module, defined as the first principal component of the expression of all the genes in the 

module, was calculated to represent the general pattern of expression seen within each 

module. We then performed an analysis of variance on module eigengenes to test for 

effects of population, temperature, and population-by-temperature interactions on the 

overall module expression. Since statistical tests were performed for each module in the 

network, we corrected for multiple testing using the Benjamini-Hochberg method 

(Benjamini and Hochberg 1995). For modules that had a significant effect of population, 

we used Tukey HSD to identify pairwise differences between lines. 

Gene ontology enrichment analysis 

We tested for over-representation of Gene Ontology (GO) terms (The Gene 

Ontology Consortium 2000) within each module using the software program Blast2GO 

(Conesa et al. 2005; Conesa and Götz 2008). Blast2GO computes a Fisher’s exact test 
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with a FDR correction to test for significant enrichment of GO terms in a test set. The 

Blast2GO database was created previously for genes that were passed the more stringent 

criteria for expression in used in Sikkink et al. (2014b). This database includes functional 

information for 15937 (67%) of the genes used in the current dataset, which should 

provide a representative sample for enrichment tests. We tested for over-representation of 

generic GOSlim ontology terms for the genes within each module using a one-tailed test. 

Enrichment of transcription factor targets 

Coexpressed gene modules may share expression patterns because they share a 

common regulatory basis. We examined each module for enrichment of known 

regulatory targets of 23 transcription factors for which binding data is available for the 

related nematode C. elegans. Binding targets for all transcription factors except for the 

FOXO transcription factor DAF-16 were obtained from the C. elegans modENCODE 

project (Niu et al. 2011). These targets were all identified from chromatin 

immunoprecipitation sequencing (ChIP-seq). Putative target genes bound by DAF-16 

have been previously identified using two different approaches: ChIP (Oh et al. 2006) 

and DNA adenine methyltransferase identification (DamID; Schuster et al. 2010). In 

addition, several microarray studies have identified genes with DAF-16 dependent 

expression patterns (McElwee et al. 2003; Murphy et al. 2003; McElwee et al. 2004; 

2007). Genes with DAF-16 dependent expression could be either direct targets of DAF-

16, or could be indirect targets in the same pathway. We therefore considered two 

separate gene sets for DAF-16: genes known to be bound by DAF-16 within their 

promoter region, and genes with DAF-16 dependent expression. Putative target genes 
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could be included multiple gene sets, if they are bound by more than one transcription 

factor. 

C. remanei homologs for each of the C. elegans transcription factor targets were 

determined based on the annotations that have been curated in the WS220 release of 

WormBase (Harris et al. 2009). Homologous genes identified by any method were 

included as possible transcription factor targets in C. remanei. In cases where multiple C. 

remanei genes were matched to a single gene in C. elegans, all possible homologous 

genes were included in the gene set, since no information was available to determine 

whether transcription factor binding was preserved preferentially in either possible 

homolog. 

Modules were tested for significant enrichment of target genes bound by each 

transcription factor using a one-tailed Fisher’s exact test. In addition, we tested for 

enrichment of the C. remanei heat shock proteins previously identified (Sikkink et al. 

2014b), and the genes with DAF-16 dependent expression. P-values were adjusted to 

account for multiple testing using the Benjamini-Hochberg method (Benjamini and 

Hochberg 1995). 

 

RESULTS 

Divergence occurs in transcriptional regulation across temperatures and between 

evolved populations 

We first sought to determine whether samples from different populations or the 

different temperatures could be differentiated based on global patterns of gene 

expression. To do this, we used non-metric multidimensional scaling (nMDS), a powerful 
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ordination method that does not assume linear relationships among variables. We 

observed distinct separation between the two temperature treatments primarily on the 

second ordination axis (Fig. 4.2). We tested for significant differentiation between 

temperatures using a permutational analysis of variance on the dissimilarity matrix. The 

differences in gene expression encapsulated by nMDS2 in response to temperature were 

highly statistically significant (F1,40 = 11.02, P = 0.001). 

The four populations differed from one another mainly on the third nMDS axis 

(Fig. 4.2). The control and heat populations both diverged from the ancestor in the same 

direction. Unsurprisingly, the heat-selected population was more different from the 

Figure 4.2. Non-metric multidimensional scaling plot of RNA-seq samples based on the 
filtered set of all expressed transcripts. Axes 2 and 3 from the ordination are shown. 
Crosses and ellipses indicate the centroid and 95% CI for each treatment group, 
respectively. 
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ancestor than the control population was. The oxidative-selected population and the 

ancestral population were separated more completely on nMDS4 (Fig. 4.3), indicating an 

at least partially different genetic basis to adaptation to oxidative stress than heat stress 

and general lab adaptation. The differences we observed among populations were 

statistically significant (F3,40 = 3.00, P = 0.004). Notably, though, all lines appeared to be 

responding to the temperature treatment in much the same manner, as evidenced by the 

roughly parallel change between temperature treatments on nMDS2 (Fig. 4.2). Likewise, 

there was no support for a line-by-temperature interaction in the permutational ANOVA 

(F3,40 = 0.7703, P = 0.648). This does not, however, preclude the possibility that some 

subsets of genes show significant interaction effects corresponding to the evolved 

phenotypic differences between selected lines. 

Network modules are differentially associated with line- and temperature-specific 

variation in expression 

Because nMDS is a non-metric method, the contribution of specific genes to 

divergence on each axis is not readily interpretable. To get around this limitation, we next 

Figure 4.3. Scores on each nMDS axis at 20°C and 30°C for the ancestor (grey), control 
(green), heat-selected (red), and oxidative-selected (blue) populations. Boxplots show 
median and interquartile range of sample nMDS scores. 

nMDS Axis 3 nMDS Axis 4
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used weighted gene co-expression network analysis (Langfelder and Horvath 2008) to 

identify modules—sets of genes with strongly correlated expression patterns that are 

more loosely connected to other such modules. We sought to identify modules that were 

important in the differential regulation of stress resistance in our evolved populations of 

C. remanei, because members of a gene module often share a common function (Eisen et 

al. 1998; Wolfe et al. 2005), and highly correlated genes sets may share transcriptional 

regulators (Allocco et al. 2004, but see also Marco et al. 2009). Network analysis can 

therefore provide unique and useful insights into GRNs. 

Network analysis identified 22 co-expressed modules containing a total of 16,463 

genes (Table 4.1). An additional 7,175 genes could not be assigned to any module, and 

were designated as “Unassigned”. For each module, we calculated the eigengene, defined 

as the first principal component of the module (Appendix C, Fig. S4.1). An eigengene’s 

expression is representative of the expression of the combined set of genes within the 

module. We performed an analysis of variance on each eigengene to test for differences 

in expression attributable to either divergence between evolved populations or inducible 

responses to temperature, as well as interactions between the population and temperature. 

Significant temperature differences were observed in seven modules, while three showed 

significant line effects (Table 4.1). An additional seven modules differed by both 

population and temperature. Only Module 19 showed a significant population-by-

temperature interaction effect (F3,40 = 6.87, FDR = 0.006). 

To determine how the lines differed with respect to one another, we examined 

pairwise differences among lines using Tukey’s HSD (honest significant differences) for 

modules that showed a significant population effect (Fig. 4.4). Evolved lines that  
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Table 4.1.  Modules identified in gene coexpression network analysis 
 

Module Number 
of Genes 

Eigengene Effects 
(FDR) Evolveda Functional annotation 

(Biological process) 
 

Unassigned 
 

7175    

 
1 
 

5092 Temperature (<0.001)  signal transduction 
ion transport 

 
2 
 

3657   
embryonic development 

reproduction 
cellular component organization 

 
3 
 

1451 Temperature (0.016)  
embryonic development 

cell differentiation 
epigenetic regulation of expression 

 
4 
 

1420 Temperature (<0.001) 
Population (<0.001) l 

response to stress 
response to biotic stimulus 

 
5 
 

980   
embryonic development 

cell differentiation 
cellular homeostasis 

 
6 
 

686 Population (0.006)   

 
7 
 

597    

 
8 
 

451 Temperature (<0.001)   

 
9 
 

429    

 
10 

 
383 Temperature (<0.001) 

Population (0.001) l cell signaling 

 
11 

 
234 Temperature (0.020)  

multicellular organism development 
growth 

anatomical structure morphogenesis 
 

12 
 

202 Temperature (<0.001) 
Population (<0.001) l  

 
13 

 
174 Temperature (<0.001) 

Population (0.001)  peroxisome componentb 

 
14 

 
128 Temperature (<0.001) 

Population (<0.001) l  

 
15 

 
127 Temperature (0.042) 

Population (<0.001) l DNA metabolic process 

16 116 Population (<0.001) l 
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Table 4.1. (continued). 
 

Module Number 
of Genes 

Eigengene Effects 
(FDR) Evolveda Functional annotation 

(Biological process) 
 

17 
 

99 Temperature (0.009)   

 
18 

 
54 Temperature (<0.001)   

 
19 

 
47 

Temperature (<0.001) 
Population (<0.001) 
Interaction (0.006) 

l  

 
20 

 
47 Population (0.024)   

 
21 

 
45    

22 44 Temperature (<0.001)  
 
 
 

aSignificant difference (P<0.05) between ancestor and any evolved line determined by 
Tukey HSD test 
bCellular component ontology term 
 

diverged from the ancestral population are of particular interest, as these could indicate a 

set of genes that are adaptive for stress resistance. The expression of Module 4 was 

significantly different from the ancestral population only in the lab-adapted control 

population. Similarly, Modules 10 and 19 indicated heat-adapted genes, while Module 16 

was unique in the oxidative-selected line. Module 12 differed from the ancestor in both 

the control and heat populations, but the two evolved populations were not significantly 

different from each other, suggesting that Module 12 may have contributed to lab 

adaptation in these two lines. In contrast, Module 14 evolved in both the heat and 

oxidative-selected lines, but the heat and oxidative populations also differ from each 

other. In fact, the direction of the evolutionary response in these two lines was in opposite 

directions, such that the oxidative line exhibited higher expression of the eigengene than 
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the ancestor and the heat line had lower expression (Fig 4.4). Similarly, Module 15 was 

different among all four lines. 

Regulatory targets of stress-responsive transcription factors are enriched in 

network modules 

In C. elegans, several transcription factors are known to be critical regulators of 

cellular responses to stress. However, these regulators may not be differentially expressed 

in response to stress themselves, but rather undergo protein modifications to activate 

them under certain conditions. For 

example, the FOXO transcription factor 

DAF-16 is a major target of the 

insulin/insulin-like growth factor signaling 

(IIS) pathway in worms, and is responsible 

for mediating responses to heat and 

oxidative stress, among others (Honda and 

Honda 1999; Hsu et al. 2003). DAF-16 is 

normally localized in the cytoplasm, but in 

stress conditions, DAF-16 is activated and 

transported to the nucleus, where it 

regulates transcription of many target 

genes (Lee et al. 2001; Lin et al. 2001). 

We identified C. remanei homologs of 

known binding targets of 23 transcription 

factors and tested for significant 
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Figure 4.4.  Eigengene expression across 
temperatures for each population. Only 
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enrichment in each of the network modules. We also examined enrichment of two other 

gene sets, the heat shock protein families previously examined in Sikkink et al. (2014b), 

and genes with DAF-16 dependent effects on expression. The latter group included both 

genes that are known to be bound by DAF-16, and other genes that may occur 

downstream in the pathway. 

We observed significant enrichment (FDR < 0.05) of regulatory targets for all but 

three of the available transcription factors (Fig. 4.5). Modules 1, 2, 3, and 5 in particular 

share many regulators in common. Targets of three HOX transcription factors—LIN-39, 

MAB-5, and EGL-5—were enriched in these modules. Several transcription factors that 

regulate stress responses also showed enrichment of their target genes in two or more of 

these modules. PHA-4, a developmental regulator necessary for formation of the pharynx 

(Mango et al. 1994; Horner et al. 1998), has also been implicated in regulating heat shock 

response through HSP90 (van Oosten-Hawle et al. 2013). Targets of PHA-4 were 

enriched in Modules 1, 2, 3, and 5. Genes regulated by DAF-16 and SKN-1, another 

target of IIS that is critical for oxidative stress resistance (An and Blackwell 2003), were 

also enriched in two and four of these same modules, respectively. 

Module 4, which was significantly divergent in the control population, was 

enriched for targets of ELT-3, a GATA transcription factor that functions during 

hypodermal development in C. elegans (Gilleard et al. 1999) and may also function 

downstream of IIS to influence longevity (Budovskaya et al. 2008), pathogen resistance 

(Pujol et al. 2008), and osmotic stress response (Rohlfing et al. 2010). This module was 

also significantly enriched for heat shock proteins and genes with DAF-16 dependent 

expression. However, direct DAF-16 target genes were not enriched in this module.	
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Modules 10 and 19, which contributed to adaptation in the heat-selected 

populations, were both enriched for targets of PQM-1, a C2H2 zinc finger and leucine 

zipper-containing protein (Tawe et al. 1998). In C. elegans, PQM-1 is responsive to 

certain types of oxidative stress (Tawe et al. 1998), and is a key regulatory target of IIS, 

in addition to DAF-16 (Tepper et al. 2013). Module 19 was also enriched for genes with 

Figure 4.5.  Enrichment of transcription factor target genes in coexpression modules. 
Red outlines signify enrichment of target genes in the module (FDR<0.05). Intensity of 
shading indicates the log odds ratio for the set. 
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DAF-16 dependent expression, which is expected for regulatory targets of PQM-1 

(Tepper et al. 2013). 

Other modules that were significantly different between the ancestor and evolved 

populations did not exhibit significant enrichment of target genes for the available 

transcription factors. However, ChIP binding data from C. elegans was not available for 

some key transcription factors involved in stress response, particularly HSF-1 and HIF-1. 

Heat shock proteins are known to be regulated by HSF-1 in response to heat stress (Wu 

1995; Åkerfelt et al. 2010), therefore enrichment of hsps in Module 4 may indicate a role 

for HSF-1 in regulation of that module.  

Gene expression modules are enriched for functionally related genes 

We also examined the functional relationships among genes in identified modules 

by looking for enrichment of Gene Ontology terms within each module, specifically 

terms in the biological process ontology. Several modules (2, 3, 5, and 11) were enriched 

for genes regulating embryonic development. Unsurprisingly, genes responding to stress 

or biotic stimulus were enriched in Module 4. Module 5 also contained genes that 

maintain cellular homeostasis. Modules 1 and 10 both contained cell-signaling genes. 

Module 13 was not significantly enriched for any biological process, however, 

peroxisome components were significantly enriched. 

 

DISCUSSION  

For many organisms phenotypic plasticity is a vital adaptation to cope with 

environmental stress. However, we still know little about the molecular mechanisms 

contributing to plastic traits. In particular, we know very few of the genes that are 



	
  

85 

involved in phenotypic plasticity, and only a couple of case studies (Promislow 2005; 

Barchuk et al. 2007) have begun to define the genetic regulatory networks that underlie a 

plastic phenotypic response. Even less is known about how the evolution of phenotypic 

plasticity is related to the rewiring of GRNs that are environmentally sensitive, 

particularly when adaptation to more than one environment is occurring. Here, we present 

the first study of global changes in GRN involved in the evolution of phenotypically 

plastic responses. We used RNA-sequencing and network analysis in a powerful 

experimental evolution system to identify sets of coexpressed genes, or modules, which 

are associated with the evolution of phenotypic plasticity in C. remanei in two related, 

but distinct, evolutionary stresses. 

Global patterns of gene expression describe evolutionary divergence 

Based on the global profiles of expression among our filtered set of genes, we 

observed clear differentiation attributable to the induction of a response to temperature 

(i.e., plasticity), as well as evolved differences between populations  (Fig. 4.2). Exposure 

to the inducing temperature resulted in very pronounced changes in the global patterns of 

gene expression. However, every line responded to the treatment in a parallel fashion on 

nMDS2, and there was no support for a line-by-temperature interaction effect at this 

scale. Changes in plasticity in the evolved populations are therefore not a result of global 

changes in gene regulation, at least to the extent that these global patterns are captured by 

commonly used multivariate statistics such as nMDS. Interactions may still be important 

in the evolution of plasticity; however, they will likely be localized to modules within the 

larger GRN. We have previously described this lack of change in global transcriptional 

regulation for the heat-selected line (Sikkink et al. 2014b), and noted that the apparent 
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genetic assimilation of heat stress resistance was not a loss of plasticity, but rather a shift 

in the threshold temperature at which the plasticity becomes apparent. Here we used a 

more comprehensive multivariate statistical framework to confirm our previous results 

and extend the observation to the transcriptome of the oxidative-selected line as well. 

Notably, the heat-selected and oxidative-selected populations seem to have 

diverged from the ancestor primarily along different axes – nMDS3 and nMDS4 

respectively (Fig. 4.3). This pattern suggests that at least partially different GRNs 

contribute to adaptation in each case, and likely act in a modular fashion. These findings 

are consistent with the observations we have previously made—that there is no genetic 

correlation between heat and oxidative resistance under the environmental conditions in 

which these populations evolved (Sikkink et al. 2014a). In short, although one might 

reasonably hypothesize a correlated selective response to heat and oxidative stresses that 

acts through a generic stress response pathway, our data support the alternative 

hypothesis that evolution results from changes in different GRNs, or least different 

modules within a GRN, for these two related stresses. 

Modularity of stress GRN evolution 

The pattern of expression differences that we observed in our data indicates a high 

degree of modularity within the gene regulatory network. Despite a relatively small 

number of experimental treatments, we were able to identify 22 transcriptional modules 

with highly correlated patterns of expression. Furthermore, the eigengenes that describe 

expression patterns within each module are differentially associated with the 

experimental treatments. 
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A test of our ability to draw meaningful inferences from our RNA-seq data is to 

examine a well-known pathway. Heat shock proteins (HSPs) are molecular chaperones 

known to be a critical component of response to heat stress (Lindquist and Craig 1988). 

Therefore, we expect these genes to form one or more modules that covary strongly with 

temperature. Module 4 seems to capture many of the expected elements of the 

generalized HSP response. This module was strongly enriched for the set of heat shock 

proteins (Fig. 4.5), and was also significantly regulated by temperature (Fig. 4.4). GO 

analysis also indicated that this module was enriched for genes that function in stress 

response, further supporting this role for the module. Our data clearly help us identify this 

module, and surprisingly show that it is localized primarily to a single module. 

In this stress response module, significant expression differences attributable to 

line were observed (Fig. 4.4). On closer examination, however, the control population 

was the only selected line to show divergence from the ancestral population. If the 

generalized heat stress response contributed to evolution of stress resistance, then the heat 

or oxidative populations would be expected to evolve, rather than the control population. 

A plausible explanation is that the selection pressure for maintaining a strong generalized 

stress response was reduced in the control populations as they evolved in the benign 

laboratory environment. There is a precedent for this observation from C. elegans, in 

which thermoregulatory behaviors have decayed in a highly laboratory-adapted strain 

(Anderson et al. 2007). 

Although Module 4 did not appear to contribute to evolution of heat or oxidative 

stress resistance, a few other modules are of particular interest as candidates to fulfill this 

role. Modules 10 and 19, for example, exhibited differences in eigengene expression 
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among lines that were specific to the heat-selected line and consistent with adaptation to 

heat shock (Fig. 4.4). Module 16 shows a pattern in gene expression that is uniquely 

associated with adaptation to oxidative stress (Fig. 4.4). The lack of overlap between the 

modules evolving in response to each stress provides further support for the hypothesis 

that different GRN modules contribute to adaptation to these two stresses. 

The GRN basis of the evolution of phenotypic plasticity 

In other modules, the eigengenes show patterns of gene expression that could be 

interpreted as the evolution of phenotypic plasticity. The best candidate genes 

contributing to the evolution should show differences in the degree of plasticity of genes 

in different populations, i.e., a population-by-environment interaction. Module 19 was the 

only module with a consistent interaction effect (Table 4.1). The heat-selected population 

generally has increased plasticity for this set of genes across environments relative to the 

other populations. Specifically, in the heat-selected population, expression levels in the 

20°C condition seem to be different from other lines at the same temperature (Fig. 4.4). 

Since the phenotypic changes in heat resistance between the ancestor and heat-selected 

line were more apparent at 20°C (Sikkink et al. 2014a,b), the genes in this module are 

strong candidates for the evolution of plasticity in the heat-selected line. 

Reduced plasticity at the phenotypic level, however, does not necessarily require 

a corresponding change in transcriptional plasticity resulting in population-by-

temperature interactions. For example, in a threshold trait a loss of phenotypic plasticity 

might be observed if the basal level of gene expression was increased above the threshold 

for induction, even if the transcriptional plasticity of the causal gene did not change. 

Module 10 is comprised of genes that fit this pattern in the heat-selected population (Fig. 
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4.4), and may therefore contribute to adaptation to heat. Similarly, Module 16 has a large 

change in expression in the oxidative-selected line, although in this case there is no 

inducible expression across temperatures (Fig. 4.4). Alteration of threshold responses 

often contributes to the evolution of polyphenisms (e.g., Moczek and Nijhout 2003; 

Suzuki and Nijhout 2006), and the patterns observed in these two modules indicate a 

similar role for some portions of the GRN in regulating response to stress. 

Although other modules do show evidence of evolved change in regulation in 

both the heat- and oxidative-selected lines (Fig. 4.4), our data do not support the 

evolution of a generalized stress response pathway contributing to adaptation in both heat 

and oxidative stress resistance in the evolved populations. In cases where the same 

module responds in both stress selection lines, selection for heat resistance typically 

results in an overall change in gene expression in one direction, while selection for 

oxidative resistance occurs in the opposite direction, as observed in Modules 14 and 15 

(Fig. 4.4). The independence of the evolved responses to each stressor provides further 

support for the hypothesis that the GRN underlying the evolution of plasticity is highly 

modular. 

Regulation and function of the evolved plasticity GRN modules 

 Genes that are co-regulated by a common transcription factor are likely to have 

highly correlated expression (Marco et al. 2009), and therefore should be classified as 

part of the same module. Identifying the transcriptional regulators of each module can 

provide important insight into which pathways contribute to the evolution of plasticity. In 

this study, we tested for enrichment of known targets of 23 transcription factors within 

each of the identified gene modules. Most of these transcription factors have vital roles in 
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regulating developmental processes, but a few also have well-characterized roles in 

mediating stress responses. 

Many of the tested transcription factors are enriched in Modules 2, 3, and 5 as 

well as Module 1 to a lesser extent (Fig. 4.5). Given that the tested factors are key 

regulators of development, it is not surprising that Modules 2, 3, and 5 are also 

functionally annotated as involved in growth, embryonic development, and reproduction. 

It is likely that these large modules contain many developmental and housekeeping 

genes. Consistent with that role, these modules appear to have canalized patterns of 

expression, and are invariant among the experimental populations. None of these three 

modules showed significant differences between lines, and although Module 3 does show 

a temperature effect (Fig. 4.4), it is relatively weak compared to other modules in the 

broader network. We therefore do not expect these modules, or the core developmental 

pathways they represent, to contribute strongly to the evolution of plasticity. 

An intriguing result from this study is the enrichment of PQM-1 targets in 

candidate heat-evolved modules, specifically Modules 10 and 19, which both exhibit 

regulatory changes specific to the heat-evolved lines (Fig. 4.5). PQM-1 is known to 

respond to environmental stress, although previous studies describe a response to the 

oxidative stressor paraquat (methyl viologen; Tawe et al. 1998) and infection by the 

pathogen Pseudomonas (Shapira et al. 2006). However, PQM-1, like DAF-16, is a major 

target of the IIS pathway, and the two transcription factors appear to function in 

opposition to one another (Tepper et al. 2013). Further study will be required to 

determine whether PQM-1 and its targets are important contributors to evolution of the 

heat stress response. 
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An important caveat to note is that not all transcription factors have binding data 

available. Two major regulators of stress response, HSF-1 and HIF-1, are missing from 

this dataset, but almost certainly play a role in the induction of the plastic response, if not 

the evolutionary response. Given that HSF-1 is known to regulate many of the heat shock 

proteins (Wu 1995; Åkerfelt et al. 2010), we might speculate that HSF-1 contributes in 

some way to the regulation of the generalized stress response described by Module 4. 

However, given the lack of available data, we are not able to test that hypothesis at this 

time. In the future, network analyses using genomic data will continue to become richer, 

as projects like modENCODE provide better functional annotation of the genome. 

Conclusion 

 We have identified transcriptional modules with patterns of expression consistent 

with evolutionary response to selection in two different, but related phenotypes. Notably 

this response did not occur in the major generalized stress response module we identified, 

nor did we identify any shared stress response module that adapted in both selective 

environments in the same way. However, modules with significant responses, particularly 

to heat stress, were enriched for targets of a key transcription factor known to be 

connected to stress response pathways, indicating that plasticity evolution likely occurred 

within the existing stress resistance network. This is the first study to investigate the 

structure of GRNs underlying phenotypic plasticity in an experimental evolution 

framework, where the evolutionary history of the evolved changes is known. The 

observations made here provide important insight into the evolution of phenotypic 

plasticity within the regulatory networks, and valuable candidates to direct future study in 

this system. 
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BRIDGE 

 In Chapter IV, we described the first transcriptional network analysis undertaken 

in an experimental evolution framework to understand the genetic basis of phenotypic 

plasticity. We showed that at a global level, transcriptional responses to temperature are 

largely similar across all lines. However, analysis of the GRN indicated key modules that 

could contribute to the evolution of plasticity observed in Chapter II and III. In Chapter 

V, I conclude with a summary of the findings presented in this dissertation, and their 

significance to understanding the evolution of phenotypic plasticity. 
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CHAPTER V 

 

CONCLUSION 

 

Phenotypic plasticity is a widespread phenomenon in nature (Bradshaw 1965; 

West-Eberhard 2003), and is a fundamentally important adaptation for many species to 

cope with an unpredictable, changing world (Parejko and Dodson 1991; Schmitt et al. 

1995; Agrawal 1998; Aubret et al. 2004; Justice et al. 2006; Charmantier et al. 2008; 

Muschick et al. 2011; Cheviron et al. 2013). Phenotypic plasticity is itself a heritable trait 

that can evolve. There is strong interest in the field to understand how phenotypic 

plasticity evolves, and whether this evolution contributes to the emergence of novel 

phenotypes (Pfennig et al. 2010; Snell-Rood et al. 2010; Moczek et al. 2011). However, 

previous studies have been hampered by the fact that natural populations can only be 

studied in the present, without knowledge of the historical circumstances that have 

influenced their evolution. Experimental evolution allows this history to be observed and 

recorded (Rose et al. 1990), providing a powerful alternative strategy to study the 

evolution of plasticity. This approach has yielded many useful insights into how plasticity 

evolves (Waddington 1953; 1956; Scheiner and Lyman 1991; Rutherford and Lindquist 

1998; Suzuki and Nijhout 2006), but suffers in that the connection to the ecology and 

fitness of the organisms are lost.  

The experimental selection lines described in this dissertation were created to 

address these limitations. By selecting on resistance (i.e., survivorship) to ecologically 

relevant stressors, heat and oxidative stress, we have developed a system in which the 
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fitness consequences are clearer. At the same time, by performing selection under tightly 

controlled laboratory conditions, we were able to make strong inferences about the role of 

a variable environment in the evolution of phenotypic plasticity. 

Genetic assimilation, or the evolutionary loss of environmental sensitivity in a 

previously plastic phenotype, is of great interest as possible driver of evolutionary 

innovation (Pfennig et al. 2010; Snell-Rood et al. 2010; Moczek et al. 2011). Genetic 

assimilation is notoriously difficult to demonstrate, and the best examples still come from 

Waddington’s classic selection lines in Drosophila melanogaster (Waddington 1953; 

1956). In natural populations, it is next to impossible to demonstrate genetic assimilation 

except in very rare cases (Aubret and Shine 2009) because the evolutionary history is 

often lost to time.  

Patterns consistent with genetic assimilation of stress resistance were observed in 

the stress selection lines. In Chapter I, we described the genetic assimilation of heat stress 

resistance in the lines selected to withstand heat stress. However, when survival was 

measured across a broader range of temperatures, plasticity was still present. The 

maintenance of transcriptional plasticity in both the heat selected (Sikkink et al. 2014b; 

Chapters II and IV) and the oxidative-selected (Chapter IV) lines suggest that such shifts 

in the threshold for phenotypic plasticity may be common, especially in physiological 

traits like stress response. These observations further complicate the search for examples 

of genetic assimilation in nature, as organisms may be constantly moving through 

environments that are outside the “zone of canalization” (Waddington 1942) where 

genetic assimilation might have occurred. 
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Environmental complexity can also affect the evolutionary trajectory of 

populations. In Chapter III, we examined the consequences of changing environments on 

the patterns of multivariate selection. Notably, we observed changes in correlated 

responses to selection when evolution occurred in a different environment. It seems likely 

that this pattern resulted from a change in the patterns of pleiotropy underlying heat and 

oxidative stress resistance in the two environments. In our carefully controlled 

experimental system, we were able to probe the past environmental contingencies 

contributing to the observed phenotypes in these populations.  

Two possible hypotheses explain the changes in pleiotropy described in Chapter 

III. “Cryptic genetic covariation” might be uncovered as a result of direct effect of the 

environment modifying linkages between genes in the network. Alternatively, if selection 

favors alleles with varying pleiotropic linkages, evolution of the G-matrix could produce 

similar patterns. Distinguishing these possibilities requires knowledge of the molecular 

pathways underlying stress resistance. In Chapter IV, we examined the structure of the 

regulatory network under one of the evolutionary environments, the control environment. 

This study was the first of its kind to use a systems biology approach to investigate the 

gene regulatory network underlying phenotypic plasticity in an experimental evolution 

framework. 

The network that was identified appeared to be highly modular in structure. 

Furthermore, the regulation of some modules responded to temperature or was correlated 

with the evolutionary response. Importantly the patterns that we observed in the evolution 

of these modules—that adaptation to heat and to oxidative stress involve changes in the 



�

96 

regulation of different modules—support the lack of correlated phenotypic response to 

selection between these two traits (Sikkink et al. 2014a; Chapter III). 

In Chapter IV, we established that network approaches could provide powerful 

insights into the molecular basis of the evolved stress response. These methodologies will 

enable the other questions raised by Chapters II and III to be more fully addressed in 

future studies. Of most pressing concern, the network described in Chapter IV only 

represents the patterns in the control environment. Do populations that have evolved in 

other environments show the same network structure, or are the modules composed of 

entirely different sets of genes? If the network structure is the same, do different modules 

encapsulate the response to selection than those observed in the control environment? 

The answers to these fundamental questions will go far to explain why genetic 

correlations are contingent on the environment, and how the regulation of phenotypic 

plasticity evolves. 

In conclusion, the historical influences of both long-term and transient 

environments can have important effects on the evolution of phenotypic plasticity and 

other complex traits, but are difficult to measure outside of an experimentally evolved 

model system such as the one presented here. Careful consideration of the environmental 

context in which selection occurs is vitally important to understanding the nature of the 

evolutionary response, as is knowledge of the underlying molecular networks. The work 

described herein provides a foundation for understanding these two properties in evolved 

populations, and provides valuable insight into the evolution of phenotypic plasticity. 
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APPENDIX A 

 

SUPPORTING INFORMATION FOR CHAPTER II 

 

Table S2.1  Summary of differential expression results by line. 

Line Genes expressed above 
threshold 

Differential expression 
(FDR 5%) 

Ancestor 15,347 6431 
Control 15,141 4286 

Heat 14,784 2769 
Combined 15,963 8377 
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Table S2.2  List of the 200 most differentially expressed genes across environments from the RNA-seq analysis. 

HSP Gene ID Gene 
Name Gene Description Ancestor 

Log2 FC 
Ancestor 

FDR 
Control 
Log2 FC 

Control 
FDR 

Heat Log2 
FC Heat FDR 

 
CRE09388  C-type lectin 35.31 >0.0001 -- -- 4.61 >0.0001 

 
CRE24573  Protein kinase -5.31 >0.0001 -34.57 >0.0001 -33.46 >0.0001 

 
CRE08067   32.35 >0.0001 -- -- -- -- 

 
CRE23800  Hydrolase 8.99 >0.0001 7.00 >0.0001 n.s. n.s. 

� CRE24849  HSP70 protein 8.66 >0.0001 7.31 0.0011 5.64 0.0017 

 
CRE19381   8.22 >0.0001 8.57 0.0024 5.33 0.0344 

 
CRE18157   6.14 >0.0001 8.52 0.0059 -- -- 

 
CRE18318   8.50 >0.0001 -- -- 6.22 0.0198 

� CRE04868  HSP70 protein 8.05 >0.0001 6.83 0.0116 5.78 0.0006 

 
CRE26773  Integrase 8.03 >0.0001 6.09 0.0222 6.09 >0.0001 

� CRE01097  HSP70 protein 7.90 >0.0001 6.50 0.0192 5.73 0.0035 
� CRE18319  Small hsp (HSPB) 7.90 >0.0001 6.93 0.0035 5.01 0.0002 
� CRE18317  Small hsp (HSPB) 7.86 >0.0001 5.61 >0.0001 4.97 0.0013 
� CRE04869  HSP70 protein 7.81 >0.0001 6.79 0.0166 5.87 0.0043 
� CRE01029  HSP70 protein 7.72 >0.0001 6.86 0.0052 5.79 0.0008 

 
CRE26772  Reverse transcriptase 7.57 >0.0001 n.s. n.s. 5.99 >0.0001 

� CRE19380  Small hsp (HSPB) 6.99 >0.0001 7.38 0.0005 5.03 >0.0001 
� CRE18323  Small hsp (HSPB) 7.36 >0.0001 6.48 0.0048 5.56 >0.0001 
� CRE04666  HSP70 protein 7.33 0.0017a -- -- 4.59 0.0188 
� CRE19334  Small hsp (HSPB) 7.30 >0.0001 6.47 0.0081 5.11 >0.0001 
� CRE26901  HSP70 protein 6.49 >0.0001 7.28 0.0043 5.54 >0.0001 
� CRE18316  Small hsp (HSPB) 6.65 >0.0001 7.15 >0.0001 5.38 >0.0001 
� CRE18322  Small hsp (HSPB) 7.01 >0.0001 6.96 0.0003 5.10 >0.0001 
� CRE19384  Small hsp (HSPB) 7.01 >0.0001 6.64 0.0017 4.83 >0.0001 
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Table S2.2  (continued). 

HSP Gene ID Gene 
Name Gene Description Ancestor 

Log2 FC 
Ancestor 

FDR 
Control 
Log2 FC 

Control 
FDR 

Heat Log2 
FC Heat FDR 

 
CRE23104   6.95 >0.0001 -- -- -- -- 

� CRE19383  Small hsp (HSPB) 6.93 >0.0001 6.64 0.0006 5.44 >0.0001 
� CRE25393  HSP70 protein 6.93 >0.0001 6.43 0.0035 5.50 0.0005 
� CRE19333  Small hsp (HSPB) 6.61 >0.0001 6.91 0.0009 5.31 >0.0001 
� CRE18315  Small hsp (HSPB) 6.63 >0.0001 6.75 0.0007 4.91 >0.0001 
� CRE19335  Small hsp (HSPB) 6.74 >0.0001 6.68 >0.0001 4.75 0.0001 

 
CRE01030   6.62 >0.0001 -- -- 6.08 >0.0001 

� CRE18321  Small hsp (HSPB) 6.61 >0.0001 6.46 0.0004 4.93 >0.0001 
� CRE27162  Small hsp (HSPB) 6.50 >0.0001 6.37 0.0077 5.23 0.0016 

 
CRE05591   n.s. n.s. -6.47 >0.0001 -- -- 

� CRE20780 hsp-70 HSP70 protein 6.42 >0.0001 6.26 0.0003 5.27 >0.0001 

 
CRE24278  C-type lectin -- -- -- -- -6.39 >0.0001 

� CRE27471  Small hsp (HSPB) 6.27 >0.0001 6.27 0.0027 5.16 0.0001 

 
CRE21296  Reverse transcriptase 6.13 >0.0001 n.s. n.s. 6.18 >0.0001 

 
CRE16108  CUB-like domain -- -- -- -- -6.07 >0.0001 

 
CRE05459 end-3 GATA zinc finger transcription factor 6.05 >0.0001 -- -- -- -- 

 
CRE20711  

UDP-glucose:glycoprotein 
glucosyltransferase 5.87 >0.0001 n.s. n.s. 4.61 0.0010 

� CRE19382  Small hsp (HSPB) 5.80 >0.0001 5.22 >0.0001 4.99 0.0018 

 
CRE27833  Helitron helicase-like domain 5.69 >0.0001 -- -- n.s. n.s. 

 
CRE19026  Metridin-like ShK toxin domain -5.06 >0.0001 -5.51 >0.0001 -5.62 >0.0001 

 
CRE06466 sre-42 Serpentine receptor, class E -3.61 0.0001 -2.54 0.0028 -5.45 >0.0001 

 
CRE10142  CUB-like domain -- -- -- -- -5.39 >0.0001 

 
CRE11034   5.38 >0.0001 3.81 >0.0001 1.33 >0.0001 
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Table S2.2  (continued). 

HSP Gene ID Gene 
Name Gene Description Ancestor 

Log2 FC 
Ancestor 

FDR 
Control 
Log2 FC 

Control 
FDR 

Heat Log2 
FC Heat FDR 

 
CRE28993  Serpentine receptor, class W -- -- 5.38 >0.0001 -- -- 

 
CRE08692  Serpentine receptor, class Z -- -- -- -- -5.37 >0.0001 

 
CRE22721   5.34 >0.0001 -- -- 5.10 0.0022 

 
CRE16387   3.95 >0.0001 3.37 >0.0001 5.24 0.0055 

 
CRE28585   4.66 >0.0001 n.s. n.s. 4.19 0.0016 

 
CRE27404 gcy-13 Guanylate cyclase -1.46 0.0301 -- -- -5.14 0.0015 

 
CRE24995 cdh-7 Cadherin -- -- 4.99 0.0314 -- -- 

 
CRE08101   4.68 >0.0001 -- -- -- -- 

 
CRE09372   3.44 >0.0001 4.64 0.0489 2.87 >0.0001 

 
CRE20636 phy-2 Prolyl 4-hydroxylase 4.52 >0.0001 4.61 >0.0001 2.03 >0.0001 

 
CRE01098   1.77 >0.0001 n.s. n.s. 4.59 >0.0001 

 
CRE10141   -- -- -- -- -4.57 >0.0001 

 
CRE03576  Hydrolase 3.77 >0.0001 4.55 >0.0001 2.01 >0.0001 

 
CRE12322   -- -- -- -- 4.53 0.0016 

 
CRE14503  C-type lectin n.s. n.s. -1.38 >0.0001 -4.53 >0.0001 

 
CRE14636 clec-140 C-type lectin n.s. n.s. -1.23 0.0004 -4.51 >0.0001 

 
CRE09419   4.45 >0.0001 2.64 0.0224 4.50 >0.0001 

 
CRE08905   -3.46 0.0009 -4.48 >0.0001 -- -- 

 
CRE20697  Hexosyltransferase n.s. n.s. -1.26 0.0003 -4.46 >0.0001 

 
CRE13476  Thaumatin-like protein -4.46 >0.0001 -3.03 >0.0001 -3.64 >0.0001 

 
CRE29499   4.44 >0.0001 -- -- 3.55 0.0004 

 
CRE08033   4.43 >0.0001 -- -- -- -- 

 
CRE23366   4.38 >0.0001 -- -- -- -- 

 
CRE11169   4.36 >0.0001 2.78 0.0011 2.12 0.0411 
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Table S2.2  (continued). 

HSP Gene ID Gene 
Name Gene Description Ancestor 

Log2 FC 
Ancestor 

FDR 
Control 
Log2 FC 

Control 
FDR 

Heat Log2 
FC Heat FDR 

 
CRE24133  Collagen n.s. n.s. -4.36 >0.0001 -2.32 >0.0001 

 
CRE02480  Nuclear hormone receptor -- -- -1.70 0.0219 -4.35 0.0001 

 
CRE16040   2.38 >0.0001 4.28 >0.0001 2.55 >0.0001 

 
CRE03584   4.24 >0.0001 -- -- 3.38 0.0061 

 
CRE31291   4.22 >0.0001 3.03 0.0043 3.01 0.0053 

 
CRE24819   4.21 >0.0001 2.84 0.0062 2.04 >0.0001 

 
CRE01842 clec-60 C-type lectin 3.71 >0.0001 4.20 >0.0001 n.s. n.s. 

 
CRE07273  Lipocalin-related protein n.s. n.s. 4.13 0.0461 1.69 0.0140 

 
CRE26387   -- -- 4.11 0.0054 -- -- 

 
CRE13045  Metridin-like ShK toxin domain -4.09 >0.0001 -4.10 >0.0001 -- -- 

 
CRE15564  Prolyl 4-hydroxylase 3.97 >0.0001 4.08 >0.0001 2.31 >0.0001 

 
CRE23551   3.28 >0.0001 -- -- 4.07 >0.0001 

 
CRE06358   -- -- -4.07 >0.0001 -- -- 

 
CRE20525  Serpentine receptor, class E -- -- -- -- 4.07 0.0104 

 
CRE13953  Fatty acid CoA synthetase family 2.49 >0.0001 2.06 0.0001 4.06 0.0001 

 
CRE08193   -- -- 2.15 0.0266 4.04 0.0130 

 
CRE21837   2.36 >0.0001 2.52 0.0025 4.01 0.0001 

 
CRE01268   4.01 >0.0001 1.35 0.0356 2.46 0.0345 

 
CRE18121 mlt-10  4.01 >0.0001 3.68 >0.0001 1.42 >0.0001 

 
CRE06617  Serpentine receptor, class I 3.98 >0.0001 -- -- -- -- 

 
CRE01964   3.96 >0.0001 3.50 >0.0001 2.23 >0.0001 

 
CRE01322   3.95 >0.0001 -- -- -- -- 

 
CRE01264   3.95 >0.0001 -- -- -- -- 

 
CRE30275   -2.09 0.0018 -3.88 >0.0001 -2.54 >0.0001 
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Table S2.2  (continued). 

HSP Gene ID Gene 
Name Gene Description Ancestor 

Log2 FC 
Ancestor 

FDR 
Control 
Log2 FC 

Control 
FDR 

Heat Log2 
FC Heat FDR 

 
CRE18513   -3.88 >0.0001 -2.10 >0.0001 -3.19 >0.0001 

 
CRE13168   -- -- -- -- -3.86 >0.0001 

 
CRE01279   3.86 >0.0001 1.96 0.0010 n.s. n.s. 

 
CRE01306   3.86 >0.0001 n.s. n.s. -- -- 

 
CRE22946   -3.84 >0.0001 -2.11 0.0017 -- -- 

 
CRE18158   3.21 >0.0001 n.s. n.s. n.s. n.s. 

 
CRE08879 srh-129 Serpentine receptor, class H -3.83 0.0003 -- -- -2.50 0.0265 

 
CRE11248 srx-85 Serpentine receptor, class X 3.81 >0.0001 -- --   

 
CRE02474   -2.87 >0.0001 -2.74 >0.0001 -3.81 >0.0001 

 
CRE09165   -3.77 >0.0001 -1.71 0.0006 -- -- 

 
CRE30010 ech-9 Enoyl-CoA hydratase 1.91 0.0003 3.76 >0.0001 n.s. n.s. 

 
CRE05592   n.s. n.s. -3.49 >0.0001 -3.74 >0.0001 

 
CRE30392   3.73 >0.0001 n.s. n.s. n.s. n.s. 

 
CRE21032  Flavin monooxygenase -3.73 >0.0001 -2.79 >0.0001 -1.64 >0.0001 

 
CRE18358   3.03 >0.0001 -- -- 3.73 0.0001 

 
CRE09421   3.69 >0.0001 3.11 >0.0001 3.11 >0.0001 

 
CRE03133   -3.69 >0.0001 -1.36 >0.0001 -2.38 0.0226 

 
CRE17248 aagr-4 Acid alpha glucosidase related 2.40 >0.0001 3.68 >0.0001 2.18 >0.0001 

 
CRE01319   3.68 >0.0001 2.31 0.0023 n.s. n.s. 

 
CRE09022   -3.45 >0.0001 -3.66 >0.0001 -2.64 0.0007 

 
CRE03585   3.65 >0.0001 n.s. n.s. 3.60 0.0027 

 
CRE03432  Serpentine receptor, class W -2.33 0.0002 n.s. n.s. -3.64 >0.0001 

 
CRE21838   1.91 0.0022 2.25 0.0001 3.63 0.0002 

 
CRE00936 npax-2 N-terminal PAX (PAI domain only) 

protein 2.13 0.0004 3.63 >0.0001 2.68 0.0018 
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Table S2.2  (continued). 

HSP Gene ID Gene 
Name Gene Description Ancestor 

Log2 FC 
Ancestor 

FDR 
Control 
Log2 FC 

Control 
FDR 

Heat Log2 
FC Heat FDR 

 
CRE09422   3.63 >0.0001 2.85 0.0005 3.19 0.0009 

 
CRE25745   3.30 >0.0001 3.60 >0.0001 3.11 >0.0001 

 
CRE02652   3.57 >0.0001 1.38 0.0403 2.13 0.0004 

 
CRE17298   -3.56 0.0001 -- -- -- -- 

 
CRE12966  Serpentine receptor, class W -3.56 >0.0001 -- -- -2.77 0.0008 

 
CRE27097   n.s. n.s. 3.54 0.0066 n.s. n.s. 

 
CRE10586  Dehydrogenase -1.22 >0.0001 -1.05 >0.0001 -3.52 >0.0001 

 
CRE04420   3.51 >0.0001 -- -- -- -- 

 
CRE18856   -3.50 >0.0001 -2.28 >0.0001 -2.17 >0.0001 

 
CRE23575  

MAM (Meprin, A5-protein, PTPmu) 
domain protein 3.36 >0.0001 3.48 >0.0001 3.09 0.0013 

 
CRE12497   -- -- -- -- -3.48 0.0015 

 
CRE03438  C-type lectin 2.47 0.0002 3.47 >0.0001 -- -- 

 
CRE05780   -3.06 >0.0001 -3.47 0.0004 -- -- 

 
CRE02894   3.46 >0.0001 1.36 0.0231 -- -- 

 
CRE21368   3.45 >0.0001 2.79 0.0041 -- -- 

 
CRE16306  PAN domain-containing protein -- -- 3.44 0.0014 -- -- 

 
CRE23687  

Threonine dehydratase catabolic-like 
protein -3.43 >0.0001 -3.20 >0.0001 -1.45 0.0105 

 
CRE00199 ptr-4 Patched-related family -- -- 3.43 0.0181 -- -- 

 
CRE08830   3.42 >0.0001 -- -- -- -- 

 
CRE28521   2.80 >0.0001 -- -- 3.42 0.0154 

 
CRE08701  Serpentine receptor, class Z -3.42 >0.0001 -3.06 >0.0001 -- -- 

 
CRE01255   3.41 0.0004 -- -- -- -- 

 
CRE01261   3.41 0.0001 -- -- -- -- 
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Table S2.2  (continued). 

HSP Gene ID Gene 
Name Gene Description Ancestor 

Log2 FC 
Ancestor 

FDR 
Control 
Log2 FC 

Control 
FDR 

Heat Log2 
FC Heat FDR 

� CRE04918 daf-21 HSPC (HSP90) 3.40 >0.0001 n.s. n.s. 2.52 0.0008 

 
CRE30954   -3.40 >0.0001 -3.15 >0.0001 -2.37 >0.0001 

 
CRE08915   -2.95 0.0336 -3.40 >0.0001 -- -- 

 
CRE01263   3.39 0.0009 -- -- -- -- 

 
CRE06458   3.38 >0.0001 2.74 >0.0001 2.47 >0.0001 

 
CRE26886  Myosin light chain kinase 3.38 >0.0001 3.05 0.0103 n.s. n.s. 

 
CRE08273   3.37 >0.0001 -- -- n.s. n.s. 

 
CRE17339   -1.49 0.0449 -2.97 0.0001 -3.37 >0.0001 

� CRE00198 hsp-3 HSP70 protein 3.36 >0.0001 1.92 0.0384 2.44 >0.0001 

 
CRE00152 clec-266 C-type lectin 3.36 >0.0001 n.s. n.s. 3.11 0.0478 

 
CRE09072   -3.35 >0.0001 -3.30 >0.0001 -1.93 0.0396 

� CRE26138  HSP70 protein 3.34 >0.0001 n.s. n.s. 2.15 0.0302 

 
CRE11953   1.74 >0.0001 1.75 0.0023 3.32 0.0003 

 
CRE10900 fmo-2 Flavin monooxygenase -3.31 >0.0001 -2.79 >0.0001 -1.41 >0.0001 

 
CRE10649  Zinc finger protein 2.33 >0.0001 3.29 0.0197 2.04 0.0441 

 
CRE09656  AMP deaminase 1.38 0.0156 -- -- 3.27 0.0006 

 
CRE13074 str-96 7-transmembrane receptor -- -- -- -- -3.26 0.0003 

 
CRE06193  Ribonucleotide reductase -3.26 0.0304 -3.19 >0.0001 -2.10 0.0016 

 
CRE24981   1.09 0.0011 3.25 0.0058 n.s. n.s. 

 
CRE09429   3.24 >0.0001 2.39 >0.0001 2.37 0.0002 

 
CRE09190 cyp-34A5 Cytochrome p450 family protein -- -- -3.24 0.0022 -- -- 

 
CRE06003 fat-5 Fatty acid desaturase 2.14 >0.0001 3.23 0.0012 1.23 >0.0001 

 
CRE05507  Aspartyl protease n.s. n.s. n.s. n.s. -3.22 >0.0001 

 
CRE30887   3.22 >0.0001 1.30 0.0132 n.s. n.s. 
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Table S2.2  (continued). 

HSP Gene ID Gene 
Name Gene Description Ancestor 

Log2 FC 
Ancestor 

FDR 
Control 
Log2 FC 

Control 
FDR 

Heat Log2 
FC Heat FDR 

 
CRE08991   3.21 >0.0001 n.s. n.s. 2.34 >0.0001 

 
CRE01717   2.19 >0.0001 2.46 0.0057 3.21 0.0009 

 
CRE29186   -3.20 >0.0001 -2.24 >0.0001 -1.85 0.0134 

 
CRE15658   -3.20 >0.0001 -1.20 0.0037 -- -- 

 
CRE01661   -2.99 >0.0001 -2.59 >0.0001 -3.20 0.0005 

 
CRE12737   1.25 0.0036 3.20 0.0001 n.s. n.s. 

 
CRE17300 cyp-23A1 Cytochrome p450 family protein 2.97 >0.0001 2.59 0.0451 3.20 0.0013 

 
CRE13167   -- -- -- -- -3.19 >0.0001 

 
CRE01678   -- -- -3.19 >0.0001 -- -- 

 
CRE19390  Ani s 1 allergen -2.53 >0.0001 -3.18 >0.0001 -1.88 0.0028 

 
CRE05593   -3.01 >0.0001 -2.89 >0.0001 -3.18 >0.0001 

 
CRE24499   3.16 >0.0001 2.17 0.0014 2.21 0.0035 

 
CRE09281   -3.16 >0.0001 -2.57 >0.0001 -2.49 >0.0001 

 
CRE16493   -3.04 >0.0001 -2.40 >0.0001 -3.15 >0.0001 

 
CRE04919 gasr-8 Growth-arrest-specific-protein 8 3.15 >0.0001 n.s. n.s. n.s. n.s. 

 
CRE12600   3.14 >0.0001 1.99 0.0020 n.s. n.s. 

 
CRE28556   3.13 >0.0001 n.s. n.s. n.s. n.s. 

 
CRE01305   3.13 >0.0001 -- -- -- -- 

 
CRE10806  Cysteine-rich intestinal protein-related -1.83 >0.0001 -1.60 0.0178 -3.12 >0.0001 

 
CRE17641   3.11 >0.0001 -- -- -- -- 

 
CRE12674   -1.67 0.0356 n.s. n.s. -3.11 >0.0001 

 
CRE16136   -1.04 0.0486 -3.11 >0.0001 n.s. n.s. 

 
CRE06373  Serpentine receptor, class I 3.10 >0.0001 -- -- -- -- 

 
CRE03436  C-type lectin 2.54 >0.0001 3.09 >0.0001 1.80 0.0083 
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Table S2.2  (continued). 

HSP Gene ID Gene 
Name Gene Description Ancestor 

Log2 FC 
Ancestor 

FDR 
Control 
Log2 FC 

Control 
FDR 

Heat Log2 
FC Heat FDR 

 
CRE19316   -- -- 3.09 0.0015 -- -- 

 
CRE20157  Ribonucleotide reductase -- -- -3.08 >0.0001 -1.73 0.0289 

 
CRE03421 sru-7 Serpentine receptor, class U -3.08 >0.0001 n.s. n.s. -- -- 

 
CRE01311   3.07 >0.0001 -- -- -- -- 

� CRE26406  HSP70 protein 3.07 >0.0001 2.33 0.0044 2.05 0.0075 

 
CRE15096  Cytochrome p450 family protein -1.91 0.0007 -3.06 >0.0001 n.s. n.s. 

 
CRE08150   3.06 >0.0001 n.s. n.s. n.s. n.s. 

 
CRE10669   -3.05 >0.0001 -1.96 >0.0001 -3.05 >0.0001 

 
CRE02873   3.04 >0.0001 1.31 0.0283 2.90 0.0037 

 
CRE31451   3.03 >0.0001 -- -- -- -- 

aModel did not converge 
 
 
 
 
Table S2.3  List of genes differentially expressed over evolutionary time (20°C environment). 

 GeneID Gene Name Gene Description FC: Heat/ 
Ancestor FDR (Heat) FC: Ctrl/ 

Ancestor 
FDR 

(Control) 

DE in Heat-
Selected Line 

CRE23514   8.49 0.0013 -- -- 
CRE24278  C-type lectin 7.78 0.0002 -- -- 
CRE13167  CUB-like domain 4.32 0.0316 -- -- 
CRE16108  CUB-like domain 4.03 0.0156 -- -- 
CRE10142  CUB-like domain 3.19 0.0395 -- -- 
CRE20697  UDP-glucuronosyl transferase 3.12 0.0316 n.s. n.s. 
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Table S2.3  (continued). 

 GeneID Gene Name Gene Description FC: Heat/ 
Ancestor FDR (Heat) FC: Ctrl/ 

Ancestor 
FDR 

(Control) 

DE in Heat-
Selected Line 

CRE18453  Molybdenum cofactor sulfurase 2.84 0.0000 n.s. n.s. 
CRE30538  Helitron helicase-like domain -2.79 0.0037 n.s. n.s. 
CRE15658   -2.62 0.0012 n.s. n.s. 
CRE10586  Short-chain dehydrogenase 2.59 0.0366 n.s. n.s. 
CRE02477  Short-chain dehydrogenase 2.55 0.0137 n.s. n.s. 
CRE09885   2.49 0.0034 n.s. n.s. 
CRE24807   -2.42 0.0000 n.s. n.s. 
CRE12164 glb-1 Globin-related protein 2.06 0.0000 n.s. n.s. 
CRE28721 lact-6 Beta-lactamase related protein 1.94 0.0357 n.s. n.s. 
CRE09484  C-type lectin 1.83 0.0013 n.s. n.s. 
CRE09800  Zinc finger protein 1.79 0.0041 n.s. n.s. 
CRE25687   -1.79 0.0026 n.s. n.s. 
CRE11848  Glutathione S-transferase 1.73 0.0050 n.s. n.s. 
CRE10310  SCP-like extracellular protein -1.67 0.0318 n.s. n.s. 
CRE18035  aminoglycoside phosphotransferase -1.66 0.0019 n.s. n.s. 
CRE30855  NADH oxidase 1.63 0.0006 n.s. n.s. 
CRE10033   -1.61 0.0437 n.s. n.s. 
CRE22864 lipl-2 Lipase-like protein -1.58 0.0051 n.s. n.s. 
CRE12163  Cytochrome b5 1.58 0.0169 n.s. n.s. 
CRE00804 amt-1 Ammonium transporter homolog -1.50 0.0312 n.s. n.s. 
CRE09420   1.37 0.0342 n.s. n.s. 
CRE18856   -1.30 0.0211 n.s. n.s. 
CRE13371 nit-1 Nitrilase 1.20 0.0301 n.s. n.s. 
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Table S2.3  (continued). 

 GeneID Gene Name Gene Description FC: Heat/ 
Ancestor FDR (Heat) FC: Ctrl/ 

Ancestor 
FDR 

(Control) 

DE in Control 
Line 

CRE23798  Integrase n.s. n.s. -6.11 0.0000 
CRE12053  DDE endonuclease -- -- 3.29 0.0001 
CRE16136  Methyltransferase n.s. n.s. 3.08 0.0479 
CRE06358   -- -- 2.90 0.0014 
CRE07402  Integrase n.s. n.s. -2.73 0.0000 
CRE24828   n.s. n.s. 2.33 0.0104 
CRE19091   -- -- 2.27 0.0003 
CRE00568   n.s. n.s. -2.26 0.0034 
CRE30234   n.s. n.s. 2.09 0.0012 
CRE12487   n.s. n.s. -2.04 0.0072 
CRE08705  Glutathione S-transferase n.s. n.s. 2.04 0.0012 
CRE10692  Cytochrome p450 family protein n.s. n.s. 1.97 0.0000 
CRE18381   n.s. n.s. -1.94 0.0179 
CRE09193 cyp-34A10 Cytochrome p450 family protein n.s. n.s. -1.93 0.0104 
CRE19314  Protein kinase n.s. n.s. -1.89 0.0151 
CRE28667   -- -- 1.88 0.0059 
CRE23839   n.s. n.s. 1.83 0.0012 
CRE25599  Lipase-like protein -- -- 1.78 0.0381 
CRE15096  Cytochrome p450 family protein n.s. n.s. 1.72 0.0214 
CRE11440  Integrase n.s. n.s. 1.57 0.0003 
CRE25834  Integrase n.s. n.s. 1.50 0.0434 
CRE06192   n.s. n.s. 1.50 0.0034 
CRE28296  Calponin n.s. n.s. -1.46 0.0071 
CRE27735  Prion-like (Q/N-rich) domain protein n.s. n.s. 1.38 0.0068 
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Table S2.3  (continued). 

 GeneID Gene Name Gene Description FC: Heat/ 
Ancestor FDR (Heat) FC: Ctrl/ 

Ancestor 
FDR 

(Control) 

DE in Control 
Line 

CRE17915  Acyl-CoA thioesterase n.s. n.s. -1.36 0.0028 
CRE20531   n.s. n.s. 1.32 0.0242 
CRE29200   n.s. n.s. -1.32 0.0063 
CRE09559  5'-nucleotidase n.s. n.s. 1.29 0.0095 
CRE29277  SCP-like extracellular protein n.s. n.s. -1.28 0.0154 
CRE10669   n.s. n.s. -1.26 0.0120 
CRE14147   n.s. n.s. 1.26 0.0298 
CRE06222  Integrase n.s. n.s. 1.24 0.0124 
CRE09560   n.s. n.s. 1.16 0.0179 
CRE26779  Integrase n.s. n.s. -1.13 0.0428 
CRE24146   n.s. n.s. 1.13 0.0104 
CRE29479   n.s. n.s. 1.10 0.0154 
CRE14067   n.s. n.s. -1.10 0.0283 
CRE08770  Glutathione S-transferase n.s. n.s. 1.01 0.0136 
CRE14333  5-oxoprolinase n.s. n.s. 0.99 0.0198 

DE in Both 
Selected Lines 

CRE14636 clec-140 C-type lectin 6.10 0.0006 1.95 0.0000 
CRE14503  C-type lectin 5.72 0.0008 1.85 0.0000 
CRE01641 chil-8 Chitinase -3.41 0.0421 -5.27 0.0001 
CRE21731   -2.84 0.0037 1.68 0.0000 
CRE05881   -1.75 0.0328 -2.67 0.0000 
CRE02474  Dehydrogenase 2.58 0.0143 1.72 0.0000 
CRE13743   2.52 0.0000 2.33 0.0000 
CRE21610  C-type lectin -2.42 0.0136 -1.55 0.0150 
CRE09194 nlp-34 Neuropeptide-like protein -2.38 0.0003 -1.74 0.0059 
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Table S2.3  (continued). 

 GeneID Gene Name Gene Description FC: Heat/ 
Ancestor FDR (Heat) FC: Ctrl/ 

Ancestor 
FDR 

(Control) 

DE in Both 
Selected Lines 

CRE13741  Integrase 2.36 0.0000 2.09 0.0000 
CRE09886   2.27 0.0006 1.73 0.0179 
CRE13742   2.26 0.0026 1.95 0.0006 
CRE13476 thn-5 Thaumatin-like protein -2.19 0.0000 -2.02 0.0000 
CRE29705  Integrase 2.10 0.0000 1.95 0.0000 
CRE07706   2.07 0.0000 1.40 0.0014 
CRE25992  NADH oxidase 2.03 0.0019 1.13 0.0059 
CRE14226  UDP-glucuronosyl transferase 1.86 0.0001 1.44 0.0005 
CRE13701   1.80 0.0006 1.40 0.0136 
CRE29704   1.77 0.0036 1.66 0.0005 
CRE29212 gst-1 Glutathione S-transferase 1.75 0.0001 1.33 0.0012 
CRE29481   1.56 0.0026 1.42 0.0001 
CRE07709   1.52 0.0019 1.18 0.0028 

�
�
�
�
�

Figure S2.1 (next page)  Gene ontology enrichment network for genes differentially expressed by environment. Shown are GOSlim 
term with significant enrichment (FDR < 5%) for the upregulated genes (orange) or downregulated genes (blue) in the ancestral 
population. The intensity of shading is proportional to the significance value from the Fisher’s Exact Test for the ontology term. 
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APPENDIX B 

 

SUPPORTING INFORMATION FOR CHAPTER III 

 

Figure S3.1. Direct and correlated responses to selection between traits in experimentally 
evolved lines for each evolutionary replicate. Responses in both heat shock resistance 
(red) and oxidative shock resistance (blue) are shown. Data are mean difference from the 
ancestor, measured at 20°C in all lines (±2 SEM). 
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APPENDIX C 

 

SUPPORTING INFORMATION FOR CHAPTER IV 

 

 

 

 

 

Figure S4.1. (next page)  Reaction norms showing average eigengene expression in each 
evolved population for all modules identified in weighted gene coexpression network. 
For modules that significantly differed among experimentally evolved populations, we 
tested for pairwise differences among lines using a Tukey HSD test. Letters indicate 
homogenous groups from the Tukey test for those modules. Average eigengene 
expression (±2 S.E.M.) for each module is plotted. 
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