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DISSERTATION ABSTRACT

Ellery Ames

Doctor of Philosophy

Department of Physics

December 2013

Title: Singular Symmetric Hyperbolic Systems and Cosmological Solutions to the
Einstein Equations

Characterizing the long-time behavior of solutions to the Einstein field equations

remains an active area of research today. In certain types of coordinates the Einstein

equations form a coupled system of quasilinear wave equations. The investigation of

the nature and properties of solutions to these equations lies in the field of geometric

analysis. We make several contributions to the study of solution dynamics near

singularities. While singularities are known to occur quite generally in solutions to

the Einstein equations, the singular behavior of solutions is not well-understood. A

valuable tool in this program has been to prove the existence of families of solutions

which are so-called asymptotically velocity term dominated (AVTD). It turns out

that a method, known as the Fuchsian method, is well-suited to proving the existence

of families of such solutions. We formulate and prove a Fuchsian-type theorem for

a class of quasilinear hyperbolic partial differential equations and show that the

Einstein equations can be formulated as such a Fuchsian system in certain gauges,

notably wave gauges. This formulation of Einstein equations provides a convenient

general framework with which to study solutions within particular symmetry classes.

The theorem mentioned above is applied to the class of solutions with two spatial

symmetries – both in the polarized and in the Gowdy cases – in order to prove the
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existence of families of AVTD solutions. In the polarized case we find families of

solutions in the smooth and Sobolev regularity classes in the areal gauge. In the

Gowdy case we find a family of wave gauges, which contain the areal gauge, such that

there exists a family of smooth AVTD solutions in each gauge.

This dissertation includes previously published and unpublished co-authored

material.
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CHAPTER I

INTRODUCTION

1.1. Prelude

Einstein published his theory of gravitation (general relativity) in 1915. Whereas

in the Newtonian theory of gravitation massive bodies interact via a gravitational

force (instantaneously and with no apparent mechanism) in a global and rigid space

and time frame, in the general theory of relativity, spacetime is a dynamical manifold

which interacts with energy and matter. The interaction with the spacetime manifold

which provides a mechanism for gravitation; the theory says that massive and massless

bodies move along time-like and null, respectively, geodesics in the curved spacetime,

and it is these motions which we attribute to the gravitational force. Colloquially,

the matter informs the spacetime how to curve and the matter moves along paths

determined by the curved spacetime.

The interaction between spacetime and matter in general relativity is governed

by the Einstein field equations. Solutions to these field equations represent the

gravitational field in a physical scenario, such as outside of the earth, or the entire

cosmos, and provide some of the most accurate physical models today. Although we

understand many explicit solutions to the Einstein equations quite well, in particular

those with a high degree of symmetry and which provide the most common physical

models, the understanding of the large-scale behavior of general solutions to the

Einstein equations is relatively weak. Indeed, much of the present research in general

relativity is in exploring the properties of this full space of solutions.
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We consider in this dissertation families of solutions which may provide in some

sense cosmological models. Within this context one of the particular families of

solutions which are well-understood are the homogeneous and isotropic solutions

independently worked out by Friedmann, Lemâıtre, and Robertson and Walker, hence

known as the FLRW solutions. These solutions provide a remarkably good model of

our observable universe and form the foundation of many studies in cosmology; they

possess however a particularly interesting feature. Observers traveling on time-like

paths to the past in an FLRW universe will encounter a singular event in which

their worldline terminates within a finite amount of proper time and the spacetime

curvature and energy density become unbounded. Does such behavior occur in our

universe? Observations of the expansion of our visible universe and the cosmic

microwave background radiation suggest that it might, and this singular event has

come to be called the “big-bang.”

A natural question to ask is whether more general (less symmetric), and

presumably physically realistic, solutions to the Einstein equations also exhibit

this singular behavior, or whether such behavior is a product of the high-degree

of symmetry of the FLRW models. This is now a mathematical question about

properties of solutions to the Einstein equations which might model some universe,

and not a physical question about our particular universe. The evidence, starting

with the work of three Russian physicists Belinski, Khalatnikov, and Lifshitz (BKL),

suggests that indeed some sort of singular behavior is quite common in solutions

to the Einstein equations. To date, the most powerful result is the (mathematical)

proof by Hawking and Penrose in the 1970’s that singular events in the sense of time-

like worldlines which terminate in finite time are general features of solutions to the

Einstein equations. However, further details regarding these singularities, such as
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whether the curvature is unbounded and the general dynamics of the gravitational

field, remain unresolved.

The work of BKL, later Misner, and many others more recently employing

numerical methods, indicates that the dynamics of the gravitational field in the

singular region is quite complicated. The BKL picture, discussed in more detail

in Section 1.3.3., is that in the singular region the dynamics are local, vacuum

dominated, and oscillatory in particular sense. Verifying this behavior rigorously

in general solutions is beyond present mathematical techniques. In order to make

progress in understanding the dynamics of solutions near singularities, research has

focused on studying restricted classes of spacetimes characterized by symmetries, the

presence of certain matter fields, or a particular subclass of the BKL dynamics.

Solutions with a simpler singular dynamics are observed in numerical

investigations, particularly in classes of spacetimes which are polarized. Like the BKL-

type dynamics, these spacetimes are asymptotically local and vacuum dominated, but

unlike the BKL case are not oscillatory. Since such solutions can be modeled in the

singular region by functions which satisfy a set of ordinary differential equations

obtained from the Einstein equations by dropping spatial derivative terms, they are

called asymptotically velocity term dominated or AVTD. While this behavior is not

general, the study of AVTD solutions is accessible by analytical techniques, and thus

provides a valuable “window” into the singular nature of solutions.

The projects described in this dissertation contribute to the research program of

finding AVTD solutions with various assumed symmetries. There are four different

contributions to this program which are made. The first, which is contained in

Chapter II, is the formulation and proof existence and uniqueness theorems for a

broad class of so-called Fuchsian partial differential equations (PDE). Equations of
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this type have been the mathematical work-horses for finding families of solutions

which are AVTD. The second contribution is the proof of the existence of a families

of smooth and Sobolev-regular AVTD solutions in the class of polarized T 2-symmetric

spacetimes. These results are presented in Chapter III. The third and fourth

contributions, which are smaller in scope, but lay the ground work for future research,

are presented in Chapter IV. In the first portion of this chapter we construct a general

Fuchsian reduction of the Einstein equations in wave gauge. This reduction, which

obtains a symmetric hyperbolic formulation of the equations used in tandem with

the existence theory in Chapter II provides a powerful general tool for investigating

AVTD behavior. In the second portion of the chapter we use these tools to investigate

the gauge-dependence of the AVTD property. It turns out that the notion of AVTD

is dependent upon the coordinates one has chosen, and it is unknown whether a

solution which is known to be AVTD in one coordinate system is AVTD in other

(perhaps families) of coordinate systems. The work in Chapter IV takes a first step

in investigating this issue in the class of Gowdy spacetimes.

The Fuchsian theory which is developed in Chapter II is related to that published

in [3, 4] in collaboration with Florian Beyer, Jim Isenberg, and Philippe LeFloch. The

paper [3] also contains an application of the Fuchsian theorems to the polarized and

half-polarized T 2-symmetric spacetimes, and the analysis in Chapter III is based on

this work. The results presented in Chapter IV are unpublished; this work is in

collaboration with Florian Beyer and Jim Isenberg. Some of the technical results

contained or cited in the Appendices are based on results published in [3, 4].
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1.2. The Einstein Field Equations and Solutions

1.2.1. The Einstein Field Equations

At the heart of the theory of general relativity are the Einstein equations. The

Einstein equations are a geometric relation describing the interplay between the

geometry of spacetime and matter, which can be written1

Ricij(g)− 1

2
R(g)gij = 8πTij. (1.1)

Here g is the metric tensor with Lorenztian signature, Ric(g) is the Ricci curvature

of the metric, R(g) = gijRicij(g) is the Ricci scalar, and T is the energy momentum

tensor. We have used “geometrized units” in which the gravitational constant G

and the speed of light c have been set to one. We also make use of the summation

convention where identical upper and lower indices are summed over unless explicitly

stated otherwise. Throughout the spacetime indices i, j, k etc. run through 0, 1, 2, 3,

while the indices a, b, c etc. correspond to the spatial degrees of freedom and take

values 1, 2, 3. We work in n = 3 dimension, although the Einstein equations apply to

gravitational phenomena in n+ 1 dimensions for any n ≥ 2.

Although many applications of general relativity are concerned with an Einstein-

matter system, in which the energy momentum tensor T couples the Einstein

equations to relevant matter equations, there are also dynamical solutions to the

Einstein equations with no matter terms, corresponding to T ≡ 0. The analogue in

electromagnetism is the phenomena of electromagnetic radiation. In this dissertation

1Taking the trace of these equations we find that we may also write them in the form Ricij(g) =
8π(Tij − 1

2Tgij).
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we deal only with the vacuum Einstein equations

Ricij(g) = 0. (1.2)

This is not supposed be physically-motivated assumption, but rather a way to simplify

the analysis and ignore complications which arise as a result of the matter equations.

A solution to the vacuum Einstein equations consists of a Lorenztian manifold (M, g)

such that g satisfies Eq. (1.2), and can be thought of as gravitational radiation.

Written in a system of coordinates the Einstein equations consist of ten (in

three dimensions) second-order nonlinear coupled partial differential equations. In

an arbitrary system of coordinates, these equations are of indeterminent character.

However, in certain types of coordinates, such as the wave-coordinates which we

discuss in Section 4.2. below, the equations take hyperbolic form. This complexity

of the equations, along with the diffeomorphism invariance make finding general

solutions to the Einstein equations, and determining the long-time behavior of

solutions difficult. One scheme for obtaining solutions to the Einstein equations and

studying their properties is to set-up an initial value formulation of the equations.

1.2.2. The Cauchy Problem in General Relativity

The initial value formulation, or Cauchy problem, for the Einstein equations

may be motivated by the fact that, as mentioned, the equations are hyperbolic in

certain systems of coordinates. In an initial value formulation one wishes to specify

some initial data, possibly satisfying some constraints, and then evolve this data via

evolution equations in order to obtain a unique solution. We give only a short synopsis
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of the relevant results and definitions in the vacuum case here. For more complete

treatments see for example [8, 21, 42, 75].

What constitutes appropriate initial data for the vacuum Einstein equations?

Given a solution, that is a Lorenztian manifold (M, g), one expects the initial data

to be a space-like hypersurface with a Riemannian metric γ and its time-derivative,

which is represented by a covariant two-tensor κ. Since the Lorentzian metric g is

to satisfy the vacuum Einstein equations, the data must satisfy certain constraint

equations (the Gauss and Codazzi equations)

S(γ)− κ2 + (trκ)2 = 0

Daκab −Db(trκ) = 0.

(1.3)

Here D is the Levi-Civita connection with respect to γ, S(γ) = γabRicab(γ) is the

scalar curvature of γ and indices are raised and lowered with γ. The appropriate

initial data for the vacuum Einstein equations can thus be defined as the following.

Definition 1.1. The set of initial data for the vacuum Einstein equations is the triplet

(Σ, γ, κ), where Σ is a 3-manifold, γ is a Riemannian metric and κ is a covariant

symmetric two-tensor which satisfy the constraint equations Eq. (1.3).

Given initial data (Σ, γ, κ) as above, we can then formulate the Cauchy problem

for the Einstein equations. The initial value problem for the Einstein equations is to

find a Lorentz manifold (M, g) satisfying the Einstein equations, and an embedding

i : Σ → M such that κ = i∗k, γ = i∗g, where k is the second fundamental form of

i(Σ). The manifold (M, g, i) (where we have included the embedding i explicitely) is

called the development of the data. An important case is when the initial data yields

a hypersurface i(Σ), which is a Cauchy surface.
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Definition 1.2. A Cauchy hypersurface in a Lorentzian manifold is a subset which

is met exactly once by every inextendible time-like curve.

If M has a Cauchy hypersurface Σ, then it is called globally hyperbolic. The

development D(Σ) of Cauchy hypersurface is all of M and is called the globally

hyperbolic development. An important question, which was not settled until 1952

is whether there exist a globally hyperbolic development for any given appropriate

initial data to the Einstein equations.

Theorem 1.3 (Choquet-Bruhat 1952, [35]). Given initial data as in Definition 1.1

for the vacuum Einstein equations, there is a globally hyperbolic development.

The issue of uniqueness in general relativity is subtle due to the diffeomorphism

invariance of the equations. Recall that if (M, g) is a solution, and if ϕ ∈ Diff(M)

is a diffeomorphism of M , then h = ϕ∗g also satisfies the Einstein equations, though

this pulled-back metric may appear very different. In fact there is an equivalence class

of solutions, generated by the diffeomorphism group of M . To obtain a statement

about uniqueness then we need a criterion which is invariant on this equivalence class

of solutions. The concept of a maximal globally hyperbolic development is useful.

Definition 1.4. A maximal globally hyperbolic development (MGHD) of initial data

to the vacuum Einstein equations, (M, g, i) is such that if (N, h, j) is any other GHD

of the same data, then there is a map ψ : N → M that is a diffeomorphism onto its

image, and ψ∗g = h, i = ψ ◦ j.

With this notion of maximality, Choquet-Bruhat and Geroch proved the stronger

existence and uniqueness result in 1969.
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Theorem 1.5 (Choquet-Bruhat and Geroch 1969, [23]). Given initial data as in

Definition 1.1 to the vacuum Einstein equations, there is a maximal globally hyperbolic

development of the data which is unique up to diffeomorphisms.

This result establishes that the MGHD is unique in the space of all globally

hyperbolic developments. However, it does not establish uniqueness in the space of

all developments. In fact, as we discuss below, there are infinite families of initial data

such that the corresponding MGHD may be extended, thus violating uniqueness, and

in some sense determinism, in general relativity. The extent to which this occurs in

the space of all solutions to the Einstein equations is one of the major open research

questions today, and is called strong cosmic censorship. One might think of this

strong cosmic censorship as establishing a “strong” uniqueness result; we discuss this

issue and related conjectures further in Section 1.3. below.

1.2.3. Spacetimes with a T 2 Isometry Group

We now identify a class of solutions which is particular interest in general

relativistic studies of cosmology.

Definition 1.6 (Bartnik, [7]). A solution (M, g) to the vacuum Einstein equations

is called a vacuum cosmological solution if it is globally hyperbolic, has closed

(compact without boundary) Cauchy hypersurfaces, and satisfies Ricg(V, V ) ≥ 0 for

any unit time-like vector V .

A useful approach in studies of the Einstein equations has been to consider

problems (such as strong cosmic censorship) in classes of spacetimes restricted by

symmetry assumptions (or in the non-vacuum case by certain matter models), and

through gradually relaxing these assumptions develop the techniques and intuition
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with which to tackle those problems in more general classes of spacetimes. For

cosmological solutions one usually assumes some symmetry on the spatial Cauchy

hypersurfaces (a symmetry in time yields a stationary solution). In this dissertation

we treat spacetimes with Cauchy data which is invariant under a T 2 spatially acting

isometry group.

1.2.3.1. The Space of T 2-Symmetric Spacetimes

In this document we consider that each spacetime is the maximal globally

hyperbolic development of an initial data set on a compact Cauchy surface, with the

data invariant under an effective U(1)×U(1) = T 2 action. Thus we have cosmological

solutions (c.f. Definition 1.6) with a two-dimensional isometry group, which we refer

to as T 2-symmetric spacetimes; in other literature, for example [87] and references

contained therein, these are called G2 spacetimes. For spacetimes with this symmetry

and with spatial orbits on a three-dimensional connected and orientable manifold the

spatial topology is restricted to be T3,S2 × S1,S3 or a lens space L(p, q) [64]. Since

the lens space is covered by S3, these cases are not usually considered separately.

These spacetimes can be further classified by considering various conditions on

the Killing vector fields which generate the two isometries. The space of T 2-symmetric

spacetimes is represented Figure 1.1 below. Let Y and Z be the two spatial Killing

vector fields which generate the isometry group. The two subclasses are characterized

by the following conditions: I) The hypersurface orthogonal condition which says

that g(Y, Z) = c, is constant. In the literature a spacetime satisfying this relation is

known as polarized, since this condition effectively turns off one degree of freedom

in the metric. II) The second condition involves quantities known as “twists” which

are nicely constructed in terms of the generating forms corresponding to Y, Z. Let
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ξ := g(Y, ·), ζ := g(Z, ·) be the generating forms of a distribution D. Frobenius’

theorem (c.f. [22, 53]) states that D is integrable if and only if the twists

KY := ?dξ ∧ ξ ∧ ζ and KZ := ?dζ ∧ ξ ∧ ζ

both vanish, where ? denotes the Hodge star and ∧ the wedge product. As shown

by Chruściel [26], the vacuum Einstein equations imply that the twist quantities

are constant. The orthogonally transitive,2 or more commonly Gowdy subclass

(named after their first discoverer [38]), is characterized by the vanishing of both

twist constants. If a solution is both polarized and Gowdy, then the metric may be

written in diagonal form.

FIGURE 1.1.. The class and subclasses of T 2-symmetric spacetimes. This figure has
been adapted from Wainright and Ellis [87].

The Gowdy solutions admit the spatial topologies T3, S2 × S1, S3 or a lens space

L(p, q). In the case that at least one twist constant is non-vanishing Chruściel has

shown that the spatial topology is restricted to be T3. We call such general solutions

simply “T 2-symmetric.”

2i.e. the two-spaces orthogonal to the group action are surface-forming
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1.2.3.2. Areal Coordinates

For spacetimes with a T 2 isometry group, a particularly useful geometrically-

defined time coordinate can be specified by setting the time function proportional to

the area of the T 2-symmetry group orbits. Coordinates with such a choice of time

are called areal coordinates.

To show that these coordinates are well-defined one would like to show that given

Cauchy data which is invariant under a spatially acting T 2-isometry group, that the

resulting maximal globally hyperbolic development is covered by these coordinates.

This is shown for Gowdy intial data with the time t taking values in (0,∞) in the case

of T3 spatial topology, and (0, π) in the remaining cases [26, 62]. A similar result is

proved for the T 2-symmetric spacetimes with non-vanishing twist. In [12] the authors

show that such spacetimes are covered by areal coordinates with time t ∈ (t0,∞) for

some non-negative number t0. In later work of Weaver and Isenberg [46] this lower

bound was clarified to be zero in all cases except that of flat Kasner, in which case

t0 > 0.

Beyond the fact that the areal coordinates cover the T 2-symmetric spacetimes,

they are useful in studying T 2-symmetric solutions for two additional reasons. The

first is that due to the results [12, 26, 46, 62] mentioned above, in these coordinates one

approaches the cosmological singularity precisely as the time coordinate approaches

t = 0. The second is that in these coordinates the Einstein equations can be brought

into hyperbolic form. In fact, in the Gowdy spacetimes, the areal coordinates are

an example of wave coordinates –c.f. Section 4.2.. Such coordinates arise from a

particular gauge choice called a wave gauge, in which the Einstein equations are

guaranteed to be hyperbolic.
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1.3. Global Properties of Solutions and AVTD Behavior

1.3.1. Singular Solutions to the Einstein Equations

One of the main areas of study in classical general relativity today is in

understanding the global properties of general solutions to the Einstein equations.

Of particular interest is the study of singularities, which may be roughly thought of

as an obstruction to the further development of initial data, or the “boundary” of a

globally hyperbolic development.

While the perhaps intuitive notion of a singularity involves relevant quantities

(for example metric functions, curvature scalars, etc. in this case) becoming

unbounded, the present definition of a singular solution to the Einstein equations

is framed in terms of (in)complete geodesics.

Definition 1.7 (Singular solution). A solution to the Einstein equations is called

singular if it contains at least one inextendible and incomplete causal geodesic.

A geodesic is complete if it is defined for all proper time, and incomplete

otherwise. The reason for this (perhaps disappointing) definition of a singular solution

is simply that one can prove that a solution to the Einstein equations is geodesically

incomplete under rather general assumptions – this is the content of the famed

singularity theorems of Hawking and Penrose (see [40] for more complete discussion,

and Theorem 1.8 below for an example). To make sense the above definition should

be restricted to maximal solutions. The geodesic must also be inextendible since a

geodesic segment which is defined only for a finite range of proper time provides no

information on the properties of the spacetime. One might think of the incompleteness

as the consequence of “removing” the singularity from the spacetime.
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While there is much work devoted to studying such singularity theorems and

finding the weakest possible conditions such that one may guarantee a singular

spacetime, here we are concerned only with the class of cosmological spacetimes, which

in particular are globally hyperbolic. The following is an example of a singularity

theorem in this context (this is Theorem 9.5.1 in Wald [88]).

Theorem 1.8 (Cosmological spacetimes are singular). Let (M, g) be a vacuum

cosmological solution (Definition 1.6) with the Cauchy surface Σ such that

τ ≤ C < 0, everywhere

for τ = trγκ is the trace of the extrinsic curvature, and C is a constant.

Then, no past-directed time-like curve from Σ can have a length greater

than 3/|C|, which means in particular that all past-directed time-like geodesics are

incomplete.

One may interpret this theorem as follows. If your cosmology is such that at one

instant in time it is expanding everywhere at a rate bounded away from zero, then it

is singular in the sense of Definition 1.7.

In the case of Einstein-matter systems the condition in Definition 1.6 that

Ricg(V, V ) ≥ 0 for all time-like unit V (i.e. g(V, V ) = −1) is satisfied if g is a

solution to the Einstein equations with a stress energy tensor satisfying the strong

energy condition, T (V, V ) ≥ −1/2T . This can be seen from the alternate form of the

Einstein equations (footnote below Eq. (1.1)).

The proof of Theorem 1.8 is based on a contradiction argument. Suppose there

exists a past-directed time-like curve λ from Σ with a length greater than 3/|C|, and

let p be a point lying beyond 3/|C|. Then since the spacetime is global hyperbolic
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there exists a time-like geodesic γ from Σ to p which attains its maximum length

(which is in particular greater than 3/|C|), and further there are no conjugate points

for γ between Σ and p. However, this is a contradiction since the expansion condition

ensures the existence of a conjugate point within length 3/|C| along such a geodesic.

For the details of this proof see [88].

While the singularity theorems tell us that a solution to the Einstein equations

is singular (in the sense of Definition 1.7) under relatively weak assumptions, they

tell us little about the nature of the singularity, and the behavior of the solution near

singularities. Indeed, particular examples of solutions show that singular solutions

can exhibit very different behavior. The FLRW family of solutions are singular, and

the Kretschmann scalar SK(g) = Riemijkl(g)Riemijkl(g) (the square of the Riemann

tensor), is unbounded in one or both directions along every time-like geodesic. On

the other hand the Taub spacetimes [84], are geodesically incomplete in both the

future and past time-like directions, and yet as one approaches the singularity the

curvature remains bounded [29]. What’s more the spacetime can be extended in

inequivalent ways, and the extension need not satisfy the Einstein equations. Because

of the original discoverer’s of this extension Newman, Unti, and Tamburino, the

family of extended spacetimes is called Taub-NUT [65]. The boundary of the globally

hyperbolic region in the extended spacetimes is known as a Cauchy horizon.

The known families of singular solutions exhibit one of the above types of

behavior, either the curvature (measured by the Kretschmann scalar) is finite in the

approach to the singularity and the solution may be extended, leading to a Cauchy

horizon, or the curvature is blowing-up. Much of the present work surrounding

singularities in general relativity, this dissertation included, is focused on attempting

to further resolve the nature of these singularities and the behavior of solutions near
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them. In the next two sections we discuss several open problems related to these

issues.

1.3.2. Strong Cosmic Censorship: “Strong uniqueness”

If a singular solution contains a Cauchy horizon, as in the case of the Taub-NUT

solutions, then the solution extends beyond the maximal globally hyperbolic region.

Of course if the extension to a given unique MGHD, guaranteed by Theorem 1.5, is

unique this might not be so bad, since in that case the entire spacetime could be

predicted from initial data. Often however, there exist multiple inequivalent –that

is not diffeomorphic– extensions of a given maximal globally hyperbolic development

[29]. This type of behavior contradicts our desire that general relativity, a classical

theory of physics, should be deterministic. At present all known families of solutions

which contain Cauchy horizons also contain symmetries, and therefore do not

represent fully general solutions to the Einstein equations. The revised hope then

is that fully general (and presumably the most physically relevant) solutions to the

Einstein equations are deterministic; this is formulated in the following conjecture.

Conjecture 1.9 (Strong Cosmic Censorship (SCC)). For generic initial data to

the vacuum Einstein equations, the maximal globally hyperbolic development is

inextendible.

This conjecture was first proposed by Penrose [66] in 1969. The formulation

above is due to Chruściel [27], which in turn is adapted from Moncrief and Eardely

[63]. The nomenclature is a bit unfortunate since there is another famous “censorship”

conjecture in general relativity pertaining to isolated bodies. This is called the “weak

censorship conjecture,” (WCC) although SCC does not imply WCC nor vice-versa.

A more appropriate name for Conjecture 1.9 might be “strong uniqueness.”
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There are several approaches to proving a version of Conjecture 1.9 restricted to

classes of solutions defined by presence of symmetries, or various matter fields which

have been successfully employed. However, proving the conjecture in full generality

remains beyond the reach of present techniques.

While the strong cosmic censorship conjecture says that the formation of Cauchy

horizons occurs non-generically, we are also interested in the issue of the curvature

blow-up at singularities. In a sort of complementary conjecture, this behavior is

thought to be generic.

Conjecture 1.10 (Curvature Blow-up). For generic initial data to the vacuum

Einstein equations, curvature blows up in the incomplete directions of causal geodesics

in the MGDH.

The statement of this conjecture comes from [73]. We note that since a C2-

manifold cannot be extended through a curvature singularity, Conjecture 1.10 implies

Conjecture 1.9 at least for extensions which are sufficiently smooth. Thus proving

a restricted version of Conjecture 1.10 is one pathway to proving restricted strong

cosmic censorship. This approach has been successfully employed in the class of

Gowdy solutions with T3 spatial topology (c.f. discussion in Section 1.4.5.).

It should be mentioned that as stated the Conjecture 1.10 and Conjecture 1.9

are not completely clear. First, in a theorem asserting the truth of strong cosmic

censorship or curvature blow-up one must specify what is meant by “generic initial

data” e.g. a set of non-zero measure in the space of all initial data. One must also

specify in such a theorem whether solutions are inextendible as smooth manifolds, or

C2-manifolds etc., and whether the avoided extensions satisfy the Einstein equations

(they need not).
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The conjectures presented in this section are concerned with whether the

singularity is due to a Cauchy horizon or a curvature blow-up. In the next section we

discuss related questions concerning the dynamics of solutions in the singular regions.

1.3.3. Generic Singular Behavior and the BKL Proposal

As we have discussed above, the singularity theorems ensure that a solution is

singular under rather general assumptions –that is, without very much information.

However, there is a sort of conservation of information in that the singularity theorems

don’t tell us much about the nature of the singularity. Indeed, as we have seen the

singularity theorems are unable to distinguish between the formation of a Cauchy

horizon and curvature blow-up. One of the main research goals in classical relativity

today is to understand the dynamics of the metric field in the region of singularities.

The ideas which drive research on the singular dynamics were put forth by

Belinskii, Khalatnikov, and Lifshitz (BKL) in the 1960’s and 70’s [9, 10, 56]. The

BKL proposal, based on heuristic studies, is that generically the spacetime dynamics

of an inhomogeneous spacetime is closely approximated by that of a homogeneous

model known as a Kasner solution 3 at each spatial point. In this sense the solution

is local. According to the BKL proposal the general singular dynamics are also

vacuum-dominated in the sense that the matter terms do not significantly contribute,

and oscillatory in the sense that at each spatial point the metric is modeled by an

infinite sequence of Kasner “epochs” punctuated by transitions in which the particular

Kasner-model changes (that is the Kasner exponents pa introduced below change).

Further, the sequence of Kasner “epochs” at each point is uncorrelated.

3It should be noted that the Kasner family is just one of several families of homogeneous solutions
to the Einstein equations. The homogeneous solutions are organized by the Bianchi-classification,
in which the Kasner family is Bianchi I.
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The Kasner family is given by a metric of the form

gKasner = −dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2

where the integers pa, a = 1, 2, 3 satisfy
∑

a pa =
∑

a(pa)
2 = 1. As a result, in a

generic Kasner spacetime two of the pa must be positive while the other is negative.

In the resulting approach to the singularity (at t = 0), two spatial directions are

shrinking, while the third is expanding, leading to a “cigar” type singularity. Hence

in the BKL-picture, the spacetime at each spatial point is apparently oscillating: in

one Kasner epoch two spatial directions will be shrinking and the third expanding.

The spacetime then transitions, changing the local effective values of pa, and in the

subsequent Kasner epoch two generally different spatial directions are contracting

–ad infinitum.

A nice illustration of the BKL-type behavior, as well as the simpler

asymptotically velocity term domintated (AVTD) behavior which we discuss below

is presented in the dynamical systems formulation of the Einstein equations [87].

In this formulation, a solution (within a class of homogeneous solutions) at each

time can be represented as a point in a five-dimensional state space with variables

(Σ+,Σ−, N1, N2, N3), which roughly correspond the trace-free shear tensor, and the

spatial portions of the connection coefficients -see [87] and the references contained

therein for a more detailed description of this formulation. The evolution under the

Einstein equations then traces out a path in this state-space, and one can bring all the

dynamical systems tools to bear on the problem of analyzing the qualitative behavior.

The Kasner solutions in this picture are represented by the circle Σ2
+ + Σ2

− = 1, in

the N1 = N2 = N3 = 0 plane (c.f Figure 1.2 below). There are six “special points”

on the Kasner circle represent the case (p1, p2, p3) equal to (1, 0, 0), the “T” points,
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and (−1/3, 2/3, 2/3), the “Q” points, and permutations. Each of the non-exceptional

Kasner points is an unstable equilibrium point.

FIGURE 1.2.. The Kasner circle. Figure taken from [6].

Within the dynamical systems formulation, the BKL picture is of the local

spacetime at each spatial point repeatedly “bouncing” off the unstable Kasner circle

in the approach to the singularity. That is the dynamics of a general spacetime

is modeled at each spatial point by a point in this homogeneous state-space. As

the singularity is approached, this state-vector approaches a point on the Kasner

circle. Yet, since such a point is unstable, the solution transitions, and continues

on a trajectory which turns out to steer it towards another point on the Kasner

circle, and so on. In this way, an observer traveling towards the singularity in a

generic spacetime is expected to experience an infinite sequence of Kasner-like epochs

punctuated by “bounces.” Further, observers at different spatial points experience

generally unrelated sequence of Kasner epochs and bounces. Numerical studies of

generic solutions, as well as solutions with symmetries support this picture [11, 13–

17, 37].

More recently it has become clear that a phenomena known as “spikes” also play

an important role in the dynamics near the singularity. Spikes are when the spatial

derivatives of the solution grow very large at isolated points. Explicit spike solutions
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have been constructed in the Gowdy class [68], and numerical work is underway to

further understand their influence [41, 57, 58].

Due to the complicated nature of the BKL-type dynamics, there is very little

rigorous work verifying the existence of such solutions. One remarkable exception is

in the work of Ringström [69, 70] in the Bianchi type IX homogeneous spacetimes –the

simplest class in which this BKL-type oscillatory behavior is observed. Ringström

proves the existence of BKL-type oscillatory behavior in this class of spacetimes

with a particular matter model, and shows that for generic Bianchi type IX initial

data, the Kretschmann scalar is unbounded in the approach to the singularity in the

corresponding maximal globally hyperbolic developments –thus establishing restricted

curvature blow-up and SCC.

While verifying general BKL-type dynamics for inhomogeneous cosmological

solutions has so far proved beyond the reach of analytical techniques, a special case

known as “velocity term dominated” or VTD, is more accessible. If a solution to

the Einstein equations has VTD dynamics (discussed below) in the singular region,

then it is said to be “asymptotically velocity term dominated” or AVTD. In terms

of the Kasner circle Figure 1.2. the idea is that under the conditions which lead to

VTD behavior, a segment of the Kasner circle becomes stable. Hence the local model

solutions at each spatial point in the inhomogeneous cosmology make a few bounces

before approaching one Kasner solution asymptotically. The AVTD solutions can be

said to be “asymptotically locally Kasner”.

In the results of Chapter III and Chapter IV we obtain AVTD solutions with an

asymptotic data function k in a particular range. The function k is connected to the

Kasner exponents for the model solution, and the indicated range of k corresponds

to the stable region of the Kasner circle. More in depth comparison of the dynamical
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systems formulation and the metric formulation can be found in [6]. We discuss the

AVTD dynamics and its relevance to Conjecture 1.10 and Conjecture 1.9 and the

BKL proposal in the next section.

We note that while AVTD solutions are not general, verifying the presence of such

solutions has provided a useful test-bed with which to develop tools and intuition, and

in cases has also been a critical step in proving restricted strong cosmic censorship.

1.3.4. AVTD Solutions

The notion of asymptotically velocity term dominated (AVTD) solutions is

introduced and defined in a geometric manner by Isenberg and Moncrief in [44],

although the idea might have originated in work of Eardly, Liang and Sachs, [33].

The definition of Isenberg and Moncrief is framed in terms of the ADM field variables

(for Arnowitt, Denser, and Misner). We briefly present this formalism here, but for

a more complete treatment see for example [61].

1.3.4.1. The ADM Formulation

Although we deal solely with the vacuum Einstein equations in this document,

we present the theory in this section for arbitrary matter fields. Let (M, g, ψ) be a

globally hyperbolic spacetime with Lorentzian metric g and matter fields ψ. Suppose

that it : Σ → M is a spatial foliation with the corresponding time vector field ∂/∂t.

The 3+1 ADM quantities are: i) A Riemannian 3-metric γab. ii) The spatial covariant

derivative ∇, and the corresponding Ricci curvature Ricab and scalar curvature R. iii)

The second fundamental form kab with mean curvature trγk. iv) The lapse N and the

shift Ma. If n is the unit normal vector field to Σ, then we may write ∂/∂t = Nn+M .
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The matter quantities are the energy density ρ, the momentum density Jb, and the

spatial stress energy tensor Sab .

In terms of these fields the Einstein equations take the form of the evolution

equations

∂

∂t
γab = − 2Nkab + LMγab (1.4)

∂

∂t
kab = N (Ra

b + trγkk
a
b )−∇a∇aN + LMkab (1.5)

+ 8πN

(
Sab +

1

2
γab (ρ− trγS)

)
,

and the constraint equations

R− kabkab + (trγk)2 = 16πρ (1.6)

∇ak
a
b −∇b(trγk) = −8πJb. (1.7)

1.3.4.2. Definition of AVTD Solutions

The name “asymptotically velocity term dominated” refers to the fact that the

solution approaches a model solution that (asymptotic) satisfies a “velocity term

dominated” (VTD) system, which is formed from the Einstein equations by dropping

spatial derivative terms relative to time-derivative terms. This step encodes the local

aspect of the BKL proposal.

To write down the definition of an AVTD solution we form the corresponding

VTD system for the Einstein equations. In the ADM fields the VTD system consists
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of the evolution equations

∂

∂t
γab = − 2Nkab, (1.8)

∂

∂t
kab = N(trγk)kab + 8πN

(
S̊ab +

1

2
γab (ρ̊− trγS̊)

)
, (1.9)

and the constraint equations

−kabkab + (trγk)2 = 16πρ̊, (1.10)

∇ak
a
b −∇b(trγk) = −8πJ̊b, (1.11)

where the ρ̊, J̊b, and S̊ab are corresponding modified versions of the original

quantities. This system is obtained from the Einstein system by dropping the terms

LMγab,LMkab , Ra
b , and∇a∇aN from the evolution equations andR from the constraint

equations. In a specified system of local coordinates this corresponds to dropping

spatial derivative terms in all equations but the momentum constraint, Eq. (1.7). We

now give the definition of AVTD solutions adapted from [44].

Definition 1.11 (AVTD Solutions). A solution to the Einstein equations (M, g, ψ) is

called asymptotically velocity term dominated (AVTD) if there exists a model

spacetime (M, g̊, ψ̊) (same manifold different metric and matter fields), and a foliation

it : Σ→M such that:

1. With respect to it, (M, g̊, ψ̊) satisfies, at least asymptotically, the VTD system

Eqs. (1.8)-(1.11).

2. The solution g approaches g̊ in the limit t→ t∗ (where t∗ is the singular time)

in an appropriate sense: in a suitable norm ‖ · ‖ on the space of 3 + 1 quantites

{γ, k, ρ, J, S} for any ε > 0, there exists a δ such that for all t such that |t∗−t| <
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δ

‖{γ, k, ρ, J, S} − {̊γ, k̊, ρ̊, J̊ , S̊}‖ < ε.

It is important to note that the notion of AVTD is coordinate-dependent. This is

easily seen from Definition 1.11, since the particular terms which are kept in the VTD

equations depend on the choice of coordinates which are used. While it is unknown

generally whether a given solution which has been verified to be AVTD in one system

of coordinates is AVTD in another system of coordinates, this problem is relatively

unstudied in the literature. In Section 4.3. we begin to tackle this question, and

related ones in the Gowdy class of spacetimes.

The techniques presented below in Chapter II provide a method for finding

families of solutions which are AVTD.

1.4. AVTD Behavior in the Literature

The first verification of AVTD solutions to the Einstein equations was in the

analytic function class and used a Fuchsian method developed by Kichenassamy and

Rendall [51]. The method involves writing a subset of the Einstein equations (roughly

the evolution equations) as a first-order system for the first-order fields u, choosing

a VTD leading order term u0, defining the new “remainder” fields w by u = u0 + w,

and by inserting this into the system obtain a new system for w. If the system takes

the Fuchsian form

t∂tw(t, x) +N(x)w(t, x) = f(t, x, w, ∂aw), (1.12)

where the singularity is taken to be at at t = 0, N is analytic and satisfies a positivity

condition, f [w] = f(t, x, w, ∂aw) is analytic in space, continuous in time, and Lipschitz
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in the fields w and their spatial derivatives, then the result of [51] shows that a unique

solution w exists which vanishes as t↘ 0. This technique has been applied in a wide-

range of cosmological classes of solutions in order to verify the existence of families

of AVTD solutions. We record some of these results below, along with more recent

devopments which establish the existence of smooth (not analytic), and less regular

AVTD solutions. Most of the techniques are applied first in the case of the Gowdy

spacetimes as these are the simplest of the inhomogeneous classes. We discuss the

various methods which have been used, and then in later sections how these techniques

have been extended to more general classes of solutions.

1.4.1. AVTD Gowdy Spacetimes

As an application of their Fuchsian theory for analytic functions in [51],

Kichenassamy and Rendall find a family of AVTD solutions to the T3-Gowdy

equations. They use the areal foliation described in Section 1.2.3.2., in which the

metric has the form Eq. (4.28) below, and treat the equations for P̃ and Q̃. They show

that for P̃ , Q̃ of the form Eq. (4.29) with analytic asymptotic data {k, P∗, Q∗, Q∗∗},

the corresponding six-dimensional first order system forms a Fuchsian system of the

form Eq. (1.12) as long as k ∈ (0, 1) (the “low-velocity” case) or k > 0 and ∂x̃Q∗ = 0

(the “high-velocity” case).

To go beyond the rather rigid class of analytic functions (see discussion below

in Section 1.4.4.) Rendall developed an approach for obtaining smooth solutions

to Fuchsian equations [67]. The scheme is based on using a sequence of analytic

solutions as approximates to a desired smooth solution, and by reformulating the

equations in symmetric hyperbolic form, using associated energy estimates to show

that this sequence does in fact converge. While significantly more involved than the
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analytic Fuchsian “algorithm,” Rendall is able to prove the existence of smooth AVTD

solutions in the T3-Gowdy class again of the form Eq. (4.29).

As mentioned above the Gowdy symmetry admits spatial topologies other than

T3, namely S1 × S2, and S3, or a lens space which may be covered by S3. The

results of Kichenassamy and Rendall, and Rendall discussed above are actually local

in space, and thus apply to these other spatial topologies away from the axis of

symmetry. In [77], St̊ahl uses the analytic Fuchsian result of [51] and generalizes

Rendall’s scheme in [67] in order to extend these analytic and smooth AVTD solutions

near the symmetry axis in S1×S2, and S3 Gowdy spacetimes. It seems however, that

the VTD condition at the axis of symmetry forces the asymptotic velocity k to lie

outside of the range (0, 1). Recall that for general AVTD Gowdy solutions away from

such an axis, the value k must lie within (0, 1). This is not an issue for the “half-

polarized” (or polarized) Gowdy solutions where k may be any real number greater

than zero. More work is necessary in order to understand the nature of these solutions

near the symmetry axes.

Another approach for obtaining smooth solutions to Fuchsian-type equations has

been developed by Beyer and LeFloch [18]. Rather than constructing (less-regular)

smooth solutions from (more regular) analytic solutions, this method starts by proving

the existence of weak solutions, and by increasing the amount of assumed regularity,

constructs solutions which are Sobolev-regular or smooth. The method relies on

obtaining a symmetric hyperbolic system and using the associated energy estimates,

as well as the existence of solutions to the usual Cauchy problem for these systems.

Beyer and LeFloch prove their Fuchsian theorem for semilinear equations which are

second-order. Below in Chapter II and the references cited therein, we prove a more

general version of this theorem for equations which are quasilinear. Since the Gowdy
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equations in the areal gauge are semilinear, Beyer and LeFloch are able to apply their

theorem in order to obtain families of smooth and Sobolev-regular AVTD T3-Gowdy

solutions. The smooth family which they find coincides with that found by Rendall

in [67]. The approach of Beyer and LeFloch is widely applicable, since it is based on

a general existence theorem for semilinear Fuchsian PDE’s. Similar to the analytic

theory, the proof of the existence of AVTD solutions reduces then to verifying certain

structural properties of the equations given a VTD leading order term.

1.4.2. AVTD Polarized T 2-Symmetric Spacetimes

All of the Fuchsian techniques presented in the section above have been applied in

the polarized T 2-symmetric spacetimes. All AVTD solutions found so far in this class

have been in areal coordinates. In [43], Isenberg and Kichenassamy use the analytic

Fuchsian theorem to find a family of analytic AVTD polarized T 2-symmetric solutions.

Later, Clausen [32] extended this work to prove the existence of analytic AVTD half-

polarized T 2-symmetric solutions. The half-polarized condition, as explained below

in Section 3.2.3., is a restriction on the asymptotic data. Clausen also generalizes

the Fuchsian scheme of Rendall and St̊ahl [67, 77] in order to show that there is

a corresponding family of AVTD half-polarized T 2-symmetric solutions which are

smooth.

In Chapter III we use the Fuchsian theory of Chapter II (an extension of the

work of Beyer and LeFloch [18, 19]) to find families of polarized and half-polarized

T 2-symmetric solutions which are Sobolev-regular and smooth. The smooth family

which we find is the same as that found by Clausen, while the Sobolev-regular family

is completely new. The details of these results are discussed in Chapter III.
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1.4.3. AVTD Solutions With Fewer Symmetries

As we’ve mentioned above progress in this field occurs through investigating

simple examples and then gradually relaxing the symmetry or matter-field

assumptions to obtain results in more general classes of spacetimes. In keeping with

this program, the Fuchsian techniques for the analytic functions have been applied

to spacetimes with only one Killing vector field –the U(1)-symmetric spacetimes.

The U(1)-symmetric class is much richer in a variety of ways. The four-

dimensional manifold is a U(1) bundle over a 2+1 Lorentzian manifold, Σ×R, where

Σ is a 2-dimensional Riemannian manifold. Different cases can be distinguished by

the topology of Σ and by the U(1) bundle. The polarization conditions are similar

to those in the T 2-symmetric equations. A solution is said to be polarized if one

of the metric functions is non-dynamical, and half-polarized if only one of the free

functions in the asymptotic data is a fixed constant. While the areal coordinates

have proved to be very useful in finding AVTD solutions in the T 2-symmetric class,

no such coordinates exist for the U(1)-symmetric spacetimes, thus adding another

level of complexity.

The simplest case was treated first by Isenberg and Moncrief [45]. The authors

assume the spatial topology to be S1 × Σ = T3 for the full solution, and choose

a harmonic time coordinate, for which they are able to prove the existence of a

families of polarized and half-polarized analytic solutions which are AVTD. Later work

with Choquet-Bruhat proved the existence of analytic AVTD solutions with general

topology for Σ in the polarized case [25], and in the half-polarized case [24] under an

additional assumption that the conformal class of the metric on Σ is independent of

t.
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While the Fuchsian theory presented in Chapter II is suitable for finding smooth

and Sobolev-regular AVTD solutions in the U(1)-symmetric class, this work has not

been completed. The issue is in finding a gauge and a parametrization of the metric

fields in which the Einstein equations written as a first-order system are symmetric

hyperbolic. This is the motivation for studying Fuchsian formulation of the Einstein

equations in wave gauges as we do in Chapter IV.

There are many more results concerning AVTD solutions and general properties

of spacetimes with various matter fields, which we do not mention here in the interest

of space and simplicity. Although we concern ourselves only with vacuum spacetimes

in this document, we mention one non-vacuum result because of its importance. This

is the work of Andersson and Rendall [5] to find a family of analytic AVTD solutions to

the general Einstein equations (no assumed symmetry) coupled to a scalar field or stiff

fluid. This is an important result since it is one of the only results for general classes

of spacetimes in which the singular behavior may be rigorously resolved. Of course

the presence of the particular matter fields in this result are necessary, and render

the resulting situation certainly not fully general. We believe that the techniques

developed in Chapter II and Chapter IV may eventually be applied in order to find

corresponding families of general-scalar field AVTD solutions which are smooth and

Sobolev-regular.

1.4.4. Smooth Versus Analytic Solutions

As we have seen there are several results concerning the existence of AVTD

solutions in the analytic function class. While a great starting point, solutions in this

class are not completely satisfactory for a few reasons. One reason has to do with

the basic tenant that general relativity be a local theory. That is, given any open,
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non-empty sets U, V of a connected spacetime (M, g) such that no point of U may

be connected by a causal curve to any point of V , we expect that the dynamics in

U is independent of that in V . However, for an analytic spacetime, g|U is essentially

determined by events in V . The analytic spacetime is of course still causal, it is just

rigid.

Furthermore, the notion of well-posedness fails to hold for initial value problems

in the analytic function class. The Cauchy-Kovalevski theorem says there exists a

real analytic solution to the mth order Cauchy problem with real analytic coefficients

and initial data, and moreover that the solution is unique in the real analytic class.

However, there is no continuous dependence on initial data: Suppose φk is sequence

of real analytic data which converges to the continuous data φ. There is no guarantee

that the sequence of solutions uk converges to a solution of the Cauchy problem u

with the data φ. Moreover, the Cauchy-Kovalevski theorem only claims that the

solution is unique in the real analytic class, and does not exclude other solutions in

say the smooth class.

To summarize these issues in the present context, we note that this research

program is aimed at finding and characterizing general solutions to the Einstein

equations. As we have seen the real analytic function class is small and rather rigid,

and therefor is not considered very general, and in particular not general enough to

study issues such as strong cosmic censorship. It is thus important to extend the

results for existence of AVTD solutions in the real analytic class to the smooth or less

regular function classes.
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1.4.5. Literature Summary and Outlook

We end this literature survey by tabulating the known results for vacuum AVTD

solutions and for strong cosmic censorship (strong uniqueness). We also discuss the

anticipated progress in the coming years.

1.4.5.1. AVTD Solutions in Increasingly General Classes

The results of the discussions in Section 1.4.1.-Section 1.4.3. can be summarized

in Table 1.1 below. As the table indicates, families of AVTD solutions in the

analytic function class were found quite rapidly after the theorem of Kichenassamy

and Rendall [51] was proved in 1999. Finding families of AVTD solutions in the

less regular smooth, or Sobolev function classes is significantly more difficult since

stronger structural conditions on the equations are required. The method of Rendall

in [67] has proved difficult to generalize to more general classes of spacetimes. We

anticipate that with the theory developed in Chapter II and Chapter IV that families

of smooth and Sobolev regular AVTD solutions in the polarized U(1)-symmetric class

will be forthcoming.

The progress towards the lower right corner of this table is clear. In fact, with the

Fuchsian theorems developed in this dissertation, along with the Fuchsian formulation

of the Einstein equations in wave gauges (Chapter IV) we expect to complete Table

1.1 That is: in any class of sufficiently regular spacetimes which is polarized and for

which each member contains at least one Killing vector field, there exists a family of

AVTD solutions. Of course it is another matter to show that AVTD solutions are in

some sense generic in such classes of spacetimes –this would constitute a step towards

establishing strong cosmic censorship.
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TABLE 1.1. Families of AVTD solutions in classes of inhomogeneous vacuum
spacetimes.

Vacuum Spacetime AVTD (Cω) AVTD (C∞) AVTD (Hq)
Polarized Gowdy N.R.11 19901 19901

Gowdy T3 19992 20003, 20104 20104

Gowdy S2 × S1,S3 20025 20025 N.A.11

Polarized T2-Symmetric 19996 20077, 20138 20138

Polarized U(1)-Symmetric 2002-20059 In progress10 In progress10

1 Isenberg and Moncrief, 1990 [44]. Spatial topologies S1 × S2,S3 and T3.

2 Kichenassamy and Rendall, 1999 [51].

3 Alan Rendall, 2000 [67].

4 Beyer and LeFloch, 2010 [18]. T3-spatial topology only.

5 Frederick St̊ahl, 2002 [77]. St̊ahl treats the analytic and smooth function
classes in the same paper. See discussion in text.

6 Isenberg and Kichenassamy, 1999 [43].

7 Adam Clausen, 2007 [32].

8 Ames, Beyer, Isenberg, and LeFloch, 2013 [3]. These results are also
contained in Chapter III of this dissertation.

9 The results here are contained in three separate papers. Isenberg and
Moncrief, 2002 [45] treat the simplest polarized case with T3-spatial
topology. Choquet-Bruhat, Isenberg and Moncrief, 2005 treat the polarized
topologically general case in [25]. Finally, later in 2005 Choquet-Bruhat,
Isenberg treat the half-polarized case in [24].

10 Work in progress, see Chapter V.

11 N.A. stands for “not available”. N.R. stands for “not relevant”. Because
the polarized Gowdy solutions can be computed as an explicit series, the
analytic theory is not necessary.
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1.4.5.2. AVTD Solutions and Strong Cosmic Censorship

It may seem unintuitive that studying non-generic families of solutions with

a particular singular dynamics can provide insight into problems regarding generic

solutions. It turns out however that in restricted symmetry-defined classes of

solutions, verifying AVTD behavior has been a vital step in proving versions of the

curvature blow-up (Conjecture 1.10) and strong cosmic censorship (Conjecture 1.9)

conjectures restricted to these symmetry-defined families.

In [44] Isenberg and Moncrief find families of polarized Gowdy solutions (with

T3, S1 × S2, and S3 spatial topologies) which are AVTD, and use the resulting

expansions to compute the Kretschmann scalar, and show that it is unbounded. In

a later paper with Chruściel [30], they show that such solutions are generic in the

space of all polarized Gowdy solutions, thus proving a restricted version of curvature

blow-up and strong cosmic censorship in that class of spacetimes. A similar, albeit

much more difficult, result has been proved for the fully general Gowdy class with T3

spatial topology by Ringstöm [71, 72, 74, 76]. In Table 1.2 we summarize the current

state of knowledge regarding strong cosmic censorship in classes of inhomogeneous

vacuum spacetimes.

TABLE 1.2. For each class of inhomogeneous vacuum spacetimes, we note the largest
function class in which families of AVTD solutions have been found, and whether
strong cosmic censorship has been verified. More details on the AVTD solutions can
be found in Table 1.1.

Vacuum Spacetime AVTD SCC
Polarized Gowdy Rough Yes, 1990

Gowdy T3 Rough Yes, 2009
Gowdy S2 × S1, S3 Smooth No

Polarized T 2-Symmetric Rough No
Polarized U(1)-Symmetric Analytic No
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While we believe that families of AVTD solutions in the above classes of vacuum

spacetimes which are smooth or less regular will be found within the next few

years, the verification that such solutions are generic within each class is much more

difficult. It can be hoped that the techniques developed by Rinström for the Gowdy

class may form a foundation for proving strong cosmic censorship in the class of

polarized T 2-symmetric spacetimes, but to the authors knowledge this has not yet

been investigated. The issue of proving strong cosmic censorship in the class of

polarized U(1)-symmetric spacetimes is even further out.
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CHAPTER II

FUCHSIAN THEORY FOR SYMMETRIC HYPERBOLIC

SYSTEMS

This chapter contains work published in [3, 4]. The calculations were performed

by E. Ames and F. Beyer; while writing was done by E. Ames, F. Beyer, and J.

Isenberg. P.G. LeFloch contributed editorial changes.

2.1. Prelude

Fuchsian techniques have been used in cosmology since 1999 with the work

of Kichenassamy and Rendall [51]. Their use in studying solutions to hyperbolic

equations and blow-up phenomena dates back much further; see in particular the work

of Kichenassamy [48–50], as well as Tahara [20, 78–83]. To the author’s knowledge

however, there are only two results in the literature concerning quasilinear hyperbolic

equations. The first of these, by Claudel and Newman [31], is a well-posedness

theorem for the Cauchy problem with initial data on the singularity. In order to be

able to prescribe this initial data in a sensible way, severe restrictions on the structure

of the equations are needed, and as noted in [67] these conditions are not met in the

PDE systems for our application of interest (the T 2-symmetric Einstein equations).

The second result concerning quasilinear systems is by Rendall [67]. As discussed in

Section 1.4.1. above, Rendall develops an approach in which the steps rely on details

of the PDE system under consideration. While this has been generalized to PDE

other than the Gowdy system considered by Rendall (e.g. [32, 77]), it has proved

difficult to formulate this approach as a general theorem which may then be applied

in a large class of PDE.
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In this chapter, as well as in [3, 4], we formulate and prove existence and

uniqueness theorems for a class of quasilinear Fuchsian PDE. These theorems establish

the existence of solutions to the asymptotic value problem (in contrast to the initial

value problem), in which one obtains a solution that approaches a prescribed model

solution within a specified region. This is useful for studying solutions which blow

up, since this model solution is allowed to be unbounded. We present a more formal

definition of the asymptotic value problem (AVP) below in Section 2.2.4..

There are two main results concerning the existence of solutions to the AVP:

Theorem 2.10 establishes the existence and uniqueness of solutions which have a

“rough” Sobolev-type regularity. This theorem should be compared to well-posedness

results for the initial value problem (IVP) for quasilinear symmetric hyperbolic

systems (e.g. [75, 86]). The results for the AVP require one more degree of regularity

than those for the IVP. It is unknown whether this is a consequence of our method

of proof, or inherent in asymptotic value problems. We also point out that our

result does not establish well-posedness of the AVP; a result proving continuous

dependence of the solution on the asymptotic data is still missing. Our second

main result, Theorem 2.28 is designed to “fix an issue” (discussed in more detail

here Section 2.6.1.), in which the parameter specifying the control in time on the

solution becomes restricted. It turns out that in order to “loosen” this parameter,

we must assume greater control over the spatial regularity. We prove the theorem

in the smooth (C∞) case, although similar results could be proved assuming only

Sobolev-regularity of sufficiently high order.

The Fuchsian systems, asymptotic value problem and the fundamental Fuchsian

theorem Theorem 2.10 are presented in Section 2.2.. The proof, which is outlined

in Section 2.3., is contained in Section 2.4. and Section 2.5.. We first prove the
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existence of solutions to a linear Fuchsian system by establishing the existence of

weak solutions, and then showing that under stronger assumption on the asymptotic

data, that these solutions are in fact strong. This linear existence is then used in a

fixed point argument for the quasilinear systems in Section 2.5.. In Section 2.6. we

formulate and prove Theorem 2.28 for the smooth systems.

2.2. Quasilinear Symmetric Hyperbolic Fuchsian Systems

2.2.1. Class of Equations

Consider a system for u : (0, δ]× T n → Rd of the following form:

S0(t, x, u(t, x))Du(t, x) +
n∑
a=1

Sa(t, x, u(t, x))t∂au(t, x) + f(t, x, u(t, x)) = 0, (2.1)

where each of the n+ 1 maps S0, . . . , Sn is a symmetric d× d matrix-valued function

of the spacetime coordinates (t, x) ∈ (0, δ] × T n and of u (but not of the derivatives

of u), while f = f(t, x, u) is a Rd–valued function of (t, x, u). We suppose Sj, f are

smooth in t, and Hq0 in (x, u) for q0 > n/2 + 1. We set D := t ∂t = t ∂
∂t

= x0 ∂
∂x0

,

while ∂a := ∂
∂xa

for1 a = 1, . . . , n. We list the precise requirements for Sj and f

below. This is the class of equations studied in detail in [3] (in the case n = 1) and

in [4] (for general n). Eq. (2.1) differs from the corresponding equations in [3, 4] in

that here we have omitted the N(t, x, u)u term. The distinction between this term

and f(t, x, u) is most relevant below when we introduce the notion of quasilinear

symmetric hyperbolic Fuchsian systems, Definition 2.7. Therefore we have chosen to

simplify the presentation and write the system as in Eq. (2.1).

1In all of what follows, indices i, j, . . . run over 0, 1, . . . , n, while indices a, b, . . . take the values
1, . . . , n.
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2.2.2. Function Spaces

In order to control and measure the regularity and the decay in time near the

singularity t = 0 of functions w(t, x) depending on the space and time coordinates,

we introduce a family of time-weighted Sobolev spaces. Letting µ : T n → Rd be a

smooth function, we define the matrix

R[µ](t, x) := Diag
(
t−µ1(x), . . . , t−µd(x)

)
, (2.2)

and use R[µ] to define the following norm for functions w : (0, δ]× T n → Rd:

||w||δ,µ,q := sup
t∈(0,δ]

||R[µ]w||Hq(Tn)

= sup
t∈(0,δ]

 q∑
α,|α|=0

∫
Tn
|∂α(R[µ]w)|2dx

1/2

;

(2.3)

whenever this expression is defined. In Eq. (2.3) the spatial derivatives of the R[µ]-

weighted fields are controlled in the usual Sobolev space Hq(T n) (Definition A.2) of

order q on the n-torus T n; the parameter α denotes a partial derivative multi-index.

The behavior in time is controlled by taking the supremum of t ∈ (0, δ], and by the

explicitly t-dependent weight R[µ]. Since the spatial derivatives act on this weight

as well, logarithms in t to the power |α| are generated; e.g. in the case d = 1, and

considering one spatial derivative we have the term (µ′t−µ log tw)2. In order for the

supremum to be finite then, we require t−µw = O(tε) for any ε > 0 (without the log t,

ε would be allowed to be zero as well).

Next, we define the function space Xδ,µ,q(T
n) to be the completion of the set of

functions w ∈ C∞ ((0, δ]× T n) for which the above norm is finite.
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Lemma 2.1. For any δ > 0, exponent vector µ, and integer q ≥ 0, the space

Xδ,µ,q(T
n) forms a Banach space (Definition A.7).

This lemma follows from the definition of Xδ,µ,q(T
n) (that is as the completion)

and that fact the Sobolev space Hq(T n) is a Banach space.

A closed ball of radius r about 0 in Xδ,µ,q(T
n) is denoted by Bδ,µ,q(r)(T

n), and

for a ball about f ∈ Xδ,µ,q(T
n) by Bδ,µ,q(r, f)(T n). Note that we often write Xδ,µ,q

in place of Xδ,µ,q(T
n), with the argument understood to be T n. To handle functions

which are infinitely differentiable and for which we control all spatial derivatives, we

also define the space Xδ,µ,∞ := ∩∞q=0Xδ,µ,q.

In the following, we refer to parameters µ as exponent vectors. We write ν > µ

for two exponent vectors (of the same dimension) if each component of ν is larger

than the corresponding component of µ at each spatial point. If µ is an exponent

vector and ε a smooth scalar function then µ + ε refers to the exponent vector with

components µi + ε.

In working with d × d-matrix-valued functions (such as Sj), we use analogous

norms and function spaces. In these cases, we consider d-vector-valued exponents ξ

and define the space Xδ,ξ,q of Rd×d-valued functions S in the same way as for Rd-

valued functions, but with R[µ]w in Eq. (2.3) replaced by R[ξ] · S (where · denotes

the matrix product). According to this definition the ith row of S is controlled by

ξi, and thus the control is row-wise as opposed to element-wise. This definition is

a special case of the definition given in [3, 4], which is sufficient for our needs and

simplifies the presentation.

Properties of the spaces Xδ,µ,q and relations between spaces with different

parameters are detailed in Appendix B.
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2.2.3. Function Operators

In dealing with nonlinear partial differential equations it is necessary to

understand functions of the form

F : (0, δ]× T n × Ω→ Rm, (t, x, w) 7→ F (t, x, w),

where Ω is an open set of Rd containing zero. The functions w : (0, δ] × T n → Rd

we consider are in a function space Xδ,µ,q, for some δ > 0, q > n/2, and an exponent

vector µ. We wish to view F as the map

F : Xδ,µ,q → Xδ,ν,q w(t, x) 7→ F (w)(t, x) := F (t, x, w(t, x)),

between such function spaces, for some other exponent vector ν. Under what

conditions is this map well-defined? Suppose F (t, x, w) is continuous in all its

arguments, and suppose w ∈ Bδ,µ,q(s) for δ, µ, q as above, and for some s > 0. Since

q > n/2, w(t, x) is continuous in space by the Sobolev inequality. We have

sup
(t,x)∈(0,δ]×Tn

|w(t, x)| = sup
t∈(0,δ]

‖w(t, ·)‖L∞ ≤ C(n, q) sup
t∈(0,δ]

‖w(t, ·)‖Hq .

If µ ≥ 0, then supt∈(0,δ] ‖w(t, ·)‖Hq ≤ ‖w‖δ,µ,q ≤ s, and there exists an s0 ≤ s

(depending in general on n, q) such that all w ∈ Bδ,µ,q(s0) are contained in Ω ⊂ Rd.

In this case F (w)(t, x) is a well-defined function operator from Bδ,µ,q(s0) to Xδ,ν,q.

If any components of µ are negative, then we must take Ω = Rd.

Given these observations we make the following definition of function operators.

The operators may arise from continuous functions on (0, δ] × T n × Ω as discussed

above, or they may not.
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Definition 2.2 (Well-defined function operator). Fix positive integers n, d,m, and

q > n/2, as well as exponent vectors µ, ν. The map w 7→ F (w) taking functions

w : (0, δ]× T n → Rd to functions F (w) : (0, δ]× T n → Rm is a well-defined function

operator provided there exists real numbers δ, s0 > 0 such that F maps Bδ′,µ,q(s0) into

Xδ′,ν,q for all δ′ ∈ (0, δ].

We note that in the case of the function operator F arising from a continuous

function as discussed above it follows that if F : Bδ′,µ,q(s0) → Xδ′,ν,q is well-defined

for δ′ = δ, then the function operator is also well-defined for all δ′ ∈ (0, δ].

The following property is used extensively in the proofs of our main theorems.

Definition 2.3 (Lipschitz property). A function operator F as in Definition 2.2 is

Lipschitz in the Xδ,ν,q norm provided for all δ′ ∈ (0, δ] and for all s′ ∈ (0, s0] there

exists a constant C > 0, depending in general on s′, q, n such that

‖F (w)− F (w̃)‖δ′,ν,q ≤ C‖w − w̃‖δ′,µ,q, (2.4)

for all w, w̃ ∈ Bδ,µ,q(s
′).

Suppose F satisfies the Lipschitz estimate Eq. (2.4) with regularity q. It does not

follow in this case that F satisfies a similar Lipschitz estimate with regulartiy q − 1.

In applications in which this is a desirable property, it must be shown independently.

We say for shorthand that F is Lipschitz in the q-norm, or in the (q − 1)-norm as

appropriate.

Another useful property of an operator is boundedness.

Definition 2.4 (Bounded operators). A function operator F as in Definition 2.2 is

bounded if for all w ∈ Bδ,µ,q(s0) there exists an r > 0 such that F (w) ∈ Bδ,ν,q(r).
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In fact, the next lemma shows that if a function operator is Lipschitz, then it is

also bounded.

Lemma 2.5. If F is as in Definition 2.2 and satisfies the Lipschitz property Eq. (2.4),

then it is uniformly bounded in the following sense. Let w ∈ Bδ,µ,q(s0) for any s0 > 0

and a q > n/2. Then

‖F (w)‖δ,ν,q ≤ ‖F (0)‖δ,ν,q + C‖w‖δ,µ,q ≤ ‖F (0)‖δ,ν,q + Cs0.

We now make some remarks about the “smooth case” q = ∞. By smooth we

mean that there is no upper bound for q. A function operator is a smooth function

operator if it satisfies Definition 2.2 for all q ≥ p for some p > n/2. In particular, the

real numbers δ, s0 may depend on q. If an operator is Lipschitz as in Definition 2.3,

then for each q we have the estimate Eq. (2.4) with a corresponding constant Cq

which may depend on q. Although in the smooth case such an estimate must hold at

each finite q, the sequence of constants Cq may not be bounded.

More discussion of function operators, and results concerning specific function

operators which we encounter in our applications are contained in Appendix C.

2.2.4. The Asymptotic Value Problem and Fuchsian Systems

In this section we introduce the notion of the asymptotic value problem, to be

compared with the Cauchy, or initial value problem. The Fuchsian theory which we

develop in this chapter provides a scheme for finding solutions to the asymptotic value

problem for equations of the type Eq. (2.1).

In the usual Cauchy problem for the partial differential equation P [u] = 0, one

seeks a function u, which satisfies the equation, and agrees with data u(t∗, x) = φ(x)
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specified at an initial time t∗. In the asymptotic value problem one seeks a function u

which satisfies the equation, and which approaches a model solution (called a leading

order term) u0(t, x) as t→ t∗ in a prescribed way. We give the following more formal

definition.

Definition 2.6 (The asymptotic value problem for Eq. (2.1)). For a given choice

of a leading order term u0 and the parameters δ, µ and q, the asymptotic value

problem consists of finding a unique solution u = u0 + w to the system Eq. (2.1)

with remainder w ∈ Xδ,µ,q.

We note that the terminology used here varies slightly from that in [3, 4], in

which the definition above is introduced as the singular initial value problem. In fact,

the leading order term need not be singular. When convenient we use the shorthand

notation AVP, or AVP(u0) in place of “asymptotic value problem about u0.” At this

point no regularity has been specified for the leading order term u0 : (0, δ] × T n →

Rd. The required regularity of u0, which contains “asymptotic data functions” of

the spatial coordinates, is governed by the required regularity on the coefficients in

Definition 2.7 below.

In the proceeding sections within this chapter we prove that solutions to

the asymptotic value problem exist for systems Eq. (2.1) with certain structural

properties. Some of these properties are encoded in what we call a quasilinear

symmetric hyperbolic Fuchsian system.

Definition 2.7 (Quasilinear symmetric hyperbolic Fuchsian systems). Fix positive

real numbers δ and s, positive integers q0 ≥ q > n/2 (possibly infinite), and

an exponent vector µ : T n → Rd, together with an Rd-valued leading-order term

u0 ∈ C∞((0, δ]) ∩ Hq0 (T n). The system Eq. (2.1) is said to form a quasilinear
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symmetric hyperbolic Fuchsian system around u0 with parameters {µ, δ, q, q0, s}

if for all w ∈ Bδ,µ,q(s):

(i) S0 is positive definite 2 and hence invertible, and both S0(u0+w) and tSa(u0+w)

for all a = 1, . . . , n are symmetric at every (t, x) ∈ (0, δ]× T n.

(ii) There exists a matrix S0
0(u0), which is positive definite, symmetric, and

independent of t, contained in the space Hq0(T n), and for

S0
1(u0 + w) := S0(u0 + w)− S0

0(u0),

the function operators

tSa, S0
1 : Xδ,µ,q → Xδ,ζ,q, w 7→ tSa(u0 + w), S0

1(u0 + w)

satisfy the Lipschitz property (Definition 2.3) in the (q − 1)-norm, for some

ζ > 0.

(iii) There exists a matrix N0(u0), which is independent of t and in Hq0(T n).

Further, for

f1(u0 + w) := −f(u0 + w) +N0(u0)w

the function operator

F(u0) : Xδ,µ,q → Xδ,ν,q, w 7→ F(u0)[w]

2Under Condition (ii), and the regularity requirement q0 ≥ q > n/2, S0 is seen to be continuous.
Hence, it makes sense to say that S0 is positive definite pointwise.
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defined by

F(u0)[w] := f1(u0 + w)−
n∑
j=0

tSj(w)∂ju0, (2.5)

satisfies the Lipschitz property (Definition 2.3) in both the q and (q− 1) norms,

for some ν > µ.

If the system Eq. (2.1) is a smooth quasilinear symmetric hyperbolic Fuchsian

system as in Definition 2.7 for a choice of leading order term u0, then it can be written

S0(u0 + w)Dw +
n∑
a=1

tSa(u0 + w)∂aw +N0(u0)w = F(u0)[w]. (2.6)

Note that Condition (i) ensures that the system is symmetric hyperbolic.

Conditions (ii) and (iii) are properties expected of a “Fuchsian” type PDE system;

namely that near t ↘ 0 and for an appropriate leading order term u0, the system

splits into a part which is the same order in t as the fields w, and part which is strictly

higher order in t. Since this is a quasilinear system we also expect certain bounded

and Lipschitz properties on the nonlinearities, and these are encoded in the definition

above. We also note that due to the splitting in Condition (ii), and the fact that S0
1(·)

is not necessarily positive definite, the positivity of S0 in Condition (i) may require

shrinking δ.

If Eq. (2.1) satisfies the properties of Definition 2.7 for q0 = ∞ and if for all

q > n/2, the operators F(u0)[w], tSa, S0
1 satisfy the Lipschitz estimate then we say

Eq. (2.1) is a smooth quasilinear symmetric hyperbolic Fuchsian system

about u0 with parameters {δ, µ, s}. Note that due to the regularity assumptions on

Eq. (2.1), the functions f(t, x, u) and Sj(t, x, u) are smooth in all arguments for a

smooth quasilinear symmetric hyperbolic Fuchsian system.
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It is important to clarify the notation used here and below. While the quantities

S0
0(u0) and N0(u0) are explicitly time-independent, they do depend on the t → 0

behavior of the leading order term u0. For convenience below, if a choice of leading

order term u0 has been fixed, we may omit the explicit dependence on u0, and write

simply S0
0 and N0; the dependence on the leading order term is then implicit. We

use the same notational shorthand with S0
1(u0 + w) and Sa(u0 + w), omitting the

explicit dependence on u0 so long as the choice of the leading-order term is fixed and

unambiguous.

It follows from Definition 2.7 that if Eq. (2.1) is a quasilinear symmetric

hyperbolic Fuchsian system, then it is also symmetric hyperbolic for all t ∈ (0, δ].

Hence for sufficiently regular initial data (i.e. contained in Hq(T n), with q > n/2+1)

prescribed at t0 ∈ (0, δ], the Cauchy problem is well-posed in the usual sense (away

from t = 0), with solutions contained in the space C(I;Hq(T n)) for a sufficiently

small interval I ⊂ (0, δ]; see, for instance, [86]. We note that since solutions to the

Cauchy problem are only defined for t bounded away from the singularity at t = 0, we

know nothing a priori regarding the singular behavior of these solutions, nor whether

they are contained in some space Xδ,µ,q.

We note the following differences between Definition 2.7 given above and the

corresponding definitions in [3, 4].

(i) In this paper we have omitted splitting Sa into a leading order part, and a higher

order part. The reason is that for a Fuchsian system, both as in the definitions

of [3, 4] and in Definition 2.7, the important information is that these coefficient

matrices decay near the singular time. This decay property, which is indicated

by the positivity of the exponent vector ζ, is independent of any splitting. We

therefore find the present formulation simpler.
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(ii) We have included the condition that S0 is positive definite (for a sufficiently

small δ) in Definition 2.7. Since the positivity of S0 is part of symmetric

hyperbolic systems, it is natural to enforce it at this stage.

(iii) Unlike in the corresponding definition in [3, 4], we have included conditions on

the “source” operator F(u0)[w] in Definition 2.7. This is natural since one of

the key characteristics of a Fuchsian equation is that this operator is higher

order in t in a sense described in the definition. Additionally, this operator is

constructed from the principle part of the equation and the lower order terms

once a leading order term u0 has been specified.

(iv) The definitions of quasilinear symmetric hyperbolic Fuchsian systems contained

in [3, 4] make reference to an operator N1(u0 + w). In the present formulation

this is lumped in with F(u0)[w], or f1(w) more specifically. This is natural since

the two operators play similar roles, and the present formulation simplifies the

presentation.

2.2.5. The Fundamental Fuchsian Theorem

Before stating the main theorem for existence and uniqueness of solutions to the

asymptotic value problem for quasilinear symmetric hyperbolic systems, we discuss

some additional structural properties required of the Fuchsian system Eq. (2.6).

In addition to noting properties of the function operators, it is useful to note the

structure of the exponent vectors. In particular we make the following definition.
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Definition 2.8. An Rd-valued exponent vector µ(x) is has the same block-diagonal

structure as a Rd×d matrix A(t, x) if

R[µ]A = AR[µ],

where R[µ] is as in Definition 2.2.

For example, if d = 6 and A consists of three blocks of size 3, 2, 1, then µ satisfying

having the block-diagonal structure of A is of the form µ = (µ1, µ1, µ1, µ2, µ2, µ3). We

now use this property to characterize the quasilinear symmetric hyperbolic Fuchsian

system.

Definition 2.9 (Block diagonality with respect to µ). Suppose that u0 is a given

leading-order term and µ is an exponent vector. The system Eq. (2.6) is block

diagonal with respect to µ if S0(u0 + w) and Sa(u0 + w) have the same block-

diagonal structure as µ for all w ∈ Xδ,µ,q for which the expressions are defined, and

if

R[µ]N0(u0)R[−µ] ∈ Bδ,0,q(r0), for some r0 > 0,

where R[µ] is defined in Eq. (2.2).

This condition is essential in deriving energy estimates which are fundamental

for the proof of Theorem 2.10 below. It ensures that both the matrices Sj(u) and

R[µ]Sj(u)R[−µ] are symmetric. Moreover, it guarantees that the principal part

operator only couples those components of the remainder w which decay in t at

the same rate. The block diagonal condition here is slightly simpler than in [3, 4]

since the terms involving Nw have been redefined. The control we specify here is

sufficient for proving our main result.
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Another quantity which plays a role in the derivation of energy estimates is the

energy dissipation matrix

M0 := S0
0(u0) Diag(µ1, ..., µd) +R[µ]N0(u0)R[−µ]. (2.7)

We may now state the main Fuchsian theorem. This theorem provides short-time

(as opposed to global) existence and uniqueness of solutions to the asymptotic value

problem for equations of the type Eq. (2.1).

Theorem 2.10 (Existence and uniqueness for the asymptotic value problem for

quasilinear symmetric hyperbolic Fuchsian systems). Suppose that Eq. (2.1) is

a quasilinear symmetric hyperbolic Fuchsian system around u0 with parameters

{δ, µ, q, q0, s} as in Definition 2.7, and is block diagonal with respect to µ. Suppose

also that q > n/2 + 2 and q0 > n/2 + 1 + q, and that the energy dissipation matrix

Eq. (2.7) is uniformly positive definite at all (t, x). Then there exists a unique solution

u to Eq. (2.1) whose remainder w := u− u0 belongs to Xδ̃,µ,q with Dw ∈ Xδ̃,µ,q−1 for

some δ̃ ∈ (0, δ].

If q = ∞, and Eq. (2.1) is a smooth quasilinear symmetric hyperbolic Fuchsian

system about the leading order term u0 ∈ C∞((0, δ] × T n), then the remainder w is

contained in Xδ̃,µ,∞, while Dw ∈ Xδ̃,µ,∞.

Observe that, in the hypothesis of this theorem, the regularity required on S0
0 ,

and N0 (specified by q0) differs slightly from the regularity required of S0
1(w), Sa(w),

and F(u0), and of w (specified by q). This gap arises in the course of our proof, and

in particular in working with the higher-order energy estimates in Section 2.4.3., and

the corresponding Cauchy problems for derivatives of w which are needed to control

the regularity of solutions. It is not clear if this gap may be removed by another
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method of proof. In any case, it vanishes in the C∞ class of solutions, corresponding

to q = q0 = +∞.

In applications of Theorem 2.10 one often finds an open set of values for the

exponent vector µ for which the theorem holds. An upper bound3 for µ usually

originates in the condition that the equation be of symmetric hyperbolic Fuchsian

form, and in particular in ensuring that F(u0)[w] ∈ Xδ,ν,q for some ν > µ. A lower

bound can be generated by enforcing the positivity of the energy dissipation matrix.

Both bounds on the set of allowed values for µ provide useful information on the

problem. The upper bound for µ specifies the smallest regularity space and, hence,

the most precise description of the behavior of w (in the limit t↘ 0), while the lower

bound for µ determines the largest space in which the solution u is guaranteed to be

unique. This means that while Theorem 2.10 guarantees the existence of a uniques

solution w in the space Xδ,µ,q, it does not exclude the possibility that another solution

may exist in a larger space, for example, in Xδ,µ̃,q with µ̃ < µ.

2.3. Outline of Proof

Before presenting a detailed proof of Theorem 2.10 in the following sections we

give an overview of the proof here. Supposing that a leading order term u0 has been

specified on (0, δ]× T n, the main idea of the proof is to consider a sequence of initial

value problems with data prescribed at a sequence of times {ti} which approaches the

singular time t∗ ( we take t∗ = 0 in this document). The initial data for each problem

is chosen in a special way such that φi(x) = u0(ti, x), as shown in Figure 2.1 below.

We then consider the evolution of this data in the forward t direction, and the theory

3A real Λ is defined to be an upper bound for the allowed values of the vector µ if each component
µa of µ satisfies the condition µa(t, x) < Λ for all x in the domain of µ. A similar definition holds
for a lower bound for µ.
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for symmetric hyperbolic systems provides a sequence of functions {vi} (solutions

to the corresponding initial value problems) which we label approximate solutions.

We cannot in general control the solution of the Cauchy problem as t ↘ 0 –indeed,

such control would render our construction of solutions redundant. The work is then

to show that this sequence of approximate solutions converges to a solution of the

asymptotic value problem Definition 2.6 with leading order term u0. The proof of

FIGURE 2.1.. Given the leading order term denoted here by ů, we consider a sequence
of approximate solutions {vi}, which satisfy in the forward direction an initial value
problem with data φi(x) prescribed at ti according to φi(x) = ů(ti, x). The aim is
then to show that this sequence converges to a solution u of the asymptotic value
problem.

existence of such solutions in the case of quasilinear equations is done (broadly) in two

steps. First we work with a corresponding linear system and establish the existence

and uniqueness of solutions to the linear asymptotic value problem; the statements

are contained in Proposition 2.20 and Proposition 2.22 below. This linear theory is

then used along with a fixed point argument to show existence of solutions to the

quasilinear asymptotic value problem.
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To show that the sequence of approximate solutions described above converges

to a solution in the linear setting we first establish control over the approximate

solutions using a family of energy estimates. The energies and the corresponding

estimates are contained in Section 2.4.2. and Section 2.4.3.. These estimates allow us

to establish existence of first weak (Section 2.4.4.) and then strong (Section 2.4.5.)

solutions to the linear asymptotic value problem under the restriction that certain

coefficients in the equation are in the smooth subspace of their respective function

spaces. We also establish the existence of a map, called the solution operator, which

maps a given linear source term to a particular solution of the asymptotic value

problem. The smoothness condition is relaxed in Section 2.4.6. using boundedness

on the coefficients, and a uniform estimate for the solution operator. At this point

we prove in Section 2.4.7. that the solution to the linear asymptotic value problem

is unique. This concludes the theory for linear systems. The fixed point argument is

contained in Section 2.5..

2.4. Existence and Uniqueness for Linear Systems

2.4.1. Definitions

We start by formally defining the notion of a linear symmetric hyperbolic

Fuchsian system. This definition is basically the same as Definition 2.7, but with

coefficients independent of the field w. In the linear theory we take the leading order

term u0 to be zero without loss of generality. As a consequence the remainder w

agrees with the full field u.

Definition 2.11 (Linear symmetric hyperbolic Fuchsian systems). Fix positive real

numbers δ, r, integers q ≥ 0, and q0 > n/2 (possibly infinite), and an exponent vector

µ : T n → Rd, together with an Rd-valued leading-order term u0. The system Eq. (2.1)
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is said to form a linear symmetric hyperbolic Fuchsian system around u0 with

parameters {δ, µ, q, q0, r} if:

(i) S0 is positive definite 4 and hence invertible, and both S0(t, x) and tSa(t, x) for

all a = 1, . . . , n are symmetric at every (t, x) ∈ (0, δ]× T n.

(ii) There exists a matrix S0
0(u0), which is positive definite, symmetric, and

independent of t, contained in the space Hq0(T n), and for

S0
1(t, x) := S0(t, x)− S0

0(u0)(x),

the matrix-valued maps tSa(t, x), S0
1(t, x) are contained in Bδ,ζ,q(r) for some

ζ > 0.

(iii) There exists a matrix N0(u0), which is independent of t and in Hq0(T n).

Further, for

f1(u0 + w) := −f(u0 + w) +N0(u0)w

the map F(u0)[w] ∈ Xδ,ν,q takes the linear form

F(u0)[w] := f1(t, x, w)−
n∑
j=0

tSj(t, x)∂ju0 = f0(t, x) + F1(t, x)w (2.8)

where f0(t, x) ∈ Xδ,ν,q for some ν > µ is an Rd-valued function, and F1(t, x) is

an Rd×d-valued map satisfying R[µ]F1R[µ]−1 ∈ Bδ,ζ,q(r), for some r > 0.

The system is defined to be a smooth linear symmetric hyperbolic Fuchsian

system if these conditions hold for all q, q0 > n/2.

4Here q is only required to be non-negative, and thus we cannot guarantee that S0 is continuous.
Hence, we require that S0 be positive definite in the L2 sense.
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If the system Eq. (2.1) is a linear symmetric hyperbolic Fuchsian system, it can

be written as in Eq. (2.6). We define the linear operator L[w]

L[w](t, x) := S0(t, x)Dw(t, x) +
n∑
a=1

tSa(t, x)∂aw(t, x) +N0(x)w(t, x), (2.9)

with respect to which the linear Fuchsian system may be written

L[w](t, x) = f0(t, x) + F1(t, x)w(t, x).

As with quasilinear systems, the matrices S0
1 and Sa are thought of as

perturbations near t ↘ 0, which is reflected in the condition ζ > 0. During the

course of the proof it becomes necessary to consider bounds which depend on the

S0
1 and Sa. In order that the bounds not depend on the particular S0

1 and Sa, we

consider these perturbations to be in bounded subsets of our weighted Sobolev spaces.

In order to make precise the dependence of constants on the various parameters and

functions we make the following definition:

Definition 2.12. Suppose that Eq. (2.1) is a linear symmetric hyperbolic Fuchsian

system for a chosen set of the parameters δ, µ, ζ, q, q0 and r. Suppose that a particular

estimate (e.g., the energy estimate Eq. (2.12)), involving a collection C of constants,

holds for solutions of Eq. (2.1) under a certain collection of hypotheses H. The

constants C are defined to be uniform with respect to the system and the estimate so

long as the following conditions hold:

1. For any choice of S0
1 , S

a and F1 contained in the perturbation space Bδ,ζ,q(r)

(see Definition 2.11) which is compatible with the hypothesis H, the estimate

holds for the same set of constants C.
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2. If the estimate holds for a choice of the constants C for one particular choice of

δ, then for every smaller (positive) choice of δ, the estimate remains true for

the same choice of C.

We note that in much of the analysis in this chapter we write a series of estimates

involving a constant, generically labeled C, which often changes line to line. Although

the change in the constant is not always mentioned during the calculation, it is

important that at the end one verifies that the constant is uniform in the sense

described above.

As we describe in Section 2.3. the proof proceeds by considering a sequence

of Cauchy initial value problems with initial times in the interval (0, δ] for a

linear symmetric hyperbolic Fuchsian system with smooth coefficients in some sense.

Suppose S0
1 , S

a, and F1 are C∞((0, δ]×T n) functions contained in the space Bδ,ζ,q(r).

Under this assumption, we will say the system Eq. (2.1) is a linear symmetric

hyperbolic Fuchsian system with smooth perturbations. Note however, that this

does not mean that we have control over decay of all spatial derivatives of the

perturbations; such control (for q spatial derivatives) is measured by Bδ,ζ,q(r).

Given a linear symmetric hyperbolic Fuchsian system Eq. (2.1) with smooth

perturbations and if in addition q0 > n/2 + 1 and also f0 ∈ Xδ,ν,q ∩ C∞((0, δ]× T n),

then Proposition A.15 for linear symmetric hyperbolic systems shows that the Cauchy

problem is well-posed in the sense that for initial data v[t0] ∈ Hq0(T n), there is a

unique solution v : [t0, δ] × T n → Rd to this Cauchy problem with v(t0) = v[t0] and

with v(t, ·) ∈ Hq0(T n) for all t ∈ [t0, δ]. We note in particular that the solution to

these linear systems extends forward in time all the way to δ, independent of the

initial time t0.
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2.4.2. Energies and Basic Energy Estimate

In order to control the solutions to the Cauchy problem for linear symmetric

hyperbolic Fuchsian systems (Definition 2.11) with smooth perturbations in the

forward direction, particularly in the limit when the initial time approaches the

singular time, we introduce a family of time-dependent energies. Suppose the

exponent vector µ is fixed; for any two positive real numbers κ and γ, we define

the energy Eµ,κ,γ for a function v : [t0, δ] × T n → Rd (with v(t, ·) ∈ L2(T n) for each

t ∈ [t0, δ]) by

Eµ,κ,γ[v](t) :=
1

2
e−κt

γ 〈
S0(t, ·)R[µ](t, ·)v(t, ·),R[µ](t, ·)v(t, ·)

〉
L2(Tn)

. (2.10)

We have used the notation for the L2-product

〈v, w〉L2(Tn) :=

∫
Tn
〈v, w〉 dx,

where 〈v, w〉 denotes the usual vector inner product. The matrix S0(t, ·) is the same

one which appears in Eq. (2.1), and the matrix R[µ](t, ·) is given by Eq. (2.2).

Similar energies, but without the explicit time dependence are common for symmetric

hyperbolic systems; see for example [75].

It is useful in our analysis to relate these energies to the L2-norm of

R[µ](t, ·)v(t, ·). We find the following equivalence:

Lemma 2.13. For any v : [t0, δ] × T n → Rd with v(t, ·) ∈ L2(T n), and any S0(t, ·)

satisfying the conditions of Definition 2.11 with smooth perturbations, there exist

positive constants Cb and Ct, which are uniform in the sense of Definition 2.12 and
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independent of t, such that

Cb‖R[µ](t, ·)v(t, ·)‖L2(Tn) ≤
√
Eµ,κ,γ[v](t) ≤ Ct‖R[µ](t, ·)v(t, ·)‖L2(Tn). (2.11)

Proof. Consider first the upper bound. Since 1/2e−κt
γ

is positive and bounded on

[0, δ]× T n by one we have

√
Eµ,κ,γ[v](t) ≤

(∫
Tn

〈
S0R[µ]v,R[µ]v

〉)1/2

.

Furthermore, we claim that under the hypotheses of the lemma supt∈(0,δ] ‖S0‖L∞ < C

for a constant depending on n, q, ζ, δ, r and u0. To see this note that by Definition 2.11

and the smooth perturbations hypothesis, S0 = S0
0 + S0

1 for S0
0 ∈ Hq0 and S0

1 ∈

Bδ,ζ,q(r) ∩ C∞((0, δ] × T n). Since q0 > n/2 the Sobolev inequalities (Theorem A.3)

imply that S0
0 ∈ C0(T n) and ‖S0

0‖L∞ ≤ C(n, q)‖S0
0‖Hq0 . To address S0

1 we note that

since ζ is strictly positive it follows from Lemma B.1 that S0
1 ∈ Bδ,0,q(Cr)∩C∞((0, δ]×

T n) for a constant depending on δ and ζ. We find

sup
t∈(0,δ]

‖S0‖L∞ ≤ C(n, q)‖S0
0‖Hq0 + C(ζ, δ)r.

It follows that there exists a constant Ct depending in general on (n, q, ζ, δ, r, u0), but

in particular independent of the particular S0
1 such that

√
Eµ,κ,γ[v](t) ≤

(
sup
t∈(0,δ]

‖S0‖L∞(Tn)

)
‖R[µ]v‖L2 ≤ Ct‖R[µ]v‖L2 .
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Next we show the lower bound. We note that by positive definite property of S0

√
Eµ,κ,γ[v](t) ≥

(
inf
t∈(0,δ]

1

2
e−κt

γ

)1/2

‖R[µ]v‖L2(Tn) ≥ Cb‖R[µ]v‖L2(Tn)

for some positive constant Cb depending on κ, γ, δ, r, ζ and, u0.

These energies have been defined in such a way, including in particular the factor

of e−κt
γ
, so that the growth of the energies may be controlled. We obtain the following

estimate.

Lemma 2.14 (Fundamental energy estimate). Suppose that Eq. (2.1) is a linear

symmetric hyperbolic Fuchsian system for the parameters {δ, µ, q, q0, r} (as in

Definition 2.11), has smooth perturbations, and is block diagonal with respect to

µ, with q ≥ 0 and q0 > n/2 + 1. Suppose also that the energy dissipation matrix

Eq. (2.7) is positive definite for all x ∈ T n and, in addition, DS0
1 , ∂bS

a ∈ Bδ,ξ,0(r̃) for

all a, b = 1, . . . , n for some r̃ > 0 and some exponent vector ξ with strictly positive

entries. Then for any initial data v[t0] ∈ Hq0(T n) specified at some t0 ∈ (0, δ], there

exists a unique solution v to the corresponding Cauchy problem in C([t0, δ];H
q0(T n)),

and there exist positive constants κ, γ and C such that v satisfies the energy estimate

√
Eµ,κ,γ[v](t) ≤

√
Eµ,κ,γ[v](t)|t=t0 + C

∫ t

t0

s−1‖R[µ](s, ·)f0(s, ·)‖L2(Tn)ds (2.12)

for all t ∈ [t0, δ]. The constants C, κ, and γ may be chosen to be uniform5. In

particular, if one replaces v[t0] specified at t0 by any v[t1] specified at any time t1 ∈

(0, t0], then the energy estimate holds for the same constants C, κ, γ.

5While the constants C, κ and γ here can be chosen to be uniform in the sense of Definition 2.12,
there generally does not exist a choice which holds for all δ, Sj0, N0, r, r̃, ζ, ξ, µ and ν.
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In lieu of Eq. (2.11), the estimate Eq. (2.12) can be written

‖R[µ](t, ·)v(t, ·)‖L2(Tn) ≤ C̃
(
‖R[µ](t0, ·)vt0‖L2(Tn)

+

∫ t

t0

s−1‖R[µ](s, ·)f0(s, ·)‖L2(Tn)ds
)
,

(2.13)

where the constants C, κ and γ have been absorbed into C̃.

We also note that the control DS0
1 , ∂bS

a ∈ Bδ,ξ,0(r̃) does not follow from the

smooth perturbations condition. The latter is the statement that the perturbations

are in the smooth subset of the relevant weighted Sobolev spaces, while the former is

a statement about the control on the asymptotic behavior of the lowest derivatives

of S0
1 and Sa.

With regards to the proof of Lemma 2.14, we note that the existence of unique

solutions to the n+ 1 dimensional Cauchy problem corresponding to Eq. (2.1) (which

follows from, e.g., Proposition 1.7 in Chapter 16 of [86]) plays a key role, and the

inequality for q0 stated in the hypothesis is necessary in order to guarantee such

existence.

Proof. The basic idea of the proof is to compute DEµ,κ,γ[v](t), then bound the terms

on the right hand side and finally integrate the equation in time. For simplicity we

write E[v] in place of Eµ,κ,γ[v]. Computing6 DE[v], and using the symmetry of the

6In calculating this time derivative, we use the fact that the solution v is C1 in both time and
space.
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matrix S0, we obtain

DE[v](t) =− κγtγE[v](t) +
1

2
e−κt

γ

∫
Tn

〈
(DS0)R[µ]v,R[µ]v

〉
dx

+ e−κt
γ

∫
Tn

〈
S0(DR[µ])v,R[µ]v

〉
dx

+ e−κt
γ

∫
Tn

〈
S0R[µ]Dv,R[µ]v

〉
dx.

We first analyze the fourth term on the right hand side of this expression, which

we label I. Using the assumption that S0 and R[µ] commute (a consequence of the

block-diagonal condition), and the fact that v is a (forward) solution of equation

Eq. (2.6)7 with linear source function given by Eq. (2.8) we calculate

I = e−κt
γ

∫
Tn

(
〈R[µ]f0,R[µ]v〉+ 〈R[µ]F1v,R[µ]v〉 − 〈R[µ]N0v,R[µ]v〉

− t
n∑
a=1

〈R[µ]Sa∂av,R[µ]v〉
)
dx.

Integration by parts on the last term, along with the assumption that Sa and its

spatial derivatives commute with R[µ] (by block-diagonality) gives

I = e−κt
γ

∫
Tn

(
〈R[µ]f0,R[µ]v〉+ 〈R[µ]F1v,R[µ]v〉 − 〈R[µ]N0v,R[µ]v〉

+
1

2
t

n∑
a=1

〈(∂aSa)R[µ]v,R[µ]v〉

+ t
n∑
a=1

〈
(Sa(∂aR[µ])R[µ]−1)R[µ]v,R[µ]v

〉 )
dx.

7Here we use the existence theorems for symmetric hyperbolic systems, and the regularity
condition q0 > n/2 + 1.
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Using the Hölder inequality, Lemma A.10, we may then estimate the first term in

this expression as follows:

e−κt
γ

∫
T 1

〈R[µ]f0,R[µ]v〉 dx ≤ e−κt
γ ||R[µ]f0||L2||R[µ]v||L2 .

We now argue that for appropriate choices of κ and γ, all the other terms in

DE[v] can be neglected in a certain sense. Combining all terms in the expression for

DE[v] and using M := Diag(µ) = −(DR[µ])R[µ]−1 we compute

DE[v] ≤ e−κtγ ||R[µ]f0||L2||R[µ]v||L2

− e−κtγ
∫
Tn

〈(
S0

0M+R[µ]N0R[µ]−1
)
R[µ]v,R[µ]v

〉
− e−κtγ

∫
Tn

〈(
1

2
κγtγS0 −K(t)

)
R[µ]v,R[µ]v

〉
,

where

K(t) :=
1

2
DS0

1 − S0
1M+R[µ]F1R[µ]−1

+ t
n∑
a=1

∂aR[µ]SaR[µ]−1 + t
1

2

n∑
a=1

∂aS
a.

The first line in the inequality for DE[v] contains the term we keep. The second

line contains terms over which we have control only in Xδ,0,q0 . This integral is negative

definite if the energy dissipation matrix M0 = S0
0M + R[µ]N0R[µ]−1 (Eq. (2.7)) is

positive definite, and hence can be neglected. We argue that the last integral can

be controlled as well. As a consequence of Definition 2.11, and the assumptions of

Lemma 2.14, each term in K(t) is controlled in Bδ,ζ,q(r) or Bδ,ξ,0(r̃). Hence we can

choose a κ large enough and a γ small enough, and use the positivity of S0, to ensure
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that the third line is negative definite. The constants κ, γ may be chosen to be

uniform (Definition 2.12) since their value depends only on the norm of quantities in

K, each of which may be bounded by r. Thus, κ, γ may be chosen independently of

the particular functions within the ball Bδ,ζ,q(r). In total, we obtain

DE[v](t) ≤e−κtγ ||R[µ]f0||L2||R[µ]v||L2 ,

which implies that

∂tE[v](t) ≤t−1e−κt
γ ||R[µ]f0||L2||R[µ]v||L2 .

Then using the norm equivalence Eq. (2.11), we may rewrite this as

∂tE[v](t) ≤Ct−1e−κt
γ ||R[µ]f0||L2

√
E[v](t). (2.14)

To integrate this inequality, it would be useful to divide both sides by
√
E[v](t).

However, since the L2 norm of v may vanish in special cases, we use the following

strategy (see, for instance, [75, Page 59]). We set Eε := E+ε for some constant ε > 0,

and we check that the last inequality holds if we replace E by Eε. Then dividing, and

using 1√
Eε
∂tEε = 2∂t

√
Eε, we obtain

∂t
√
Eε[v](t) ≤Ct−1e−κt

γ ||R[µ]f0||L2 ,
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after rescaling the constant C. We now integrate both sides over
∫ t
t0
ds, thereby

obtaining

√
Eε[v](t) ≤

√
Eε[v](t0) + C

∫ t

t0

s−1e−κs
γ ||R[µ]f0||L2(s)ds

≤
√
Eε[v](t0) + C

(
sup

s∈(t0,t)

e−κs
γ
)∫ t

t0

s−1||R[µ]f0||L2(s)ds

≤
√
Eε[v](t0) + C

∫ t

t0

s−1||R[µ]f0||L2(s)ds,

where we note that the constant C changes from the second to the third line of this

calculation. Taking the limit ε→ 0 finishes the proof that the inequality (Eq. (2.12))

holds. It also follows directly that the constant C is uniform.

2.4.3. Higher Order Energy Estimates

We also need to control higher order spatial derivatives of the solutions of the

Cauchy problem, for which we establish the following energy estimate.

Lemma 2.15. Consider a linear symmetric hyperbolic Fuchsian system with

parameters {δ, µ, q, q0, r}, which satisfies all of the conditions in Lemma 2.14, except

that here we allow for arbitrary integers q ≥ 1 and q0 > n/2 + 1 + q. Assume as well

that8 DS0
1 ∈ Bδ,ξ,0(r̃). Then there exist positive uniform 9 constants C, ρ such that

8We note that the condition ∂bS
a ∈ Bδ,ξ,0(r) (a, b = 1, . . . , n) of Lemma 2.14 is now implied by

the choice q ≥ 1.

9We note however that C and ρ generally depend on q.
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for all ε > 0, the solution v(t, x) of Lemma 2.14 satisfies

‖R[µ− ε](t, ·)v(t, ·)‖Hq(Tn) ≤ C
(
‖R[µ](t0, ·)vt0‖Hq(Tn)

+

∫ t

t0

s−1
(
‖R[µ](s, ·)f0(s, ·)‖Hq(Tn) + sρ‖R[µ]v‖Hq−1(Tn)

)
ds
)
.

(2.15)

The same choice of constants C and ρ can be used for any initial time t0 ∈ (0, δ).

The inequality for q0 comes again from the condition for well-posedness for the

Cauchy problem in n spatial dimensions, but now also from the fact that in deriving

the above estimate we take q spatial derivatives of the coefficients.

Proof. We consider the q = 1 case and comment on the case of general q below. The

idea is to derive an expression for the first spatial derivatives of v(t, x) and then apply

the basic energy estimate Lemma 2.14.

Step 1: Derive equation for the spatial derivatives. Let ∂v be the n · d-length vector

defined by

∂v := (∂1v, . . . , ∂nv)T =
(
∂1v

1, . . . , ∂1v
d, . . . , ∂nv

1, . . . , ∂nv
d
)T
.

To derive an equation for ∂v, let b be any value in {1, . . . , n}. Recall, v(t, x) satisfies

the equation

S0Dv +
n∑
a=1

tSa∂av +N0v = f0 + F1v

within the time interval [t0, δ] for some t0 ∈ (0, δ], in accord with the assumption

of a linear symmetric hyperbolic Fuchsian system. Letting ∂b act on this system we
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obtain

S0D(∂bv) +
n∑
a=1

tSa∂a(∂bv) +N0(∂bv)

= ∂bf0 + (∂bF1)v + F1(∂bv)

− (∂bS
0)Dv −

n∑
a=1

t(∂bS
a)∂av − (∂bN0)v.

The left-hand side of this expression satisfies the hypotheses of Lemma 2.14; it remains

to verify sufficient control over the right-hand side. Since bounds on Dv are not known

at this point, we eliminate this term by using the fact that v satisfies the linear system.

The resulting expression for the source terms can be written as

f̂ b0 + (F̂1∂v)b

where

f̂ b0 =
(
∂b − ∂bS0

(
S0
)−1
)
f0

+
((
∂b − ∂bS0

(
S0
)−1
)
F1

)
v −

((
∂b − ∂bS0

(
S0
)−1
)
N0

)
v,

(2.16)

and F̂1 is a (n · d)× (n · d) matrix with components

(F̂1)ab =
(
F1δ

ab + ∂bS
0
(
S0
)−1

tSb − t∂bSb
)

+ t
∑
a6=b

(
∂bS

0
(
S0
)−1

Sa − ∂bSa
)
.

Note that S0 is invertible according to Definition 2.11, and further that as

a consequence of the block-diagonal conditions, the inverse has the block-diagonal

structure of µ. The system for the full n · d-length vector ∂v can be written in linear
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symmetric hyperbolic form

Ŝ0D∂v +
n∑
a=1

tŜa∂a∂v + N̂0∂v = f̂0 + F̂1∂v, (2.17)

where Ŝ0 = Diag(S0, . . . , S0), Ŝa = Diag(Sa, . . . , Sa), and N̂0 = Diag(N0, . . . , N0),

each contain n-blocks of the corresponding d× d matrix.

In order to apply Lemma 2.14 we must in particular show that the above system is

a Fuchsian system, and more specifically meets the hypotheses of Definition 2.11. As

part of this definition, it is required that f̂0 ∈ Xδ,ν,q for some ν > µ. However, we only

have µ-control over ∂bN0. To deal with this situation, we seek to apply Lemma 2.14

with an exponent vector µ̂ := µ − ε which is slightly decreased, corresponding to

slightly weaker control on the behavior in t. Notice that if Eq. (2.1) is a linear

symmetric hyperbolic Fuchsian system with exponent vector µ such that the energy

dissipation matrix with respect to µ is positive definite, then there exists an ε > 0 such

that Eq. (2.1) is also a linear symmetric hyperbolic Fuchsian system with exponent

vector µ− ε and with the energy dissipation matrix with respect to µ− ε is positive

definite. The upper bounds on ε in this case come from i) ε must be chosen less

than ν − µ, and ii) ε must not be so large that the energy dissipation matrix fails

to be positive definite with respect to µ − ε. It is easily checked that the remaining

hypotheses of the lemma hold. We may apply Lemma 2.14 to the system Eq. (2.17)

in order to estimate Eµ̂,κ̂,γ̂[∂v] for in general different uniform constants κ̂, and γ̂.

Step 2: q-order energies. We proceed to prove the inequality Eq. (2.15). To this end,

consider

E
(1)
µ̂ [v] :=

√
Eµ̂,κ,γ[v](t) +

√
Eµ̂,κ(1),γ(1) [∂v](t),

67



where κ(1) and γ(1) represent the in general different choices of κ and γ for the estimate

for ∂v. Notice that the energy is computed with respect to µ̂ in both terms.

By the energy/norm equivalence there exist uniform constants C1, C2 such that

C1

(
‖R[µ̂]v‖L2 + ‖R̂[µ̂]∂v‖L2

)
≤ E

(1)
µ̂ [v] ≤ C2

(
‖R[µ̂]v‖L2 + ‖R̂[µ̂]∂v‖L2

)
,

where R̂[µ̂] := Diag (R[µ̂], . . . ,R[µ̂]) consists of n-blocks of R[µ̂].

Step 3: Lower bound for E
(1)
µ̂ [v]. We show that ‖R[µ̃]v‖H1(Tn) ≤ CE

(1)
µ̂ [v] for a

uniform constant C, and some exponent vector µ̃. Distributing the spatial derivative

in the H1 norm, we compute

‖R[µ̃]v‖H1(Tn) =

(∫
Tn

n∑
a=1

|∂aR[µ̃]v|2 + |R[µ̃]v|2
)1/2

≤

(∫
Tn

n∑
a=1

|R[µ̃]∂av|2
)1/2

+

(∫
Tn
|R[µ̃]v|2

)1/2

+

(∫
Tn

n∑
a=1

|(∂aR[µ̃])v|2
)1/2

+

(
2

∫
Tn

n∑
a=1

〈(∂aR[µ̃])v,R[µ̃]∂av〉

)1/2

Consider the fourth term. The integral can be written

∫
Tn

n∑
a=1

〈(∂aR[µ̃])v,R[µ̃]∂av〉 =

∫
Tn

〈
(∂R[µ̃])v̂, R̂[µ̃]∂v

〉
,
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where ∂R[µ̃] := Diag{∂1R[µ̃], . . . , ∂nR[µ̃]}, and v̂ := (v, . . . , v)T (n-copies), and R̂[µ̃]

and ∂v are defined as before. Then, by an application of Hölder’s inequality we obtain

(
2

∫
Tn

n∑
a=1

〈(∂aR[µ̃])v,R[µ̃]∂av〉

)1/2

≤
√

2‖∂R[µ̃]v̂‖L2‖R̂[µ̃]∂v‖L2 .

Now notice that for a, b non-negative real numbers
√

2
√
ab ≤ a+ b,10 which allows us

to obtain the bound

‖R[µ̃]v‖H1(Tn) ≤ C
(
‖R̂[µ̃]∂v‖L2 + ‖∂R[µ̃]v̂‖L2 + ‖R[µ̃]v‖L2

)
. (2.18)

The expression ‖∂R[µ̃]v̂‖L2 occurs in two places in the inequality we have obtained

so far. This expression is bounded by C‖R[µ̂]v‖L2 for a uniform constant C. Note

that

‖∂R[µ̃]v̂‖L2 =

(∫
Tn

n∑
a=1

|(∂aR[µ̃])v|2
)1/2

≤
n∑
a=1

‖(∂aR[µ̃])v‖L2

Fixing an a ∈ {1, . . . , n}, we compute

∂aR[µ̃] = − log tDiag(∂aµ̃) · R[µ̃] ≤ −C log tR[µ̃]

since the µ̃ are smooth functions of x ∈ T n. To control the logarithm we extract a

positive power of t (say tε) from R[µ̃], for an ε which may be arbitrarily small. As a

result,

‖∂aR[µ̃]v‖L2 ≤ C‖R[µ̃+ ε]v‖L2 and hence, ‖∂R[µ̃]v̂‖L2 ≤ C‖R[µ̃+ ε]v‖L2 .

10To show this note that for a, b non-negative real numbers
√
ab =

√
(a+ b)2 − a2 − b2/

√
2 ≤√

(a+ b)2/
√

2 = (a+ b)/
√

2.
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Setting µ̃ = µ̂ − ε in Eq. (2.18), using R[µ̂ − ε] = tεR[µ̂] ≤ δεR[µ̂], and noting the

energy/norm equivalence from Step 2, we obtain the desired lower bound

‖R[µ̂− ε]v‖H1(Tn) ≤ C
(
‖R[µ̂]v‖L2 + ‖R̂[µ̂]∂v‖L2

)
≤ CE

(1)
µ̂ [v].

Step 4: Upper bound for E
(1)
µ̂ [v]. We now use the fundamental energy estimate

Lemma 2.14 to prove an upper bound. By the equivalence of norms and an application

of Lemma 2.14 we find

E(1)[v] ≤ C1

(
‖R̂[µ̂]∂v‖L2(t0) + ‖R[µ̂]v‖L2(t0)

)
+ C2

(∫ t

t0

s−1(‖R̂[µ̂]f̂0‖L2(s) + ‖R[µ̂]f0‖L2(s))ds

)
.

(2.19)

Next we bound the terms ‖R̂[µ̂]f̂0‖L2(s). Recall the expression for f̂0

b
Eq. (2.16).

Since q0 > n/2 + 1 the operators N0, S
0, and (S0)

−1
are continuous on T n due to the

Sobolev inequalities. Further recall that the perturbations, including F1, are smooth

and bounded in Bδ,ζ,q(r). Hence there exists a uniform constant C such that

‖R̂[µ̂]f̂0‖L2(s) ≤
n∑
a=1

‖R[µ̂]f̂0

a
‖L2

≤ C

(
n∑
a=1

‖R[µ̂]∂af0‖L2 + ‖R[µ̂]f0‖L2 + ‖R[µ̂]v‖L2

)
.

We now claim that for any vector valued function f , (ie f0 above) there is a uniform

constant such that

‖R[µ̂]∂af‖L2 ≤ C (‖∂a(R[µ̂+ ε]f)‖L2 + ‖R[µ̂+ ε]f‖L2) , (2.20)
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for any ε > 0. To see this, compute

‖R[µ̂]∂af‖L2 =

(∫
Tn
〈R[µ̂]∂af,R[µ̂]∂af〉 dx

)1/2

=

(∫
Tn
|∂a(R[µ̂]f)|2 + |(∂aR[µ̂])f |2 − 2 〈∂a(R[µ̂]f), (∂aR[µ̂])f〉 dx

)1/2

≤ ‖∂a(R[µ̂]f)‖L2 + C‖R[µ̂+ ε]f‖L2

+ C
√
‖∂a(R[µ̂]f)‖L2‖R[µ̂+ ε]f‖L2 ,

where we have controlled the log t factors generated in computing ∂aR[µ̂] by extracting

a tε from R[µ̂], and used that µ̂ is a smooth function of x ∈ T n. Again using
√

2
√
ab ≤ a+ b for a, b non-negative real numbers we obtain Eq. (2.20).

Applying this result to ‖∂a(R[µ̂]f0)‖L2 in the inequality for ‖R̂[µ̂]f̂0‖L2(s) above,

we find

‖R̂[µ̂]f̂0‖L2(s) ≤ C
n∑
a=1

(‖∂a(R[µ̂+ ε]f0)‖L2 + ‖R[µ̂+ ε]f0‖L2) + ‖R[µ̂]v‖L2 .

In the above expression we have also pulled out a factor of tε in the first term so

that the exponent vector matches that in the second term. Finally we show that the

terms in the parenthesis can be bounded by the H1-norm. Notice that
∑n

i=1

√
ai ≤

n
√∑n

i=1 ai for all {ai} ∈ R+∪{0}. This is a version of the discrete Hölder inequality;

see for example [34] (page 623). When applied to the situation at hand we find that

there is a constant depending only on n such that

n∑
a=1

‖∂a(R[µ̂+ ε]f0)‖L2(Tn) + ‖R[µ̂+ ε]f0‖L2(Tn) ≤ C‖R[µ̂+ ε]f0‖H1(Tn).
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We may apply these same arguments to the first term in Eq. (2.19), and as a

consequence

E
(1)
µ̂ [v] ≤ C

(
‖R[µ̂+ ε]v‖H1(t0) +

∫ t

t0

s−1(‖R[µ̂+ ε]f0‖H1(s) + ‖R[µ̂]v‖L2(s))

)
.

Combining the upper bound just obtained with the lower bound of Step 3,

recalling that µ̂ = µ− ε and rescaling ε→ ε/2 we find

‖R[µ− ε]v‖H1(Tn)

≤ C

(
‖R[µ]v‖H1(t0) +

∫ t

t0

s−1(‖R[µ]f0‖H1(s) + sε/2‖R[µ]v‖L2(s))

)
,

which is the desired inequality for the case q = 1. Similar arguments can be made for

arbitrary q.

2.4.4. Weak Solutions to the Asymptotic Value Problem

A useful technique in proving the existence of solutions to partial differential

equations is to first establish that solutions exist in an integral or distributional sense;

such solutions are called weak solutions. In this section we make precise the notion

of weak solutions to the asymptotic value problem, and prove the existence of such

weak solutions for linear symmetric hyperbolic Fuchsian systems. The proof is based

on constructing a sequence of approximate solutions described briefly in Section 2.3.

and in detail below. We may then use our control over these approximate solutions,

given by the fundamental energy estimate Lemma 2.14, in order to prove that the

sequence of approximate solutions converges to a weak solution of the asymptotic

value problem.
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2.4.4.1. Weak operators

The weak version of the linear symmetric hyperbolic Fuchsian system is its

integral or distributional form. Define a test function for this system to be any

smooth function φ : (0, δ] × T n → Rd for which there is a T ∈ (0, δ), such that

φ(t, x) = 0 for all t > T . For any w ∈ Xδ,µ,0 and test function φ we define the

operator L[·] via

〈L[w], φ〉 := −
∫ δ

0

(〈
R[µ]S0w,Dφ

〉
L2(Tn)

+
n∑
a=1

〈R[µ]tSaw, ∂aφ〉L2(Tn)

+ 〈R[µ]Sw, φ〉L2(Tn)

)
dt,

where

S :=

(
S0 −N0 +R[µ]−1DR[µ]S0 +DS0

+R[µ]−1

n∑
a=1

(∂aR[µ])tSa +
n∑
a=1

t∂aS
a

)
.

This definition is motivated by formally writing

∫ δ

0

〈R[µ]L[w], φ〉L2(Tn) dt =

∫ δ

0

∫
Tn

〈
R[µ]

(
S0Dw +

n∑
a=1

tSa∂aw +N0w

)
, φ

〉
dxdt

and transferring the derivatives to act on φ using integration by parts. The terms

in S above are a product of this procedure. The operator L[·] is called the adjoint

of L[·] (recall L[·] is given by Eq. (2.9)). A corresponding weak version of the linear

source operator is given by

〈F [w], φ〉 :=

∫ δ

0

〈R[µ] (f0 + F1w) , φ〉L2(Tn) dt,
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The next result establishes that these operators are well-defined on the space Xδ,µ,0.

Lemma 2.16. Suppose that Eq. (2.1) is a linear symmetric hyperbolic Fuchsian

system with parameters {δ, µ, q, q0, r} as per Definition 2.11, and is block diagonal

with respect to µ. Then for every test function φ, the maps 〈L[·], φ〉 and 〈F [·], φ〉 are

bounded linear functionals on Xδ,µ,0.

Proof. To prove this lemma it is sufficient to show that each term in 〈L[w], φ〉 is

bounded by C||w||δ,µ,0, for some positive constant C and for every w ∈ Xδ,µ,0. We

demonstrate this for the first term,
∫ δ

0
〈R[µ]S0w,Dφ〉L2 dt. Using Hölder’s inequality,

the spatial continuity11 of S0 and the block-diagonal property, we find that

∣∣∣∣∫ δ

0

〈
R[µ]S0w,Dφ

〉
L2 dt

∣∣∣∣ ≤ ∫ δ

0

||R[µ]S0w||L2||Dφ||L2dt

≤ δ sup
t∈(0,δ]

||R[µ]S0w||L2(t)||Dφ||L2(t) ≤ C||w||δ,µ,0.

The constant C, which is used to estimate both the contributions from S0 and from

φ, is uniform in the sense defined above. Other terms in 〈L[w], φ〉 follow similarly,

and the same arguments hold for the 〈F [w], φ〉 operator.

We define w to be a weak solution of the linear asymptotic value problem

corresponding to Eq. (2.1) with vanishing leading term provided it satisfies, for all

test functions φ,

〈P [w], φ〉 := 〈L[w]−F [w], φ〉 = 0. (2.21)

11This follows from the definition of a linear symmetric hyperbolic Fuchsian system, and from
Sobolev embedding.
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2.4.4.2. Existence of weak solutions

Having established a definition of weak solutions to the asymptotic value

problem, and that the weak operators are well-defined on the function space of

interest, Xδ,µ,0, we now prove that weak solutions exist to the linear symmetric

hyperbolic Fuchsian systems.

Proposition 2.17 (Existence of weak solutions of the linear asymptotic value

problem with smooth perturbations). Suppose that Eq. (2.1) is a linear symmetric

hyperbolic Fuchsian system with parameters {δ, µ, q, q0, r}, for q = 0 and q0 > n/2+1

with smooth perturbations, and is block-diagonal with respect to µ. Suppose also that

the energy dissipation matrix Eq. (2.7) is positive definite for all x ∈ T n and, in

addition, DS0
1 , ∂bS

a ∈ Bδ,ξ,0(r̃) for all a, b = 1, . . . , n for some r̃ > 0 and for some

exponent vector ξ with strictly positive entries (so that we may apply the fundamental

energy estimate). Then there exist weak solutions w : (0, δ] × T n → Rd to the

asymptotic value problem (with vanishing leading term) which are elements of Xδ,µ,0.

This is the most general existence result we are able to prove, requiring only

weak control over the regularity of the coefficients (measured by q and q0). However,

additional control is necessary to prove uniqueness of solutions; this is done below in

Proposition 2.22.

Proof. As stated above, the proof is based on constructing a sequence of approximate

solutions. Let {ti} be a monotonically decreasing sequence of times ti ∈ (0, δ] which

converges to zero. For each i, we construct a function vi : (0, δ] × T n → Rd which

vanishes on (0, ti], and which is equal on (ti, δ] to the solution of the Cauchy problem
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with zero initial data at ti
12. The functions {vi} are called approximate solutions.

One can verify that vi ∈ C0((0, δ];Hq0(T n))∩Xδ,µ,0 for each i. We seek to show that

the sequence {vi} forms a Cauchy sequence in Xδ,µ,0. Defining ξij := vi− vj for i > j,

we readily see that

ξij(t, x) =


0, t ∈ (0, ti],

vi, t ∈ (ti, tj],

vi − vj, t ∈ (tj, δ].

(2.22)

From the energy estimate for the Cauchy problem Lemma 2.14 on each subinterval,

we then compute

||R[µ](t, ·)ξij(t, ·)||L2


= 0, t ∈ (0, ti],

≤ 0 + C
∫ t
ti
s−1||R[µ]f0||L2ds, t ∈ (ti, tj],

≤ ||R[µ](tj, ·)vi(tj, ·)||L2 , t ∈ (tj, δ],

(2.23)

where in the last inequality we have used the energy/norm equivalence Eq. (2.11)

above, and we have also used the fact that the (linear) PDE system for vi − vj has

a vanishing source term f0. Recalling the definition of the norm || · ||δ,µ,q, noting

the monotonicity of
∫ t
ti
s−1||R[µ]f0||2Lds, and noting the equality ξij(tj, ·) = vi(tj, ·) at

t = tj, we now have

||ξij||δ,µ,0 = sup
t∈(0,δ]

||R[µ](t, ·)ξij(t, ·)||L2 ≤ C

∫ tj

ti

s−1||R[µ]f0||L2ds.

12Note that in general we prescribe initial data as φi(x) = u0(ti, x) as in Section 2.3.. However
for the linear theory presented in this section we have assumed for simplicity, and without loss of
generality, that u0 ≡ 0.
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To complete the argument that we have a Cauchy sequence, it is useful to

introduce

G(t) :=

∫ t

0

s−1||R[µ]f0||L2(s)ds, (2.24)

which is well-defined so long as f0 ∈ Xδ,ν,0 for ν > µ. Choosing ε > 0 as a lower

bound for the gap between ν and µ among all components, we see that there must

exist a constant C such that G(t) ≤ Ctε; thence, we have

||ξij||δ,µ,0 ≤ C|G(tj)−G(ti)|, (2.25)

from which it easily follows that {vi} is a Cauchy sequence in the Banach space Xδ,µ,0.

Since it has been established (in Lemma 2.16) that P = L − F is a continuous

operator on Xδ,µ,0, to show that the limit of the Cauchy sequence {vi} is a weak

solution of the system of interest, it is sufficient to show that the limit of the sequence

of reals (〈P [vi], φ〉) is zero for all test functions φ. Choosing any vi in our sequence,

we know from its definition that vi vanishes on (0, ti] and is a solution to the equation

〈P [vi], φ〉 = 0 on [ti, δ]. Recalling the definition of P , we calculate on the former

interval, for any test function φ,

|〈P [vi], φ〉| =
∣∣∣∣−∫ ti

0

〈R[µ]f0, φ〉L2(Tn) dt

∣∣∣∣ .
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Straightforward calculation then shows that

∣∣∣∣−∫ ti

0

〈R[µ]f0, φ〉L2(Tn)

∣∣∣∣ dt ≤∫ ti

0

| 〈R[µ]f0, φ〉L2(Tn) |dt

≤
∫ ti

0

((∫
Tn
dx|R[µ]f0|2

)1/2(∫
Tn
dx|φ|2

)1/2
)
dt

=

∫ ti

0

(
t−1
(∫

Tn
dx|R[µ]f0|2

)1/2

t
(∫

Tn
dx|φ|2

)1/2
)
dt

≤ sup
t∈(0,δ]

||tφ||L2

∫ ti

0

t−1||R[µ]f0(t)||L2dt ≤ CG(ti),

from which it follows (from the properties of G(t)), that we have a weak solution.

2.4.4.3. A solution operator

For use in later parts of the proof of Theorem 2.10, we define an operator which

for fixed S0, Sa, N0, and F1 takes any function f0 ∈ Xδ,ν,0 ∩ C∞((0, δ] × T n) to a

weak solution w ∈ Xδ,µ,0 of the linear asymptotic value problem. Then as a next

step, we would like to extend this map to all f0 of Xδ,ν,0, and thereby show that

weak solutions exist for all f0 ∈ Xδ,ν,0, and not just for those f0 which are smooth.

A potential obstruction to this definition is the lack of a uniqueness result for weak

solutions. We avoid this by defining an operator which takes f0 to the weak solution

obtained as the limit of the sequence {vi} and verify that this limit is independent of

the sequence of times {ti} which is chosen.

Proposition 2.18. Presuming the hypotheses listed in Proposition 2.17, there exists

an operator H : Xδ,ν,0 → Xδ,µ,0 that maps a smooth source function f0 to the weak

solution w of the linear asymptotic value problem (i.e. w satisfies 〈P [w], φ〉 = 0) which

is obtained as the limit of the sequence of approximate solutions {vi} corresponding

to a choice of a monotonic sequence of times {ti} converging to zero. This operator is
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well-defined (independent of the choice of the sequence {ti}) and satisfies the estimate

‖H[f0]‖δ,µ,0 ≤ δρC‖f0‖δ,ν,0, (2.26)

for all smooth f0 ∈ Xδ,ν,0. The positive constants C and ρ are uniform.

The operator extends to all (not necessarily smooth) f0 ∈ Xδ,ν,0, with the estimate

(2.26) holding for all such f0 with the same constants. Indeed, this extended operator

H maps all f0 ∈ Xδ,ν,0 to weak solutions of Eq. (2.1).

The last paragraph in this proposition generalizes the existence result in

Proposition 2.17 to all, not necessarily smooth, source terms f0 ∈ Xδ,ν,0. We note,

however, that otherwise the system is still assumed to have smooth perturbations in

the sense defined above.

Proof. In the first step we show that for f0 ∈ C∞((0, δ]× T n) ∩Xδ,ν,0, the map f 7→

H[f ] is a well-defined map to Xδ,µ,0, independent of the choice of time sequence. Let

{t1i } and {t2j} be two monotonically decreasing sequences of times in (0, δ] with limit

zero, and let {v1
i } and {v2

j} be the corresponding sequences of approximate solutions.

We show that the limits of each of these sequences, call them w1 and w2 respectively,

are identical in Xδ,µ,0. From the union of the two time sequences we construct a third

sequence {tk}, and obtain the corresponding sequence of approximate solutions {vk}.

As is the case for {v1
i } and {v2

j}, the combined sequence of approximate solutions {vk}

must be a Cauchy sequence, so13 ||v1
i − v2

j ||δ,µ,0 must vanish in the limit i, j → ∞.

Then it follows from the estimate

||w1 − w2||δ,µ,0 ≤ ||w1 − v1
i ||δ,µ,0 + ||v2

j − w2||δ,µ,0 + ||v1
i − v2

j ||δ,µ,0,

13Here, we set δ to be the smallest bound among the two sequences.
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that w1 and w2 are equal in Xδ,µ,0.

Next we prove the estimate Eq. (2.26) for H, still with smooth f0. Let {vi} be

a sequence of approximate solutions with limit w = H(f0). The idea is to use the

estimate Eq. (2.25) in order to bound ‖w‖δ,µ,0 by G(δ), and then argue that this in

turn can be bounded by ‖f0‖δ,ν,0. From Eq. (2.25) and the monotonicity of G(t) we

determine that ||w − v1||δ,µ,0 ≤ CG(t1) ≤ CG(δ), and hence that

||w||δ,µ,0 ≤ ||v1||δ,µ,0 + CG(δ).

It follows from the energy estimate Eq. (2.12) and the energy/norm equivalence that

||v1||δ,µ,0 ≤ C̃G(δ), and thus for an adapted constant C we find

||w||δ,µ,0 ≤ CG(δ).

To relate G(δ) to the source term, recall G(δ) =
∫ δ

0
s−1‖R[µ]f0‖L2(s)ds. Consider the

integrand

s−1‖R[µ]f0‖L2(s) = s−1‖R[µ− ν]R[ν]f0‖L2(s)

≤ s−1sρ‖R[ν]f0‖L2(s)

≤ sρ−1

(
sup
s∈(0,δ]

(‖R[ν]f0‖L2(s))

)

= sρ−1‖f0‖δ,ν,0
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where ρ := min(ν − µ), and where the minimum is taken over all i = 1, . . . , d, and

x ∈ T n. Integrating this inequality over
∫ δ

0
ds we find

G(δ) ≤
(∫ δ

0

sρ−1ds

)
‖f0‖δ,ν,0.

The integral on the right hand side is finite since ρ > 0; a consequence of ν > µ. The

desired inequality Eq. (2.26) is obtained for some C ≥ 1/ρ.

Finally we extend the operator H to fully general (not necessarily smooth) f0 in

Xδ,ν,0. Since the space C∞((0, δ]×T n)∩Xδ,ν,0 is dense in Xδ,ν,0, any element f0 ∈ Xδ,ν,0

can be represented as the limit of a convergent sequence {f (j)
0 } ∈ C∞((0, δ] × T n) ∩

Xδ,ν,0. From the continuity of H[·] on the smooth subspace we conclude that there

exists a limit w = limj→∞H[f
(j)
0 ], and that w is in Xδ,µ,0 by the completeness of these

spaces. Hence we extend H[·] to the full space by defining

H[f0] := lim
j→∞

H[f
(j)
0 ].

Furthermore, the estimate Eq. (2.26) holds for the extended operator. To show this,

note that for any j

‖H[f
(j)
0 ]‖δ,µ,0 ≤ δρC‖f (j)

0 ‖δ,ν,0,

and hence

‖H[f
(j)
0 − f0 + f0]‖δ,µ,0 ≤ δρC‖f (j)

0 − f0 + f0‖δ,ν,0.

By an application of the triangle inequality and the reverse triangle inequality we find

‖H[f0]‖δ,µ,0 ≤ δρC‖f0‖δ,ν,0 +
(
Cδρ‖f0 − f (j)

0 ‖δ,ν,0 + ‖H[f0]−H[f
(j)
0 ]‖δ,µ,0

)
.
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Since the terms in the parenthesis become arbitrarily small for j → ∞ we conclude

that the estimate holds for the extended operator (which is denoted using the same

symbol).

2.4.5. Regularity of Solutions to the Asymptotic Value Problem

Having established in Section 2.4.4. the existence of solutions to the asymptotic

value problem in the weak sense, we proceed to determine the regularity of these

solutions, and prove that they are solutions in a strong sense defined below. See

Section A.1. for general comments on finding solutions to partial differential

equations. Note that if w is a solution to the weak equation, we have

0 = 〈L[w]−F [w], φ〉

=−
∫ δ

0

(〈
R[µ]S0w,Dφ

〉
L2(Tn)

+
n∑
a=1

〈R[µ]tSaw, ∂aφ〉L2(Tn) + 〈R[µ]Sw, φ〉L2(Tn)

)
dt

−
∫ δ

0

〈R[µ] (f0 + F1w) , φ〉L2(Tn) dt.

Now suppose w could be shown to be continuously differentiable in both time and

space on (0, δ]× T n. Then, by reversing the integration by parts, we find that

0 =

∫ δ

0

(〈
R[µ]S0Dw, φ

〉
L2(Tn)

+
n∑
a=1

〈R[µ]tSa∂aw, φ〉L2(Tn) + 〈R[µ]N0w, φ〉L2(Tn)

)
dt

−
∫ δ

0

〈R[µ] (f0 + F1w) , φ〉L2(Tn) dt,

or equivalently,

0 =

∫ δ

0

〈R[µ] (L[w]− F[w]) , φ〉L2(Tn) dt. (2.27)
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Since this equation holds for any test function φ, we could argue that the differential

version of the equation, that is L[w]−F[w] = 0, holds pointwise on (0, δ]×T n almost

everywhere.

Of course, we cannot always (often) verify that w is continuously differentiable.

In such cases, the next best hope would be to show that w is differentiable in a

distributional sense (Definition A.1). If we can show that w ∈ Xδ,µ,q and that there

exists a time derivative Dw ∈ Xδ,µ,q−1 so that L[w] and, F[w] are both in Xδ,µ,q−1

and are equivalent as distributions (ie Eq. (2.27) holds), then we say w is a strong

solution.

For solutions to the asymptotic value problem for linear symmetric hyperbolic

Fuchsian systems with smooth perturbations, we obtain the following proposition.

Proposition 2.19 (Regularity of solutions to the Linear AVP). Suppose that Eq. (2.1)

is a linear symmetric hyperbolic Fuchsian system with smooth perturbations and with

parameters {δ, µ, q, q0, r}, for q ≥ 1 and q0 > n/2 + 1 + q. Suppose also that the

system is block-diagonal with respect to µ, and the energy dissipation matrix Eq. (2.7)

is positive definite for all x ∈ T n and, in addition, DS0
1 ∈ Bδ,ξ,0(r̃) for some r̃ > 0 and

some exponent matrix ξ with strictly positive entries.14. Then, weak solutions w of

the asymptotic value problem (whose existence has been checked in Proposition 2.17)

are differentiable in time and satisfy Eq. (2.1), with w ∈ Xδ,µ,q and Dw ∈ Xδ,µ,q−1.

Further, the solution operator H defined in Proposition 2.17 maps Xδ,ν,q to Xδ,µ,q,

and satisfies

‖H[f0]‖δ,µ,q ≤ δρC‖f0‖δ,ν,q, (2.28)

14These are the conditions of Proposition 2.17 but with increased values of q, q0
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for all (not necessarily smooth) f0 ∈ Xδ,ν,q. The constants C > 0 and ρ > 0 are

uniform in the sense of Definition 2.12 (but may depend in particular on q).

Proof. Step 1: Convergence in Xδ,µ,q. We begin by establishing that the weak

solutions obtained as the limit of the sequence of approximate solutions {vi}

introduced in the proof of Proposition 2.17 have q weak spatial derivatives, and thus

are in Xδ,µ,q. Due to the higher regularity assumed, each approximate solutions

is contained in C0((0, δ];Hq(T n)) ∩ Xδ,µ,q.
15 The same arguments detailed in the

proof of Proposition 2.17 can be applied here using the higher order energy estimates

Lemma 2.15, in order to show that {vi} is a Cauchy sequence. However, because of

the slight loss of control in the higher order energy estimate Lemma 2.15, we obtain

only that w, the limit of the sequence {vi}, is in Xδ,µ−ε,q for an arbitrarily small ε > 0,

and the estimate

‖H[f0]‖δ,µ−ε,q ≤ δρC‖f0‖δ,ν,q.

To regain “µ-control” over the solution we note that since the equation is of linear

symmetric hyperbolic Fuchsian form for the choice of µ, then it is also of this form

for µ̂ := µ + ε if ε > 0 is sufficiently small in comparison to ν − µ. Moreover, the

block-diagonality conditions and the energy dissipation matrix positivity hold with

respect to µ̂. Hence the analysis described above can be performed with µ̂ in place

of µ, leading to the conclusion that in fact, the solution w is in Xδ,µ̂−ε,q = Xδ,µ,q (as

opposed to Xδ,µ−ε,q above) and

‖H[f0]‖δ,µ,q ≤ δρC‖f0‖δ,ν,q,

15In fact, the theory for symmetric hyperbolic systems guarantees that vi ∈ C0((0, δ];Hq0(Tn))
for each i, and each vi is also in Xδ,µ,q0 . However, since we only control the t ↘ 0 behavior of q
derivatives of the coefficients, we only hope to control the solution of the asymptotic value problem
in Xδ,µ,q.
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possibly after a slight change of the constants C and ρ. This verifies that w has

the sufficient number of distributional spatial derivatives to be considered a strong

solution, and in particular that there exists a ∂aw such that

−
∫ δ

0

( n∑
a=1

〈R[µ]tSaw, ∂aφ〉L2(Tn) +
n∑
a=1

〈(∂aR[µ])tSa +R[µ]t∂aS
a, φ〉L2(Tn)

)
dt

=

∫ δ

0

n∑
a=1

〈tSaR[µ]∂aw, φ〉L2(Tn)

Step 2: Existence of a time derivative. We must also verify that the solution is

differentiable in time. This is a consequence of the convergence of the sequence in

Xδ,µ,q. Define

v̂i :=
(
S0
)−1

(
f0 + F1vi −

n∑
a=1

tSa∂avi −N0vi

)
.

Since vi ∈ Xδ,µ,q, we have that v̂i ∈ Xδ,µ,q−1 for all i. Further, v̂i = Dvi for all

t ∈ [ti, δ]. Hence, for any δI ∈ (0, δ), there exists a sufficiently large i such that ti ≤ δI

and v̂i = Dvi for all t ∈ [δI , δ]. Moreover, due to the convergence of the sequence

{vi}, we find that

||v̂i − v̂j‖δ,µ,q−1 ≤ C‖vi − vj‖δ,µ,q → 0

for a uniform constant C > 0. Let v̂ denote the limit of {v̂i}, which is in the space

Xδ,µ,q−1. At this point we have shown that Dvi(t) = v̂i(t) → v̂(t) uniformly (that is,

independent of t) at every t ∈ [δI , δ]. An application of Theorem A.9 shows that under

the uniform convergences we have established thus far, Dw exists at each t ∈ [δI , δ]

as a Frechet derivative from [δI , δ] to Hq−1(T n) and Dw = v̂. Since δI ∈ (0, δ) can be
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made arbitrarily close to zero, the argument just presented applies for all t ∈ (0, δ],

and thus Dw ∈ Xδ,µ,q−1.

We now show that Dw is the distributional time derivative of w in the following

sense. First note that since D := t∂t, for any matrix-valued function M and any

ε > 0 ∫ δ

ε

D 〈Mw,ϕ〉 =

∫ δ

ε

∂t(t 〈Mw,ϕ〉L2(Tn))− 〈Mw,ϕ〉L2(Tn) dt.

Evaluating the boundary term we find

∫ δ

ε

∂t(t 〈Mw,ϕ〉L2(Tn))dt = −ε 〈Mw,ϕ〉L2(Tn)

∣∣∣
t=ε

,

which vanishes in the limit t↘ 0. Thus if it exists Dw, satisfies

∫ δ

0

〈MDw,ϕ〉 = −
∫ δ

0

(
〈(DM +M)w,ϕ〉+ 〈Mw,Dϕ〉

)
.

In the present case M = R[µ]S0, and the existence of Dw implies we can reverse the

integration-by-parts as in the discussion above Proposition 2.19. Combined with the

result from the spatial derivatives we obtain Eq. (2.27).

Step 3: Strong solutions. To complete the argument that w ∈ Xδ,µ,q just constructed

is a strong solution to the equation we verify that both L[w] and F[w] are in Xδ,µ,q−1.

This follows from the definition of linear symmetric hyperbolic Fuchsian systems

Definition 2.11, Lemma C.1, and the block-diagonality condition.

2.4.6. Extension Argument

So far we have proven the existence of solutions to the asymptotic value problem

for linear symmetric hyperbolic Fuchsian systems under the smooth perturbations
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condition that S0
1 , tS

a and, F1 are in the smooth subspaces of the relevant weighted

Sobolev spaces. In this section we extend this theory to equations where the

coefficients are general elements of Bδ,ζ,q(r).

In this section we consider linear symmetric hyperbolic Fuchsian systems of the

form

L[w] := S0Dw +
n∑
a=1

tSa∂aw +N0w = f0. (2.29)

We have dropped the linear source term F1w to simplify the arguments. This is no loss

of generality since below we use the result established in this section in a contraction

mapping argument, the conclusion of which is the full non-linear theorem. Note that

the term F1w has been introduced above in order to prove the higher order energy

estimates, since such terms arise in the derivation of the equations for ∂v. We obtain

the following proposition.

Proposition 2.20. Suppose Eq. (2.1) is a linear symmetric hyperbolic Fuchsian

system with parameters {δ, µ, q, q0, r} (with F1 ≡ 0) and thus of form Eq. (2.29),

with q0 > q + n/2 + 1 and q > n/2 + 1. Suppose also that with respect to µ the

energy dissipation matrix is positive definite and the system is block-diagonal. Then

for all f0 ∈ Xδ,ν,q with ν > µ there exists a solution w : (0, δ] × T n → Rd of the

linear asymptotic value problem with zero leading order term such that w ∈ Xδ,µ,q,

and Dw ∈ Xδ,µ,q−1. Further, the solution operator H [·] : f0 7→ w satisfies

‖H [f0] ‖δ,µ,q ≤ δρC‖f0‖δ,ν,q,

for uniform constants C, ρ.

The proof of this proposition relies on Proposition 2.19, for the existence of

solutions to the asymptotic value problem for linear symmetric hyperbolic Fuchsian
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systems with smooth perturbations. The basic idea is to approximate the system

in the general (non-smooth) case by a sequence of systems which have smooth

perturbations. Proposition 2.19 then provides a sequence of solutions to the smooth

equations, and we show that this sequence converges to a solution of the non-smooth

system.

Proof. Step 1: Construction of the sequence. Having specified a linear symmetric

hyperbolic Fuchsian system with zero leading order term, and coefficients S0
0 , N0 ∈

Hq0 and S0
1 , S

a ∈ Bδ,ζ,q(r) (not in the smooth subset), let {S0
1 [i]}, and {tSa[i]} be

sequences in Bδ,ζ,q(r) ∩ C∞((0, δ] × T n) which converge to S0
1 and tSa respectively.

For each i and the corresponding coefficients, define the linear symmetric hyperbolic

Fuchsian operator L[i] by

L[i][w̃] :=
(
S0

0 + S0
1 [i]

)
Dw̃ +

n∑
a=1

tSa[i]∂aw̃ +N0w̃,

and consider the sequence of linear symmetric hyperbolic Fuchsian equations

{L[i][w̃] = f0} with the same source f0 in each iterate. We make the following remarks:

(i) Because for each i, the perturbation coefficients S0
1 [i] and tSa[i] are in the space

Bδ,ζ,q(r)∩C∞((0, δ]×T n), each system is a linear symmetric hyperbolic Fuchsian

system with the same parameters {δ, µ, q, q0, r}.

(ii) Since S0
0 and N0 are the same for all i, the energy dissipation matrix

corresponding to each system is positive definite with respect to the same µ.

(iii) We choose S0
1 [i] and tSa[i] such that the system is block-diagonal with respect to

µ for each i.
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We would like to apply Proposition 2.19 in order to obtain a sequence of solution

operators {H[i][·]}, and a sequence of solutions {w[i]}. To do this we must ensure

that the sequence of DS0
1 [i] is uniformly bounded in Bδ,ξ,0(r̃). It turns out that this

property can be proved from the assumptions we have made thus far. The argument

is long and quite technical, and we simply cite the result from the proof of Proposition

2.13 in [3]. With this result, an application of Proposition 2.19 provides the sequence

of solutions {w[i]} given by

w[i] = H[i][f0],

with the property

‖w[i]‖δ,µ,q ≤ δρC‖f0‖δ,ν,q

for uniform constants which are also independent of i.

Step 2: Convergence of the sequence in Xδ,µ,q−1. We now show that this sequence

converges to a solution w of the asymptotic value problem with general (non-smooth)

coefficients in Bδ,ζ,q(r). For technical reasons we show this convergence first in the

space Xδ,µ,q−1. In Step 4 below we extend the convergence to Xδ,µ,q.

Let ξ[ij] := w[i] − w[j], and derive the equation

L[i][ξ[ij]] = −∆L[ij][w[j]],

where we have used L[i][w[i]] = L[j][w[j]] = f0, and where

∆L[ij][w] :=
(
L[i] − L[j]

)
[w]

=
(
S0

1 [i] − S
0
1 [j]

)
D[w] +

n∑
a=1

t
(
Sa[i] − Sa[j]

)
∂a[w].
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Note that this is a linear symmetric hyperbolic Fuchsian system for ξ[ij] with

parameters {δ, µ, q − 1, q0, r}. The change from q to q − 1 is due to the source term

which involves derivatives of w[j]. By an application of Proposition 2.19 we obtain

the estimate

‖ξ[ij]‖δ,µ,q−1 ≤ δρC‖f0‖δ,ν,q−1 = δρC‖∆L[ij][w[j]]‖δ,ν,q−1.

To show that {w[i]} is a Cauchy sequence in Xδ,µ,q−1 we show that the right hand side

of this inequality is bounded by a quantity which vanishes as i, j →∞. Note that

‖∆L[ij][w[j]]‖δ,ν,q−1 ≤ ‖
(
S0

1 [i] − S
0
1 [j]

)
D[w[j]]‖δ,ν,q−1

+
n∑
a=1

‖t
(
Sa[i] − Sa[j]

)
∂a[w[j]]‖δ,ν,q−1.

Using Lemma C.1, which provides a bound on the product of a matrix with a vector,

and the block-diagonal conditions we see that each product is in Xδ,µ+ζ,q−1. We may

bound the first term by

‖
(
S0

1 [i] − S
0
1 [j]

)
D[w[j]]‖δ,µ+ζ,q−1 ≤ C‖S0

1 [i] − S
0
1 [j]‖δ,ζ,q−1‖Dw[j]‖δ,µ,q−1.

Since we do not have control over Dw[j] in the limit j → ∞, we must eliminate this

term. We do this using the symmetric hyperbolic Fuchsian equation, from which it

follows that

‖Dw[j]‖δ,µ,q−1 ≤ ‖
(
S0

[j]

)−1
f0‖δ,µ,q−1 + ‖

(
S0

[j]

)−1
N0w[j]‖δ,µ,q−1

+
n∑
a=1

‖
(
S0

[j]

)−1
tSa[j]∂aw[j]‖δ,µ,q−1.

90



We now show that each of these terms can be bounded by C‖f0‖δ,ν,q, for a constant

C which depends only on r, (the radius of the perturbation space Bδ,ζ,q(r) associated

to the symmetric hyperbolic Fuchsian system) and in particular not on j. By the

splitting of S0, and the form of the inverse matrix Lemma C.20, it follows that(
S0

[j]

)−1

∈ Bδ,0,q(r̃) for some r̃ > 0. Further, since S0 has the block-diagonal structure

of µ, it is easily shown that
(
S0

[j]

)−1

commutes with R[µ] for each j.16

Let us first consider ‖
(
S0

[j]

)−1

f0‖δ,µ,q−1. Using the properties of
(
S0

[j]

)−1

, and

Lemma C.1 we compute

‖
(
S0

[j]

)−1
f0‖δ,µ,q−1 ≤ C‖R[µ]

(
S0

[j]

)−1R[−µ]‖δ,0,q−1‖f0‖δ,µ,q−1,

≤ C(r̃)‖f0‖δ,µ,q−1,

≤ C(r̃)‖f0‖δ,ν,q−1,

≤ C(r̃)‖f0‖δ,ν,q,

where in the second to last line we have used Lemma B.1, and in the last line

Lemma B.2.

Next consider the term ‖
(
S0

[j]

)−1

N0w[j]‖δ,µ,q−1. By the block-diagonal property

and properties of
(
S0

[j]

)−1

there exists an r̂ such that R[µ]
(
S0

[j]

)−1

N0R[−µ] ∈

Bδ,0,q(r̂) ⊂ Bδ,0,q−1(r̂). Hence, it follows that

‖
(
S0

[j]

)−1
N0w[j]‖δ,µ,q−1 ≤ C‖R[µ]

(
S0

[j]

)−1
N0R[−µ]‖δ,0,q−1‖w[j]‖δ,µ,q−1.

We claim ‖R[µ]
(
S0

[j]

)−1

N0R[−µ]‖δ,0,q−1 is bounded by a constant independent of

the particular perturbations, and depending only on r̂. This follows from the

16In fact one only needs R[µ]S0R[−µ] ∈ Bδ,0,q(s) here.
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Sobolev inequality and a Moser-type estimate Lemma A.11, and the block-diagonal

conditions. Further, ‖w[j]‖δ,µ,q−1 is bounded by C‖f0‖δ,ν,q for a uniform constant C

as a consequence of Lemma B.2 and the bound ‖w[j]‖δ,µ,q ≤ δρC‖f0‖δ,ν,q.

Lastly, consider the terms ‖
(
S0

[j]

)−1

tSa[j]∂aw[j]‖δ,µ,q−1. The matrix operator(
S0

[j]

)−1

tSa[j] ∈ Bδ,ζ̂,q(r̂) for some positive exponent scalar ζ̂ and some r̂ > 0 (not

necessarily the same as for the previous terms), while ∂aw[j] ∈ Bδ,µ−ε,q−1(s) for an

arbitrarily small ε > 0 (see Lemma B.6). Hence, similar arguments as for the two

terms above allow us to obtain the bound

‖
(
S0

[j]

)−1
tSa[j]∂aw[j]‖δ,µ,q−1 ≤ C‖R[µ−ε]

(
S0

[j]

)−1
tSa[j]R[−µ+ε]‖δ,ζ̂,q−1‖∂aw[j]‖δ,µ−ε,q−1,

where we note that ‖
(
S0

[j]

)−1

tSa[j]∂aw[j]‖δ,µ,q−1 ≤ C‖
(
S0

[j]

)−1

tSa[j]∂aw[j]‖δ,µ+ζ̂−ε,q−1.

Under the block-diagonality condition the first factor can be bounded by a constant

depending on r and r̃. It remains to show that ‖∂aw[j]‖δ,µ−ε,q−1 ≤ C‖f0‖δ,ν,q; this

follows from Lemma B.6 and ‖w[j]‖δ,µ,q ≤ C‖f0‖δ,ν,q.

At this point we have achieved

‖∆L[ij][w[j]]‖δ,µ+ζ,q−1 ≤ C‖S0
1 [i] − S

0
1 [j]‖δ,ζ,q−1‖f0‖δ,ν,q

+
n∑
a=1

‖t
(
Sa[i] − Sa[j]

)
∂a[w[j]]‖δ,µ+ζ,q−1.

for a uniform constant (in the sense of Definition 2.12) which is independent of i, j.

The second term can be handled in a manner similar as above to obtain

‖∆L[ij][w[j]]‖δ,µ+ζ,q−1 ≤ C‖S0
1 [i] − S

0
1 [j]‖δ,ζ,q−1‖f0‖δ,ν,q

+ C
n∑
a=1

‖t
(
Sa[i] − Sa[j]

)
‖δ,ζ,q−1‖f0‖δ,ν,q.
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Since the {S0
1 [i]} and {Sa[i]} are Cauchy sequences, the terms on the right hand side

of this inequality vanish as i, j → ∞, thus proving that {w[j]} is a Cauchy sequence

in Xδ,µ,q−1.

Step 4: A solution to the asymptotic value problem. We establish that the limit

w := limi→∞w[i] is a solution in a weak sense to the linear asymptotic value problem

with zero leading order term in a similar manner as in Proposition 2.17. Moreover,

each w[i] is a strong solution to the linear asymptotic value problem, which possesses

a time derivative Dw[i]. Arguments like those detailed in the proof Proposition 2.19

show that there exists a time derivative Dw ∈ Xδ,µ,q−2, and thus that w is a strong

solution.

Step 5: Convergence of the sequence in Xδ,µ,q. So far we have shown that the sequence

{w[i]} converges in Xδ,µ,q−1 to a function w, which has a time derivative Dw in the

space Xδ,µ,q−2. Moreover, we also know that each iterate w[i] is contained in the space

Xδ,µ,q, with the bound

‖w[i]‖δ,µ,q ≤ C‖f0‖δ,ν,q (2.30)

for a constant C independent of i. The constant C depends on the radius r associated

with the linear symmetric hyperbolic Fuchsian system, and each system is constructed

to have coefficients in a ball of this radius within the appropriate function space. Since

this situation comes up in other parts of the proof, we state the following general

lemma.

Lemma 2.21. Let {wi} be a sequence of functions in Xδ,µ,q(T
n), each of which

satisfies a linear symmetric hyperbolic Fuchsian system of the form Eq. (2.29) with

coefficients in bounded subset of the appropriate function spaces. Suppose that this

sequence is known to converge to w in Xδ,µ,q−1(T n), which also satisfies a linear
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symmetric hyperbolic Fuchsian system of the same type (in particular the coefficients

are in the same bounded subset). Further suppose that for each i, ‖wi‖δ,µ,q ≤ M , for

some M > 0 independent of i. Then, w ∈ Xδ,µ,q(T
n).

Proof of Lemma 2.21. Fix a t0 ∈ (0, δ] and consider the sequence {wj(t0)}. Since

each wj ∈ Xδ,µ,q, the map R[µ]wj is a continuous bounded map into Hq. Further,

sinceR[µ] is smooth, the sequence {wj(t0)} is bounded in Hq for any choice of t0. The

bound is uniform in that it is independent of j, but may depend on the choice of t0.

Due to the convergence in Xδ,µ,q−1 we also know that {wj(t0)} converges to a function

w|t0 ∈ Hq−1. From these two data and Corollary A.6, it follows that w|t0 ∈ Hq. Of

course this argument can be made for any t0 ∈ (0, δ], and so we have shown that

w : (0, δ] → Hq is bounded. However, we have no information on continuity; this

must be gained using the equation.

The limit, w, satisfies an equation of the form Eq. (2.29) where the perturbation

coefficients are contained in Bδ,ζ,q(r). Hence S0
1 and tSa are bounded continuous

maps of (0, δ] into Hq. Further, since ζ > 0, the t ↘ 0 behavior of S0
1 and tSa

is well-behaved and in fact S0
1 , tS

a ∈ C0 ((0, δ];Hq) . As a consequence, the theory

for linear symmetric hyperbolic systems implies that w ∈ C0 ((0, δ];Hq), and since

R[µ] ∈ C∞ ((0, δ]× T n) that R[µ]w ∈ C0 ((0, δ];Hq). In fact R[µ]w is bounded as a

consequence of the j →∞ limit of Eq. (2.30), and hence w ∈ X̂δ,µ,q.

The argument just given goes through for µ → µ + ε for any ε small compared

to ν − µ, and we find w ∈ X̂δ,µ+ε,q. It follows from the embedding Lemma B.5, that

w ∈ Xδ,µ,q.

Returning to the present step; since the sequence {w[i]} is uniformly (in i)

bounded by a constant, an application of Lemma 2.21 shows that limi→∞w[i] =:

w ∈ Xδ,µ,q. This completes the proof of Proposition 2.20.
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2.4.7. Uniqueness

At this point we have established that there exists a solution to the linear

asymptotic value problem for equations with coefficients which have perturbations

in the spaces Bδ,0,q(r). We now show that this solution is unique in Xδ,µ,q.

Proposition 2.22. Suppose Eq. (2.1) is a linear symmetric hyperbolic Fuchsian

system with parameters {δ, µ, q, q0, r} with q > n/2 + 1 and q0 > q+n/2 + 1. Suppose

also that with respect to µ the system is block-diagonal and the energy dissipation

matrix is positive definite. Then the solution of the asymptotic value problem (with

zero leading order term) for this system is unique in Xδ,µ,q.

Remark 2.23. (i) The solution is guaranteed to be unique only in the space Xδ,µ,q,

and there could in particular be another solution in the larger space Xδ,µ̃,q with

µ̃ < µ.

(ii) We have, without loss of generality, assumed the leading order term to be zero for

the linear systems. However, with a non-zero leading order term, one obtains the

same uniqueness result for the corresponding (in general different) asymptotic

value problem.

Proof. Let w and w̃ be two generally different solutions to the same asymptotic value

problem, and define ∆ = w− w̃. By linearity, ∆ satisfies L[∆] = f
(∆)
0 = 0, where L[·]

is given in Eq. (2.29), and f
(∆)
0 = 0 because the equations for both w and w̃ have the

same source term f0. From the definition, ∆ ∈ Xδ,µ,q and R[µ]∆ : (0, δ]→ Hq(T n) is

a continuous bounded map.17 It follows that ∆ ∈ Hq(T n) at each t ∈ (0, δ].

We wish to use the energy estimates in order to control the L2-norm of ∆ for

t ∈ (0, δ]. Fix a t0 ∈ (0, δ]. Then ∆(t, x) is the unique solution to the Cauchy initial

17Of course we cannot guarantee that ∆ alone is continuous map of (0, δ] to Hq.
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value problem with data ∆|t0(x) := ∆(t0, x) at t0. Because the system is a linear

symmetric hyperbolic Fuchsian system which satisfies the hypotheses of the basic

energy estimate, we have

‖R[µ]∆‖L2(t) ≤ C‖R[µ]∆‖L2(t0),

for all t ∈ [t0, δ] (recall f
(∆)
0 = 0). Moreover, this estimate holds for µ → µ − ε for

any ε > 0 for which the energy dissipation matrix is positive definite. Thus, using

the definition of R[µ], we have

‖R[µ− ε]∆‖L2(t) ≤ C‖R[µ− ε]∆‖L2(t0) ≤ Ctε0‖R[µ]∆‖L2(t0).

Since R[µ]∆ : (0, δ] → L2 is bounded, the limit t0 ↘ 0 of both sides is well-defined,

and the right-hand most side has a limit zero. To complete the argument, we note

that R[µ − ε](t, x) is positive and bounded at each t. It follows that ∆ = 0 on

(0, δ]× T n almost everywhere.

2.5. Existence and Uniqueness for Quasilinear Systems

In the previous section (Section 2.4.) we have shown that there exists a unique

solution to the asymptotic value problem for linear symmetric hyperbolic Fuchsian

systems. In this section we use the existence and uniqueness for the linear theory and

a fixed point argument to establish existence and uniqueness to the full quasilinear

system.

For a specified leading order term u0, the idea is to construct a sequence of

solutions {ui} with ui = u0 +wi via an operator G(u0) [·] : B → B for an appropriate

bounded set B of Xδ,µ,q. If we can show that the operator G(u0) [·] is bounded and is
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a contraction, then by the Banach fixed point theorem (Theorem A.13), there exists

a unique fixed point. The operator G(u0) [·] is constructed in such a way that the

fixed point is the desired solution to the quasilinear symmetric hyperbolic Fuchsian

system.

2.5.1. Construction of the operator G(u0) [·].

It is notationally convenient to define the following operator

L̂(u0 + v)[w] := S0(u0 + v)Dw +
n∑
a=1

tSa(u0 + v)∂aw +N0w. (2.31)

In terms of this operator the quasilinear symmetric hyperbolic Fuchsian system

Eq. (2.6) can be written

L̂(u0 + w)[w] = F(u0)[w].

Let w̃ be a fixed function in Bδ,µ,q(s) for some s > 0, and consider the linear equation

for w given by

L̂(u0 + w̃)[w] = φ,

for some specified function φ ∈ Xδ,ν,q. This equation is linear symmetric hyperbolic

Fuchsian as in Definition 2.11, and therefore the solution is given by the solution

operator

w = H(u0 + w̃) [φ] .

In the case φ = F(u0)[w̃] the system is also linear symmetric hyperbolic Fuchsian,

and w = H(u0 + w̃) [F(u0)[w̃]]. Define

G(u0) [w̃] := H(u0 + w̃) [F(u0)[w̃]] ,
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so that the solution to the linear asymptotic value problem with coefficients

parametrized by w̃ is given by w = G(u0) [w̃]. Further, the solution to the

quasilinear asymptotic value problem is a fixed point of the operator G(u0) [w]; that

is w = G(u0) [w].

For a prescribed leading order term u0, define the sequence {wi}i∈N by

w0 := 0, wi+1 := G(u0) [wi] .

We show that the sequence can be bounded in Bδ,µ,q(s) and that G(u0) [·] is a

contraction.

Note that each sequence element wi satisfies the linear symmetric hyperbolic

Fuchsian system

L̂(u0 + wi−1)[wi] = F(u0)[wi−1].

Further, due to the condition in the hypothesis of Theorem 2.10, that the system

be a quasilinear symmetric hyperbolic Fuchsian system as in Definition 2.7 in which

S0
1(·), tSa(·), and F(u0)[·] are bounded operators, Proposition 2.20 may be applied

to obtain a strong solution wi to this equation wi ∈ Bδ,µ,q(s), with a time derivative

Dwi ∈ Bδ,µ,q−1(s).

2.5.2. The sequence is bounded.

Suppose that for j = 0, . . . , N each wj ∈ Bδ,µ,q(s), for (δ, µ, q, s) as specified in

Theorem 2.10, and consider wN+1 = G(u0) [wN ]. We wish to show that ‖wN+1‖δ,µ,q ≤

s, for a sufficiently small choice of δ, and as a consequence the sequence is bounded.
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The estimate Eq. (2.28) (for in general non-smooth perturbations) implies that

‖wN+1‖δ,µ,q = ‖H(u0 + wN) [F(u0)[wN ]] ‖δ,µ,q ≤ δρC‖F(u0)[wN ]‖δ,ν,q,

for some ν > µ. Now, since it follows from the definition of QSHF systems that

F(u0)[·] is a bounded operator satisfying the Lipschitz property, F(u0)[·] satisfies

‖F(u0)[wN ]− F(u0)[0]‖δ,ν,q ≤ C(s, q)‖wN‖δ,µ,q.

Hence, by the reverse triangle inequality

‖F(u0)[wN ]‖δ,ν,q ≤ C(s, q)‖wN‖δ,µ,q + ‖F(u0)[0]‖δ,ν,q,

and we obtain the bound

‖wN+1‖δ,µ,q ≤ δρC(s, q)‖wN‖δ,µ,q + δρC‖F(u0)[0]‖δ,ν,q.

Note that ‖F(u0)[0]‖δ,ν,q is a non-decreasing function of δ. Hence, for an appropriately

smaller δ̄ ≤ δ,

δ̄ρC(s, q)
(
‖wN‖δ̄,µ,q + ‖F(u0)[0]‖δ̄,ν,q

)
≤ s,

where we have used ‖wN‖δ,µ,q ≤ s. This shows that the sequence {wi} is bounded in

Bδ̄,µ,q(s) for a sufficiently small δ̄.
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2.5.3. G(u0) [·] is a contraction.

We show that for any w, v ∈ Bδ,µ,q−1(s)

‖G(u0) [w]−G(u0) [v] ‖δ̄,µ,q−1 ≤ θ‖w − v‖δ̄,µ,q−1,

for θ ∈ [0, 1). The reason for proving this contraction property in the space Bδ,µ,q−1(s)

is similar to that in the proof of Proposition 2.20, and becomes clear below. Compute

‖G(u0) [w]−G(u0) [v]‖δ̄,µ,q−1

= ‖H(u0 + w) [F(u0)[w]]−H(u0 + v) [F(u0)[v]] ‖δ̄,µ,q−1

≤ ‖H(u0 + w) [F(u0)[w]− F(u0)[v]] ‖δ̄,µ,q−1

+ ‖H(u0 + w) [F(u0)[v]]−H(u0 + v) [F(u0)[v]] ‖δ̄,µ,q−1.

We now estimate both terms on the right hand side of this inequality. For the first

term, it follows from the estimate Eq. (2.28) and from the Lipschitz property of

F(u0)[·] that

‖H(u0 + w) [F(u0)[w]− F(u0)[v]] ‖δ̄,µ,q−1 ≤ Cδ̄ρ‖w − v‖δ̄,µ,q−1.

For a possibly smaller choice of δ̄, we find that θ1 := Cδ̄ρ < 1.

To estimate the second term, define

wA := H(u0 + w) [F(u0)[v]] , wB := H(u0 + v) [F(u0)[v]] ,

and note that L̂(u0 +w)[wA] = F(u0)[v] = L̂(u0 + v)[wB]. Subtracting L̂(u0 +w)[wB]

from both sides we obtain a linear symmetric hyperbolic Fuchsian system for the
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difference wA − wB

L̂(u0 + w)[wA − wB] = L̂(u0 + v)[wB]− L̂(u0 + w)[wB].

Notice that the source term for this equation is guaranteed to have only q − 1

derivatives. This is the same situation as in the proof of Proposition 2.20, and is the

reason we are working in the space Xδ,µ,q−1 rather than Xδ,µ,q. Assuming q > n/2 + 2

as in Theorem 2.10 we may apply Proposition 2.2018 to show that there is a (unique)

solution to this equation with the estimate

‖wA − wB‖δ̄,µ,q−1 ≤ Cδ̄ρ‖∆L(v, w)[wB]‖δ̄,ν,q−1,

for an appropriate ν > µ. We have defined the operator

∆L(v, w)[wB] :=
(
S0(v)− S0(w)

)
DwB +

n∑
a=1

t (Sa(v)− Sa(w)) ∂awB.

We know that wB is a strong solution to the linear asymptotic value problem L̂(u0 +

v)[w̃] = F(u0)[v], and as a result there exists a time derivative map DwB and a spatial

derivative ∂awB, both of which take values in Bδ̄,µ,q−1(s) ⊂ Bδ̄,µ,q−2(s). Further, the

coefficient matrices S0
1 , S

a ∈ Bδ̄,ζ,q(r) are bounded, satisfy the Lipschitz property, and

have the same block-diagonal structure as µ. Hence, we may apply Lemma C.1 in

18This is the source of the regularity requirement q > n/2 + 2 in Theorem 2.10.
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order to estimate

‖∆L(v, w)[wB]‖δ̄,ν,q−1 ≤ C
(
‖S0(v)− S0(w)‖δ̄,ζ,q−1‖DwB‖δ̄,µ,q−1

+
n∑
a=1

‖t (Sa(v)− Sa(w)) ‖δ̄,ζ,q−1‖∂awB‖δ̄,µ,q−1

)
≤ C

(
‖S0(v)− S0(w)‖δ̄,ζ,q−1 +

n∑
a=1

‖t (Sa(v)− Sa(w)) ‖δ̄,ζ,q−1

)
≤ C‖v − w‖δ̄,µ,q−1,

for an adapted constant C in each step. Thus for a sufficiently small δ̂ ∈ (0, δ̄] we

find

‖wA − wB‖δ̂,µ,q−1 ≤ θ2‖v − w‖δ̂,µ,q−1,

for some θ2 ∈ [0, 1).

Combining the estimates for both terms we obtain

‖G(u0) [w]−G(u0) [v] ‖δ̂,µ,q−1 ≤ θ1‖w − v‖δ̂,µ,q−1 + θ2‖w − v‖δ̂,µ,q−1,

≤ θ‖w − v‖δ̂,µ,q−1,

for θ := 1/2 max{θ1, θ2}. Since θ ∈ [0, 1) (controlled by the choice of δ̂), it follows

that G(u0) [·] is a contraction.

2.5.4. The fixed point is a solution.

Having shown that the sequence is bounded and that the operator G(u0) [·] is a

contraction, the Banach fixed point theorem (Theorem A.13) shows that there exists

a unique fixed point w = limi→∞wi ∈ Bδ̂,µ,q−1(s) such that w = G(u0) [w]. Due to
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the definition of H(u0) [·] (and hence G(u0) [·]), w is weak solution to L̂(u0 +w)[w] =

F(u0)[w].

Before we argue that w is in fact a strong solution to the equation above, we show

that w ∈ Bδ̂,µ,q(s), and not just Bδ̂,µ,q−1(s). The situation is as follows. We know that

for each i, wi ∈ Bδ̂,µ,q(s) (and is therefore uniformly bounded by s) and further that

{wi} converges to w (the limit point) in Bδ̂,µ,q−1(s). We have encountered this same

situation above in Step 5 of the proof of Proposition 2.20. There we proved a general

lemma, Lemma 2.21, which we apply here as well in order to show that w ∈ Bδ̂,µ,q(s).

To show that w is a strong solution of Eq. (2.6) we show that there exists

first distributional derivatives in time and space. As a result, we may reverse the

integration by parts in the weak version of the equation as in Section 2.4.5., to obtain

the strong version Eq. (2.27). Since w ∈ Bδ̂,µ,q(s), there exists first spatial derivatives

∂aw ∈ Bδ̂,µ,q−1(s). To show that there exists a time derivative Dw ∈ Bδ̂,µ,q−1(s),

note that for each i, wi in the sequence constructed above is a strong solution to a

linear symmetric hyperbolic Fuchsian system, and hence there exists a time derivative

Dwi ∈ Xδ,µ,q−1. Due to the uniform (in time) convergence of {wi} to w, we can show

as in the proof of Proposition 2.19 that Dwi converges uniformly to some ŵ ∈ Xδ,µ,q−1.

Applying Theorem A.9 we see that w is differentiable in time, and Dw = ŵ on any

set [δI , δ] ⊂ (0, δ]. Since we can take δI arbitrarily small, Dw = ŵ on (0, δ] and hence

Dw ∈ Xδ,µ,q−1. This completes the proof that w is a strong solution.

2.5.5. The case q →∞.

To complete the proof of Theorem 2.10 we consider the case in which q → ∞.

For any finite q > n/2 + 2, we have now shown that there exists a solution to the

asymptotic value problem with remainder w ∈ Xδq ,µ,q for some δq > 0. Note that
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many of the constants in the estimates we have used in principle depend on q. It is

conceivable that as q → ∞ it may be necessary to take δq → 0. The extendibility

of solutions to the initial value problem for symmetric hyperbolic systems under

sufficient regularity conditions shows that we can always take δ = δn+2.

Suppose a finite q > n/2 + 2 has been fixed, and w(t, x) is the resulting unique

solution to the asymptotic value problem about u0 in Xδq ,µ,q. Then for any t0 ∈ (0, δq],

w(t, x) satisfies the Cauchy initial value problem on [t0, δq]× T n with data w|0(x) :=

w(t0, x) ∈ Hq(T n) at t0. The well-posedness of the Cauchy initial value problem

(Proposition 1.4, Chapter 16 of [85]) shows that w ∈ C ([t0, δq];H
q(T n)). Since the

coefficients in the equation Eq. (2.6) depend smoothly on all arguments19 we may

apply Proposition 1.5 from Chapter 16 of [85] to show that there exists a δ∗ > δq such

that w ∈ C ([t0, δ∗];H
q(T n)). Since, q = n + 2 > n/2 + 2 is the minimum (integer)

regularity required in order apply the Theorem 2.10, we can take δ∗ = δn+2. This

shows that for any finite q, which may be taken arbitrarily large, each corresponding

solution w can be extended to exists on the interval (0, δn+2]. This completes the

proof of Theorem 2.10.

2.6. A Fuchsian Theorem for Smooth Systems

In this section we develop the theory for the special case in which u0 depends

smoothly on both the spatial and time variables (i.e. u0 is C∞((0, δ) × T n)),

and the system is a smooth quasilinear symmetric hyperbolic Fuchsian system as

in Definition 2.7 and the comment below that definition. The main result is

Theorem 2.28, which establishes the existence and uniqueness of solutions to the

smooth asymptotic value problem under suitable hypotheses. A similar result could

19See definition of smooth quasilinear symmetric hyperbolic Fuchsian systems in paragraph below
Definition 2.7.
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be proved in the finite differentiability case. However, our aim here is not to prove a

Fuchsian theorem in all generality, but to provide a compact, easily checked theorem

for the “smooth” case, which is readily applied to our systems of interest.

The version of the theory presented in this section was developed by Florian

Beyer and myself. This theory builds upon and improves an earlier set of results with

F. Beyer, J. Isenberg, and P.G. LeFloch which is published in [3].

2.6.1. Motivation and Outline

The motivation for developing the theory in this section is that in applications

(such as that in Chapter III), it may be impossible to satisfy all the hypotheses of

Theorem 2.10 simultaneously, or the conditions that these hypotheses impose on the

parameters in the problem are unsatisfactory. The conflict arises when simultaneously

satisfying the block-diagonal conditions, the positivity of the energy dissipation

matrix, and the desired properties of F(u0)[·] in the definition of quasilinear symmetric

hyperbolic Fuchsian systems (Definition 2.7). Each of these conditions imposes

inequalities, or equalities in the case of the block-diagonal condition, and it may

happen that these inequalities directly conflict, or as in the case of the Chapter III

application, constrain the asymptotic data functions in u0. Such breakdown in the

applicability of Theorem 2.10 can be taken (as we show in this section) as evidence

that the prescribed leading order term does not contain enough information. By

adding a higher order correction to the leading order term, such as an asymptotic

solution which we discuss below, Theorem 2.10 can be successfully applied.

In Section 2.6.2. we introduce the additional structural conditions which are

required on Eq. (2.1), and state the existence and uniqueness theorem Theorem 2.28.

In the following sections we introduce the mathematical machinery, which is used
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in proving this theorem. Section 2.6.3. introduces the notion of an asymptotic

solution and proves an existence and uniqueness theorem in the case that one has

such an asymptotic solution. In Section 2.6.4. we construct an “ODE-formulation”

of the Fuchsian system Eq. (2.6). This formulation can be used to construct and

improve asymptotic solutions using the equation and prescribed leading order terms

via an iterative process. At each iteration one degree of regularity in the spatial

derivatives is lost. To ensure that we obtain asymptotic solutions with sufficient

regularity we work in the smooth category, although similar results can be obtained by

starting with a leading order term in a Sobolev space with sufficiently high regularity.

Having developed these tools we implement them in the proof of Theorem 2.28 in

Section 2.6.5. and Section 2.6.6.. In the last subsection, Section 2.6.7., we prove a

few results from Section 2.6.4. whose proofs were omitted earlier in the interest of

streamlining the presentation.

2.6.2. Structural Properties and Statement of the Theorem

We start by introducing additional structural properties which are needed of

Eq. (2.6). In this section we consider the situation where the prescribed leading

order term u0 is modified by a function w ∈ Bδ,µ,q(s). In proving the results of

Section 2.6.3. and Section 2.6.4. it is necessary to control products of the form

(Sj(w)− Sj(w + h)) ∂jw, where h ∈ Xδ,µ̂,q for some µ̂ ≥ µ. The following property

make sense in light of Lemma C.1.

Definition 2.24 (Higher-order difference property). Suppose F : Xδ,µ,q → Xδ,ν,q is a

function operator satisfying the Lipschitz property, and let µ̂ ≥ µ be another exponent
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vector. F satisfies the higher-order difference property with respect to µ̂ if

h 7→ ∆Fw(h) := F (w + h)− F (w)

maps all h ∈ Bδ′,µ̂,q(s/2) to Xδ′,µ̂+ν−µ,q for each w ∈ Bδ′,µ,q(s/2) and all δ′ ∈ (0, δ],

and satisfies the Lipschitz property.

The next two definitions record where this property is required in the principle

part and source terms in the equation.

Definition 2.25 (Product compatibility conditions). Suppose that Eq. (2.1) is

a quasilinear symmetric hyperbolic Fuchsian system around u0 with parameters

{δ, µ, q, q0, s}, as specified in Definition 2.7. Pick another exponent µ̂ with µ̂ ≥ µ.

This system satisfies the product compatibility conditions with respect to µ̂

provided for all w ∈ Bδ,µ,q(s), there is a positive exponent vector ζ̃ such that

(i) The function operator

w 7→ R[µ]S0
1(u0 + w)R[−µ] ∈ Xδ,ζ̃,q

satisfies the higher-order property with respect to µ̂ in both the q and the (q− 1)

norms.

(ii) The function operator

w 7→ R[µ]tSa(u0 + w)R[−µ] ∈ Xδ,ζ̃,q

satisfies the higher-order property with respect to µ̂ in both the q and the (q− 1)

norms.
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Similar properties are required of the source term F(u0)[w]. We have

Definition 2.26 (Higher order source conditions). The function operator w 7→

F(u0)[w] ∈ Xδ,ν,q obeys the higher order source conditions with respect to µ̂

if for a fixed µ̂ ≥ µ it satisfies the higher-order property with respect to µ̂ in both the

q and (q − 1) norms.

Next, we note that one of the strengths of the theorem in this section over

Theorem 2.10 is that we no longer require the system Eq. (2.1) to be block-diagonal

with respect to µ. Instead we demand the following weaker property:

Definition 2.27 (Smooth commutator conditions). For all w ∈ Bδ,µ,q(s), there exists

an exponent scalar ξ > 0 and an r > 0 such that R[µ]S0
0 = S0

0R[µ], R[µ]N0 = N0R[µ]

and the function operators

w 7→ R[µ]tSa(u0 + w)R[−µ] and w 7→ R[µ]S0
1(u0 + w)R[−µ]

take values in Bδ,ξ,q(r) for all q > n/2.

We may now state the main result of this section.

Theorem 2.28 (Solutions to the asymptotic value problem for smooth Fuchsian

systems). Suppose that Eq. (2.1) is a smooth quasilinear symmetric hyperbolic

Fuchsian system around u0 with parameters {µ, δ, s} which satisfies the smooth

commutator conditions. Further suppose that for all q ≥ p > n/2, for some integer p

we have

(i) the system Eq. (2.6) satisfies the product compatibility conditions Definition 2.25

with respect to both µ̂ = µ+γ0, where γ0 is a exponent scalar and µ̂ with respect

to which Eq. (2.6) is block-diagonal.
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(ii) the system Eq. (2.6) satisfies the higher order source conditions Definition 2.26

with respect to both µ̂ = µ+γ0, where γ0 is a exponent scalar and µ̂ with respect

to which Eq. (2.6) is block-diagonal.

(iii) let λ be the vector of eigenvalues of the matrix N := S0
0
−1
N0. Then the exponent

vector µ satisfies the positivity condition

µ > −<λ.

Then there exists a unique solution of the asymptotic value problem for Eq. (2.1) about

u0 with remainder w ∈ Xδ̃,µ,∞, Dw ∈ Bδ̃,µ,∞ and for some δ̃ ∈ (0, δ].

This theorem makes several refinements and improvements upon the

corresponding theorem in [3] (Theorem 2.21). First, we replace the condition that

N be in Jordan normal form by the smooth commutator conditions Definition 2.27.

This represents a slight loosening of the hypotheses, since under these conditions

one can transform to the Jordan basis without destroying the essential structure

of the equation. We note that this hypothesis is satisfied by the polarized T 2-

symmetric Einstein equations which we consider in [3] and in Chapter III. Second,

in Theorem 2.28 we do not require the separate conditions on (S0(u0 + w))
−1

which

are included in the hypotheses of Theorem 2.21 in [3]. These properties are shown in

Section C.4. to follow from the assumptions on S0. Finally, the leading order term

u0 in Theorem 2.28 is not required to be an “ODE-leading-order” term as it is in [3].

We remark that the proof of Theorem 2.28 relies on the application of

Theorem 2.10. Since the hypotheses of Theorem 2.28 are assumed to hold for

all q > n/2, and in the smooth systems q0 = ∞, the regularity requirements of

Theorem 2.10 are satisfied. The proof of the existence of solutions to the asymptotic
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value problem in the smooth case is contained in Section 2.6.5., while the proof of

the uniqueness of this solution is detailed in Section 2.6.6..

To apply Theorem 2.28 to particular partial differential equations, such as the

Einstein equations in Chapter III and Chapter IV, it is convenient to verify conditions

Condition (i) and Condition (ii) for large classes of function operators. In Appendix C

we show these properties for the types of function operators which appear in our

applications in the cases that µ̂ = µ+γ0, where γ0 is a scalar, and µ̂ is a scalar exponent

itself (that is µ̂ is “completely block-diagonal”), or where certain components of µ̂

are allowed to differ by ±ε –the “nearly scalar” case.

It has recently come to light that there is a technical difficulty in applying this

theorem to our equations in Chapter III and Chapter IV. The issue is in satisfying

Condition (ii) with respect to a µ̂ which is block-diagonal. It turns out that it

is insufficient in our applications to verify this property for a scalar “completely

block-diagonal” µ̂. The next approach is to seek a “nearly scalar” µ̂ and ensure

that one can find a consistent ordering of the components. While this is possible in

the T 2-symmetric application (c.f. Chapter III), it severely limits the range of the

asymptotic data function k, thus rendering the application of this theorem mute. For

the application to the Gowdy spacetimes (c.f. Chapter IV) it has become clear that

one cannot find a consistent ordering of the components without choosing a different

leading order term altogether. While this is a serious issue, we believe that it is

ultimately technical in nature, and that the results Theorem 3.10 and Theorem 4.4

which we obtain are essentially correct.

The reason we believe our results are essentially correct is that it preliminary

calculations seem to indicate that the main obstacles can be overcome by another

method. Recall that the essential problem in applying the fundamental Fuchsian
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theorem to the second order equations in Chapter III and Chapter IV is in

simultaneously meeting the block-diagonal conditions and the positivity of the energy

dissipation matrix. The first-order reduction which we use forces (via the energy

dissipation matrix condition) a unnaturally large lower bound on the block-diagonal

exponent vector µ. Our thought up to recently was that this problem was solved in

the present section by allowing the exponent vectors which satisfy these conditions

to be different (µ vs µ̂). However, this issue can be overcome by another method. It

seems that by using a slightly more general first-order reduction we can control the

unnatural lower bound from the energy dissipation matrix. The original Fuchsian

theorem can then be used with a block-diagonal exponent vector. A more complete

treatment of these ideas is forthcoming in [2].

2.6.3. Asymptotic Solutions

Although we state and prove Theorem 2.28 for smooth systems, the concepts and

results in this sub-section (Section 2.6.3.) apply in the finite differentiability case. We

begin by introducing the following useful concept of an asymptotic solution.

Definition 2.29. Let µ, σ be exponent vectors with σ > 0 and let δ, s > 0. The

function ŵ ∈ Bδ,µ,q+1(s) is called an asymptotic solution of order σ (or a σ-

asymptotic solution) of Eq. (2.1) with respect to u0 if

R(u0)[ŵ] :=
n∑
j=0

Sj(u0 + ŵ)t∂jŵ +N0(u0)ŵ − F(u0)[ŵ] (2.32)

is contained in Xδ,σ,q.

We call ŵ a smooth asymptotic solution of order σ if it is in Bδ,µ,q(s) for

all q > n/2.
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Lemma 2.30 (Boundedness of R(u0)[ŵ]). Suppose Eq. (2.1) is a quasilinear

symmetric hyperbolic Fuchsian system about u0 with parameters {δ, µ, q, q0, s} which

satisfies the smooth commutator conditions Definition 2.27. Let ŵ ∈ Bδ,µ,q+1(s) be a

σ-asymptotic solution. Then, there exists an r > 0 such that R(u0)[ŵ] ∈ Bδ,σ,q(r).

That is, R(u0)[ŵ] is bounded.

This result follows from the definition of quasilinear symmetric hyperbolic

Fuchsian systems, the smooth commutator conditions, and Lemma C.1.

The proof of Theorem 2.28 relies on an application of Theorem 2.10 to the

asymptotic value problem for Eq. (2.1) about û0 = u0 + ŵ, where ŵ is an asymptotic

solution of sufficiently high order. We state this result for the existence and uniqueness

of solutions to the asymptotic value problem based on asymptotic solutions in

Proposition 2.32. We first show that if one has a quasilinear symmetric hyperbolic

Fuchsian system about u0 with parameters {δ, µ, q, q0, s}, an asymptotic solution

ŵ, and if certain conditions are met, then one may obtain a quasilinear symmetric

hyperbolic Fuchsian system in a more tightly controlled space with parameter µ̂ ≥ µ.

Lemma 2.31. Suppose Eq. (2.1) is a QSHF system about u0 with parameters

{δ, µ, q, q0, s}, and suppose that ŵ ∈ Bδ,µ,q+1(s/2) for some q > n/2 is a σ-asymptotic

solution with Dŵ ∈ Xδ,µ,q. Then, Eq. (2.1) is a QSHF system about û0 = u0 + ŵ

with parameters {δ, µ̂, q, q0, s/2} for any µ ≤ µ̂ < σ, provided the higher order source

conditions (Definition 2.26 ) and the product compatibility conditions (Definition 2.25

) with respect to µ̂ hold.

Note that we tacitly assume (always in this document) that µ is greater than the

exponent vector for the leading order term u0. We present a proof of Lemma 2.31

below. The following proposition is a consequence of Lemma 2.31 and Theorem 2.10.
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Proposition 2.32. Suppose the conditions of Lemma 2.31 are met. Furthermore

suppose the smooth commutator conditions (Definition 2.27) are satisfied with respect

to µ, that q0 > n/2 + q + 1, that q > n/2 + 2, and that σ is sufficiently large enough

so that there exists an exponent vector µ̂ with µ ≤ µ̂ < σ for which the system is

block-diagonal and with respect to which the energy dissipation matrix Eq. (2.7) is

uniformly positive definite at all (t, x). Then there exists a unique solution u to the

asymptotic value problem for Eq. (2.1) about û0 with remainder h := u − u0 − ŵ

belonging to Xδ̃,µ̂,q and Dh ∈ Xδ̃,µ̂,q for some δ̃ ∈ (0, δ].

The regularity conditions on q and q0 along with the assumption on σ allow

us to apply Theorem 2.10 to the AVP of Eq. (2.1) about û0. Note that although

Proposition 2.32 provides a unique solution with the leading order term û0 = u0 + ŵ,

and is a solution to the AVP(u0) under the conditions we have imposed, there could

still be other solutions with leading order term u0. Below we show that only if further

conditions are met, is it true that the solution identified in Proposition 2.32 is the

unique solution to the AVP about u0.

Proof of Lemma 2.31. To prove Lemma 2.31 we verify that the conditions of

Definition 2.7 are satisfied with the leading order term û0 = u0 + ŵ. Condition (i) is

clearly satisfied, since the structure of the matrices has not been altered.

Regarding Condition (ii) we note that S0
0 is unchanged since this depends on

the limiting t↘ 0 behavior of the leading order term, which is unchanged. Next we

verify that for the fixed ŵ ∈ Bδ,µ,q+1(s/2), the operators

h 7→ S0
1(ŵ + h), h 7→ tSa(ŵ + h)
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map all h ∈ Bδ,µ̂,q(s/2) to Bδ,ζ,q(r) (i.e. are bounded operators) for some ζ > 0

and satisfy the (q − 1) Lipschitz property. The boundedness property follows from

Condition (ii) and from the fact that ŵ + h ∈ Bδ,µ,q(s). To verify the Lipschitz

property note that for all ŵ ∈ Xδ,µ,q, we have

‖S0
1(ŵ + h)− S0

1(ŵ + h̃)‖δ,ζ,q−1 ≤ C‖ŵ + h− ŵ + h̃‖δ,µ,q−1

= C‖h− h̃‖δ,µ,q−1

≤ C‖h− h̃‖δ,µ̂,q−1,

where in the last line we have used Lemma B.1. This shows the desired Lipschitz

property for h, h̃ ∈ Xδ,µ̂,q.

Lastly we verify Condition (iii). Again, the limiting function N0 remains

unchanged, and we proceed to verify that

F(û0)[h] = f1(û0 + h)−
n∑
j=0

tSj(û0 + h)∂jû0

maps all h ∈ Bδ,µ̂,q(s/2) to a ball in Xδ,ν̂,q for some ν̂ > µ̂, and satisfies the Lipschitz

properties in both the q and (q − 1) norms. To derive a more useful expression for

F(û0)[h], note that

L̂(u0 + ŵ)[h] :=
n∑
j=0

tSj(û0 + h)∂jh+N0h = F(û0)[h],

and

L̂(u0 + ŵ)[ŵ + h] = F(u0)[ŵ + h],
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while by linearity in the second argument we have

L̂(u0 + ŵ)[ŵ + h] = L̂(u0 + ŵ)[ŵ] + L̂(u0 + ŵ)[h].

Combining these observations we find

L̂(u0 + ŵ)[ŵ] + F(û0)[h] = F(u0)[ŵ + h],

and thus

F(û0)[h] = F(u0)[ŵ + h]−
n∑
j=0

tSj(û0 + h)∂jŵ −N0ŵ. (2.33)

We now use the fact that ŵ is an asymptotic solution to Eq. (2.1). Towards this end

we add and subtract
∑n

j=0 tS
j(u0 + ŵ)∂jŵ to the above equation, and use Eq. (2.32)

to obtain

F(û0)[h] = −∆F(û0)[h]−
n∑
j=0

t∆Sj(û0)[h]∂jŵ −R(u0)[ŵ], (2.34)

where

∆F(û0)[h] := F(u0)[ŵ]− F(u0)[ŵ + h] (2.35)

∆Sj(û0)[h] := Sj(u0 + ŵ)− Sj(u0 + ŵ + h). (2.36)

In order to verify the desired properties of F(û0)[h] needed to satisfy Condition (iii), it

is sufficient to verify that these properties are satisfied for each term in Eq. (2.34). We

start with theR(u0)[ŵ] term. This can be treated as a function operator h 7→ R(u0)[ŵ]

(independent of h), which is contained in Xδ,σ,q. In fact, due to Lemma 2.30 there

exists r̃ > 0 such that R(u0)[ŵ] ∈ Bδ,σ,q(r̃). This is a function operator of the
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appropriate form under the hypothesis that µ̂ < σ, and satisfies the Lipshitz property

trivially. Further, the requisite conditions on ∆F(û0)[h] follow from the hypotheses

and Definition 2.26.

We now focus our attention on the terms in ∆Sj(û0)[h]. Let

I[h] := ∆S0(û0)[h]Dŵ =
(
S0

1(û0)− S0
1(û0 + h)

)
Dŵ,

II[h] :=
n∑
a=1

t∆Sa(û0)[h]∂xaŵ =
n∑
a=1

t (Sa(û0)− Sa(û0 + h)) ∂xaŵ.

Then under Condition (i) of Definition 2.25, I[h] maps h to Bδ,µ̂+ζ,q(r) for some r > 0.

Moreover, for all h, h̃ ∈ Bδ,µ̂,q(s/2),

‖I[h]− I[h̃]‖δ,µ̂+ζ,q

≤ C‖R[µ]∆S0(û0)[h]R[−µ]−R[µ]∆S0(û0)[h̃]R[−µ]‖δ,µ̂+ζ−µ,q‖Dŵ‖δ,µ,q

≤ C‖h− h̃‖δ,µ̂,q,

where in the first inequality we have used Lemma C.1, and in the second we have

used that ŵ is bounded and Condition (i) of Definition 2.25. A similar computation

holds in the case of (q − 1) regularity.

Similarly, for each term in II[h], the appropriate map type and boundedness

requirements follow from Condition (ii) of Definition 2.25, from the boundedness of

ŵ, and from Lemma C.1. Under the same hypotheses similar calculations as above

may be performed to verify the Lipschitz conditions (in q and q− 1 norms) for II[h].

This completes the proof that F(û0)[h] in Eq. (2.34) satisfies the properties of

Condition (iii), and hence the proof of Lemma 2.31.
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2.6.4. ODE-Formulation and a Sequence of Asymptotic Solutions

In the previous section we have shown that if one has an asymptotic solution of

sufficiently high order, then it can be used to modify the prescribed leading order term

in order to apply Theorem 2.10 and obtain a unique solution to the asymptotic value

problem. However, the solution thus obtained is guaranteed only to be the unique

solution of the asymptotic value problem about the modified leading order term, and

not the original prescribed one. In this section we develop a formulation, which we call

the “ODE-formulation” that is useful for constructing and improving such asymptotic

solutions. Using this formulation we are able to prove under certain conditions that

the solution to the asymptotic value problem identified above is the unique solution

to the asymptotic value problem about the original prescribed leading order term.

The results of this section are critical for the proof of Theorem 2.28. While in the

section above we have stated results for finite regularity q, here we restrict to the

smooth case, q →∞.

From the definition of quasilinear symmetric hyperbolic Fuchsian systems

Definition 2.7, it is clear that the coefficients S0
0 and N0 dominate in the limit t↘ 0.

As a result, the partial differential equation Eq. (2.6) may under some circumstances

be well-approximated near t↘ 0 by the space-parameterized set of ODEs of the form

S0
0Dw + N0w = O(tµ+ε) for some ε > 0, and where we take w ∈ Xδ,µ,q as usual. We

use this observation to introduce “ODE”-operators corresponding to the quasilinear

symmetric hyperbolic Fuchsian system, and use these operators to understand the

leading order behavior of certain solutions. Given a leading order term u0, let

LODE(u0)[v] := Dv +N (x)v, (2.37)
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where N := (S0
0(u0))

−1
N0(u0), be the ODE-operator associated to the quasilinear

symmetric hyperbolic Fuchsian system Eq. (2.6). Since u0, and thus (S0
0(u0))

−1
and

N0(u0) are C∞(T n), and since S0
0 is invertible, N is well-defined and C∞(T n). For a

prescribed leading order term, the system Eq. (2.6) can be written

LODE(u0)[w] = FODE(u0)[w], (2.38)

where LODE(u0)[w] is given by Eq. (2.37), and where

FODE(u0)[w] :=
(
S0(u0 + w)

)−1
F(u0)[w]

−
n∑
a=1

(
S0(u0 + w)

)−1
Sa(u0 + w)t∂xaw

−
((
S0(u0 + w)

)−1 −
(
S0

0(u0)
)−1
)
N0(u0)w.

(2.39)

The operator FODE(u0)[·] has the following properties.

Lemma 2.33 (Properties of FODE(u0)[·]). Suppose that Eq. (2.1) is a smooth

quasilinear symmetric hyperbolic Fuchsian system around u0 with parameters

{δ, µ, s/2}. Suppose further that the smooth commutator conditions Definition 2.27

are satisfied, and that the product compatibility conditions (Definition 2.25) and the

higher order source conditions (Definition 2.26) are satisfied with respect to µ̂ = µ+γ0,

with some exponent scalar γ0 ≥ 0, and for all q > n/2 + 1.

Then there exists an exponent scalar γ such that 0 < γ < min{ν − µ, ζ}, and a

constant r > 0 independent of γ0, so that for all w ∈ Bδ′,µ,q(s/2) and h ∈ Bδ′,µ̂,q(s/2),

w 7→ FODE(u0)[w] ∈ Bδ′,µ+γ,q−1(r) (2.40)
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and

h 7→ FODE(u0)[w]− FODE(u0)[w + h] ∈ Bδ′,µ̂+γ,q−1(r) (2.41)

for all δ′ ∈ (0, δ] and for all q > n/2 + 1.

The inequality q > n/2 + 1 in this lemma arises from the condition that the

various properties involving q − 1 hold for all q > n/2. This lemma is proved below

in Section 2.6.7..

Under conditions which guarantee that LODE(u0)[w] dominates near t ↘ 0, we

can use this formulation of the Fuchsian system to construct a sequence of asymptotic

solutions as in Definition 2.29. Suppose the right hand side of Eq. (2.38) is just a

function of the coordinates f(t, x):

LODE(u0)[v] = f. (2.42)

If W (t, x) denotes the fundamental solution to the homogeneous equation

LODE(u0)[v] = 0, then the general solution to Eq. (2.42) may be formally written

as

v(t, x) = W (t, x)(u∗,1(x), . . . , u∗,n(x))T +W (t, x)

∫ t

0

s−1W−1(s, x)f(s, x)ds,

for a spatially-parameterized Rd-valued “initial data” function u∗(x). We may then

formally define the operator

HODE(u0) [f ] (t, x) := W (t, x)

∫ t

0

s−1W−1(s, x)f(s, x)ds, (2.43)

which, if it exists, maps a given source function f to the particular solution w =

HODE(u0) [f ] of Eq. (2.42) determined by (u∗,1(x), . . . , u∗,d(x)) = 0.
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Lemma 2.34 (Existence and properties of HODE(u0) [w]). Suppose Eq. (2.1) is a

smooth quasilinear symmetric hyperbolic Fuchsian system with parameters {δ, µ, s/2}

such that µ has the block-diagonal structure of N , and µ > −<(λ), where λ is the

vector of eigenvalues of N . Then for any r > 0, for all q > n/2 and for any scalar

exponent γ > 0, there exists r̃ > 0, and an exponent scalar η > 0 which may be taken

arbitrarily small, such that

HODE(u0) [·] : Bδ,µ+γ,q(r)→ Bδ,µ+γ−η,q(r̃).

In particular, for every f ∈ Xδ,µ+γ,q we have the estimate

‖HODE(u0) [f ] ‖δ,µ+γ−η,q ≤ Cδκ‖f‖δ,µ+γ,q, (2.44)

for constants C, κ > 0.

The scalar exponent η represents a loss of control due to the presence of log t

terms. It can be chosen to be zero only if all eigenvalues of N have multiplicity equal

to one. In the more general case, η must be chosen to be positive, but it can be chosen

arbitrarily small. Details and the proof of Lemma 2.34 are found in Section 2.6.7.

below.

The idea for the proof of Theorem 2.28 is to construct a sequence of asymptotic

solutions using the composition of FODE(u0)[·] and HODE(u0) [·]; we record some

properties of this composition now. The proof of these properties is detailed in

Section 2.6.7. below.

Lemma 2.35 (Properties of the composition). Suppose that Eq. (2.1) is a quasilinear

symmetric hyperbolic Fuchsian system around u0 with parameters {δ, µ, s/2}, as

specified in Definition 2.7 such that the hypotheses of Lemma 2.33 and Lemma 2.34
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are satisfied. Let ŵ ∈ Bδ,µ,q+1(s/2) be a smooth σ-asymptotic solution of Eq. (2.1)

around u0 with σ = µ + β for some strictly positive exponent scalar β20 and for any

q > n/2. Then the function

w̌ := HODE(u0) [FODE(u0)[ŵ]]

is well-defined, and for some ε > 0 is an element of Bδ̌,µ+ε,q(s/2) ⊂ Bδ̌,µ,q(s/2) for

some δ̌ ∈ (0, δ]. Furthermore, w̌ is a (σ + ∆)-asymptotic solution for an exponent

scalar ∆ > 0.

The exponent scalar ∆ is equal to γ−η, where η can be chosen arbitrarily small,

and γ is bounded above by ν − µ, and by ζ. The property specified by Eq. (2.41) is

used in showing that the function w̌ is an asymptotic solution of higher order than

ŵ.

2.6.5. Existence for Theorem 2.28

As mentioned in the outline above, the proof of Theorem 2.28 is based on

constructing an improving sequence of asymptotic solutions, verifying that under

the hypotheses of the theorem we can generate an asymptotic solution of sufficiently

high order, and finally applying Proposition 2.32.

Theorem 2.28, proof of existence. We start by constructing a sequence of asymptotic

solutions using the ODE theory from Section 2.6.4., and in particular Lemma 2.35.

Define {ŵ(i)}i∈Z+ by

ŵ(0) = 0, ŵ(i+1) = HODE(u0)
[
FODE(u0)[w(i)]

]
.

20Note that if ŵ is a σ̃-asymptotic solution for arbitrary σ̃ > µ, then there exists a 0 < β < σ̃− µ
such that ŵ is a (µ+ β)-asymptotic solution.
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We claim that {ŵ(i)}i∈Z+ is a well-defined sequence of asymptotic solutions in

Bδ̃,µ,q(s/2) for some δ̃ ∈ (0, δ], and for all q > n/2. Moreover, there exists an iterate

ifinal, such that ŵ(ifinal) is an asymptotic solution of sufficiently high order σ(ifinal) so

that there exists a µ̂ < σ(ifinal), with respect to which the system is block-diagonal,

and the energy dissipation matrix is positive definite.

Consider ŵ(0) = 0. The left-hand side of Eq. (2.6) vanishes, while the right-

hand side is hypothesized to be in the space Xδ,ν,q for some ν > µ and for all q >

n/2. In particular, ŵ(0) is a ν-asymptotic solution. In order to apply the lemmas

of Section 2.6.4., we track a particular sequence of asymptotic solutions, those of

the form σ(i) = µ + β for some scalar exponent β. With this in mind, fix β such

that µ + β < ν, and note that ŵ(0) = 0 is a (µ + β)-asymptotic solution. We then

check if there exists a µ̂ satisfying µ < µ̂ < µ + β such that with respect to µ̂

the Fuchsian system Eq. (2.6) is block-diagonal and the energy dissipation matrix is

positive definite (such a µ̂ satisfies the hypotheses of Proposition 2.32). Of course

if ν is large enough (and so β may be chosen large enough) so that we can find a

µ < µ̂ < µ+β < ν satisfying these criteria, then we may simply apply Theorem 2.10.

We presume that this is not the case throughout this section.

From Lemma 2.35 we observe that ŵ(1) is a (µ+β+ ∆)-asymptotic solution, for

some scalar exponent vector ∆ which is bounded above by ν −µ and by ζ. Again we

check if there exists a µ̂ < µ+β+∆ which satisfies the hypothesis of Proposition 2.32.

Since the increase in order of the asymptotic solution at each iterate can be fixed, we

find that ŵ(i) is a (µ+β+ i∆)-asymptotic solution. Since the order of the asymptotic

solution increases (by ∆) at each step of the iteration, it follows that there exists

an iteration step ifinal for which ŵ(ifinal) satisfies the conditions of Proposition 2.32.

We note that due to the form of FODE(u0)[] a derivative is lost at each step of the
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iteration. However, since we work in the smooth setting this is not an issue, and

we can perform the iteration as many times as needed. In fact this is the reason

for restricting to the smooth setting in this theorem. We apply this proposition to

obtain a unique solution to the asymptotic value problem about u0 + ŵ(ifinal), with

remainder h ∈ Xδ̃,µ̂,q.

2.6.6. Uniqueness for Theorem 2.28

In Section 2.6.5. we construct a unique solution to the AVP(û0). This is also

a solution to the AVP(u0), although it is not known to be the unique solution to

this problem. In this section we perform a “bootstrap” type argument to show that

under the hypotheses of Theorem 2.28, the solution u = u0 + ŵ + h constructed

above is indeed the unique solution to the AVP(u0). A bootstrap-type argument is a

scheme for iteratively increasing the amount of information one has about a system

or property at each step.

Suppose ũ = u0 + w̃ is any other solution to the AVP(u0) with w̃ ∈ Xδ,µ,q. We

show that w̃− ŵ ∈ Xδ,µ̂,q, and hence by the uniqueness in Proposition 2.32, we obtain

w̃ − ŵ = h, and consequently ũ = u.

We know that both w̃ and ŵ are contained in a bounded subset of Xδ,µ,q for all

q > n/2. Thus, w̃ − ŵ ∈ Bδ,µ,q(s/2) for some s > 0 and for sufficiently small δ. The

bootstrap argument which we now employ increases our knowledge of the exponent

vector for w̃ − ŵ, which we expect to be greater than µ. Now w̃ satisfies

LODE(u0)[w̃] = FODE(u0)[w̃],
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while ŵ satisfies

LODE(u0)[ŵ] = FODE(u0)[ŵ] +
(
S0(u0 + ŵ)

)−1
R(u0)[ŵ].

Due to the linearity properties of LODE(u0)[·], we find that

LODE(u0)[w̃ − ŵ] = KODE[w̃, ŵ]

:= FODE(u0)[w̃]− FODE(u0)[ŵ]−
(
S0(u0 + ŵ)

)−1
R(u0)[ŵ].

At this point we would like to apply the HODE(u0) [·] operator in order to increase

our knowledge of the exponent vector for w̃− ŵ. To do this we must first understand

the properties of the right hand side. According to the properties of FODE(u0)[·]

(Lemma 2.33) we have

FODE(u0)[w̃]− FODE(u0)[ŵ] ∈ Bδ,µ+γ,q−1(r)

for some r > 0 and for an exponent scalar 0 < γ < min{ν, ζ}. Furthermore, due to the

smooth commutator conditions (Lemma 2.27) and the properties of (S0(u0 + ŵ))
−1

(Lemma C.21) we have

(
S0(u0 + ŵ)

)−1
R(u0)[ŵ] ∈ Bδ,µ+β,q(r̃)

for some r̃ > 0 and for an exponent scalar β < σ − µ. It follows that

KODE[w̃, ŵ] ∈ Bδ,µ+α,q−1(r)
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for some r > 0 and for an exponent scalar α < min{β, γ}. Lemma 2.34 then tell us

that

w̃ − ŵ = HODE(u0) [KODE[w̃, ŵ]] ∈ Bδ,µ+α−η,q−1(r̂)

and that

‖w̃ − ŵ‖δ,µ+α−η,q−1 ≤ Cδκr̂.

The exponent scalar α− η is positive and can be fixed. Hence for a possibly smaller

choice of δ, (δ′ ∈ (0, δ]) we find that w̃ − ŵ ∈ Bδ′,µ+α−η,q−1(s/2). Iterating this

argument k times provides us with the information that w̃−ŵ ∈ Bδ′,µ+k(α−η),q−k(s/2),

and since we work in the smooth case, that further w̃ − ŵ ∈ Bδ′,µ+k(α−η),q(s/2).

There exists an iterate k such that µ+ k(α− η) > µ̂, showing that h̃ := w̃− ŵ ∈

Xδ,µ̂,q. That is, any “other” solution to the AVP(u0) can be written as ũ = u0 + ŵ+ h̃

for h̃ ∈ Xδ,µ̂,q. But by uniqueness to the AVP(û0), h̃ = h and thus ũ = u.

2.6.7. Proofs of Lemma 2.33, Lemma 2.34, and Lemma 2.35

2.6.7.1. Proof of Lemma 2.33

Proof of Lemma 2.33. It suffices to prove the desired properties for each term in the

expression Eq. (2.39).

Step 1: Boundedness of FODE(u0)[w]

We note that from the smooth commutator conditions Definition 2.27, and from

Lemma C.21, that

R[µ]
(
S0(u0 + w)

)−1R[−µ] ∈ Xδ,0,q and R[µ]Σ0
1(u0 + w)R[−µ] ∈ Xδ,ξ,q,
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for the positive exponent scalar ξ. Since the system is quasilinear symmetric

hyperbolic Fuchsian, it then follows from Lemma C.1 that the three terms

T1[w] :=
(
S0(u0 + w)

)−1
F(u0)[w],

T2[w] :=
(
S0(u0 + w)

)−1
tSa(u0 + w)∂aw,

T3[w] :=
((
S0(u0 + w)

)−1 −
(
S0

0

)−1
)
N0w,= Σ0

1(u0 + w)N0w

are bounded in Xδ,µ+γ,q−1 for some exponent scalar γ < min{ν − µ, ξ}.

Step 2: Boundedness of ∆FODE(u0, w)[h]

We verify this property by computing each term. Consider first

‖T1[w]− T1[w + h]‖δ,µ̂+γ,q−1

≤ ‖
(
S0(w)

)−1
(F(u0)[w]− F(u0)[w + h]) ‖δ,µ̂+γ,q−1

+ ‖
((
S0(w)

)−1 −
(
S0(w + h)

)−1
)
F(u0)[w + h]‖δ,µ̂+γ,q−1.

Now by Definition 2.26, Lemma C.21, and the assumption that µ̂ = µ + γ0 for an

exponent scalar γ0, the first term can be bounded by

C‖R[µ]
(
S0(w)

)−1R[−µ]‖δ,0,q−1‖∆F(u0, w)[h]‖δ,µ̂+γ,q−1.

For the second term, we have that F(u0)[w + h] ∈ Xδ,µ+γ,q for some γ < ν − µ.

Lemma C.22 and the smooth commutator conditions then imply that the second
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term can be bounded

‖
((
S0(w)

)−1 −
(
S0(w + h)

)−1
)
F(u0)[w + h]‖δ,µ̂+γ,q−1

≤ ‖
((
S0(w)

)−1 −
(
S0(w + h)

)−1
)
F(u0)[w + h]‖δ,µ̂+γ+ζ̃,q−1

≤ C‖
((
S0(w)

)−1 −
(
S0(w + h)

)−1
)
‖δ,µ̂+ζ̃−µ,q−1‖F(u0)[w + h]‖δ,µ+γ,q−1.

Each norm is bounded under the hypotheses of Lemma 2.33. Using similar arguments

we compute

‖T2[w]− T2[w + h]‖δ,µ̂+γ,q−1

≤ ‖
(
S0(w)

)−1
(tSa(w)∂aw − tSa(w + h)∂a(w + h)) ‖δ,µ̂+γ,q−1

+ ‖
((
S0(w)

)−1 −
(
S0(w + h)

)−1
)
tSa(w + h)∂a(w + h)‖δ,µ̂+γ,q−1

≤ ‖R[µ]t (Sa(u0, w)− Sa(u0, w + h))R[−µ]‖δ,µ̂−µ+ζ,q−1

× C‖R[µ]
(
S0(w)

)−1R[−µ]‖δ,0,q−1‖∂aw‖δ,µ,q−1

+ C‖R[µ]
(
S0(w)

)−1R[−µ]‖δ,0,q−1

× ‖R[µ]tSa(w + h)R[−µ]‖δ,ζ,q−1‖∂ah‖δ,µ̂,q−1

+ C‖R[µ]
((
S0(w)

)−1 −
(
S0(w + h)

)−1
)
R[−µ]‖δ,µ̂+ζ̃−µ,q−1

× ‖R[µ]tSa(w + h)R[−µ]‖δ,ζ,q−1‖∂aw‖δ,µ,q−1

+ C‖R[µ]
((
S0(w)

)−1 −
(
S0(w + h)

)−1
)
R[−µ]‖δ,µ̂+ζ̃−µ,q−1

× ‖R[µ]tSa(w + h)R[−µ]‖δ,ζ,q−1‖∂ah‖δ,µ̂,q−1.
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and

‖T3[w]− T3[w + h]‖δ,µ̂+γ,q−1

≤ ‖Σ0
1(w)N0h‖δ,µ̂+γ,q−1 + ‖

(
Σ0

1(w)− Σ0
1(w + h)

)
N0(w + h)‖δ,µ̂+γ,q−1

≤ C‖R[µ]Σ0
1(w)R[−µ]‖δ,ζ̃,q−1‖R[µ]N0R[−µ]‖δ,0,q−1‖h‖δ,µ̂,q−1

+ C‖R[µ]
(
Σ0

1(w)− Σ0
1(w + h)

)
R[−µ]‖δ,µ̂−µ+ζ̃,q−1

× ‖R[µ]N0R[−µ]‖δ,0,q−1‖w‖δ,µ,q−1

+ C‖R[µ]
(
Σ0

1(w)− Σ0
1(w + h)

)
R[−µ]‖δ,µ̂−µ+ζ̃,q−1

× ‖R[µ]N0R[−µ]‖δ,0,q−1‖h‖δ,µ̂,q−1.

Each of these terms is bounded under the hypotheses of Lemma 2.33, thus completing

the proof.

2.6.7.2. Proof of Lemma 2.34

Proof of Lemma 2.34. It is useful to work with the quantities corresponding to the

Jordan normal form of Eq. (2.37); we denote quantities for the ODE equation in

Jordan normal form using an underbar. Let T be the matrix which takes N to its

Jordan normal form, N := T ·N ·T−1. Hence the inhomogeneous equation Eq. (2.42)

can be written

D(Tv) +N (Tv) = Tf,

and the corresponding solution operator can be written

HJordan
ODE (u0) [Tf ] := W

∫ t

0

s−1W−1(s, x)Tf(s, x)ds.
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We find that since W = T ·W , we have

HODE(u0) [f ] = T−1HJordan
ODE (u0) [Tf ] .

Working with the Jordan normal form is useful because in this basis the W matrices

have a well-understood structure. Let λ denote the Rd-vector of eigenvalues of N ; due

to the smoothness assumption, λ ∈ C∞(T n). Then N and W take a block-diagonal

form with each block corresponding to a particular eigenvalue of N . Let λi be an

eigenvalue of multiplicity m.

Then, the blocks corresponding to λi are m×m matrices with the form

N|block =



λi 1 0 . . . 0

0 λi 1 . . . 0

...

0 0 0 . . . 1

0 0 0 . . . λi


,

W |block = t−λi



1 − log t 1
2

log2 t . . . (−1)m−1

(m−1)!
logm−1 t

0 1 − log t . . . (−1)m−2

(m−2)!
logm−2 t

. . .

0 0 0 0 1


. (2.45)
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The inverse of this block, i.e., the corresponding block of W−1, is

W−1|block = tλi



1 log t 1
2

log2 t . . . 1
(m−1)!

logm−1 t

0 1 log t . . . 1
(m−2)!

logm−2 t

. . .

0 0 0 0 1


. (2.46)

Using this formulation of the quantities, we now prove that f 7→ HODE(u0) [f ] is

a well-defined bounded function operator with the estimate Eq. (2.44). The majority

of the work is in showing that the function-operator

Z[f ](t, x) = Z(t, x, f(t, x)) :=

∫ t

0

s−1W−1(s, x)T (x)f(s, x)ds

is a well-defined function operator from Xδ,ν,q to Xδ,ρ,q for some exponent vector ρ.

Consider Tf with f ∈ Xδ,ν,q, where ν is a general exponent vector ν > µ. Since

T is independent of t, we expect (naively) that Tf should also be in Xδ,ν,q. However,

the components of Tf are formed by linear combinations of the components of f ,

and even with the assumption that T has the same block-diagonal structure as µ, the

best we can hope for is that there exists a ν (consisting of permuted elements of ν),

such that Tf ∈ Xδ,ν,q. To avoid this issue we accept the slight loss of generality21

and assume that ν = µ + γ for a scalar exponent γ as in the statement of the

lemma. With this choice, ν shares the same block-diagonal structure as µ, and thus

R[ν]TR[−ν] = T ∈ Xδ,0,q. We apply Lemma C.1 (for the product of a matrix and a

vector) in order to show that Tf ∈ Xδ,µ+γ,q for all q > n/2. This form of ν is sufficient

to prove the existence of solutions for Theorem 2.28 in Section 2.6.5..

21 We also accept a slight loss of control, since in general ν ≥ µ+ γ. However, since we construct
a sequence of solutions over which we have increasing control, this slight loss is of no consequence.

130



Due to the particular structure of W−1 we see that these are Rd×d-valued

functions of (t, x) in Xδ,λ−ε,∞ for some ε ≥ 0. The case ε > 0 is required to control

the log t terms that occur if any of the eigenvalues λ1, . . . , λd have multiplicity greater

than 1 (see Eq. (2.45)). In the special case that all λi have multiplicity one, we can

take a ε = 0. Since R[µ + γ]W−1R[−µ − γ] = W−1 ∈ Xδ,λ−ε,∞, due to assumptions

that µ has block-diagonal structure of N , we can again apply Lemma C.1, to show

that W−1Tf ∈ Xδ,µ+λ+γ−ε,q for all q > n/2.

Now we compute

‖R[ρ](t, ·)Z[f ](t, ·)‖2
Hq

=
∑
|k|≤q

∫ t

0

∫ t

0

s−1s′
−1 〈

∂kxR[ρ](t, ·)z(s, ·), ∂kxR[ρ](t, ·)z(s′, ·)
〉
L2 ds

′ds

where we have defined for convenience z(s, x) := W−1(s, x)T (x)f(s, x). Due to the

Hölder inequality (Lemma A.10) we have

‖R[ρ](t, ·)Z[f ](t, ·)‖2
Hq

≤
∑
|k|≤q

∫ t

0

∫ t

0

s−1s′
−1 ∥∥∂kxR[ρ](t, ·)z(s, ·)

∥∥
L2

∥∥∂kxR[ρ](t, ·)z(s′, ·)
∥∥
L2 ds

′ds

=
∑
|k|≤q

(∫ t

0

s−1
∥∥∂kxR[ρ](t, ·)z(s, ·)

∥∥
L2 ds

)2

=

(∫ t

0

s−1 ‖R[ρ](t, ·)z(s, ·)‖Hq ds

)2

.
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Using the Moser estimate (Lemma A.11), we find that for any exponent vector σ for

which the norm ‖z‖δ,σ,q is defined ,

∑
|k|≤q

(∫ t

0

s−1‖∂kxR[ρ](t, ·)z(s, ·)‖L2ds

)2

≤ C

(∫ t

0

s−1 ‖R[ρ](t, ·)R[−σ](s, ·)‖Hq ‖R[σ](s, ·)z(s, ·)‖Hq ds

)2

≤ C

(∫ t

0

s−1 ‖R[ρ](t, ·)R[−σ](s, ·)‖Hq ds

)2

‖z‖2
δ,σ,q .

The constant C, which comes from the Moser estimate, depends only on q and n,

and is thus independent of ρ, σ and z. To estimate the integral over s, let r = s/t,

so that we may write

∫ t

0

s−1 ‖R[ρ](t, ·)R[−σ](s, ·)‖Hq ds =

∫ 1

0

‖R[ρ− σ](t, ·)R[−σ + 1](r, ·)‖Hq dr

≤ C ‖R[ρ− σ](t, ·)‖Hq

∫ 1

0

‖R[−σ + 1](r, ·)‖Hq dr,

where the constant C again originates in the Moser estimate. The remaining integral

is finite for σ = µ + γ + λ− ε > 0, and hence can be estimated by a constant which

only depends on σ and q. Since the constant ε can always be chosen so that ε < γ,

it follows that Z[f ] is well-defined under the hypothesis µ > −<λ. For any ρ ≤ σ

the factor ‖R[ρ− σ](t, ·)‖Hq ≤ Cδκ for C, κ positive and depending on q and ρ − σ.

Thus we have Z[f ] ∈ Xδ,µ+γ+λ−ε,q and

‖Z[f ](t, ·)‖δ,µ+γ+λ−ε,q ≤ Cδκ‖f‖δ,µ+γ,q,

for all q > n/2.
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To finish, recall that HJordan
ODE (u0) [Tf ] = WZ[f ], and HODE(u0) [f ] =

T−1HJordan
ODE (u0) [Tf ]. Since ε and γ are scalar exponents, µ has the block-diagonal

structure of N , and λ has the same block-diagonal structure of T−1W , we have

R[λ+ µ+ γ − ε]T−1WR[−λ− µ− γ + ε] = R[λ+ µ]T−1WR[−λ− µ]

= R[λ]T−1WR[−λ]

= T−1W.

Hence, we use Lemma C.1 and the fact that T−1.W ∈ Xδ,−λ−ε,∞ to show that

HODE(u0) [f ] ∈ Xδ,µ+γ−η,∞, for some η > 0 (η is basically 2ε). Since both T−1 and W

are smooth in T n, the estimate Eq. (2.44) holds.

2.6.7.3. Proof of Lemma 2.35

Proof of Lemma 2.35. 1. w̌ ∈ Bδ̌,µ+ε,q(s/2). We apply Lemma 2.33 to show that

FODE(u0)[ŵ] ∈ Bδ′,µ+γ,q(r) for some γ > 0, which is bounded above by ν − µ and by

ζ, and for some δ′ ∈ (0, δ], and some r > 0. Next, we apply Lemma 2.34, which shows

that there exists an η > 0, such that w̌ := HODE(u0) [FODE(u0)[ŵ]] ∈ Xδ′,µ+γ−η,q, and

such that

‖w̌‖δ′,µ+γ−η,q ≤ Cδ′κ‖FODE(u0)[ŵ]‖δ′,µ+γ,q ≤ Cδ′κr,

for positive constants C, κ. Hence, we can shrink δ′ if necessary to δ̌ ∈ (0, δ] such that

‖w̌‖δ̌,µ+γ−η,q ≤ s/2 for any s > 0, as specified in the smooth quasilinear symmetric

hyperbolic Fuchsian system. Since η can be chosen arbitrarily small, it follows that

there exists ε > 0 such that w̌ ∈ Bδ̌,µ+ε,q(s/2).
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2. Control w̌− ŵ. In order to prove that w̌ is an asymptotic solution of higher order

than ŵ, we need to determine in which space the difference h := ŵ − w̌ lives. Note

that

w̌ = HODE(u0) [FODE(u0)[ŵ]]

while ŵ satisfies

L̂(u0 + ŵ)[ŵ]− F(u0)[ŵ] = R(u0)[ŵ]

=⇒ LODE(u0)[ŵ]− FODE(u0)[ŵ] =
(
S0(ŵ)

)−1
R(u0)[ŵ]

and thus

ŵ = HODE(u0)
[(
S0(ŵ)

)−1
R(u0)[ŵ] + FODE(u0)[ŵ]

]
.

It follows from the linearity of HODE(u0) [·] that

h = HODE(u0)
[(
S0(ŵ)

)−1
R(u0)[ŵ]

]
.

Now by definition R(u0)[ŵ] ∈ Xδ,σ,q, and we apply Lemma C.1 in order to control

(S0(ŵ))
−1
R(u0)[ŵ]. Due to Lemma C.21 we know that R[µ + β] (S0(ŵ))

−1R[−µ −

β] ∈ Xδ,0,q. Hence, (S0(ŵ))
−1
R(u0)[ŵ] ∈ Xδ,µ+β,q, and thus by Lemma 2.34, h ∈

Xδ,µ+β−η,q.
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3. w̌ is an asymptotic solution. To verify that w̌ is an asymptotic solution, we

compute

R(u0)[w̌] = L̂(u0 + w̌)[w̌]− F(u0)[w̌]

= S0(u0 + w̌) (LODE(u0)[w̌]− FODE(u0)[w̌])

= S0(u0 + w̌) (FODE(u0)[ŵ]− FODE(u0)[w̌]) .

From Step 2 and the properties of FODE(u0)[·] (Lemma 2.33), we find that

FODE(u0)[ŵ] − FODE(u0)[w̌] = FODE(u0)[ŵ] − FODE(u0)[ŵ + h] ∈ Bδ,µ+β−η+γ,q(s/2).

Since η > 0 can be chosen arbitrarily small, there exists a scalar exponent ∆ = γ − η

which is bounded above by ν − µ, ζ such that w̌ is a smooth asymptotic solution of

order ∆ greater than that of ŵ.
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CHAPTER III

AVTD BEHAVIOR IN POLARIZED T 2-SYMMETRIC

SPACETIMES

This chapter contains work published in [3]. The calculations were performed by

E. Ames and F. Beyer; while writing was done by E. Ames, F. Beyer, and J. Isenberg.

P.G. LeFloch contributed editorial changes.

3.1. Prelude

In this chapter we prove two theorems which establish the existence and

uniqueness of AVTD T 2–symmetric solutions to the Einstein equations. The first one,

Theorem 3.3, obtains solutions in a weighted Sobolev space of Section 2.2.2. with

finite regularity. This result represents the minimal regularity assumptions needed

to obtain existence and uniqueness via our method of proof. In our second result,

Theorem 3.10, we find a family of smooth AVTD solutions. The family of smooth

solutions turns out to be slightly larger in that a constraint on the asymptotic data

which parametrizes the rough family of solutions is lifted. Both this constraint for

the rough solutions, and its removal in the smooth case is due to the difference in the

Fuchsian theorems which are used to prove the respective theorems.

Our results extend existing results in the literature for AVTD solutions to the

Einstein equations in the presence of T 2-symmetry. As discussed above Isenberg and

Kichenassamy use the analytic Fuchsian theory to find a family of analytic AVTD

T 2-symmetric solutions in the polarized class. Later, Clausen extended the work

of Rendall in [67] to obtain a families of smooth AVTD T 2-symmetric solutions in

both the polarized and half-polarized classes [32]. The theory we develop in this
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dissertation allows us to confirm the smooth results of Clausen, and also show that

similar families of solutions can be found with finite regularity.

3.2. T 2-Symmetric Spacetimes

We write the metric for the T 2-symmetric spacetimes Section 1.2.3., in areal

coordinates Section 1.2.3.2., and write down the Einstein equations.

3.2.1. Polarized T 2-Symmetric Metric and Einstein Equations

Let y, z be coordinates on T 2, and let x be the remaining spatial coordinate,

which takes values in S1. Further, let t denote the areal time coordinate of

Section 1.2.3.2.. We write the metric as in [46], and make the same gauge choice

so that the two shift quantities My and Mz vanish. This metric is obtained from a

general form of the metric on spacetimes with U(1)×U(1) symmetry and T 3 spatial

topology derived by Chrúsciel [26]. We have

g = e2(η−U)
(
−αdt2 +dx2

)
+ e2U

(
dy+Adz+

(
G+AH

)
dx

)2

+ e−2U t2
(
dz+Hdx

)2

,

(3.1)

where the metric functions {η, U, α,A,G,H} depend only on t and x.

From the form of the metric it is clear that the polarized case introduced

in Section 1.2.3., in which the generators Y, Z can be chosen to be g-orthogonal

corresponds to A = const. While the polarized spacetimes are characterized by

a geometric condition, another subclass we consider, called the half-polarized T 2–

symmetric spacetimes, are defined by a restriction on the asymptotic behavior of the

metric fields. We introduce this subclass below in Section 3.2.3..
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When working with the Einstein equations it is convenient to make a particular

choice of the spatial coordinates y, z on T 2. First note that we may always choose a

linear combination of the generators Y = a∂y + b∂z and Z = c∂y +d∂z with constants

a, b, c, d such that det

 a b

c d

 6= 0 so that KY = 0, KZ ≡ K (recall the definitions

of the twist constants from Section 1.2.3.). Since we are considering here the case of

T 2-symmetric solutions and not the Gowdy solutions, we restrict to solutions with

K 6= 0. The transformation K → −K preserves all conditions imposed, and so we

restrict further to consider just the case of K > 0.

Next we choose coordinates y, z on T 2 so that the coordinate derivatives align

with the generators specified above Y = ∂y and Z = ∂z. Since the form of the metric

Eq. (3.1) holds for any smooth coordinates on T 2, it is preserved for this choice of

coordinates. With these choices we write the Einstein equations Eq. (1.1) as the

following system of partial differential equations, computed in [12]. We have a set of

second-order equations

Utt +
Ut
t
− αUxx =

αxUx
2

+
αtUt
2α

+
e4U

2t2
(
A2
t − αA2

x

)
, (3.2)

Att −
At
t
− αAxx =

αxAx
2

+
αtAt
2α
− 4AtUt + 4αAxUx, (3.3)

ηtt − αηxx =
αxηx

2
+
αtηt
2α
− α2

x

4α
+
αxx
2
− U2

t + αU2
x , (3.4)

+
e4U

4t2
(
A2
t − αA2

x

)
− 3e2ηα

4t4
K2,
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a set of first-order equations

ηt = tU2
t + tαU2

x +
e4U

4t
(A2

t + αA2
x) +

e2η

4t3
αK2, (3.5)

ηx = 2tUtUx +
e4U

2t
AtAx −

αx
2α
, (3.6)

αt = −e
2η

t3
α2K2, (3.7)

plus a set of auxiliary equations

Gt = −e2η
√
αKt−3, Ht = e2η

√
αAKt−3. (3.8)

We have used the short-hand notation Ut := ∂tU , etc. for the partial derivatives. The

auxiliary equations come from the definition of the twist constants KY and KZ and

from setting KY = 0.

3.2.2. VTD System

In order to prove AVTD behavior of solutions we must first identify the VTD

model metric functions, which the solution is to approach in the singular region.

In the language of the Fuchsian theory of Chapter II, we are determining the

appropriate/desireable leading order term for the solution. To this end we compute

the VTD system as in Section 1.3.4.. With a specified system of coordinates,

computing the VTD system from the associated Einstein system reduces to dropping

the spatial derivative terms relative to time derivative terms. This means that while in

an equation with both space and time derivative terms we drop the spatial ones, these

terms are not dropped in an equation in which each term contain spatial derivatives,

such as Eq. (3.6).
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From Eq. (3.2)-Eq. (3.8), we find the VTD system to be composed of the following

equations. We multiply the evolution equations by a power of t equal to the order of

the highest time derivative in order to write the equations in Fuchsian form, that is

with the derivative operators D := t∂t, and D2 = t2∂2
t +t∂t. We have the second-order

evolution equations

D2U =
DαDU

2α
+
e4U

2t2
(DA)2, (3.9)

D2A− 2DA =
DαDA

2α
− 4DADU, (3.10)

D2η −Dη =
DαDη

2α
− (DU)2 +

e4U

4t2
(DA)2 − 3e2ηα

4t2
K2, (3.11)

and the first-order evolution equations

Dη = (DU)2 +
e4U

4
(DA)2 +

e2η

4t2
αK2, (3.12)

Dα = −e
2η

t2
α2K2, (3.13)

DG = −e2η
√
αKt−2, (3.14)

DH = e2η
√
αAKt−2. (3.15)

Note that the equations for α,G,H are unchanged except for multiplication by t.

We also have the constraint equation, Eq. (3.6) which is unchanged; the asymptotic

analysis of this equation is addressed in Section 3.3.5. below.
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It can be shown [32, 43] that Eq. (3.9)-Eq. (3.15) are asymptotically satisfied in

the limit t↘ 0 by the following expansions

Ů(t, x) =
1

2
(1− k(x)) log t+ U∗∗(x), (3.16)

Å(t, x) = A∗(x) + A∗∗(x)t2k(x), (3.17)

η̊(t, x) =
1

4
(1− k(x))2 log t+ η∗, (3.18)

α̊(t, x) = α∗(x), (3.19)

G̊(t, x) = G∗(x), (3.20)

H̊(t, x) = H∗(x), (3.21)

provided k(x) > 3. The functions of x ∈ T 1, {k, U∗∗, A∗, A∗∗, α∗, G∗, H∗} are called

asymptotic data functions. The function α∗ is expected to be positive definite in order

for the asymptotic metric to maintain the appropriate signature. Further conditions

on the asymptotic data are imposed in the main theorems below.

In the polarized T 2–symmetric spacetimes the A-field is non-dynamical,

corresponding to A ≡ const. In terms of the asymptotic data above, we have in

this case A∗ a constant and A∗∗ ≡ 0, so that there is no free asymptotic data to

choose. The polarized class also determines the singular character of the solution

through the asymptotic data function k(x). From the expressions above we see that

if an AVTD solution is not polarized, then there is a power-law type blow-up in the

A-field if and only if k(x) < 0. For polarized AVTD solutions on the other hand,

there is no power-law type blow-up for any sign of k(x).

Note that since we expect locally Kasner-like behavior, the logarithmic terms

for U and η are consistent with those fields appearing in exponentials in the form of

the metric. The function k(x) determines the Kasner exponents p1, p2, p3 of the VTD

141



metric at each spatial point

p1 = (k2 − 1)/(k2 + 3), p2 = 2(1− k)/(k2 + 3), p3 = 2(1 + k)/(k2 + 3).

These are computed as the eigenvalues of (trk)−1k, where k is the second fundamental

form expressed in an orthonormal frame.

3.2.3. Half-Polarized T 2-Symmetric Solutions

While the polarization condition corresponding to a non-dynamical A-field is

a geometric condition, relating to the structure of the two symmetry generators Y

and Z, the half-polarized T 2-symmetric solution which we now introduce refers to a

restriction on the space of asymptotic data. We note that a fully general T 2-symmetric

solution which is AVTD (if such exist) has free asymptotic data functions A∗ and

A∗∗. On the other hand the polarized T 2-symmetric solution which is AVTD has,

as discussed above, no free asymptotic data. This discussion motivates the following

definition.

Definition 3.1. Let g be a T 2-symmetric solution of the Einstein equations which is

AVTD and hence has the metric field expansions Eq. (3.16)-Eq. (3.21). The solution

is called a half-polarized T 2-symmetric solution if the asymptotic data are such

that ∂xA∗(x) = 0, and A∗∗(x) is freely specified.

This arises as a meaningful class of solutions since in our analysis below we

find that the Fuchsian theory of Chapter II cannot be applied unless the condition

∂xA∗ = 0 holds. Of course this condition alone does not imply the full polarized class.

T 2–symmetric solutions which are AVTD and which have half-polarized asymptotic

data have been shown to exist [32]. The term “half-polarized” to label solutions with
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“half” the number of freely-specifiable asymptotic data functions first appears in a

discussion of U(1)-symmetric solutions with AVTD behavior, in [45].

While we show in the following sections that there exists families of AVTD

half-polarized and polarized T 2-symmetric solutions, fully general solutions are not

expected to be AVTD. To the extent that it makes sense to speak of the data

functions A∗ and A∗∗ in this general context, such functions would be non-vanishing

and non-constant. Numerical studies and heuristic considerations indicate however

that fully general T 2–symmetric solutions exhibit Mixmaster-like BKL behavior at

the t = 0 singularity, or behavior which is dominated by spikes –see the discussion

and references in Section 1.3.3..

3.3. AVTD Solutions to the T 2-Symmetric Einstein Equations: The

Finite Regularity Case

The first result is an application of the fundamental Fuchsian theorem,

Theorem 2.10 to the polarized and half-polarized T 2-symmetric Einstein equations.

3.3.1. Statement of Theorem

It is useful to specify the appropriate set of asymptotic data.

Definition 3.2. Let Kq denote the set of asymptotic data {k, U∗∗, A∗, A∗∗, α∗, G∗, H∗}

such that A∗ is a constant, k, U∗∗, α∗ ∈ Hq+2(T 1) (with α∗(x) > 0), A∗∗ ∈ Hq+1(T 1)

and G∗, H∗ ∈ Hq(T 1) for any q ≥ 31, and which satisfy the integrability condition

∫ 2π

0

(
(1− k(x))U ′∗∗(x)− 1

2
(logα∗)

′(x)
)
dx = 0,

1The inequality q ≥ 3 comes from the condition q > n/2 + 2 in Theorem 2.10.
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together with, at each point x ∈ T 1, either

1. k(x) > 1 +
√

6 for arbitrary A∗∗ (the half-polarized case),

2. k(x) > 1 +
√

6 or k(x) < 1−
√

6 for A∗∗ ≡ 0 (the polarized case).

The integrability condition above arises in demanding that the constraint

equation Eq. (3.6) hold in the limit t ↘ 0, as well as in considering the closed

spatial topology. The derivation of this constraint, and more details are found in

Section 3.3.5.. The inequalities on k become clear in the proof of Theorem 3.3 below;

they are required in order to make the conditions on the exponent vector µ consistent.

The different regularity conditions on the asymptotic data functions arise depending

on which parts of the equation each function plays a role, and on the particular non-

linear terms in the Einstein equations. In the definition above, as well as below we

use the notation U ′∗∗(x), (logα∗(x))′, etc., to denote the derivatives of functions which

only depend on the spatial variable x.

Our first existence and uniqueness theorem for the T 2–symmetric vacuum

solutions is as follows.

Theorem 3.3 (AVTD (half)-polarized T 2–symmetric vacuum solutions: finite

differentiability case). For any twist constant K ∈ R, constant η0 ∈ R, and asymptotic

data in Kq there exists a δ > 0, and a T 2–symmetric solution (U,A, η, α,G,H) of

Einstein’s vacuum field equations with twist K of the form

(U,A, η, α,G,H) = (Ů , Å, η̊, α̊, G̊,H) +W,

with leading-order term (Ů , Å, η̊, α̊, G̊, H̊) given by Eqs. (3.16)–(3.21), with

η∗(x) := η0 +

∫ x

0

(
(1− k(y))U ′∗∗(y)− 1

2
(logα∗)

′(y)

)
dy, (3.22)
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and remainder W ∈ Xδ,µ,q (and DW ∈ Xδ,µ,q−1) for any exponent vector µ =

(µ1, µ2, µ3, µ4, µ5, µ6) satisfying

1 < µ1(x) < min{2, 1

2
(k(x)− 3)(k(x) + 1)},

1

2

(
2k(x) +

√
1 + 4k(x)2

)
< µ2(x) < 1 + 2k(x),

0 < µ3(x) < µ1(x),

0 < µ4(x), µ5(x) <
1

2
(k(x)− 3)(k(x) + 1),

0 < µ6(x) <
1

2
(k(x) + 3)(k(x)− 1).

(3.23)

This solution is unique among all solutions with the same leading-order term and with

remainder W ∈ Xδ,µ,q.

This result does not imply uniqueness of the solutions within the largest function

space of interest. For a given choice of asymptotic data in Kq, the ideal result would

establish the existence of a unique remainder W ∈ Xδ,µ,q with a lower bound for µ

given by the exponent of the corresponding leading order term, that is

µ1, µ2 − 2k, µ3, µ4, µ5, µ6 > 0.

However, Theorem 3.3 requires a stricter lower bound on µ which is specified in

Eq. (3.23). It follows then that for given choice of asymptotic data in Kq there

may exist solutions of the asymptotic value problem about (Ů , Å, η̊, α̊, G̊, H̊) with

remainder in the larger space Xδ,µ̃,q, for µ̃ such that 0 < µ̃1 < 1 and 2k < µ̃2 <

1
2

(
2k(x) +

√
1 + 4k(x)2

)
. We discuss this issue further below, and prove a result,

Theorem 3.10, which establishes uniqueness in the largest space compatible with the
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leading order expressions (i.e. a space with exponent vector µ with the ideal lower

bounds above).

In proving Theorem 3.3, it is useful to first focus on a subset of the T 2–symmetric

Einstein vacuum equations. Inspecting, Eqs. (3.2)-(3.8) we see that the equations

Eqs. (3.2), (3.3), (3.5) and (3.7) together form a coupled evolution system for the

variables U,A, η, and α, while Eq. (3.6) serves as a constraint equation for this system.

We call this system the main evolution equations. We treat the second-order

evolution equation for η as a constraint on the main evolution equations, although it

plays an insignificant role. The remaining evolution equations for G and H, Eqs. (3.8),

can be integrated after we have dealt with the main evolution system.

In the next few sections we focus on the main evolution equations. The central

task is to formulate a first-order symmetric hyperbolic system, and verify that, for

our choice of leading order term, this system is Fuchsian in the sense of Definition 2.7.

The leading order term is chosen to be consistent with the VTD expansions Eq. (3.16)-

Eq. (3.21) so that the solutions we eventually obtain are AVTD. To obtain solutions

we seek to apply Theorem 2.10. The remaining hypotheses of Theorem 2.10 are

checked in Section 3.3.4., and we formulate our central result for the main evolution

equations in Proposition 3.5. In Section 3.3.5. we return to the remaining Einstein

equations and show that given a solution to the first-order main evolution system, we

obtain a solution to the full Einstein system as in Theorem 3.3.
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3.3.2. Main Evolution Equations.

In order to apply the Fuchsian theory of Chapter II we formulate the main

evolution equations as a first-order symmetric hyperbolic system of the form

S0(u)Du+ tSa(u)∂au+ f(t, x, u) = 0

as in Eq. (2.1) for some first-order fields u. To obtain a symmetric hyperbolic system

it is necessary to define a new field from the spatial derivative of α. As is done in

[43], we set

β := ∂xα. (3.24)

The evolution equation for β may be obtained by taking the spatial derivative of

Eq. (3.7) and by using the constraint Eq. (3.6) to eliminate ηx; we find

βt = −e
2η

t4
αK2

(
tβ + α

(
e4UAxAt + 4t2UxUt

))
.

The first derivatives of α which appear in other evolution equations are now replaced

using Eq. (3.7) for αt and β for αx.

We also introduce at this stage a redefinition of the variables U and η which is

performed in [3]. In that paper we define

Û := U − 1

2
(1− k(x)) log t and η̂ := η − 1

4
(1− k)2 log t.

The reasons for these two seemingly similar redefinitions is actually different. The

variable Û is introduced because in the Fuchsian theory of [3] it is desirable to have an

“ODE leading order term.” This means that the leading order term for the first-order
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system u0 should satisfy

LODE(u0)[u0] := Du0 +N (u0)u0 = 0.

One must balance this condition on u0 with the desire that the first order leading

order term, which is derived from the VTD expansions Eqs. (3.16)–(3.21) above,

be compatible with the first-order field definitions. For a second-order field u(t, x),

the first-order fields in a Fuchsian equation are typically defined by u1 = u, u2 =

Du, u3 = t∂xu. In Section 2.4.4 of [3] we show that for an equation of the type

which U satisfies (a non-linear Euler-Poisson-Darboux equation), the ODE-leading

order term condition is incompatible with the first-order field definitions. This issue

is rectified by working with the new field Û obtained by subtracting off the log t-term.

The field η̂ is introduced more as convenience. Note that the logarithmic term

1/4(1 − k)2 log t leads to an O(1) term under the action of the D = t∂t operator.

In Eq. (3.12) this term cancels with the O(1) contribution from (DU)2 term on the

right hand side. By defining η̂ as we do, and in light of the redefinition of U , this

cancelation occurs at this stage.

The Fuchsian theory in [3] has since been improved. Although neither of the field

definitions Û or η̂ is necessary for our current formulation of the Fuchsian theory, we

keep them here in order to avoid redoing the analysis completely. The full set of

first-order fields are defined as follows

u1 = Û , u2 = DÛ, u3 = t∂xÛ , (3.25)

u4 = A, u5 = DA, u6 = t∂xA, (3.26)

u7 = η̂, u8 = α, u9 = β. (3.27)
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The main evolution system Eqs. (3.2), (3.3), (3.5) and (3.7) can now be written as a

first-order symmetric hyperbolic system as in Eq. (2.1). We find

Du1 =u2, (3.28)

Du2 − u8t∂xu3 =
1

2
tu9(u3 −

1

2
t log tk′) +

1

2
e4u1t−2k

(
u2

5 − u8u
2
6

)
(3.29)

− 1

4
e2u7t1/2(1−k)2−2u8K

2(1− k + 2u2)

− 1

2
t2 log tk′′u8,

u8Du3 − u8t∂xu2 =u8u3, (3.30)

Du4 =u5, (3.31)

Du5 − u8t∂xu6 = 2ku5 − 4u5u2 +
1

2
tu9u6 + 2u8u6(2u3 − t log tk′) (3.32)

− 1

2
e2u7t1/2(1−k)2−2u8u5K

2,

u8Du6 − u8t∂xu5 =u8u6, (3.33)

Du7 = (1− k)u2 + u2
2 +

1

4
u8(2u3 − t log tk′)2 (3.34)

+
1

4
t−2ke4u1

(
u2

5 + u8u
2
6

)
+

1

4
e2u7t1/2(1−k)2−2u8K

2,

Du8 = − e2u7t1/2(1−k)2−2u2
8K

2, (3.35)

Du9 = − e2u7t1/2(1−k)2−2u8K
2 (3.36)

·
((1− k + 2u2)(2u3 − t log tk′)u8

t
+ t−1−2ku5u6u8e

4u1 + u9

)
,

The coefficient matrices are

S0(u) = Diag(1, 1, u8, 1, 1, u8, 1, 1, 1), (3.37)
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and

S1(u) =



0 0 0 0 0 0 0 0 0

0 0 −u8 0 0 0 0 0 0

0 −u8 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 −u8 0 0 0

0 0 0 0 −u8 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



, (3.38)

while the source term f(t, x, u) is given by the negative of the right-hand-side of

Eqs. (3.28)–(3.36).

Note that the system has a block-diagonal structure, and the first two blocks have

a structure typical of second-order equations reduced to first-order by field definitions

of the type Eq. (3.25). To make these blocks symmetric we have multiplied the third

and sixth equations by u8.

The function k(x) that appears in the components of f(t, x, u) as a result of the

definitions of the variables u1 = Û , and u7 = η̂ is, at this stage, an arbitrary function.

Finally, we note that the corresponding equations in [3] included terms Nu for a

matrix N(u). As is discussed in Section 2.2. we no longer partition the equations in

this way at this stage in order to simplify the presentation; the system Eqs. (3.28)–

(3.36) is however, equivalent to that in [3] .
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3.3.3. Evolution Equations as a QSHF System

In this section we prove that for a specified leading order term ů, the first-order

system corresponding to the main evolution equations, which is introduced in the

previous section, in fact forms a quasilinear symmetric hyperbolic Fuchsian system as

in Definition 2.7. A leading order term for the first-order fields can be derived from

the VTD expansions Eqs. (3.16)–(3.19) using the definitions of the first-order fields.

We find

ů =(̊u1, ů2, ů3, ů4, ů5, ů6, ů7, ů8, ů9)

=
(
U∗∗, 0, tU

′
∗∗, A∗ + A∗∗t

2k, 2kA∗∗t
2k, 0, η∗, α∗, ξ∗

)
.

(3.39)

The choice ů6 = 0 may seem incorrect since from the definition of u6 and the VTD

expansion for the A-field we compute

t∂xÅ(t, x) = t1+2k(x) (A′∗∗(x) + 2A∗∗(x)k′(x) log t) ,

assuming A∗ is independent of x as in Kq. We note however that since in the half-

polarized case2 k(x) is positive definite, this leading order term vanishes as t↘ 0. Our

choice above is therefore consistent with this computation, and in addition simplifies

the analysis. Although not needed for the analysis here, we note that this choice of

ů is an ODE-leading-order term.

To check that we have a quasilinear symmetric hyperbolic Fuchsian system,

we also specify an exponent vector µ. Considering the block-diagonal conditions

2In the polarized case A is not a dynamical field, rendering this discussion mute.
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Definition 2.9, we choose

µ = (µ1, µ1, µ1, µ2, µ2, µ2, µ3, µ4, µ4). (3.40)

As per the Fuchsian method we make the ansatz that the solution takes the form

u = ů+w, where w is a remainder controlled in Xδ,µ,q. The precise control which we

may obtain on w is determined by the leading order term ů and the equation. From

the VTD expansions we hope to obtain control in spaces with µ given by

µ1, µ3, µ4 > 0, and µ2 > 2k.

However, as the lemma below shows, we can not guarantee at this stage that w is

in so large a space. The first step in the Fuchsian analysis is to verify that for the

given choice of leading order term one obtains, possibly under certain conditions, a

quasilinear symmetric hyperbolic Fuchsian system.

Lemma 3.4. Choose any asymptotic data functions {k, U∗∗, A∗, A∗∗, α∗} such that

A∗ is constant, α∗ is positive definite, α∗ and η∗ are functions in Hq(T 1), A∗∗ is

contained in Hq+1(T1), k and U∗∗ are elements of Hq+2(T 1), and k satisfies

k(x) > 1 +
√

5, or, k(x) < 1−
√

5

Then there exists sufficiently small δ, s > 0 such that for any q ≥ 3 the symmetric

hyperbolic system formed by Eqs. (3.28)–(3.36) forms a quasilinear symmetric

hyperbolic Fuchsian system as in Definition 2.7 about ů given by Eq. (3.39) and with
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µ as in Eq. (3.40), satisfying at each point x ∈ T 1

max{0, 1− (k(x)− 3)(k(x) + 1)/2} < µ1(x) < min{2, (k(x)− 3)(k(x) + 1)/2},

2k(x) < µ2(x) < min{1 + 2k(x), µ1(x) + 2k(x)},

0 < µ3(x) < µ1(x),

0 < µ4(x) < min{(k(x)− 3)(k(x) + 1)/2,µ1(x)− 1 + (k(x)− 3)(k(x) + 1)/2}.

Moreover, we find the matrices

S0
0 = Diag(1, 1, α∗, 1, 1, α∗, 1, 1, 1), (3.41)

and

N0 =



0 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 −α∗ 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0

0 0 0 0 −2k 0 0 0 0

0 0 0 0 0 −α∗ 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



. (3.42)

Proof. Step 1: By construction the matrices S0
0 , S0 and S1 are all symmetric. Further,

provided α∗ > 0 at all x ∈ T 1, there exists a δ > and s > 0 for which both S0
0 , and

S0 are positive definite.
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Step 2: From the form of Eq. (3.37) above, and expansion for u8 = α it is clear that

S0
0 = Diag(1, 1, α∗, 1, 1, α∗, 1, 1, 1), and S0

1(w) = Diag(0, 0, w8, 0, 0, w8, 0, 0, 0).

As S0
1(w) is linear in w it is clearly bounded and satisfies the desired Lipschitz

property. Further, S0
1(w) ∈ Xδ,ζ,q for any 0 < ζ < µ4.

Similarly, we find from Eq. (3.38) that tSa1 (w) is linear in w, and tSa1 (w) ∈ Xδ,ζ,q

for any 0 < ζ < 1.

Step 3: Lastly we check Condition (iii) of Definition 2.7. To decompose f(t, x, u)

into f1(t, x, w) and N0w we insert the Fuchsian expansion ansatz u = ů + w in the

expression for f(t, x, u) above in Eqs. (3.28)-(3.36). Inspecting these expressions it

is clear that terms of only a few different types are present. There are terms of

the form
∏d

i=1 u
pi
i for some positive integers pi, there are terms of the form erui for

some positive real number r, and component ui, and there are products of these two

types of terms, as well as such terms being multiplied by functions of space and time.

Lemma C.3 shows that any such term ψ(u) can be expanded in the form

ψ(u) = ψ0(t, x) + ψ1(t, x)w + ψ2(t, x, w),

and that it is a well-defined function operator. We then form N0w by considering

all terms linear in w with an O(1) coefficient, and which respect the desired block-

diagonal structure. Although N0 need not have the same block-diagonal structure as

µ at this stage (ie in order for the system to be a quasilinear symmetric hyperbolic

Fuchsian system), we construct it to be consistent with this structure for later

convenience. An example is the term (1−k)u2 which appears in the evolution equation
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for u7, Eq. (3.34). While this term generates a linear term in w2 with an order one

coefficient, it breaks the block-diagonal structure of N0. The terms not selected for

N0 (the Fuchsian principle part) go into f1(t, x, w).

The source operator for the reduced equation, F(u0)[w], is then obtained by

subtracting off
∑n

j=0 tS
j(w)∂ju0, as in Eq. (2.5). The objective of this step is to

remove terms which are unbounded in the limit t↘ 0 from the equation.

Our next goal is to verify that F(u0)[w] ∈ Xδ,ν,q for some ν > µ. Similar to

in the Fuchsian reduction step above the terms in each component of F(u0)[w] are

of three types: I) Terms which are independent of the w fields and depend only on

asymptotic data functions and (t, x). II) Products of w-fields multiplied by some

function of (t, x), such as a combination of asymptotic data functions. III) Terms of

type (II) multiplied by a factor erwi for some real number r and component wi. The

discussion and lemmas in Appendix C show that for the asymptotic data with the

indicated regularity, each such term is a bounded operator on Xδ,µ,q with target Xδ,ν,q

for some ν > µ which satisfies the requisite Lipschitz estimates.

The constraint on the asymptotic data ∂xA∗ = 0, which defines the half-polarized

class arises in this step. In analyzing F(u0)[w] we find terms which blow-up as some

function of k(x) in the limit t↘ 0, and which are proportional to ∂xA∗ –e.g. ∂xA∗t
−2k.

Since these terms violate the condition that F(u0)[w] is contained in Xδ,ν,q for some

ν > µ (recall µ > 0), we eliminate them by restricting our asymptotic data to the set

with ∂xA∗ = 0.

Due to the large number of terms in the expression for F(u0)[w] (this is especially

large after the Fuchsian ansatz u = u0 + w has been implemented) this analysis

is performed with the aid of a computer program. This program is written in

Mathematica.
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3.3.4. AVTD Solutions of the Main Evolution System.

We now show as an application of Theorem 2.10, and as a step towards proving

Theorem 3.3, that there exists a unique solution the first-order main evolution system

with leading order term given by Eq. (3.39). We state this result formally in the

following proposition.

Proposition 3.5. For any twist constant K ∈ R, for any Sobolev differentiability

index q ≥ 3, and for any choice of the asymptotic data functions such that A∗ is

an arbitrary constant, α∗(x) > 0, k, U∗∗, α∗ ∈ Hq+2(T 1), A∗∗ ∈ Hq+1(T 1) and η∗ ∈

Hq(T 1), and k satisfies (at each x ∈ T 1) either

1. k(x) > 1 +
√

6 (for arbitrary A∗∗ the half-polarized case),

2. k(x) > 1 +
√

6 or k(x) < 1−
√

6 (for A∗∗ ≡ 0 the polarized case),

there exists a δ1 ∈ (0, δ], and a unique solution of the first-order main evolution

system Eqs. (3.28)–(3.36) with leading-order term ů and remainder w ∈ Xδ1,µ,q (and

Dw ∈ Xδ1,µ,q−1) so long as the exponent vector µ given by Eq. (3.40) satisfies the

following inequalities at all x ∈ T 1:

1 < µ1(x) < min{2, (k(x)− 3)(k(x) + 1)/2},
1

2

(
2k(x) +

√
1 + 4k(x)2

)
< µ2(x) < 1 + 2k(x),

0 < µ3(x) < µ1(x),

0 < µ4(x) <
1

2
(k(x)− 3)(k(x) + 1).

While in Proposition 3.5 and elsewhere in this section we have written the results

for the polarized and half-polarized solutions together, it should be clear that in these
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statements any mention of µ2, the A-field, and the corresponding first order fields w4,

w5 and w6 only pertains to the half-polarized case.

As noted above, this proposition is an application of Theorem 2.10 to the

quasilinear symmetric hyperbolic system established in Lemma 3.4. The following

lemma regarding the positivity of the energy dissipation matrix is an essential part

of the proof of Proposition 3.5.

Lemma 3.6. The energy dissipation matrix M0 defined in Eq. (2.7) corresponding

to the quasilinear symmetric hyperbolic system of Lemma 3.4 is positive definite at

every x, provided that

α∗(x) > 0, µ1(x) > 1,

µ2(x) > max

{
1, k(x) +

1

2

√
1 + 4k(x)2

}
, µ3(x), µ4(x) > 0,

holds for all x ∈ T 1.

Proof. We compute from the definition

M0 =



µ1 −1 0 0 0 0 0 0 0

0 µ1 0 0 0 0 0 0 0

0 0 α∗(µ1 − 1) 0 0 0 0 0 0

0 0 0 µ2 −1 0 0 0 0

0 0 0 0 µ2 − 2k 0 0 0 0

0 0 0 0 0 α∗(µ2 − 1) 0 0 0

0 0 0 0 0 0 µ3 0 0

0 0 0 0 0 0 0 µ4 0

0 0 0 0 0 0 0 0 µ4



.
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This matrix is guaranteed to be positive definite if the eigenvalues of sym(M0) =

1/2
(
M0 +MT

0

)
are positive definite; this property holds if the inequalities above are

satisfied.

Proof of Proposition 3.5. We note that the quasilinear symmetric hyperbolic

Fuchsian system formed by Eqs. (3.28)–(3.36) and the leading-order term Eq. (3.39)

is block-diagonal with respect to the exponent vector Eq. (3.40). Thus to apply

Theorem 2.10 and complete the proof of Proposition 3.5 it remains to verify that the

hypotheses of Lemma 3.4 and Lemma 3.6 can be satisfied simultaneously, and that

the matrices S0
0 and N0 are contained in Hq0(T 1) for q0 > 1/2 + 1 + q (since n = 1).

This later condition is satisfied provided α∗ and k (the asymptotic data appearing in

these matrices) are contained in Hq+2(T 1).

The hypotheses of Lemma 3.4 and Lemma 3.6 can be satisfied simultaneously

only if k(x) > 1 +
√

6 in the half-polarized case, and either k(x) > 1 +
√

6 or

k(x) < 1 −
√

6 in the polarized case. In particular, the constraint k(x) > 1 +
√

6

comes from combining the inequalities on µ1.

This establishes that the hypotheses of Theorem 2.10 are satisfied. An

application of this theorem completes the proof of Proposition 3.5.

3.3.5. The Full Set of Einstein’s Vacuum Field Equations.

Thus far, using Theorem 2.10, we have constructed solutions u of the first-order

main evolution system. In this section we show that under additional restrictions on

the asymptotic data: I) The first-order fields given by the solutions to the first-order

main evolution system in fact correspond to second-order fields, that is the first-order

field definitions propagate. II) Given the solutions to the main evolution system, the

Einstein equations, Eq. (3.4) and Eq. (3.6), which we treat as constraints, as well as
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the definition of the β-field Eq. (3.24) are satisfied asymptotically and propagated

by the evolution. Provided these first two points can be shown, it follows that the

solutions to the first-order main evolution system in fact give solutions to the Einstein

equations Eqs. (3.2), (3.3), (3.5), and (3.7) by reversing the first-order field definitions.

III) The auxiliary equations for G and H (Eqs. (3.8)) can be integrated. We state

these results formally in the following proposition.

Proposition 3.7. For any solution of Proposition 3.5 with asymptotic data in Kq,

as in Definition 3.2, the full set of Einstein’s vaccum field equations Eqs. (3.2) –

Eq. (3.7) are satisfied, and Eqs. (3.8) can be integrated for G and H.

Proof. We start by showing that the solution to the first-order main evolution system

corresponds to a solution of the original second-order Einstein equations. Define the

constraint violation quantities

C1(u) :=u2/t− ∂tu1, C2(u) :=u3/t− ∂xu1, (3.43)

C3(u) :=u5/t− ∂tu4, C4(u) :=u6/t− ∂xu4. (3.44)

The propagation of C1(u) and C3(u) follows directly from Eq. (3.28) and Eq. (3.31)

respectively, since t times these constraint violation quantities is equal to the indicated

equations. For C2(u) and C4(u) we use Eq. (3.28),Eq. (3.30), Eq. (3.31), and Eq. (3.33)

to derive the expressions DC2(u) = 0, and DC4(u) = 0. Then, since the form of the

leading order term for the main system implies that C2(u), C4(u) must asymptotically

vanish, it follows that each must vanish for all time. The results of these analyses are

that we may make appropriate substitutions of the fields in the analysis below, e.g.

we may replace instances of u2 by t∂tu1. This is also a step towards proving that the

second-order Einstein equations for U and for A are satisfied.
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To complete the argument that the remaining Einstein equation are satisfied, we

consider the following constraint violation quantities. From Eq. (3.4), we define

E :=− ηtt + αηxx +
αxηx

2
+
αtηt
2α
− α2

x

4α
+
αxx
2

− U2
t + αU2

x +
e4U

4t2
(
A2
t − αA2

x

)
− 3e2ηα

4t4
K2

(3.45)

while, from the constraint Eq. (3.6), we have

Q1 := −ηx + 2tUtUx +
e4U

2t
AtAx −

αx
2α
. (3.46)

Additionally, we must show that the constraint based on the definition of β is satisfied;

we define

Q2 :=− αx + β. (3.47)

We note that if the constraint violation quantities E ,Q1, and Q2 can be shown to

vanish identically, then, along with the propagation of Ci, i = 1, . . . , 4 above, we obtain

that a solution u of the main evolution system Eqs. (3.28) – (3.36) corresponds to

a solution of the Einstein equations Eqs. (3.2)–(3.7). The following lemma is an

important step in establishing this result.

Lemma 3.8. Let u be a solution of Eqs. (3.28) – (3.36). Then,

E =
1

2
(Q2 − u9)Q1 − u8Q1,x

+
1

4

(
e4u1t−1−2ku5u6 + (k − 1− 2u2)(log tk′ − 2t−1u3)

)
Q2.

(3.48)
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A consequence of this lemma is that if we can show that Q1 and Q2 vanish

identically under the hypotheses of Theorem 3.3, then it follows that E vanishes

identically as well. Before treating Q1 and Q2 we prove the above lemma.

Proof. The proof consists of substituting the results of the first-order main evolution

system in Eq. (3.45), and using the field definitions

U = u1 +
1

2
(1− k(x)) log t, η = u7 +

1

4
(1− k(x))2 log t.

In order to apply our knowledge of the solution u to the first-order main evolution

system, we put the constraint violation quantities in terms of these quantities. We

find

Q2 = −u8,x + u9 (3.49)

Q1 = −u7,x +
u3

t
(1− k + 2u2) +

1

2
e4u1t−1−2ku5u6 − k′ log tu2 −

u8,x

2u8

≡ −u7,x −
u8,x

2u8

+ S(u)

(3.50)

E ≡ − u7,tt + u8u7,xx + T (u)

+
1

2
u8,xu7,x +

1

2
u8,xx −

u2
8,x

4u8

− 1

4
k′(1− k) log tu8,x,

(3.51)

where S(u), and T (u) contain the remaining terms, all of which depend on the first-

order fields u, but in particular do not depend on spatial derivatives of u8 –we write

such terms explicitly since they involve the constraint violation quantity Q2 later in
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the analysis. Notice that in the expressions for E and Q1, the terms independent of

u which arise due to the definition of U and η cancel.

We now write the second-derivative terms appearing in the expression for E as

u7,tt = −Du7

t2
+

1

t
∂tDu7

u8u7,xx = −u8Q1,x −
1

2
u8,xx +

u2
8,x

2u8

+ u8∂xS(u),

and we also compute

1

2
u8,xu7,x = −1

2
u8,xQ1 −

u2
8,x

4u8

+
1

2
u8,xS(u).

Inserting these expressions into E we find

E = − u8Q1,x −
1

2
u8,xQ1 −

1

4
k′(1− k) log tu8,x +

1

2
u8,xS(u)

+
Du7

t2
− 1

t
∂tDu7 + u8∂xS(u) + T (u).

Finally, we use the constraint equation for u8,x, from which it follows that

E = − 1

2
(−Q2 + u9)Q1 − u8Q1,x −

1

4
(k′(1− k) log t− 2S(u))Q2

+
Du7

t2
− 1

t
∂tDu7 −

1

4
k′(1− k) log tu9 + u8∂xS(u) +

1

2
u9S(u) + T (u).

Presuming that u satisfies the first-order evolution system Eqs. (3.28) – (3.36) we find

that the terms in the second line cancel, giving the form of E stated in the lemma.

We now proceed to show that Q1 and Q2 vanish under appropriate conditions

on the asymptotic data; these conditions are encoded in the Definition 3.2 for Kq.

We start by writing evolution equations for DQ1 and DQ2. To this end it is useful to
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compute the following mixed derivatives. From Eq. (3.34) and Eq. (3.35) we obtain

u7,xt =
1

t
∂xDu7

= − 1

4
K2 log(t)t

1
2

(1−k)2−3k′e2u7u8 +
1

4
K2k log(t)t

1
2

(1−k)2−3k′e2u7u8

+
1

2
K2t

1
2

(1−k)2−3e2u7u7,xu8 +
1

4
K2t

1
2

(1−k)2−3e2u7u8,x

− log(t)k′′u3u8 −
1

2
log(t)t−2k−1k′e4u1u2

5 −
1

2
log(t)t−2k−1k′e4u1u2

6u8

− k′u2

t
− log(t)k′u3,xu8 − log(t)k′u3u8,x +

1

4
t log2(t)k′2u8,x

+
1

2
t log2(t)k′k′′u8 + t−2k−1e4u1u1,xu

2
5 + t−2k−1e4u1u1,xu

2
6u8

+
1

2
t−2k−1e4u1u5u5,x +

1

2
t−2k−1e4u1u6u6,xu8 +

1

4
t−2k−1e4u1u2

6u8,x

− ku2,x

t
+

2u2u2,x

t
+
u2,x

t
+

2u3u3,xu8

t
+
u2

3u8,x

t

u8,xt =
1

t
∂xDu8

= K2t
1
2(k2−2k−5) (−e2u7

)
u8 (u8 (2u7,x + (k − 1) log(t)k′) + 2u8,x) .

By using these expressions for the mixed derivatives, the constraints Eq. (3.50) and

Eq. (3.49) to eliminate u7,x and u8,x, and finally the evolution system Eqs. (3.28) –

(3.36) we obtain

DQ1 = − 1

2
u8K

2e2u7t(k−3)(k+1)/2Q1

+

(
u2

3 − t log tu3k
′ +

1

4

(
e4u1t−2ku2

6 + t2(log t)2(k′)2
))
Q2,

DQ2 = − 2K2e2u7t(k−3)(k+1)/2u8 (Q2 + 2u8Q1) .

The intermediate expressions are long in length, and so we refrain from writing them

out here.
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These describe, at each spatial point, a system of linear homogeneous ordinary

differential equations for Q1 and Q2 on the interval (0, δ]. Due to the leading order

terms for the first-order fields u,3 and the condition k(x) > 3 or k(x) < −1 at each

x ∈ T 1, we observe that the coefficients of this system are well-defined and vanish

in the limit t ↘ 0. Hence, at each spatial point, this system is Fuchsian ODE that

can be considered a special case of Definition 2.7. The N0 matrix for this system is

identically zero. Hence if the leading order terms, Q̊1(x) and Q̊2(x) can be chosen to

vanish, then the quantities Q1 and Q2 vanish for all (t, x) ∈ (0, δ] × T 1. Moreover,

Q1 = Q2 = 0 is the unique solution to this ODE AVP in a space Xδ,µ, (a space similar

to Xδ,µ,q but without the spatial regularity parameter) for a µ > 0.

The question becomes under what conditions on the asymptotic data functions

k, U∗∗, A∗, A∗∗, η∗, α∗ and ξ∗ can we set Q̊1(x) and Q̊2(x) to zero. By inserting the

leading order expressions for u into Eq. (3.50) and Eq. (3.49) and taking the t ↘ 0

limit we find

Q̊1 = −η′∗ + (1− k)U ′∗∗ −
α′∗
2α∗

, and Q̊2 = α′∗ − β∗.

It follows that Q̊2 = 0 if and only if

β∗ = α′∗, (3.52)

and Q̊1 = 0 if and only if, for an arbitrary constant η0,

η∗(x) = η0 +

∫ x

0

(
(1− k(y))U ′∗∗(y)− 1

2
(logα∗)

′(y)

)
dy. (3.53)

3Recall that in this section we assume u to be a solution obtained in Proposition 3.5
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In particular, due to the closed spatial topology we must choose the asymptotic data

k, U∗∗ and α∗, as in Definition 3.2, to satisfy

∫ 2π

0

(
(1− k(x′))U ′∗∗(x

′)− 1

2
(logα∗)

′(x′)

)
dx′ = 0.

At this point we have shown that under the hypotheses of Theorem 3.3 a solution

u of Proposition 3.5 is a solution of Eqs. (3.2)–(3.7) if and only if the asymptotic data

functions satisfy the conditions of Definition 3.2, and in particular Eqs. (3.52) and

(3.53).

It remains to treat the Eqs. (3.8) for G and H. Using the known solutions of

Eqs. (3.2)–(3.7) to evaluate the right hand sides of Eqs. (3.8), we see that both are

O(tξ) for a power ξ > −1 uniformly in space. It follows that the Eqs. (3.8) may be

integrated over t ∈ [0, δ] at every spatial point, giving

G(t, x) = G∗(x)−
∫ t

0

e2η(t′,x)
√
α(t′, x)Kt′−3dt′,

H(t, x) = H∗(x) +

∫ t

0

e2η(t′,x)
√
α(t′, x)A(t′, x)Kt′−3dt′.

From the control on α, η, and A which we have established –via control on u, and the

above constraints– we observe that the remainder functions G − G∗ ∈ Xδ1,µ5,q and

H −H∗ ∈ Xδ1,µ6,q for any of exponents satisfying

0 < µ5(x) < 1/2(k(x)− 3)(k(x) + 1), 0 < µ6(x) < 1/2(k(x) + 3)(k(x)− 1).

It is sufficient to take G1∗, G2∗ ∈ Hq(T 1).

This completes the proof of Theorem 3.3.
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3.4. AVTD Solutions to the T 2-Symmetric Einstein Equations: The

Smooth Case

In this section we prove that there exists smooth AVTD T 2-symmetric solutions

to the Einstein equations Eqs. (3.2) –(3.7) and Eqs. (3.8). This result improves on

Theorem 3.3 in that it establishes uniqueness of the remainder part of the solution,

W in a larger function space. On the other hand, in order to prove this theorem we

must make stronger regularity assumptions; in fact we go to the smooth case. While

it is not necessary to assume smoothness, a similar result could be established with

sufficiently high Sobolev regularity, we do so here because this assumption simplifies

the analysis and the end result.

To clarify how Theorem 3.10 below achieves the improvement in the uniqueness

statement, we briefly discuss the obstacles to such a result which arise in Theorem 3.3.

In that theorem we must satisfy a number of conditions which constrain the exponent

vector µ. In particular, the block-diagonal conditions imply that we must choose µ

as in Eq. (3.40), while for an exponent vector with this structure the positivity of the

energy dissipation matrix Lemma 3.6 requires the (non-optimal) lower bounds µ1 > 1

and µ2 >
1
2

(
2k(x) +

√
1 + 4k(x)2

)
. This is the origin of the lower bound “gap” for

the exponent vector obtained in Theorem 3.3. The theorem in this section is based

on an application of Theorem 2.28 to the main evolution system. Because we not

require the system to be block-diagonal for the theory applied in this section, we can

in particular choose µ3 to be different from µ1 = µ2 = µ1
4. This flexibility allows

us to choose a µ3 as to optimize the positivity condition of Theorem 2.28 –see the

proof of Proposition 3.11 below. The non-optimal lower bound on µ2, is improved

4Here we have used upper indices to enumerate the component of µ for the nine-dimensional
first-order main evolution system, while we have kept the convention of the lower indices to denote
components of the six-dimensional exponent vector corresponding to the Einstein metric fields.
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in the positivity condition of Theorem 2.28 without needing to alter the form of the

exponent vector.

A related issue with Theorem 3.3 is the constraint on the asymptotic velocity

k(x), which is stricter than the bounds k(x) > 3 in the half-polarized case, and

k(x) > 3 or k(x) < −1 in the polarized case, which are expected based on numerical

and heuristic studies. The constraints on k(x) in Theorem 3.3 come from ensuring that

the upper bound for µ1 is in fact larger than the corresponding lower bound. Since

in this section we improve the lower bounds on the exponent vector, the constraints

on k(x) are also improved to the results expected.

We now proceed to present the set of appropriate asymptotic data for the smooth

case, and the main result of this section Theorem 3.10.

Definition 3.9. Let K∞ denote the set of asymptotic data {k, U∗∗, A∗, A∗∗, α∗, G∗, H∗}

such that A∗ is a constant, and k, U∗∗, α∗, A∗∗, G∗, H∗ ∈ C∞(T 1) with α∗(x) > 0 and

which satisfy the integrability condition

∫ 2π

0

(
(1− k(x))U ′∗∗(x)− 1

2
(logα∗)

′(x)
)
dx = 0,

together with, at each point x ∈ T 1, either

1. k(x) > 3 for arbitrary A∗∗ (the half-polarized case),

2. k(x) > 3 or k(x) < −1 for A∗∗ ≡ 0 (the polarized case).

Theorem 3.10 (Existence of smooth AVTD solutions to the (half)-polarized

T 2-symmetric vacuum Einstein equations). For any twist constant K ∈ R, constant

η0 ∈ R, and asymptotic data in K∞ there exists a δ > 0, and a T 2–symmetric solution
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(U,A, η, α,G,H) of Einstein’s vacuum field equations with twist K of the form

(U,A, η, α,G,H) = (Ů , Å, η̊, α̊, G̊,H) +W,

with leading-order term (Ů , Å, η̊, α̊, G̊,H) given by Eqs. (3.16)–(3.21), with

η∗(x) := η0 +

∫ x

0

(
(1− k(y))U ′∗∗(y)− 1

2
(logα∗)

′(y)

)
dy,

and remainder W ∈ Xδ,µ,∞ (and DW ∈ Xδ,µ,∞) for any exponent vector µ =

(µ1, µ2, µ3, µ4, µ5, µ6) satisfying

0 < µ1(x) < min{2, 1/2(k(x)− 3)(k(x) + 1)},

0 < µ2(x)− 2k(x) < min{1, µ1(x)},

0 < µ3(x) < µ1(x),

0 < µ4(x), µ5(x) < 1/2(k(x)− 3)(k(x) + 1)

0 < µ6(x) < 1/2(k(x) + 3)(k(x)− 1)

(3.54)

This solution is unique among all solutions with the same leading-order term and with

remainder W ∈ Xδ,µ,∞.

The proof of this theorem is similar to that of Theorem 3.3; the most notable

difference being that in the proof of existence of solutions to the first-order main

evolution system we apply Theorem 2.28 rather than Theorem 2.10. We discuss the

proof and other minor differences next.

Proof of Theorem 3.10. As mentioned the heart of this proof is the application of

Theorem 2.28 to the first order main evolution system. In order to apply this

theorem we first verify that Eqs. (3.28) – (3.36) form a smooth quasilinear symmetric
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hyperbolic Fuchsian system about the leading order term Eq. (3.39). The main

evolution system is the same as in Section 3.3.2., except that now the function k(x)

introduced in the definition of the fields Û and η̂ is smooth on T 1. As a result,

the coefficients S0(t, x, u), Sa(t, x, u) and the function f(t, x, u) are smooth in all

arguments.

To show that this system forms a smooth quasilinear symmetric hyperbolic

Fuchsian system, we specify the leading order term Eq. (3.39) as before, although

now the asymptotic data is taken to be C∞(T 1). The functions S0
0 and N0 associated

to the Fuchsian system have the same structure as in Eq. (3.41) and Eq. (3.42), but

are in this case smooth in space. Finally, as above the operators S0
1(w), tSa(w) and

F(u0)[w] can be shown, using results of Section C to be Lipschitz operators for all

q > n/2. Further, F(u0)[w] ∈ Xδ,ν,q for some ν > µ provided µ is bounded above as

in Eq. (3.54); these bounds are similar to those found in the case of finite regularity

(cf. Lemma 3.4).

For reasons listed in the discussion above we may choose the exponent vector for

this smooth system to be of the form

µ = (µ1, µ1, µ1 + 1− ε, µ2, µ2, µ2, µ3, µ4, µ4) (3.55)

for some ε > 0 which may be taken arbitrarily small. This seemingly odd choice of

the third component becomes clear in the proof of Proposition 3.11 below. The next

proposition shows that there exists smooth solutions to this Fuchsian system.

Proposition 3.11. For any twist constant K ∈ R, and smooth asymptotic data

functions {k, U∗∗, A∗, A∗∗, α∗, G∗, H∗} such that A∗ is a constant and k satisfies
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1. k(x) > 3, (in the half-polarized case),

2. k(x) > 3 or k(x) < −1, (in the polarized case)

there exists a δ̂ ∈ (0, δ], and a unique solution u = ů + w of the asymptotic value

problem of Eqs. (3.28) – (3.36) about ů given by Eq. (3.39) with remainder w ∈ Xδ̂,µ,∞,

and Dw ∈ Xδ̂,µ,∞. The exponent vector Eq. (3.55) must satisfy

0 < µ1 < min{2, 1/2(k − 3)(k + 1)},

0 < µ2 − 2k < min{1, µ1},

0 < µ3 < µ1,

0 < µ4 < 1/2(k − 3)(k + 1)

We prove this proposition below, after we complete the proof of Theorem 3.10.

Now that we have obtained smooth solutions to the first-order main evolution

system, it remains to show that there exists smooth solutions to the full Einstein

system Eqs. (3.2) –Eq. (3.7) and Eqs. (3.8). The argument proceeds exactly as it

does in the finite regularity case detailed in Section 3.3.5., as all of the arguments

presented in that section extend to the case when the fields are smooth. We find the

same constraints on the asymptotic data, which are now taken to be smooth; this

leads to the definition of appropriate data K∞.

We now prove the main step in the proof of Theorem 3.10, Proposition 3.11.

Proof of Proposition 3.11. We verify that the smooth quasilinear symmetric

hyperbolic Fuchsian system about the leading order term Eq. (3.39) and with the

exponent vector Eq. (3.55) satisfies the hypotheses of Theorem 2.28.
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1. Smooth commutator condition: The matrix coefficients must satisfy the conditions

outlined in Definition 2.27. We verify from the form of N0 given by Eq. (3.42),

and the diagonality of S0
0 (Eq. (3.41)) that these coefficient-matrices have the block-

diagonal structure of µ given in Eq. (3.55). Similarly S0
1(w) is diagonal and hence

commutes with R[µ]. Since S0
1(w) ∈ Bδ,ζ,q(r) for ζ > 0, as long as µ4 > 0 the

corresponding condition in Definition 2.27 is satisfied. To prove that the condition

on tS1(w) is satisfied we compute R[µ] · tS1(w) · R[−µ]. Because of the structure of

tS1(w) (cf. Eq. (3.38)), and the structure of µ in Eq. (3.55), we find this product to

be in Bδ,ξ,q(r̃) for some exponent scalar ξ < ε. This condition is the reason we can

only have (µ1 + 1− ε)-control (and not (µ1 + 1)-control) over the field t∂xU . Without

the positive ε the product R[µ] · tSa(w) · R[−µ] would only be contained in some

Bδ,0,q(r̃).

2. The product compatibility, and the higher-order source conditions: We verify that

the product compatibility conditions outlined in Definition 2.25 hold for the operators

S0
1(·) and tS1(·) given in Eq. (3.37) and Eq. (3.38) respectively. The matrix-valued

operator S0
1(·) is diagonal, and hence

R[µ]
(
S0

1(w)− S0
1(w + h)

)
R[−µ] = S0

1(w)−S0
1(w+h) = Diag(0, 0, h8, 0, 0, h8, 0, 0, 0)

for any h ∈ Xδ,µ̂,q. We consider only µ̂ of the form µ̂ = µ + γ0 for a positive scalar

exponent γ0. Thus, µ̂8 = µ8 +γ0 = µ4 +γ0 and we have control in Xδ,ζ̃+µ̂−µ,q for some

positive exponent scalar ζ̃ as desired, since µ4 > 0.

For the similar condition on tS1(·), we consider each of this matrices three blocks

separately. The third block is identically zero, so the property holds trivially. For the

second block, the 3× 3 matrix has the same block-diagonal structure as the relevant
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portion of the exponent vector µ (namely (µ2, µ2, µ2)), and hence commutes with

R[µ](2). The same argument that is used above for the S0
1(·) operator can be applied

to this block. For the first block, we find due to the structure of µ (c.f. Eq. (3.55))

R[µ](1)
(
tS1w − tS1w + h

)(1)R[−µ](1) =


0 0 0

0 0 −h8t2−ε

0 −h8tε 0

 .

Again, the same argument as before can be used to show that we have appropriate

control on this quantity for µ̂ = µ+ γ0.

The additional properties needed of the source operator F(u0)[·], which are

specified in Definition 2.26 are shown in Section C.3.3. to hold for the types of

function operators present in this application.

3. Positivity condition: Finally we verify Condition (iii) of Theorem 2.28. From the

expressions for N0 and S0
0 (Eq. (3.42) and Eq. (3.41) respectively) we compute the

block-diagonal matrix N = (S0
0)
−1
N0, with blocks

N (1) =


0 −1 0

0 0 0

0 0 −1

 , N (2) =


0 −1 0

0 −2k 0

0 0 −1

 ,

and N (3) = 03×3. Since the matrices are upper triangular we can read the eigenvalues

off the diagonal. Let λ denote the R9-vector of eigenvalues. The condition µ > −<λ

then gives

µ1 > ε µ2 > max{0, 1− 2k} = 0 µ3, µ4 > 0.

172



Since ε > 0 can be taken arbitrarily small, we take µ1 > 0, and note that for any such

µ1 we can find an ε > 0 such that the conditions discussed above are satisfied.

This verifies the hypotheses of Theorem 2.28; the proposition follows as a direct

application of this theorem.

Note that in [3] we needed u0 to be an ODE leading order term in order to apply

the smooth Fuchsian theorem (an earlier version of Theorem 2.28) in that paper.

This condition is still reflected in the leading order term we choose here, given by

Eq. (3.39), although the fact that it is ODE is no longer a necessary hypothesis of

Theorem 2.28.
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CHAPTER IV

AVTD GOWDY SOLUTIONS IN WAVE GAUGES

The work presented in this chapter is unpublished; all calculations were

performed by E. Ames with the guidance of F. Beyer and J. Isenberg.

4.1. Prelude

In this chapter we establish the existence of a family of AVTD T3 Gowdy solutions

in a family of so-called wave gauges. This family of gauge choices has been used in

proving many important results in mathematical relativity, most notably the local

existence of solutions to Einstein equations by Yvonne Choquet-Bruhat [35] (see also

[23] for a global existence result, [36, 75] for general expositions, and [52, 59] for more

recent uses). The wave gauges are particularly useful because they guarantee that

the Einstein equations take hyperbolic form, and one can employ the methods and

techniques which have been developed for this type of partial differential equation.

Of particular importance is the first-order symmetric hyperbolic form, on which our

Fuchsian theory is based.

The original motivation for this Fuchsian formulation of the Einstein equations

in wave gauges is to develop a tool with which we can study the U(1)-symmetric

class of solutions. As discussed in Section 1.4.3., families of AVTD U(1)-symmetric

solutions have been found in the analytic function class. However to prove the

existence of (only) smooth solutions, the present methods (such as ours presented

in Chapter II) require the structural property of hyperbolicity. While the natural,

geometric, time coordinate for T 2-symmetric solutions –the areal time– provides a

hyperbolic formulation of the Einstein equations in that class, no such time coordinate
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has been identified for the U(1)-symmetric class of solutions. Further, the gauges

chosen in the studies of analytic U(1)-symmetric solutions [24, 25, 45] do not yield

a symmetric hyperbolic formulation of the equations. As a warm-up problem to

using this formalism in the U(1)-symmetric class, we have used this formalism to

investigate the gauge-dependence of the AVTD property in the simpler case of T3-

Gowdy solutions.

The AVTD property is by definition dependent upon the choice of coordinates –

recall Definition 1.11 (and the surrounding discussion), which is taken from [44]. The

results discussed above in Section 1.4.1. show that in both the smooth and analytic

AVTD Gowdy solutions, there exists a family of surface-orthogonal observers (those

following worldlines with zero shift relative to the foliation) relative to the areal

foliation that experience AVTD behavior. It is not clear if non-stationary observers

(corresponding to coordinates with a non-vanishing shift) in these spacetimes would

experience AVTD behavior. Similar statements can be made regarding the polarized

and half-polarized T 2-symmetric solutions, as well as the polarized U(1)-symmetric

solutions. We have the following open questions: I) Suppose a solution in some

symmetry class is AVTD in one system of coordinates. Is this solution AVTD in any

other system of coordinates? II) What characterizes a family of coordinate systems

in which a particular solution (in a particular symmetry class) can be shown to be

AVTD?

The only results in the literature which begin to address these questions are those

by Isenberg and Moncrief in [45]. Most of that paper is devoted to showing that there

is a family of analytic polarized and half-polarized U(1)-symmetric solutions in which

surface-orthogonal observers in a harmonic time foliation experience AVTD behavior.

In Section 5 the authors investigate the gauge-dependence of their result. They find
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a two-parameter family of harmonic time foliations in which the surface-orthogonal

observers experience AVTD behavior, and further, they show that in each of these

foliations, the world-lines of the surface-orthogonal observers become asymptotically

parallel. That is the shift vector describing the path of the observers in one harmonic

time asymptotically vanishes when expressed in another harmonic time within the

family. It is unknown whether this property of asymptotically parallel worldlines is

a general property of coordinate systems in which AVTD behavior can be verified.

In this Chapter we take a step towards understanding these questions. We

construct in Section 4.3.2. a two-parameter family of wave gauges which contains the

areal gauge. These gauges are asymptotically areal in the sense that the gauge source

functions approach those of the areal gauge near the singularity. In Section 4.3.3.

we state, and prove in Section 4.4., that for each fixed gauge choice in the family,

there exists a family of smooth AVTD solutions parametrized by a set of asymptotic

data. In each of our solutions the worldlines of the surface-orthogonal observers are

asymptotically parallel to those of the observers in the areal gauge. This last result

lends support to the idea that asymptotically parallel worldlines is a general feature

of coordinate systems in which AVTD behavior can be verified.

Our results so far do not address question (I) posed above. Although for a fixed

(non-areal) gauge in our family, we find a family of AVTD solutions, we do not yet

know how this family compares to the family of AVTD solutions in areal gauge. This

important question is currently under investigation.

We give a brief outline to the chapter. In Section 4.2.1. we review the wave-

gauge formalism for the Einstein equations. This is followed in Section 4.2.2. and

Section 4.2.3. by writing both the evolution and constraint propagations systems

as first-order symmetric hyperbolic systems (in the case of one relevant spatial
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coordinate) and writing down a general Fuchsian reduction as in Chapter II for these

systems. In Section 4.3. we review in more detail the known AVTD solutions in

areal gauge, in particular we state a theorem for existence of these solutions with the

remainders in weighted Sobolev spaces of Section 2.2.2.. We also set-up and state

our main results in this section. The Sections 4.4. and 4.5. are devoted to proving

the main results; the proof of existence of solutions is based on the Fuchsian theory

developed above.

4.2. Wave Gauge Formalism

4.2.1. Vacuum Einstein Equations

The vacuum Einstein equations Eq. (1.2), can be written in an arbitrary system

of coordinates as

Ricij = −1

2
gkl∂k∂lgij +∇(iΓj) + gklgmn (ΓkmiΓlnj + ΓkmiΓljn + ΓkmjΓlin) = 0, (4.1)

where

Γkmi :=
1

2
(∂kgmi + ∂igmk − ∂mgki) , (4.2)

and

Γm := gkiΓkmi.

Clearly if one could choose coordinates so that Γj ≡ 0 the equations would take

hyperbolic form; such a choice is called wave gauge.

One can actually make a more general gauge choice by choosing arbitrary gauge

source functions Fi so that Fi = Γi, which may depend on the metric functions but
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not its derivatives. The Einstein equations are then equivalent to the following system

of evolution equations:

−1

2
gkl∂k∂lgij +∇(iFj) + gklgmn (ΓkmiΓlnj + ΓkmiΓljn + ΓkmjΓlin) = 0 (4.3)

and constraint equations:

Fj − Γj = 0 (4.4)

∇(Fj − Γj) = 0. (4.5)

It is necessary that the constraints be propagated by the evolution equations.

Let Di := Γi − Fi be the constraint violation quantity. In terms of this quantity the

Einstein evolution equations Eq. (4.3) are written

Ricij +∇(iDj) = 0. (4.6)

We can take the trace of this equation to compute the scalar curvature

R = −∇jDj,

and us the divergence free property of the Einstein tensor ∇jGji = 0 to derive a linear

wave-type constraint propagation equation

∇i∇iDj +R k
j Dk = 0. (4.7)
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Thus, in a Cauchy problem if Di = 0 and ∇jDi = 0 on a slice Ωt∗ , then Di ≡ 0 in the

domain of dependence D(Ωt∗) (see for example [75] Chapter 12).

4.2.2. Fuchsian Formulation of the Vacuum Einstein Evolution Equations

In this section we write the second order Einstein evolution equations in the

wave gauge as a first-order symmetric hyperbolic system like that in Chapter II.

We also perform a general Fuchsian reduction for a certain class of leading order

terms; in specific applications one must check that the reduced system obtained

is in fact a Fuchsian system in the sense of Definition 2.7. Because we find it

necessary in applications such as to the Gowdy equations in Section 4.3., we add

multiples of the constraint violation quantity Dk to the evolution equations. The

coefficients Cij
k multiplying Dk can be chosen in applications to modify the principle

part of the quasilinear symmetric hyperbolic Fuchsian equation, since Dk contains

first derivatives of the metric. The extent to which the principle part can be modified

depends, of course, on which derivatives of which metric components appear in Dk in

a given application. Write the evolution equations as

−1

2
gkl∂k∂lgij +∇(iFj) +Hij − CijkDk = 0 (4.8)

where we have defined

Hij := gkmgln (ΓkliΓmnj + ΓkliΓmjn + ΓkljΓmin) . (4.9)
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for brevity. Since n = 1, the principle part is

−1

2
gkl∂k∂lgij = −1

2
g00∂2

0gij − g01∂1∂0gij −
1

2
g11∂2

1gij.

To bring the evolution system into Fuchsian form, involving the Fuchsian derivative

D := t∂0, and to avoid a singular coefficient in the principle part of the eventual

Fuchsian system we multiply through by −2t2(g00)−1. Noting that t2∂2
0u = D2u−Du

we obtain

D2gij + 2tβ(g)∂1Dgij − t2α(g)∂2
1gij − 2t2(g00)−1H(t, x, g) = 0

where we have defined

α(g) := −g11/g00, β(g) := g01/g00

H(t, x, g) := 2t2(g00)−1
(
∇(iFj) +Hij − CijkDk

) (4.10)

The system is put into first order form by introducing new fields for the first derivatives

of the metric fields. In the following we focus our attention on one metric field by fixing

i, j, and derive the first order system corresponding to this field. Let U = (U1, U2, U3)

be defined by

U1 := gij, U2 := Dgij, U3 := t∂1gij (4.11)

The first order equations for gij (i, j still fixed) are then

DU1 − U2 = 0, (4.12)

DU2 + 2β(U)t∂1U2 − α(U)t∂1U3 − U2 +H[U ] = 0, (4.13)

DU3 − t∂1U2 − U3 = 0, (4.14)
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where α(U), β(U), and H[U ] are the functions of (t, x) and g introduced in Eq. (4.10)

written in terms of the first order fields. By multiplying the third equation through

by α(U) the system Eq. (4.12)-Eq. (4.14) can be written as a symmetric hyperbolic

system as in Eq. (2.1) with

S0(U) =


1 0 0

0 1 0

0 0 α(U)

 , and Sa(U) =


0 0 0

0 2β(U) −α(U)

0 −α(U) 0

 , (4.15)

and

f [U ] =


−U2

−U2 +H[U ]

−α(U)U3

 .

To obtain a the Fuchsian system we must choose a leading order term. Suppose u0

is the prescribed leading order term for the metric field gij. Then we let

Ů1 = u0, Ů2 = Du0, Ů3 = t∂1u0, (4.16)

and write the Fuchsian equation for the remainder field W := U − Ů contained in

some space Xδ,µ,q for δ > 0, and integer q possibly infinite, and an exponent vector

µ : T 1 → R3. Suppose u0 ∈ Xδ,κ,q for some κ : T 1 → R, then we take µ to have the

form

µ = (µ1 + κ, µ1 + κ, µ1 + κ+ 1− ε),

where ε ≥ 0. The value of 1 − ε measures the additional control we have over the

t-weighted spatial derivatives (the component W3 = t∂1W1). One may expect that

we should have one additional power of control corresponding to ε = 0. However, we
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leave ε arbitrary at this stage since it turns out that this quantity is constrained in

the Fuchsian analysis below.

The problem of obtaining a Fuchsian equation, given a choice of leading order

term, is in separating the various terms in H[U ] = H(Ů)[W ] into those function

operators belonging in the Fuchsian principle part and those belonging in the Fuchsian

source. This sorting requires knowledge of the types of function operators which

appear in each term. We suppose at this point that H(Ů)[W ], and α have expansions

of the form

α(Ů +W ) =α0(x) + α1(W ) (4.17)

H[Ů +W ] =h0(t, x) + h1
1(x)W1 + h2

1(x)W2 + h2(t, x,W ), (4.18)

where the functions h1
1(x) and h2

1 depend on the functions Ck
ij.

Since the function operator β(·) appears only in Sa(·), we do not bother with

expanding it as above, but we still need to know in which weighted Sobolev space

(Section 2.2.2.) it takes values. Below we discuss in slightly more detail the nature of

the function operators which make up H(Ů)[W ], and motivate the above expansions.

We now write out the Fuchsian quantities in terms of the expansions Eq. (4.17) and

Eq. (4.18).

Recalling Definition 2.7 we write

S0
0 = Diag(1, 1, α0(x)), S0

1(W ) = Diag(0, 0, α1(W )),

from which it is clear that α0 must be positive definite. It must be checked in a given

application that S0
1(W ) and Sa1 (W ) are function operators which satisfy the requisite

properties listed in Condition (ii) of Definition 2.7 above. Next, we seek to write f [U ]
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as −f1(u0 +W ) +N0(u0)W and find

−f1(u0 +W ) =


−Ů2

−Ů2 + h0(t, x) + h2(t, x,W )

−(α0(x) + α1(W ))Ů3

 ,

and

N0(u0) =


0 −1 0

h1
1(x) h2

1(x)− 1 0

0 −α0(x)

 . (4.19)

Finally we compute

F(u0)[W ] =
0

−h0(t, x)− h2(t, x,W )−DŮ2 − 2tβ(Ů +W )∂1Ů2 + tα(Ů +W )∂1Ů3 + Ů2

0

 ,

which must be verified to satisfy Condition (iii) of Definition 2.7 in particular

applications.

The expansion of the function operator H(Ů)[W ] in Eq. (4.18) can be understood

in more detail. Recall from Eq. (4.10) that there are three types of terms, Hij,∇(iFj),

and those proportional to Dk. In the following, we rely heavily on the discussion of

function operators in Section C of the Appendix. To understand all of these terms,

it is necessary to understand the components of the inverse metric, and in particular

their properties as function operators. Lemma C.10 shows that if µ > 0, the inverse

metric components are smooth function operators on w ∈ Bδ,µ,q(s) for a sufficiently
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small s, each of which can be expanded in the form

gij(W ) = y0(t, x) + yn1 (t, x)Wn + y2(t, x,W ),

where the sum over n = 1, . . . d is implied and y2 is a rational function of the

components of W . Once the components of the inverse metric are understood as

function operators, the various contractions of the Christoffel symbols are easily

analyzed. Note from Eq. (4.2) that for any i, j, k, Γijk is a linear function operator.

Consequently each quadratic term in Γ is a quadratic function operator, and it follows

that Hij is a polynomial function operator which has an expansion as in Eq. (C.1).

Similarly, each Γkij consists of inverse metric components multiplying an

expression linear in the first-order fields, and the same for Γk. Since each component

of the inverse metric has an expansion as above, as do the linear function operators

in the remainder of the Christoffel symbols, it follows that ∇(iFj) and Dk are also

polynomial function operators, each of which has an expansion of the form Eq. (C.1).

We conclude that H(Ů)[W ] takes the form

H(Ů)[W ] =
l∑

j=1

18∏
i=1

cj(t, x)W
pji
i = h0(t, x) +h1

1(x)W1 +h2
1(x)W2 +h2(t, x,W ). (4.20)

Note that while in general terms linear in components of W other than W1 and W2

appear in the expression, these do not contribute to the Fuchsian principle part of

the equation for W2 –as this would break the block-diagonal structure– such terms

are instead contained in h2(t, x,W ).

We remark that such a reduction must be done for each metric field, resulting

in a 3 × N -dimensional first-order symmetric hyperbolic system, which is organized

into N blocks. Here N denotes the number of independent metric fields, and has a
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maximum of ten. A similar reduction can be performed in situations where the metric

depends on more than one spatial coordinate. In such scenarios, the first-order system

will be (2 +n)×N -dimensional, where n denotes the number of dynamically relevant

spatial coordinates.

4.2.2.0..1 Propagation of first-order field definitions Suppose that in a

particular application one can verify that the function operators satisfy the requisite

properties in Definition 2.7 and Theorem 2.10, (or Theorem 2.28 in the smooth case),

and hence obtain a unique solution to the first-order symmetric hyperbolic Fuchsian

system. To show that this solution corresponds to a solution of the original second-

order system we must show that the constraints obtained from the first-order field

definitions are propagated by the evolution equations. We have

C1(U) := U2/t− ∂tU1, and C2(U) := U3/t− ∂xU1.

The preservation of the first constraint, C1 = 0 for all t ∈ (0, δ], follows directly from

the first evolution equation Eq. (4.12), which implies

tC1 ≡ 0.

Further, from Eq. (4.12) and Eq. (4.14) we derive

DC2 =
1

t
DU3 − U3/t− ∂xDU1

=
1

t
(t∂xU2 + U3)− U3/t− ∂xU2

= 0
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It follows that since C2 = 0 is a solution to this equation, it is the unique solution

provided C2 vanishes asymptotically, that is C2(Ů) = 0. This condition is satisfied by

the definition of the leading order terms for the first order fields Eq. (4.16).

4.2.3. Fuchsian Formulation of the Vacuum Einstein Constraint

Propagation Equations

While in the Cauchy formulation discussed above in Section 4.2. it is possible

to show that the constraints vanish if they vanish on an initial data surface, here we

must show that the constraints vanish in a neighborhood of the singularity based only

on the knowledge that they are satisfied asymptotically. This requires a formulation

of the propagation equations as a symmetric hyperbolic Fuchsian system. Since these

equations are linear, we seek to form a system of the type in Definition 2.11, and to

prove the existence of solutions only the hypotheses of Proposition 2.20 must be met.

With the addition of constraints to the evolution equations, so that Eq. (4.6) has

the form

Ricij +∇(iDj) = Cij
kDk, (4.21)

where Cij
k are functions of the spacetime coordinates, we obtain the corresponding

linear wave equation for the constraint propagation by the same process as in

Section 4.2.. The result is

∇i∇iDj +Rj
lDl =

(
2∇iC

i
j
k −∇jCl

lk
)
Dk +

(
2Ci

j
k − Cllkδij

)
∇iDk. (4.22)

Comparing to Eq. (4.7), we see that the left-hand side is the same, while additional

terms depending on the coefficients Cij
k have been added to the right-hand side.

Expanding the wave operator and the covariant derivatives in terms of the metric
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and Christoffel symbols Eq. (4.22) can be written

gjk∂j∂kDi − Ajki ∂jDk −Bk
i Dk =

(
2∇jC

j
i
k −∇iCl

lk
)
Dk −

(
2Cj

i
k − Cllkδji

)
ΓmjkDm

+
(
2Cj

i
k − Cllkδji

)
∂jDk

with

Ajki =gmlΓjmlδi
k + 2gmjΓkmi,

Bk
i =gmj

(
∂mΓkji − ΓlmjΓ

k
li − ΓlmiΓ

k
jl

)
−R k

i .

Multiplying this equation by t2, using the definition of the Fuchsian derivative

operator D := t∂t and the identity D2u(t) = t2∂2
t u(t) + t∂tu(t) we find

g00D2Di + 2g01t∂1DDi + g11t∂1t∂1Di

= tA0k
i DDk + tA1k

i t∂1Dk + t2Bk
i Dk +DDi

+ t
(
2g0mCmi

k − glmClmkδ0
i

)
DDk

+ t
(
2g1mCmi

k − glmClmkδ1
i

)
t∂1Dk

+ t2
(
2∇jC

j
i
k −∇iCl

lk − 2Cj
i
mΓkjm + Cl

lmδjiΓ
k
jm

)
Dk

We now construct a first-order symmetric hyperbolic system as in Section 4.2.2.,

and choosing a leading order term, the corresponding Fuchsian system. Since the

system in this section is linear (the system in Section 4.2.2. is quasilinear), we are

able to give a slightly more detailed presentation. Elements of the reduction however

are very similar to that in Section 4.2.2.. We derive a first-order system for the

187



first-order fields

(V1, . . . , V12)T := (D0, DD0, t∂1D0, . . . ,D3, DD3, t∂1D3)T ,

which is block-diagonal. Each block has the form

DV3A−2 − V3A−1 =0

DV3A−1 + 2β(g)t∂1V3A−1 − α(g)t∂1V3A − V3A−1 +HA[V ](t, x) =0

DV3A − t∂1V3A−1 − V3A =0

(4.23)

where A = 1, . . . , 4 indexes the blocks in this case. The HA[V ] are given by

HA=i+1[V ] = − t/g00

(
A0k
i + C̃(0)

k

i

)
V3k+2 − t/g00

(
A1k
i + C̃(1)

k

i

)
V3k+3

− t2/g00
(
Bk
i + C̃k

i

)
V3k+1,

(4.24)

where

C̃k
i :=

(
2∇jC

j
i
k −∇iCl

lk − 2Cj
i
mΓkjm + Cl

lmδjiΓ
k
jm

)
,

C̃(0)
k

i :=
(
2g0mCmi

k − glmClmkδ0
i

)
, and C̃(1)

k

i :=
(
2g1mCmi

k − glmClmkδ1
i

)
.

The coefficient matrices are known in this case since they depend upon the solutions

to the evolution equations.

Next we seek the reduced system formed by inserting V = V̊ +W into the first-

order system. We choose a leading order term V̊ = 0 since this a linear system and

we assume the constraints hold asymptotically. If this is to form a linear symmetric

hyperbolic Fuchsian system about V̊ = 0, we should find that

f(V̊ +W ) = N0W − F(V̊ )[W ],
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(since
∑n

j=0 tS
j∂jV̊ = 0), where N0 is a matrix-valued function of x, and F(V̊ )[W ]

satisfies the properties in Definition 2.7. As in Section 4.2.2. the main burden of

the analysis is in the terms HA[V ]. Here, each HA[V ] is a linear combination of the

components of V , with coefficients determined by the metric fields (solutions to the

evolution equations which are taken to be found). The analysis simplifies in this

(linear) case to checking the exponent of t in the coefficient of each term. Those

terms with coefficients which are O(1) as t ↘ 0 will placed into the N0 part, while

any other term must be higher order and placed in F(V̊ )[W ]. In the later case, we

may obtain inequalities on the exponent vector for W .

The contributions to the N0 part of the Fuchsian principle part can be identified

as the t↘ 0 behavior of the corresponding coefficients. To this end we define

a(0)j

i := lim
t↘0

t(g00)−1A0j
i , a(1)j

i := lim
t↘0

t(g00)−1A1j
i bji := lim

t↘0
t2(g00)−1Bj

i , (4.25)

and similarly,

cki := lim
t↘0

{
t2

g00
C̃k
i

}
, c(0)k

i := lim
t↘0

{
t

g00
C̃(0)

k

i

}
, c(1)k

i := lim
t↘0

{
t

g00
C̃(1)

k

i

}
. (4.26)

Thus, a(0)j

i + c(0)j

i describes the O(1) coefficient of V3j+2 in the function operator

Hi+1[V ], and similar interpretations are made for the other coefficients (see

Eq. (4.24)). The (i+ 1)th block1 of the N0 matrix can then be written

N
(i+1)
0 =


0 −1 0

−bii − cii −a(0)i

i − c(0)i

i − 1 −a(1)i

i − c(1)i

i

0 0 −α0

 . (4.27)

1Recall i = 0, . . . 3.
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Note that in most of our applications a(1)i

i = c(1)i

i = 0, and α0 = 1, and this matrix

has the same form as N0 found in Eq. (4.19) above.

4.3. AVTD Gowdy Solutions

4.3.1. Review: AVTD Solutions in Areal Gauge

In this section we review in more detail than Section 1.4.1., what is known

regarding AVTD behavior in the Gowdy solutions in areal coordinates. The original

results may be found in [18, 44, 67]. The purpose of this section is to state an existence

theorem for the smooth AVTD Gowdy solutions in terms of our present theory, most

importantly we establish control of the remainder fields in terms of the weighted

Sobolev spaces Section 2.2.2.. We expect this formulation of the result to be useful

in comparing the AVTD solutions in areal gauge with those obtained in Theorem 4.4

below. As stated above, this comparison is ongoing work.

In areal coordinates (t̃, x̃, ỹ, z̃), the T3−Gowdy spacetimes (M, g) are given by

M = (0,∞)× T3 and

g =
1√
t̃
eλ̃/2(−dt̃2 + dx̃2) + t̃(eP̃dỹ2 + 2eP̃ Q̃dỹdz̃ + (eP̃ Q̃2 + e−P̃ )dz̃2), (4.28)

where t̃ > 0 is the areal time coordinate, and x̃, ỹ, z̃ are standard coordinates on T3.

The functions λ̃, P̃ , and Q̃ are functions of t̃ and x̃ only. It is shown in [18, 67] that

a family of smooth solutions to the Einstein equations, which we denote A, exist in

which the metric functions have the following expansions at every point x̃ ∈ T1 in a
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neighborhood of t̃ = 0, (the singular region)

P̃ (t̃, x̃) = −k(x̃) log t̃+ P∗∗(x̃) + wP (t̃, x̃),

Q̃(t̃, x̃) = Q∗(x̃) +Q∗∗(x̃)t2k(x̃) + wQ(t̃, x̃),

λ̃(t̃, x̃) = k(x̃)2 log t̃+ λ∗∗(x̃) + wλ(t̃, x̃).

(4.29)

The functions wP (t̃, x̃), wQ(t̃, x̃), wλ(t̃, x̃) in Eq. (4.29) decay in a controlled way as

t̃↘ 0. The asymptotic data functions k(x̃), P∗∗(x̃), Q∗(x̃), and Q∗∗(x̃) depend only on

spatial variable x̃, and must satisfy certain constraints listed in Theorem 4.1 below.

The work of Ringstrom [74] proves that in fact the solutions A are generic in the

space of all solutions with T 3 Gowdy symmetry.2 Solutions with expansions given by

Eq. (4.29) are AVTD since the leading order terms in the expansions of the metric

fields satisfy (at least asymptotically) the corresponding VTD system [44]. We have

the following theorem, which is essentially Theorem 4.4 from [18] formulated in our

present notation.

Theorem 4.1 (Existence and uniqueness of smooth AVTD solutions to the

T3-Gowdy-Einstein system). Let {k, P∗∗, Q∗, Q∗∗, λ∗∗} be any smooth asymptotic data

with k ∈ (0, 1), and satisfying

λ′∗∗(x̃) = −2kP ′∗∗(x̃),

∫ 2π

0

k(x̃)
(
−∂x̃P∗∗(x̃) + 2e2P∗∗(x̃)Q∗∗(x̃)∂x̃Q∗(x̃)

)
dx̃ = 0.

2More precisely, Ringstrom shows that there exists an open and dense set of initial data for the
T3-Gowdy equations for which the corresponding maximal globally hyperbolic developments have
the expansions Eq. (4.29) with k ∈ (0, 1) in the direction of the singularity about all but a finite
collection of points.
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There exists a solution of the full T3-Einstein-Gowdy system of the form Eq. (4.29)

with wP ∈ Xδ,µP ,∞, wQ ∈ Xδ,µQ,∞ and wλ ∈ Xδ,µλ,∞ for µP , µQ, µλ satisfying

0 <µP < min{2− 2k, 2k, 1 + µQ}

0 <µQ < min{2, 2k, 1 + µP}

0 <µλ < min{3− 2k, 2k}.

(4.30)

4.3.2. Asymptotically Areal Wave Gauges

Before presenting our main results in Section 4.3.3. below, we introduce the

metric and gauge fields which are used in the analysis. Due to the symmetries in

the Gowdy class we consider gauge source functions depending only on (t, x), and

further we restrict to the case F2 = F3 = 0. Given this choice of gauge source

functions we find that the metric for the vacuum T3 Gowdy Einstein equations in

general takes a block-diagonal form with one block corresponding to the (t, x)-part

of the metric (which we call the γ-block), and one block to the (y, z)-part of the

metric (the τ -block). In the special case of the areal gauge (F0 = −1/t,F1 = 0), the

(t, x) block can be chosen to be diagonal. However, for more general families of gauge

source functions the shift component γ01 is non-vanishing under Einstein evolution.

For the wave gauge formalism a parametrization based on the metric components

is most natural. However, for technical reasons we choose a non-metric component

parametrization for the τ -block. We parametrize the metric in terms of the fields

192



γ00, γ01, γ11, and τ11, τ12, τ22 as

g =



γ00 γ01 0 0

γ01 γ11 0 0

0 0 τ11 τ11τ01

0 0 τ11τ01 τ11τ
2
01 + τ22


. (4.31)

Now that we have specified the metric fields, we make a formal definition for the class

of gauge source functions we consider.

Definition 4.2 (Asymptotically areal wave gauge). Let t > 0, and let xa be

coordinates on T3. Furthermore, let τ̊ be the leading order term of the τ -block, and

suppose that V ol(̊τ) = t. The gauge is called asymptotically areal wave gauge if

the gauge source functions take the form

F0 = −1

t
+ F0(t, x), F1 = F1(t, x), F2 = F3 = 0

for F0 ∈ Xδ,ξ0,∞ and F1 ∈ Xδ,ξ1,∞ with ξ0 > −1, ξ1 > 0.

Notice that the gauge source functions correspond to those for the areal gauge

at leading order –hence the name. The areal gauge can be recovered by taking the

limit ξ0, ξ1 →∞.

4.3.3. Main Results

We begin by proving the following theorem for the existence and uniqueness of

a family of solutions to the T3-Gowdy Einstein equations in a class of wave gauges.

The following set of asymptotic data plays an important role in the results of this

section.
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Definition 4.3. Suppose gauge source functions F have been chosen as in

Definition 4.2. Let K denote the set of asymptotic data {k(x), γ∗(x), γ∗∗(x), τ∗(x), τ∗∗(x)}

which is C∞(S), and such that k ∈ (0, 1) and

γ∗∗ = − γ∗ϕ1

1 + ξ1

, γ′∗/γ∗ = −k(x)τ ′∗/τ∗.,

where ϕ1 := limt↘0 F1(t, x)/tξ1.

Theorem 4.4 (AVTD Gowdy solutions in asymptotically areal wave gauges). Choose

any gauge source functions as in Definition 4.2 with parameters ξ0, ξ1 satisfying ξ0 >

3/2(1 + k2), ξ1 > 1/2(1 + 3k2), and any smooth asymptotic data in K for the metric

fields in Eq. (4.31). There exists a solution g = g̊+ ĝ of the form Eq. (4.31) to the full

Einstein-wave system given by the evolution equations Eq. (4.3) and the constraints

Eq. (4.4), with leading order term g̊ given by

γ̊00 =− γ∗(x)t1/2(k2−1) (4.32)

γ̊01 =γ∗∗(x)t1/2(k2−1)+1+ξ1 (4.33)

γ̊11 =γ∗(x)t1/2(k2−1) (4.34)

τ̊11 =τ∗(x)t1−k (4.35)

τ̊12 =τ∗∗(x) (4.36)

τ̊22 =τ∗(x)−1tk+1. (4.37)
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and with remainder ĝ ∈ Xδ,µ,∞ for µ satisfying

(1− k2)/2 < µ1 < µ3,

0 < µ2 < min{ξ1, µ1, µ4, µ6},

(1− k2)/2 < µ3 < 2− 2k,

0 < µ4 < 2− 2k,

2k < µ5 < 2,

0 < µ6 < 2− 2k.

(4.38)

Let S(ξ0, ξ1) denote the family of solutions obtained in Theorem 4.4. Note that

for each appropriate pair (ξ0, ξ1) specifying the gauge, there is a family of solutions

parameterized by the asymptotic data in K. The asymptotic data is coupled to the

choice of gauge through the shift function, which imposes the constraint γ∗∗ = − γ∗ϕ1

1+ξ1
.

Theorem 4.4 is proved in Section 4.4. below using Fuchsian methods.

The leading order terms for the metric fields given in Eqs. (4.32)-(4.37) are

motivated by the leading order terms for the metric fields in areal gauge Eqs. (4.29).

The later can be shown to asymptotically satisfy the VTD Gowdy equations in

areal gauge. Similarly, the leading order terms we have selected in the asymptotically

areal gauge can be shown to satisfy the VTD equations corresponding to Eqs. (4.3)-

(4.5). The following lemma, which states this result, is proved below in Section 4.5..

Lemma 4.5 (Each family S(ξ0, ξ1) is AVTD ). For any two parameters ξ0, ξ1

satisfying the inequalities in Theorem 4.4, and asymptotic data in K, the family of

solutions S(ξ0, ξ1) obtained in Theorem 4.4 is AVTD.

Given that we have established the existence of two families of AVTD solutions

in different gauges (one gauge being the limiting case of the other), we would like to
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relate these two families. However at this time we the relationship between S(ξ0, ξ1)

and A is not known. Based on our preliminary computations so far we make the

following conjecture:

Conjecture 4.6. For any choice of parameters ξ0, ξ1 satisfying the inequalities in

Theorem 4.4

S(ξ0, ξ1) ⊂ A.

4.4. Existence of Solutions in Asymptotically Areal Wave Gauge

The proof of Theorem 4.4 is based on an application of Theorem 2.28, to the

Gowdy equations in asymptotically areal wave gauges. In Section 4.4.1. we use the

Fuchsian reduction in Section 4.2.2. to set up a singular initial value problem for

the Gowdy equations, and check the criteria of Theorem 4.4. In Section 4.4.2., we

analyze the constraint equations in the Gowdy case taking advantage of the general

Fuchsian formulation worked out in Section 4.2.3..

4.4.1. Analysis of the Evolution Equations

4.4.1.1. First order system and leading order terms

To prove Theorem 4.4 we begin with the Einstein equations for the metric

Eq. (4.31) written in the wave-gauge formalism for a fixed choice of gauge source

functions chosen as in Definition 4.2, and derive a quasilinear symmetric hyperbolic

Fuchsian system as in Definition 2.7 using the reduction in Section 4.2.2..

There are six non-vanishing metric fields, leading to an eighteen dimensional

system for the first order fields

(U1, . . . , U18)T := (γ00, Dγ00, t∂1γ00, . . . , τ22, Dτ22, t∂1τ22)T . (4.39)
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The system is block-diagonal with each block having the form of Eq. (4.12)-Eq. (4.14).

Let A = 1, . . . , 6 index the blocks corresponding to the six metric fields. We have the

system

DU3A−2 − U3A−1 = 0

DU3A−1 + 2β(U)t∂1U3A−1 − α(U)t∂1U3A − U3A−1 +HA[U ] = 0

DU3A − t∂1U3A−1 − U3A = 0,

where the functionals HA[U ] are given by

H1[U ] = 2t2
det γ(U)

U7

(
∇(0F0) +H00 − Ck

00Dk
)

[U ] (4.40)

H2[U ] = 2t2
det γ(U)

U7

(
∇(0F1) +H01 − Ck

01Dk
)

[U ] (4.41)

H3[U ] = 2t2
det γ(U)

U7

(
∇(1F1) +H11 − Ck

11Dk
)

[U ] (4.42)

H4[U ] = 2t2
det γ(U)

U7

(
∇(2F2) +H22 − Ck

22Dk
)

[U ] (4.43)

H5[U ] = 2t2
det γ(U)

U7U10

(
∇(2F3) +H23 − Ck

23Dk (4.44)

− U13

(
∇(2F2) +H22 − Ck

22Dk
))

[U ] + G5(U)

H6[U ] = 2t2
det γ(U)

U7

(
∇(3F3) +H33 − Ck

33Dk (4.45)

+ U2
13

(
∇(2F2) +H22 − Ck

22Dk
)
− 2U13

(
∇(2F3) +H23 − Ck

23Dk
))

[U ] + G6(U).

The functionals G5(U) and G6(U) defined by

G5(g) = 2
Dτ11Dτ12

τ11

+ 2
γ00t∂1τ11t∂1τ12

γ11τ11

− 2
γ01Dτ12t∂1τ11

γ11τ11

− 2
γ01Dτ11t∂1τ12

γ11τ11

(4.46)

G6(g) = 2τ11(Dτ12)2 + 2
(t∂1τ12)2γ00τ11

γ11

− 4
Dτ12t∂1τ12γ01τ11

γ11

, (4.47)
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account for the additional terms generated when the wave operator acts upon the τ -

block of the metric Eq. (4.31). As in Section 4.2.2. the system is brought to symmetric

form with block-diagonal matrices S0 and S1 (with each block of the form Eq. (4.15))

by multiplying each DU3A-equation through by α(U).

We now choose a leading order term Ů , for the first order fields, and in the

Section 4.4.1.2. below we verify that the resulting system for W

S0(Ů +W )DW + tSa(Ů +W )∂aW = −f(Ů +W )−
n∑
j=0

tSj(Ů +W )∂jŮ , (4.48)

is a quasilinear symmetric hyperbolic Fuchsian system as in Definition 2.7. The

remainder W is taken to be in Xδ,µ,q, where δ > 0, q is some integer possibly infinite,

and for each of the six blocks in the first order equation the exponent vector µ is

chosen to have the form

µ(A) = µA + κA, µA + κA, µA + κA + 1− ε. (4.49)

The origin of the 1 − ε in the third component is explained above in Section 4.2.2..

Here κA denotes the exponent corresponding to the appropriate leading order term.
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The leading order term for the first order evolution system is chosen to be

Ů1 =− γ∗(x)t1/2(k2−1) (4.50)

Ů4 =σ∗∗(x)t1/2(k2+1) (4.51)

Ů7 =γ∗(x)t1/2(k2−1) (4.52)

Ů10 =τ∗(x)t1−k (4.53)

Ů13 =τ∗∗(x) (4.54)

Ů16 =τ∗(x)−1tk+1, (4.55)

and with leading order terms for the remaining first-order fields chosen in a manner

consistent with the definition of the fields as in Eq. (4.16) above. That is, if ψ̊A,

A = 1, . . . , 6 denotes the six functions on the right-hand side of Eq. (4.50) -Eq. (4.55),

then we choose the remaining first-order leading order terms according to

Ů3A−2 = ψ̊A, Ů3A−1 = Dψ̊A, and Ů3A = t∂1ψ̊A. (4.56)

This leading order term is consistent with that in Eq. (4.32) -Eq. (4.37), except in the

case of the shift, Ů4. The reason is that in the evolution equation for γ01 (or DU5 ) the

most singular terms, given the other leading order terms, are of order O(t1/2(k2+1)). In

order to cancel these singular terms we choose the leading order term as in Eq. (4.51)

above, where σ∗∗(x) is an appropriate function of the spatial coordinate. The origin

of the leading order term Eq. (4.33), in Theorem 4.4 is explained below when we

analyze the constraint equations.
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4.4.1.2. Obtaining a smooth QSHF system

In this section we show that the symmetric hyperbolic system obtained in

the previous section is a quasilinear symmetric hyperbolic Fuchsian system as in

Definition 2.7 about Ů given by Eq. (4.56) and Eq. (4.32)-Eq. (4.37). Before we state

this result in the following lemma we make a more specific choice for the functions Cij
k.

In Eq. (4.40)-Eq. (4.45) we write the form for the functions HA[U ] for a fully general

set of functions Cij
k. The reason for adding multiples of the constraint violation

quantities to the evolution equations is to modify the N0 matrix in Eq. (4.48) in

order to obtain solutions for W in the largest possible space Xδ,µ,q (i.e. the smallest

possible µ). The lower bound on µ is often controlled in our Fuchsian theorems by

a positivity condition on N0, (e.g. Condition (iii) in the case of Theorem 2.28). It

turns out, that due to the structure of the Gowdy equations the optimal lower bound

on each component µA can be obtained without the addition of terms Cij
kDk for all

A except A = 1. In the A = 1 case, which corresponds to the block of equations for

γ00, we find that we must add constraint violation terms to avoid strong restrictions

on the asymptotic data k(x) and the exponent vectors ξ0, and ξ1 that arise from the

(uncontrolled) lower bound on µ1. Fortunately, D0 contains terms which contribute to

Fuchsian principle part of the γ00 evolution equations when multiplied by appropriate

coefficients.

Henceforth, we set

C 0
00 = Λ(x)/t, Cij

k ≡ 0, elsewise.
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We choose an explicit 1/t time dependence for the coefficient so that when multiplied

by t2, as in done to obtain Eq. (4.12)-Eq. (4.14), C 0
00 D0 has the appropriate order in

t to modify the principle part of Eq. (2.6).

Lemma 4.7. The block-diagonal system Eq. (4.12)-Eq. (4.14) and Eq. (4.40)-

Eq. (4.45) forms a smooth quasilinear symmetric hyperbolic Fuchsian system as in

Definition 2.7 around Ů given by Eq. (4.56) and Eq. (4.50)-Eq. (4.55) with the

asymptotic data {k, γ∗, σ∗∗, τ∗, τ∗∗} satisfying the relations

σ∗∗ =
2 (τ∗γ

′
∗ + kγ∗τ

′
∗)

τ∗(k2 − 1)
, k ∈ (0, 1)

and for W ∈ Xδ,µ,q for all q > n/2, with µ given by Eq. (4.49) satisfying the following

inequalities:

0 < µ1 < µ3, (4.57)

0 < µ2 < min{ξ1, µ1, µ4, µ6}, (4.58)

0 < µ3 < min{1 + ξ0, 2− 2k}, (4.59)

0 < µ4 < min{1 + ξ0, 2− 2k}, (4.60)

0 < µ5 < 2, (4.61)

0 < µ6 < min{1 + ξ0, 2− 2k}. (4.62)
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Furthermore, S0
0 = I18 (the identity matrix in eighteen dimensions) and the matrix

N0 is block-diagonal with the blocks given by:

N
(1)
0 =


0 −1 0

(k4 − 1)/2 + Λ/2(1− k2) −(1 + 3k2)/2 + Λ 0

0 0 −1

 ,

N
(2)
0 =


0 −1 0

k2/2(k2 − 1) (1− 3k2)/2 0

0 0 −1

 ,

N
(3)
0 =


0 −1 0

(k2 − 1)2/4 1− k2 0

0 0 −1

 ,

N
(4)
0 =


0 −1 0

(k − 1)2 −2 + 2k 0

0 0 −1

 ,

N
(5)
0 =


0 −1 0

0 −2k 0

0 0 −1

 ,

N
(6)
0 =


0 −1 0

(k + 1)2 −2− 2k 0

0 0 −1

 ,
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Proof. We first show the coefficient matrices S0 and Sa satisfy the conditions of

Definition 2.7. Due to the leading order terms Ů we find

α(U) = − U1

U7

= − Ů1Ů
−1
7 − Ů−1

7 W1 + Ů−2
7 Ů1W7 +O(min{µ1 + µ3, 2µ3})

= 1− γ−1
∗ t1/2(1−k2)W1 − γ−1

∗ t1/2(1−k2)W7 +O(min{µ1 + µ3, 2µ3})

≡ α0 + α1(W )

and

β(U) =
U4

U7

= Ů4Ů
−1
7 + Ů−1

7 W4 − Ů−2
7 Ů4W7 +O(min{µ2 + µ3, 2µ3})

= σ∗∗γ
−1
∗ t+ γ−1

∗ t1/2(1−k2)W4 − σ∗∗γ−2
∗ t1/2(3−k2)W7

+O(min{µ2 + µ3 + 1, 2µ3 + 1})

where α0 = 1, α1(·) : Xδ,µ,q → Xδ,ζα,q for ζα = minx∈Tn{µ1, µ3} and β(·) : Xδ,µ,q →

Xδ,1,q are Lipschitz operators in the sense of Definition 2.3. Hence, consulting

Eq. (4.15) we find S0
0 = I18, and for each block A = 1, . . . , 6

S0
1(W )(A) =


0 0 0

0 0 0

0 0 α1(W )

 , (4.63)
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and

Sa(W )(A) =


0 0 0

0 2β(W ) −1− α1(W )

0 −1− α1(W ) 0

 . (4.64)

It follows that there exists a constant exponent vector ζ with 0 < ζ < 1 such that

tSa(W ), S0(W ) ∈ Xδ,ζ,q for all W ∈ Bδ,µ,q(s) and all q > n/2.

We now show that f(Ů+W )+
∑n

j=0 tS
j(W )∂jŮ = N0W−F(Ů)[W ], where N0 is

as given in Lemma 4.7 and F(Ů)[W ] maps all W ∈ Bδ,µ,q(s) to Xδ,ν,q for some ν > µ,

and satisfies the Lipschitz property provided the inequalities Eqs. (4.57)-(4.62) hold.

In each block the vector f(Ů +W ) from Eq. (2.1) has the form

f3A−2(U) = − U3A−1, (4.65)

f3A−1(U) = HA[U ]− U3A−1, (4.66)

f3A(U) = (U1/U7)U3A. (4.67)

Clearly the f3A−2 and f3A components are quite simple to analyze while the

f3A−1 components take more work. We start by analyzing Eq. (4.65). With the

decomposition U = Ů +W , we find

f3A−2(U) = −Ů3A−1 −W3A−1.

As a consequence we set (N
(A)
0 )(1,2) = −1, for each A. Furthermore, from Eq. (2.5)

and Eq. (4.15) we find

(F(Ů)[W ])3A−2 = Ů3A−1 −DŮ3A−2 = 0,
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where the second equality holds due to the definition of Ů (see Eq. (4.56)).

Next, consider the components Eq. (4.67).

f3A(U) = (U1/U7)U3A = −W3A − α1(W )W3A − α(U)Ů3A

Again we find (N
(A)
0 )(3,3) = −1, for each A. From the definition (f1(W ))3A =

α1(W )W3A + α(U)Ů3A and hence

(F(Ů)[W ])3A = α1(W )W3A + α(U)Ů3A − α(U)DŮ3A + α(U)t∂1Ů3A−1

= α1(W )W3A − α(U)
(
DŮ3A + t∂1Ů3A−1 − Ů3A

)

However, DŮ3A + t∂1Ů3A−1 − Ů3A = 0, by the definition of Ů , so

(F(Ů)[W ])3A = α1(W )W3A.

Since α1(W ) is a Lipschitz operator which takes values in Xδ,ζα,q for ζα =

minx∈Tn{µ1, µ3}, and the product of Lipschitz operators is again Lipschitz

(Lemma C.16), the function operator α1(W )W3A is Lipschitz, and we obtain control

in Xδ,ν,q with ν > µ provided µ1, µ3 > 0.

Finally we treat the f3A−1(U) components Eq. (4.66). The analysis of the −U3A−1

term proceeds as before, and we focus our attention on the analysis of the functionals

HA[U ]. Each HA[U ] has the form

HA[U ] =

l
(A)
1∑
j=1

18∏
i=1

cj(t, x)U
pji
i +

1

det(γ)[U ]

l
(A)
2∑
j=1

18∏
i=1

dj(t, x)U
pji
i
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where pji ∈ Z, and cj(t, x) and dj(t, x) are constants or functions of the spacetime

coordinates. Since det(τ) = τ11τ22 = U10U16, this function operator is contained in the

expression above. The inverse determinant of the blocks γ and τ , which show up in

the components of the inverse metric, appear independently due to the block-diagonal

form of the metric. The inverse can be computed

g−1 =



γ11/ det γ −γ01/ det γ 0 0

−γ01/ det γ γ00/ det γ 0 0

0 0 (τ11τ
2
01 + τ22)/ det τ −τ11τ01/ det τ

0 0 −τ11τ01/ det τ τ11/ det τ


. (4.68)

To obtain an expression of the form Eq. (4.20) we must address the function operator

(det γ)−1 = (U1U7 − U2
4 )−1; clearly this operator does not have the desired form. In

our analysis we replace the operator (det γ)−1 by the operator (U1U7)−1, which does

have the desired form. To justify this simplification we note that due to the leading

order expressions Ů1, Ů4, Ů7, the expansion

1/ det(γ)[U ] =
1

U1U7

+ J [U ],

for a function operator J [U ] which is O(t3−k
2
), is valid near the singularity. It turns

out that the contribution of J [U ] can be ignored (that is it is higher order) if µi < 2

for i = 1, . . . , 6.3 We make this assumption now, and verify that it is satisfied in the

analysis below. Notice that each µi in Eqs. (4.57)-(4.62) is bounded above by two for

k ∈ (0, 1).

3This can be see by multiplying 1
U1U7

+J [U ] by any function operator of the form
∏18
i=1 c(t, x)Upii .
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At this point we have written each HA[U ] in the form
∑l

(A)
1
j=1

∏18
i=1 cj(t, x)U

pji
i .

We refrain from showing these here because the number of terms is quite long

((22, 29, 22, 6, 8, 6) respectively), and because the specific terms are not particularly

interesting. The next step in our analysis is to sort the terms given the expansion U =

Ů + W , and determine for each A = 1, . . . , 6, the functions h0(t, x), h1
1(t, x), h2

1(t, x)

and h2(t, x,W ) introduced in Eq. (4.20). We describe this analysis here, and give a

couple of examples below.

As a first step we evaluate each term at U = Ů , and by inspecting the exponent

determine in which space Xδ,ν,q this function takes values. Note that the Fuchsian

principle part is O(tµA+κA). If ν ≤ µA + κA, then we place the function in h
(A)
0 (t, x)

and save the term for later analysis. This is what we might call a “singular” term. If,

on the other hand it is not clear that ν ≤ µA + κA, we place function in h
(A)
2 (t, x,W )

(and hence in F(Ů)[W ]) and record the upper bound µA < ν − κA. Since such terms

are higher-order at leading order, and we assume µA > 0, these terms play no further

role in the analysis.

Next we analyze the linear portions of the “singular” function operators.

These terms can be divided into “within-block” terms containing the fields

W3A−2,W3A−1,W3A and “out of block” terms which are proportional to the remaining

W -field components. The within-block terms with O(1) coefficients contribute to the

Fuchsian principle part, with the coefficients forming elements of N0(x). We check

that the remaining linear within-block terms have coefficients which are O(tε) for

ε > 0, and hence go into F(Ů)[W ]. Also contributing to F(Ů)[W ] are the linear terms

with out of block W -field components. We record the space Xδ,ν,q in which each such

term takes values, as well as the bound µA + κA < ν = µB + κB + ρ for B 6= A, and

thus µA < µB + κB − κA + ρ. The higher-order parts of the function operator (i.e.
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those at least quadratic in the W -field components) are part of F(Ů)[W ] and provide

no additional information. The inequalities recorded above in Eqs. (4.57)-(4.62) are

the maximal bounds consistent with our sorting of terms.

Due to the large number of terms in the equation under this type of expansions,

even in relatively simple cases such as the Gowdy spacetimes, this analysis is

implemented in the computer algebra system Mathematica. We now provide a few

examples of the analysis described above for terms in H1[U ].

Examples:

1. Consider the term

T1[U ] := tF0(t, x)U2.

At leading order, that is with U2 = Ů2 = −γ∗κ1t
κ1 , with κ1 = 1/2(k2 − 1), we have

T1[Ů ] = −γ∗(x)κ1(x)t1+κ1(x)F0(t, x).

Since F0(t, x) ∈ Xδ,ξ0,∞, we know that at leading order this function behaves like

ϕ0(x)tξ0 for some smooth function ϕ0(x). We expect this term to be in the Fuchsian

source since there is no way for such a term to cancel with derivative terms in

the principle part (since it involves gauge source functions), and the areal gauge

is obtained by the limit ξ0 →∞ (and thus it makes no sense to have this term in the

Fuchsian principle part). The Fuchsian PP which is O(µ1 + κ1), and as a result we

obtain the inequality

1 + ξ0 > µ1 .

The next term in T1(Ů)[W ], which is tF0(t, x)W2, is higher order still, and placing it

in F(Ů)[W ] only carries the information that 1 + ξ0 > 0.
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This is an example of a “higher-order” function operator, and how such operators

determine the bounds on µ. In fact, bounds such as this one are observed in

Eqs. (4.57)-(4.62) above.

2. Next consider the function operator

T2[U ] =
3

2

U2
2

U1

,

which also appears in H1[U ]. The leading order function is easily computed

T2[Ů ] =
3

2
Ů2

2 Ů
−1
1 =

3

2
κ2

1γ∗t
κ1

Since κ1 < κ1 + µ1 under the assumption that µ1 > 0, this is “more singular” than

the Fuchsian principle part. Hence, this function contributes to h
(1)
0 (t, x), and we

consider higher-order parts of the function operator –i.e. those linear in W -fields.

The theory in Section C.3. shows that the function operators U2
2 [W ] and U−1

1 [W ]

have the following expansions

U−1
1 =

(
Ů−1

1 − Ů−2
1 W1 + r1(W )

)
U2

2 =
(
Ů2

2 + 2Ů2W2 + r2(W )
)

where r1(W ) = O(−κ1 + 2µ1), and r2(W ) = O(2κ1 + 2µ1). The linear part of the

operator T2[U ] is

−3

2
Ů2

2 Ů
−2
1 W1 + 3Ů−1

1 Ů2W2 = −3

2
κ2

1W1 + 3κ1W2.
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Comparing to Eq. (4.18), we see that−3
2
κ2

1 contributes to h
(1),1
0 (x) and 3κ1 to h

(1),2
0 (x).

The next terms are all O(κ1 + 2µ1), which is higher-order, again since µ1 > 0, so that

the remaining parts T2[U ] go into h2(t, x,W ). Further, since r1(W ) and r2(W ) are

Lipschitz operators (see Section C.3.), this property is achieved for the contributions

to F(Ů)[W ]. Note that this function operator does not constraint µ at all.

It remains to verify that the singular terms in
∑n

j=0 tS
j(W )∂jŮ are canceled by

corresponding singular terms in hA,0(t, x) possibly under additional restrictions on

the asymptotic data, and to record the space in which the remaining terms live. We

first investigate the spatial derivative terms. From Eq. (4.13) these are

2β(U)t∂1Ů3A−1 − α(U)t∂1Ů3A.

Since Ů3A−2, which corresponds to the field itself, is O(κA), we have Ů3A−1 = O(κA)

and Ů3A = O(κA + 1) from Eq. (4.56). Above we computed that at leading order

α0(Ů) = 1 and β(Ů) = O(t). Thus each of the above spatial derivative terms is

O(κA + 2). These terms provide a bound on µ:

µA + κA < κA + 2⇒ µA < 2

which is satisfied by the inequalities Eqs. (4.57)-(4.62) for k ∈ (0, 1).

Next we verify that

DŮ3A−1 − U3A−1 + hA,0(t, x) = 0.

This is satisfied identically for all A, except in the A = 2 block, where we require

σ∗∗ = 2(τ∗γ′∗+kγ∗τ
′
∗)

τ∗(k2−1)
. This establishes Lemma 4.7.
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4.4.1.3. Existence and Uniqueness to the Evolution Equations

In this subsection we apply Theorem 2.28 to the quasilinear symmetric hyperbolic

Fuchsian system found in Lemma 4.7. The following proposition is a result of this

application.

Proposition 4.8. There exists a unique solution U = Ů + W to the system defined

by Eq. (4.12)-Eq. (4.14) and Eq. (4.40)-Eq. (4.45) with Ů given by Eq. (4.56) and

Eq. (4.50)-Eq. (4.55) for W ∈ Xδ,µ+κ,q for all q > n/2 + 1 provided: The asymptotic

data {k, γ∗, σ∗∗, τ∗, τ∗∗} satisfy the relations

σ∗∗ =
2 (τ∗γ

′
∗ + kγ∗τ

′
∗)

τ∗(k2 − 1)
, k ∈ (0, 1)

The exponent vector µ given by Eq. (4.49) satisfies

max{(1− k2)/2, 1/2(3 + k2)− Λ} < µ1 < µ3, (4.69)

0 < µ2 < min{ξ1, µ1, µ4, µ6}, (4.70)

(1− k2)/2 < µ3 < min{1 + ξ0, 2− 2k}, (4.71)

0 < µ4 < min{1 + ξ0, 2− 2k}, (4.72)

2k < µ5 < 2, (4.73)

0 < µ6 < min{1 + ξ0, 2− 2k}. (4.74)

Proof. We have shown in Lemma 4.7 that this system is a smooth quasilinear

symmetric hyperbolic Fuchsian system; it remains to verify that the hypotheses of

Theorem 2.28 are satisfied.

The System Satisfies the Smooth Commutator Conditions Definition 2.27

First note that the matrix S0(w) is diagonal, and thus in particular S0
0 commutes
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with R[µ]. Further, from the structure of N0 given in Lemma 4.7, and that of µ in

Eq. (4.49) we see that N0 commutes with R[µ] as well.

Recall the structure of each block of the matrix-valued operator S0
1(·)from

Eq. (4.63). Since S0
1(·) is diagonal and has a target Xδ,ζα,q with ζα = min{µ1, µ3}

the requisite property for S0
1(·) holds provided µ1, µ3 > 0.

Next we consider the condition on tS1(Ů + W ) block-wise. The argument is

similar to that for the T 2-symmetric solutions in Section 3.4.. Each block of tSa(Ů +

W ) and R[µ], denoted by the index A, have the form (c.f. Eq. (4.64) and Eq. (4.49))

(tS1(Ů +W ))(A) =


0 0 0

0 −2tβ(W ) −t− tα1(W )

0 −t− tα1(W ) 0

 ,

and

(R[µ])(A) =


t−µA−κA 0 0

0 t−µA−κA 0

0 0 t−µA−κA−(1−ε)

 .

As a result, each block of R[µ]tSa(Ů +W )R[−µ] is equal to

(R[µ]tS1(Ů +W )R[−µ])(A) =


0 0 0

0 −2tβ(W ) −(1 + α1(W ))t2−ε

0 −(1 + α1(W ))tε 0

 .

It is clear that in order to have control in Bδ′,ξ,q(r̃) for some exponent scalar ξ > 0

it is necessary to assume ε > 0. This is the reason for the slight loss of control over

the spatial derivatives components. With this choice, and recalling properties of α1(·)

and β(·) (see proof of Lemma 4.7) we find that the Condition 2.27 are satisfied.
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The Product Compatibility Conditions and Higher-Order Source

Conditions Hold Based on the structure of α1(·) and β(·) (c.f. proof of Lemma 4.7),

observe that

∆α1(h) := α1(W )− α1(W + h) ∈ Xδ,ηα,q ∆β(h) := β(W )− β(W + h) ∈ Xδ,ηβ ,q

with ηα = γ0 + min{µ1, µ3} and ηβ = 1 + γ0 + min{µ2, µ3}. From the diagonality of

S0
1(·) it follows that Condition (i) of Definition 2.25 is satisfied provided µ1, µ3 > 0.

To check Condition (ii), we compute block-wise

(
R[µ]t(S1(W )− S1(W + h)R[−µ]

)(A)
=


0 0 0

0 −2t∆β(h) −∆α1(h)t2−ε

0 −∆α1(h)tε 0

 .

The condition follows from form of ηα and ηβ and the positivity of µ1, µ2, µ3.

The higher-order source conditions Definition 2.26 follow from the form of HA[U ]

Eq. (4.20) and the results of Section C.3.3.

The Positivity Condition (iii) is Satisfied This is the positivity condition

involving the matrix N and the exponent vector µ; it may be satisfied provided

certain bounds on the components of µ are met. We state this as the following

lemma.
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Lemma 4.9. The system in Lemma 4.7 satisfies Condition (iii) of Theorem 2.28 if

the following inequalities on the exponent vector hold

µ1 >max{1/2(1− k2), 1/2(3 + k2)− Λ},

µ2 >0,

µ3 >1/2(1− k2),

µ4 >0,

µ5 >2k,

µ6 >0.

Proof of Lemma 4.9. The matrix S0
0 is the identity, and hence N = N0. To make

the analysis simpler we bring N into Jordan normal form, which we label N . Since

N0 has the block-diagonal structure of µ (Definition 2.8), it follows that N also has

the block-diagonal structure of µ. As a result, we may easily read off the inequalities

obtained from the condition µ < −Re{λ}, where λ is the vector of eigenvalues of N .

In the first block we have

(N )(1) =


1/2(1− k2) 0 0

0 Λ− 1− k2 0

0 0 −1

 .

The positivity condition applied to the first component then yields µ1 +1/2(k2−1) >

−1/2(1− k2), which implies µ1 > 0. Identical computations for the second and third

components yield

µ1 > 1/2(3 + k2)− Λ, µ1 > 1/2(1− k2) + ε.
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We can take ε arbitrarily close to zero, yet for any choice of Λ the smallest lower

bound on µ1 is 1/2(1− k2). Since we leave Λ arbitrary at this stage, the lower bound

is as reported in Lemma 4.9. For the remaining blocks we simply list the block of N

and the resulting inequalities.

(N )(2) =


1/2(1− k2) 0 0

0 −k2 0

0 0 −1

 , µ2 >max{−1/2(1 + k2) + ε, 0}.

(N )(3) =


1/2(1− k2) 1 0

0 1/2(1− k2) 0

0 0 −1

 , µ3 >max{1/2(1− k2) + ε, 0}.

(N )(4) =


k − 1 1 0

0 k − 1 0

0 0 −1

 , µ4 >max{0, k − 1 + ε}.

(N )(5) =


0 0 0

0 −2k 0

0 0 −1

 , µ5 >max{2k, ε}.

(N )(6) =


−1− k 1 0

0 −1− k 0

0 0 −1

 , µ6 >max{0, ε− 1− k}.

Taking the limit ε→ 0 concludes the proof of Lemma 4.9.

To finish the proof of Proposition 4.8 we note that the inequality 1/2(1− k2) <

2 − 2k is consistent with the condition k ∈ (0, 1). The choice of coefficient Λ is

discussed after analyzing the constraint equations.
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4.4.2. Analysis of the Constraint Equations

In the Cauchy formulation of the Einstein equations one verifies that the

constraint violation quantities are propagated by the evolution equations, so that if

initial data is chosen such that the constraint equations are satisfied on the initial slice,

then they are guaranteed to be satisfied in the domain of dependence of the initial

data. In the Fuchsian formulation we work with in this paper, one can only guarantee,

by an appropriate choice of leading order terms, that the constraint equations are

satisfied asymptotically. The Fuchsian formulation of the constraint propagation

system in Section 4.2.3. allows us to argue that if the constraints are satisfied

asymptotically, then they are satisfied in a region (0, δ]× T n near the singularity.

We start by constructing a first order system for the constraint violation

quantities Di = Γi − Fi. Two of these are identically satisfied D2 = D3 ≡ 0, so

we are left with a six-dimensional system for

(V1, . . . , V6) = (D0, DD0, t∂xD0,D1, DD1, t∂xD1).

The computations in Section 4.2.3. show that the resulting first order system for the

constraint propagation equations are of the form Eq. (4.23) and Eq. (4.24), where

A = 1, 2 denotes the block of equations corresponding to D0 and D1 respectively.

In the section below we show, using the known solutions of the Einstein evolution

equations, that under certain constraints on the asymptotic data the first order

quantities (V1, . . . , V6) vanish asymptotically as t ↘ 0. As a result a zero leading

order term V̊ = 0, is consistent with the solutions to the evolution equations.

In Section 4.4.2.2. we show that the first order system forms a linear symmetric

hyperbolic Fuchsian system about this zero leading order term, and the Fuchsian
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theorem (Theorem 2.28) may be applied in order to conclude that D = 0 is the

unique solution to the constraint propagation equation in some space Xδ,η,q.

4.4.2.1. The first order constraint violation quanities vanish asymptotically

Having found solutions to the Einstein evolution equations in the previous

section, we can straightforwardly compute the constrain violation quantities Di :=

Γi −Fi; we have

D0 = 1/t− F0(t, x) + D0(g), and D1 = −F1(t, x) + D1(g),

where D0(g) and D1(g) are nonlinear functions of the metric fields. Inserting the

known expressions for the metric fields g = g̊ + ĝ, we find that at leading order

D1(̊g) = −σ∗∗/γ∗.

Thus, in order for D1 vanish at leading order would require that F1(t, x) have an O(1)

term, in contradiction with the condition of asymptotically areal gauge that F1(t, x)

vanish as t ↘ 0. It follows that in order to satisfy the constraints asymptotically in

the asymptotically areal gauge, we must choose σ∗∗(x) ≡ 0. What then is the first

non-vanishing term in the expansion for γ01? To answer this question we write

γ̊01 = γ∗∗(x)tλ(x),
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for arbitrary γ∗∗(x) and λ(x). We also write the leading order behavior of the gauge

source function F1(t, x) as

F̊1(t, x) = ϕ1(x)tξ1 ,

recalling that F1 ∈ Xδ,ξ1,∞. The asymptotic form of the constraint D1 = 0 then yields

γ∗∗
2γ∗

(k2 − 1− 2λ)tλ−1/2(1+k2) − ϕ1(x)tξ1 = 0,

which implies that

λ = 1/2(k2 + 1) + ξ1 and γ∗∗ = − ϕ1γ∗
1 + ξ1

.

With this form for γ̊01 we find 4

D0 = − tξ0ϕ0 + t1+ξ1ϕ′1/(1 + ξ1) +O(1 + 2ξ1),

DD0 = O(min{ξ0, 1 + ξ1})

t∂xD0 = O(min{1 + ξ0, 2 + ξ1}),

all of which vanish asymptotically for ξ0 > 0, ξ1 > 0, and

D1 = O(min{µ1, µ2 + ξ1, µ3, µ4, µ6}),

DD1 = O(2 + 3ξ1)

t∂xD1 = O(3 + 3ξ1).

4Recall that a function f is O(µ) if f(t) = O(tµ).
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Since the first order fields for the constraint violation quantities vanish asymptotically

given solutions to the evolution equations with the specified leading order terms

and asymptotic data satisfying certain constraints, the leading order term V̊ = 0 is

consistent.

The updated leading order term for the shift γ01 modifies the constraint on the

asymptotic data which we obtained in the analysis of the evolution equations, namely

that

σ∗∗ =
2 (τ∗γ

′
∗ + kγ∗τ

′
∗)

τ∗(k2 − 1)
.

If we now impose σ∗∗ = 0, we find the new constraint on the asymptotic data is

γ′∗/γ∗ = −kτ ′∗/τ∗.

4.4.2.2. Constraint propagation equation in the case of the Gowdy

equations

Having obtained the conditions under which the constraint violation quantities

vanish asymptotically, we now use the Fuchsian formulation of the constraint

propagation equations, Section 4.2.3., to show that the D = 0 is the unique solution

in one of our weighted Sobolev spaces. In a first lemma we verify that for a

zero leading order term the first order system for (V1, . . . , V6) is a smooth linear

symmetric hyperbolic Fuchsian system. As is illustrated in Section 4.2.3. the main

work is in analyzing H1, H2 and in particular in computing the limiting matrices

{a(0), a(1), b, c, c(0), c(1)}. In order to compute these matrices we use the updated

information about the leading order term γ̊01, as well as the leading order terms

for the other metric fields. The matrices cji , c
(0)j

i , and c(1)j

i depend on the coefficients

C k
ij , which as above are C 0

00 = Λ(x)/t and all other coefficients vanishing.
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Lemma 4.10. The system Eq. (4.23) and Eq. (4.24) is a smooth linear symmetric

hyperbolic Fuchsian system about V̊ = 0 with parameters {δ, η, s} for η given by

η = (η1, η1, η1 + 1− ε, η2, η2, η2 + 1− ε)

satisfying

|η1 − η2| < 1.

Further, S0
0 = I6 and the N0-matrix is block-diagonal with blocks

N0
(1) =


0 −1 0

−1/2(1 + k2)− Λ 1/2(3− k2)− 1− Λ 0

0 0 −1

 ,

N0
(2) =


0 −1 0

0 1/2(3− k2)− 1 0

0 0 −1

 .

Proof. We start by finding expressions for the S0 and Sa matrices, and verifying that

they satisfy the properties of Definition 2.7. Comparing Eq. (4.23) with Eq. (4.12)

-Eq. (4.14) we see that S0 and Sa are the same in both applications, and hence are

given as in Lemma 4.7. We note however that in this application the matrices depend

on the metric fields and not the unknown (the constrain violation quantity). It follows

that S0 and Sa satisfy the properties of a symmetric hyperbolic Fuchsian system.

As before, the bulk of analysis for the f(W ) term concerns the functionals H1[W ]

and H2[W ]. In order to facilitate this analysis we compute the relevant quantities
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from Section 4.2.3..

a(0) =

1/2(k2 − 3) 0

0 1/2(k2 − 3)

 ,

a(1) =

 0 1/2(1− k2)

1/2(1− k2) 0

 ,

b =

1/2(1 + k2) 0

0 0

 ,

and further

t(g00)−1A0j
i − a(0) =

O(2 + ξ1) O(1)

O(1) O(2 + ξ1)

 ,

t(g00)−1A1j
i − a(1) =

 O(1) O(2 + 2ξ1)

O(2 + ξ1) O(1)

 ,

t2(g00)−1Bj
i − b =

O(2) O(1)

O(1) O(2− 2k)

 .

We also find

t2

g00
C̃i
i =

Λ +O(2 + ξ1) 0

O(1) 0

 ,

and

t

g00
C̃(0)

i

i =

Λ 0

0 0

 ,
t

g00
C̃(1)

i

i =

O(1 + ξ1) 0

Λ 0

 ,

From these expressions and the definition of HA[W ] (Eq. (4.24)), we write down the

expressions for the non-trivial components of f(W ): f(W )2 and f(W )5. Generally
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we have

f(W )3A−1 = −W3A−1 +HA[W ],

with HA[W ] given by Eq. (4.24). From the first row of the matrices above we compute

f(W )2 =−W2 +H1[W ]

=− (
1

2
(1 + k2) + Λ)W1 + (

1

2
(3− k2)− 1− Λ)W2

+
1

2
(k2 − 1)W6

O(η2 + 1) +O(η1 + 2)

The terms in the first line are apart of N0. The term in the second line does not

belong in the N0 matrix since it would break the block-diagonal structure. As a

result, we place it in F(V̊ )[W ] and this imposes a constraint on the exponent vector

η: η2 +1−ε > η1. The first term in the last line also imposes the condition η2 +1 > η1,

while the second term is clearly higher order.

We similarly compute

f(W )5 =−W5 +H2[W ]

=

(
1

2
(3− k2)− 1

)
W5

(
1

2
(k2 − 1) + Λ)W3

+O(1 + η1) +O(η2 + 2− 2k).

Again the first line is apart of the N0 matrix. From the term in the second line we

obtain η1 + 1 − ε > η2. Another constraint on η is created by the first term in the
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third line. In order to place this term into F(V̊ )[W ] we must choose η2 < 1 + η1. The

last set of terms of O(η2 + 2− 2k) are clearly higher order.

Combining the contributions to N0 in the above two expressions with the usual

terms −1 from Eq. (4.27), we find the blocks listed in the lemma.

We now prove that this smooth linear symmetric hyperbolic Fuchsian system

satisfies the conditions of Theorem 2.28.

Proposition 4.11. V = 0 is the unique solution to the smooth linear symmetric

hyperbolic Fuchsian system of Lemma 4.10 in Xδ,η,q for all q > n/2+1 and η satisfying

η1 > max{1/2(1 + k2) + Λ, 0} η2 > 0

Proof. Since the system is linear homogeneous, we know that V ≡ 0 is a solution.

The Fuchsian theorem (Theorem 2.28) tells us in which space we are able to guarantee

the uniqueness of this solution. In Lemma 4.10 we have verified that F(0)[W ] is a

bounded operator in some space Xδ,ν,q for some ν > η. Since this operator is linear

in W it also satisfies the higher-order source properties, Definition 2.26. The product

compatibility conditions (Definition 2.25 do not apply in the case of a linear system,

and the coefficients S0 and Sa are easily shown to satisfy the smooth commutator

conditions (Definition 2.27) for the exponent vector η given in Lemma 4.10. We note

as in the case of the evolution equations that we must choose ε > 0, although it can

be arbitrarily close to zero. The main work in applying Theorem 2.28 is in checking

Condition (iii). From the expressions for S0
0 and N0 in Lemma 4.10 we compute N

and transform this into Jordan normal form. Because of the block-diagonal structure

of the N0 matrix, N has the block-diagonal structure of the exponent vector η. We
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find

N (1) =


1 0 0

0 −1/2(1 + k2)− Λ 0

0 0 −1

 , N (2) =


0 0 0

0 1/2(1− k2) 0

0 0 −1

 .

The inequalities given by η > −Re{λ} are satisfied if the inequalities in the

proposition statement hold.

Note that the lower bound on η sets the largest space in which we may guarantee

that D = 0 is the unique solution to the constraint propagation system. In

Section 4.4.2.1. we computed the constraint violation quantities from the metric

fields and found

D0 ∈ Xδ,ρ0,q, D1 ∈ Xδ,ρ1,q,

where ρ0 = min{ξ0, 1 + ξ1}, and ρ1 = min{µ1, µ2 + ξ1, µ3, µ4, µ6}. This is a measure

of how much control we actually have over the constraint violation quantities. In

order to guarantee that these constraints are propagated uniquely by the evolution

system, we require our level of of control to be at least as great as that required for

the solution to be unique (that specified by Xδ,η,q). That is, we require Xδ,ρ,q ⊂ Xδ,η,q,

or η < ρ. This imposes the conditions

min{ξ0, 1 + ξ1} > max{1/2(1 + k2) + Λ, 0},

and hence gives the lower bounds on ξ0, ξ1

ξ0 > 1/2(1 + k2) + Λ, ξ1 > 1/2(−1 + k2) + Λ. (4.75)
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4.4.3. Addition of Constraint Violation Quantity

The addition of (Λ(x)/t)D0 to the γ00 evolution equation in Section 4.4.1. is

designed to improve the lower bound on µ1

max{(1− k2)/2, 1/2(3 + k2)− Λ} < µ1.

The idea is to choose Λ in order to obtain the smallest lower bound for µ1,

corresponding to the largest space in which uniqueness of the solution can be

guaranteed. It is clear that the best one can do independent of the choice of Λ

is a lower bound of (1− k2)/2. Choosing Λ such that 1/2(3 + k2)− Λ ≤ (1− k2)/2,

we find Λ(x) ≥ 1 + k2.

Due to the modified constraint propagation system Section 4.2.3., the coefficient

Λ also shows up in the lower bound for η1 where, η1 > max{1/2(1+k2)+Λ, 0}. From

this inequality, it appears that in order to optimize the lower bound for η1 we should

choose Λ ≤ −1/2(1+k2), which is clearly at odds with the optimum choice according

to the evolution equations.

Unless we optimize the lower bound on µ1 we are left with a severe restriction

on the asymptotic data k(x), since µ1 < µ3 < 2− 2k. Therefore we choose

Λ(x) = 1 + k2,

and deal with the consequences of an non-optimal bound for η1. The consequence is a

stricter lower bound on the exponent vectors from the gauge source functions. From

Eq. (4.75) we compute

ξ0 > 3/2(1 + k2), ξ1 > 1/2(1 + 3k2).
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With this choice of Λ we can simplify the inequalities in Proposition 4.8. Due to the

lower bound on ξ0, we find 1 + ξ0 > 2− 2k, so that these inequalities become

(1− k2)/2 < µ1 < µ3,

0 < µ2 < min{ξ1, µ1, µ4, µ6},

(1− k2)/2 < µ3 < 2− 2k,

0 < µ4 < 2− 2k,

2k < µ5 < 2,

0 < µ6 < 2− 2k.

This concludes the proof of Theorem 4.4.

4.5. Solutions in S(ξ0, ξ1) Are AVTD

We prove Lemma 4.5. Fix an asymptotically areal gauge satisfying the

inequalities on ξ0, ξ1 in Theorem 4.4, and a fix a choice of asymptotic data in K. To

proceed we drop the spatial derivative terms from the Einstein evolution equations

Eq. (4.3), and multiply by −2t2(g00)−1 to eliminate the singular coefficient. These

are the same manipulations as we have done in Section 4.4. for the Fuchsian analysis,

except that in additiona we have essentially ignored the spatial derivative terms here.

The result is a system of six, coupled, second-order, nonlinear ordinary differential

equations of the form

D2gij −Dgij +Bk
1 (g)Fk +B2(g) = 0,
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where Bk
1 (g) and B2(g) are nonlinear functions of the metric fields. To verify that

these equations are asymptotically satisfied by the leading order terms Eqs. (4.32)-

(4.37) we insert the leading order terms into the equation and evaluate the limit

t↘ 0. Labeling each ODE operator by V TDA(g), A = 1, . . . , 6, we find

V TD1(̊g) = −1

2
(k2 − 1)γ∗t

1/2(k2+1)F0 +O(
1

2
(3 + k2))

V TD2(̊g) = −1

2
(k2 − 1)γ∗t

1/2(k2+1)F1 +O(min{1

2
(3 + k2),

1

2
(1 + k2) + ξ1})

V TD3(̊g) = −1

2
(k2 − 1)γ∗t

1/2(k2+1)F0 +O(
1

2
(3 + k2) + ξ1)

V TD4(̊g) = (k − 1)τ∗t
(2−k)F0 +O(3− k + ξ1)

V TD5(̊g) = (k − 1)τ∗τ∗∗t
(2−k)F0 +O(3− k + ξ1)

V TD6(̊g) = (k − 1)τ∗τ
2
∗∗t

(2−k)F0 +O(2 + k).

Clearly each of the terms on the right hand side vanishes in the limit t ↘ 0. This

shows that the leading order terms Eqs. (4.32)-(4.37) are VTD leading order terms in

the sense that they satisfy (asymptotically) the VTD equations in the corresponding

gauge. We have thus shown that the solutions obtained in Theorem 4.4 and the

solutions to the VTD equations have the same leading order term, and moreover that

the difference vanishes as t↘ 0. Hence, we conclude that the solutions S(ξ0, ξ1) are

AVTD solutions.
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CHAPTER V

CONCLUSIONS AND DISCUSSION

The results presented in Chapters II -IV contribute both understanding of the

singular behavior of cosmological solutions to the Einstein equations, and tools to aid

in future investigations.

The families of AVTD solutions in the (half)-polarized T 2-symmetric and the

Gowdy classes which we find in Chapter III and Chapter IV respectively, extend the

knowledge of this type of behavior in the respective classes of spacetimes. In the

(half)-polarized T 2-symmetric case we find a family of AVTD solutions with Sobolev-

regularity. Before this result, all such AVTD solutions were known only to exist in

the smooth class. These AVTD solutions in the larger and less regular function

space add to the large amount of current research concerning “rough” solutions

[28, 39, 52, 54, 55]. As mentioned in Section 1.3.2., the regularity of solutions

is particularly relevant in studies of extendibility. We do not show that generic

polarized T 2-symmetric solutions are AVTD. Such a result would be an important

step in proving the restricted strong cosmic censorship conjecture within this space,

but remains an open problem.

In the case of the Gowdy solutions, the results we present in Chapter IV

corroborate evidence in [45] for the U(1)-symmetric solutions, that AVTD behavior

is found in families of gauges. We are unable however to characterize the family of

all such gauges or coordinate systems in which Gowdy solutions are AVTD. It is of

particular interest to determine whether the Gowdy solutions exhibit AVTD behavior

in constant mean curvature (CMC) coordinates. In a cosmological spacetime the
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CMC foliation provides a global time coordinate which is invariantly defined by the

geometry. These questions are under current investigation.

As mentioned above this dissertation also develops “tools” which we anticipate

will be useful in future research. The most significant is the existence and uniqueness

theorems for a class of quasilinear symmetric hyperbolic systems of Fuchsian type.

Our results, along with those in Ames et al. [3, 4] are the first such theorems for

quasilinear equations. Since the Einstein equations are generally quasilinear, this is

an important step for studying more general classes of solutions. Since these Fuchsian

theorems require the equations to be in hyperbolic form, we also study the Einstein

equations in a class of gauges which guarantees this structure. In particular, we

perform a general reduction of the equations in these gauges to a form suitable for

checking and applying the Fuchsian theorems. Our reduction applies to classes of

spacetimes in which the field variables depend only on time and one space coordinate,

such as the T 2-symmetric spacetimes. The next step in this general theory is to extend

this reduction to cases where the field variables may depend in general on all n + 1

coordinates.

We expect these tools and techniques to be of particular use in obtaining smooth

and less regular AVTD solutions in the polarized U(1)-symmetric class – in fact this

is our primary motivation in developing them. As discussed in Section 1.4.3. the

U(1)-symmetric spacetimes are much more varied and present additional difficulties

not present in the T 2-symmetric spacetimes. The proof of smooth AVTD solutions

in the polarized U(1)-symmetric class would complete the first two columns of Table

1.1 and provide a significant step towards proving restricted strong cosmic censorship

within that class. The investigation of these results is in progress.
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APPENDIX A

CONCEPTS IN PDE AND ANALYSIS

The concepts and results in this appendix are all standard in functional analysis

and PDE theory. We summarize the relevant theorems there only for completeness,

and reference. For more in-depth and comprehensive treatments see [22, 34, 47, 75,

86].

A.1. Distributions and Sobolev Spaces

A.1.1. Distributional Derivatives

We briefly recall the notion of a distribution so that we may introduce the idea of

weak derivatives and Sobolev spaces. A more comprehensive treatment can be found

for example in [22].

Let T (U) denote the set of smooth functions with compact support in U ⊂ Rd;

this topological vector space is called the space of test functions. A distribution S is

an element of the dual space T ∗(U), that is a distribution is a map T (U)→ R, and

acts on functions ϕ ∈ T (U) by

S(ϕ) :=

∫
U

Sϕdx.

The notation S(ϕ) ≡ 〈S, ϕ〉 is used when S is a continuous linear functional on T (U).

Examples of distributions are the Dirac delta and the Heavyside step.

The derivative of a distribution in direction xi, ∂S/∂xi is defined by

〈
∂S/∂xi, ϕ

〉
:=
〈
S, ∂ϕ/∂xi

〉
.
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The motivation for this definition clearly comes from the case when S = f is a C1(U)

function, performing integration by parts, and noting the compact support of the test

functions.

Definition A.1 (Distributional or weak derivatives). Let f ∈ L1
loc(U). A function

v ∈ L1
loc(U) is called the distributional or weak derivative of f in the direction xi if

∫
U

v(x)ϕ(x)dx =

∫
U

f(x)∂ϕ(x)/∂xidx.

Now suppose α is a multi-index. The function v is the α-th distributional or weak

derivative of f , provided

∫
U

v(x)ϕ(x)dx =

∫
U

f(x)Dαϕ(x)dx.

The notation Dαϕ(x) := ( ∂
∂x1

)α1 · · · ( ∂
∂xd

)αdϕ. Often the same notation is used for the

weak derivative of the distribution v = Dαf .

A.1.2. Sobolev spaces and the Sobolev embedding theorem

Let U be an open set of Rd.

Definition A.2 (Sobolev spaces). Let q ∈ N and 0 ≤ p ≤ ∞. We define the

Sobolev space W q,p(U) to be the set of functions w ∈ Lp(U) such that all distributional

derivatives Definition A.1 Dαw for |α| ≤ q are also in Lp(U). For this space we have

the norm

‖w‖W q,p :=

∑
|α|≤q

∫
U

|Dαw|pdx

1/p

.

A special case of the Sobolev spaces occurs for p = 2; we denote these spaces by

Hq(U).
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Theorem A.3. If f ∈ Hq(U), then f ∈ Cm(U) for all integers m such that 0 ≤ m <

q − n/2. Further,

‖f‖Cm ≤ ‖f‖Hq .

Note that Cm-norm is defined by ‖f‖Cm(U) =
∑m

α,|α|=0 |∂αf |.

A.1.3. The Hs(Rn) Sobolev Spaces and Duality

This section comes from Appendix C of [3]. F. Beyer is the primary author of

this appendix; editing by E. Ames, J. Isenberg, and P.G. LeFloch.

Following [22, Chapter VI] or [75], one defines the Sobolev space Hs(Rn) for any

s ∈ R as the set of temperate distributions u such that û(1 + |ξ|2)s/2 ∈ L2(Rn), where

û := Fu is the Fourier transform (in the sense of temperate distributions) of u. The

norm defined by

‖u‖s := ‖û(ξ)(1 + |ξ|2)s/2‖L2
ξ(Rn)

turns this space into a Banach space. If s = q for any non-negative integer q, then

Hs(Rn) is equivalent to the standard (p = 2) Sobolev space Hq(Rn). For general

s ∈ R, the space Hs(Rn) is in fact a Hilbert space for the scalar product

〈u, v〉s :=

∫
Rn
û(ξ)(1 + |ξ|2)s/2v̂(ξ)(1 + |ξ|2)s/2dξ.

Let u ∈ H−s(Rn) and v ∈ Hs(Rn) for any s ∈ R. Then the dual pairing

between Hs(Rn) and H−s(Rn),

(u, v) :=

∫
Rn
û(ξ)v̂(ξ)dξ, (A.1)
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is well-defined, as a consequence of the inequality

| (u, v) | ≤
∣∣∣∣∫

Rn
û(ξ)(1 + |ξ|2)−s/2v̂(ξ)(1 + |ξ|2)s/2dξ

∣∣∣∣ ≤ ‖u‖−s‖v‖s. (A.2)

By means of this pairing, we can identify H−s(Rn) with Hs(Rn)∗ (the dual space)

as follows. For every u ∈ H−s(Rn), the map (u, ·) : Hs(Rn) → R is a bounded

linear functional, i.e., an element of Hs(Rn)∗. Conversely, according to the Riesz

representation theorem, there exists a unique element wφ ∈ Hs(Rn) for each element

φ ∈ Hs(Rn)∗ such that

φ(v) = 〈wφ, v〉s

for all v ∈ Hs(Rn). The last expression can be written as

〈wφ, v〉s =

∫
Rn
ŵφ(ξ)(1 + |ξ|2)s/2v̂(ξ)(1 + |ξ|2)s/2dξ =

∫
Rn
v̂φ(ξ)v̂(ξ)dξ,

where v̂φ := ŵφ(ξ)(1 + |ξ|2)s is the Fourier transform of vφ := F−1(ŵφ(ξ)(1 + |ξ|2)s).

We have vφ ∈ H−s(Rn), since v̂φ(1+ |ξ|2)−s/2 = ŵφ(ξ)(1+ |ξ|2)s/2 ∈ L2(U). By means

of the pairing above, we have thus constructed a unique element vφ ∈ H−s(Rn)

corresponding to each φ ∈ Hs(Rn)∗. In this sense, we can therefore identify H−s(Rn)

with Hs(Rn)∗ for every s ∈ R.

The following result concerns the relationship between Sobolev spaces of different

indices.

Proposition A.4. For every s ∈ R and σ ≥ 0, the space Hs+σ(Rn) is a dense subset

of Hs(Rn).
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Proof. We first show that Hs+σ(Rn) is indeed a subset of Hs(Rn) for σ ≥ 0. Suppose

that u ∈ Hs+σ(Rn). Calculating the ‖ · ‖s norm of u, we obtain

‖u‖2
s =

∫
Rn
|û(ξ)|2(1 + |ξ|2)sdξ ≤

∫
Rn
|û(ξ)|2(1 + |ξ|2)s+σdξ = ‖u‖2

s+σ <∞,

from which it follows that u ∈ Hs(Rn). To check that Hs+σ(Rn) is a dense subset, it

is sufficient to note (see, e.g., [22]) that C∞0 (Rn) (the space of smooth functions with

compact support) is dense in both Hs(Rn) and Hs+σ(Rn).

A.1.4. Convergence results in Sobolev spaces

One can use this dense inclusion property (Proposition A.5) together with the

duality properties discussed above to derive certain convergence and closedness-type

results for sequences in Sobolev spaces. We first discuss a result of this sort for

Sobolev spaces on Rn, and then do the same for Sobolev spaces on T 1.

Proposition A.5. Choose s, s0 ∈ R so that 0 ≤ s0 < s. Let (wm) be a bounded

sequence in Hs(Rn) in the sense that there exists a constant C > 0 so that ‖wm‖s ≤ C,

for all integer m. Moreover, suppose that (wm) converges to some w ∈ Hs0(Rn); i.e.,

‖wm − w‖s0 → 0. Then, w is contained in Hs(Rn).

Proof. The boundedness of the sequence implies the existence of a subsequence of

(wm) (which for simplicity we identify with (wm)) which converges weakly. Hence,

as a consequence of the Riesz Representation Theorem and the above dual pairing in

Eq. (A.1), there exists an element w̃ ∈ Hs(Rn), so that, for every Y ∈ H−s(Rn),

(Y, w̃ − wm)→ 0 (A.3)
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We wish to show that w = w̃ and hence that w ∈ Hs(Rn). To do this, we consider

an arbitrary X ∈ H−s0(Rn) and the dual pairing

|(X, w̃ − w)| ≤ |(X, w̃ − wm)|+ |(X,w − wm)| ,

where w̃ − w is considered as an element of H−s0(Rn), and where we have used the

triangle inequality. Since X ∈ H−s0(Rn) ⊂ H−s(Rn) according to Proposition A.4,

we can consider the first term on the right hand side as a pairing between Hs(Rn)

and H−s(Rn), and hence Eq. (A.3) implies that this term can be made arbitrarily

small by choosing m sufficiently large. The second term is considered as a pairing

between Hs0(Rn) and H−s0(Rn) so that Eq. (A.2) yields

|(X,w − wm)| ≤ ‖X‖−s0‖w − wm‖s0 .

Also this term can be made arbitrarily small by choosing m sufficiently large. Hence,

we have found that (X, w̃ − w) = 0 for all X ∈ H−s0(Rn). Now, the Riesz

representation theorem implies that for every X ∈ H−s0(Rn) there exists precisely

one X̃ ∈ Hs0(Rn) for which

0 = (X, w̃ − w) =
〈
X̃, w̃ − w

〉
Hs0 (Rn)

.

In particular, we may choose X̃ = w̃ − w, which implies that w̃ − w = 0.

Corollary A.6. Choose non-negative integers q and q0 so that q0 < q. Let (wm) be a

bounded sequence in Hq(T 1), in the sense that there exists a constant C > 0 so that

‖wm‖Hq(T 1) ≤ C, for all integers m. Moreover, suppose that (wm) converges to some

w ∈ Hq0(T 1); i.e., ‖wm − w‖Hq0 (T 1) → 0. Then, w is contained in Hq(T 1).
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Proof. We formulate the proof so that it can be easily generalized to general smooth

orientable, connected compact Riemannian manifolds M in any dimension n. For

this paper, the relevant special case is M = T 1. Let ((Ui, φi)) be a collection of

coordinate charts, i.e., open subsets Ui ⊂M and homeomorphisms φi : Vi → Ui where

Vi := φ−1
i (Ui) are open subset of Rn, which cover M , i.e., M =

⋃
i Ui. It follows from

compactness that we can assume that there are N such coordinate charts. Let (τi)

be a subordinate partition of unity. Then we find that (wm) is a bounded sequence in

Hq(M) if and only if for all i = 1, . . . , N , we have that (wm◦φi) is a bounded sequence

in Hq(Vi). Moreover, ‖wm − w‖Hq0 (T 1) → 0 for some w ∈ Hq0(M) if and only if for

all i = 1, . . . , N , we have that ‖wm ◦ φi −w ◦ φi‖Hq0 (Vi) → 0 (since w ◦ φi ∈ Hq0(Vi)).

Now, the Stein Extension Theorem (Theorem 5.24 in [1]) implies the existence of

total extension operators Ei (Definition 5.17 in [1]), which are linear maps Ei

from functions defined on Vi to functions defined on Rn with the following property:

If f ∈ Hr(Vi) for any non-negative integer r, then

1. (Eif)|Vi = f almost everywhere,

2. Eif is in Hr(Rn), and there exists a constant C > 0, so that

‖Eif‖Hr(Rn) ≤ C‖f‖Hr(Vi).

Hence, we find that (wm) is a bounded sequence in Hq(M) if and only if for all

i = 1, . . . , N , we have that (Ei(wm ◦φi)) is a bounded sequence in Hq(Rn). Moreover,

‖wm−w‖Hq0 (T 1) → 0 for some w ∈ Hq0(M) if and only if for all i = 1, . . . , N , we have

that ‖Ei(wm ◦ φi) − Ei(w ◦ φi)‖Hq0 (Rn) → 0 (since Ei(w ◦ φi) ∈ Hq0(Rn)). It follows

from Proposition A.5, that Ei(w ◦ φi) ∈ Hq(Rn). Hence, w ◦ φi ∈ Hq(Vi). Since this

is true for all i = 1, . . . , N , it follows that w ∈ Hq(M).
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A.2. Fundamental Concepts and Theorems from Analysis

A.2.1. Banach Space

Most function spaces are infinite dimensional vector spaces with a structure

encoded in the following definition.

Definition A.7. A vector space X which is complete with respect to a norm ‖ · ‖ is

called a Banach space. A Banach space is usually denoted (X, ‖ · ‖), or just by X if

the norm is clear in context.

A.2.2. Frechet Derivative

It is important to extend the notion of a derivative from Rn to abstract Banach

spaces.

Definition A.8 (Derivative between Banach spaces). Let X, Y be two Banach spaces,

and U an open subset of X. The mapping f : X → Y is said to be differentiable at

x0 ∈ U if there exists a continuous linear mapping Df of X into Y such that

f(x0 + h)− f(x0) = Df |x0 +R(h), where ‖R(h)‖Y = o(‖h‖X),

for all h such that x0 + h ∈ U . Recall ‖R(h)‖Y = o(‖h‖X) means that

lim‖h‖X→0 ‖R(h)‖Y /‖h‖X = 0.

Equivalently, there exists a continuous linear mapping Df satisfying

‖f(x0 + h)− f(x0)−Dfx0‖Y ≤ C‖h‖X

for a constant C independent of h.
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An important result for us is the case where f can be considered a map from a

“time interval” into a function space, such as a Sobolev space. The following result

concerns the derivatives of such maps.

Theorem A.9. Let I = [a,b] be a bounded interval of R, and let X be a Banach

space. Suppose {fn} with fn : I → X is a sequence of continuously differentiable

functions. Further, assume that

– {fn} converges to f uniformly on I

– the sequence of derivatives f ′n converges uniformly on I.

Then f is differentiable at each t ∈ I, and

f ′(t) = lim
n→∞

f ′n(t) for all t ∈ I.

This is a generalization of Theorem 5.11 on page 51 of [47], to Banach-space

valued functions. Note however, that we do not establish that f ′ is continuous on I.

Proof. Let ‖ · ‖ denote the norm on X, and | · | denote the usual norm on R. Further,

let g = limn→∞ f
′
n, and suppose Ωt is an open neighborhood of t ∈ I. We wish to

show that for any s ∈ Ωt

‖f(t)− f(s)− (t− s)g‖ ≤ C|t− s|,
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for some positive constant C independent of s. We compute

‖f(t)− f(s)− (t− s)g‖ = ‖f(t)− f(s)− (t− s)(g(t)− f ′n(t))− (t− s)f ′n‖

≤ ‖f(t)− f(s)− (t− s)f ′n‖+ |t− s|‖g(t)− f ′n(t)‖

≤ ‖f(t)− fn(t)− (f(s)− fn(s))‖

+ ‖fn(t)− fn(s)− (t− s)f ′n(t)‖+ C|t− s|

where we have used that the sequence of derivatives f ′n converges uniformly at t.

Since f ′n is the derivative of fn, and using the uniform convergence of fn to f on Ωt

the desired inequality is obtained.

A.2.3. Hölder inequality

Let U be an open set in Rd.

Lemma A.10. Suppose 1 ≤ p, q ≤ ∞ and 1/p + 1/q = 1. Then if u ∈ Lp(U) and

v ∈ Lq(U), we have ∫
U

〈u, v〉 dx ≤ ‖u‖Lp‖v‖Lq .

A.2.4. Moser estimate

Lemma A.11. Let f, g be functions in L∞(T n) ∩Hq(T n). Then,

‖fg‖Hq ≤ C (‖f‖L∞‖g‖Hq + ‖f‖Hq‖g‖L∞) .
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Further, for all multiindices α with |α| ≤ q we have

‖Dα(fg)− fDαg‖Hq ≤ C (‖f‖Hq‖g‖L∞ + ‖∇f‖L∞‖g‖Hq−1) .

This is Proposition 3.7 of Chapter 13 in [86], and the proof is contained there.

Note that the hypothesis of Lemma A.11 hold if for example f, g ∈ Hq(T n) and

q > n/2 by the Sobolev inequality. This yields the following useful estimate.

Corollary A.12. Suppose that f, g ∈ Hq(T n) for q > n/2. Then,

‖fg‖Hq ≤ C‖f‖Hq‖g‖Hq

for a constant C depending on n, q.

A.2.5. Banach fixed point theorem

Theorem A.13. Let (X, ‖ · ‖) be a Banach space, and let B ⊂ X be a closed subset.

Suppose f : B → X is a map such that f(B) ⊂ B and

‖f(x)− f(y)‖ ≤ θ‖x− y‖

for all x, y ∈ X, with 0 ≤ θ < 1. Then, f has a unique fixed point in B.

This is Theorem 4.7 of [47] for example.

A.3. Symmetric Hyperbolic Systems

In this section we collect some results on (non-singular) symmetric hyperbolic

systems. These are adapted from [85] Chapter 16. Ringström, [75] provides a more

rigorous presentation.
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A.3.1. Comments on PDE

In PDE theory the focus is often on proving that a particular class of PDE is

well-posed. By this, it is informally meant that:

– The PDE has a solution.

– The solution is unique.

– The solutions depend continuously on the data specified in the problem.

What is meant by a solution to a PDE? The ideal notion of a solution to a given

PDE is an explicit functional form of the independent variables which has enough

continuous derivatives in order to satisfy the equation. Better, the solution is smooth

or analytic in some or all of its arguments. A solution having sufficient continuous

derivatives, whether or not it can be written down explicitly, is known as a classical

solution. It is known that for most PDE such classical solutions cannot be found.

Further, for some problems such as studying the evolution of shocks, the solutions one

is trying to understand are not even continuous. It is therefore desirable to consider

weaker notions of a solution.

One of the most useful notions of a weak solution is a function which satisfies the

equation in a distributional sense. Given a PDE one usually forms an integral version

of it in which all the derivatives are transferred to act on smooth test functions. The

function is then said to be a weak solution of the equation if this integral equation

holds for all smooth test functions. Note that in this case the solution in general only

needs to be locally integrable.

Often, proving the existence of solutions in a weak sense is a good place to

start when proving the existence of solutions to PDE. This separates the questions

of existence from regularity. To improve upon the weak solution, the next step is to
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increase the regularity assumptions on the data and coefficients and use these stronger

hypothesis to prove that the solutions you have found are actually differentiable in a

distributional sense. A solution which is both a weak solution and can be shown to

have sufficient distributional derivatives to satisfy the equation (in a distributional

sense) is called a strong solution.

A.3.2. Well-posedness of Symmetric Hyperbolic PDE

Consider partial differential systems of the form

S0(t, x, u)∂tu+
n∑
a=1

Sa(t, x, u)∂au+ f(t, x, u) = 0, (A.4)

where Sj : [0, δ]× T n × U → Rd×d, and f : [0, δ]× T n × U → Rd, and where U is an

open set of Rd.

Definition A.14. The equation Eq. (A.4) is called a quasilinear symmetric

hyperbolic system if S0, Sa are symmetric and bounded for every (t, x, u) in

[0, δ]×T n×U , and if there exists a c0 > 0 such that |S0| ≥ c0, (that is S0 is uniformly

bounded from below). Unless specified otherwise we suppose Sj, f are smooth in u ∈ U ,

for U an open set of Rd, and further that Sj, f ∈ C (I;Hq(T n)) for q > n/2 + 1, and

I an open set of R.

We have the following results concerning the initial value problem consisting of

Eq. (A.4) and the data prescribed at t = 0

φ(x) ∈ Hq(T n), (A.5)
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for q > n/2 + 1. Suppose I in Definition A.14 is an interval about t = 0. We have

existence of unique solutions. We first give a result for linear systems in the case that

the coefficients have finite regularity. This is based on Propositions 1.7 and 2.1 of

[85], Chapter 16.

Proposition A.15 (Existence and uniqueness for linear systems). Suppose Eq. (A.4)

is a linear symmetric hyperbolic system, meaning that S0, Sa, and f are independent

of u, and suppose that S0, Sa, f are in C (I;Hq) for q > n/2 + 1. Then there is a

unique solution u ∈ C (I;Hq) to the initial value problem Eq. (A.4) and Eq. (A.5).

For quasilinear systems we cite the following result in the case that the coefficients

depend smoothly on the arguments (t, x, u). This is based on Corollary 1.6 of Taylor

[85], Chapter 16.

Proposition A.16. Suppose Eq. (A.4) is a quasilinear symmetric hyperbolic system

and that S0, Sa, f are C∞(I × T n) and also depend smoothly on u. Then there is a

uniques solution u ∈ C∞(I × T n).
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APPENDIX B

PROPERTIES OF THE SPACES Xδ,µ,Q

B.1. Relations Between Spaces Xδ,µ,q

We discuss the relationships between different Xδ,µ,q spaces, when two parameters

are fixed and the third is allowed to vary. Clearly, Xδ̃,µ,q ⊂ Xδ,µ,q for any δ̃ ∈ (0, δ].

Next we prove embedding lemmas for the exponent vector, and regularity parameters.

Lemma B.1. Fix a δ > 0, a q ∈ Z+, and an exponent vector ν, and suppose f ∈

Xδ,ν,q. Then f ∈ Xδ,µ,q for any µ < ν, and we have the estimate

‖f‖δ,µ,q ≤ C‖f‖δ,ν,q

for a constant C depending only on the difference ν − µ and δ.

Proof. Since f ∈ Xδ,ν,q,

‖f‖δ,ν,q = sup
t∈(0,δ]

‖R[ν]f‖Hq(Tn) ≤ C <∞.

Computing

‖f‖δ,µ,q = sup
t∈(0,δ]

‖R[µ]f‖Hq(Tn)

= sup
t∈(0,δ]

‖R[µ− ν]R[ν]f‖Hq(Tn).
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Because R[µ − ν] = Diag{tν1−µ1 , . . . , tνd−µd}, and since µ, ν are smooth on T n and

thus obtain there maximum and minimum values,

sup
t∈(0,δ]

‖R[µ− ν]R[ν]f‖Hq(Tn) ≤ sup
t∈(0,δ]

‖R[µ− ν]‖L∞(Tn)‖R[ν]f‖Hq(Tn) ≤ C‖f‖δ,ν,q,

for a constant C depending in general on δ, µ, and ν. This shows that f ∈ Xδ,µ,q,

with the proclaimed estimate.

Lemma B.2. Fix a δ > 0, exponent vector µ, and let q ∈ Z+. Then the following

embedding holds

Xδ,µ,q ⊂ Xδ,µ,q−1 ⊂ . . . ⊂ Xδ,µ,0,

and we have the estimates

‖w‖δ,µ,q ≥ ‖w‖δ,µ,q−1 ≥ . . . ≥ ‖w‖δ,µ,0,

for any w ∈ Xδ,µ,q.

Proof. Let w ∈ Xδ,µ,q, l be an integer in [0, q], and α a multi-index. Then,

‖w‖δ,µ,q = sup
t∈(0,δ]

 q∑
α,|α|=0

∫
Tn
|∂αxR[µ]w|2dx

1/2

= sup
t∈(0,δ]

 l∑
α,|α|=0

∫
Tn
|∂αxR[µ]w|2dx+

q∑
α,|α|=l+1

∫
Tn
|∂αxR[µ]w|2dx

1/2

≥ sup
t∈(0,δ]

 l∑
α,|α|=0

∫
Tn
|∂αxR[µ]w|2dx

1/2

= ‖w‖δ,µ,l
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This shows that w ∈ Xδ,µ,l, and that ‖w‖δ,µ,l ≤ ‖w‖δ,µ,q for any l ∈ [0, q]. Similar

arguments show that ‖w‖δ,µ,l ≤ ‖w‖δ,µ,k for all l, k ∈ [0, q] such that k ≥ l.

B.2. Relation to Bounded Continuous Maps

B.2.1. Relations to Other Function Spaces

We can think of w ∈ Xδ,µ,q as a map between Banach spaces w : (0, δ]→ Hq(T n).

Lemma B.3. Fix parameters δ > 0, q ∈ Z+ and an exponent vector µ. If f ∈ Xδ,µ,q

then at each t ∈ (0, δ], f ∈ Hq(T n).

The proof of this follows from the definition of the ‖ · ‖δ,µ,q norm and smoothness

of R[µ].

In the case µ = 0, the space Xδ,0,q consists of maps w such that the norm

‖w‖δ,0,q = sup
t∈(0,δ]

‖w‖Hq

is finite. This is equivalent to the more familiar space L∞ ((0, δ];Hq). It follows that

if ζ is a non-negative definite exponent vector and f ∈ Xδ,ζ,q for some δ > 0 and

positive integer q, then f ∈ L∞ ((0, δ];Hq).

B.2.2. The Spaces X̂δ,µ,q

In the section above we discuss conditions under which f ∈ Xδ,µ,q is a bounded

map between Banach spaces. We now extend this idea, by investigating under what

conditions such maps are continuous. Define X̂δ,µ,q as the set of maps f : (0, δ] →

Hq(T n) with the property that R[µ]f is bounded and continuous; cf. Eq. (2.2). If

we endow X̂δ,µ,q with the norm ‖ · ‖δ,µ,q, then X̂δ,µ,q are Banach spaces. Note that if

f ∈ X̂δ,µ+ε,q for some ε > 0, then R[µ]f : (0, δ]→ Hq(T n) is uniformly continuous.
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All functions in Xδ,µ,q can be approximated by smooth functions according to

the definition of these space Section 2.2.2.. Functions in X̂δ,µ,q, however, can be

approximated by a particularly useful sequence of smooth functions as follows; the

following lemma is taken from Appendix A of [3]. We refer to that paper for the

proof.

Lemma B.4. Let f ∈ X̂δ,µ,q; i.e., R[µ]f : (0, δ]→ Hq(T 1) is bounded and continuous.

Let f̂ be defined as follows

f̂(t) =


f(t), t ∈ (0, δ],

R[µ]−1(t)R[µ](δ)f(δ), t ∈ [δ,∞).

Let φ : R → R be smooth with φ(x) > 0 for all |x| < 1 and φ(x) = 0 for all |x| ≥ 1,

with
∫
R φ(x)dx = 1. Let (αi) be a sequence of positive numbers with limit 0. For any

integers i, j, we set

(R[µ]f)i,j(t, x) :=

∫ ∞
0

∫
T 1

(R[µ]f̂)(s, y)
1

αi
φ

(
x− y
αi

)
1

αj
φ

(
s− t
αj

)
dy ds. (B.1)

Then (R[µ]f)i,j has the following properties:

1. (R[µ]f)i,j ∈ C∞((0, δ]× T 1) for all integers i, j.

2. The function

fi,j := R[µ]−1(R[µ]f)i,j (B.2)

has the property that

fi,j ∈ X̂δ,µ,q ∩Xδ,µ,q for all integers i, j.
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In particular, for any given integers i, j, one has

‖(R[µ]f)i,j(t, ·)‖Hq(T 1) ≤ C‖f‖δ,µ,q, for all t ∈ (0, δ],

for a constant C > 0 independent of t (but possibly dependent on i, j).

3. (R[µ]f)i,j(t, x) −→ R[µ]f(t, x) for i, j →∞ at a.e. (t, x) ∈ (0, δ]× T 1.

4. If f is such that R[µ]f : (0, δ] → Hq(T 1) is a uniformly continuous map (e.g.,

if f ∈ X̂δ,µ+ε,q for some ε > 0), then

‖fi,j − f‖δ,µ,q → 0 for i, j →∞.

We can now use Lemma B.4 to relate the spaces Xδ,µ,q and X̂δ,µ,q. The following

embedding is originally proved in [3].

Lemma B.5. If we fix a constant δ > 0, an exponent vector µ, and a non-negative

integer q, then for all ε > 0, one has

X̂δ,µ+ε,q ⊂ Xδ,µ,q ⊂ X̂δ,µ,q.

Proof. The inclusion Xδ,µ,q ⊂ X̂δ,µ,q follows easily from the fact that each element in

Xδ,µ,q is the limit of a Cauchy sequence in (C∞((0, δ]× T 1), ‖ · ‖δ,µ,q), whose elements

are in particular bounded continuous maps (0, δ] → Hq(T 1), and the convergence is

uniform in time.

To check the inclusion X̂δ,µ+ε,q ⊂ Xδ,µ,q, let a function f be given in X̂δ,µ+ε,q.

Hence f satisfies the condition of the previous lemma, in particular that of

Condition 4. It follows that f ∈ Xδ,µ,q.
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B.3. Derivatives of Functions in Xδ,µ,q

B.3.1. Time derivatives

We also wish to comment on time derivatives of functions in Xδ,µ,q and X̂δ,µ,q.

Let f ∈ X̂δ,µ,q. We say that f is differentiable in time t if the (bounded continuous)

map R[µ]f : (0, δ]→ Hq(T 1) is differentiable in the sense of a map between Banach

spaces (Frechet derivatives). Its time derivative (multiplied by t) D(R[µ]f) can then

be considered to be a map (0, δ] → Hq(T 1), and we set Df := R[µ]−1(D(R[µ]f) −

DR[µ]f). If this map is continuous, then we call f continuously differentiable in t. If

this is the case for f and if in addition R[µ]Df is bounded, then we have Df ∈ X̂δ,µ,q.

Now, let f ∈ X̂δ,µ,q be continuously differentiable. Then Df is the

distributional time derivative of f in the following sense. Let φ be any test

function with the properties as in Section 2.4.4.. Choose ε > 0. Then we clearly have

that ∫ δ

ε

∂t(t 〈R[µ]f, φ〉L2(T 1))dt = −ε 〈R[µ]f, φ〉L2(T 1)

∣∣∣
t=ε

.

Hence, the boundary term vanishes in the limit ε → 0. The following integrals are

meaningful for ε = 0, and hence we obtain

∫ δ

0

〈R[µ]Df, φ〉L2(T 1) dt

= −
∫ δ

0

(
〈R[µ]f,Dφ〉L2(T 1) + 〈R[µ]f +DR[µ]f, φ〉L2(T 1)

)
dt.

(B.3)

The reader should compare this with the expressions for weak solutions in Section 2.4..
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B.3.2. Spatial derivatives

Next we prove a result concerning the spatial derivatives of a function in our

weighted Sobolev spaces.

Lemma B.6. Fix a δ > 0, a q ∈ Z+, and an exponent vector µ. Suppose that

w ∈ Xδ,µ,q(T
n), and that ‖w‖δ,µ,q ≤ M , for some M ∈ R+. Then, there exists real

numbers ε, C > 0 such that for any coordinate xa ∈ T n,

∂aw ∈ Xδ,µ−ε,q−1(T n) and ‖∂aw‖δ,µ−ε,q−1 ≤ C‖w‖δ,µ,q ≤ CM.

Note that the slight decrease in the exponent vector is necessary in order to

control the factors of log t which appear when commuting ∂a with R[µ].

Proof. Let α be a multi-index, and compute

‖∂aw‖δ,µ−ε,q−1 = sup
t∈(0,δ]

(∫
Tn

q−1∑
α,|α|=0

|∂αxR[µ− ε]∂aw|2
)1/2

= sup
t∈(0,δ]

(∫
Tn

q−1∑
α,|α|=0

{
|∂αx∂aR[µ− ε]w|2 + |∂αx (∂aR[µ− ε])w|2

− 2 〈∂αx (∂aR[µ− ε])w, ∂αx∂aR[µ− ε]w〉
})1/2

.

Now, ∂aR[µ−ε] = tε log tDiag{∂aµ}.R[µ], which can be bounded by CR[µ] in (0, δ]×

T n since µ is smooth and the tε dominates the logarithm. To deal with the cross term

we note that from the Cauchy inequality

2 〈∂αx (∂aR[µ− ε])w, ∂αx∂aR[µ− ε]w〉 ≤ |∂αx (∂aR[µ− ε])w|2 + |∂αx∂aR[µ− ε]w|2.
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It follows that

‖∂aw‖δ,µ−ε,q−1

≤ C sup
t∈(0,δ]

(∫
Tn

q−1∑
α,|α|=0

|∂αx∂aR[µ]w|2 + |∂αxR[µ]w|2
)1/2

≤ C sup
t∈(0,δ]

(∫
Tn

q−1∑
α,|α|=0

|∂αx∂aR[µ]w|2 + |∂αxR[µ]w|2 +
∑
β,|β|=q

|∂βxR[µ]w|2
)1/2

,

where
∑

β,|β|=q is a sum over all multi-indices of order q such that ∂βx is not of the

form ∂αx∂a. This last expression is equal to C‖w‖δ,µ,q, which proves the lemma.

251



APPENDIX C

FUNCTION OPERATORS ON Xδ,µ,Q SPACES

In this appendix we develop the relevant theory for function operators between

the weighted Sobolev spaces Xδ,µ,q. The results presented here are particularly

relevant in applications of the Fuchsian theorems Theorem 2.10 and Theorem 2.28.

C.1. Function Operator Basics

In Section 2.2.3. we introduce the notion of a function operator corresponding

to a function of the type f : (0, δ] × T n × Ω → Rm. There we introduce the notion

of a bounded function operator, as well as the Lipschitz property (Definition 2.3)

which is critical in proving the existence results Theorem 2.10 and Theorem 2.28.

For the second Fuchsian theorem additional properties (c.f. Definition 2.25 and

Definition 2.26) are required on the relevant function operators in the equations.

In the sections below we verify that these properties hold for the class of function

operators which we find in our applications.

While most of our analysis is concerned with treating functions of the “new

unknown” w ∈ Bδ,µ,q(s), we are also interested in the “expansion” of a function

operator f(u)(t, x) under the Fuchsian ansatz u = u0+w. For this Fuchsian reduction

we would like to partition a given functional f(t, x, u) into terms

f(t, x, u) = f0(t, x) + f1(t, x) · w + f2(t, x, w), (C.1)

where f0 is purely a function of the coordinates, f1(t, x) encodes the coefficients for

the linear terms, and f2(t, x, w) contains the remaining, generally nonlinear, terms in
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the expanded functional. We then wish to know the exponents ν0, ν1, ν2 associated

to the spaces f0 ∈ Xδ,ν0,q, f1 ∈ Xδ,ν1,q, and f2 ∈ Xδ,ν2,q.

To begin we look at u as a function operator –one might think of this as the

“fundamental Fuchsian function operator.” Consider

w 7→ u(w) = u0 + w,

for u0 ∈ Xδ,κ,q, and w ∈ Bδ,µ,q(s) for µ ≥ κ (this is necessary in order for w to

be considered a “remainder” with respect to u0). It follows that u(w) is a function

operator u : Bδ,µ,q(s) → Xδ,κ,q. Further, it is clear that u(w) satisfies the Lipschitz

property.

C.2. Linear Function Operators

Let m, d be positive integers, and suppose Ω ⊂ Rd is open. In this section we

consider functions L(t, x, u) defined by L : (0, δ]×T n×Ω→ Rd and the corresponding

function operators L(u)(t, x), which are linear in u ∈ Ω. Such function operators can

be written

L(u) = A(t, x)u,

where A(t, x) is a Rd×d-valued function. These operators have the expansion

L(w)(t, x) := L(u(t, x, w(t, x))) = A(t, x)u0(t, x) + A(t, x)w(t, x). (C.2)

The following lemma tells us about what function space we can expect for the target.

Lemma C.1. Let w be a d-vector-valued function in Xδ,µ,q for some exponent d-vector

µ, a constant δ > 0, and an integer q > n/2. Let A be a d× d-matrix-valued function
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so that R[µ] ·A · R[−µ] is an element of Xδ,ζ,q for an exponent d-vector ζ. Then, the

d-vector-valued function A.w is in Xδ,ζ+µ,q and

‖A.w‖δ,ζ+µ,q ≤ C‖R[µ] · A · R[−µ]‖δ,ζ,q‖w‖δ,µ,q, (C.3)

for some constant C > 0 depending only on q and n.

Note that a similar theorem can be proved with w replaced by a d×d dimensional

matrix in the space Xδ,µ,q. Also, in the case d = 1, the R-valued functions R[µ] and

A trivially commute, and we have that for A ∈ Xδ,ζ,q,

‖Aw‖δ,ζ+µ,q ≤ C‖A‖δ,ζ,q‖w‖δ,µ,q.

Proof of Lemma C.1. From the definition of the weighted Sobolev spaces, and given

that R[µ] · A · R[−µ] ∈ Xδ,ζ,q, and w ∈ Xδ,µ,q, there exists a sequence of matrices

Bn ∈ Xδ,ζ,q∩C∞((0, δ]×T n) and a sequence of elements wn ∈ Xδ,µ,q∩C∞((0, δ]×T n)

which converge to R[µ] · A · R[−µ] and w in Xδ,ζ,q and Xδ,µ,q respectively.

To show that Aw is in Xδ,ζ+µ,q, we show that the sequence of elements

(R[−µ]BnR[µ])wn converges to Aw in Xδ,µ+ζ,q. While it follows from the definitions

that (R[−µ]BnR[µ])wn ∈ C∞((0, δ]×T n), we show thatR[−µ]BnR[µ]wn ∈ Xδ,µ+ζ,q∩

C∞((0, δ]× T n). Due to Corollary A.12 we have

‖R[−µ]BnR[µ]wn‖δ,µ+ζ,q = sup
t∈(0,δ]

‖R[ζ]BnR[µ]wn‖Hq

≤ C sup
t∈(0,δ]

‖R[ζ]Bn‖Hq sup
t∈(0,δ]

‖R[µ]wn‖Hq <∞,
(C.4)
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as desired. Now consider

‖R[ζ]BnR[µ]wn −R[ζ]R[µ]AR[−µ]R[µ]w‖Hq

= ‖R[ζ] (Bn −R[µ]AR[−µ])R[µ]wn +R[ζ] (R[µ]AR[−µ])R[µ] (wn − w) ‖Hq

≤ C‖R[ζ](Bn −R[µ]AR[−µ])‖Hq‖R[µ]wn‖Hq

+ C‖R[ζ]R[µ]AR[−µ]‖Hq‖R[µ](wn − w)‖Hq

≤ C (‖Bn −R[µ]AR[−µ]‖δ,ζ,q‖wn‖δ,µ,q + ‖R[µ]AR[−µ]‖δ,ζ,q‖wn − w‖δ,µ,q) .

Since the right hand side vanishes in the n → ∞ limit, we have shown that

R[−µ]BnR[µ]wn converges to Aw in Xδ,ζ+µ,q and that Aw is in Xδ,ζ+µ,q. The estimate

for Aw follows by taking the limit n→∞ of Eq. (C.4).

We now show that these operators are Lipschitz.

Lemma C.2. Let L(w) be a linear function operator as in Eq. (C.2), with A satisfying

the properties of Lemma C.1, and choose an exponent vector µ, any exponent scalar

γ0 ≥ 0, and positive real numbers 0 < ŝ ≤ s. Then L(·) satisfies the Lipschitz

property, and for all w ∈ Bδ,µ,q(s) and h ∈ Bδ,µ̂,q(ŝ) with µ̂ = µ+ γ0 we have that

L(w)− L(w + h) ∈ Xδ,ζ+µ̂,q.

Proof. 1. Let w, w̃ ∈ Bδ,µ,q(s). The proof of the Lipschitz property follows from

L(w)− L(w̃) = A(w − w̃) and the estimate Eq. (C.3).

2. We have L(w) − L(w + h) = −Ah. Since µ̂ differs from µ by a scalar,

and R[µ]AR[−µ] ∈ Xδ,ζ,q by assumption, it follows from Lemma C.1 that Ah ∈

Xδ,ζ+µ̂,q.
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C.3. Nonlinear Function Operators

In this section we verify the desired properties of the function operators in

the case that these operators are nonlinear in the fields. Again this is relevant for

applications of the Fuchsian theory. However, since in most cases the analysis can

be performed separately for each component of the function operator we simplify the

following analysis by considering only f of the form f : (0, δ] × T n × Ω → R. The

basic non-linearities we deal with are multiplications, positive powers, exponentials,

and inverses. We first establish a general result, and later consider specific cases in

more detail.

C.3.1. General Smooth R-Valued Function Operators

To begin we establish the expansion of such operators under the Fuchsian ansatz.

Lemma C.3. Let f(t, x, u), f : (0, δ] × T n × U → R be a function which is smooth

in its arguments. Further suppose that w 7→ u is the basic Fuchsian function operator

defined by u(w) = u0 + w, for a given u0 ∈ Xδ,κ,q. Then the corresponding function

operator f(w)(t, x) = (f ◦ u)(t, x) = f(t, x, u(w(t, x))) has an expansion of the form

Eq. (C.1).

The proof of this lemma is based on Taylor’s theorem.

Proof of Lemma C.3. At each (t, x) ∈ (0, δ]× T n and for all u ∈ V ⊂ U we have

f(t, x, u) = g0(t, x) + g1(t, x)(u) + g2(t, x)(u, u) + gr(t, x, u)
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where g1(t, x)(u) is the linear form Duf |0, and g2(t, x)(u, u) is the quadratic form

D2
uf |0, and where limu→0,u 6=0 gr(t, x, u)/‖u‖2 = 0. We may write

g1(t, x)(u) =
∑
i

λi(t, x)ui, and g2(t, x)(u, v) =
∑
i,j

ρji(t, x)uivj,

for some smooth functions λi(t, x) and ρji(t, x). Expanding ui = u0i + wi we obtain

the desired function operator for w contained in some set Ω.

C.3.2. Some Basic Constructions

C.3.2.1. Products

Consider functions of the form f(u) = u1u2, where u1, u2 : (0, δ] × T n → R are

interpreted as any two components of the vector u. Clearly this has an expansion

of the form Eq. (C.1) with f0 = u0,1u0,2, f 1
1 = u0,2, f

2
1 = u0,1, and f2 = w1w2. To

understand the function operator f2 = w1w2, we establish the following.

Lemma C.4. Let w1 ∈ Xδ,µ1,q and w2 ∈ Xδ,µ2,q be two functions (0, δ] × T n → R,

for some constant δ > 0, some smooth exponents µ1 and µ2, and an integer q > n/2.

Then w1 · w2 is in Xδ,µ1+µ2,q and, for some constant C > 0, depending only on n, q

we have

‖w1 · w2‖δ,µ1+µ2,q ≤ C‖w1‖δ,µ1,q · ‖w2‖δ,µ2,q.

Lemma C.5. Let w1, w2 be as above, and define g(w) = w1w2. Then g(·) satisfies

the Lipschitz property.
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Proof of Lemma C.4. Since w1 ∈ Xδ,µ1,q and w2 ∈ Xδ,µ2,q, there exist sequences

(w1,m) ⊂ Xδ,µ1,q ∩ C∞((0, δ]× T n) and (w2,m) ⊂ Xδ,µ2,q ∩ C∞((0, δ]× T n) so that

‖w1,m − w1‖δ,µ1,q → 0, ‖w2,m − w2‖δ,µ2,q → 0.

We also know that w1(t)w2(t) ∈ Hq for every t ∈ (0, δ] and w1,mw2,m ∈ Xδ,µ1+µ2,q ∩

C∞((0, δ]× T n) for every m. Moreover,

‖t−µ1−µ2(w1,nw2,n − w1w2)‖Hq = ‖t−µ1(w1,n − w1)t−µ2w2,n + t−µ1w1t
−µ2(w2,n − w2)‖Hq

≤ C‖t−µ1(w1,n − w1)‖Hq‖t−µ2w2,n‖Hq + C‖t−µ1w1‖Hq‖t−µ2(w2,n − w2)‖Hq

≤ C‖w1,n − w1‖δ,µ1,q‖w2,n‖δ,µ2,q + ‖w1‖δ,µ1,q‖w2,n − w2‖δ,µ2,q

This implies that w1,mw2,m converges to w1w2 in Xδ,µ1+µ2,q, and hence that w1w2 ∈

Xδ,µ1+µ2,q. We have, for every t ∈ (0, δ], that

‖t−µ1−µ2w1(t)w2(t)‖Hq ≤ C‖t−µ1w1(t)‖Hq‖t−µ2w2(t)‖Hq

where the constant C > 0 does not depend on w1, w2 and t. This establishes the

remaining estimate.

Proof of Lemma C.5. This follows from straight-forward computation

‖R[µ1 + µ2] (g(w)− g(w̃)) ‖Hq = ‖tµ1+µ2 (w1w2 − w̃1w̃2) ‖Hq

≤ ‖tµ1w1‖Hq‖tµ2(w2 − w̃2)‖Hq

+ ‖tµ2w̃2‖Hq‖tµ1(w1 − w̃1)‖Hq

Taking the supremum for t ∈ (0, δ] establishes the estimate.
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C.3.2.2. Integer Powers

Consider the function operator f(u) = upi for any integer p with p ≥ 2 or p ≤ −1.

For p = 0, the expansion is of course trivial and for p = 1, we simply find the

fundamental Fuchsian function operator, (c.f. Section C.1.). Here ui is a component

of the Rd-valued function u. However, to simplify the expressions below, we now use

the expression u for a single component. Such function operators have the expansions

up =

p∑
k=0

(
p

k

)
u0

p−kwk

in the case that p > 0, and

f(u) = up =
∞∑
k=0

(−1)k
(
−p+ k − 1

k

)
u0

p−kwk,

in the case that p < 0.

Let us focus on the case p > 0. We assume

u0 ∈ Xδ,κ,q w ∈ Xδ,κ+µ,q.

In terms of the expansion Eq. (C.1), we have

f0 = u0
p ∈ Xδ,pκ,q.

This follows from applying the product lemma (Lemma C.4) iteratively. We also have

f1w = pu0
p−1w ∈ Xδ,pκ+µ,q,
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and

f2[w] =
p(p− 1)

2
u0

p−2w2 ∈ Xδ,pκ+2µ,q.

We have the following lemma.

Lemma C.6. Suppose µ > 0. Then the function operator f(u) = up, with u = u0 +w

has the expansion above, is a well-defined function operator into Xδ,pκ,q, and satisfies

the Lipschitz property.

The proof of this lemma follows from a repeated application of Lemma C.4.

C.3.2.3. Exponentials

Consider the function operators of the form f(u) = exp(rui) for a real number

r. Again ui represents a component of u, although in the rest of this discussion we

let u denote the component. The expansion has the form f(w) = exp(ru0) exp(rw),

and we can use Lemma C.3 (basically the Taylor expansion) to see that it takes the

form Eq. (C.1).

Lemma C.7. The functional f(w) = exp(rw) is a well-defined operator Bδ,µ,p(s) ∩

Xδ,µ,q → Xδ,0,q, for µ ≥ 0, and satisfies the Lipschitz property.

The proof of this lemma is based on the following result (see [86] Ch. 13,

Proposition 3.9).

Proposition C.8. Let F be smooth, and F(0) = 0. Then for w ∈ Hq with q > n/2

‖F (w)‖Hq ≤ C‖w‖L∞ (1 + ‖w‖Hq) ,

for a constant depending on q, n.
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Proof of Lemma C.7. Consider h(w) = f(w)−1 = exp(rw)−1. Then the proposition

and the Sobolev inequality implies

‖h(w)‖Hq ≤ C‖w‖Hq (1 + ‖w‖Hq) .

By the reverse triangle inequality we also have

‖f(w)‖Hq ≤ ‖h(w)‖Hq + ‖1‖Hq .

Therefore,

‖f(w)‖Hq ≤ C(q)‖w‖Hq (1 + ‖w‖Hq) + C(n).

Taking the supt∈(0,δ] shows that the operator is well-defined with target Xδ,0,q.

The Lipschitz property follows from the Taylor expansion formula and Lipshitz

property for products Lemma C.5.

C.3.2.4. Inverses

Let f(w)(t, x) have an expansion as in Eq. (C.1), and consider f−1(w). We have

the following lemma, which is a consequence of the Taylor theorem.1

Lemma C.9. Let f(w) have an expansion as in Eq. (C.1) with f0(t, x) = 1, and

f2(w)(t, x) := f2(t, x, w(t, x)) a smooth function operator which is at least quadratic

in w for all w ∈ Bδ,µ,q(s). Then there exists a 0 < ŝ ≤ s and a f̂(w)(t, x) such that

for all w ∈ Bδ,µ,q(ŝ)

f−1(w) =
1

1 + f i1(t, x)wi + f2(w)(t, x)
= 1− f i1(t, x)wi + f̂(w)(t, x)

1See for example Corollary 8.17 [47] for the Taylor theorem for Banach spaces.
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Function operators involving inverses which we are particularly interested in are

the components of the inverse metric.

Lemma C.10 (Function operator properties of inverse metric). The inverse metric

is a smooth function operator on w ∈ Bδ,µ,q(s) for a sufficiently small s > 0, which

can be expanded as

g−1(w) = y0(t, x) + yi1(t, x)wi + y2(t, x, w),

where y1 is a Rd-valued function of t, x, and the sum over i is implied.

Proof. The inverse of a matrix can be written g−1 = adjg
det g

, where adjg is the adjugate

of g which is made up from the cofactors of g. In terms of the first order fields ui both

det g and adjg have the form
∑

j

∏
i u

pji
i for positive integers pji . Under the expansion

ansatz u = u0 + w,

det g = b0(t, x) + bi1(t, x)wi + b2(t, x, w).

Since this is a smooth function operator of w ∈ Bδ,µ,q(s) for a sufficiently small s > 0,

and provided bi1(t, x)/b0(t, x)wi and b2(t, x, w)/b0(t, x) vanish near t↘ 0, 1/ det g can

be expanded in a similar form. Likewise, adjg, can be expanded, and the product of

such operators has the form stated in the lemma for some scalar function y0(t, x) and

function operator y2(t, x, w) and a vector valued function y1(t, x).

Next we record the specific function expression for the inverse determinant of

the metric in Chapter IV.

262



Lemma C.11. The inverse determinant of the γ-block of the metric Eq. (4.31) can

be written as the following expansion of function operators

G(w) :=(det γ)−1

=O(t1−k
2

)
(

1−O(t1/2(1−k2))w7 −O(t1/2(1−k2))w1 −O(t(1−k
2))w1w7 + . . .

)
.

The proof of this lemma follows from the fact that near t ↘ 0 the fields

U1U7 dominate the square of the shift U2
4 , and from the leading order expressions

Eqs. (4.50)-(4.55).

Lemma C.12. The inverse determinant of the τ -block of the metric Eq. (4.31) can

be written as the following expansion of function operators

(det τ)−1 = O(t−2)
(
1−O(t−1−k)w16 −O(t1+k)w10 −O(t−2)w10w16 + . . .

)
.

C.3.3. Higher-Order Properties for Simple Function Operators

In this section we establish the higher-order property Definition 2.24 for some

of the simple function operators considered above. These results are essential for

verifying the conditions of Definition 2.25 and Definition 2.26. We consider both the

cases that µ̂ = µ + γ0 and µ̂ is “nearly” a scalar, meaning certain components are

allowed to differ my ±ε.

Lemma C.13. The R-valued function operator F (w) := λ(t, x)wi for λ(t, x) ∈ Xδ,ξ,q,

and wi the ith component of the vector w satisfies the higher order property with respect

to:

1. µ̂ = µ+ γ0 for any ξ
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2. µ̂ is scalar for ξ > 0.

3. µ̂ is nearly scalar for ξ sufficiently large.

Proof. We suppose F (w) occurs in the jth component of the source. Computing

∆Fw(h) we find the higher order property requires

µ̂j + νj − µj < ξ + µ̂i.

For µ̂ = µ + γ0, this inequality reduces to νj < ξ + µi which must be satisfied if

F (w) appears in the source term. In the case that µ̂ is scalar the inequality becomes

νj − µj < ξ, which can hold for ξ > 0. Finally in the nearly scalar case, such that

µ̂i = µ̂j + ε we have νj −µj < ξ+ ε, which can be satisfied if ξ+ ε > 0. The Lipschitz

property is straightforward.

Lemma C.14. The function operator F (w) =
∏d

i=1w
pi
i satisfies the higher-order

condition.

Proof. The case of only one pi non-zero is covered in Lemma C.13.

Now consider a function operator which depends on two of the components,

F2(w) = w1w2. We compute

∆F2(h) = h1w2 + h2(w1 + h1)

Let j denote the component of the source in which the function operator occurs. The

higher-order property then yields

µ̂j + νj − µj < min{µ̂1 + µ2, µ̂2 + µ1}
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For µ̂ = µ + γ0, this inequality becomes νj < µ1 + µ2, which holds by definition. In

the case that µ̂ is scalar or nearly scalar the inequality reduces to νj−µj < min{µ1 +

ε1, µ2 + ε2}, for ε1, ε2 ≥ 0. Clearly this holds provided min{µ1 + ε1, µ2 + ε2} > 0. A

similar argument holds for function operators with three fields, and arbitrary products

follow from an application of Lemma C.19. The Lipschitz property is proved as in

Lemma C.5.

Lemma C.15. Suppose µ ≥ 0. The function operator F (w) = (exp ◦ Pi)(w),

where Pi(w) = wi is the projection onto the ith component satisfies the higher-order

condition.

Proof. We compute using the Taylor expansion of F (w),

∆Fw(h) = hi + hi(wi + hi) + . . .

and thus ∆Fw(h) ∈ Xδ,µ̂i,q. It follows that ∆Fw(h) ∈ Xδ,µ̂j+νj−µj ,q (or Xδ,µ̂j+γ,q as a

special case) if

µ̂j + νj − µj = µ̂j − µj < µ̂i. (C.5)

Here we have used that νj = 0 for the exponential function operator.

1. Case µ̂ = µ+ γ0: The inequality Eq. (C.5) becomes

µj − µj = 0 < µi

which is true since µ > 0.
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2. Case µ̂ is nearly scalar: We assume µ̂j = µ̂i ± ε for some ε ≥ 0 (here equality

corresponds to the scalar case). The inequality Eq. (C.5) becomes

±ε < µj,

which holds since ε may be taken arbitrarily small.

The Lipschitz property is proved as in Lemma C.7.

C.3.4. Combinations of Function Operators

Lemma C.16 (Product of function operators). Let f and g be two R-valued function

operators satisfying the Lipschitz property and defined on w ∈ Bδ,µ,p(s0)∩Xδ,µ,q, where

we have chosen s0 and p to be such that both operators are defined on Bδ,µ,p(s0).

Suppose that for all such w, w 7→ f(w) ∈ Xδ,ν,q and w 7→ g(w) ∈ Xδ,η,q for exponent

scalars ν, η : T n → R. Then the function operator w 7→ h(w) := f(w)g(w) is well-

defined and satisfies the Lipschitz property with target Xδ,ν+η,q.

Applying the above lemma iteratively to a function operator of the form h(w) =

(f(w))k for some positive integer k, we find the following corollary.

Corollary C.17 (Positive powers of function operators). Let f be an R-valued

Lipschitz function operator mapping Bδ,µ,p(s0) ∩ Xδ,µ,q to Xδ,ν,q. Then the function

operator w 7→ h(w) := (f(w))k for positive integer k is a well-defined Lipschitz

operator taking values in Xδ,kν,q.

Lemma C.16 is proved in Appendix B of [3]. We now consider the higher-order

property Definition 2.24.

Lemma C.18. Let F (w) be an R-valued function operator from Xδ,µ,q to Xδ,ν,q

satisfying the higher-order property, and let λ(t, x) be an R-valued function in Xδ,ξ,q
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for some q > n/2. Then as long as ξ ≥ 0, the function operator F̃ (w) := λ(t, x)F (x)

satisfies the higher order property with respect to both µ̂ = µ + γ0, and µ̂ scalar, or

nearly scalar.

Proof. We compute ∆F̃w(h) = λ(t, x)∆Fw(h). Since ∆Fw(h) ∈ Xδ,µ̂+ν−µ,q, we see

that this is guaranteed to hold as long as ξ ≥ 0. The Lipschitz property follows from

straightforward computation.

Lemma C.19. Let F : Xδ,µ,q → Xδ,ν1,q and G : Xδ,µ,q → Xδ,ν2,q be two R-valued

function operators satisfying the higher-order property with respect to both µ̂ = µ+γ0,

and µ̂ scalar, or nearly scalar. If ν1, ν2 ≥ 0, the product H(w) := F (w)G(w) satisfies

the higher order property with respect to both µ̂ = µ + γ0, and µ̂ scalar, or nearly

scalar.

Proof. By computation we find ∆Hw(h) = O(µ̂−µ+ν1+ν2), from which the property

follows. The Lipschitz property is proved as in Lemma C.16.

C.4. Properties of the Inverse of S0

We start by quoting a result from [60] on computing the inverse of a sum of

matrices.

Lemma C.20 (Inverse of a sum of matrices). Let G and G + H be non-singular

matrices, and let H have positive rank r. Write H = E1 + . . . + Er, where Ei, i =

1, . . . , r are rank one matrices, and suppose Ck+1 = G+E1 + . . .+Ek is non-singular

for k = 1, . . . , r. Define C1 = G. Then,

C−1
k+1 = C−1

k − νkC
−1
k EkC

−1
k
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where

νk = (1 + tr(C−1
k Ek))

−1

and in particular

(G+H)−1 = C−1
r+1 = C−1

r − νrC−1
r ErC

−1
r (C.6)

We now use this lemma in proving desired properties of the inverse of the matrix-

valued operator S0. Since S0(w) = S0
0 + S0

1(w), where we can decompose S0
1(w) =∑r

k=1 S
0
1,k(w) we write (

S0(w)
)−1

=
(
S0

0

)−1
+ Σ0

1(w).

The perturbation matrix Σ0
1(w) consists of a sum of terms each with products of the

form (S0
0)
−1 · S0

1,k(w) · (S0
0)
−1

. Note that in many of our applications S0
1 is diagonal

with every third entry non-zero. In these cases S0
1 has rank d/3, and each S0

1,k(w) can

be represented as a sparse matrix containing only the non-zero diagonal element.

Lemma C.21. Suppose as in Definition 2.27 that S0
0 shares the block diagonal

structure of µ, and R[µ]S0
1(w)R[−µ] ∈ Bδ,ξ,q(r) for some ξ > 0. Then the function

operator

w 7→ R[µ]
(
S0(w)

)−1R[−µ]

is a bounded operator (Definition 2.4) of Xδ,µ,q to Xδ,0,q for all w ∈ Bδ,µ,p(s0) ∩

Bδ,µ,q(s). Further, the function operator

w 7→ R[µ]Σ0
1(w)R[−µ]
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is a bounded operator of Xδ,µ,q to Xδ,ξ,q for some exponent scalar ξ, and for all

w ∈ Bδ,µ,p(s0)∩Bδ,µ,q(s). The exponent scalar ξ is less than or equal to the minimum

of ξ.

Proof. First note that from the assumption that R[µ]S0
1(w)R[−µ] ∈ Bδ,ξ,q(r), and

the splitting of S0
1(w) into rank one matrices consisting of the rows of S0

1(w), we find

that for each k

R[µ]S0
1,k(w)R[−µ] ∈ Bδ,ξk,q(r),

for the exponent scalar ξk. The proof of Lemma C.21 is by induction on C−1
k+1 from

Lemma C.20. Clearly, there exists an r > 0 such that C−1
1 = (S0

0)
−1

is contained in

Bδ,0,q(r). Next note that

C−1
2 =

(
S0

0

)−1 − ν1

(
S0

0

)−1
S0

1,1(w)
(
S0

0

)−1
,

and thus,

R[µ]C−1
2 R[−µ] =

(
S0

0

)−1 − ν1

(
S0

0

)−1R[µ]S0
1,1(w)R[−µ]

(
S0

0

)−1
.

Since ν1 is a bounded function in Xδ,0,q, we find that

R[µ]C−1
2 R[−µ] ∈ Bδ,0,q(r)

for the same r as with k = 0, and

ν1

(
S0

0

)−1R[µ]S0
1,1(w)R[−µ]

(
S0

0

)−1 ∈ Bδ,ξ1,q(r̃)
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for some r̃ > 0. Now suppose that R[µ]C−1
k R[−µ] ∈ Bδ,0,q(r) and compute

R[µ]C−1
k+1R[−µ] =R[µ]C−1

k R[−µ]

− νk
(
R[µ]C−1

k R[−µ]
) (
R[µ]S0

1,k(w)R[−µ]
) (
R[µ]C−1

k R[−µ]
)
.

From Lemma C.1, and the fact that νk ∈ Xδ,0,q we find that the second part is

contained in Bδ,ξk,q(r̃k) for some r̃k, while the first term is in Bδ,0,q(r) by assumption.

Since ξk > 0, it follows that R[µ]C−1
k+1R[−µ] ∈ Bδ,0,q(r). This shows that in

particular R[µ]C−1
r R[−µ] = R[µ] (S0(w))

−1R[−µ] is contained in Bδ,0,q(r) for all

w as in the lemma. To see the bounded property on R[µ]Σ0
1(w)R[−µ] we note that

for each k, R[µ]C−1
k+1R[−µ] − (S0

0)
−1 ∈ Bδ,ξmin,q(r̃) for ξmin = mini=1,...,k{ξi}, and

r̃ = mini=1,...,k{r̃i}.

Lemma C.22. Let q > n/2. Suppose as in Definition 2.27 that S0
0 shares

the block diagonal structure of µ, S0
1(w) ∈ Bδ,ζ,q(r) for all w ∈ Bδ,µ,q(s), and

R[µ]S0
1(w)R[−µ] ∈ Bδ,ξ,q(r) for some ξ > 0. Further suppose that for some exponent

vector ξ, the function operator h 7→ R[µ] (S0
1(w)− S0

1(w + h))R[−µ] is a bounded

operator from Xδ,µ̂,q to Xδ,ξ+µ̂−µ,q for all w ∈ Bδ,µ,q(s) and for µ̂ = µ+ γ, where γ is

any exponent scalar. Define

∆
(
S0(u0 + w)

)−1
[h] :=

(
S0(u0 + w)

)−1 −
(
S0(u0 + w + h)

)−1

Then the function operator

h 7→ R[µ]∆
(
S0(u0 + w)

)−1
[h]R[−µ] = R[µ]∆Σ0

1(u0 + w)[h]R[−µ]
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is a bounded operator Xδ,µ̂,q → Xδ,ξ+µ̂−µ,q for some exponent scalar ξ > 0 for all

w ∈ Bδ,µ,q(s).

Proof. The proof again follows from induction on C−1
k+1. First note that ∆C−1

1 =

∆ (S0
0)
−1

[h] = 0. Next, we find

R[µ]
(
C−1

2 (w)−C−1
2 (w + h)

)
R[−µ]

= R[µ]
(
− ν1(w)

(
S0

0

)−1
S0

1,1(w)
(
S0

0

)−1

+ ν1(w + h)
(
S0

0

)−1
S0

1,1(w + h)
(
S0

0

)−1
)
R[−µ]

= R[µ]
(
S0

0

)−1 (
S0

1,1(w)− S0
1,1(w + h)

) (
S0

0

)−1R[−µ] + . . .

since νk(w̃) = O(1) for all w̃ ∈ Bδ,µ,q(s) under the hypothesis that w 7→ S0
1(w) is a

bounded map into Bδ,ζ,q(r) for some ζ > 0. It follows from the remaining hypotheses

that there exists an exponent scalar ξ
2

such that R[µ]
(
C−1

2 (w)−C−1
2 (w+h)

)
R[−µ] ∈

Bδ,ξ
1
+µ̂−µ,q(r1).

Now suppose that R[µ]∆C−1
k+1[h]R[−µ] ∈ Bδ,ξ

k
+µ̂−µ,q(rk). Compute

R[µ]∆C−1
k+2[h]R[−µ]

= R[µ]∆C−1
k+1[h]R[−µ]

−R[µ]
(
C−1
k+1(w)S0

1,k+1(w)C−1
k+1(w)

− C−1
k+1(w + h)S0

1,k+1(w + h)C−1
k+1(w + h)

)
R[−µ]

= R[µ]∆C−1
k+1[h]R[−µ]

−R[µ]
(
C−1
k+1(w)∆S0

1,k+1[h]C−1
k+1(w) + C−1

k+1(w + h)∆S0
1,k+1[h]C−1

k+1(w + h)

+ C−1
k+1(w)S0

1,k+1(w)∆C−1
k+1[h] + ∆C−1

k+1[h]S0
1,k+1(w)C−1

k+1(w + h)

− C−1
k+1(w)∆S0

1,k+1[h]C−1
k+1(w + h)

)
R[−µ].
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Inserting R[µ]R[−µ] between each matrix multiplication, and using the induction

hypothesis, the knowledge from Lemma C.21 that R[µ]∆C−1
k+1(w)R[−µ] ∈ Xδ,0,q,

as well as assumed properties of R[µ]S0
1(w)R[−µ], R[µ]∆S0

1(w)[h]R[−µ], and that

µ̂− µ = γ is an exponent scalar, we find that

R[µ]∆C−1
k+2[h]R[−µ] ∈ Xδ,ξ+µ̂−µ,q.

Further, we can use the Moser and Sobolev estimates in combination with the

boundedness hypotheses to show that this function operator is bounded.

The conclusion of Lemma C.22 follows from setting k + 1 = r = rank(S0
1).
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[30] P. T. Chruściel, J. Isenberg, and V. Moncrief. Strong cosmic censorship in
polarised Gowdy spacetimes. Class. Quantum Grav., 7(10):1671–1680, 1990.

[31] C. M. Claudel and K. P. Newman. The Cauchy problem for quasi–linear
hyperbolic evolution problems with a singularity in the time. Proceedings of the
Royal Society of London. Series A: Mathematical, Physical and Engineering
Sciences, 454(1972):1073–1107, 1998.

[32] A. Clausen. Singular behavior in T 2 symmetric spacetimes with cosmological
constant. PhD thesis, University of Oregon, 2007.

[33] D. M. Eardley, E. Liang, and R. K. Sachs. Velocity-Dominated Singularities in
Irrotational Dust Cosmologies. J. Math. Phys., 13(1):99, 1972.

[34] L. C. Evans. Partial Differential Equations. American Mathematical Society.
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