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THESIS ABSTRACT 
 
David M. Fisher 
 
Master of Science 
 
Department of Geography 
 
June 2013 
 
Title: Postglacial Transient Dynamics of Olympic Peninsula Forests: Comparing 

Predictions and Observations 
 
 

Interpreting particular climatic drivers of local and regional vegetation change from 

paleoecological records is complex. I explicitly simulated vegetation change from the 

late-Glacial period to the present on the Olympic Peninsula, WA and made formal 

comparisons to pollen records. A temporally continuous paleoclimate scenario drove the 

process-based vegetation model, LPJ-GUESS.  Nine tree species and a grass type were 

parameterized, with special attention to species requirements for establishment as limited 

by snowpack.  Simulations produced realistic present-day species composition in five 

forest zones and captured late-Glacial to late Holocene transitions in forest communities.  

Early Holocene fire-adapted communities were not simulated well by LPJ-GUESS. 

Scenarios with varying amounts of snow relative to rain showed the influence of 

snowpack on key bioclimatic variables and on species composition at a subalpine 

location. This study affirms the importance of exploring climate change with methods 

that consider species interactions, transient dynamics, and functional components of the 

climate. 
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CHAPTER I 

INTRODUCTION 

Climate is the most important determinant of plant species abundance and 

distribution across broad spatial and temporal scales (F. I. Woodward 1987). Over the 

past 14,000 years, dramatic changes in the seasonal cycle of incoming solar radiation, 

ice-sheet extent and greenhouse gas concentrations, have altered global climate, including 

temperature, snowpack, disturbance regimes and other facets of the climate to which 

plants directly respond (COHMAP Members 1988). In North America, local-to-

continental-scale changes in plant communities, as recorded by detailed pollen records, 

are strongly associated with regional climate change (Prentice, Bartlein, and Webb III 

1991; Shuman et al. 2004).  However, interpreting the particular climatic drivers of 

vegetation change is very complex and, ideally, independent evidence of past climate 

should be compared to the reconstructed vegetation (Webb 1986). A promising avenue 

exists to formalize this comparison in the application of dynamic vegetation models to 

explicitly simulate vegetation from a given paleoclimatic scenario and compare the 

results to observed vegetation change (Miller et al. 2008).  Accurately predicting future 

effects of climate change relies on our ability to correctly model the dynamics of the past.  

In the maritime Pacific Northwest, vegetation change from the late-Glacial period 

to the present is well documented in the paleoecological record (Whitlock 1992; Walker 

and Pellatt 2008), but no study has yet attempted to model the dynamic postglacial 

vegetation changes in this region.  The low-elevation Puget trough vegetation transitioned 

from tundra and open parkland to woodland and dry forest in the early Holocene and then 

to temperate conifer rainforest in the middle Holocene (Cwynar 1987; Whitlock 1992). 
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High elevations formerly occupied by alpine glaciers, with only grasses and herbs at their 

margins, became forested with subalpine tree species, though tree establishment in the 

highest-snow cover areas was delayed until the middle Holocene (Gavin et al. 2001).  

Snowpack plays a very important role in the elevational zonation of the dominant tree 

species and at the alpine treeline (Henderson et al. 1989; Ettinger, Ford, and 

HilleRisLambers 2011)  For example, studies of present-day vegetation-climate 

relationships on the Olympic Peninsula, WA show that high elevation west side tree 

growth is negatively correlated with snowpack and northeastern rainshadow tree growth 

responds negatively to summer temperature and positively to summer precipitation 

(Nakawatase and Peterson 2006). For the mountains of the Pacific Northwest, ongoing 

climate change is likely to manifest in reduced snowpack and warmer summer and fall 

seasons (Salathé et al. 2010).  

In this study, we utilized LPJ-GUESS, a transient, dynamic, vegetation model that 

couples biogeochemical interactions among soil, biosphere, and atmosphere with stand-

scale gap dynamics (Smith, Prentice, and Sykes 2001).  A process-based model such as 

this is ideally suited for understanding the coupled effects of climate, disturbance, and 

competition among species. We utilized this model, driven by a simulated climate 

derived from a transient simulation with an Atmosphere-Ocean General Circulation 

Model (AOGCM) (Liu et al. 2009), to explain the vegetation history captured in five 

radiocarbon-dated pollen records on the Olympic Peninsula. The five sites span steep 

elevation and precipitation gradients, and thus capture a spectrum of climate conditions 

such as growing season length and summer moisture availability, which are both 

mediated by snowpack.  The model is parameterized using well-known relative rankings 
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of species traits (e.g., shade tolerance).  We  paid particular attention to species 

establishment limited by snowpack persistence.  In regions such as the Olympic 

Peninsula with deep spring snowpack, seedling and tree growth is limited by the duration 

of spring snowpack, providing a major control of elevational distribution of species 

(Ettinger, Ford, and HilleRisLambers 2011). 

This analysis provides a unique examination of the species-climate relationship in 

Pacific Northwest forests in that (1) 14,000 years of simulated climate data are used to 

drive a mechanistic transient vegetation model, (2) the simulated vegetation changes are 

validated by a temporally continuous comparison to paleoecological records, and (3) 

individual species are simulated as opposed to aggregated plant functional types (PFTs), 

thereby allowing species to respond individualistically to changing climate
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CHAPTER II 

METHODS 

Study Area 

 The Olympic Peninsula is a topographically complex and heavily forested region. 

Coastal plains of the southern and western peninsula rise to the Olympic Mountains 

(highest point 2430 m a.sl.) that have been shaped by a series of Pleistocene glaciations 

(Thackray 2001). The mountainous terrain and predominantly southwesterly onshore 

flow create a very steep precipitation gradient across the peninsula (Figure 1). The west 

coast receives over 2500 mm of annual precipitation and the western slopes at high 

elevation can receive over 5000 mm. In the rainshadow (northeastern) part of the region, 

mean annual precipitation is ca. 2000 mm at high elevations and drops to less than 500 

mm on the northeast coast. The majority of precipitation occurs in the winter months, but 

snow is rare below 800 m elevation. Glaciers persist at the highest elevations in the 

interior of the peninsula. 

Five lake-sediment records on the Olympic Peninsula, dating from the end of the 

Fraser Glaciation (less than 15 ka) to present, have been previously analyzed for pollen, 

macrofossils, and charcoal (McLachlan and Brubaker 1995; Gavin et al. 2001; Gavin, 

Brubaker, and Greenwald 2013; Gavin et al. 2013). These sites span the range of forest 

types and reflect the spatial heterogeneity of the topography and climate on the Peninsula 

(Figure 1; Table 1; (Henderson et al. 2011)). We refer to each site with respect to its 

elevation (low, middle or high) and occurrence in the windward (west) or rainshadow 

(east) portion of the peninsula.  The low-west site (Wentworth Lake) is a 14 ha kettle lake 
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located in the Sitka Spruce Zone. This zone occurs along the Pacific coast and extends 

inland along wide glacially-carved valleys, and supports some of the most productive and 

massive forests in the conterminous United States (Kellndorfer et al. 2010). The low-east 

site, (Crocker Lake) is a 26 ha lake in a glacial-outwash basin in the Western Hemlock 

Zone.  This zone is the most widespread zone, covering areas north, south, and east of the 

Olympic Mountains, and valley slopes to the west. The middle-west site (Yahoo Lake) is 

a 4 ha cirque lake situated on a ridgetop at the transition between the Western Hemlock 

and the Pacific Silver Fir Zone, which is marked by a transition to montane forests and 

increasing snowpack   The high-west site (Martins Lake) is a 1 ha basin on a ridge in the 

Mountain Hemlock Zone.  This zone comprises the highest-elevation continuous forest 

and parkland of the west and central Olympic Mountains.  The high-east site (Moose 

Lake) is a cirque lake in the Subalpine Fir Zone.  This zone comparises the highest-

elevation forest and parkland in the rainshadowed northeastern Olympic Mountains. Two 

additional zones exist on the peninsula that are not represented by a pollen record.  A 

spatially restricted Douglas-fir Zone occurs at low-mid elevations in the driest locations 

of the northeast Olympic Mountains, and the Subalpine Parkland Zone marked by 

meadows and tree clumps occurs at the highest elevations.  Whereas this forest zonation 

is well established (Fonda and Bliss 1969), individuals of any species may be found on 

certain microsites outside of their zone of dominance. The environmental and ecological 

factors controlling tree species distributions continue to be explored (Peterson, Schreiner, 

and Buckingham 1997; Nakawatase and Peterson 2006; Henderson et al. 2011). 
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Table 1. Study site characteristics. MASL – meters above sea level; MAP – mean annual 
precipitation (Wang et al. 2012); Soil Class – description of LPJ-GUESS soil code 
transferred from USDA soil textural codes following Prentice et al. (1992). 

Site name Lon 
(ºE) 

Lat 
(ºN) 

MASL 
(m) 

MAP 
(mm) 

Primary climax 
species 

Seral Tree 
Species 

Soil 
Class 

Wentworth 
Lake 
(low-west) 

-124.53 48.01 47 2779 
Sitka spruce, 

western hemlock, 
western redcedar 

Douglas-fir,    
red alder 

Medium-
Coarse 

Yahoo 
Lake 
(mid-west) 

-124.02 47.68 717 3657 
Pacific silver fir, 
western hemlock, 
western redcedar 

Douglas-fir,    
red alder Medium 

Martins 
Lake 
(high-west) 

-123.53 47.71 1423 4812 mountain hemlock, 
Pacific silver fir 

slide alder, 
mountain 
hemlock 

Medium 

Moose 
Lake 
(high-east) 

-123.35 47.88 1544 2361 subalpine fir subalpine fir, 
lodgepole pine Medium 

Crocker 
Lake  
(low-east) 

-122.88 47.94 54 859 western hemlock, 
western redcedar 

Douglas-fir,    
red alder Fine 

 

 

Figure 1. Environmental gradients of the Olympic Peninsula, WA. Minimum January 
Temperature and Mean Annual Precipitation from PRISM (Daly et al. 2008); Potential 
Natural Forest Zones (Henderson et al. 2011). White circles represent study sites. 
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Model Description 

 We used LPJ-GUESS, a dynamic vegetation model, to simulate the transient 

dynamics of post-glacial forests on the Olympic Peninsula. In LPJ-GUESS physiological 

processes such as carbon and water fluxes as well as interactions between soil, biosphere, 

and atmosphere are taken from LPJ-DGVM (Sitch et al. 2003) and stand dynamics of 

establishment and mortality are based on FORSKA, a forest gap model (Leemans and 

Prentice 1989; Prentice, Sykes, and Cramer 1993). Several studies have utilized LPJ-

GUESS to understand the local and regional responses of vegetation to climate change 

and to explore ecosystem dynamics (Hickler et al. 2004; Miller et al. 2008; Tang, 

Beckage, and Smith 2012). These studies conclude that LPJ-GUESS is suitable for 

simulating species-level responses to climate and disturbance regimes. 

LPJ-GUESS simulates the growth of cohorts of user-defined species or PFTs on a 

homogeneous patch of land. The patch size, 15 m x 15 m, approximates the area of 

influence of one mature tree (Zolbrod and Peterson 1999). Establishment of a given 

species on a patch is controlled by bioclimatic limits related to temperature, growing 

season length and intensity, and moisture availability (Table 2). When climate allows 

establishment of a species, probability of establishment is based on the shade tolerance of 

the species. Then, growth occurs annually when net primary productivity is allocated to 

leaves, sapwood, and roots based on a set of allometric relationships.  Growth is limited 

by competition over light and moisture (Smith, Prentice, and Sykes 2001; Sitch et al. 

2003).  For example, shade-intolerant species establish with greater likelihood, but 

require more photosynthetically active radiation and higher growth rates to survive. 

Mortality is induced by stress (low-growth), disturbance, and maximum longevity.   
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Two types of disturbance exist in LPJ-GUESS. First, generic patch-clearing 

events occur with an annual probability equal to the inverse of a user-specified mean 

interval (750 years). Second, fire occurs probabilistically as a function of soil moisture 

and fuel availability. Therefore, the fire regime is dynamic, varying through time with 

climate and vegetation. This is particularly critical for modeling lowland temperate 

rainforest zones, where fire regimes varied over the Holocene in response to large-scale 

climate changes (Cwynar 1987; Brown and Hebda 2002). Fire behavior is not modeled in 

LPJ-GUESS, but a fire-resistance parameter assigned to each species defines the 

probability of survival (Table 2).  Because many processes in the model are stochastic 

(e.g., disturbance, establishment, mortality) and that the patch size is fairly small, 30 

replicate patches were simulated and annual output of carbon biomass was averaged. 
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Table 2. Species-level parameter values used in LPJ-GUESS.  Min TCM  – Minimum temperature of the coldest month for sapling 
establishment; Max TCM  – Maximum temperature of the coldest month for saping establishment; Min TWM  – Minimum 
temperature of the warmest month for sapling establishment; PS-GDD5 – Post-snow growing degree-days above 5°C for sapling 
establishment; fAWC  – fraction available water content of the soil to calculate water uptake and to limit sapling establishment; 
k_latosa – leaf-area to sapwood-area ratio used in allometric equations; SLA – specific leaf area; Fire Resist – probability of 
surviving a fire; Max age – Maximum age allowed in simulation. 

Species Shade 
Group † 

Min 
TCM 
(ºC)* 

Max 
TCM 
(ºC)* 

Min 
TWM 
(ºC)* 

PS-GDD5 
fAWC 

† 
k_latosa 

‡ 
SLA 

(m2/g C) 
§ 

Fire 
Resist 

Max 
age 

lodgepole pine 
Pinus contorta 

Very 
Intolerant -29.3 7 7 300 0.15 3500 8.5 0.05 250 

subalpine fir 
Abies lasciocarpa 

Very 
Tolerant -15 -1 7.2 300 0.5 5400 7.6 0.05 250 

mountain hemlock 
Tsuga mertensiana 

Very 
Tolerant -15 4 7.5 300 0.68 1600 9.2 0.05 400 

Pacific silver fir 
Abies amabilis 

Very 
Tolerant -12 4 7 800 0.7 5500 13.5 0.05 400 

Douglas-fir 
Pseudotsuga menziesii Intolerant -16 15 7 800 0.2 4200 9 0.3 750 

western hemlock 
Tsuga heterophylla 

Very 
Tolerant -11.1 8.5 11.3 1400 0.6 4000 21 0.05 400 

western redcedar 
Thuja plicata Tolerant -14 8 7.5 1400 0.5 5000 10.6 0.1 1000 

red alder 
Alnus rubra 

Very 
Intolerant -13 10 7.5 1400 0.5 4000 23 0.05 80 

Sitka spruce 
Picea sitchensis Tolerant -10 8 7 1600 0.7 4500 15 0.05 500 

grass     50 0.01  32.4   
 
* (Thompson, Anderson, and Bartlein 1999) 
† (Niinemets and Valladares 2006) 
‡ (Waring, Schroeder, and Oren 1982; Turner et al. 2000; Martínez-Vilalta, Sala, and Piñol 2004) 
§ (Kershaw Jr and Maguire 1995; White et al. 2000; Mitchell 2001; Duursma et al. 2005; Townend 1995; Chan, Radosevich, and Grotta 2003) 
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 PFTs and Parameterization 

We defined and parameterized nine “plant functional types” to represent the 

common dominant tree species on the Olympic Peninsula and represented in pollen 

records.  We defined an additional functional type to represent grass or meadow 

herbaceous species. Rare species and species associated with certain microsites (e.g. 

western white pine, yellow cedar and slide alder) were not included in these experiments 

because their occurrence is controlled by local factors including avalanche disturbances 

and topographic moisture (Franklin and Dyrness 1988), both of which are not represented 

in LPJ-GUESS. 

We assigned species-specific bioclimatic and ecological parameters based on 

literature reviews (Table 2).  We used four shade tolerance classes defined by Hickler 

(2004) and assigned species to them based on rankings in Niinemets and Valladares 

(2006).  Fire resistance (probability to survive a fire) was based on bark thickness and 

observed survivorship in recent fires (Fischer and Bradley 1987; Agee 1996).  Probability 

of surviving a fire was 30% for Douglas-fir, 10% for western redcedar, and 0.5% for all 

other species. 

Our analyses of preliminary model output revealed a consistent dominance of low 

elevation species at mid and high elevation sites where they are absent today. This 

occurred because we intitally set the growing degree days above a 5°C base (GDD5) as 

the threshold for establishment, with limits determined from the entire geographic range 

of the species as reported in Thompson et al. (1999).  However, in regions of deep spring 

snowpack such as the Olympic Peninsula, the growing season experienced by seedlings is 
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limited by the duration of spring snowpack, which provides a major control of elevational 

distribution of species. Therefore, it was necessary to customize LPJ-GUESS to take into 

account the role of deep snowpack on seedling establishment and persistence (Barbour et 

al. 1991). We made modifications so that growing degree-days (above 5°C) began to 

accumulate only after the modeled snowpack had melted to less than 10 mm snow-water 

equivalent (SWE).  We term this new bioclimatic variable “post-snow growing degree-

days above a 5°C base” (PS-GDD5). Similarly, the fraction of the plant-available soil 

water-holding capacity (fAWC) during the growing season (Hickler et al. 2012) is 

averaged only over the period when PS-GDD5 are accumulating. Because much snow 

occurs at temperatures near the rain-snow transition, modeling accumulating and melting 

snow realistically may be beyond the scope of the Haxeltine and Prentice (1996) and 

Gerten et al. (2004) hydrological models. We chose a rain-snow threshold surface air 

temperature of 1°C, which often occurs when cold upper-level air occurs above a warmer 

marine-influenced surface air (Nolin and Daly 2006).  

 Annual PS-GDD5 requirements for establishment of the simulated species are not 

known by empirical study. Therefore it was necessary to calibrate this parameter. We 

calculated annual PS-GDD5 values at each study site for every year from 1895 to 2008 

using the daily weather generator in LPJ-GUESS with inputs of monthly temperature and 

precipitation from PRISM, interpolated to a 400 m resolution grid using the 

ClimateWNA tool (Wang et al. 2012). Then, annual PS-GDD5 required for establishment 

were assigned to each species by calibrating towards modern species composition at each 

study site (Figure 2). 
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Figure 2. Post-snow growing degree days throughout 20th century calculated by the LPJ-
GUESS daily weather generator. Dashed lines are species requirements for sapling 
establishment. 

 
 

 Moisture availability controls species establishment at dry sites on the peninsula 

(Soll 1994; A. Woodward, Schreiner, and Silsbee 1995).  Therefore, we implement LPJ-

GUESS with the optional drought-limited establishment, wherein species are allowed to 

establish if fAWC on a patch exceeds the fAWC species paramter value. For each 

species, this parameter was initially determined following the drought tolerance rankings 

in Niinemets and Valladares (2006). Using the calibration methods used for PS-GDD5,  

we assigned final fAWC parameter values between zero and one. We confirmed the 

realism of the PS-GDD5 and the fAWC parameterization in trial runs of LPJ-GUESS for 

the last 1000 years at each site. 
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Environmental Inputs 

 LPJ-GUESS is forced by three sets of climate variables: monthly means of 

temperature, precipitation, and percent sunshine, which is transformed from the 

cloudiness variable discussed below. These variables were synthesized with the following 

spatial and temporal characteristics in mind in order to provide: 1) a continuous monthly 

time-series that spans the length of the longest pollen record in the region, with 2) 

realistic interannual variability needed to elicit appropriate vegetation dynamics, and 3) 

variation among study sites based on the influence of topography. 

 Climate variables spanning the the last 22 ka were obtained from the TraCE-21 

project (Liu et al. 2009; He 2010), which employed a synchronously coupled atmosphere-

ocean general circulation model (AOGCM, NCAR-CCSM3) to simulate climatic 

variation over the past 22,000 years (i.e. from the Last Glacial Maximum to present). The 

available data from the transient simulation includes seasonal averages (three-month 

periods) at decadal time steps, from 22 ka to present. This dataset, by nature of its GCM 

origin, is global in extent and coarse in spatial resolution. One grid cell contains the entire 

study area of the Olympic Peninsula. Because we required climate data at a higher spatial 

and temporal resolution, we downscaled these data. First, seasonal and decadal values 

were interpolated to produce monthly and yearly values. Then, monthly anomalies with 

respect to a 1961-1990 base period were calculated.  These monthly anomalies do not 

have realistic interannual variability, which is critical for simulating vegetation (Ni et al. 

2006). 

 Realistic interannual variability was estimated from a monthly time series of 20th 

century climate from PRISM for temperature and precipitation (Daly et al. 2008) and 
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from the 20th-century Reanalysis V2 for cloudiness (Compo et al. 2011). For each month 

and each variable, the 20th century time series was detrended using a locally-weighted 

regression (40-yr window width) (Prentice, Harrison, and Bartlein 2011). Then, 

anomalies with respect to a 1961-1990 base period were calculated. Thirty-year segments 

of the 20th century timeseries of (detrended) anomalies were randomly sampled and 

added to consecutive 30-year segments of the TraCE-21 anomalies. This procedure 

resulted in a 22 ka-to-present monthly timeseries of anomalies of average temperature, 

precipitation, and cloudiness, with interannual variability equivalent to that of the 20th 

century. 

 Finally, this composite of monthly anomalies was added to monthly long-term 

mean (1961-1990) values at each of the five sites. For temperature and precipitation, 

PRISM long-term means were interpolated to a 400 m resolution grid using the 

ClimateWNA tool (Wang et al. 2012). Long-term means for cloudiness were bilinearly 

interpolated from the Reanalysis V2 data. The final result is a unique climate series for 

each study site. 

 Along with climate data, atmospheric carbon dioxide concentration and soil 

characteristics are the other envrionmental inputs to LPJ-GUESS. Annual CO2 

concentration was estimated from a spline fit to ice-core records (Krumhardt and Kaplan 

2010). Soil textural characteristics were acquired from the USDA Soil Survey 

Geographic Database (SSURGO, http://soils.usda.gov/survey/geography/SSURGO/) and 

were translated to LPJ-GUESS soil types following Prentice et al. (1992). 
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Simulation Protocol 

 LPJ-GUESS was run with 21 kyr-long transient simulations at each site. No 

additional spin-up period was prescribed, because interpretation of results at each site 

begins only at the start of the pollen record. To validate results, simulated biomass 

averaged over the most recent 1000 years was compared to canopy cover data from a 

broad network of ecological plots (http://ecoshare.info/2009/12/07/nw-washington-core-

data downloaded July 2012) to check for appropriate species presence with respect to 

elevation and precipitation gradients. To validate paleo-simulations, each PFT’s 

percentage of the total carbon biomass at a site was compared to pollen percentages 

which were first transformed by an “R-value” (Davis 1963) derived from a modern 

pollen-vegetation comparison (Gavin et al. 2005). The R-value accounts for the fact that 

some species are more prolific pollen producers than others. The relative dominance of 

species at each site through time was qualitatively compared between the simulation and 

the pollen record. 

 To further explore the role of snowpack at the site with the greatest snow 

accumulation, we varied the rain-snow temperature threshold from -2°C to +2°C. We 

examined these scenarios of varying amounts of snow for effects on PS-GDD5, fAWC, 

fire occurrence, and species composition.  
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CHAPTER III 

RESULTS 

Present-day Elevational Distributions 

LPJ-GUESS produced realistic present-day species composition with respect to 

elevation and precipitation gradients (Figure 3).  On the western side of the peninsula, 

western hemlock is the most abundant species at low-to-mid-elevations but is absent at 

high elevations; this pattern was captured by the model at the three simulation sites in this 

region. Western redcedar and Sitka spruce are relatively minor components of the forest 

at low and middle elevations, a pattern captured by the model.  Although Sitka spruce 

appears over-predicted by the model at the low-west site, this species is indeed abundant 

on the coastal plain near the low-west site, while the plot data in Figure 3 are biased 

towards the south and eastern flanks of the Olympic Mountains. Douglas-fir is common 

on lower south-facing slopes on the west side (Agee 1996), but it is correctly simulated as 

absent because neither the low-west or middle-west sites occurred in such locations.  

Pacific silver fir is a major component of the canopy at middle-to-high elevations and is 

simulated as abundant at the middle-west site, but as almost absent at the high-west site 

where this species reaches its upper elevational limit.  Mountain hemlock is also correctly 

simulated at the high-west site, but lodgepole pine is also simulated as present, despite 

being absent in west-side montane forests.  
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Figure 3. Elevational distribution of present-day observed and simulated tree species. 
Gray shading – percent cover of tree species in 639 ecological plots in the Olympic 
National Forest (downloaded from Ecoshare.info); Black dots – simulated biomass of 
tree species averaged over the last 1000 years at each site and scaled by a factor of 10 in 
order to use the same scale as percent cover data. Plots and simulation sites are 
categorized as “west side” or “east side” with respect to the rainshadow. 
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On the eastern peninsula, Douglas-fir and western redcedar are the most abundant 

species at low-to-middle-elevations, and their elevational distributions are generally 

matched by the simulation results. Western hemlock is common at middle elevations and 

correctly simulated as absent at the low-east site where it is rare and at the high-east site 

where it is absent.  The highest east side elevations are dominated by subalpine fir with 

lodgepole pine as a secondary component, which is well matched by the simulation at the 

high-east site.  

Late-Glacial to Present 

The simulated biomass from 21 ka to present at each site closely follows the 

pattern of PS-GDD5 (Figure 4).  At the middle-west and high-elevation sites, the basal 

sediments pre-date the local arrival of trees.  At these sites, simulated arrival of trees is 

marked by sharp increases in biomass that match the relative arrival times of trees 

inferred from pollen and other proxies (Gavin et al. 2001; Gavin, Brubaker, and 

Greenwald 2013). At the other sites, the sediment record begins with trees already 

present and the simulated biomass already increasing rapidly. Comparison of the fAWC 

variable across sites reveals that the low-east site is the driest and the high-elevation sites 

the wettest. Similarly, the low-east site also experiences the most frequent fire, with a 

return time less than 300 years, while simulated fire at the high-elevation sites is very rare 

(Figure 4).
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Figure 4. Site comparisons of LPJ-GUESS output from 21 ka to present. A) Post-snow 
growing degree-days above a 5°C base; dashed lines represent species requirement for 
establishment; B) Total simulated biomass; C) fraction available water content; dashed 
lines represent species requirement for establishment; D) Instantaneous fire return time.   
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 Visual comparisons of simulations and pollen records (Figure 5) show that LPJ-

GUESS generally simulated late-Glacial vegetation correctly, as well as the vegetation 

responses to the warming Holocene climate that are known from the paleoecological 

record at each site.  The pollen record at the low-west site (Figure 5a) begins about 14 ka 

and shows a transition from lodgepole pine to red alder and Douglas-fir in the early 

Holocene, and to western redcedar, western hemlock, and Sitka spruce in the mid-late 

Holocene. LPJ-GUESS simulations at this site capture the late-Glacial and mid-late 

Holocene periods well, but fail to produce increased Douglas-fir and red alder during the 

early Holocene. Instead, the mesic late-successional species, which dominate the pollen 

record after about 9 ka, dominate the simulation starting around 13 ka. From that time to 

present, western redcedar, western hemlock, and Sitka spruce trade-off dominance in the 

simulated patches.  

The pollen record at the middle-west site (Figure 5e) begins at 14.7 ka with 

lodgepole pine and mountain hemlock pollen appearing.  Pacific silver fir, western 

hemlock and Sitka spruce pollen also appear in the late-Glacial but only achieve 

dominance after 8 ka. The early Holocene pollen record shows abundant red alder and 

Douglas-fir. Simulated biomass at this site shows a transition from lodgepole pine and 

subalpine-fir in the late-Glacial, to temperate shade-tolerant species taking over by 13 ka. 

Similar to the low-west site, Douglas-fir and red alder are underrepresented during the 

early Holocene compared to the pollen record. Pacific silver fir represents up to 10% of 

biomass between 14-11.5 ka, and only rarely reaches 10% after this period. Western 

hemlock and Sitka spruce alternate in dominance throughout the Holocene, with western 

redcedar rarely exceeding 10% of the biomass.
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Figure 5.  Simulated biomass (S) compared to pollen record (P).  Subalpine fir and 
Pacific silver fir pollen are indistinguishable, thus their pollen records are identical when 
both are plotted.  Species are only plotted if they are simulated present or interpreted as 
locally present in the pollen record. 

 

 

The pollen record at the high-west site begins at 11.2 ka (Fig. 5c). Lodgepole 

pine, slide alder, and mountain hemlock pollen is most abundant, with trace amounts of 

other taxa. Alder pollen comprises more than 50% of the record from 10-8 ka. The 
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decline in alder is complemented by relative increases in true fir (subalpine fir or Pacific 

silver fir), mountain hemlock, and western hemlock pollen. Macrofossils were identified 

in the lake sediment that represent all of these pollen types except western hemlock, 

pollen of which was likely regionally dispersed from low elevation. Simulations include 

abundant grass before 10 ka and from 9-8.5 ka and grass was otherwise present through 

the Holocene. Subalpine fir and lodgepole pine alternate dominance until 8.5 ka at which 

time mountain hemlock exceeds 50% of the biomass until present. Lodgepole pine is a 

consistently simulated present throughout the Holocene, along with occasional cohorts of 

Pacific silver fir and western redcedar.  

The high-east site pollen record shows relatively stable species composition from 

14 ka to present (Figure 5d). Subalpine fir, lodgepole pine, and grass pollen are well 

represented, indicating that the subalpine fir and pine parkland that existed across much 

of the peninsula during the late-Glacial period has persisted until the present at this 

location. Simulation results are consistent with the pollen record; subalpine fir represents 

over 50% of the biomass at most times, with lodgepole pine as the second most abundant 

species. Grass is present throughout the simulation period, indicating some open canopy 

patches. Douglas-fir and mountain hemlock cohorts establish sporadically during the 

Holocene, but only rarely reach maturity 

The pollen record at the low-east site begins about 13 ka, around the time of the 

regional decline in pine pollen that appears in all five records (Figure 5b). Grass, pine, 

and alder pollen types are the other main components of the pollen community in the 

late-Glacial. The early Holocene (11-9 ka) shows abundant Douglas-fir and red alder 

pollen, then by 8 ka the Cupressaceae pollen type dominates the record, with Douglas-fir 
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and red alder remaining present along with western hemlock. LPJ-GUESS simulations 

begin with lodgepole pine and Douglas-fir as the dominant tree species, with grass 

present as well. The longer-lived Douglas-fir accounts for over 50% of simulated 

biomass until 10.5ka when western redcedar achieves dominance and maintains it 

throughout the Holocene. Douglas-fir remains present as the second most abundant 

species in good agreement with the pollen record. Simulated western hemlock does not 

appear until 11ka and its relative biomass only reaches between 10-50% of the simulated 

community a few times during the mid and late Holocene. Red alder is present at most 

times during the simulation period and represents a slightly greater component of 

simulated biomass between 11.5 and 8.5ka relative to other periods.  

Effects of Snowpack on Bioclimatic Variables 

Simulations with different rain-snow temperature thresholds at the high-west site 

reveal some important effects of the snowpack on PS-GDD5, fAWC, and fire frequency 

(Figure 6). With a threshold temperature set at 2°C, snowpack almost always persists 

year-round, as indicated by the PS-GDD5 curve rarely departing from 0. All three 

variables show greatest response to changes in the temperature threshold from 2°C to 

0°C, and much less response to changes from 0°C to -2°C. 
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Figure 6.  Five scenarios at the high-west site with varied rain-snow temperature 
thresholds and the response of A) Post-snow growing degree days above a 5°C base; 
dashed lines represent species’ requirements for establishment; B) fraction available 
water content; dashed lines represent species’ requirements for establishment; C) fire 
return time. 
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CHAPTER IV 

DISCUSSION 

LPJ GUESS is able to simulate realistic species composition at each study site, 

reflecting 1) the spatial pattern of forest types on the Olympic Peninsula and 2) major 

changes from the Late-Glacial to the Holocene. Important discrepancies between the 

pollen record and simulations occur mainly during the early Holocene, and possible 

explanations will be discussed.  

Spatial Pattern of Forest Types 

Results from this study corroborate conclusions drawn from earlier process-based 

and statistical model studies that explain climate-vegetation relationships in the PNW 

(Urban, Harmon, and Halpern 1993; A. Woodward, Schreiner, and Silsbee 1995; Zolbrod 

and Peterson 1999; Nakawatase and Peterson 2006; Littell et al. 2010). All of these 

studies support the broad theory that forests of western North America, examined at 

coarse spatial scales, are either limited by energy or by moisture (Stephenson 1998; 

Littell, Peterson, and Tjoelker 2008). Empirical studies of current species distributions 

across climatic gradients of the Peninsula and other PNW mountain ranges show that 

climate components related to growing season length and intensity are positively 

correlated with growth on windward slopes, and climate components related to 

summertime moisture availability are positively correlated with growth on leeward slopes 

(McKenzie et al. 2003; Nakawatase and Peterson 2006). From the Late-Glacial to the 

Holocene, simulated biomass at all sites follows the pattern of PS-GDD5, suggesting that 

this variable is limiting total biomass.  However, throughout the Holocene, the low-east 

site has consistently higher annual PS-GDD5 sums than all other sites, but lower total 
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biomass than the other two low-mid elevation sites.  The low-east site also has much 

lower average fAWC and more frequent fires, suggesting moisture availability is limiting 

biomass at this low-elevation rainshadow site. (Figure 4).  

In our customization of LPJ-GUESS, as in the real world, the bioclimatic 

variables PS-GDD5 and fAWC are influenced by the duration of snowpack. The PNW 

receives most of its precipitation during the winter; January, December, and November 

are the three wettest months on the Olympic Peninsula. At high elevations this 

precipitation is often snow, but the maritime influence on the Peninsula keeps average 

surface air temperatures relatively high, near to the freezing point even in January. About 

sixty percent of the snow-covered area on the Olympic Peninsula has been deemed “at-

risk” because minimal amounts of winter warming could convert much precipitation from 

snow to rain (Nolin and Daly 2006). The rain-snow temperature varies among 

precipitation events and there is no agreed upon mean value for the Olympic Peninsula. 

Observations at Blue Glacier in the 1950s determined +2°C was the right discriminant 

value (Rasmussen, Conway, and Hayes 2000) and developers of the LPJ water balance 

module use 0°C (Gerten et al. 2004).  

With a change in the rain-snow threshold temperature from 1°C to 0°C, PS-GDD5 

at the high-west site increases enough to allow Pacific silver fir to be the dominant 

species instead of mountain hemlock. Mountain hemlock is found in mostly pure stands, 

or in stands mixed with Pacific silver fir at high elevations up to timberline on the 

western slope of the Olympic Mountains, such as at our high-west site. Initial simulations 

did not predict mountain hemlock at this site; it established along with Pacific silver fir 

and western hemlock but was outcompeted by these species because of their higher 
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growth rates afforded by larger specific leaf area and leaf-area to sapwood-area ratio. 

Therefore, the key to mountain hemlock’s success at this site and at similar locations in 

the PNW may be the exclusion of other species by persistent snowpack. Absolute 

temperature minima on the Olympic Peninsula do not drop below the tolerance of many 

of the simulated species (they are all present at much higher latitudes), but growing 

season length in temperate subalpine locations of the PNW is limited by snowpack as 

well as temperature. Thus, results suggest that mountain hemlock may have a 

substantially lower growing season requirement than other lower elevation mesic species, 

and that the PS-GDD5 variable is an important one for predicting the distribution of tree 

species in subalpine environments. 

Comparisons of Simulated Biomass to Pollen Records 

Discrepancies between the pollen records and LPJ-GUESS simulations can be 

explained by 1) the poorly understood or highly variable relationships between biomass 

and pollen production, and the different spatial scales represented by the modeled and 

pollen-reconstructed forests, and 2) the inability of the GCM-derived input climate 

variables and the LPJ-GUESS solar insolation module to capture important variations 

since the Late-Glacial, most notably during the early Holocene. 

Comparing biomass to pollen abundance is an uncertain and problematic process. 

First, pollen production is not proportional to biomass.  We account for this by adjusting 

pollen percentages by factors derived from present-day relationships of surface pollen 

and percent canopy cover (Gavin et al. 2005). Second, pollen captured by these lakes is 

representative of the local and regional vegetation at the time, so taxa present in the 

pollen record may not be present in the forest stands proximate to the lake. On the 
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Olympic Peninsula, the ‘pollenshed’ includes a variety of topographic positions, slopes, 

and aspects that are known to favor different species, and a surface pollen study has 

shown significant contributions of low-elevation taxa to high elevations (Gavin et al. 

2005).  In contrast, LPJ-GUESS simulations occur on homogeneous, stand-sized patches.  

Across all sites, the period of least agreement between simulation and pollen 

record is the early Holocene (11-9ka), the time of a solar insolation maximum. Pollen 

records from the Peninsula and from the broader region show an increased abundance of 

shade-intolerant species (Gavin et al. 2013). This has been explained by increased 

frequency of fire due to warmer and drier summers (Gavin, Brubaker, and Greenwald 

2013). Charcoal records from lake sediments also indicate more frequent fire during this 

period. There are two plausible reasons why the simulations do not reflect the pollen 

records in the early Holocene. First, the input climate data may not capture the magnitude 

of warmth in early Holocene summers, though Trace-21 summer temperature anomalies 

from the present day are comparable to estimations from other climate proxies (Chase et 

al. 2008). Second, axial tilt and day and season length remain constant in LPJ-GUESS, so 

while the input climate data reflects orbital variations, calculation of direct solar radiation 

on a simulated patch does not. Together these inputs may explain why simulated soil 

moisture remains unrealistically high, fires infrequent, and shade-tolerant species 

dominant throughout the simulated early Holocene. 
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CHAPTER V 

CONCLUSION 

This study affirms the importance of exploring the effects of climate change on 

forests with methods that consider species interactions, transient dynamics, and 

functional components of the climate.  For example, in order to understand how forests 

may respond to reduced snowpack, we must not only quantify the relationships between 

tree distributions and climate variables, but we must fully understand the transient 

processes by which distributions change (establishment and mortality) and the 

sensitivities of trees to specific components of the climate.  Here we identify important 

climatic limits on tree establishment related to growing season length and intensity and 

moisture availability.   

Attempts to reconstruct pollen records with process-based vegetation models 

provide valuable insight into the drivers of species-level change in forest communities at 

local to regional scales.  Species parameters calibrated to simulate realistic present 

distributions with respect to elevation and precipitation gradients are also suitable for use 

in paleoecological simulations.  Discrepancies between observed and simulated 

vegetation serve to highlight areas of limited understanding and focus future research 

efforts.   



  30

CHAPTER VI 

REFERENCES CITED 

Agee, J. K. 1996. Fire Ecology of Pacific Northwest Forests. Island Press. 

Barbour, M. G., N. H. Berg, T. G. F. Kittel, and M. E. Kunz. 1991. “Snowpack and the 
Distribution of a Major Vegetation Ecotone in the Sierra Nevada of California.” 
Journal of Biogeography: 141–149. 

Brown, K. J., and R. J. Hebda. 2002. “Origin, Development, and Dynamics of Coastal 
Temperate Conifer Rainforests of Southern Vancouver Island, Canada.” 
Canadian Journal of Forest Research 32 (2): 353–372. 

Chan, S. S., S. R. Radosevich, and A. T. Grotta. 2003. “Effects of Contrasting Light and 
Soil Moisture Availability on the Growth and Biomass Allocation of Douglas-fir 
and Red Alder.” Canadian Journal of Forest Research 33 (1): 106–117. 

COHMAP Members. 1988. “Climatic Changes of the Last 18,000 Years: Observations 
and Model Simulations.” Science 241 (4869) (August 26): 1043–1052. 
doi:10.2307/1702404. 

Compo, G. P., J. S. Whitaker, P. D. Sardeshmukh, N. Matsui, R. J. Allan, X. Yin, B. E. 
Gleason, et al. 2011. “The Twentieth Century Reanalysis Project.” Quarterly 
Journal of the Royal Meteorological Society 137 (654): 1–28. doi:10.1002/qj.776. 

Cwynar, L.C. 1987. “Fire and Forest History of the North Cascade Range.” Ecology 68: 
791–802. 

Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, 
and P. P. Pasteris. 2008. “Physiographically Sensitive Mapping of Climatological 
Temperature and Precipitation Across the Conterminous United States.” 
International Journal of Climatology 28 (15) (December): 2031–2064. 
doi:10.1002/joc.1688. 

Davis, M. B. 1963. “On the Theory of Pollen Analysis.” American Journal of Science 
261 (10): 897–912. 

Duursma, R. A., J. D. Marshall, J. B. Nippert, C. C. Chambers, and A. P. Robinson. 
2005. “Estimating Leaf-level Parameters for Ecosystem Process Models: a Study 
in Mixed Conifer Canopies on Complex Terrain.” Tree Physiology 25 (11): 1347–
1359. 

Ettinger, A. K., K. R. Ford, and J. HilleRisLambers. 2011. “Climate Determines Upper, 
but Not Lower, Altitudinal Range Limits of Pacific Northwest Conifers.” Ecology 
92 (6): 1323–1331. 



 31

Fischer, W. C., and A. F. Bradley. 1987. “Fire Ecology of Western Montana Forest 
Habitat Types”. United Stated Forest Service General Technical Report INT-223. 

Fonda, R.W., and L.C. Bliss. 1969. “Forest Vegetation of the Montane and Subalpine 
Zones, Olympic Mountains, Washington.” Ecological Monographs 39: 271–301. 

Franklin, J. E., and C. T. Dyrness. 1988. Natural Vegetation of Oregon and Washington. 
Oregon State University Press. 

Gavin, D. G., L. B. Brubaker, and D. N. Greenwald. 2013. “Postglacial Climate and Fire-
Mediated Vegetation Change on the Western Olympic Peninsula, Washington.” 
Ecological Monographs (April 18). doi:10.1890/12-1742.1. 

Gavin, D. G., D. M. Fisher, E. M. Herring, A. White, and L. B. Brubaker. 2013. 
“Paleoenvironmental Change on the Olympic Peninsula, Washington: Forests and 
Climate from the Last Glaciation to the Present.” Report on file at the Olympic 
National Park, Port Angeles, WA. 

Gavin, D.G., L.B. Brubaker, J.S. McLachlan, and W.W. Oswald. 2005. “Correspondence 
of Pollen Assemblages with Forest Zones Across Steep Environmental Gradients, 
Olympic Peninsula, Washington, USA.” The Holocene 15 (5) (July): 648–662. 

Gavin, D.G., J.S. McLachlan, L.B. Brubaker, and K.A. Young. 2001. “Postglacial 
History of Subalpine Forests, Olympic Peninsula, Washington, USA.” Holocene 
11 (2): 177–188. 

Gerten, D., S. Schaphoff, U. Haberlandt, W. Lucht, and S. Sitch. 2004. “Terrestrial 
Vegetation and Water Balance—hydrological Evaluation of a Dynamic Global 
Vegetation Model.” Journal of Hydrology 286 (1): 249–270. 

Haxeltine, A., and I. C. Prentice. 1996. “BIOME3: An Equilibrium Terrestrial Biosphere 
Model Based on Ecophysiological Constraints, Resource Availability, and 
Competition Among Plant Functional Types.” Global Biogeochemical Cycles 10 
(4): 693–709. 

He, F. 2010. “Simulating Transient Climate Evolution of the Last Deglaciation with 
CCSM3”. University of Wisconsin. 
http://www.cgd.ucar.edu/ccr/paleo/Notes/TRACE/he_phd_092010-1.pdf. 

Henderson, J.A., R.D. Lesher, D.H. Peter, and C.D. Ringo. 2011. “A Landscape Model 
for Predicting Potential Natural Vegetation of the Olympic Peninsula USA Using 
Boundary Equations and Newly Developed Environmental Variables”. USDA 
General Technical Report: PNW-GTR-941. USDA Forest Service. 

Henderson, J.A., D.H. Peter, R.D. Lesher, and D.C. Shaw. 1989. “Forested Plant 
Associations of the Olympic National Forest”. R6 ECOL Technical Paper 001-88. 
USDA Forest Service. 



  32

Hickler, T., B. Smith, M. T Sykes, M. B Davis, S. Sugita, and K. Walker. 2004. “Using a 
Generalized Vegetation Model to Simulate Vegetation Dynamics in Northeastern 
USA.” Ecology 85 (2): 519–530. 

Hickler, T., K. Vohland, J. Feehan, P. A. Miller, B. Smith, L. Costa, T. Giesecke, et al. 
2012. “Projecting the Future Distribution of European Potential Natural 
Vegetation Zones with a Generalized, Tree Species-based Dynamic Vegetation 
Model.” Global Ecology and Biogeography 21 (1) (January): 50–63. 
doi:10.1111/j.1466-8238.2010.00613.x. 

Kellndorfer, J. M., W. S. Walker, E. LaPoint, K. Kirsch, J. Bishop, and G. Fiske. 2010. 
“Statistical Fusion of Lidar, InSAR, and Optical Remote Sensing Data for Forest 
Stand Height Characterization: A Regional-scale Method Based on LVIS, SRTM, 
Landsat ETM+, and Ancillary Data Sets.” Journal of Geophysical Research: 
Biogeosciences (2005–2012) 115 (G2). 

Kershaw Jr, J. A., and D. A. Maguire. 1995. “Crown Structure in Western Hemlock, 
Douglas-fir, and Grand Fir in Western Washington: Trends in Branch-level Mass 
and Leaf Area.” Canadian Journal of Forest Research 25 (12): 1897–1912. 

Krumhardt, K. M., and J. O. Kaplan. 2010. “ARVE Technical Report# 2: A Spline Fit to 
Atmospheric CO2 Records from Antarctic Ice Cores and Measured 
Concentrations for the Past 25,000 Years.” Environmental Engineering Institute, 

Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. 

Leemans, R., and I. C. Prentice. 1989. “FORSKA-a General Forest Succession Model.” 
Meddelanden Fraan Växtbiologiska Institutionen. 

Littell, J.S., E.E. Oneil, D. McKenzie, J.A. Hicke, J.A. Lutz, R.A. Norheim, and M.M. 
Elsner. 2010. “Forest Ecosystems, Disturbance, and Climatic Change in 
Washington State, USA.” Climatic Change 102 (1): 129–158. 

Littell, J.S., D.L. Peterson, and M. Tjoelker. 2008. “Douglas-fir Growth in Mountain 
Ecosystems: Water Limits Tree Growth from Stand to Region.” Ecological 
Monographs 78 (3) (August): 349–368. 

Liu, Z., B. L. Otto-Bliesner, F. He, E. C. Brady, R. Tomas, P. U. Clark, A. E. Carlson, et 
al. 2009. “Transient Simulation of Last Deglaciation with a New Mechanism for 
Bolling-Allerod Warming.” Science 325 (5938) (July 16): 310–314. 
doi:10.1126/science.1171041. 

Martínez-Vilalta, J., A. Sala, and J. Piñol. 2004. “The Hydraulic Architecture of 
Pinaceae–a Review.” Plant Ecology 171 (1-2): 3–13. 

McKenzie, D., D. W. Peterson, D. L. Peterson, and P. E. Thornton. 2003. “Climatic and 
Biophysical Controls on Conifer Species Distributions in Mountain Forests of 
Washington State, USA.” Journal of Biogeography 30 (7) (July): 1093–1108. 



 33

McLachlan, J., and L.B. Brubaker. 1995. “Local and Regional Vegetation Change on the 
Northeastern Olympic Peninsula During the Holocene.” Canadian Journal of 
Botany 73: 1618–1627. 

Miller, P. A, T. Giesecke, T. Hickler, R. H.W Bradshaw, B. Smith, H. Seppä, P. J Valdes, 
and M. T Sykes. 2008. “Exploring Climatic and Biotic Controls on Holocene 
Vegetation Change in Fennoscandia.” Journal of Ecology 96 (2): 247–259. 

Mitchell, A. K. 2001. “Growth Limitations for Conifer Regeneration Under Alternative 
Silvicultural Systems in a Coastal Montane Forest in British Columbia, Canada.” 
Forest Ecology and Management 145 (1): 129–136. 

Nakawatase, J. M., and D. L. Peterson. 2006. “Spatial Variability in Forest Growth - 
Climate Relationships in the Olympic Mountains, Washington.” Canadian 
Journal of Forest Research 36 (1) (January): 77–91. doi:10.1139/X05-224. 

Ni, Jian, Sandy P. Harrison, I. Colin Prentice, John E. Kutzbach, and Stephen Sitch. 
2006. “Impact of Climate Variability on Present and Holocene Vegetation: a 
Model-based Study.” Ecological Modelling 191 (3): 469–486. 

Niinemets, Ü., and F. Valladares. 2006. “Tolerance to Shade, Drought, and Waterlogging 
of Temperate Northern Hemisphere Trees and Shrubs.” Ecological Monographs 
76 (4): 521–547. 

Nolin, A. W., and C. Daly. 2006. “Mapping ‘at Risk’ Snow in the Pacific Northwest.” 
Journal of Hydrometeorology 7 (5) (October): 1164–1171. 
doi:10.1175/JHM543.1. 

Peterson, D.L., E.G. Schreiner, and N.M. Buckingham. 1997. “Gradients, Vegetation and 
Climate: Spatial and Temporal Dynamics in the Olympic Mountains, USA.” 
Global Ecology and Biogeography Letters 6: 7–17. 

Prentice, I. C., W. Cramer, S. P. Harrison, R. Leemans, R. A. Monserud, and A. M. 
Solomon. 1992. “Special Paper: a Global Biome Model Based on Plant 
Physiology and Dominance, Soil Properties and Climate.” Journal of 
Biogeography: 117–134. 

Prentice, I. C., S. P. Harrison, and P. J. Bartlein. 2011. “Global Vegetation and Terrestrial 
Carbon Cycle Changes after the Last Ice Age.” New Phytologist 189 (4): 988–
998. 

Prentice, I.C., P.J. Bartlein, and T. Webb III. 1991. “Vegetation and Climate Change in 
Eastern North America Since the Last Glacial Maximum.” Ecology: 2038–2056. 

Prentice, I.C., M. T. Sykes, and W. Cramer. 1993. “A Simulation Model for the Transient 
Effects of Climate Change on Forest Landscapes.” Ecological Modelling 65 (1): 
51–70. 



  34

Rasmussen, L. A., H. Conway, and P. S. Hayes. 2000. “The Accumulation Regime of 
Blue Glacier, USA, 191496.” Journal of Glaciology 46 (153): 326–334. 

Salathé, E. P., L. R. Leung, Y. Qian, and Y. Zhang. 2010. “Regional Climate Model 
Projections for the State of Washington.” Climatic Change 102 (1-2) (May 5): 
51–75. doi:10.1007/s10584-010-9849-y. 

Shuman, B., P. Newby, Y. Huang, and T. Webb III. 2004. “Evidence for the Close 
Climatic Control of New England Vegetation History.” Ecology 85 (5): 1297–
1310. 

Sitch, S., B. Smith, I.C. Prentice, A. Arneth, A. Bondeau, W. Cramer, J.O. Kaplan, et al. 
2003. “Evaluation of Ecosystem Dynamics, Plant Geography and Terrestrial 
Carbon Cycling in the LPJ Dynamic Global Vegetation Model.” Global Change 
Biology 9 (2): 161–185. 

Smith, B., I.C. Prentice, and M.T. Sykes. 2001. “Representation of Vegetation Dynamics 
in the Modelling of Terrestrial Ecosystems: Comparing Two Contrasting 
Approaches Within European Climate Space.” Global Ecology and Biogeography 
10 (6): 621–637. 

Soll, J.A. 1994. “Seed Number, Germination and First Year Survival of Subalpine Fir 
(Abies Lasiocarpa) in Subalpine Meadows of the Northeastern Olympic 
Mountains”. M.S. Thesis, Seattle: University of Washington. 

Stephenson, N. 1998. “Actual Evapotranspiration and Deficit: Biologically Meaningful 
Correlates of Vegetation Distribution Across Spatial Scales.” Journal of 
Biogeography 25 (5): 855–870. 

Tang, G., B. Beckage, and B. Smith. 2012. “The Potential Transient Dynamics of Forests 
in New England Under Historical and Projected Future Climate Change.” 
Climatic Change 114 (2) (February 8): 357–377. doi:10.1007/s10584-012-0404-x. 

Thackray, G.D. 2001. “Extensive Early and Middle Wisconsin Glaciation on the Western 
Olympic Peninsula, Washington, and the Variability of Pacific Moisture Delivery 
to the Northwestern United States.” Quaternary Research 55 (3): 257–270. 

Thompson, R. S., K. H. Anderson, and P. J. Bartlein. 1999. “Atlas of Relations Between 
Climatic Parameters and Distributions of Important Trees and Shrubs in North 
America”. Professional paper 1650 A & B. Denver (CO): US Geological Survey. 
http://pubs.usgs.gov/pp/p1650-b/. 

Townend, J. 1995. “Effects of Elevated CO2, Water and Nutrients on Picea Sitchensis 
(Bong.) Carr Seedlings.” New Phytologist 130 (2): 193–206. 

Turner, D. P., S. A. Acker, J. E. Means, and S. L. Garman. 2000. “Assessing Alternative 
Allometric Algorithms for Estimating Leaf Area of Douglas-fir Trees and 
Stands.” Forest Ecology and Management 126 (1): 61–76. 



 35

Urban, D. L., M. E. Harmon, and C. B. Halpern. 1993. “Potential Response of Pacific 
Northwestern Forests to Climatic Change, Effects of Stand Age and Initial 
Composition.” Climatic Change 23 (3): 247–266. 

Walker, I. R., and M. G. Pellatt. 2008. “Climate Change and Ecosystem Response in the 
Northern Columbia River Basin — A Paleoenvironmental Perspective.” 
Environmental Reviews 16 (NA) (December): 113–140. doi:10.1139/A08-004. 

Wang, T., A. Hamann, D. L. Spittlehouse, and T. Q. Murdock. 2012. “ClimateWNA-
High-resolution Spatial Climate Data for Western North America.” Journal of 
Applied Meteorology and Climatology 51 (1): 16–29. 

Waring, R. H., P. E. Schroeder, and R. Oren. 1982. “Application of the Pipe Model 
Theory to Predict Canopy Leaf Area.” Canadian Journal of Forest Research 12 
(3): 556–560. 

Webb, T. 1986. “Is Vegetation in Equilibrium with Climate? How to Interpret late-
Quaternary Pollen Data.” Plant Ecology 67 (2) (October): 75–91. 
doi:10.1007/BF00037359. 

White, M. A., P. E. Thornton, S. W. Running, and R. R. Nemani. 2000. 
“Parameterization and Sensitivity Analysis of the BIOME-BGC Terrestrial 
Ecosystem Model: Net Primary Production Controls.” Earth Interactions 4 (3): 1–
85. 

Whitlock, C. 1992. “Vegetational and Climatic History of the Pacific Northwest During 
the Last 20,000 Years: Implications for Understanding Present Day Biodiversity.” 
Northwest Environmental Journal 8: 5–28. 

Woodward, A., E.G. Schreiner, and D.G. Silsbee. 1995. “Climate, Geography and Tree 
Establishment in Subalpine Meadows of the Olympic Mountains, Washington, 
USA.” Arctic and Alpine Research 27: 217–225. 

Woodward, F.I. 1987. Climate and Plant Distribution. Cambridge Studies in Ecology. 
Cambridge University Press. 

Zolbrod, A.N., and D.L. Peterson. 1999. “Response of High-elevation Forests in the 
Olympic Mountains to Climatic Change.” Canadian Journal of Forest Research 
29 (12): 1966–1978. 

 

 
 


