CLIMATE AND ECOLOGICAL CHANGE IN OLIGO-MIOCENE MAMMALS

by

JOHN D. ORCUTT

A DISSERTATION

Presented to the Department of Geological Sciences and the Graduate School of the University of Oregon in partial fulfillment of the requirements for the degree of Doctor of Philosophy

December 2011

DISSERTATION APPROVAL PAGE

Student: John D. Orcutt

Title: Climate and Ecological Change in Oligo-Miocene Mammals

This dissertation has been accepted and approved in partial fulfillment of the requirements for the Doctor of Philosophy degree in the Department of Geological Sciences by:

Dr. Samantha Hopkins	Chair
Dr. Gregory Retallack	Member
Dr. Rebecca Dorsey	Member
Dr. Stephen Frost	Outside Member

and

Kimberly Andrews Espy Vice President for Research and Innovation/Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate School.

Degree awarded December 2011

© 2011 John D. Orcutt

DISSERTATION ABSTRACT

John D. Orcutt Doctor of Philosophy Department of Geological Sciences December 2011 Title: Climate and Ecological Change in Oligo-Miocene Mammals

Whether or not a causal relationship exists between climate and mammal body size is one of the longest-standing and most intractable questions in ecology. The classic model of body size evolution (Bergmann's Rule) holds that body size is driven by temperature, but more recent hypotheses have suggested that other climatic variables or biotic interactions may play a more important role. The use of paleoecological data to address this question allows variables that are tightly correlated in modern ecosystems to be teased apart and allows body size patterns to be observed through time, adding an extra dimension to analyses. This dissertation details the findings of two paleoecological tests of Bergmann's Rule in the Oligo-Miocene (30-5 Ma), one tracking body size and climate through time in the northwestern United States and another tracking geographic body size trends through time along the west coast of North America. In both cases, body size was analyzed in three representative families of mammals: equids, canids, and sciurids. Such large-scale analyses are dependent on fossils that can be placed in a reliable taxonomic, geologic, and temporal context, and this dissertation also focuses on a reevaluation of the canid fauna of Oregon's Juntura Formation that places a critically important Late Miocene carnivore fauna in just such a context. Two genera of canids – *Epicyon* and *Carpocyon* – are described from the fauna for the first time, with important

iv

implications for regional biostratigraphy. The body size analyses show no consistent relationship between body size and any climatic variable. Further, body size patterns vary widely between taxa at several levels, suggesting that one universal driver of body size evolution does not exist. Not only is there no evidence for Bergmann's Rule in Oligo-Miocene mammals, but comparative analyses of geographic body size patterns in the modern genera *Odocoileus*, *Canis*, and *Spermophilus* fail to show the latitudinal gradients upon which Bergmann's Rule is predicated. The apparent existence of such trends in some taxa may be the result of anthropogenic extirpation at low latitudes, further underscoring the importance of including paleontological data when formulating models predicting the response of biotic variables to environmental change.

CURRICULUM VITAE

NAME OF AUTHOR: John D. Orcutt

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene University of Bristol, United Kingdom University of Chicago, Illinois

DEGREES AWARDED:

Doctor of Philosophy, Geological Sciences, 2011, University of Oregon Master of Science, Palaeobiology, 2007, University of Bristol Bachelor of Arts, Ecology and Evolution, 2003, University of Chicago

AREAS OF SPECIAL INTEREST:

Cenozoic vertebrate paleoecology Carnivoran evolution

PROFESSIONAL EXPERIENCE:

Curatorial Assistant, Museum of Natural and Cultural History, University of Oregon, Eugene, 2008-2011
Research Assistant, John Day Fossil Beds National Monument, Oregon, 2007
Analytical Paleobiology Course, University of California, Santa Barbara, 2007
Graduate Teaching Fellow, University of Oregon, Eugene, 2006-2011
Field Assistant, University of Chicago, Illinois, 2003
Fossil Preparator, University of Chicago, Illinois, 2002-2003

GRANTS, AWARDS, AND HONORS:

Student Poster Prize, EVO-WIBO, 2010 Student Travel Grant, Society of Vertebrate Paleontology, 2009 Ewart M. Baldwin Award, University of Oregon, 2008, 2009, 2010 Thomas Condon Award, University of Oregon, 2007 Graduate Teaching Fellowship, Geological Sciences, 2006-2011 Postgraduate Scholarship, University of Bristol, 2005-2006 Dean's List, University of Chicago, 2002-2003

PUBLICATIONS:

- Orcutt, J.D., and S.S.B. Hopkins. In review. Oligo-Miocene climate change and mammal body size evolution in the northwest United States. Palaeogeography, Palaeoclimatology, Palaeoecology.
- Orcutt, J.D., and S.S.B. Hopkins. 2011. The canid fauna of the Juntura Formation (Late Clarendonian, Oregon). Journal of Vertebrate Paleontology 31:700-706.

ACKNOWLEDGMENTS

This project was specimen-based and would have been impossible without the curators and staff of the fossil collections I visited and recent collections whose data I included. In particular, I would like to thank Judy Galkin (American Museum of Natural History), Ismael Ferrusquía Villafranca, Maria Perrilliat Montoya, Violeta Romero Mayén (Instituto de Geología, Universidad Nacional Autónoma de México), Mary Thompson (Idaho Museum of Natural History, Idaho State University), Josh Samuels, Chris Schierup (John Day Fossil Beds National Monument), Sam McLeod, Vanessa Rhue, Gary Takeuchi, Jack Tseng (Natural History Museum of Los Angeles County), Chris Conroy (Museum of Vertebrate Zoology, University of California), Andy Farke (Raymond Alf Museum), Eric Scott (San Bernardino County Museum), George Bromm, Richard Hilton (Sierra College Natural History Museum), Kesler Randall (San Diego Natural History Museum), Sally Shelton (South Dakota School of Mines and Technology), Pat Holroyd, Susumu Tomiya (University of California Museum of Paleontology), Ron Eng, Chris Sidor, Courtney Richards, and Jeff Bradley (Burke Museum, University of Washington).

This work would have also been impossible without input from other paleontologists and geologists. Jim Martin (South Dakota School of Mines and Technology) provided invaluable insight on Clarendonian canids from the Northwest, while Matt Kohn (Boise State University) and Jeff Myers (Western Oregon University) provided feedback on my use of isotopic and paleobotanical climate proxies. I am also indebted to the support and criticism of my committee members throughout the dissertation process. I would especially like to thank my advisor, Sam Hopkins, for her oversight, but Greg Retallack, Becky Dorsey, and Steve Frost also provided suggestions and advice without which I could not have finished this project (thanks are also due to Qusheng Jin, who was a member of my comprehensive examination committee and raised several questions that I had not previously considered). I would like to acknowledge the other members of the Hopkins Lab at the University of Oregon, particularly Edward Davis for his discussions of analytical techniques, Ted Fremd for suggesting Oligo-Miocene paleoecology as a potential dissertation project in the first place, and my fellow graduate students, Jonathan Calede, Win McLaughlin, Nick Famoso, and Kristen MacKenzie for their support, advice, and friendship. Finally, I owe the office staff of the UO Department of Geological Sciences a huge debt of gratitude: Dave Stempel for making sure I got paid, Vicki Arbeiter for making sure I had a job, and Shari Douglas for helping tie up all the loose ends that I left behind me.

Chapter	Page
I. INTRODUCTION	1
II. THE CANID FAUNA OF THE JUNTURA FORMATION (LATE	
CLARENDONIAN, OREGON)	4
Introduction	4
Methods	5
Geologic Setting	6
Systematic Paleontology	8
Discussion	23
III. OLIGO-MIOCENE CLIMATE CHANGE AND MAMMAL BODY SIZE	
EVOLUTION IN THE NORTHWEST UNITED STATES	25
Introduction	25
Methods	31
Results	38
Discussion	47
IV. LATITUDINAL BODY MASS TRENDS IN OLIGO-MIOCENE	
MAMMALS	53
Introduction	53
Methods	58
Results	66
Discussion	75

TABLE OF CONTENTS

APPENDICES	87
A. CHAPTER III DATA	87
B. CHAPTER IV FOSSIL DATA	129
C. CHAPTER IV RECENT DATA	185
REFERENCES CITED	192

Page

LIST	OF	FIG	URES

Fig	gure	Page
1.	Map of Juntura Formation	7
2.	Postcrania of Borophagines	12
3.	Postcrania of Carpocyon	17
4.	Dentary of Epicyon saevus	19
5.	Postcrania of Epicyon haydeni	21
6.	Map of Study Area	32
7.	Mean Equid Body Size in the Northwest United States	39
8.	Mean Canid Body Size in the Northwest United States	40
9.	Mean Sciurid Body Size in the Northwest United States	41
10	Correlations Between Body Mass and Climatic Variables	42
11	Correlations Between Body Mass and Site-Specific Climatic Variables	44
12	. Map of Study Area	59
13	. Latitudinal Body Mass Gradients in Equids	67
14	. Latitudinal Body Mass Gradients in Canids	68
15	. Latitudinal Body Mass Gradients in Sciurids	69
16	Climatic Body Size Gradients in Equids	71
17	Climatic Body Size Gradients in Canids	72
18	. Correlation Between Latitude and Temperature	78

LIST OF TABLES

Tal	ble	Page
1.	Dental Measurements of Juntura Canids	9
2.	Postcranial Measurements of Juntura Borophagines	11
3.	Predictions of Body Mass Hypotheses	28
4.	Direction of and Significance of Correlations at a Regional Scale	43
5.	Site-Specific Direction and Significance of Correlations	45
6.	Direction and Significance of Correlations Between First Differences	46
7.	Sources of Paleoclimatic Data	63
8.	Latitude/Body Mass Regressions	70
9.	Temperature/Body Mass Regressions	72
10.	. Body Mass at Coastal and Inland Sites	79

CHAPTER I

INTRODUCTION

Paleontology is a unique area of study: it is fundamentally a geologic science, focusing as it does on fossils preserved in (and often as) rocks, but it also provided crucial evidence for Darwin's (1859) Theory of Evolution by Natural Selection and has informed biological science ever since. Perhaps nowhere is the interdisciplinary nature of paleontology more visible than in the field of paleoecology, the study of how fossil organisms interacted with their environments and how those interactions changed through time. Paleoecology has historically played only a small role in the development of ecological theory, in part because areas with extensive fossil and detailed paleoenvironmental records do not overlap. However, an increased interest in both paleontology and paleoclimatology has begun to make robust paleoecological studies possible. This is especially true in Oregon, where one of the world's most fossiliferous sequences of Oligo-Miocene rocks can be compared directly to a detailed paleoenvironmental record based on the region's paleosols and fossil floras. This dissertation reports the findings of three different – but interrelated – projects that examine paleoecological trends in Oregon and along the West Coast between 30 and 5 million years ago.

Good paleoecological work can only be conducted given a well-established taxonomic and climatological framework, and this first chapter focuses on the former. Canids are the most common large carnivores in most Oligo-Miocene ecosystems, and as such any attempt to understand community dynamics must include an understanding of

the canid fauna. Chapter 1 details the canids of the Juntura Formation in Southeast Oregon, a fossil community that has been and continues to be the subject of paleoecological research with local to continental implications (Calede *et al.* 2011, Shotwell 1961, Shotwell 1963). The Juntura canid fauna is much more diverse than previously thought, including two species of the giant borophagine dog *Epicyon* as well as the smaller borophagine *Carpocyon* and an unidentified species of canine. The presence of these taxa has implications for the age of other faunas in the Northwest where these taxa occur, particularly those of the Chenoweth and Ellensburg Formations of the Columbia Plateau, which may inform future paleoecological studies of the region in the Late Miocene.

The second two chapters focus on large-scale trends in body size evolution in canids, as well as in equids and sciurids. Determining which environmental factor or factors drive body size evolution has been one of ecology's most famously intractable debates since it was first addressed by Bergmann (1847). Paleontology can inform this debate in two ways, both of which have been employed here. First, paleontologists can trace body size trends within taxa and determine whether or not those trends track any environmental variables. Second, the fossil record can be used to reconstruct geographic and climatic trends in body size and determine if they exist in some intervals and not others, if they differ significantly from the same trends in modern animals, and if their magnitude varies through time. Both types of test were run as part of this research project, and in neither case was Bergmann's Rule supported over the course of the Oligo-Miocene. This runs counter to received wisdom on body size evolution, but may, in fact, not contradict modern data to any great extent. In either case, the lack of support for

latitudinal and climatic gradients in three very distinct groups of mammals over a large interval of the Cenozoic has important implications for models of biotic responses to current and future environmental change.

CHAPTER II

THE CANID FAUNA OF THE JUNTURA FORMATION (LATE CLARENDONIAN, OREGON)

Introduction

The Clarendonian Land Mammal Age (Late Miocene, 12.5–9 Ma; Tedford *et al.* 2004) is an important interval in the evolution of canids. It marks the appearance or the peak abundance of several of the largest taxa of borophagines, including species of *Aelurodon, Epicyon*, and *Borophagus* (Wang *et al.* 1999); in fact, it was during the Clarendonian that the largest known species of canid, *E. haydeni*, first appeared. At the same time, the smaller canines were also undergoing a significant radiation, as the earliest members of the two tribes of crown-group canids (Vulpini and Canini) both first appear during this interval (Tedford *et al.* 2009). Clarendonian canids are well known from faunas from the Great Plains and, to a lesser extent, from the southwest United States. However, faunas from other regions in North America generally remain poorly understood.

The Juntura Formation of southeast Oregon preserves the most complete Clarendonian canid fauna from the northwest United States (the Columbia Plateau faunal province of Tedford *et al.* 2004). A preliminary overview of the Juntura fauna including descriptions of some canid material was given by Russell (1956) and Shotwell & Russell (1963). However, many specimens were not included in these papers, and many specimens that were included were assigned to incorrect or currently invalid taxa.

Further, ongoing fieldwork in the Juntura Basin has yielded new canid material, and as such a revised overview of the regional canid fauna is in order.

Methods

All specimens included in this study are from the University of Oregon Museum of Natural and Cultural History Condon Fossil Collection (UOMNH), the primary repository for material from the Juntura Formation. Most of this material was collected by J. Arnold Shotwell and his field crew in the 1950s and 1960s. However, the University of Oregon has recently reestablished a field program in the Juntura Basin that has augmented the collections from that region; one canid specimen (F-42501) has been recovered to date and is included below.

The taxonomic framework for this study is based upon the phylogenies for borophagines presented by Wang *et al.* (1999) and for canines by Tedford *et al.* (2009). These same monographs provide the basis for most of the morphological and size comparisons made below. Munthe's (1989) monograph on borophagine skeletons was used to evaluate postcranial material, though this source generally does not distinguish between which features are characteristic of borophagines and which are actually diagnostic. Where possible, positively identified material from the University of Oregon collections was used for comparative purposes as well.

Geologic Setting

The Juntura Formation outcrops in the basin and around the town of the same name in southeastern Oregon (Figure 1). The Buck Mountain Basalts from the lower part of the formation have been dated to 12.5 Ma (Late Barstovian-Early Clarendonian; Camp *et al.* 2003), and the formation is overlain unconformably by the 9.5 Ma Devine Canyon Ashflow Tuff (Late Clarendonian; Hooper *et al.* 2002). The fossiliferous units of the Juntura Formation (the Juntura fauna of Russell 1956, equivalent to the Black Butte local fauna of Shotwell 1963) are from its uppermost part and are composed primarily of lightcolored volcaniclastic sediments (Bowen *et al.* 1963). Based on taxonomic composition, Shotwell & Russell (1963) assigned the fauna to the late Clarendonian (10–9 Ma; Tedford *et al.* 2004).

Specimens included in this study were recovered from seven localities in two distinct outcrops of the Juntura Formation northwest of the town of Juntura: Kingsbury Gulch to the north of US Highway 20 and Black Butte to the south. The Kingsbury Gulch localities (UO 2332 and UO 2333) are both situated on the northeast side of the gulch and are associated with one another: UO2332 is Quarry 2 of Shotwell (1963) and UO2333 comprises float recovered from the area surrounding the quarry. The Black Butte localities UO2335, UO2343, UO2344, and UO2348 are all composed of material collected *in situ*. All of the sites mentioned above are described by Russell (1956), Shotwell (1963), and Shotwell & Russell (1963) and their approximate locations are shown in Figure 1. One canid specimen (UOMNH F42501) has been recovered from a locality that has not been previously described. This locality, UO2597, is located on the western edge of Black Butte (N43°45.3', W118°08.9'; WGS 84). It comprises float found above a roughly one-meter thick ash layer below the quarry UO2339, from which the specimens likely weathered.

Figure 1. Map of study area showing areas of outcrop for the Juntura Formation (dark gray), location of the town of Juntura (light gray), and US Highway 20 (black line). Locations of sites are indicated by black circles. Scale bar equals two kilometers.

Systematic Paleontology

Class MAMMALIA Linnaeus 1758 Order CARNIVORA Bowdich 1821 Family CANIDAE Fischer de Waldheim 1817 Subfamily BOROPHAGINAE Simpson 1945 Tribe BOROPHAGINI Wang *et al.* 1999

Referred Specimens—UOMNH F-5538, partial P⁴ from Black Butte (UO2344); UOMNH F-5652, partial premolar from Kingsbury Gulch (UO2333); UOMNH F-5653, C₁ from Kingsbury Gulch (UO2332); UOMNH F-5701, partial P⁴ from Black Butte (UO2343); UOMNH F-6678, left metacarpal II from Black Butte (UO2337).

Description—Specimens F-5538, F-5652, and F-5701 are isolated premolars. They lack the shearing blades of felids (Turner & Antón 1997) and are morphologically similar to premolars of canids and amphicyonids. These premolars are not reduced as in amphicyonids (Hunt 1998), and as such may be assigned to the Canidae. The size of the teeth is consistent with one of the four large Late Clarendonian borophagin species (*Aelurodon taxoides, Epicyon saevus, E. haydeni*, and *Borophagus littoralis*; Table 1). These species can be distinguished largely on the basis of parastylid and protocone morphology (Wang *et al.* 1999). Because the anterior portions of these specimens are not preserved, Russell's (1956) assignation to *Aelurodon* must be overturned and teeth can only be assigned to the Borophagini.

	WP^4	LM ¹	WM ¹	LP_2	LP_3	${ m LP}_4$	WP_4	LM_1	TRWM1	TLWM1	WM_2
C. crucidens	6.0	9.3	8.9	5.3	6.2	7.6	3.7	11.3	4.0	5.5	5.7
A. taxoides	13.0	17.0	19.9	13.1	15.5	19.2	11.0	30.1	11.8	10.3	9.1
P. euthos	8.1	12.7	14.5	7.0	8.1	10.5	5.8	20.3	7.4	7.8	6.4
C. robustus	9.5	13.7	16.9	8.1	9.6	13.1	7.9	23.8	9.2	9.2	7.8
E. saevus	11.5	17.5	20.3	9.3	11.3	16.8	10.0	29.1	11.4	10.7	8.9
E. haydeni	15.0	20.6	24.3	11.3	14.0	21.9	13.1	36.3	14.4	13.1	10.1
B. littoralis	10.6	16.6	19.3	8.4	9.9	16.1	9.5	26.5	10.8	10.1	8.8
UO F-2332	-	19.6	23.3	-	-	-	-	-	-	-	-
UO F-5701	11.8	-	-	-	-	-	-	-	-	-	-
UO F-42501	-	-	-	8.1	10.7	15.4	8.3	26.2	9.7	9.3	5.5
L. vafer	4.3	7.7	9.2	6.0	7.0	7.7	3.2	11.8	4.4	4.3	3.8
L. matthewi	4.6	8.4	10.5	6.4	7.4	8.1	3.4	13.1	5.0	4.9	4.2
M. macconnelli	4.8	8.4	9.7	6.1	7.0	8.3	3.4	12.4	4.5	4.7	4.2
E.? skinneri	-	-	-	7.0	8.4	9.0	4.0	14.8	6.3	6.0	-
UO F-5862	-	-	-	-	-	-	-	-	-	4.9	-

Table 1. Dental measurements of Juntura canids and comparative measurements of all known Late Clarendonian canids. Species measurements are species means from Wang *et al.* (1999) and Tedford *et al.* (2009). Gray cells represent Juntura Formation specimens.

Specimen F-5653 is an isolated canine. It is neither elongated nor sharpened enough to be attributed to a felid and lacks the characteristic "felid groove" (Martin 1998). Its small size precludes it being assigned to the Amphicyonidae (Hunt 1998). Canine teeth generally lack diagnostic features, but the lack of extreme recurvature indicates that the specimen does not represent *Cynarctus* (Wang *et al.* 1999). Within Clarendonian canids, its size is consistent only with large borophagins.

Specimen F-6678 is a second metacarpal from a medium-sized canid (Table 2). The specimen is consistent with the generalized borophagine description provided by Munthe (1989) in having a craniocaudally arched base, an articular surface with metacarpal III immediately distal to the lateral and medial edges of the base, a wide articular surface for trapezoid, two lateral facets for the magnum, a generally cylindrical (but slightly flattened distally) cross-section, a medially-curved shaft, and a cranially convex and caudally sharply keeled distal articular surface (Figure 2). It is also consistent with borophagine morphology in lacking a facet for the trapezium. The size of the metacarpal is consistent with the Late Clarendonian species *Cynarctus crucidens*, *Paratomarctus euthos*, and *Carpocyon robustus*. Because metacarpals have very few diagnostic features, it is impossible to assign F-6678 to a level below the Borophagini.

	LGlenoid	WGlenoid	LHumerus	WDEHumerus	WDASHumerus	L2Metacarpal	W2Metacarpal	L4Metacarpal
C. crucidens	-	-	150.0	27.0	20.0	-	-	-
A. taxoides	-	-	-	54.0	36.0	68.5	10.0	76.0
P. euthos	23.5	-	109.5	-	-	34.0	5.2	47.0
C. robustus	24.0	15.0	156.0	35.0	24.0	48.0	6.0	55.0
E. saevus	31.0	22.0	185.5	45.5	31.0	55.5	7.0	-
E. haydeni	54.0	37.0	264.3	64.6	41.1	89.0	14.0	84.5
UO F-5514	-	-	-	45.1	-	-	-	-
UO F-5938	23.5	15.6	155.0	37.4	24.3	-	-	50.0
UO F-6005	-	-	-	-	-	-	-	-
UO F-6678	-	-	-	-	-	47.7	6.4	-

	LIlium	LIschium	LPelvis	LFemur	WHFemur	WFemur	WDFemur	WPGFemur	LASCalcaneum
C. crucidens	-	-	-	-	-	-	-	-	-
A. taxoides	-	-	-	244.0	26.5	23.0	50.0	20.0	-
P. euthos	56.5	31.0	85.0	141.0	19.0	-	35.0	-	12.5
C. robustus	89.0	58.0	146.0	-	17.0	-	-	-	15.0
E. saevus	98.0	65.0	160.0	201.5	22.0	17.0	42.4	15.0	16.0
E. haydeni	105.0	71.0	175.0	260.7	29.2	23.0	54.8	19.8	21.5
UO F-5514	-	-	-	-	-	-	-	-	-
UO F-5938	80.0	50.0	136.0	180.0	18.6	13.2	33.9	13.2	-
UO F-6005	-	-	-	-	-	-	-	-	24.2
UO F-6678	-	-	-	-	-	_	-	-	-

Table 2. Postcranial measurements of Juntura borophagines and comparative measurements of all Late Clarendonian borophagines for which postcrania are available. Gray cells represent Juntura Formation specimens.

Figure 2. Postcrania of borophagines from the Juntura Formation. A, UOMNH F-6678, left metacarpal II in medial view, assigned to Borophagini; B, UOMNH F-5514, distal left humerus in cranial view, assigned to Borophagina; 1, entepicondylar foramen. Scale bar equals 1 cm.

Subtribe BOROPHAGINA Wang et al. 1999

Referred Specimen—UOMNH F-5514, distal left humerus fragment from Black Butte (UO2344); UOMNH F-5651, partial P⁴ from Kingsbury Gulch (UO2333). *Description*—The humerus (F-5514) is generally similar to that of F-5938 (*Carpocyon*) but is considerably larger. Despite its size, this humerus is relatively gracile and uncurved, traits that link it with borophaginans rather than aelurodontinans (Munthe 1989). Within borophaginans represented by postcrania, *Epicyon saevus* is most similar in size (Table 2). Further, the presence of an entepicondylar foramen suggests that specimen cannot be assigned to a derived species of *Borophagus*. However, basal members of *Borophagus* often retain entepicondylar foramina; due to a lack of postcranial material, it is unknown whether or not this feature is present in the Late Clarendonian *B. littoralis*. As such, the presence of an entepicondylar foramen in F-5514 does not rule out affinity with *Borophagus*.

The premolar (F-5651) was assigned by Russell (1956) to the now-invalid genus *Osteoborus*. The presence of a ridge connecting the parastyle and protocone indicates that the specimen represents a taxon from the Borophagina (Wang *et al.* 1999). Size of the specimen suggests that it can be attributed to *Epicyon* or *Borophagus littoralis*, but a more definite taxonomic assignation cannot be made.

CARPOCYON SP. Webb 1969

Referred Specimen—UOMNH F-5938, partial skeleton including fifth cervical vertebra, one thoracic vertebra, three lumbar vertebra including last lumbar vertebra, left iliac articular surface of sacrum, one caudal vertebra, 16 rib fragments, proximal scapula, right humerus, shaft of right ulna, proximal left metacarpal V, pelvis, right femur, and distal end of left femur, from Black Butte (UO2335).

Description—F-5938 was assigned to Osteoborus by Shotwell & Russell (1963). The specimen exhibits numerous traits characteristic of borophagines (Munthe 1989; Figure 3). The cervical vertebra has a dorsoventrally compressed centrum, a ventral keel on centrum, flattened surfaces of the prezygapophyses facing dorsally and slightly medially, flattened surfaces of the postzygapophyses facing ventrally and slightly laterally, knobs on the dorsomedial edge of the postzygapophyses, and subdivided transverse processes. The thoracic vertebra has a long, laterally compressed, caudally inclined, curved, and dorsally thickened spine, dorsally facing prezygapophyses, ventrally facing postzygapophyses, crescentic and concave articular surfaces for rib tubercles on the transverse processes, a shortened centrum, and concave rib facets at the lateral edges of the centrum. The lumbar vertebrae have short, broad, and cranially inclined spines, medially facing prezygapophyses, laterally facing postzygapophyses, caudally directed anapophyses decreasing in thickness in more caudal vertebrae, dorsocranially projecting metapophyses, craniolaterally and ventrally projecting ventral divisions of the transverse processes, and ventrally keeled centra. The last lumbar vertebra has broad postzygapophyses. The centrum of the caudal vertebra is dorsoventrally compressed. The

ribs have flattened articular surfaces on the tubercles and convex articular surfaces on the heads. More cranial ribs are flattened in cross-section, while more caudal ribs are rounded. The scapula has a shallow, ovoid glenoid fossa, a slightly concave supraglenoid tuberosity, and a knob-like coracoid process. The humerus has a craniocaudally and mediolaterally convex head, an elongate lateral facet on projecting lesser tuberosity, a laterally compressed and distally rounded humeral shaft, a crest running from meeting of the deltoid and pectoral crests at the mid-humeral shaft to the distal articular surface, a roughened deltopectoral crest, an enlarged medial epicondyle with a protruding knob, four facets for flexor muscles and two for extensors, a reduced distal extensor facet, a distinct lateral epicondylar crest, a wide, obliquely-oriented articular surface, a keeled and distally deflected trochlea, and a perforated ulnar fossa. The ulna has a laterally compressed and distally rounded shaft and elongated scars for the adductor pollicis longus on the shaft. Metacarpal V has a craniocaudally-arched base, an articulation with metacarpal IV just distal to the medial edge of its base, an articular surface for the unciform, a swollen lateral surface of base, and a thickened proximal shaft. The pelvis has laterally-flaring ischia, a dorsally thickened iliac blade, a prominent iliac caudal dorsal spine, a large, rounded articular surface for sacrum extending onto the medial surface of the caudal dorsal spine, a large rectus femoris tuberosity, caudally thickened horizontal ischia, a large ischial tuberosity, a lateral ridge between the ischial spine and ischial tuberosity, an ischial spine level with caudal edge of the acetabulum, and a rounded, ventrocaudally facing acetabulum. The femur has a craniodorsally facing head, a dorsomedial fovea capitis, a craniocaudally expanded greater trochanter below the level of the head, middle gluteal facets, a transverse and elongate deep gluteal facet, a straight

ridge connecting the greater trochanter and femoral head, a deep, medially-facing trochanteric fossa, a trochanteric ridge connecting the greater and lesser trochanters, a third trochanter slightly distal to the lesser trochanter, a flat and roughened cranial face between the third and lesser trochanters, a caudally concave and rounded shaft with some flattening caudally, a roughened area between proximally and distally diverging medial and lateral ridges, a cranially convex distal femoral shaft, a smooth medial articular condyle, a distinct proximal facet on the lateral condyle, distolateral facets on the lateral condyle, a lateral epicondyle that is more prominent and proximal than the medial epicondyle, a cranially and distally facing patellar groove, and a broad, rounded depression proximal to the patellar groove. Measurements indicate that F-5938 represents a medium sized borophagine consistent with Cynarctus crucidens, Paratomarctus euthos, or *Carpocyon robustus* (Table 2). The humerus and pelvis are more robust than in *P*. euthos. The scapula differs from C. crucidens in having an ovoid glenoid fossa and in lacking a knob-like supraglenoid tuberosity. The specimen shares several features with C. robustus, most notably a straight, gracile humerus, a large dorsal caudal iliac spine, and a gracile femur, and as such F-5938 may be assigned to Carpocyon. Carpocyon robustus is the only species of *Carpocyon* definitely present in the Late Clarendonian, but C. webbi has also been reported from Clarendonian faunas of indeterminate age (Wang et al. 1999). Because postcrania are lacking for this and other species of Carpocyon, this specimen cannot be definitely identified beyond genus level.

Figure 3. Postcrania of *Carpocyon* sp., UOMNH F-5938. A, Cervical vertebra in lateral view; B, Thoracic vertebra in lateral view; C, last lumbar vertebra in lateral view; D, caudal vertebra in dorsal view; E, left rib in cranial view; F, fragment of left sacrum in medial view; G, proximal scapula in lateral view; 1, glenoid fossa; H, left pelvis in lateral view; 2, dorsal caudal iliac spine; I, right ulna in lateral view; J, right humerus in caudal (left) and cranial (right) views; K, proximal left metacarpal V in dorsal view; L, right femur in cranial (left) and caudal (right) views. Scale bar equals 1 cm.

Discussion—The bones comprising F-5938 vary in color from white to very dark brown (Figure 3). Despite this, Russell (1956) and Shotwell and Russell (1963) state that all skeletal elements were found in one small quarry in association with one another, and as such represent one individual. This is confirmed by the size of the elements, all of which indicate a mid-sized borophagine (Table 2), the morphology of the different bones, all of which are consistent with *Carpocyon*, and the absence of any repeated elements (i.e. MNI=1). The differences in bone color are likely due to small-scale taphonomic effects, possibly reflecting different stages of weathering or exposure to water.

Russell (1956) lists several skeletal elements from F-5938 that are no longer stored with the specimen and could not be located for this study. These include both scapholunars, the distal end of a phalanx, metacarpal IV, and two fragments of distal ends of metapodials. Measurements of metacarpal IV were published by Shotwell and Russell (1963), and these have been included in Table 2 for comparative purposes. However, because no description or illustration of any of the missing elements was published, their morphology cannot be taken into consideration here.

EPICYON SAEVUS (Leidy 1858)

Referred Specimen—UOMNH F-42501, partial left dentary with roots of P_2 – M_1 and broken M_2 , from Black Butte (UO2597).

Description—F-42501 represents a large borophagine (*Aelurodon, Epicyon*, or *Borophagus*; Table 1). It can be assigned to the Borophagina based on the presence of an enlarged P_4 relative to the anterior premolars and M_1 (Figure 4). Further differs from aelurodontinans in lacking a reduced M_2 . The premolars are relatively widely spaced, as in *Epicyon*. A relatively elongated talonid and shortened trigonid allow F-42501 to be assigned to *E. saevus*. The size of the specimen is consistent with this diagnosis.

Figure 4. Dentary of *Epicyon saevus*. UOMNH F-42501 in occlusal (top) and lateral (bottom) views. 1, trigonid of M₁; 2, talonid of M₁. Scale bar equals 1 cm.

EPICYON HAYDENI Leidy, 1858

Referred Specimens—UOMNH F-5607, left M¹ from Kingsbury Gulch (UO2332);

UOMNH F-6005, distal right calcaneum from Black Butte (UO2348). *Description*—Shotwell & Russell (1963) identified F-5607 as *Aelurodon* sp. Its dental dimensions are consistent with larger species of that genus (Table 1), but the lingual cingulum, while not completely preserved, shows no evidence of being reduced anteriorly, a characteristic feature of *Aelurodon* (Wang *et al.* 1999; Figure 5). The specimen also shows no sign of being expanded anteriorly, a characteristic feature of derived species of *Borophagus*. The absence of a labial cingulum at the paracone allows F-5607 to be assigned to *Epicyon*. The absence of a narrowed talon indicates that the specimen represents a derived species, either *E. saevus* or *E. haydeni*. The size of the tooth is consistent with *E. haydeni*.

The calcaneum (F-6005) may be assigned to the Canidae on the basis of the morphology of the articular surfaces with the astragalus (Figure 5). The proximal half of the lateral articular surface is convex, distinguishing it from felids. The medial articulation is oriented proximo-distally, further distinguishing it from felids, but is not elongated as in many canines. The calcaneum does not exhibit any diagnostic morphology that would allow it to be assigned to particular species. However, it represents an individual comparable in size to *E. haydeni* and 34% larger than the mean for *E. saevus*, the next-largest species of Clarendonian canid (Table 2), making its assignment to the former species probable.

Figure 5. Postcrania of *Epicyon haydeni*. A, UOMNH F-6005, distal right calcaneum in cranial view; 1, lateral articular surface; 2, medial articular surface; B, UOMNH F-5607, M¹ in occlusal view; 3, lingual cingulum; 4, talon; 5, paracone. Scale bar equals 1 cm.

Subfamily CANINAE Fischer de Waldheim 1817

Referred Specimen—UOMNH F-5862, talonids of left and right M₁ and four tooth fragments, from Black Butte (UO2337).

Description—F-5862 was assigned to *Vulpes* by Shotwell & Russell (1963) on the basis of the presence of a bicuspate talonid (i.e. the transverse crest joining the hypoconid and entoconid is absent). While *Vulpes* does not appear until the Hemphillian, Clarendonian vulpins are represented by *Metalopex macconnelli* (Tedford *et al.* 2009). However, the absence of a transverse crest is also characteristic of most species of the basal canine *Leptocyon* and the basal canin *Eucyon*. Each of these genera is represented by at least one species in the Late Clarendonian. The length of the talonid is most similar to that of *Leptocyon matthewi*, though this is one of the few *Leptocyon* species to exhibit a transverse crest, making the Juntura specimen morphologically more similar to the smaller *L. vafer*. Relative width of talonid is an important character that can be used to distinguish canines from this interval; however, because the trigonid of both carnassials is missing and other teeth are represented only by incomplete and non-diagnostic material, it is impossible to address in this specimen. Until more material is uncovered, this specimen cannot confidently be assigned to any taxon more specific than Caninae.

Discussion

The structure of the Juntura canid fauna parallels that seen in other Late Clarendonian faunas in many regards. The smallest canids present are canines, though remains of these taxa are rare. In fact, the canine specimen described above is the only member of this subfamily to be reported from the Clarendonian of the northwest United States. This rarity is likely a genuine biological signal, as small mammals as well as large mammals are both well preserved and extensively sampled in the Juntura Formation (Shotwell & Russell 1963). This is in line with the continent-wide pattern observed by Tedford *et al.* (2009) and supports on a microcosmic scale their suggestion that canines remained rare until relatively recently and only radiated in the latest Miocene and onwards, concurrent with the extinction of larger borophagine canids.

Borophagines are well represented in the Juntura fauna. The majority of these are large taxa similar to, and in many cases referable to, *Epicyon*. However, at least in terms of body size, the Juntura borophagines remained relatively diverse; medium-sized borophagines were present, as demonstrated by the skeleton of *Carpocyon* and a metacarpal from a similarly sized individual of uncertain affinities. The presence of *Carpocyon* in the Juntura Formation marks a range extension for the genus, which is known from sites throughout the rest of western North America, but had not previously been reported in the Northwest (Wang *et al.* 1999).

All positively identified large-bodied borophagines from Juntura are species of *Epicyon*. This runs counter to the original assessment of the fauna by Russell (1956), in which he posited the presence of at least one species of the aelurodontinan *Aelurodon*. As with many late Miocene sites, two apparently sympatric species of *Epicyon* are present:
the large bodied E. saevus and the giant E. haydeni (Wang & Tedford 2008). Martin (1997) suggests that Epicyon-dominated faunas represent the second phase of a threephase succession of large-bodied borophagines in the late Miocene of the Northwest (the first phase being dominated by *Aelurodon* and the third by *Borophagus*). The presence of *Epicyon* in Juntura and the lack of definite evidence of either of the other genera provide at least tentative support for this hypothesis that, if correct, could have important regional biostratigraphic implications. *Epicyon* has also been reported from the Chenoweth (Dalles) Formation of north-central Oregon (Wang et al. 1999) and the Ellensburg Formation of central Washington. While one locality within the Ellensburg Formation has been biostratigraphically dated to the Late Clarendonian (Martin & Pagnac 2009), it is unknown whether or not other sites within the formation are coeval, while the precise age of the Chenoweth Formation remains unknown. If Martin's hypothesis is correct, the presence of *Epicyon* may allow the assignation of sites in the region to the Late Clarendonian. Continued field work in the area will help resolve this and other questions regarding the canid fauna of the Northwest.

Descriptive projects such as this are the foundation of paleontology in general and of paleoecology in particular. Without a clear understanding of the phylogenetic, geological, and temporal context of a taxon, it is impossible to draw robust conclusions about that taxon's changing ecological role. This project and other studies of fossil canids (e.g. Wang 1994, Wang *et al.* 1999, Tedford *et al.* 2009) have provided a sufficiently strong foundation to make paleoecological analyses of the group possible, and for this reason canids – along with other well-studied families of mammals – are the ideal taxon in which to study ecological variables such as body size through time.

CHAPTER III

OLIGO-MIOCENE CLIMATE CHANGE AND MAMMAL BODY SIZE EVOLUTION IN THE NORTHWEST UNITED STATES

Introduction

One of the longest-standing ecological questions is how - or, indeed, whether evolutionary patterns are shaped by climate. In fact, this question is as old as the science of ecology itself, as the influence of climate on plant biogeography was addressed by Humboldt and Bonpland (1807) in one of the field's foundational papers. In the subsequent two centuries, countless researchers have investigated the relationship between climate and biotic change, especially in recent years as the advent of anthropogenic global warming has made understanding such relationships all the more crucial. Despite their importance in predicting the effects of future climate change, models positing a relationship between climatic and biotic variables often remain subject to a great deal of debate. Even one of the earliest climatic hypotheses to be proposed is still undergoing significant revision; this hypothesis was first proposed by Bergmann (1847) as an explanation for latitudinal gradients in mammal body size and has borne his name ever since. In its original formulation, Bergmann's Rule holds that body size is driven by temperature: large taxa are favored in cold climates, such as those seen towards the poles, because their small surface area-to-volume ratios make them more effective at retaining heat, while smaller taxa are favored in warm climates, such as those seen towards the equator, because they are more effective at dispersing heat.

Bergmann's Rule has been tested numerous times in the century and a half since its original formulation. The latitudinal gradients observed by Bergmann have been confirmed in many mammal taxa (Ashton et al. 2000, Blackburn & Hawkins 2004, Meiri & Dayan 2003, Rodríguez et al. 2008) and have also been reported in birds (Ashton 2002b, Blackburn & Gaston 1996, James 1970, Meiri & Dayan 2003) and several taxa of poikilothermic animals (Ashton 2002a, Ashton & Feldman 2003, Lindsey 1966, Ray 1960); however, multiple alternative mechanisms have been proposed that may shape these patterns (Table 3). Many of these mechanisms, including Bergmann's Rule sensu stricto, hold that the physical environment, and in particular climate, drives body size evolution. Besides temperature, the two climatic variables most frequently associated with body mass are precipitation and seasonality. Like temperature, precipitation is generally higher in low-latitude ecosytems and has been suggested to show a negative correlation with body size, as large animals are thought to be able to store larger reserves of water, allowing them to survive periods of drought in dry environments (James 1970). Similarly, it has been suggested that large animals have greater capacity for energy reserves, allowing them to survive periods of famine in seasonal climates, which tend to predominate towards the poles, leading to a positive correlation between seasonality and body size (Millar & Hickling 1990). Another group of hypotheses posit the importance of biotic mechanisms. Agonistic interactions are among the most frequently cited potential drivers of body size evolution. Large size may confer an advantage to prey taxa by providing some protection against predators, and as such taxa in environments with high predation pressure might be expected to be larger than those that are preyed upon relatively infrequently (Korpimäki & Norrdahl 1989). The relationship between body

size and competition is somewhat more complicated: Damuth (1993) found that island taxa, freed from competition, tended to evolve to an energetically efficient, mediumrange body size, suggesting that increased competition may select for either increased or decreased body mass depending on the taxon in question. While both of these variables can be difficult to measure, it has long been recognized that richness increases towards the equator (Simpson 1964), and the increased abundance of potential predators and competitors in subtropical and tropical environments could lead to the appearance of body size gradients. Food availability is also hypothesized to have an influence on body size. For predatory taxa, the presence of large prey animals may select for larger individuals (Erlinge 1987), while the body size of herbivores often shows a positive correlation with primary productivity (Rosenzweig 1968). However, primary productivity tends to be highest at low latitudes, and thus should select for smaller animals towards the pole; this is the opposite of the pattern observed within most modern taxa.

While many refinements of and alternatives to Bergmann's Rule *sensu stricto* have been proposed, no consensus exists within the ecological community as to which hypothesis is most likely correct. This could be a consequence of the inherent complexity of natural systems: body size may be driven by a combination of factors and different taxa may respond differently to the same stimuli. Alternatively, it could be a product of the data that have been used to examine body size evolution: neontological data are plentiful and relatively easily controlled, but are not without their drawbacks. Modern ecological data have been culled from an interval that represents a relatively narrow range of climatic conditions (Berteaux *et al.* 2006) during which climatic

variables tend to be tightly correlated. Predicting biotic responses to climatic regimes differing from those of the previous few decades, therefore, requires extrapolating well beyond the range of observed conditions. Further, neontological data by definition cannot be used to address trends through time. Both of these concerns can be addressed by substituting time for space through the use of paleontological and paleoecological data. Given a well-sampled fossil record, robust estimates of body mass or well-established proxies for size, and detailed paleoclimatic records, such data make it possible to observe biotic responses to large-scale climate change, to tease apart ecological variables that are tightly correlated in modern ecosystems, and to visualize trends through time, providing an extra dimension to ecological analyses.

Variable	Expected Correlation With Body Mass	Explanation		
Temperature	-	Large body size allows animals to retain heat more efficiently		
Precipitation	-	Large body size allows animals to harbor greater water reserves		
Seasonality	+	Large size allows animals to harbor greater energy reserves		
Predation Pressure	+	Large size makes animals more resistant to predation		
Competition	?	Competition forces animals away from an optimal body size		
Prey Size	+	Large predators are better equipped to hunt larger prey		
Primary Productivity	+	Productive ecosystems can support larger animals		

Table 3. Predictions of different body mass hypotheses. Plus sign indicates a positive relationship with body mass, minus sign indicates a negative relationship with body mass, and question mark indicates a relationship that varies based on size.

The influence of climate on mammalian biotic change through time has been the focus of several paleobiological studies, though these have predominantly addressed diversity rather than body mass evolution. The results of this research have been somewhat ambiguous, with some researchers (e.g. Barnosky 2001, Barnosky et al. 2003, Retallack 2007) finding a correlation between climate and diversity and others (e.g. Alroy et al. 2000, Prothero 1999, Rose et al. 2011) finding no predictable relationship between the two variables. Body size in Cenozoic mammals is also a rich area of study, but until recently the field has primarily centered on body mass trends within groups, and in particular on Cope's Rule, the hypothesis that taxa within lineages tend to increase in size with time (e.g. Alroy 1998, Gould & MacFadden 2004, Van Valkenburgh et al. 2004). One of the first paleontological studies to address Bergmann's Rule in pre-Pleistocene mammals was conducted by Gingerich (2003), who observed brief but significant decreases in body size in the condylarths Ectocion and Copecion as well as the perissodactyl Hyracotherium during the Paleocene-Eocene Thermal Maximum (PETM) in northwest Wyoming. While Gingerich acknowledged that climate likely played a role in this temporary dwarfing, he suggested that the magnitude of body size change was too large to be explained by temperature alone. More recently, Smith *et al.* (2010) analyzed maximum body mass in mammals at a continental to global scale between the Cretaceous and Recent. The authors compared their body size data with several abiotic factors, including climate, and found a significant correlation between temperature and body mass. While this result seems to support Bergmann's Rule, it is far from conclusive. Bergmann's Rule and all its corollaries are predicated on the observation that body mass shows considerable geographic variation, and is thus highly susceptible to local to

regional environmental variability; such local signals are likely to be lost when analyzing data at the continental level. Because of this, any effort to observe the connection between climate and body size in the fossil record must be conducted at a finer geographic scale.

In order to carry out a localized paleoecological test of Bergmann's Rule and its climatic corollaries, we have reconstructed body size trends for three Oligo-Miocene mammal taxa in the Northwest United States, a region unusual for the high quality of both its fossil and paleoclimatic records. As climatic variables fluctuate through time, Bergmann's Rule and its corollaries make specific predictions about how body size should respond. Bergmann's Rule *sensu stricto* predicts that body size should track temperature through time, with small taxa predominating during periods of global warming and larger taxa predominating in cooler conditions. If either of the other climatic hypotheses is correct, however, larger taxa should be prevalent during periods of decreased rainfall or increased seasonality. The three models discussed above not only predict the direction of the relationship between a climatic variable and body size, they predict the relative magnitude of change as well: a major change in temperature, precipitation, or seasonality should drive a comparably large change in body mass, while taxa should not change significantly in size during periods of climatic stasis.

Methods

Scope of Project & Paleoclimatic Proxies

The temporal scope of this project is the Arikareean-Hemphillian North American Land Mammal Ages (late Oligocene-earliest Pliocene, 30-5 Ma; Tedford *et al.* 2004). This interval is an ideal one in which to study the relationship between climate and body mass, both because of its excellent mammal fossil record and because it encompasses considerable fluctuation in global temperature (Zachos *et al.* 2001). This fluctuation includes both intervals of global warming (e.g. Late Oligocene warming, 26-24 Ma; Mid-Miocene Climatic Optimum, MMCO, 17-15 Ma) and of global cooling (e.g. Oligo-Miocene glaciation, 24 Ma; Late Miocene cooling, 15-5 Ma).

Previous analyses of mammal body size through time have focused primarily on phylogenetic body mass trends (e.g. Alroy 1998, Alroy 2003, Gould & MacFadden 2004), and in consequence have been conducted at a continental scale. Because this study addresses the relationship between body size and climate and because climate can vary considerably on a local scale, it was conducted within a single biogeographic region: the Northwest United States (the Columbia Plateau faunal province of Tedford *et al.* 2004), which encompasses primarily sites from eastern Oregon but also includes faunas from southern Washington, southeast Idaho, and northern Nevada (Figure 6). The region's fossil record is both rich and nearly continuous over the course of the Arikareean-Hemphillian interval. Many of these faunas, such as those from the Arikareean-Hemphillian beds of the John Day Basin, the Barstovian-Hemphillian formations of Oregon's Juntura Basin and Nevada's Virgin Valley, and the Clarendonian-

Hemphillian beds along the Columbia River in Oregon and Washington, have been extensively collected and studied.

Figure 6. Map of study area and approximate location of sites included. A = Arikareean NALMA; Hf = Hemingfordian NALMA; B = Barstovian NALMA; C = Clarendonian NALMA; Hh = Hemphillian NALMA.

Besides a well-studied and fairly complete fossil record, the Northwest is also remarkable for its detailed record of regional climate. This record is derived primarily from climofunctions based on the physical and chemical characteristics of paleosols. Sheldon et al. (2002) established relationships between the chemical index of alteration without potassium and mean annual temperature and between the molar ratio of bases to alumina and mean annual precipitation, while Retallack (2005) demonstrated that mean annual range of precipitation (a measurement of seasonality) can be estimated from the thickness of carbonate nodule-bearing horizons of soils. Retallack (2007) collected data from Cenozoic paleosols from sites throughout eastern Oregon to reconstruct regional trends in temperature, precipitation, and seasonality. Because climate data are not available for sites from surrounding states, we have used the eastern Oregon data as a proxy for climate throughout the Northwest. The robustness of paleopedological climofunctions has frequently been called into question (e.g. Royer 1999) and similar studies often rely on isotopic proxies for climate (e.g. Rose et al. 2011). However, two aspects of the paleopedological record have led to its inclusion here. First, the chemical assays developed by Sheldon *et al.* have a more robust relationship with temperature and precipitation than do many paleopedological proxies for climate. Second, the paleosol record of eastern Oregon is extremely well sampled; the database used in this study encompasses 113 samples. Many of these samples were collected at sites that have also vielded extensive mammalian fossil material, allowing site-specific trends in climate and body mass to be observed.

Body Mass Estimation

The size of the Northwest fossil record is sufficiently large to make an analysis of body size trends in all mammals impractical. We have chosen to focus on three wellrepresented families of mammals: equids, canids, and sciurids. Each group distinct from the other two in terms of size, diet, and ecology; in fact, each represents one of the poles of Schad's (1977; modified by Retallack 2004b) ternary model of animal lifestyles (equids are large, herbivorous "metabolic-limb" specialists, canids are mid-sized, carnivorous "respiratory-circulatory" specialists, and sciurids are small, granivorous "nerve-sense" specialists). Because these families each exhibit differing ecologies, any body size trend apparent in all three may reasonably be presumed to represent an ecosystem-wide signal. Further, robust taxonomic frameworks exist for all three families (Goodwin 2008, MacFadden 1992, Wang & Tedford 2008), making observations of trends at many taxonomic levels possible.

For each of the three families to be considered, a well-established relationship between dental dimensions and body mass has been established. Sciurid body mass may be estimated from the length of the lower tooth row (Hopkins 2007); however, there are relatively few sciurid specimens that preserve the entire lower tooth row, so first lower molar length is used as a body mass proxy instead, as first lower molar size has been shown to be a good proxy for body size across all mammals, provided that the study is taxonomically constrained (Creighton 1980). Canid body mass is correlated with the antero-posterior length of the first lower molar (the lower carnassial; Van Valkenburgh 1990). In both these taxa, body size is correlated with just one dental variable, allowing that variable to be used directly as a proxy for mass without conversion; because the data

are not transformed through a regression, the use of a single proxy reduces the amount of error in the analysis. Equid body size is based on the regressions developed by Janis (1990) for perissodactyls and hyracoids using the length of any lower cheek tooth or second upper molars. Because multiple body mass regressions exist for equids, body mass was calculated in order to include the largest number of specimens possible.

Only specimens already collected and catalogued in museum and university collections were measured. Data are derived from surveys of the collections at the American Museum of Natural History (AMNH), Idaho Museum of Natural History (IMNH), John Day Fossil Beds National Monument (JODA), Natural History Museum of Los Angeles County (LACM), Sierra College Natural History Museum (SCNHM), South Dakota School of Mines and Technology (SDSMT), University of California Museum of Paleontology (UCMP), University of Oregon Museum of Natural and Cultural History (UOMNH), and University of Washington Burke Museum (UWBM). Some intervals (e.g. the Hemingfordian) were underrepresented in the collections visited; these areas of the data set were augmented by including published measurements of specimens from collections that were not visited. Measurements were made using Mitutoyo Absolute Digimatic Calipers. In total, 67 sciurid specimens, 66 canid specimens, and 230 equid specimens were included in the database; more precise details about the specimens used is available in the supplementary material.

Analysis

The most straightforward qualitative method for comparing body mass trends to climatic fluctuation is to plot visual representations of both variables through time. In order to do so, body size and paleoclimate data were binned into North American Land Mammal Age (NALMA) subdivisions (Tedford *et al.* 2004) and were plotted using Microsoft Excel. Land mammal ages were used as bins in preference to million-year intervals due to the imprecision in dating of many sites; only 68 of the 410 published mammal-bearing localities in Oregon (17%) have been dated using isotopic methods, while localities in surrounding states are even more dependent on biostratigraphic dates (Carrasco *et al.* 2005). As such, it is impossible to assign the overwhelming majority of the sites included in this study to finer bins than NALMA subdivisions. Body size profiles were constructed for all families, subfamilies, tribes, subtribes, genera, and species that were present in more than one temporal bin.

We tested whether body mass was correlated with the three climatic variables by running two sets of multiple linear regressions in JMP. In the first, both body mass and paleoclimatic data were binned into land mammal age subdivisions. Only the 19 taxa that were present in three or more bins could be included in this portion of the study. These taxa included all three families as well as five subfamilies, five tribes, five genera, and one species (Table 4). In order to address the concern that binning body mass and climate into temporal intervals might dampen any fine-scale ecological signal, a second set of regressions was run comparing site-specific variables. This reduced the sample size to seven sites (Bone Creek, Mascall, Black Butte, Ironside, McKay, Rattlesnake, and Rome) and six taxa (three families, one subfamily, and two tribes; Table 5), but allows

the analysis of trends within a framework that is tightly constrained both temporally and geographically. Whether or not body size trends within taxa conformed to the predictions made by Bergmann's Rule and its corollaries was determined using a sign test on the direction of each regression.

Hypotheses positing a connection between climate and body size predict not only the directionality of body size change, but the magnitude of that change as well, as large changes in climate should be associated with large changes in body mass. In order to test these predictions, the magnitude of body size change between NALMA subdivisions was calculated by computing first differences in mean body mass for 12 family- to genuslevel taxa between bins (Table 6). While first differences were always calculated for two sequential bins, not all units contain data, so in some cases these bins were separated by a gap of three or fewer NALMA subdivisions. First differences between the same bins were also calculated for the three climatic variables. The magnitude of climate change was then regressed against the magnitude of body size change for the 12 different taxa.

Results

Body size trends vary widely between the three families included in this study (Figures 7-9). Mean sciurid body mass remains roughly constant throughout the Oligo-Miocene, with a spike in the Early Early Hemphillian. Equid body mass is static through the Arikareean but begins steadily increasing in the mid-Miocene. Canid body mass is somewhat more chaotic, with periods of both increasing and decreasing size. In no case does body mass closely track any climatic variable.

Only four taxa were found to have a statistically significant correlation with climate at a regional level (significant positive relationships were found to exist between temperature and body mass in 'anchitheriine' horses and between precipitation and body mass in the equid Archaeohippus, while negative relationships exists between seasonality and body mass in *Protospermophilus* and Caninae; Figure 10, Table 4). The site-specific data yielded only two significant relationships (positive correlations between sciurid body mass and temperature and between canid body mass and precipitation; Figure 11, Table 5). In five of the six cases, the direction of the relationship was the opposite of what would be predicted by Bergmann's Rule and its corollaries; only Caninae showed the expected positive relationship with seasonality. For the regional data, only 46% of the regressions yielded a result in keeping with the predictions made by Bergmann's Rule and other climatic hypotheses; this number rises to only 63% in the site-specific data. In all cases the sign test fails to support a significant departure from a random distribution. Regression of body mass against climatic first differences did not yield any significant correlations (Table 6), nor did the distribution of the signs of the correlations differ significantly from a random distribution.

Figure 7. Mean equid body size in the Northwest United Sates through the Arikareean-Hemphillian interval. From top left to bottom right charts show body mass at family, subfamily, tribe, genus, and species levels. Error bars represent one standard error. Shaded boxes along x-axes represent Arikareean (Ar), Hemingfordian (Hf), Barstovian (Ba), Clarendonian (Cl), and Hemphillian (Hh) NALMA subdivisions (after Tedford *et al.* 2004).

Figure 8. Mean canid body size in the Northwest United Sates through the Arikareean-Hemphillian interval. From top left to bottom right charts show body mass at family, subfamily, tribe, subtribe, genus, and species levels. Error bars represent one standard error. Shaded boxes along x-axes represent Arikareean (Ar), Hemingfordian (Hf), Barstovian (Ba), Clarendonian (Cl), and Hemphillian (Hh) NALMA subdivisions (after Tedford *et al.* 2004).

Figure 9. Mean sciurid body size in the Northwest United Sates through the Arikareean-Hemphillian interval. From top left to bottom right charts show body mass at family, subfamily, tribe, genus, and species levels. Error bars represent one standard error. Shaded boxes along x-axes represent Arikareean (Ar), Hemingfordian (Hf), Barstovian (Ba), Clarendonian (Cl), and Hemphillian (Hh) NALMA subdivisions (after Tedford *et al.* 2004).

Figure 10. Correlations between body mass and regional climatic variables at the family level. From top to bottom, charts represent temperature, precipitation, and seasonality. R^2 values are displayed on charts. 1LML = first lower molar length.

	Temperature (-)		Precipitation (-)		Seasonality (+)	
	Slope	Significance	Slope	Significance	Slope	Significance
Sciuridae	0.09	0.36	-0.0006	0.68	0.003	0.96
Sciurinae	0.08	0.38	-0.0005	0.72	-0.0004	0.99
Marmotini	0.04	0.78	-0.001	0.22	0.003	0.97
Protospermophilus	0.09	0.37	0.002	0.29	-0.06	0.01
Spermophilus	-0.14	0.14	-0.00003	0.99	0.07	0.63
S. wilsoni	-0.34	0.16	0.0006	0.81	-0.20	0.42
Canidae	1.47	0.18	0.03	0.12	-0.64	0.29
Borophaginae	1.61	0.60	0.004	0.93	-0.05	0.98
Borophagini	1.56	0.61	0.004	0.93	-0.06	0.97
Caninae	3.07	0.05	-0.08	0.27	3.39	0.03
Canini	3.22	0.12	-0.11	0.16	3.60	0.09
Equidae	28.61	0.37	-0.02	0.97	-7.95	0.63
Anchitheriinae	19.65	0.03	0.35	0.05	-6.07	0.30
Archaeohippus	4.87	0.09	0.10	0.03	-3.25	0.12
Parahippus	14.60	0.35	0.23	0.43	-4.16	0.51
Equinae	-61.30	0.14	-0.72	0.07	32.09	0.13
Hipparionini	-48.69	0.12	-0.24	0.60	15.78	0.74
Equini	-100.05	0.36	-1.20	0.22	109.18	0.08
Pliohippus	-91.91	0.39	-1.12	0.24	102.97	0.06

Table 4. Direction and significance of correlations between climate and mammal body mass at a regional scale (data binned into NALMA subdivisions). Columns indicate slope and significance (p-value) of the relationship. Shaded cells indicate significant relationships (p < 0.05). Plus and minus signs in parentheses after climatic variables indicate directionality predicted by Bergmann's Rule and its corollaries.

Figure 11. Correlations between body mass and site-specific climatic variables at the family level. From top to bottom, charts represent temperature, precipitation, and seasonality. R^2 values are displayed on charts. 1LML = first lower molar length.

	Temperature (-)		Precipitation	n (-)	Seasonality (+)	
	Slope	p-value	Slope	p-value	Slope	p-value
Sciuridae	0.47	0.05	0.0003	0.94	-0.08	0.77
Marmotini	0.88	0.12	-0.003	0.53	0.18	0.67
Canidae	-6.19	0.64	0.06	0.007	-4.48	0.15
Equidae	-23.49	0.73	-0.26	0.73	2.59	0.90
Equinae	-53.46	0.41	-0.73	0.30	37.08	0.05
Hipparionini					50.63	0.10

Table 5. Site-specific direction and significance of correlations between climate and mammal body mass. Columns indicate slope and significance (p-value) of the relationship. Shaded cells indicate significant relationships (p < 0.05). Shaded cells indicate significant relationships (p < 0.05). Shaded cells indicate significant relationships (p < 0.05). Plus and minus signs in parentheses after climatic variables indicate directionality predicted by Bergmann's Rule and its corollaries.

	Temperature (-)		Precipitation (-)		Seasonality (+)	
	Slope	p-value	Slope	p-value	Slope	p-value
Sciuridae	0.13	0.37	-0.001	0.40	0.03	0.55
Sciurinae	0.12	0.41	-0.001	0.38	0.03	0.56
Marmotini	0.05	0.75	-0.002	0.26	-0.008	0.95
Spermophilus	-0.15	0.41	0.002	0.46	-0.23	0.24
Canidae	0.41	0.73	0.03	0.25	-0.32	0.65
Borophaginae	-0.88	0.40	-0.01	0.36	-0.01	0.98
Borophagini	-0.86	0.42	-0.01	0.38	-0.03	0.95
Equidae	-13.40	0.54	-0.27	0.35	-6.32	0.45
Anchitheriinae					-0.84	0.86
Parahippus					5.5	0.17
Equinae	-32.46	0.38	-0.53	0.30	-17.33	0.81
Hipparionini	-48.36	0.40	-0.33	0.74	325.79	0.73

Table 6. Direction and significance of correlations between climate and mammal body size first differences. Columns indicate slope and significance (p-value) of the relationship. Note that no correlation is significant (p < 0.05). Plus and minus signs in parentheses after climatic variables indicate directionality predicted by Bergmann's Rule and its corollaries.

Discussion

The results presented here do not support Bergmann's Rule and its climatic corollaries: there is no evidence for a causal link between any one climatic variable and mammal body size evolution during the Oligo-Miocene. Some significant correlations between climate and body mass were found, but in almost all cases the direction of the relationship was the opposite of what had been predicted. A certain number of false positives are to be expected when running numerous statistical tests (Gotelli & Ellison 2004), and it is likely that these relationships fall into this category rather than representing actual ecological patterns, a suggestion supported by the results of the Bonferonni Correction for the number of tests run. After applying the correction, only the relationship between site-specific canid mass and precipitation remains statistically significant, and even this correlation is unlikely to represent a causal relationship as the precipitation hypothesis predicts a negative relationship, while the correlation found here is positive. The precipitation and seasonality hypotheses are borne out by the data more often than is Bergmann's Rule *sensu stricto*, but in no case does the distribution of expected and unexpected results depart significantly from random and as such these patterns do not imply a causal relationship between climate and body mass.

The body size profiles plotted for taxa from eastern Oregon and surrounding states further refute the suggestion that any one climatic variable predictably drives body size evolution in all mammals. Not only do none of these profiles closely track temperature, but all show extremely different patterns, reflecting the absence of an ecosystem-wide signal. Some of the patterns presented here parallel those observed at the continental scale and may suggest alternative drivers of body size evolution. Fossil

horses are the classic example of Cope's rule, as they show an increase in body size during the course of the Cenozoic, though as Gould & MacFadden (2004) observe, this reflects the evolution of large body size in several different lineages rather than a familywide tendency towards larger taxa. This size increase, as well as a concurrent increase in body size variation, is visible in horses from the Northwest beginning in the mid-Miocene, but is preceded by a period of stasis: from the earliest Arikareean through the end of the Hemingfordian, equids (which are represented during that interval solely by 'anchitheriines') do not undergo a significant change in size. The size increase observed beginning in the Barstovian is delayed relative to horses in North America at a continental scale (MacFadden 1986) and is roughly coincident with the breakup of woodland habitats after the MMCO (~16 Ma; Zachos et al. 2001). Woodland habitats had begun to give way to grasslands during the early Arikareean in the Northwest, but rebounded more strongly in the region than elsewhere in North America during the MMCO (Retallack 2007), possibly explaining the delayed increase in equid body mass. This suggests that, instead of being driven primarily by one climatic variable, horse body size evolution has been influenced by large-scale environmental change, with more open habitats favoring the evolution of larger taxa within several different lineages.

Canid body mass also follows patterns similar to those observed at larger scales. The family-level body size profile appears chaotic, but clearer trends become apparent at lower taxonomic levels. All three subfamilies of canids (Hesperocyoninae, Borophaginae, and Caninae) are present in the Northwest at the beginning of the Arikareean-Hemphillian interval as members of central Oregon's John Day fauna. Hesperocyonines are represented by the large-bodied *Enhydrocyon, Paraenhydrcyon*, and

Mesocyon, while both the Borophaginae and Caninae are represented by much smaller taxa. Hesperocyonines disappear from the Northwestern fossil record after the mid-Arikareean, at which point borophagines expand in both diversity and size. Van Valkenburgh *et al.* (2004) observed a Cope's rule-like pattern in borophagines on a continental scale, and this trend appears also to be present within the Northwest, as members of this subfamily increase in size during each land mammal age subdivision in which they are present. Borophagines were largely extinct in the Northwest by the end of the Clarendonian; this extinction appears to have allowed Caninae the opportunity to diversify elsewhere in North America (Tedford *et al.* 2009), though this diversification is not well documented in the Northwest due to a scarcity of Pliocene sediments. These patterns suggest that canid body mass may not be driven by climate, but by biotic interactions, particularly competition with other canids, leading to a pattern of taxonomic replacement and subsequent size increase.

Sciurids present a novel pattern: squirrel body mass does not change significantly throughout the course of the Arikareean-Hemphillian interval. This is true at all taxonomic levels from family to genus (*Protospermophilus*, for example, does not change significantly in size between the earliest Arikareean and the early Barstovian, a period of nearly 14 Ma). This pattern may not be typical of all squirrels: tree squirrels are known from the Northwest only from the Arikareean John Day fauna, chipmunks appear only in Clarendonian and Hemphillian faunas, and the giant marmot *Paenemarmota* appears only in the Thousand Creek fauna, accounting for the spike in squirrel body size observed in the Early Early Hemphillian. All other sciurids included in this study represent ground squirrels that were morphologically – and likely ecologically – analogous to the modern

Spermophilus (itself an important member of Late Miocene faunas in the region). Burrowing may serve to buffer ground squirrels and other fossorial rodents against a number of the proposed drivers of body size evolution (Hopkins 2007); these include not only temperature and other climatic variables, but also biotic interactions, in particular predation and competition. Further analyses of body size evolution in other burrowing taxa, particularly geomyids, will help establish whether similar trends are common to all fossorial mammals.

The lack of a correlation between climate and body size in the Oligo-Miocene is in sharp contrast to the patterns observed in extant mammals, including many canids and sciurids, which tend to show negative relationships with temperature and precipitation and positive relationships with seasonality (Ashton *et al.* 2000). It also contrasts with the results of previous studies of climate and mammal body size evolution, particularly Gingerich (2003) and Smith et al. (2010), both of which suggest a correlation between body mass and temperature. In both these cases, however, there are reasons to doubt that a causal relationship exists between the two variables. While the condylarth and perissodactyl genera examined by Gingerich do show a marked decrease in size coincident with the PETM, he suggests that the magnitude of body size change is far too large to be attributable solely to climate. While rising temperature may have played some role in the dwarfing of several mammal lineages, Gingerich suggests that other factors, particularly an increase in atmospheric CO₂ and a corresponding decrease in the nutritive value of plant leaves, are more likely responsible for driving body size evolution in Bighorn Basin mammals. The global-scale relationship between body mass and temperature posited by Smith *et al.* is suspect for several reasons. As discussed above,

the scale of the study is too large to detect local or regional variation. Besides this, the authors used maximum body size within a taxon as a proxy for that taxon's mean body mass, a method based on a study by Trites and Pauly (1998) which showed the two to be correlated in marine mammals. Unfortunately, this is not necessarily the case in terrestrial mammals, which are subject to different constraints and selective pressures than aquatic taxa: not only does water provides more support than air, removing many constraints on body size, but large size is likely strongly selected for in most marine mammals because it allows more effective retention of heat (Riedman 1990). Further, as Smith *et al.* observe, there are many reasons to believe that the correlation they find between body mass and temperature does not imply causation. Global temperature is colinear with several other factors, including atmospheric oxygen concentration and land area. Further, Smith *et al.* did not consider other climatic variables in their analysis. As such, it is not possible to say whether temperature controls body size at a global scale or if body mass and temperature both respond to some third biotic or abiotic variable.

A correlation between climate and body size is not the only macroecological pattern observed in modern ecosystems that does not appear to have been present for large stretches of the Cenozoic: Rose *et al.* (2011), for instance, observed that there is no evidence for latitudinal richness gradients in North American Paleocene mammals. Any number of factors may account for such discrepancies between neontological and paleontological trends. Rose *et al.* suggest that the absence of strong Paleocene diversity gradients may be due to the faunal composition of the ecosystems studied (a large percentage of Paleocene mammals are members of extinct taxa with no modern analog and thus might not be expected to respond to environmental variables in the same way as

extant mammals) or to a prolonged recovery from the end-Cretaceous mass extinction; because all three families studied here are represented by extant members and because the Arikareean-Hemphillian interval is not preceded by a major extinction event, neither of these factors can explain the absence of a relationship between Oligo-Miocene climate and body size. Instead, this may be due to the vastly different climatic regimes of the Oligo-Miocene and the Pleistocene and Holocene: recent climate is both aberrantly cool and volatile (Zachos *et al.* 2001) and what may appear in modern ecosystems to be strong relationships between climate ecological variables such as body size may not hold under the warmer conditions that have characterized most of the Cenozoic.

The implication of this study, that of Rose *et al.* (2011), and others like them that modern ecosystems are not necessarily keys to those of the past has important ramifications, chief among them that the present may also not be the key to the future. As anthropogenic global warming continues, so too will widespread environmental change. Well-calibrated ecological models are crucial to predicting and mitigating the effects of this change. Ecology has primarily used modern ecosystems and organisms as the basis for these models, but as climate change ushers in conditions with no historical precedent, neontologically-based models may begin to lose some of their predictive power. Augmenting environmental models with paleoecological data allows biotic responses to instances of large-magnitude climate change to be included and in so doing can enhance predictive power. Paleoecology also allows ecological questions to be addressed in a novel manner: instead of simply tracing biotic variables along a transect, transects from several time slices can be analyzed, allowing the study of how ecological gradients change through time, a method that is very applicable to the study of body size.

CHAPTER IV

LATITUDINAL BODY MASS TRENDS IN OLIGO-MIOCENE MAMMALS

Introduction

As the study of the relationship between organisms and their environment, ecology has historically focused on tracing biotic clines and on determining which factors shape them. These clines have been observed along a number of ecological gradients: two of ecology's foundational studies analyzed trends along elevational (Humboldt & Bonpland 1807) and latitudinal transects (Bergmann 1847), and modern researchers have traced patterns along climatic (e.g. Bradshaw 2010), water depth (e.g. Smith & Brown 2002), chemical (e.g. Hollister *et al.* 2010), and other gradients. Such research lays the foundation for the formulation of ecological models: by observing how organisms respond to a wide range of environmental conditions in modern ecosystems, it is possible to predict how the same organisms will respond to environmental changes in the future. These models are critically important to anticipating and mitigating the effects of anthropogenic climate change, but in some cases lack predictive power. This is partially because of the complexity of ecological interactions, in which several factors may influence biotic variables. It is also due in part to the complexity of the ecosystems themselves, in which many biotic and abiotic variables influence and are influenced by one another, making it difficult to tease out which variables are most important in shaping biotic patterns (Bateaux et al. 2006). Finally, models of future responses to environmental change based on neontological research are, of necessity, based on biotic variability across environmental regimes for which there is a historical precedent. Even

the most conservative estimates of future warming indicate a rapidly increasing divergence from the climatic conditions that have characterized the Holocene (IPCC 2007), meaning that any prediction of biotic responses to this change requires extrapolating well beyond the range of modern data.

These last two concerns can be addressed by not only examining biotic clines within modern ecosystems, but by using the fossil and paleoenvironmental records to trace chronoclines, following ecological change through time. By applying a fourdimensional perspective to ecology, biotic responses to environmental conditions that do not exist in modern ecosystems can be observed and potential causal factors that are currently tightly tied to one another can be teased apart as they vary through time. This approach has historically played a small part in our understanding of ecological drivers of biological trends, in large part because of the perceived incompleteness of the fossil record and inaccuracy of paleoenvironmental reconstructions. However, many taxa are represented by very large fossil samples, and many regions have been the subject of rigorous paleoecological study, allowing robust reconstructions of trends along chronological transects and, at least in certain cases, the identification of causal factors. A great deal of paleontological research along these lines has focused on Cenozoic fossil mammals of North America, which are represented by an extremely rich fossil record that has been extensively collected for well over a century. These studies have, for the most part, tracked either mammal diversity (Alroy et al. 2000, Lillegraven 1972, Prothero 2004) or body size (Chapter 2 of this dissertation, Alroy 1998, Gingerich 2003, Koch 1986, Smith et al. 2010) through time. Others have examined the same variables along geographic transects at different intervals through time (Rose et al. 2011).

Chronocline analysis is especially well suited to address one of the longeststanding ecological questions: what drives mammal body size evolution? This question was first raised by Bergmann (1847), who observed that latitudinal body size gradients were visible within most mammal taxa at several taxonomic levels, with larger taxa or individuals tending to live towards the poles and smaller taxa or individuals living towards the equator. However, trying to tie body size to any other biotic or climatic variable has proven difficult. Bergmann himself suggested that the gradients he observed were a product of temperature, as large animals are better able to retain heat due to their small surface area to volume ratio, while smaller animals are more effective at shedding it. Subsequent studies have confirmed the patterns observed by Bergmann, finding body size gradients within most mammal taxa (Ashton et al. 2000, Blackburn & Hawkins 2004, Meiri & Dayan 2003, Rodríguez et al. 2008). While some authors have supported Bergmann's Rule sensu stricto, others have suggested that other ecological variables play a more direct role than temperature in driving body size evolution. Some of the proposed mechanisms posit biotic drivers. Primary productivity may limit the size to which herbivores can grow (Rosenzweig 1968), while large prey animals may select for large predators (Erlinge 1987). Size trends in island taxa suggests that competition may play an important role in shaping body mass patterns, but the effects of competition appear to vary between size classes (Damuth 1993), while predation pressure may select for larger prey taxa (Korpimäki & Norrdahl 1989). Besides temperature, two other climatic variables have been posited to play a major role in body size evolution: precipitation (large animals have a greater capacity for storing water and will be selected for in arid

climates; James 1970) and seasonality (large animals have a greater capacity for fat reserves and will be selected for in seasonal climates; Millar & Hickling 1990).

Several paleontological studies have tested Bergmann's Rule, either explicitly or tangentially. These studies have ranged from local to global in scope and have reached divergent conclusions. Gingerich (2003) examined condylarth and perissodactyl body mass trends across the Paleocene-Eocene Boundary in Wyoming's Bighorn Basin, finding that all the taxa in question showed body mass spikes during the Paleocene-Eocene Thermal Maximum. However, Gingerich notes that the magnitude of these increases was too great to be explained solely by elevated temperatures, instead suggesting that dwarfing in Bighorn Basin mammals was due to a decrease in the nutritional value of plants, itself driven by the same rise in CO₂ levels that drove an increase in global temperature during the PETM. The second chapter of this dissertation details the results of study of body mass in three families of Oligo-Miocene mammals in the Northwest United States. No evidence was found of a causal relationship between any climatic variable and body mass; instead, different body mass profiles were observed within each family, suggesting that, for most of the Cenozoic, climate alone had little effect on body size evolution, and that the factors that do shape body mass trends are complex and vary between taxa. A correlation between body mass and mean annual temperature was observed in Cenozoic mammals at the global scale by Smith et al. (2010), seemingly supporting Bergmann's Rule sensu stricto. However, this study was based on maximum body size within taxa, which is not necessarily a reliable proxy for mean body mass within terrestrial taxa, and the authors themselves noted that there was

insufficient evidence to determine whether the observed correlation between size and temperature was evidence of a causal relationship.

All of these studies have focused on body size change through time within a region, though the size of those regions has varied from individual basins to the entire planet. Conspicuously lacking from the paleontological study of mammalian body size evolution are analyses of geographic trends through time. In order to perform just such an analysis, we have reconstructed body size trends along the West Coast of North America, both among Oligo-Miocene equids, canids, and sciurids and among modern analogs for each family. These data are used to test the assertion of Bergmann (1847) and Smith et al. (2010) that body size in modern and Cenozoic mammals is driven by temperature. Taking Bergmann's Rule *sensu stricto* as a working hypothesis, three predictions can be made. First, body size should be positively correlated with latitude and negatively correlated with mean annual temperature during any given interval, as environments closer to the poles are always expected to be cooler than those near the equator. Second, because modern climate is considerably colder than has been the case during earlier intervals of the Cenozoic (Zachos et al. 2001), Oligo-Miocene lapse rates should be correspondingly lower and climatic gradients should be less steep, leading to weaker body mass clines in fossil taxa relative to extant ones. Third, as climatic gradients vary through time, the steepness of body mass gradients should vary, with steeper slopes during cooler intervals with high lapse rates and shallower slopes during warm intervals with low lapse rates.

Methods

The first hypothesis was tested by reconstructing body size trends along a transect running along the West Coast of North America from Washington to Oaxaca (Figure 12). Specimens from sites dating to the Arikareean-Hemphillian (Oligocene-Miocene, 30-5 Ma; Tedford et al. 2004) North American Land Mammal Ages (NALMAs) were included. This interval and region were chosen because of the remarkably rich fossil record (Carrasco et al. 2005). The West Coast of the United States (encompassing, for the purposes of this study, the states of Washington, Oregon, Nevada, and California) has an extensively sampled fossil record that has been collected for well over a century; while Mexican faunas have been the subject of less study historically, recent research has uncovered several diverse faunas, particularly from the states of Chihuahua, Guanajuato, and Oaxaca. Besides being extremely well sampled, the Arikareean-Hemphillian interval encompasses several important climatic events (Zachos et al. 2001), making it an ideal natural laboratory in which to examine the influence of temperature on biotic variables. The Late Oligocene is characterized by relatively cool temperatures, the onset of which was concurrent with the beginning of continental glaciation in Antarctica. The Early Miocene was characterized by markedly warmer temperatures, which culminated in the Mid-Miocene Climatic Optimum (MMCO; 16-14 Ma), a brief but significant warming spike representing the warmest period in Earth history since the Eocene. Climate cooled steadily in the Late Miocene, approaching the cold global temperatures seen today by 5 Ma.

Figure 12. Map of study area. Circles represent formation included in this study. Scale bar represents 500 km.
The huge size of the Oligo-Miocene fossil record in North America makes an analysis of body size evolution in all mammals impractical, so this study focuses on trends within three representative families: equids, canids, and sciurids. Each family is distinct from the other two in its body size, diet, and ecology, and each is well represented in the fossil record (Carrasco et al. 2005). Besides being common, equids and canids have historically been the focus of a great deal of research, and this extensive study has led to the construction of robust and well-resolved phylogenies for both (Mac Fadden 1992, Tedford et al. 2009, Wang 1994, Wang et al. 1999). Sciurids, like many small mammals, have been the subject of less study, but are among the most common rodent families in the Oligo-Miocene. Crucially for the aims of this project, robust approximations of body mass exist for each family. For canids, body mass is approximated using the length of the first lower molar (Van Valkenburgh 1990), while sciurid body mass is strongly correlated with lower tooth row length (Hopkins 2008). Several dental proxies for mass exist for equids, including the lengths of all lower cheek teeth and the second upper molar (Janis 1990). The majority of the dental measurements used in this study were obtained from specimens in museum collections, though these were supplemented by some previously published measurements for faunas that were underrepresented in the collections visited. These collections were the American Museum of Natural History, Idaho Museum of Natural History, John Day Fossil Beds National Monument, Natural History Museum of Los Angeles County, Raymond Alf Museum, San Bernardino County Museum, Sierra College Museum of Natural History, San Diego Natural History Museum, South Dakota School of Mines & Technology, Universidad Nacional Autónoma de Mexico, University of California Museum of

Paleontology, University of Oregon Condon Fossil Collection, and University of Washington Burke Museum.

Body mass data for fossil taxa were analyzed within genera. Most studies of body size evolution in extant animals have focused on trends as the species level (Ashton et al. 2000), but a higher taxonomic level was used in this study for two reasons. Bergmann's Rule, as it was originally formulated, was meant to explain genus-level trends. Bergmann (1847) found the strongest body size gradients within genera, with large species towards the poles and small species towards the equator. As such, any test of Bergmann's Rule sensu stricto should be conducted at the generic level. The Oligo-Miocene fossil record also makes species-level analyses impractical. While the Arikareean-Hemphillian record is outstanding in its quality, it is not complete, and the lower the taxonomic level, the fewer specimens are available. Several genera are represented by sufficient numbers of individuals to make robust analyses possible, but few species are present in large enough numbers or over a large enough range to make them suitable subjects for body mass research. Besides this, few groups of Oligo-Miocene mammals have been the subject of intensive, large-scale taxonomic studies (though canids are an exception to this rule; Tedford et al. 2009, Wang 1994, Wang et al. 1999), and as such the diversity of named species may not reflect the taxon's true species diversity. Only in the case of sciurids and the equid genus *Merychippus* was body size examined at other taxonomic levels. Squirrels, despite being common, are only rarely identified below family level in collections. Because of the lack of positively identified lower taxa, sciurids must be studied at the family level. However, the vast majority of squirrels included here are morphologically similar, and likely behaviorally analogous, to

the modern ground squirrel *Spermophilus*, so even at the family level the sciurids included here are anatomically and ecologically coherent. *Merychippus* is a paraphyletic genus that includes species of basal equines, hipparionins, and equines (MacFadden 1992). In the interest of including only monophyletic taxa, equin and hipparionin *Merychippus* were considered as two separate genera; only the latter was present along a large enough portion of the transect to be included here.

Whether or not body size gradients were present at different intervals during the Oligo-Miocene was tested by regressing body mass against temperature during different NALMA subdivisions (Tedford et al. 2004). Biostratigraphic units were used instead of million-year intervals due to the imprecision of dating for many West Coast sites, the vast majority of which are dated using relative rather than absolute methods (Carrasco *et al.*) 2005). For all NALMA subdivisions for which data were available, body mass was regressed against latitude, a proxy for temperature during intervals in which no paleoclimatic estimates exist. However, extensive paleopedological research in Oregon allows climate for most NALMA intervals to be reconstructed there (Retallack 2007), and Early Barstovian floras in central Nevada and California's San Joaquin Valley have been used to estimate temperature in those regions (Yang et al. 2011; Table 7). This allows body mass to be compared directly to temperature in Early Barstovian genera present in Oregon, Nevada, or the San Joaquin Valley. For both sets of regressions, slopes were compared to a flat line to determine whether evidence exists for a directional relationship. Any significant departure from zero was taken indicate a significant relationship, but only slopes significantly more positive than zero were considered to support Bergmann's Rule.

Locality	Proxy	Region	MAT	Source
49 Camp	Paleobotanical	Central Nevada	9.4	Yang <i>et al</i> . 2011
Buffalo Canyon	Paleobotanical	Central Nevada	7.5	Yang et al. 2011
Eastgate	Paleobotanical	Central Nevada	9	Yang <i>et al</i> . 2011
Fingerrock	Paleobotanical	Central Nevada	8.6	Yang et al. 2011
Goldyke	Paleobotanical	Central Nevada	8.7	Yang et al. 2011
Mascall Ranch	Paleopedological	Columbia Plateau	14	Retallack 2007
Middlegate	Paleobotanical	Central Nevada	8.9	Yang et al. 2011
Temblor	Paleobotanical	San Joaquin Valley	17.3	Yang et al. 2011

Table 7. Sources of Early Barstovian paleoclimatic data and estimated mean annual temperatures (MAT) in degrees Celsius.

In order to test the second hypothesis, that body mass gradients in the Arikareean-Hemphillian interval should be weaker than those seen in modern taxa, body weights were collected for representative modern taxa from along the same transect (which was extended to include available data from British Columbian and Alaskan specimens). These data were regressed against both latitude and mean annual temperature for the site at which they were collected in order to create models to which the fossil data could be compared. This was preferable to using existing studies of Bergmann's Rule as the basis of models because it provided a higher degree of control, both analytically (both modern and fossil trends could be observed at the genus level, while most modern studies of body size focus on species-level trends) and geographically (both modern and fossil trends could be observed along an identical, constrained transect rather than extrapolating from a continent-wide patterns). Data were gathered from the online databases of the National Museum of Natural History, University of Alaska Museum of the North, University of California Museum of Vertebrate Zoology, University of New Mexico Museum of Southwest Biology, and University of Washington Burke Museum. The taxa chosen as comparisons for canids and sciurids were the canid *Canis* and the sciurid Spermophilus. No truly wild equids are currently extant in North America, so the cervid *Odocoileus* was used as a proxy. Deer are more common in most collections than other potentially analogous taxa, such as Antilocapra and Bison. While deer are browsers and thus ecologically not comparable to living horses, they are good analogs for Oligo-Miocene equids, many of which likely retained a much higher percentage of browse in their diet than modern taxa (Janis et al. 2000, MacFadden et al. 1999). The slopes obtained from these modern regressions were compared to those from fossil genera to determine

whether or not significant differences were present. Bergmann's Rule was considered to be supported if slopes were less steeply positive in fossil genera than in their modern comparisons.

The third hypothesis, that the steepness of body size gradients should vary through time in relation to climate, was tested by comparing the slope of the relationship between body mass and latitude within a genus to all other fossil members of the same family. If a genus from a colder interval (e.g. Late Oligocene, Late Miocene) had a significantly more positive relationship with latitude than related genera from a warmer interval (e.g. the MMCO), Bergmann's Rule was considered to be supported.

Results

The first series of tests run were to determine whether or not latitudinal or climatic body size gradients were present in Oligo-Miocene mammals. Of the 19 genera for which latitudinal trends could be analyzed, only five were found to have a slope that differed significantly (p < 0.05) from a flat line. Among equids, Early Barstovian hipparionin *Merychippus* (p=0.02) and Late Late Hemphillian *Dinohippus* (p=0.0006) both show a significant positive relationship with latitude (Figure 13, Table 8). A similar positive correlation was found in the Late Barstovian canid *Paracynarctus* (p=0.01; Figure 14, Table 8). No sciurids show a significant relationship with latitude (Figure 15, Table 8). In total, five Early Barstovian genera were present in sufficient numbers from localities for which climate could be reconstructed to directly analyze the relationship between temperature and body mass. In only one of these taxa (hipparionin *Merychippus*) was a significant (p=0.0007) negative correlation present (Figures 16 & 17, Table 9)

Figure 13. Latitudinal body mass gradients in modern *Odocoileus* and fossil equids. Land mammal age subdivisions are denoted by abbreviations (Ba=Barstovian, Cl=Clarendonian, Hh=Hemphillian). Solid line represents slope of regression; dotted lines indicate 95% confidence intervals.

Figure 14. Latitudinal body mass gradients in modern and fossil canids. Land mammal age subdivisions are denoted by abbreviations (Ar=Arikareean, Ba=Barstovian, Cl=Clarendonian, Hh=Hemphillian). Solid line represents slope of regression; dotted lines indicate 95% confidence intervals.

Figure 15. Latitudinal body mass gradients in modern and fossil sciurids. Land mammal age subdivisions are denoted by abbreviations (Ar=Arikareean, Cl=Clarendonian). Solid line represents slope of regression; dotted lines indicate 95% confidence intervals.

							Diff	
	Age	n	\mathbf{R}^2	Slope	CI	Diff 0	Modern	Diff Genera
Odocoileus	Modern	5	0.14	0.40	1.18	No	NA	NA
Hypohippus	Ba1	19	0.02	-4.80	15.29	No	No	No
Archaeohippus	Ba1	13	0.07	1.70	3.72	No	No	Dinohippus(-)
Desmatippus	Ba1	12	0.00	-0.10	9.21	No	No	No
Hipparionin <i>Merychippus</i>	Ba1	102	0.05	2.60	2.16	Yes(+)	No	Acritohippus(+) Dinohippus(-)
Acritohippus	Ba1	36	0.09	-3.80	3.92	No	No	Merychippus(-) Dinohippus(-)
Hipparion	C13	43	0.01	2.20	7.25	No	No	No
Pliohippus	Hh2	10	0.01	-7.00	45.08	No	No	No
Neohipparion	Hh4	27	0.04	8.50	17.44	No	No	No
Astrohippus	Hh4	49	0.03	2.40	4.12	No	No	Dinohippus(-)
Dinohippus	Hh4	56	0.20	14.90	8.04	Yes(+)	Yes(+)	Archaeohippus(+) Merychippus(+) Acritohippus(+) Astrohippus(+)
Canis	Modern	77	0.32	1.05	0.39	Yes(+)	NA	NA
Mesocyon	Ar1	25	0.00	-0.00	0.14	No	Yes(-)	Paracynarctus(-) Epicyon(+)
Microtomarctus	Ba1	6	0.30	-1.30	1.96	No	No	No
Tephrocyon	Ba1	3	0.00	0.01	0.39	No	Yes(-)	Epicyon(+)
Paracynarctus	Ba2	4	0.97	0.50	0.12	Yes(+)	Yes(-)	Mesocyon(+) Epicyon(+)
Tephrocyon	Ba2	3	0.41	0.07	0.16	No	Yes(-)	Epicyon(+)
Epicyon	C13	4	0.88	-1.70	0.78	No	Yes(-)	Mesocyon(-) Ba1Tephrocyon(-) Paracynarctus(-) Ba2Tephrocyon(-) Borophagus(-)
Borophagus	Hh4	3	0.02	0.03	0.59	No	Yes(-)	Epicyon(+)
Spermophilus	Modern	210	0.00	0.09	3.14	No	NA	NA
Sciuridae	Ar1	3	0.33	0.50	1.37	No	No	No
Sciuridae	Cl3	4	0.90	-1.20	0.59	No	No	No

Table 8. Comparison of latitude and body mass regressions between fossil and modern genera. Slope, sample size, correlation coefficient, and 95% confidence intervals for the slope are indicated in each column. 'Diff Modern' and 'Diff 0' indicate whether the slope of a line differs significantly from that seen in the comparative modern genus or from zero. 'Diff Genera' indicates whether a genus has a significantly more positive or negative relationship with latitude than other fossil taxa. Significantly more positive or negative slopes are indicated by a (+) or (-).

Figure 16. Climatic body size gradients in modern *Odocoileus* and Early Barstovian equids. Solid line represents slope of regression; dotted lines indicate 95% confidence intervals.

Figure 17. Climatic body size gradients in modern and Early Barstovian canids. Solid line represents slope of regression; dotted lines indicate 95% confidence intervals.

	n	\mathbf{R}^2	Slope	CI	Diff 0	Diff Modern
Odocoileus	5	0.31	-1.4	2.35	No	NA
Hypohippus	14	0.15	-10.9	14.50	No	No
Archaeohippus	4	0.13	-6.7	24.30	No	No
Desmatippus	12	0.0011	-1.3	23.52	No	No
Hipparionin <i>Merychippus</i>	93	0.12	-7.2	3.92	Yes(-)	No
Canis	77	0.14	-1.0	0.59	Yes(-)	NA
Microtomarctus	4	0.026	-0.02	0.16	No	Yes(+)
Spermophilus	210	0.00055	-0.7	4.17	No	NA

Table 9. Comparison of temperature and body mass regressions between Early Barstovian and modern genera. Slope and 95% confidence intervals for the slope are indicated in each column. 'Diff Modern' and 'Diff 0' indicate whether the slope of a line differs significantly from that seen in the comparative modern genus or from zero. Significantly more positive or negative slopes are indicated by a (+) or (-).

The second series of tests established modern models for body size gradients, against which fossil data were compared to determine whether the steepness of these gradients was different during earlier intervals of the Cenozoic. Of the three modern genera analyzed, only *Canis* was found to show a significant (p<0.0001) positive correlation with latitude and a negative correlation (p=0.0009) with temperature (Figures 14 & 17, Tables 8 & 9); no evidence for latitudinal or climatic gradients was found in either Odocoileus (Figures 13 & 16, Tables 8 & 9) or Spermophilus (Figure 15, Tables 8 & 9). The only equid to show a significantly more positive relationship with latitude than modern *Odocoileus* was Late Late Hemphillian *Dinohippus* (Figure 14, Table 8). Sciurids, too, did not depart significantly from the pattern observed in modern Spermophilus (Figure 15, Table 8). Conversely, all but one canid genus (Early Barstovian *Microtomarctus*) was found to show a pattern statistically similar to modern *Canis*; all other canids had a significantly more negative slope (Figure 14, Table 8). *Microtomarctus*, the only Early Barstovian canid in which a comparison of body size to temperature was possible, also shows a significantly more positive relationship than does Canis (Figure 17, Table 9). None of the four equids analyzed from this interval shows a significant departure from the trend seen in *Odocoileus* (Figure 16, Table 9).

The third series of tests compared fossil genera from the same family in order to determine if the slope of latitudinal body size gradients changed through time. The Late Late Hemphillian equid *Dinohippus* shows a significantly more positive relationship with latitude than does the coeval *Astrohippus* and Early Barstovian *Archaeohippus*, hipparionin *Merychippus*, and *Acritohippus* (Figure 13, Table 8). *Acritohippus* also shows a significantly less positive relationship with latitude than does hipparionin

Merychippus of the same age. Late Clarendonian *Epicyon* has a strongly negative slope that is significantly steeper than that seen in any other canid included in this study with the exception of Early Barstovian *Microtomarctus* (Figure 14, Table 8). The only other significant difference between slopes among canids is between the positive trend visible in Late Barstovian *Paracynarctus* specimens and the neutral trend visible in Early Early Arikareean *Mesocyon*. *Tephrocyon*, the only genus in this study present in more than one temporal bin, does not show any significant difference in slope between the Early and Late Barstovian. Sciurids are present in both the Early Early Arikareean and the Late Clarendonian, and the slope of their body mass gradient does not change significantly between these two intervals.

Discussion

Hypothesis Tests

The findings of this study do not support Bergmann's Rule either in modern or in prehistoric ecosystems. The first prediction derived from Bergmann's (1847) model predicts that, in any given interval, body size should be positively correlated with latitude and negatively correlated with temperature. With the exception of only a small number of taxa, this is not the case in this study. The overwhelming majority of fossil taxa (16 out of 19) show no evidence of directional latitudinal trends in body mass. Likewise, only one of the five Early Barstovian taxa compared directly to temperature shows a significant relationship between body mass and climate. While the slope of such relationships might be expected to vary with time, their near absence within the genera analyzed in this study suggests that they are the exception rather than the rule, falsifying the first prediction tested here.

The second prediction derived from Bergmann's Rule – that taxa from the Oligo-Miocene should show shallower latitudinal and climatic temperature gradients – is supported more strongly in some taxa than in others. Only one equid genus has a body mass-latitude slope that differs significantly from that of *Odocoileus*, and neither of the fossil sciurid samples shows a significant difference from *Spermophilus*, though it is worth noting that there is no evidence for a latitudinal or climatic body mass gradient in either modern genus. A significant latitudinal gradient in keeping with the predictions of Bergmann's Rule is present within *Canis*, however, and its slope is significantly steeper than that seen in all fossil canids except *Microtomarctus* (which does, however, show a more positive relationship with temperature). If these data are taken at face value, then,

the prediction that body size gradients were weaker during much of the Cenozoic than they are today is supported in canids, though it lacks support among equids and sciurids.

Bergmann's Rule also fails in its prediction that stronger gradients should be present within genera during colder intervals. Some genera do show relationships with climate that are stronger than those seen in related genera, and some of these, most notably Late Late Hemphillian *Dinohippus*, are present during particularly cool intervals. However, such instances are by no means the rule; while *Dinohippus* has a very strong latitudinal gradient relative to other equids, including those from warmer intervals, the closely related Astrohippus and the more distantly related Neohipparion from the same time and same sites do not. In some cases, the observed patterns directly contradict the predictions made by Bergmann's Rule: strong gradients relative to other taxa are present among hipparionin Merychippus specimens during the Barstovian MMCO, the warmest interval of this study (Zachos *et al.* 2001), when gradients are expected to be relatively weak. Likewise, Barstovian Paracynarctus specimens show a stronger relationship with latitude than do *Mesocyon* specimens from the Arikareean, one of the coldest intervals of the Oligo-Miocene. These patterns demonstrate that the slope of latitudinal body size gradients does not vary with global temperature, refuting the third prediction tested here.

Potential Biases in the Fossil Record

The results obtained in this study have thus far been considered to represent genuine ecological signals, but as is always the case in paleontology, taphonomic and analytical biases must be considered. One potential confounding factor in this study is the scarcity of paleoclimatic data from the southern end of the transect (particularly California and Mexico). Floras from which paleoclimate can be reconstructed are scarce south of Nevada, and paleoclimatic reconstructions based on paleopedological or isotopic proxies are nonexistent, even for extremely productive and well-studied localities and faunas (the most striking example being the Barstow Fauna of Southern California, a fauna that has been so well studied that it has lent its name to a NALMA but has never been the subject of a rigorous, quantitative paleoclimatic analysis). This dearth of climatic data was the rationale for using latitude as a proxy for temperature during most intervals. Temperature and latitude are tightly correlated (R2=0.67, p<0.0001) in modern ecosystems (Figure 18), but the relationship is not perfect; it is reasonable to expect that temperature might vary between sites at similar latitudes but at differing distances from the coast. This is particularly a concern in California and Nevada, where sites from the Great Basin and Mojave Desert sit at the same latitude as sites from the San Francisco Bay Area and the Los Angeles Basin. Without more paleoclimatic work, it is impossible to quantitatively assess the magnitude of the difference in temperature between these regions, but it is likely that, just as today, coastal temperatures were mediated by the ocean and were likely lower than those of inland sites. However, due to the richness of the fossil record in the region, it is possible to test whether or not such differences affected mammal body size. Ten genera (nine horses and one canid) have been found at

both coastal and inland sites during the same interval, and in only one case (Middle Clarendonian *Pliohippus*) is there a significant difference between body mass between the two regions (Table 10). As such, it seems unlikely that small-scale climatic differences are obscuring large-scale latitudinal patterns and that latitude can be used as a proxy for temperature when no direct measurement is available.

Figure 18. Correlation between latitude and temperature along the modern West Coast of North America. $R^2=0.67$, p<0.0001.

			San			
		Bay	Joaquin	Transverse	Western	Mojave
		Area	Valley	Ranges	Nevada	Desert
Ba1 Microtomarctus	Mass		15.30		15.44	19.06
	CI		NA		0.62	7.25
Ba1 Hypohippus	Mass		202.22		274.26	207.42
	CI		NA		40.70	NA
Ba1 Archaeohippus	Mass		40.78	46.26		46.90
	CI		NA	20.17		NA
Ba1 Scaphohippus	Mass			148.70		174.85
	CI			24.71		29.61
Ba1 Acritohippus	Mass			169.73		168.04
	CI			50.60		58.98
Cl2 Hipparion	Mass	226.08				319.81
	CI	107.57				NA
Cl2 Pliohippus	Mass	409.23		196.82	234.26	336.29
	CI	190.89		36.53	NA	88.21
Cl3 Hipparion	Mass	202.86	273.69		290.95	461.21
	CI	40.65	87.78			
Cl3 Neohipparion	Mass	126.46			476.10	
	CI	56.07			355.57	
Cl3 Pliohippus	Mass	395.37	492.17			404.70
**	CI	136.50	61.75			NA

Table 10. Comparison of body mass data from coastal and inland sites. Mean mass (in kg) and 95% confidence intervals are shown for each genus. Bay Area, San Joaquin Valley, and Transverse Ranges biogeography regions are considered coastal; Western Nevada and Mojave Desert biogeographic regions are considered inland.

Another constant concern in paleontology is the quality of the fossil record. Not only are whole ecosystems rarely preserved, but an already incomplete record is often further biased by differential preservation, collection (Behrensmeyer et al. 2000), and description (Davis & Pyenson 2007), creating taphonomic noise that can obscure true biological signals if insufficiently large samples are considered. This is especially a concern for taxa – such as canids and other carnivores – that are well sampled and extensively studied, but are generally rare within ecosystems and for taxa – such as sciurids and other rodents - that are common within ecosystems but are either infrequently preserved or undercollected. Sample size is demonstrably driving at least one signal in this study: Late Clarendonian *Epicyon* shows a strong negative correlation with latitude, but this is almost certainly the result of an incomplete sample. Wang *et al.* (1999) note that two species of *Epicyon* are present at Late Clarendonian sites throughout North America: the giant *E. haydeni* and the smaller *E. saevus*. As discussed in the first chapter of this dissertation, both are present in the Juntura Formation of Oregon, but only E. haydeni is represented by dental material from the coeval Contra Costa Group of the San Francisco Bay Area. Were the sample size from this site larger, it would almost certainly include *E. saevus*, likely obscuring the seemingly strong latitudinal gradient. The small sample size of many other canid and sciurid taxa makes it possible, or even likely, that many the patterns observed here do not reflect biological trends. It is worth noting, however, that sample size cannot be invoked to explain every body size gradient or lack thereof – in canids. *Mesocyon* is both extremely common and extremely well sampled in Arikareean faunas (Wang 1994), and is present in large numbers (n=25) in the latitudinally distant John Day and Otay Formations. While the Arikareean is one of the

coldest intervals of the Oligo-Miocene, there is no evidence of a significant difference in *Mesocyon* size between southern California and Oregon. Likewise, sample size cannot explain most of the patterns observed in equids, which are both common and well sampled; even the most poorly sampled equid in the database (Late Early Hemphillian *Pliohippus*) has a sample size of 10, and *Merychippus* is represented by over 100 specimens. As such, significant results such as the positive correlations between body mass and latitude in *Merychippus* (n=102) and *Dinohippus* (n=56) are likely not taphonomic artifacts but can be interpreted as ecological trends. The same is true, though, for the patterns observed in other well-sampled taxa such as *Acritohippus* (n=36), *Hipparion* (n=43), and *Astrohippus* (n=49), in which no latitudinal gradient is visible. Taphonomic bias is also unlikely to affect these patterns too strongly, as in many cases, taxa sampled in similar numbers and from the same sites (e.g. *Dinohippus* and *Astrohippus*) show different patterns.

Such patterns further support the suggestion made in Chapter 2 of this dissertation that the same environmental conditions, both biotic and abiotic, may influence different taxa in different ways. This was shown to be true at the family level in Chapter 2, but the data presented here suggest that biotic patterns can vary considerably even between closely related genera; *Merychippus* and *Acritohippus*, for instance, are both *Merychippus*-grade equids, but while the former shows a strong latitudinal gradient, the latter does not. The same is true of *Dinohippus* and its close, but smaller, relative *Astrohippus*. Not only do body size patterns vary between coeval taxa, but they often vary between closely related taxa through time. The Late Miocene hipparionins *Hipparion* and *Neohipparion*, for example, are likely descended from the hipparionin

merychippines of the mid-Miocene (MacFadden 1992), but whereas *Merychippus* shows latitudinal gradients, its probable descendants do not. Bergmann's "Rule," then, does not only apply to some taxa and not others, but does not apply to similar taxa at different points in time.

Modern Gradients

The most striking result of this study is the absence of latitudinal gradients among the modern genera examined. Despite a very large sample size, there is no evidence for either a positive or a negative relationship between body size and temperature or latitude in *Spermophilus*. A negative correlation with temperature and a positive correlation with latitude, both in keeping with Bergmann's Rule, are visible in Odocoileus, but the sample is insufficiently large to establish whether or not the trend is significant (while deer are common, they also often lack weight data in collections, as individuals tend to be large and difficult to measure accurately). Only within *Canis* are significant trends apparent. However, these patterns are likely a sampling artifact: specimens from the contiguous United States and southern Canada are almost exclusively coyotes (*C. latrans*), while specimens from northern Canada and southeast Alaska are almost all wolves (C. lupus). While neither of these species shows a significant relationship with temperature or latitude, wolves are larger than coyotes, and their presence at the north end of the transect accounts for the negative correlation with temperature and positive correlation with latitude. At first glance, this seems to support Bergmann's Rule sensu stricto, as it is a case of larger species within a genus occupying colder climates. However, it is unlikely that this is a truly natural signal, as wolves have been extirpated over large areas of the contiguous United States, and many of these extirpations took place before systematic specimen collecting had taken hold or at the hands of individuals with no scientific interest in preserving data about the animals they had killed. Were reliable data to exist for wolf populations along the southern end of the coastal transect, they would very likely obscure the trend currently visible in the data. In this case, all three modern genera

included in this study would fail to conform to the predictions made by Bergmann's Rule. If the appearance of a latitudinal gradient in *Canis* is in fact a sampling artifact, the appearance of weak gradients in fossil taxa relative to the modern model would likely disappear, falsifying the second prediction tested in this study for all three families.

This finding also seemingly falsifies the many others that have shown latitudinal body size gradients or relationships with temperature in modern taxa (Ashton et al. 2000). This may be due in part to the level at which the studies were conducted: almost all modern research on body size evolution has focused on patterns within species. It may be that temperature and body mass interact at a very fine scale and that geographic trends become obscured at higher taxonomic levels. This would run counter to Bergmann's (1847) observation of body mass gradients within genera and would contradict his suggestion that the forces driving trends within genera should drive similar trends at all taxonomic levels. Another possibility is that the source of the data for these studies is influencing the patterns observed in them. Bergmann's research, and several landmark studies in the field since (e.g. Erlinge 1987, Korpimäki & Norrdahl 1989), focused on mammals in Europe. As is the case with wolves in North America, many large animals have long since been extirpated from the southern, temperate parts of Europe and, if they survive at all, are present only in the inaccessible regions of the continent. These regions tend to be cold and are, for the most part, located far to the north, and this alone could explain the appearance of latitudinal gradients and of a negative correlation between temperature and body size. Studies of Bergmann's Rule have, of course, been conducted in other areas as well, but the example of the wolves

proves that even on relatively "wild" continents such as North America, extirpation and extinction can strongly influence body mass patterns.

The apparent lack of latitudinal body size gradients in the modern taxa examined here raises the question of whether a fossil test of Bergmann's Rule is even necessary; if the pattern doesn't exist in modern ecosystems, why should we expect it to have been present in the past? This question might especially be asked of studies like this one that delve back into deep time into ecosystems that are not analogous to those we see today. In fact, it is precisely because fossil and modern ecosystems are not entirely analogous that such studies are worthwhile. On a practical level, if there are concerns that a biotic pattern such as Bergmann's Rule is driven in part by human activity, these concerns can be addressed by examining ecosystems that predate the evolution or immigration of Homo sapiens. There are other, more fundamental ways, in which the study of body size evolution in fossil animals can and should influence our understanding of the same phenomenon in modern ecosystems. As discussed above, other ecological "rules," such as a correlation between latitude and diversity, do not apply during other intervals of the Cenozoic (Rose et al. 2011), and the only way to study these intervals is through the fossil record. Paleoecology can also supply a perspective on changing responses to ecological pressures within a taxon unavailable to neontologists. Patterns such as the shift from strong body size gradients in *Merychippus* to the absence of such gradients in later hipparionin species reveal variable responses to (or, alternatively, stasis in the face of) changing environmental drivers that could not be observed by studying only modern taxa and ecosystems. Understanding the degree of temporal variability in any ecological model is as critical to maximizing the predictive power of that model as understanding

variability across a modern environmental gradient. In this context, the largely negative results of this study that suggest that Bergmann's Rule is not now, and has never been, a monolithic ecological "law" are as informative as a confirmation of Bergmann's (1847) hypothesis would have been. As the fossil record becomes increasingly well sampled and as paleoclimatic proxies become increasingly robust, paleoecology should continue to play a key role in our understanding of how the abiotic environment shapes evolutionary trends.

APPENDIX A

CHAPTER III DATA

- Repository Collection in which specimen is located
- Specimen # Identification number of specimen
- Taxonomy (Family, Subfamily, Tribe, Sub tribe, Genus, Species) Specimen taxon
- Site Name of site at which specimen was found
- Site # Identification number of site
- Formation Formation in which specimen was found
- Age NALMA subdivision to which the specimen can be dated
- Source Source of measurement
- $2LPL 2^{nd}$ lower premolar length
- $3LPL 3^{rd}$ lower premolar length
- $4LPL 4^{th}$ lower premolar length
- 1LML 1st lower molar length
- $2LML 2^{nd}$ lower molar length
- $3LML 3^{rd}$ lower molar length
- $2UML 2^{nd}$ upper molar length

Repository Specimen #	AMNH 6860	AMNH 6863	AMNH 6879	AMNH 6881	AMNH 6885	AMNH 6896	AMNH 6897	AMNH 6902	AMNH 6904
Family	Canidae	Canidae	Canidae	Canidae	Canidae	Canidae	Canidae	Canidae	Canidae
Subfamily	Hesperocyoninae	Hesperocyoninae	Borophaginae	Borophaginae	Borophaginae	Borophaginae	Borophaginae	Hesperocyoninae	Hesperocyoninae
Tribe			Basal Borophaginae	Basal Borophaginae	Borophagini	Phlaocyonini	Phlaocyonini		
Subtribe Genus Species	Mesocyon coryphaeus	Paraenhydrocyon josephi	Rhizocyon oregonensis	Rhizocyon oregonensis	Basal Borophagini <i>Cormocyon</i> copei	Phlaocyon latidens	Phlaocyon latidens	Enhydrocyon stenocephalus	Enhydrocyon basilatus
Site	The Cove	Camp Creek	Diceratherium Beds	Camp Creek	John Day Basin	Diceratherium Beds	Diceratherium Beds	The Cove	Haystack Valley
Site #									
Formation	John Day	John Day	John Day	John Day	John Day	John Day	John Day	John Day	John Day
Age	Ar1	Ar1	Ar1	Ar1	Ar1	Ar1	Ar1	Ar1	Ar2
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL 3LPL 4LPL	12.00		0.02	10.10	11.00	0.72			
1LML 2LML 3LML 2UML	15.68	14.95	9.85	10.18	11.09	8.63	8.04	20.67	23

Repository	AMNH	IMNH	IMNH	IMNH	IMNH	IMNH	IMNH	IMNH	IMNH
Specimen #	<u>6907</u>	11959	13856	24584	24632	27930	29087	29088	36312
Family	Canidae	Equidae	Equidae	Canidae	Canidae	Equidae	Equidae	Equidae	Equidae
Subfamily	Borophaginae	Equinae	Equinae	Caninae	Borophaginae	Equinae	Equinae	Equinae	Equinae
Tribe	Phlaocyonini	Hipparionini	Equini	Vulpini	Borophagini	Equini	Equini	Equini	Equini
Subtribe					Borophagina				
Genus Species	Phlaocyon latidens	Cormohipparion plicoartus	<i>Pliohippus</i> <i>spectans</i> Little Jacks	Metalopex merriami	Epicyon haydeni	Pliohippus	Pliohippus	Pliohippus	Merychippus
Site	John Day Basin	Sugar Creek	Creek / Wickahoney /	Star Valley	Star Valley	Star Valley	Star Valley	Star Valley	Sheaville / Coal Mine Basin
Site #		676	1081	67001	67001	67001	67001	67001	82005
Formation	John Day	Chalk Butte	Chalk Butte	Chalk Butte	Chalk Butte	Chalk Butte	Chalk Butte	Chalk Butte	Sucker Creek
Age	Ar1	Hh1	Hh1	Hh2	Hh2	Hh2	Hh2	Hh2	Ba1
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LFL 3LPL			20.97				24.99		
4LPL									
1LML	8.5			14.62	38.63	29.3			17.98
2LML 3LML 2UML		23.69						33.28	

Repository Specimen #	JODA 333	JODA 771	JODA 791	JODA 1086	JODA 1243	JODA 1344	JODA 1345	JODA 2020	JODA 2021
Family	Canidae	Canidae	Canidae	Equidae	Canidae	Equidae	Equidae	Equidae	Equidae
Subfamily	Hesperocyoninae	Caninae	Borophaginae	Anchitheriinae	Borophaginae	Anchitheriinae	Anchitheriinae	Equinae	Equinae
Tribe		Basal Caninae	Phlaocyonini		Phlaocyonini				
Subtribe									
Genus Species	Mesocyon coryphaeus	Leptocyon mollis	Phlaocyon latidens	Miohippus	Phlaocyon latidens	Parahippus	Parahippus	Merychippus	Merychippus
Site	Branson Creek	Blue Basin	Blue Basin	Branson Creek	Blue Basin	Mascall	Mascall	Mascall	Mascall
Site #	3	9	9	3	9	4	4	4	4
Formation	John Day	John Day	John Day	John Day	John Day	Mascall	Mascall	Mascall	Mascall
Age	Ar1	Ar1	Ar1	Ar1	Ar1	Ba1	Ba1	Ba1	Ba1
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL									
3LPL									
4LPL	17.00	0.00	0.00	14.20	0.4	21.58			
ILML MAT	17.22	9.38	8.09	14.28	8.4		21.44		
2LML 31 MI							21.44	18 77	20.58
2UML								10.77	20.30

Repository	JODA 2039	JODA 2047	JODA 2311	JODA 2397	JODA 2413	JODA 2419	JODA 2427	JODA 2432	JODA 2434
Family	Equidae	Equidae	Canidae	Canidae	Equidae	Equidae	Equidae	Equidae	Equidae
Subfamily	Equinae	Equinae	Cumun	Hesperocyoninae	Anchitheriinae	Anchitheriinae	Anchitheriinae	Anchitheriinae	Equinae
	1	1		1 5					1
Tribe									
Subtribe									
Genus Species				Mesocyon coryphaeus	Parahippus	Parahippus	Parahippus		Merychippus
Site	Mascall	Mascall	Branson Creek	Branson Creek	Mascall	Mascall	Mascall	Mascall	Mascall
Site #	4	4	3	3	4	4	4	4	4
Formation	Mascall	Mascall	John Day	John Day	Mascall	Mascall	Mascall	Mascall	Mascall
Age	Ba1	Ba1	Ar1	Ar1	Ba1	Ba1	Ba1	Ba1	Ba1
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL		22.56			17.38				
3LPL	17.04								
4LPL			7.05	15 15			15 11	16.00	
			7.85	15.15			15.11	10.29	
3L MI						20.8			
2UML						20.0			17.41

Repository	JODA	JODA	JODA	JODA	JODA	JODA	JODA	JODA	JODA
Specimen #	2435	2436	2437	2439	2443	2462	2897	3266	3531
Family	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Canidae	Canidae
Subfamily	Anchitheriinae	Equinae	Equinae	Equinae	Equinae	Equinae	Anchitheriinae	Borophaginae	
Tribe						Equini		Phlaocyonini	
Subtribe									
Genus Species	Parahippus	Merychippus	Merychippus	Merychippus	Merychippus	Pliohippus	Miohippus	Phlaocyon latidens	
Site	Mascall	Mascall	Mascall	Mascall	Mascall	Rattlesnake	Foree	Blue Basin	Foree
Site #	4	4	4	4	4	5	7	9	7
Formation	Mascall	Mascall	Mascall	Mascall	Mascall	Rattlesnake	John Day	John Day	John Day
Age	Ba1	Ba1	Ba1	Ba1	Ba1	Hh2	Ar1	Ar1	Ar1
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL						28.38			
3LPL									
4LPL		18.14	15.04						7.50
ILML 21 MI			15.86	16.96				7.54	1.52
2LML 31 MI				10.80	20.17		17.46		
	15 54				20.17		17.40		
201011	15.54								

Repository	JODA	JODA	JODA	JODA	JODA	JODA	JODA	JODA	JODA
Specimen #	3670	3684	4294	4447	4658	4793	4861	4895	4920
Family	Equidae	Canidae	Equidae	Sciuridae	Canidae	Equidae	Canidae	Equidae	Canidae
Subfamily	Anchitheriinae	Hesperocyoninae	Equinae	Sciurinae Basal	Borophaginae	Anchitheriinae	Borophaginae	Anchitheriinae	Borophaginae
Tribe				Terrestrial Squirrels	Phlaocyonini		Phlaocyonini		Phlaocyonini
Subtribe									
Genus Species		Mesocyon	Merychippus	Protospermophilus vortmani	Phlaocyon latidens	Miohippus	Phlaocyon latidens	Miohippus	Phlaocyon latidens
Site	Foree	Logan Butte	Mascall	Hayes' Haven	Sorefoot Creek	Foree	Foree	Blue Basin	Blue Basin
Site #	7	52	4		64	7	7	9	9
Formation	John Day	John Day	Mascall	John Day	John Day	John Day	John Day	John Day	John Day
Age	Ar1	Ar1	Ba1	Ar2	Ar1	Ar1	Ar1	Ar1	Ar1
Source	Measurement	Measurement	Measurement	JXS	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL						12.4			
3LPL									
4LPL 11 MI		15.26		2.01	7 22		0.12		0.20
1LML 21 MI		13.30		2.01	1.55		0.10		0.30
3LML 2UML	17.95		21.49					15.53	

Repository	JODA	JODA	JODA	JODA	JODA	JODA	JODA	JODA	JODA
Specimen #	5761	5903	6156	6215	6234	6289	6355	6464	6810
Family	Sciuridae	Equidae	Equidae	Equidae	Equidae	Canidae	Sciuridae	Canidae	Canidae
Subfamily	Sciurinae	Anchitheriinae	Anchitheriinae	Anchitheriinae	Anchitheriinae	Borophaginae	Sciurinae	Borophaginae	Borophaginae
Tribe	Sciurini					Borophagini	Sciurini	Borophagini	Borophagini
Subtribe						Basal		Basal	Basal
Subtribe						Borophagini		Borophagini	Borophagini
Genus Species	Protosciurus condoni	Miohippus	Miohippus	Miohippus	Mesohippus	Cormocyon	Miosciurus ballovianus	Cormocyon copei	Cormocyon
Site	Hayes' Haven	Lonerock	Lonerock	Lonerock	BLM Land Exchange	Blue Basin	Blue Basin	Blue Basin	Sorefoot Creek
Site #		140-61	140-71	140-75	Tract 58	9		9	64
Formation	John Day	John Day	John Day	John Day	John Day	John Day	John Day	John Day	John Day
Age	Ar2	Ar2	Ar2	Ar2	Ar1	Ar1	Ar1	Ar1	Ar1
Source	JXS	Measurement	Measurement	Measurement	Measurement	Measurement	JXS	Measurement	Measurement
2LPL									
3LPL				13.75					
4LPL									
1LML	2.61		12.61			8.18	1.71	8.37	8.59
2LML					1				
3LML		11.04			17.58				
2UML		11.24							

Repository	JODA	JODA	JODA	JODA	JODA	JODA	JODA	JODA	JODA
Specimen #	7010	7208	7368	7369	7424	8057	8266	8579	10072
Family	Equidae	Canidae	Equidae	Equidae	Equidae	Canidae	Equidae	Canidae	Equidae
Subfamily	Anchitheriinae	Borophaginae	Anchitheriinae	Anchitheriinae	Anchitheriinae	Borophaginae	Anchitheriinae	Borophaginae	Anchitheriinae
Tribe		Borophagini				Borophagini		Borophagini	
		Basal				Basal		Basal	
Subtribe		Boronhagini				Borophagini		Borophagini	
Genus	Archaeohippus	Cormocyon	Miohippus	Miohippus	Archaeohippus	Cormocyon	Miohippus	Cormocyon	Kalobatippus
Species	in chucomppus	connocyon	minimppus	momphis	The chace on pp us	connocyon	momphis	connocyon	iiiiio o unipp iio
~ 1									
Site	Bridge Creek 6	Foree	Lonerock	Lonerock	Schrock's	Blue Basin	Bone Creek (Uppermost)	North Foree	Haystack 4
Site #	160	7	140-57	140-70		9	49	7B	8A
Formation	John Day	John Day	John Day	John Day	John Day	John Day	John Day	John Day	John Day
Age	Ar2	Ar1	Ar2	Ar2	Ar1	Ar1	Ar2	Ar1	Ar1
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL					12.51				
3LPL									
4LPL			11.31						
1LML		9.03				8.91		8.01	
2LML									
3LML	14.79						17.47		
2UML				11.3					13.09
Repository Specimen #	JODA 10093	JODA 10260	JODA 10300	JODA 10353	JODA 13004	LACM 1541	LACM 5933	LACM 5937	LACM 6588
------------------------------	---------------------------	---------------	---------------	---------------	----------------	---------------	-----------------	-------------------	--------------
Family	Sciuridae	Canidae	Canidae	Canidae	Equidae	Equidae	Equidae	Equidae	Equidae
Subfamily	Sciurinae		Borophaginae		Anchitheriinae	Equinae	Equinae	Anchitheriinae	Equinae
Tribe	Sciurini		Phlaocyonini						Equini
Subtribe Genus Species	Miosciurus ballovianus		Rhizocyon		Miohippus	Merychippus	Merychippus	Archaeohippus	Pliohippus
Site	Blue Basin	Blue Basin	Blue Basin	Blue Basin	Blue Basin	Skull Springs	Mascall General	l Mascall General	Rome
Site #		9	9	9	9	CIT 57	1869	1869	CIT 62
Formation	John Day	John Day	John Day	John Day	John Day	Battle Creek	Mascall	Mascall	Drewsey
Age	Ar1	Ar1	Ar1	Ar1	Ar1	Ba2	Ba1	Ba1	Hh2
Source	JXS	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL									
3LPL									
4LPL		- 10	0.0 7	0.40					
1LML	1.67	7.19	8.85	8.13					
3LML 2UML					16.49	23.59	21.5	19.08	28.35

Repository Specimen #	LACM 6590	LACM 6591	LACM 6593	LACM 12311	LACM 32237	LACM 32238	LACM 32546	LACM 32591	LACM 32593
Family	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae
Subfamily	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae
Tribe	Equini	Equini	Equini	Hipparionini					
Subtribe									
Genus Species	Pliohippus	Pliohippus	Pliohippus	Nannipus	Merychippus	Merychippus	Merychippus	Merychippus	Merychippus
Site	Rome	Rome	Rome	Arlington	Skull Springs				
Site #	CIT 62	CIT 62	CIT 62	6420	CIT 124	CIT 124	CIT 57	CIT 57	CIT 57
Formation	Drewsey	Drewsey	Drewsey	Alkali Canyon	Battle Creek				
Age	Hh2	Hh2	Hh2	Hh3	Ba2	Ba2	Ba2	Ba2	Ba2
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL					19.43	13.73			
3LPL									
4LPL 11 MI									
2L ML									
3LML	28.62	27.81	28.07	23.9			22.63	21.01	22.11
2UML									

Repository Specimen #	LACM 32596	LACM 32602	LACM 32605	LACM 32608	LACM 32627	LACM 32631	LACM 32633	LACM 32661	LACM 32678
Family	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae
Subfamily	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae
Tribe									
Subtribe									
Genus Species	Merychippus	Merychippus	Merychippus	Merychippus	Merychippus	Merychippus	Merychippus	Merychippus	Merychippus
Site	Skull Springs	Skull Springs	Skull Springs	Skull Springs	Skull Springs	Skull Springs	Skull Springs	Skull Springs	Skull Springs
Site #	CIT 57	CIT 57	CIT 57	CIT 57	CIT 57	CIT 57	CIT 57	CIT 57	CIT 57
Formation	Battle Creek	Battle Creek	Battle Creek	Battle Creek	Battle Creek	Battle Creek	Battle Creek	Battle Creek	Battle Creek
Age Source 2LPL	Ba2 Measurement 21.03	Ba2 Measurement							
3LPL 4LPL 1LML 2LML									
3LML 2UML		21.9	21.77	21.08	22.68	23.05	22.13	22.63	22.98

Repository	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM
Specimen #	32679	32686	32696	32818	33194	33580	55211	55212	58168
Family	Equidae	Equidae	Equidae	Equidae	Canidae	Equidae	Canidae	Canidae	Equidae
Subfamily	Equinae	Equinae	Equinae	Equinae	Borophaginae	Equinae	Caninae	Caninae	Equinae
Tribe					Borophagini		Vulpini	Canini	Equini
Subtribe					Aelurodontina			Canina	
Genus Species	Merychippus	Merychippus	Merychippus	Merychippus	Tomarctus	Merychippus	Vulpes stenognathus	Eucyon davisi	Pliohippus
Site	Skull Springs	Skull Springs	Skull Springs	Skull Springs	Gateway	Beatty Buttes	Thousand Creek	Hoffman Blowout	Hoffman Blowout
Site #	CIT 57	CIT 124	3171	CIT 57	CIT 368	CIT 371	CIT 63	6421	6421
Formation	Battle Creek	Battle Creek	Battle Creek	Battle Creek	Mascall	Beatty Butte	Thousand Creek	Alkali Canyon	Alkali Canyon
Age	Ba2	Ba2	Ba2	Ba2	Ba1	Ba1	Hh1	Hh3	Hh3
Source 2LPL	Measurement	Measurement	Measurement 18.25	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement 30.28
3LPL									
4LPL 11 MI					19.7		12 76	13 69	
2LML					17.1		12.70	15.09	
3LML 2UML	20.25	19.96		22.5		22.39			

Repository	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM
Specimen #	581/5 Equideo	92992 Equideo	93891 Equideo	94504 Equideo	94518 Equidad	Equidad	Equideo	Equideo	Equideo
Family	Equidae	Equidae	Equidae	Equidae	Equidae			Equidae	Equidae
Sublamily	Equinae	Equinae	Equinae	Equinae	Equinae	Anchitheriinae	Anchitheriinae	Equinae	Equinae
Tribe	Hipparionini	Hipparionini	Equini	Equini	Equini			Hipparionini	Hipparionini
Subtribe									
Genus Species	Neohipparion	Neohipparion	Pliohippus	Pliohippus	Pliohippus	Desmatippus avus	Desmatippus avus	Acritohippus isonesus	Acritohippus isonesus
Site	Hoffman Blowout	Stinking Water Creek	North Bartlett Mountain	Bartlett Mountain	Bartlett Mountain	Sucker Creek	Sucker Creek	Sucker Creek	Sucker Creek
Site #	6421	CIT 41	CIT 595	3762	3762	CIT 44	CIT 44	CIT 44	CIT 44
Formation	Alkali Canyon	Drewsey	Drewsey	Drewsey	Drewsey	Sucker Creek	Sucker Creek	Sucker Creek	Sucker Creek
Age	Hh3	Hh2	Hh2	Hh2	Hh2	Ba1	Ba1	Ba1	Ba1
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL		22.18				19.25			
3LPL									
4LPL			29.9						
1LML									19.92
2LML									
3LML	26.44				31.43		20.67		
2UML				26.99				19.79	

Repository	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM
Specimen #	CIT 1056	CIT 1057	CIT 1058	CIT 1059	CIT 1123	CIT 1124	CIT 1769	CIT 1770	CIT 2697
Family	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae
Subfamily	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Anchitheriinae	Equinae	Anchitheriinae
Tribe	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini		Hipparionini	
Subtribe									
Genus Species	Acritohippus isonesus	Acritohippus isonesus	Acritohippus isonesus	Acritohippus isonesus	Merychippus brevidontus	Merychippus brevidontus	Hypohippus osborni	Merychippus brevidontus	Parahippus pawniensis
Site	Sucker Creek	Sucker Creek	Sucker Creek	Sucker Creek	Sucker Creek	Sucker Creek	Sucker Creek	Sucker Creek	Месса
Site #	CIT 44	CIT 44	CIT 44	CIT 44	CIT 44	CIT 44	CIT 44	CIT 58	CIT 37
Formation	Sucker Creek	Sucker Creek	Sucker Creek	Sucker Creek	Sucker Creek	Sucker Creek	Sucker Creek	Sucker Creek	John Day
Age Source 2LPL 3LPL 4LPL 1LML	Ba1 Measurement	Bal Measurement 18.39	Ba1 Measurement	Bal Measurement 19.41	Ba1 Measurement	Ba1 Measurement 19.89	Ba1 Measurement	Ba1 Measurement	Ar4 Measurement
2LML	19.17		22.04				22.02		
3LML 2UMI			23.84		19 37		23.03	18 91	16.23
2014IL					17.57			10.71	10.25

Repository Specimen #	LACM CIT 2698	LACM CIT 2699	LACM CIT 2705	LACM CIT 2930	LACM CIT 3054	LACM CIT 3055	LACM CIT 3057	LACM CIT 3062	LACM CIT 3063
Family	Equidae	Equidae	Canidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae
Subfamily	Anchitheriinae	Anchitheriinae		Equinae	Equinae	Equinae	Equinae	Equinae	Anchitheriinae
Tribe				Hipparionini		Equini	Hipparionini	Equini	
Subtribe									
Genus Species	Parahippus pawniensis	Parahippus pawniensis		Merychippus seversus	Merychippus	Pliohippus mirabilis	Acritohippus isonesus	Pliohippus mirabilis	Hypohippus osborni
Site	Mecca	Mecca	Mecca	Gateway	Beatty Buttes	Beatty Buttes	Beatty Buttes	Beatty Buttes	Beatty Buttes
Site #	CIT 37	CIT 37	CIT 37a	CIT 368	CIT 371	CIT 371	CIT 371	CIT 371	CIT 371
Formation	John Day	John Day	John Day	Mascall	Beatty Butte	Beatty Butte	Beatty Butte	Beatty Butte	Beatty Butte
Age	Ar4	Ar4	Ar4	Ba1	Ba1	Ba1	Ba1	Ba1	Ba1
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL									
3LPL								21.21	
4LPL 11 MI	14 51		17			21.41		21.21	
2LML	14.31		17			21.41			
3LML		16.24			23.54		24.15		24.77
2UML				18.34					

Repository	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM
Specimen #	CIT 3067	CIT 3201	CIT 3202	CIT 3207	CIT 340	CIT 392	CIT 4081	CIT 4090	CIT 4095
Family	Canidae	Equidae	Equidae	Equidae	Equidae	Canidae	Equidae	Equidae	Equidae
Subfamily		Equinae	Equinae	Equinae	Equinae	Borophaginae	Equinae	Equinae	Anchitheriinae
Tribe				Equini	Hipparionini	Borophagini	Hipparionini	Hipparionini	
Subtribe						Cynarctina			
Genus Species		Merychippus	Merychippus	Pliohippus mirabilis	Acritohippus isonesus	Euoplocyon brachygnathus	Acritohippus isonesus	Merychippus brevidontus	Archaeohippus ultimus
Site	Beatty Buttes	Corral Buttes	Corral Buttes	Corral Buttes	Skull Springs	Skull Springs	Skull Springs	Virgin Valley	Gateway
Site #	CIT 371	CIT 417	CIT 417	CIT 418	CIT 57	CIT 57	CIT 57	CIT 114	CIT 368
Formation	Beatty Butte	Butte Creek	Butte Creek	Butte Creek	Battle Creek	Butte Creek	Butte Creek	Virgin Valley	Mascall
Age	Ba1	Ba1	Ba1	Ba1	Ba2	Ba2	Ba2	Ba1	Ba1
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL									
3LPL									
4LPL									
1LML	10.57			18.37	15.71	17.58		16.72	
2LML									
3LML		21.63	23.67				21.64		14.91
2UML									

Repository	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM
Specimen #	CIT 4096	CIT 425	CIT 437	CIT 4916	CIT 5011	CIT 5188	CIT 5239	CIT 53	CIT 532
Family	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Sciuridae	Equidae	Equidae
Subfamily	Equinae	Equinae	Equinae	Equinae	Anchitheriinae	Equinae	Sciurinae	Equinae	Equinae
Tribe			Hipparionini	Hipparionini			Marmotini	Hipparionini	Hipparionini
Subtribe							~		
Genus Species	Merychippus	Merychippus	Acritohippus isonesus	Merychippus seversus	Hypohippus	Merychippus	Spermophilus shotwelli	Neohipparion leptode	Merychippus seversus
Site	Gateway	Dayville	Sucker Creek	Gateway	Beatty Buttes	Corral Buttes	Arlington	Thousand Creek	Mascall Type
Site #	CIT 368	CIT 113	CIT 44	CIT 368	CIT 371	CIT 417		CIT 63	CIT 532
Formation	Mascall	Mascall	Sucker Creek	Mascall	Beatty Butte	Butte Creek	Alkali Canyon	Thousand Creek	Mascall
Age	Ba1	Ba1	Ba1	Ba1	Ba1	Ba1	Hh3	Hh1	Ba1
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Black 1963	Measurement	Measurement
2LPL		19							
3LPL									
4LPL					21.02	10.20	2.5	22.05	
ILML 21 MI					21.93	18.39	2.5	23.05	
2LML 31 MI	16 10								
2UML	10.17		22.11	19 48					19.26
201111			22.11	17.40					17.20

Repository	LACM	LACM	SCNHM						
Specimen #	CIT 5454	CIT4067	VMC 197	VMC 197	VMO 165 A	VMO 367	VMO 444 t4	VMO 520	VMO 800 B
Family	Equidae	Equidae	Canidae	Canidae	Equidae	Equidae	Equidae	Equidae	Equidae
Subfamily	Anchitheriinae	Equinae	Borophaginae	Borophaginae	Equinae	Equinae	Equinae	Equinae	Equinae
Tribe			Borophagini	Borophagini					
Subtribe									
Genus Species	Parahippus pawniensis	Merychippus							
Site	Месса	Dayville	Fly Canyon						
Site #	CIT 37	CIT 113							
Formation	John Day	Mascall	High Rock Sequence						
Age	Ar4	Ba1	Hf2						
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL									19.94
3LPL	13.99								
4LPL									
1LML			21.17	13.28		16.85			
2LML									
3LML		20.66			24.19		22.78		
2UML								20.49	

Repository	SCNHM	SCNHM	SDSM	SDSM	SDSM	SDSM	SDSM	SDSM	SDSM
Specimen #	VMO 811 B	VMO 819	10607	16742	16744	16753	16756	16757	66313
Family	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae
Subfamily	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae
Tribe			Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini
Subtribe									
Genus Species			Hipparion condoni	Hipparion condoni	Hipparion condoni	Hipparion condoni	Nannipus	Hipparion condoni	Hipparion
Site			Buena	Toppenish- Goldendale	Buena	Moxee	Toppenish- Goldendale	Buena	Horse Locality
Site #			6414	6415	6414	6425	6419	6414	6367
Formation	High Rock Sequence	High Rock Sequence	Ellensburg	Ellensburg	Ellensburg	Ellensburg	Ellensburg	Ellensburg	Ellensburg
Age	Hf2	Hf2	C13	C13	C13	C13	C13	C13	C13
Source 2L.PL	Measurement	Measurement	Measurement	Measurement	Measurement 23.82	Measurement	Measurement	Measurement	Measurement
3LPL					20102		10 50		24.22
4LPL 11 MT			12.19				10.38	10.72	24.22
			23.28	02.54				19.72	
2LML 2LML	20.08	21.61		23.54		21.71			
SLML	20.08	21.01				21./1			
20ML									

Repository	UALP	UALP	UALP	UALP	UCMP	UCMP	UCMP	UCMP	UCMP
Specifien #	Sciuridae	Sciuridae	Sciuridae	Sciuridae	Fauidae	Fauidae	Fauidae	Fauidae	Fauidae
Subfamily	Sciurinae	Sciurinae	Sciurinae	Sciurinae	Equinae	Equinae	Equinae	Equinae	Equinae
Tribe	Terrestrial	Terrestrial	Marmotini	Terrestrial	Hipparionini		Hipparionini	Hipparionini	Hipparionini
	Squirrels	Squirrels		Squirrels					
Subtribe									
Genus Species	Protospermophilus malheurensis	Protospermophilus malheurensis	Spermophilus tephrus	Protospermophilus malheurensis	Neohipparion	Merychippus	Merychippus seversus	Merychippus seversus	Merychippus seversus
Site	Devils Gate	Devils Gate	Devils Gate	Devils Gate	JCM 4	Mascall Misc. 2	Mascall General	Mascall Misc. 2	Mascall Misc. 2
Site #	8879	8963	8955	9057	817	884	67153	884	884
Formation	Sucker Creek	Sucker Creek	Sucker Creek	Sucker Creek	Rattlesnake	Mascall	Mascall	Mascall	Mascall
Age	Ba1	Ba1	Ba1	Ba1	Hh2	Ba1	Ba1	Ba1	Ba1
Source 2LPL	Downing 1992	Downing 1992	Downing 1992	Downing 1992	Measurement	Measurement 15.86	Measurement	Measurement 19.14	Measurement
3LPL						10.00			
4LPL 1LML	2.42	2.23	1.86	1.92			15.76		
2LML 3LML 2UMI					25.55				18.26

Repository	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP
Specimen #	1707	1718	2028	2202	10665	11306	11450	11474	11562
Family	Equidae	Equidae	Equidae	Equidae	Equidae	Canidae	Equidae	Canidae	Canidae
Subfamily	Equinae	Equinae	Equinae	Equinae	Anchitheriinae	Borophaginae	Equinae	Borophaginae	Borophaginae
Tribe		Hipparionini	Hipparionini	Hipparionini		Borophagini		Borophagini	Borophagini
Subtribe						Cynarctina		Cynarctina	Cynarctina
Genus Species	Merychippus	Acritohippus isonesus	Merychippus seversus	Neohipparion	Hypohippus osborni	Metatomarctus sp. A	Merychippus	Paracynarctus kelloggi	Paracynarctus kelloggi
Site	Schneider Ranch	Schneider Ranch	Schneider Ranch	Rattlesnake General	Virgin Valley	Virgin Valley	Virgin Valley 9	Virgin Valley	Virgin Valley
Site #	903	903	903	6553	1065	1065	3351	1065	1065
Formation	Mascall	Mascall	Mascall	Rattlesnake	Virgin Valley	Virgin Valley	Virgin Valley	Virgin Valley	Virgin Valley
Age	Ba1	Ba1	Ba1	Hh2	Ba1	Ba1	Ba1	Ba1	Ba1
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL	22.17				24.6				
3LPL									
4LPL									
1LML						16.6		19.31	14.55
2LML									
3LML		21.05	20.72	25.2			19.9		
2UML									

Repository Specimen #	UCMP 11699	UCMP 11704	UCMP 12506	UCMP 12538	UCMP 12570	UCMP 12587	UCMP 19414	UCMP 22351	UCMP 22378
Family	Equidae	Equidae	Sciuridae	Sciuridae	Sciuridae	Equidae	Equidae	Equidae	Equidae
Subfamily	Equinae	Equinae	Sciurinae	Sciurinae	Sciurinae	Anchitheriinae	Equinae	Equinae	Equinae
Tribe			Marmotini	Marmotini	Marmotini		Hipparionini	Hipparionini	Hipparionini
Subtribe									
Genus Species	Merychippus	Merychippus	Paenemarmota nevadensis	Marmota minor	Spermophilus	Hypohippus osborni	Neohipparion leptode	Hipparion anthonyi	Cormohipparion occidentale
Site	Virgin Valley 13	Virgin Valley 13	Thousand Creek	Thousand Creek	Thousand Creek	Virgin Valley 4	Thousand Creek 8	Ironside	Rattlesnake 9
Site #	1094	1094		1083		1085	1101	3037	3057
Formation	Virgin Valley	Virgin Valley	Thousand Creek	Thousand Creek	Thousand Creek	Virgin Valley	Thousand Creek	Juntura	Rattlesnake
Age	Ba1	Ba1	Hh1	Hh1	Hh1	Ba1	Hh1	C13	Hh2
Source	Measurement	Measurement	Kellogg 1910	Black 1963	Kellogg 1910	Measurement	Measurement	Measurement	Measurement
2LPL	20.64	20.65					29.04	27.75	
3LPL AI DI									
4LTL 1LML			6.3	3.5	1.9	20.17			
2LML			0.0	0.0	119	_0.11/			
3LML									25.05
2UML									

Repository	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP
Specimen #	22388	22391	22400	22423	23088	23098	23106	23108	26793
Family	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Sciuridae
Subfamily	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Sciurinae
Tribe	Equini	Equini	Equini	Equini	Hipparionini	Hipparionini			Marmotini
Subtribe									
Genus Species	Pliohippus spectans	Pliohippus spectans	Dinohippus tantalus	Dinohippus tantalus	Merychippus seversus	Merychippus seversus	Merychippus	Merychippus	Spermophilus gidleyi
Site	Rattlesnake 11	Rattlesnake 11	Rattlesnake 9	Thousand Creek 20	Mascall 5	Mascall 1	Mascall 5	Mascall 5	Rattlesnake
Site #	3060	3060	3057	2744	3059	3043	3059	3059	
Formation	Rattlesnake	Rattlesnake	Rattlesnake	Thousand Creek	Mascall	Mascall	Mascall	Mascall	Rattlesnake
Age	Hh2	Hh2	Hh2	Hh1	Ba1	Ba1	Ba1	Ba1	Hh2
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Black 1963
2LPL			28.58			19.46			
3LPL 41 DI							17.05		
4LPL 11 MI	24 72						17.05		1.9
	24.12								1.0
3LML				31.27				20.44	
2UML		24.72			20.23				

Repository Specimen #	UCMP 27126	UCMP 29956	UCMP 29957	UCMP 29962	UCMP 29963	UCMP 29966	UCMP 29969	UCMP 32753	UCMP 37142
Family	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Canidae	Equidae	Equidae
Subfamily	Equinae	Equinae	Equinae	Equinae	Equinae	-	Caninae	Equinae	Equinae
Tribe	Hipparionini	Equini	Hipparionini	Equini	Equini		Vulpini	Hipparionini	
Subtribe									
Genus Species	Neohipparion leptode	Pliohippus	Neohipparion	Pliohippus	Pliohippus		Vulpes stenognathus	Merychippus seversus	Merychippus
Site	Thousand Creek	Rattlesnake 9	JCM 2	Rattlesnake 11	Rattlesnake 11	Rattlesnake 9	Rattlesnake 3	Gateway	Dry Creek
Site #	6571	3057	815	3060	3060	3057	3042	3472	3938
Formation	Thousand Creek	Rattlesnake	Rattlesnake	Rattlesnake	Rattlesnake	Rattlesnake	Rattlesnake	Mascall	Deer Butte
Age	Hh1	Hh2	Hh2	Hh2	Hh2	Hh2	Hh2	Ba1	Ba2
Source 2LPL	Measurement	Measurement	Measurement	Measurement 31.61	Measurement	Measurement	Measurement	Measurement	Measurement
3LPL									
4LPL					29.31				
1LML	22.95						13.55		19.37
2LML		27.62	20.99			20.00			
3LML 211ML		27.62	30.88			30.99		18 19	
2011L								10.17	

Repository	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP
Specimen #	39093	39095	40315	61616	61623	61750	76367	76608	76855
Family	Sciuridae	Equidae	Equidae	Equidae	Equidae	Canidae	Equidae	Canidae	Equidae
Subfamily	Sciurinae Basal	Equinae	Equinae	Anchitheriinae	Anchitheriinae	Borophaginae	Anchitheriinae	Borophaginae	
Tribe	Terrestrial Squirrels	Hipparionini	Hipparionini			Borophagini		Borophagini	
Subtribe	oquineis					Aelurodontina		Basal Borophagini	
Genus Species	Protospermophilus oregonensis	Merychippus seversus	Merychippus seversus	Hypohippus	Parahippus	Tomarctus	Miohippus	Cormocyon copei	
Site	Mascall	Mascall 16	Crooked River 2	Massacre Lake	Massacre Lake	Massacre Lake	Stubblefield 3	Picture Gorge 7	Drees 2
Site #	4828	4830	4949	6161	6161	6161	6660	6681	76124
Formation	Mascall	Mascall	Mascall	High Rock Sequence	High Rock Sequence	High Rock Sequence	John Day	John Day	John Day
Age	Ba1	Ba1	Ba1	Hf2	Hf2	Hf2	Ar2	Ar1	Hf1
Source	Downs 1956	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL									
3LPL									
4LPL				19.56					
1LML	2.9	19.01				15.22		11.37	11.6
2LML									
3LML			22.11				15.24		
2UML					13.68				

Repository	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UO
Specimen #	77161	315400	315413	315689	316450	316451	316833	316500b	173
Family	Canidae	Equidae	Equidae	Equidae	Sciuridae	Sciuridae	Equidae	Sciuridae	Equidae
Subfamily	Borophaginae	Anchitheriinae	Anchitheriinae	Anchitheriinae	Sciurinae Basal	Sciurinae Basal	Anchitheriinae	Sciurinae	Equinae
Tribe	Borophagini				Terrestrial	Terrestrial		Marmotini	Hipparionini
Subtribe Genus Species	Basal Borophagini <i>Cormocyon</i> <i>copei</i>	Parahippus pawniensis	Parahippus pawniensis	Parahippus pawniensis	Squirrels Protospermophilus	Squirrels Protospermophilus	Parahippus leonensis	Miospermophilus	Neohipparion
Site	Haystack 8	Massacre Lake 1	Massacre Lake 1	Massacre Lake 1	Massacre Lake	Massacre Lake	Warm Springs 1	Massacre Lake	
Site #	6322	RV7043	RV7043	RV7043	RV 7043	RV 7043	RV7314	RV 7043	
Formation	John Day	High Rock Sequence	High Rock Sequence	High Rock Sequence	Virgin Valley	Virgin Valley	John Day	Virgin Valley	Rattlesnake
Age	Ar2	Hf2	Hf2	Hf2	Hf2	Hf2	Ar4	Hf2	Hh2
Source	Measurement	Measurement	Measurement	Measurement	Morea 1981	Morea 1981	Measurement	Morea 1981	Measurement
2LPL 31 DI			16.37						
4LPL									
1LML	12.42			15.06	2.2	2.9		2.2	
2LML									
3LML		14.20					15.76		26.94
2UML		14.38							

Repository	UO 101	UO 107	UO 2796	UO 2241	UO 2596	UO 2025	UO 2(27	UO 2027	UO 4007
Specimen #	Equideo	 Equideo	2/80 Equideo	3241 Capidaa	3596 Sciuridae	3025 Sajuridaa	3627	3027 Sajuridaa	4097 Saiuridaa
Family	Equidae	Equinae	Equidae	Caninae	Sciurinae	Sciurinae	Sciurinae	Sciurinae	Sciurinae
Subrainity	Equiliae	Equinae	Equinae	Califiae	Schulmae	Sciurmae	Sciurmae	Sciurmae	Sciurmae
Tribe	Equini	Equini		Canini	Marmotini	Marmotini	Marmotini	Marmotini	Marmotini
Subtribe				Canina					
Genus	Pliohippus	Pliohippus	Merychippus	Eucyon	Spermophilus	Parapaenemarmota	Spermophilus	Spermophilus	Spermophilus
Species	spectans	spectans		davisi	shotwelli	oregonensis	mckayensis	mckayensis	wilsoni
		John Dav	_	McKav	McKav	McKav	McKav	McKav	
Site		Pliocene	Gateway	Reservoir	Reservoir	Reservoir	Reservoir	Reservoir	Ellensburg
Site #			2243	2222					6507
Formation	Rattlesnake	Rattlesnake	Mascall	McKay	McKay	McKay	McKay	McKay	Ellensburg
Age	Hh2	Hh2	Ba1	Hh3	Hh3	Hh3	Hh3	Hh3	C13
Source	Measurement	Measurement	Measurement	Measurement	Black 1963	Shotwell 1956	Black 1963	Shotwell 1956	Black 1963
2LPL		26.39							
3LPL									
4LPL									
1LML			16.44	16.33	2.4	4.8	2	1.8	2.4
2LML									
3LML	21.59								
2UML									

Repository	UO	UO	UO	UO	UO	UO	UO	UO	UO
Specimen #	4097	4975	5159	5566	5763	5871	6171	6667	7964
Family	Sciuridae	Equidae	Equidae	Equidae	Sciuridae	Sciuridae	Equidae	Equidae	Sciuridae
Subfamily	Sciurinae	Equinae	Equinae		Sciurinae	Sciurinae			Sciurinae
Tribe	Marmotini				Marmotini	Marmotini			Marmotini
Subtribe									
Genus Species	Spermophilus wilsoni	Merychippus	Merychippus		Ammospermophilus junturensis	Ammospermophilus junturensis			Spermophilus shotwelli
Site	McKay Reservoir		Mascall	Poison Basin	Juntura	Juntura	Poison Basin	Poison Basin	Westend Blowout
Site #				2340	2341	2336	2343	2354	
Formation	McKay	Mascall	Mascall	Juntura	Juntura	Juntura	Juntura	Juntura	Alkali Canyon
Age	Hh3	Ba1	Ba1	C13	C13	C13	C13	C13	Hh3
Source	Shotwell 1956	Measurement	Measurement	Measurement	Russell 1956	Russell 1956	Measurement	Measurement	Black 1963
2LPL		21.42							
3LPL									
4LPL									
1LML	1.9			21.92	1.3	1.3			2.4
2LML			20.7(04.70	22.07	
3LML			20.76				24.72	23.97	
20ML									

Repository	UO	UO	UO	UO	UO	UO	UO	UO	UO
Specimen #	7965	7966	7969	10283	<u> </u>	15270	17081 E 1	<u>19902</u>	20508
Family	Sciuridae	Sciuridae	Sciuridae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae
Subfamily	Sciurinae	Sciurinae	Sciurinae	Equinae		Equinae	Equinae	Equinae	Equinae
Tribe	Marmotini	Marmotini	Marmotini	Hipparionini					
Subtribe									
Genus Species	Spermophilus shotwelli	Spermophilus shotwelli	Spermophilus shotwelli	Hipparion		Merychippus	Merychippus	Merychippus	Merychippus
Site	Westend Blowout	Westend Blowout	Westend Blowout	Black Butte	Black Butte	Cottonwood Creek	Crooked River	Skull Spring	Red Basin
Site #				2448	248		AF23-6	2467	
Formation	Alkali Canyon	Alkali Canyon	Alkali Canyon	Juntura	Juntura	Mascall	Mascall	Battle Creek	Butte Creek
Age	Hh3	Hh3	Hh3	C13	C13	Ba1	Ba1	Ba2	Ba2
Source	Black 1963	Black 1963	Black 1963	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL						19.27			
3LPL									19.39
4LPL									
1LML	2.3	2.5	2.4	22.65	19.87			17.12	
2LML									
3LML							21.63		
2UML									

Repository	UO	UO	UO	UO	UO	UO	UO	UO	UO
Specimen #	20509	20552	20617	20631	20646	20647	20946	21038	21353
Family	Equidae	Canidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Canidae
Subfamily	Equinae	Borophaginae	Anchitheriinae	Equinae	Equinae	Equinae	Equinae	Equinae	Borophaginae
Tribe		Borophagini							Borophagini
Subtribe		Cynarctina							Borophagina
Genus Species	Merychippus	Tephrocyon rurestris	Hypohippus	Merychippus	Merychippus	Merychippus	Merychippus	Merychippus	Epicyon saevus
Site	Red Basin	Red Basin	Red Basin	Red Basin	Red Basin	Red Basin	Red Basin	Red Basin	Dalles
Site #									
Formation	Butte Creek	Butte Creek	Butte Creek	Butte Creek	Butte Creek	Butte Creek	Butte Creek	Butte Creek	Chenoweth
Age	Ba2	Ba2	Ba2	Ba2	Ba2	Ba2	Ba2	Ba2	C13
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL			23.08						
3LPL									
4LPL 11 MI		18.64			10.20	18 11	21.02	19.16	26.01
2LML	18	10.04			17.27	10.11	21.02	17.10	20.01
3LML									
2UML				20.12					

Repository	UO	UO	UO	UO	UO	UO	UO	UO	UO
Specimen #	21559	22749	22784	22846	22993	23060	23159	23322	23323
Family	Canidae	Equidae							
Subfamily	Borophaginae	Equinae							
Tribe	Borophagini							Equini	
Subtribe	Cynarctina								
Genus Species	Paracynarctus kelloggi	Merychippus							
Site	Red Basin	Red Basin	Red Basin	Red Basin	Red Basin	Red Basin	Red Basin	Red Basin	Red Basin
Site #	2494								
Formation	Butte Creek	Butte Creek	Butte Creek	Butte Creek	Butte Creek	Butte Creek	Butte Creek	Butte Creek	Butte Creek
Age	Ba2	Ba2	Ba2	Ba2	Ba2	Ba2	Ba2	Ba2	Ba2
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL									
3LPL			20.78						
4LPL	17.00	17.7			10.07	1(72)	15.07		17 51
1LML 21 MI	17.90	1/./			18.27	10.72	15.97		17.51
3LML				23.86					
2UML				23.00				18.39	

Repository	UO	UO	UO	UO	UO	UO	UO	UO	UO
Specimen #	23324 Emile	23345	23358	23437	23456	<u>23486</u>	23548	23704	23/09
Family	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae
Sublamily	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae
Tribe								Equini	
Subtribe									
Genus Species	Merychippus	Merychippus	Merychippus	Merychippus	Merychippus	Merychippus	Merychippus	Merychippus	Merychippus
Site	Red Basin	Red Basin	Red Basin	Red Basin	Red Basin	Red Basin	Red Basin	Red Basin	Red Basin
Site #									
Formation	Butte Creek	Butte Creek	Butte Creek	Butte Creek	Butte Creek	Butte Creek	Butte Creek	Butte Creek	Butte Creek
Age	Ba2	Ba2	Ba2	Ba2	Ba2	Ba2	Ba2	Ba2	Ba2
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL									
3LPL							20.79		
4LPL									
1LML	17.96	15.89	15.05	19.71	18.44	18.01			19.88
2LML									
3LML								1 - 00	
2UML								17.88	

ſ	Repository	UO	UO	UO	UO	UO	UO	UO	UO	UO
	Specimen #	23710	23776	23794	23834	23841	23842	23897	24191	24236
ſ	Family	Equidae	Equidae	Equidae	Equidae	Canidae	Canidae	Equidae	Canidae	Sciuridae
	Subfamily	Equinae	Equinae	Equinae	Equinae	Borophaginae	Borophaginae	Anchitheriinae	Borophaginae	Sciurinae
										Basal
	Tribe					Borophagini	Borophagini		Borophagini	Terrestrial
										Squirrels
	Subtribe					Cvnarctina	Cvnarctina		Cvnarctina	
	C	M 1:	M 1.	M 1.	M 1.	י ע	, ,	TT 1 ·	т. 1	D
	Genus	Merychippus	merycnippus	merycnippus	merycnippus	Paracynarcius	Paracynarcius	Hyponippus	Tephrocyon	Protospermophilus
	Species					Kettoggi	Kenoggi		rurestris	maineurensis
	Site	Red Basin	Red Basin	Red Basin	Red Basin	Red Basin				
	Site #								2495	2495
	Formation	Butte Creek	Butte Creek	Butte Creek	Butte Creek	Butte Creek				
	rormation	Dutte Creek	Dutte Cleek	Dutte Creek	Dutte Creek	Dutte Creek	Dutte Creek	Dutte Cleek	Dutte Creek	Dutte Creek
	Age	Ba2	Ba2	Ba2	Ba2	Ba2	Ba2	Ba2	Ba2	Ba2
	Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Shotwell 1968
	2LPL 21 DI									
	3LPL							20.22		
	4LPL 11 MI	19.06				10.26	17 66	20.32	17.07	1 00
	ILNIL 21 MI	18.90			17.0	16.50	17.00		17.97	1.00
	2LML 3I MI		24.11	20.9	17.9					
	21ML		27.11	20.9						
1	2014IL									

Repository	UO	UO	UO	UO	UO	UO	UO	UO	UO
Specimen #	24240	24246	24248	24250	24251	24256	24260	24261	24404
Family	Sciuridae	Sciuridae	Sciuridae	Sciuridae	Sciuridae	Sciuridae	Sciuridae	Sciuridae	Sciuridae
Subfamily	Sciurinae	Sciurinae	Sciurinae	Sciurinae	Sciurinae	Sciurinae	Sciurinae	Sciurinae	Sciurinae
			Basal		Basal		Basal	Basal	Basal
Tribe	Marmotini	Marmotini	Terrestrial	Marmotini	Terrestrial	Marmotini	Terrestrial	Terrestrial	Terrestrial
			Squirrels		Squirrels		Squirrels	Squirrels	Squirrels
Subtribe									
Genus	Spermophilus	Spermophilus	Protospermophilus	Spermophilus	Protospermophilus	Spermophilus	Protospermophilus	Protospermophilus	Protospermophilus
Species	tephrus	tephrus	malheurensis	tephrus	malheurensis	tephrus	malheurensis	malheurensis	malheurensis
_	_	_		_		_			
Site	Red Basin	Red Basin	Red Basin	Red Basin	Red Basin	Red Basin	Red Basin	Red Basin	Red Basin
Site #			2495		2495		2495	2495	2495
Formation	Butte Creek	Butte Creek	Butte Creek	Butte Creek	Butte Creek	Butte Creek	Butte Creek	Butte Creek	Butte Creek
1 00	Do?	P ₂ 2	$\mathbf{P}_{\mathbf{n}}$	Po?	$\mathbf{P}_{\mathbf{n}}2$	$\mathbf{P}_{\mathbf{a}}$	Do?	$\mathbf{P}_{\mathbf{a}}2$	D _o 2
Source	Shotwell 1968	Shotwell 1968	Daz Shotwell 1968	Shotwell 1968	Daz Shotwell 1968	Daz Shotwell 1968	Daz Shotwell 1968	Shotwell 1968	Shotwell 1968
21 PL	Shotwell 1908	Shotwell 1900	Shotwell 1900	Shotwell 1908	Shotwell 1900	Shotwell 1908	Shotwell 1908	Shotwell 1908	Shotwen 1700
3LPL									
4LPL									
1LML	2	1.79	2	1.97	1.82	1.96	1.76	1.89	1.91
2LML									
3LML									
2UML									

Repository	UO	UO	UO	UO	UO	UO	UO	UO	UWBM
Specimen #	24572	24573	24984	27015	30993	36606	42501	Y-672	31452
Family	Sciuridae	Sciuridae	Sciuridae	Sciuridae	Equidae	Canidae	Canidae	Equidae	Equidae
Subfamily	Sciurinae	Sciurinae	Sciurinae	Sciurinae	Equinae	Caninae	Borophaginae	Equinae	Anchitheriinae
Tribe	Tamiini	Tamiini	Marmotini	Marmotini	Hipparionini	Canini	Borophagini	Hipparionini	
Subtribe						Canina	Borophagina		
Genus Species	Tamias	Tamias	Spermophilus wilsoni	Spermophilus	Neohipparion	Eucyon davisi	Epicyon saevus	Hipparion condoni	Parahippus
Site	Juntura	Juntura	Bartlett Mountain	Little Valley	Rattlesnake	Juniper Creek	Black Butte	Ellensburg	Picture Gorge 36
Site #	2500	2500	2517	2516		2469			A5835
Formation	Juntura	Juntura	Drewsey	Chalk Butte	Rattlesnake	Grassy Mountain	Juntura	Ellensburg	John Day
Age	C13	C13	Hh2	Hh3	Hh2	Hh2	C13	C13	Ar2
Source	Shotwell 1970	Shotwell 1970	Shotwell 1956	Shotwell 1956	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL									
3LPL									
4LPL									
1LML	1.42	1.17	2.42	1.88		16.46	29.1	17.7	13.5
2LML									
3LML					30.5				
2UML									

Repository	UWBM	UWBM							
Specimen #	39225	39226	39280	40019	40136	40738	40931	42265	42266
Family	Canidae	Canidae	Sciuridae	Sciuridae	Equidae	Canidae	Equidae	Canidae	Sciuridae
Subfamily			Sciurinae	Sciurinae	Equinae		Equinae	Caninae	Sciurinae
Tribe			Marmotini	Marmotini	Equini			Canini	Marmotini
Subtribe								Canina	
Genus Species					Pliohippus		Merychippus	Eucyon davisi	
Site	Wildcat Creek	Wildcat Creek	Ordnance	Ordnance	Ordnance	Wildcat Creek	Rainbow Ridge	Ordnance	Ordnance
Site #	A8762	A8762	A8803	A8803	A8803	A8762	A2381	A8803	A8803
Formation	Ohanapecosh	Ohanapecosh	Alkali Canyon	Alkali Canyon	Alkali Canyon	Ohanapecosh	Virgin Valley	Alkali Canyon	Alkali Canyon
Age	Ar2	Ar2	Hh3	Hh3	Hh3	Ar2	Ba1	Hh3	Hh3
Source	Measurement	Measurement							
2LPL									
3LPL									
4LPL	10 51								
1LML	10.64	15.17	1.93	1.68		10.64		16.23	2.28
2LML					26.41		21.85		
3LML									
2UML									

Repository Specimen #	UWBM 42690	UWBM 42691	UWBM 42694	UWBM 42695	UWBM 42696	UWBM 42697	UWBM 42699	UWBM 44434	UWBM 46638
Family	Equidae	Canidae							
Subfamily	Equinae	Caninae							
Tribe	Hipparionini		Canini						
Subtribe									Canina
Genus Species	Hipparion	Merychippus	Eucyon davisi						
Site	Zillah	Mascall	Ordnance						
Site #	A9429	A9762	A8803						
Formation	Ellensburg	Mascall	Alkali Canyon						
Age	C13	Ba1	Hh3						
Source	Measurement								
2LPL 21 DI	26.74								
JLPL 4LPI		24 47	19 74	21.18					
1LML		27.77	17.77	21.10	21.1	23.19	23.58	19.19	16.71
2LML					_1.1		20.00	1	10.71
3LML									
2UML									

Repository Specimen #	UWBM 46671	UWBM 46672	UWBM 46673	UWBM 46675	UWBM 46676	UWBM 47552	UWBM 48183	UWBM 48584	UWBM 50158
Family	Sciuridae	Sciuridae	Sciuridae	Sciuridae	Sciuridae	Canidae	Equidae	Canidae	Sciuridae
Subfamily	Sciurinae	Sciurinae	Sciurinae	Sciurinae	Sciurinae		Anchitheriinae		
Tribe	Marmotini	Marmotini	Marmotini	Marmotini	Marmotini				
Subtribe Genus Species	Spermophilus wilsoni	Spermophilus	Spermophilus	Spermophilus	Spermophilus		Miohippus		
Site	Ordnance	Ordnance	Ordnance	Ordnance	Ordnance	Picture Gorge 29	Morgan's Locality 1	China East	Ordnance
Site #	A8803	A8803	A8803	A8803	A8803	A9596	B1511	B1515	A8803
Formation	Alkali Canyon	Alkali Canyon	Alkali Canyon	Alkali Canyon	Alkali Canyon	John Day	John Day	John Day	Alkali Canyon
Age	Hh3	Hh3	Hh3	Hh3	Hh3	Ar1	Ar1	Ar3	Hh3
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL 3LPL									
4LPL 1LML	1 97	2.03	2 12	2 64	2.03	10 31	12 71	7 64	2.08
2LML 3LML 2UML	1.77	2.05	2.12	2.04	2.05	10.01	12.71	,	2.00

Repository Specimen #	UWBM 50467	UWBM 50477	UWBM 50478	UWBM 50807	UWBM 51303	UWBM 53390	UWBM 53392	UWBM 53416	UWBM 53424
Family Subfamily	Sciuridae	Sciuridae	Sciuridae	Canidae	Sciuridae Sciurinae	Equidae Anchitheriinae	Canidae	Equidae Anchitheriinae	Equidae Anchitheriinae
Tribe					Marmotini				
Subtribe Genus Species						Miohippus		Miohippus	Miohippus
Site	Ordnance	Ordnance	Ordnance	Arlington 3	Ordnance	Picture Gorge 29	Picture Gorge 36	Picture Gorge 36	Picture Gorge 20
Site #	A8803	A8803	A8803	B1532	A8803	A9596	A5835	A5835	A4556
Formation	Alkali Canyon	John Day	John Day	John Day	John Day				
Age Source 2LPL 3LPL	Hh3 Measurement	Hh3 Measurement	Hh3 Measurement	Hh3 Measurement	Hh3 Measurement	Ar1 Measurement	Ar2 Measurement	Ar2 Measurement	Ar1 Measurement
4LPL 1LML 2LML 3LML 2UML	2.4	2.94	2.45	15.33	2.26	18.43	13.61	14.25	13.19

Repository Specimen #	UWBM 53912	UWBM 54533	UWBM 54537	UWBM 54538	UWBM 54539	UWBM 54540	UWBM 54595	UWBM 54598	UWBM 54599
Family Subfamily	Equidae Equinae	Sciuridae							
Tribe	Hipparionini								
Subtribe Genus Species	<i>Hipparion</i>								
Species	Bartlett Mountain	Ordnance							
Site #	C0102	A8803							
Formation	Drewsey	Alkali Canyon							
Age Source 2LPL 3LPL 41 PI	Hh2 Measurement 23.49	Hh3 Measurement							
4LPL 1LML 2LML 3LML 2UML		2.55	1.8	2.9	2.68	2.6	2.67	2.85	2.29

Repository	UWBM	UWBM	UWBM	UWBM
Specimen #	57555	57583	59241	61529
Family	Sciuridae	Sciuridae	Equidae	Sciuridae
Subfamily	Sciurinae	Sciurinae	Equinae	Sciurinae
Tribe	Tamiini	Tamiini	Hipparionini	Tamiini
Subtribe	T	TT i	N.	T i
Genus Species	Tamias	Tamias	Nannipus	Tamias
Site	Ordnance	Arlington 7	Arlington 16	McKay Reservoir
Site #	A8803	C0120	C0195	C0128
Formation	Alkali Canyon	Alkali Canyon	Alkali Canyon	McKay
Age	Hh3	Hh3	Hh3	Hh3
Source 2LPL	Measurement	Measurement	Measurement	Measurement
3LPL 41 PI				
4LFL 1LML	1.24	0.93	12.85	1.64
2LML				
3LML				
2UML				

APPENDIX B

CHAPTER IV FOSSIL DATA

- Repository Collection in which specimen is located
- Specimen # Identification number of specimen
- Taxonomy (Family, Subfamily, Tribe, Sub tribe, Genus, Species) Specimen taxon
- Site Name of site at which specimen was found
- Site # Identification number of site
- Formation Formation in which specimen was found
- Region Biogeographic region in which the specimen was found
- Subregion Biogeographic subregion in which the specimen was found
- Age NALMA subdivision to which the specimen can be dated
- Decimal Decimal degrees latitude at which the specimen was found
- Source Source of measurement
- $2LPL 2^{nd}$ lower premolar length
- $3LPL 3^{rd}$ lower premolar length
- $4LPL 4^{th}$ lower premolar length
- $1LML 1^{st}$ lower molar length
- $2LML 2^{nd}$ lower molar length
- 3LML 3rd lower molar length
- $2UML 2^{nd}$ upper molar length

Repository	AMNH	AMNH	AMNH	AMNH	IGM	IGM	IGM	IGM	IGM
Specimen #	6860	6960	6961	8174	3997	3998	6412	6419	6424
Family	Canidae	Sciuridae	Sciuridae	Equidae	Equidae	Equidae	Canidae	Equidae	Equidae
Subfamily	Hesperocyoninae	Sciurinae Basal	Sciurinae	Equinae	Equinae	Equinae	Borophaginae	Equinae	Equinae
Tribe		Terrestrial Squirrels	Sciurini	Equini	Hipparionini	Hipparionini	Borophagini	Hipparionini	Equini
Subtribe		oquineis					Borophagina		
Genus	Mesocyon	Protospermophilus	Miosciurus	Acritohippus	Merychippus	Merychippus	Borophagus	Neohipparion	Astrohippus
Species	coryphaeus	vortmani	ballovianus	seversus			secundus	eurystyle	stockii
-	**								
Site	The Cove	Diceratherium Beds	Diceratherium Beds	Mascall	Matatlan	Matatlan	Rinconada	Rinconada	Rinconada
Site #									
Formation	John Day	John Day	John Day	Mascall	El Camarón	El Camarón			
Region	Northwest	Columbia Plateau	Columbia Plateau	Northwest	Mexico	Mexico	Mexico	Mexico	Mexico
Subregion	Columbia Plateau	Columbia Plateau	Columbia Plateau	Columbia Plateau	Oaxaca	Oaxaca	Guanajuato	Guanajuato	Guanajuato
Age	Ar1	Ar1	Ar1	14.13356239			Hh4	Hh4	Hh4
Decimal	44.64	44.52	44.52	44.51	16.86	16.86	21.08	21.08	21.08
					Bravo-Cuevas	Bravo-Cuevas			
Source	Measurement	Measurement	Measurement	Downs 1956	& Ferrusquía- Villafranca 2006	& Ferrusquía- Villafranca 2006	Measurement	Measurement	Measurement
2LPL									
3LPL					17.67				
4LPL									
1LML	15.68						25.94		
2LML									
3LML						21.63			
2UML				20.7				19.12	17.11
LTRL		9.91	6.68						

Repository	IGM								
Specimen #	6425	6426	6428	6430	6431	6432	6433	6434	6456
Family	Equidae								
Sublamily	Equinae								
Tribe	Equini								
Subtribe	4	4 . 1	4	4 . 1	4 . 1	4 . 1	4 . 1		
Genus	Astrohippus	Dinohippus	Dinohippus						
Species	stocku	mexicanus	mexicanus						
Site	Rinconada								
Site #									
Formation									
Region	Mexico								
Subregion	Guanajuato								
Age	Hh4								
Decimal	21.08	21.08	21.08	21.08	21.08	21.08	21.08	21.08	21.08
Source	Measurement								
2LPL									
3LPL									
4LPL									
1LML	20.08	16.69	16.82			19.42	18.53	22.95	
2LML									
3LML									
2UML				15.36	17.44				25.58
LTRL									
Repository	IGM	IGM	IGM	IGM	IGM	IGM 8200	IGM	IGM	IGM
------------	-------------	-------------	---------------	-----------------	-----------------	---------------	-----------------	-----------------	---------------
Specimen #	045/	Equidad	Capidaa	/590 Equidad	7905 Equidad	Equidad	8400 Equideo	6402 Equideo	
Family	Equidae	Equidae	Borophaginae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae
Subraininy	Equiliae	Equillae	Borophaginae	Equiliae	Equiliae	Equiliae	Equinae	Equinae	Equinae
Tribe	Equini	Equini	Borophagini	Equini	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini
Subtribe			Borophagina						
Genus	Dinohippus	Dinohippus	Borophagus	Dinohippus	Mervchippus	Mervchippus	Mervchippus	Mervchippus	Mervchippus
Species	mexicanus	mexicanus	2010/111/8/10	mexicanus	inter yemppus	inter yemppus	inter yemppus	inter yearspras	inter yemppus
Spread		memetani		memetantis					
Site	Rinconada	El Ocote	Teocaltiche	El Ocote	Matatlan	Matatlan	Matatlan	Matatlan	Matatlan
Site #									
Formation					El Camarón	El Camarón	El Camarón	El Camarón	El Camarón
Region	Mexico	Mexico	Mexico	Mexico	Mexico	Mexico	Mexico	Mexico	Mexico
Subregion	Guanajuato	Guanajuato	Jalisco	Guanajuato	Oaxaca	Oaxaca	Oaxaca	Oaxaca	Oaxaca
Age	Hh4	Hh4	Hh4	Hh4					
Decimal	21.08	21.09	21.43	21.09	16.86	16.86	16.86	16.86	16.86
					Bravo-Cuevas	Bravo-Cuevas	Bravo-Cuevas	Bravo-Cuevas	Bravo-Cuevas
G	M .		N.		& Ferrusquía-	& Ferrusquía-	& Ferrusquía-	& Ferrusquía-	& Ferrusquía-
Source	Measurement	Measurement	Measurement	Measurement	Villafranca	Villafranca	Villafranca	Villafranca	Villafranca
					2006	2006	2006	2006	2006
2LPL									
3LPL									
4LPL									
1LML		22.43	28.56						
2LML									
3LML								19.74	21.38
2UML	23.11			23.57	20.02	19.16	20.1		
LTRL									

Repository	IGM	IMNH	IMNH	IMNH	JODA	JODA	JODA	JODA	JODA
Specimen #	8407	27930	29087	29088	333	1344	1345	2397	2413
Family	Equidae	Equidae	Equidae	Equidae	Canidae	Equidae	Equidae	Canidae	Equidae
Subfamily	Equinae	Equinae	Equinae	Equinae	Hesperocyoninae	Anchitheriinae	Anchitheriinae	Hesperocyoninae	Anchitheriinae
Tribe	Hipparionini	Equini	Equini	Equini					
Subtribe Genus Species	Merychippus	Pliohippus	Pliohippus	Pliohippus	Mesocyon coryphaeus	Desmatippus avus	Desmatippus avus	Mesocyon coryphaeus	Desmatippus avus
Site	Matatlan	Star Valley	Star Valley	Star Valley	Branson Creek	Mascall	Mascall	Branson Creek	Mascall
Site #		67001	67001	67001	3	4	4	3	4
Formation	El Camarón	Chalk Butte	Chalk Butte	Chalk Butte	John Day	Mascall	Mascall	John Day	Mascall
Region	Mexico	Northwest	Northwest	Northwest	Northwest	Northwest	Northwest	Northwest	Northwest
Subregion	Oaxaca	Northern Great Basin	Northern Great Basin	Northern Great Basin	Columbia Plateau	Columbia Plateau	Columbia Plateau	Columbia Plateau	Columbia Plateau
Age		Hh2	Hh2	Hh2	Ar1	14.13356239	14.13356239	Ar1	14.13356239
Decimal	16.86	42.02	42.02	42.02	44.67	44.51	44.51	44.67	44.51
Source	Bravo-Cuevas & Ferrusquía- Villafranca 2006	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL									17.38
3LPL			24.99						
4LPL	10.15					21.58			
1LML	18.12	29.3			17.22		01.44	15.15	
2LML				22.20			21.44		
3LML				33.28					
2UML LTRL									

Repository	JODA	JODA	JODA	JODA	LACM	LACM	LACM	LACM	LACM
Specimen #	2419	2427	2435	3684	580	1736	2622	2628	2641
Family	Equidae	Equidae	Equidae	Canidae	Equidae	Equidae	Equidae	Equidae	Equidae
Subfamily	Anchitheriinae	Anchitheriinae	Anchitheriinae	Hesperocyoninae	Equinae	Equinae	Equinae	Equinae	Equinae
Tribe					Equini	Hipparionini	Hipparionini	Hipparionini	Equini
Subtribe									
Genus	Desmatippus	Desmatippus	Desmatippus	Mesocyon	Pliohippus	Merychippus	Hipparion	Hipparion	Pliohippus
Species	avus	avus	avus		leardi	calamarius	tehonense	tehonense	leardi
Site	Mascall	Mascall	Mascall	Logan Butte	North Tejon Hills	Tonopah	North Tejon Hills	North Tejon Hills	North Tejon Hills
Site #	4	4	4	52	CIT 104	CIT 172	CIT 104	CIT 104	CIT 302
Formation	Mascall	Mascall	Mascall	John Day	Chanac	Tonopah	Chanac	Chanac	Chanac
Region	Northwest	Northwest	Northwest	Northwest	Coast Ranges	Great Basin	Coast Ranges	Coast Ranges	Coast Ranges
Subregion	Columbia Plateau	Columbia Plateau	Columbia Plateau	Columbia Plateau	San Joaquin Valley	Nevada	San Joaquin Valley	San Joaquin Valley	San Joaquin Valley
Age	14.13356239	14.13356239	14.13356239	Ar1	Cl3	8.7	Cl3	Cl3	Cl3
Decimal	44.51	44.51	44.51	43.95	35.13	38.22	35.13	35.13	35.12
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL									
3LPL							23.84	23.89	
4LPL									
1LML		15.11		15.36					
2LML	• • •								
3LML	20.8				20.52	01 (0			20.50
2UML			15.54		29.52	21.62			30.52
LTRL									

Repository Specimen #	LACM 2659	LACM 2661	LACM 2673	LACM 2674	LACM 2675	LACM 2762	LACM 2765	LACM 2805	LACM 3999
Family	Equidae	Equidae							
Subfamily	Equinae	Equinae							
Tribe	Equini	Hipparionini							
Subtribe Genus Species	Pliohippus leardi	Hipparion							
Site	North Tejon Hills	Stormys Camp							
Site #	CIT 104	CIT 302	CIT 302	CIT 302	1413				
Formation	Chanac	Dove Spring							
Region	Coast Ranges	Great Basin							
Subregion	San Joaquin Valley	Mojave Desert							
Age	Cl3	C12							
Decimal	35.13	35.13	35.13	35.13	35.13	35.12	35.12	35.12	35.41
Source	Measurement	Measurement							
2LPL						31.92			
3LPL				20.20				27.71	
4LPL 11 MT			28.06	29.28				27.71	
			20.00						
3LML					30.07		32.39		28.04
2UML	34.06	34.59			20107		52.55		20101
LTRL									

Repository	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM
Specimen #	4931	4939	5263	5264	5267	5267	5272	5273	5289
Family	Equidae	Equidae	Canidae						
Subfamily	Equinae	Equinae	Hesperocyoninae						
Tribe	Hipparionini	Hipparionini							
Subtribe									
Genus	Scaphohippus	Scaphohippus	Mesocvon						
Species	intermontanus	sumani		brachvops				brachvops	brachvops
~1									
Site	Cache Peak	Cache Peak	Kew						
Site #	CIT 500	CIT 501	CIT 126						
Formation	Bopesta	Bopesta	Sespe						
Region	Great Basin	Great Basin	Coast Ranges						
Subregion	Mojave Desert	Mojave Desert	Transverse Ranges						
Age	Ba1	Ba1	Ar1						
Decimal	35.19	35.17	34.25	34.25	34.25	34.25	34.25	34.25	34.25
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL 3LPL 4LPL 1LML 2LML 3LML 2UML	22.55	21.07	13.94	15.2	15.07	12.83	15.42	14.33	13.24
LTRL	22.33	21.07							

Repository Specimen #	LACM 5937	LACM 15618	LACM 15625	LACM 15976	LACM 16002	LACM 16016	LACM 16202	LACM 16214	LACM 16215
Family	Equidae	Equidae	Equidae	Canidae	Equidae	Equidae	Equidae	Equidae	Equidae
Subfamily	Anchitheriinae	Equinae	Equinae	Borophaginae	Equinae	Equinae	Equinae	Equinae	Equinae
Tribe		Hipparionini	Equini	Borophagini	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini
Subtribe Genus Species	Archaeohippus	Scaphohippus intermontanus	Acritohippus quinni	Cynarctina Microtomarctus conferta	Merychippus calamarius	Merychippus calamarius	Merychippus calamarius	Merychippus calamarius	Merychippus calamarius
Site	Mascall General	Cache Peak	Cache Peak	Tonopah	Tonopah	Tonopah	Tonopah	Tonopah	Tonopah
Site #	1869	1546	CIT 502	CIT 172	CIT 172	CIT 172	CIT 172	CIT 172	CIT 172
Formation	Mascall	Bopesta	Bopesta	Tonopah	Tonopah	Tonopah	Tonopah	Tonopah	Tonopah
Region	Northwest	Great Basin	Great Basin	Great Basin	Great Basin	Great Basin	Great Basin	Great Basin	Great Basin
Subregion	Columbia Plateau	Mojave Desert	Mojave Desert	Nevada	Nevada	Nevada	Nevada	Nevada	Nevada
Age Decimal	14.13356239 44.51	Ba1 35.17	35.17	8.7 38.22	8.7 38.22	8.7 38.22	8.7 38.22	8.7 38.22	8.7 38.22
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL 3LPL					26.42				
4LPL 1LML				15.27				18.14	21.12
2LML									
3LML	19.08								
2UML		20.93	18.69			23.28	22.75		
LTRL									

Repository	LACM								
Specimen #	16218	16219	16222	16223	16226	16230	16236	16241	16242
Family	Equidae								
Subfamily	Equinae								
Tribe	Hipparionini								
Subtribe Genus Species	Merychippus calamarius								
Site	Tonopah								
Site #	CIT 172								
Formation	Tonopah								
Region	Great Basin								
Subregion	Nevada								
Age Decimal	8.7 38.22								
Source	Measurement								
2LPL 3LPL 4LPL 1LML	23.97	19.92	21.08	18.97			18.84	21.11	21.39
2LML 3LML 2UML LTRL					22.29	23.56			

Repository Specimen #	LACM 16243	LACM 16244	LACM 16245	LACM 16246	LACM 16247	LACM 16249	LACM 16250	LACM 16251	LACM 16252
Family Subfamily	Equidae Equinae								
Tribe	Hipparionini								
Subtribe Genus Species	Merychippus calamarius								
Site	Tonopah								
Site #	CIT 172								
Formation	Tonopah								
Region	Great Basin								
Subregion	Nevada								
Age Decimal	8.7 38.22								
Source	Measurement								
2LPL 3LPL 41 PI			22.22						25.97
4LPL 1LML 2LML 3LML 2UML LTRL	22.23	19.07	22.32	19.31	24.65	21.59	23.07	17.57	

Repository	LACM	LACM							
Specimen #	16256	16258	16263	16265	16266	162/0	<u>162/1</u>	162/4	16543
Family	Equidae	Equidae A pobithoriingo	Equidae						
Subraininy	Equiliae	Equinae	Equinae	Equillae	Equinae	Equinae	Equillae	Ancinuleriniae	Equinae
Tribe	Hipparionini		Equini						
Subtribe									
Genus	Merychippus	Mervchippus	Mervchippus	Mervchippus	Mervchippus	Mervchippus	Merychippus	Hypohippus	Pliohippus
Species	calamarius	affinis	leardi						
~								-55	
Site	Tonopah	North Tejon Hills							
Site #	CIT 172	CIT 302							
Formation	Tonopah	Chanac							
Region	Great Basin	Coast Ranges							
Subregion	Nevada	San Joaquin Valley							
Age	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	Cl3
Decimal	38.22	38.22	38.22	38.22	38.22	38.22	38.22	38.22	35.12
Source	Measurement	Measurement							
2LPL				23.15	23.73				
3LPL									
4LPL	22.84								29.51
1LML		18.19				19.09	20.6		
2LML									
3LML			26.95						
2UML								22.6	
LTRL									

Repository Specimen #	LACM 16545	LACM 33847	LACM 35386	LACM 35388	LACM 38751	LACM 40208	LACM 42810	LACM 60496	LACM 62557
Family	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae
Subfamily	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae
	Б		, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	тт	, , , , , , , , , , , , , , , , , , ,	TT	· · · · ·
Iribe	Equini	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini
Subtribo									
Genus	Pliohinnus	Scanhohinnus	Merychinnus	Merychinnus	Merychinnus	Merychinnus	Merychinnus	Hipparion	Neohipparion
Snecies	1 nomppus leardi	sumani	calamarius	calamarius	calamarius	calamarius	calamarius	forcei	floresi
Species	icarai	Sumani	caumarias	caramarnas	caramarnas	caramarnas	catamartas	jorcer	Jioresi
Site	North Tejon Hills	Barstow Syncline	Tonopah	Tonopah	Tonopah	Tonopah	Tonopah	Powerline Road	Yepomera (Rincon)
Site #	CIT 104	CIT 1168	CIT 172	CIT 172	CIT 172	CIT 172	CIT 172	3581	CIT 275
Formation	Chanac	Barstow	Tonopah	Tonopah	Tonopah	Tonopah	Tonopah	Dove Spring	Salada
Region	Coast Ranges	Great Basin	Great Basin	Great Basin	Great Basin	Great Basin	Great Basin	Great Basin	Mexico
Subregion	San Joaquin	Mojave Desert	Nevada	Nevada	Nevada	Nevada	Nevada	Mojave Desert	Chihuahua
Аде	C13	Ba1	87	87	87	87	87	C13	Hh4
Decimal	35.13	35.03	38.22	38.22	38.22	38.22	38.22	35 39	28.63
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL	28.67		23.5						
3LPL								27.04	21.86
4LPL									
1LML				15.87		21.1			
2LML									
3LML					26.08		25.79		
2UML		20.1							
LTRL									

Repository Specimen #	LACM 62558	LACM 62559	LACM 62560	LACM 62561	LACM 62606	LACM 62607	LACM 62608	LACM 62613	LACM 62616
Family	Equidae	Equidae	Equidae						
Subfamily	Equinae	Equinae	Equinae						
Tribe	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Equini	Equini	Equini	Equini	Equini
Subtribe									
Genus Species	Neohipparion floresi	Neohipparion floresi	Neohipparion floresi	Neohipparion floresi	Dinohippus mexicanus	Dinohippus mexicanus	Dinohippus mexicanus	Astrohippus stockii	Dinohippus mexicanus
Site	Yepomera (Rincon)	Yepomera (Rincon)	Yepomera (Rincon)						
Site #	CIT 275	CIT 275	CIT 275						
Formation	Salada	Salada	Salada						
Region	Mexico	Mexico	Mexico						
Subregion	Chihuahua	Chihuahua	Chihuahua						
Age Decimal	Hh4 28.63	Hh4 28.63	Hh4 28.63						
Source	Measurement	Measurement	Measurement						
2LPL									
3LPL 4LPL	21.48								
1LML	21.40	19.66	18.49						
2LML				25.7					
3LML 211ML					21.43	21.18	26.84	20.36	20.07
LTRL					21.75	21.10	20.04	20.50	20.07

Repository	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM
Specimen #	62617	62620 Equideo	62621 Equideo	62622 Equidad	62623	62624 Equidad	62627	62630 Equideo	62631 Equidad
r anniy Subfamily	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae
Subtainity	Equinae	Equinae	Equinae	Equillae	Equinae	Equinae	Equiliae	Equinae	Equillae
Tribe	Equini	Equini	Equini	Equini	Equini	Equini	Equini	Equini	Equini
Subtribe									
Genus	Dinohippus	Dinohippus	Dinohippus	Dinohippus	Dinohippus	Dinohippus	Dinohippus	Dinohippus	Dinohippus
Species	mexicanus	mexicanus	mexicanus	mexicanus	mexicanus	mexicanus	mexicanus	mexicanus	mexicanus
1									
S:4-	Yepomera	Yepomera	Yepomera	Yepomera	Yepomera	Yepomera	Yepomera	Yepomera	Yepomera
Site	(Rincon)	(Rincon)	(Rincon)	(Rincon)	(Rincon)	(Rincon)	(Rincon)	(Rincon)	(Rincon)
Site #	CIT 275	CIT 275	CIT 275	CIT 275	CIT 275	CIT 275	CIT 275	CIT 275	CIT 275
Formation	Salada	Salada	Salada	Salada	Salada	Salada	Salada	Salada	Salada
Region	Mexico	Mexico	Mexico	Mexico	Mexico	Mexico	Mexico	Mexico	Mexico
Subregion	Chihuahua	Chihuahua	Chihuahua	Chihuahua	Chihuahua	Chihuahua	Chihuahua	Chihuahua	Chihuahua
Age	Hh4	Hh4	Hh4	Hh4	Hh4	Hh4	Hh4	Hh4	Hh4
Decimal	28.63	28.63	28.63	28.63	28.63	28.63	28.63	28.63	28.63
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
21 DI									
2LPL 31 DI								24.92	
3L1 L 41 PL							24 69	24.92	
1LML	24 55	25 47	26.9	23 54	23 58	22.79	24.09		22.31
2LML	21.55	23.11	20.9	20101	20.00	>			22.01
3LML									
2UML									
LTRL									

Repository Specimen #	LACM 62632	LACM 62633	LACM 62634	LACM 62635	LACM 62636	LACM 62637	LACM 62967	LACM 62968	LACM 63317
Family	Equidae	Equidae							
Subfamily	Equinae	Equinae							
Tribe	Equini	Equini							
Subtribe Genus Species	Dinohippus mexicanus	Astrohippus stockii							
Site	Yepomera (Rincon)	Yepomera (Rincon)							
Site #	CIT 275	CIT 275							
Formation	Salada	Salada							
Region	Mexico	Mexico							
Subregion	Chihuahua	Chihuahua							
Age Decimal	Hh4 28.63	Hh4 28.63							
Source	Measurement	Measurement							
2LPL 3LPL					25.96				
4LPL 1LML 2LML	27.6	23.6	21.96			20.79	23.62	24.9	22.5
3LML 2UML LTRL				28.79					

Repository Specimen #	LACM 63321	LACM 63349	LACM 74131	LACM 74139	LACM 74140	LACM 80335	LACM 80345	LACM 80346	LACM 80355
Family	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae
Subfamily	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae
Tribe	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini
Subtribe Genus Species	Neohipparion	Neohipparion	Neohipparion arellanoi						
Site	Yepomera (Rincon)	Yepomera (Rincon)	Yepomera (Rincon)	Yepomera (Rincon)	Yepomera (Rincon)	Yepomera (Rincon)	Yepomera (Rincon)	Yepomera (Rincon)	Yepomera (Rincon)
Site #	CIT 275	CIT 275	CIT 277	CIT 277	CIT 277	CIT 286	CIT 286	CIT 286	CIT 286
Formation	Salada	Salada	Salada	Salada	Salada	Salada	Salada	Salada	Salada
Region	Mexico	Mexico	Mexico	Mexico	Mexico	Mexico	Mexico	Mexico	Mexico
Subregion	Chihuahua	Chihuahua	Chihuahua	Chihuahua	Chihuahua	Chihuahua	Chihuahua	Chihuahua	Chihuahua
Age Decimal	Hh4 28.63	Hh4 28.63	Hh4 28.63	Hh4 28.63	Hh4 28.63	Hh4 28.63	Hh4 28.63	Hh4 28.63	Hh4 28.63
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL 3LPL 4LPL 1LML	17.16	18.44		18.28			17.73	19.24	
2LML 3LML 2UML LTRL			20.12		24.13	19.51			27.59

Repository	LACM 81/35	LACM 95571	LACM 97162	LACM 97182	LACM 97183	LACM 123497	LACM 13/403	LACM	LACM 138112
Family	Fauidae	Fauidae	Fauidae	Fauidae	Fauidae	Fauidae	Fauidae	Fauidae	Fauidae
Subfamily	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae
Tribe	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Equini	Equini	Equini
Subtribe Genus Species	Neohipparion	Neohipparion arellanoi	Neohipparion	Neohipparion	Neohipparion	Neohipparion arellanoi	Acritohippus quinni	Acritohippus quinni	Acritohippus quinni
Site	Yepomera (Rincon)	Yepomera (Rincon)	Yepomera (Rincon)	Yepomera (Rincon)	Yepomera (Rincon)	Yepomera (Rincon)	Upper Dry Canyon	Upper Dry Canyon	Upper Dry Canyon
Site #	CIT 289	CIT 295	CIT 299	CIT 435	CIT 435	CIT 286	5902	6235	5900
Formation	Salada	Salada	Salada	Salada	Salada	Salada	Caliente	Caliente	Caliente
Region	Mexico	Mexico	Mexico	Mexico	Mexico	Mexico	Coast Ranges	Coast Ranges	Coast Ranges
Subregion	Chihuahua	Chihuahua	Chihuahua	Chihuahua	Chihuahua	Chihuahua	Transverse Ranges	Transverse Ranges	Transverse Ranges
Age Decimal	Hh4 28.63	Hh4 28.63	Hh4 28.63	Hh4 28.63	Hh4 28.63	Hh4 28.63	34.77	34.77	34.77
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL 3LPL 4LPL 1LML 2LML 3LML 2UML LTRL	20.19	19.13	25.36	19.72	21.15	19.94	19.5	21.8	18.69

Repository	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM
Specimen #	148908	148910	151054	151061	<u>CIT 104</u>	<u>CIT 1045</u>	<u>CIT 1046</u>	CIT 1053	<u>CIT 1055</u>
Family	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae
Subramity	Equinae	Equinae	Equinae	Equinae	Anchitherinnae	Anchitherinnae	Anchitherinae	Equinae	Equinae
Tribe	Equini	Equini	Hipparionini	Hipparionini				Equini	Equini
Subtribe Genus Species	Pliohippus	Pliohippus	Merychippus californicus	Merychippus californicus	Hypohippus affinis	Desmatippus avus	Desmatippus avus	Acritohippus isonesus	Acritohippus isonesus
Site	Powerline Road	Between Basalts	Coalinga North	Coalinga Merychippus Zone	Tonopah	Sucker Creek	Sucker Creek	Sucker Creek	Sucker Creek
Site #	5686	5697	CIT 108	CIT 129	CIT 172	CIT 44	CIT 44	CIT 44	CIT 44
Formation	Dove Spring	Dove Spring	Temblor	Temblor	Tonopah	Sucker Creek	Sucker Creek	Sucker Creek	Sucker Creek
Region	Great Basin	Great Basin	Coast Ranges	Coast Ranges	Great Basin	Northwest	Northwest	Northwest	Northwest
Subregion	Mojave Desert	Mojave Desert	San Joaquin Valley	San Joaquin Valley	Nevada	Columbia Plateau	Columbia Plateau	Columbia Plateau	Columbia Plateau
Age	C13	C12	17.3	17.3	8.7	14.13356239	14.13356239	14.13356239	14.13356239
Decimal	35.39	35.41	36.32	36.32	38.22	43.44	43.44	43.44	43.44
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL 3LPL 4LPL		22.67	20.51	19.75		19.25			
1LML 2LML									19.92
3LML 2UML LTRL	30.33				28.72		20.67	19.79	

Repository	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM
Specimen #	CIT 1056	CIT 1057	CIT 1058	CIT 1059	CIT 1123	CIT 1124	CIT 1152	CIT 1229	CIT 1232
Family	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Canidae	Canidae
Subfamily	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Anchitheriinae	Borophaginae	Borophaginae
Tribe	Equini	Equini	Equini	Equini	Hipparionini	Hipparionini		Borophagini	Borophagini
Subtribe Genus Species	Acritohippus isonesus	Acritohippus isonesus	Acritohippus isonesus	Acritohippus isonesus	Merychippus brevidontus	Merychippus brevidontus	Desmatippus avus	Cynarctina Microtomarctus conferta	Cynarctina Microtomarctus conferta
Site	Sucker Creek	Sucker Creek	Coalinga North	Tonopah	Tonopah				
Site #	CIT 44	CIT 44	CIT 108		CIT 172				
Formation	Sucker Creek	Sucker Creek	Temblor	Siebert	Tonopah				
Region	Northwest	Northwest	Northwest	Northwest	Northwest	Northwest	Coast Ranges	Great Basin	Great Basin
Subregion	Columbia Plateau	Columbia Plateau	Columbia Plateau	Columbia Plateau	Columbia Plateau	Columbia Plateau	San Joaquin Valley	Nevada	Nevada
Age	14.13356239	14.13356239	14.13356239	14.13356239	14.13356239	14.13356239	17.3	8.7	8.7
Decimal	43.44	43.44	43.44	43.44	43.44	43.44	36.32	38.22	38.22
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Henshaw 1942	Measurement
2LPL		18.39		19.41		19.89			
3LPL									
4LPL									
1LML	10.17							15	16.06
2LML 2LML	19.17		72.04				20.62		
			23.04		10 37		20.05		
LTRL					17.57				

D . '4	LACM	TACM	LACM	LACM	LACM	LACM	LACM	LACM	TACM
Repository	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM
Specimen #	CIT 1238	CIT 1239	<u>CIT 1311</u>	CIT 1312	<u>CIT 1313</u>	CIT 1314	<u>CIT 1346</u>	CIT 1401	CIT 1404
Family	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Canidae	Equidae	Equidae
Subfamily	Anchitheriinae	Anchitheriinae	Equinae	Equinae	Equinae	Equinae	Hesperocyoninae	Anchitheriinae	Anchitheriinae
Tribe			Hipparionini	Hipparionini	Hipparionini	Hipparionini			
Subtribe									
Genus Species	Hypohippus affinis	Hypohippus affinis	Merychippus calamarius	Merychippus calamarius	Merychippus calamarius	Merychippus calamarius	Mesocyon brachyops	Hypohippus affinis	Hypohippus affinis
Site	Tonopah	Tonopah	Tonopah	Tonopah	Tonopah	Tonopah	Kew	Tonopah	Tonopah
Site #	CIT 172	CIT 172	CIT 172	CIT 172	CIT 172	CIT 172	CIT 126	CIT 172	
Formation	Tonopah	Tonopah	Tonopah	Tonopah	Tonopah	Tonopah	Sespe	Tonopah	Siebert
Region	Great Basin	Great Basin	Great Basin	Great Basin	Great Basin	Great Basin	Coast Ranges	Great Basin	Great Basin
Subregion	Nevada	Nevada	Nevada	Nevada	Nevada	Nevada	Transverse Ranges	Nevada	Nevada
Age Decimal	8.7 38.22	8.7 38.22	8.7 38.22	8.7 38.22	8.7 38.22	8.7 38.22	Ar1 34.25	8.7 38.22	8.7 38.22
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Henshaw 1942
2LPL 3LPL 4LPL 1LML					18.27	21.68	17.13		
2LML 3LML 2UML LTRL	25.17	28.61	21.4	20.14				25.01	28.8

Repository	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM
Specimen #	CIT 1419	CIT 1769	<u>CIT 1770</u>	<u>CIT 1819</u>	<u>CIT 1822</u>	<u>CIT 1823</u>	<u>CIT 1824</u>	<u>CIT 1880</u>	<u>CIT 1881</u>
Family	Equidae	Equidae	Equidae	Canidae	Canidae	Canidae	Canidae	Equidae	Equidae
Sublamily	Equinae	Anchitheriinae	Equinae	Hesperocyoninae	Hesperocyoninae	Hesperocyoninae	Hesperocyoninae	Anchitherinae	Anchitheriinae
Tribe	Hipparionini		Hipparionini						
Subtribe									
Genus	Mervchippus	Hypohippus	Mervchippus	Mesocvon	Mesocvon	Mesocvon	Mesocvon	Hypohippus	Hypohippus
Species	brevidontus	osborni	brevidontus	brachyops	brachyops	niesseysn	brachvons	affinis	affinis
~								-55	-55
Site	Coalinga North	Sucker Creek	Sucker Creek	Kew	Kew	Kew	Kew	Tonopah	Tonopah
Site #	CIT 108	CIT 44	CIT 58	CIT 126	CIT 126	CIT 126	CIT 126	CIT 172	CIT 172
Formation	Temblor	Sucker Creek	Sucker Creek	Sespe	Sespe	Sespe	Sespe	Tonopah	Tonopah
Region	Coast Ranges	Northwest	Northwest	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges	Great Basin	Great Basin
Subregion	San Joaquin	Columbia	Columbia	Transverse	Transverse	Transverse	Transverse	Nevada	Nevada
Subregion	Valley	Plateau	Plateau	Ranges	Ranges	Ranges	Ranges	i të vada	Ttevada
Age	17.3	14.13356239	14.13356239	Ar1	Ar1	Ar1	Ar1	8.7	8.7
Decimal	36.32	43.44	43.44	34.25	34.25	34.25	34.25	38.22	38.22
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL									
3LPL									
4LPL				12 20	14.50	15 50	12.40	24.27	22.52
				15.59	14.32	13.39	13.49	24.37	23.32
3L MI		23.03							
2UML	19.62	23.03	18 91						
LTRL	17.02		10.01						

Repository	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM
Specimen #	CIT 2620	CIT 2637	CIT 2834	CIT 2839	CIT 2840	CIT 2841	CIT 2842	CIT 2847	CIT 2860
Family	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae
Subfamily	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Anchitheriinae	Anchitheriinae
Tribe	Hipparionini	Equini	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini		
Subtribe Genus Species	Hipparion forcei	Pliohippus leardi	Merychippus calamarius	Merychippus calamarius	Merychippus calamarius	Merychippus calamarius	Merychippus calamarius	Hypohippus affinis	Hypohippus affinis
Site	North Tejon Hills	North Tejon Hills	Tonopah	Tonopah	Tonopah	Tonopah	Tonopah	Tonopah	Tonopah
Site #	CIT 104	CIT 302	CIT 172	CIT 172	CIT 172		CIT 172		CIT 172
Formation	Chanac	Chanac	Tonopah	Tonopah	Tonopah	Siebert	Tonopah	Siebert	Tonopah
Region	Coast Ranges	Coast Ranges	Great Basin	Great Basin	Great Basin				
Subregion	San Joaquin Valley	San Joaquin Valley	Nevada	Nevada	Nevada	Nevada	Nevada	Nevada	Nevada
Age	C13	C13	8.7	8.7	8.7	8.7	8.7	8.7	8.7
Decimal	35.13	35.12	38.22	38.22	38.22	38.22	38.22	38.22	38.22
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Henshaw 1942	Measurement	Henshaw 1942	Measurement
2LPL								23.6	
3LPL									
4LPL			0 1 0				20.04		
ILML 21 MI			21.3				20.84		
2LML 21 MI									
JLNL JIMI	23 13	26.44		21.41	22.01	21.2			27.4
LTRL	23.13	20.44		21.71	22.71	21.2			27. T

Repository	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM
Specimen #	CIT 2929	CIT 2930	CIT 3056	CIT 3057	CIT 3063	CIT 3091	CIT 3092	CIT 3329	CIT 3338
Family	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae
Subfamily	Equinae	Equinae	Equinae	Equinae	Anchitheriinae	Equinae	Equinae	Equinae	Equinae
Tribe	Equini	Equini	Equini	Equini		Equini	Equini	Hipparionini	Hipparionini
Subtribe <i>Genus</i>	Acritohippus	Acritohippus	Acritohippus	Acritohippus	Hypohippus	Acritohippus	Acritohippus	Neohipparion	Neohipparion
Species	seversus	seversus	isonesus	isonesus	osborni	isonesus	isonesus	floresi	floresi
								0	0
Site	Gateway	Gateway	Sucker Creek	Beatty Buttes	Beatty Buttes	Sucker Creek	Sucker Creek	Yepomera (Rincon)	Yepomera (Rincon)
Site #		CIT 368		CIT 371	CIT 371			CIT 281	CIT 281
Formation	Mascall	Mascall	Sucker Creek	Beatty Butte	Beatty Butte	Sucker Creek	Sucker Creek	Salada	Salada
Region	Northwest	Northwest	Northwest	Northwest	Northwest	Northwest	Northwest	Mexico	Mexico
Subregion	Columbia Plateau	Columbia Plateau	Columbia Plateau	Northern Great Basin	Northern Great Basin	Columbia Plateau	Columbia Plateau	Chihuahua	Chihuahua
Age	14.13356239	14.13356239	14.13356239	Dubin	Duom	14.13356239	14.13356239	Hh4	Hh4
Decimal	44.76	44.76	43.44	42.45	42.45	43.44	43.44	28.63	28.63
Source	Downs 1956	Measurement	Wallace 1946	Measurement	Measurement	Wallace 1946	Wallace 1946	Measurement	Measurement
2LPL									
3LPL									
4LPL									10.40
									18.49
			25	24.15	24 77				
	15.3	18 34	23	24.13	24.11	21	20.8	19.68	
LTRL	13.3	10.54				21	20.0	17.00	

Repository	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM
Specimen #	Equideo	Equideo	Equideo	Equideo	Equideo	Equidae	Equidaa	Equideo	Equideo
r annry Subfamily	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae
Sublaining	Equinac	Equinac	Equinac	Equillac	Equinae	Equillac	Equinac	Equinac	Equinae
Tribe	Equini	Equini	Equini	Equini	Equini	Equini	Hipparionini	Equini	Equini
Subtribe									
Genus	Astrohippus	Astrohippus	Astrohippus	Astrohippus	Astrohippus	Astrohippus	Neohipparion	Astrohippus	Astrohippus
Species	stockii	stockii	stockii	stockii	stockii	stockii	arellanoi	stockii	stockii
1									
S:4-	Yepomera	Yepomera	Yepomera	Yepomera	Yepomera	Yepomera	Yepomera	Yepomera	Yepomera
Site	(Rincon)	(Rincon)	(Rincon)	(Rincon)	(Rincon)	(Rincon)	(Rincon)	(Rincon)	(Rincon)
Site #	CIT 275	CIT 275	CIT 275	CIT 275	CIT 275	CIT 275	CIT 275	CIT 275	CIT 275
Formation	Salada	Salada	Salada	Salada	Salada	Salada	Salada	Salada	Salada
Region	Mexico	Mexico	Mexico	Mexico	Mexico	Mexico	Mexico	Mexico	Mexico
Subregion	Chihuahua	Chihuahua	Chihuahua	Chihuahua	Chihuahua	Chihuahua	Chihuahua	Chihuahua	Chihuahua
Age	Hh4	Hh4	Hh4	Hh4	Hh4	Hh4	Hh4	Hh4	Hh4
Decimal	28.63	28.63	28.63	28.63	28.63	28.63	28.63	28.63	28.63
Source	Magguramant	Magguramant	Magguramant	Magguramant	Magguramant	Magguramant	Magguramant	Magguramant	Magguramant
Source	Weasurement	Wieasurement	Weasurement	Wieasurement	Wieasurement	Wieasurement	Weasurement	Weasurement	Wieasurement
21 PI									
3LPL									
4LPL									
1LML		18.26	17.87	19.41	20.9	17.3	18.6	16.68	15.94
2LML									
3LML									
2UML	17.05								
LTRL									

Repository	LACM								
Specimen #	Equidad	Equidae	Equideo	Equidad	Equidaa	Equidaa	Equideo	Equideo	Equidae
Subfamily	Equidae	Equinae	Equinae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae
Tribe	Equini								
Subtribe Genus Species	Astrohippus stockii								
Site	Yepomera (Rincon)								
Site #	CIT 275								
Formation	Salada								
Region	Mexico								
Subregion	Chihuahua								
Age Decimal	Hh4 28.63								
Source	Measurement								
2LPL 3LPL 4LPL 1LML 2LML 3LML 2UML LTRL	18.82	17.79	17.06	16.15	20.11	20.65	16.54	20.27	15.83

Repository	LACM CIT 3645	LACM CIT 3647	LACM CIT 3648	LACM CIT 3650	LACM CIT 3651	LACM CIT 3652	LACM CIT 3653	LACM CIT 3654	LACM CIT 3655
Family	Equidae								
Subfamily	Equinae								
Tribe	Equini								
Subtribe Genus Species	Astrohippus stockii								
Site	Yepomera (Rincon)								
Site #	CIT 275								
Formation	Salada								
Region	Mexico								
Subregion	Chihuahua								
Age Decimal	Hh4 28.63								
Source	Measurement								
2LPL 3LPL 4LPL 1LML 2LML 3LML 2UML LTRL	18.11	17.12	19.26	16.28	18.75	16.58	20.1	16.61	17.74

Repository Specimen #	LACM CIT 3656	LACM CIT 3657	LACM CIT 3658	LACM CIT 3659	LACM CIT 3660	LACM CIT 3661	LACM CIT 3662	LACM CIT 3663	LACM CIT 3664
Family	Equidae								
Subfamily	Equinae								
Tribe	Equini								
Subtribe Genus Species	Astrohippus stockii								
Site	Yepomera (Rincon)								
Site #	CIT 275								
Formation	Salada								
Region	Mexico								
Subregion	Chihuahua								
Age Decimal	Hh4 28.63								
Source	Measurement								
2LPL 3LPL 4LPL 1LML 2LML 3LML 2UML LTRL	17.51	18.48	19.25	15.96	16.45	19.63	17.58	17.67	20.94

Repository	LACM								
Specimen #	CIT 3665	Equideo	CIT 3667	Equideo	Equideo	Equideo	Equidae	Equidae	Equideo
r anny Subfamily	Equidae								
Sublainity	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equiliae	Equinae	Equillat
Tribe	Equini								
Subtribe									
Genus	Astrohippus	Astrohippus	Astrohippus	Astrohippus	Dinohippus	Dinohippus	Dinohippus	Dinohippus	Dinohippus
Species	stockii	stockii	stockii	stockii	mexicanus	mexicanus	mexicanus	mexicanus	mexicanus
1									
S:40	Yepomera								
Site	(Rincon)								
Site #	CIT 275								
Formation	Salada								
Region	Mexico								
Subregion	Chihuahua								
Age	Hh4								
Decimal	28.63	28.63	28.63	28.63	28.63	28.63	28.63	28.63	28.63
Source	Measurement								
A 7 D7									
2LPL									
3LPL									
4LPL 11 MI	18.0	10.07	20.6	12.87	22 22	24 57		24.36	
	10.7	19.07	20.0	12.07	22.12	24.37		24.30	
3LML									
2UML							24.99		26.21
LTRL									

Repository	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM
Specimen #	Equideo	Equidaa	Equideo	Equidad	Equideo	Equidaa	Equidae	Equidaa	Equideo
Subfamily	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae
Sublumy	Equinue	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae
Tribe	Equini	Equini	Equini	Equini	Equini	Equini	Equini	Equini	Equini
Subtribe									
Genus	Dinohippus	Dinohippus	Dinohippus	Dinohippus	Dinohippus	Dinohippus	Dinohippus	Dinohippus	Dinohippus
Species	mexicanus	mexicanus	mexicanus	mexicanus	mexicanus	mexicanus	mexicanus	mexicanus	mexicanus
-									
Sito	Yepomera	Yepomera	Yepomera	Yepomera	Yepomera	Yepomera	Yepomera	Yepomera	Yepomera
Site	(Rincon)	(Rincon)	(Rincon)	(Rincon)	(Rincon)	(Rincon)	(Rincon)	(Rincon)	(Rincon)
G1 . "									
Site #	CIT 275	CIT 275	CIT 275	CIT 275	CIT 275	CIT 275	CIT 275	CIT 275	CIT 275
Formation	Salada	Salada	Salada	Salada	Salada	Salada	Salada	Salada	Salada
Region	Mexico	Mexico	Mexico	Mexico	Mexico	Mexico	Mexico	Mexico	Mexico
Subregion	Chihuahua	Chihuahua	Chihuahua	Chihuahua	Chihuahua	Chihuahua	Chihuahua	Chihuahua	Chihuahua
Age	Hh4	Hh4	Hh4	Hh4	Hh4	Hh4	Hh4	Hh4	Hh4
Decimal	28.63	28.63	28.63	28.63	28.63	28.63	28.63	28.63	28.63
Source	Maaguramant	Maaguramant	Magguramant	Maaguramant	Maaguramant	Magguramant	Maaguramant	Maaguramant	Maguramant
Source	Wieasurement	wieasurement	Measurement	Weasurement	wieasurement	Measurement	wieasurement	wieasurement	Measurement
A F									
2LPL 2LPL									
JLPL AL DI									
4LTL 1LML	23.76	22.96	22.87	21 79		20.79			24.06
2LML	20.00		,						2
3LML									
2UML					23.81		22.01	22.32	
LTRL									

Repository	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM
Specifien # Family	Equidae	Fauidae	Fauidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae
Subfamily	Equinae	Equinae	Equinae	Equinae	Equinae	Anchitheriinae	Equinae	Equinae	Equinae
Tribe	Hipparionini	Equini	Equini	Equini	Hipparionini		Hipparionini	Hipparionini	Equini
Subtribe Genus Species	Neohipparion floresi	Dinohippus mexicanus	Dinohippus mexicanus	Dinohippus mexicanus	Merychippus brevidontus	Archaeohippus ultimus	Merychippus calamarius	Merychippus calamarius	Acritohippus isonesus
Site	Yepomera (Rincon)	Yepomera (Rincon)	Yepomera (Rincon)	Yepomera (Rincon)	Virgin Valley	Gateway	Tonopah	Tonopah	Sucker Creek
Site #	CIT 281	CIT 275	CIT 275	CIT 275	CIT 114	CIT 368	CIT 172	CIT 172	CIT 44
Formation	Salada	Salada	Salada	Salada	Virgin Valley	Mascall	Tonopah	Tonopah	Sucker Creek
Region	Mexico	Mexico	Mexico	Mexico	Northwest	Northwest	Great Basin	Great Basin	Northwest
Subregion	Chihuahua	Chihuahua	Chihuahua	Chihuahua	Northern Great Basin	Columbia Plateau	Nevada	Nevada	Columbia Plateau
Age Decimal	Hh4 28.63	Hh4 28.63	Hh4 28.63	Hh4 28.63	41.80	14.13356239 44.76	8.7 38.22	8.7 38.22	14.13356239 43.44
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL 3LPL 4LPL 1LML	20.67	23.28	21.78	23.5	16.72				
2LML 3LML 2UML LTRL						14.91	21.78	21.81	22.11

Repository	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM	LACM
Specimen #	CIT 467	CIT 488	CIT 489	CIT 4916	CIT 493	CIT 4969	CIT 4970	CIT 4971	CIT 4972
Family	Canidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae
Subfamily	Hesperocyoninae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae
Tribe		Hipparionini	Hipparionini	Equini	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini
Subtribe									
Genus	Mesocyon	Merychippus	Merychippus	Acritohippus	Merychippus	Merychippus	Merychippus	Merychippus	Merychippus
Species	brachyops	californicus	californicus	seversus	californicus	calamarius	calamarius	calamarius	calamarius
					Coalinga				
Site	Kew	Coalinga North	Coalinga North	Gateway	Merychippus Zone	Tonopah	Tonopah	Tonopah	Tonopah
Site #	CIT 126	CIT 108	CIT 108	CIT 368	CIT 129	CIT 172	CIT 172	CIT 172	CIT 172
Formation	Sespe	Temblor	Temblor	Mascall	Temblor	Tonopah	Tonopah	Tonopah	Tonopah
Region	Coast Ranges	Coast Ranges	Coast Ranges	Northwest	Coast Ranges	Great Basin	Great Basin	Great Basin	Great Basin
Subregion	Transverse Ranges	San Joaquin Valley	San Joaquin Valley	Columbia Plateau	San Joaquin Valley	Nevada	Nevada	Nevada	Nevada
Age	Ar1	17.3	17.3	14.13356239	17.3	8.7	8.7	8.7	8.7
Decimal	34.25	36.32	36.32	44.76	36.32	38.22	38.22	38.22	38.22
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL 3LPL									
4LPL									
1LML	12.94	17.02	16.65		16.54	17.72	21.33	19.78	22.94
2LML									
3LML				10.40					
2UML				19.48					
LIKL									

Repository	LACM CIT 4973	LACM	LACM	LACM CIT 4982	LACM CIT 4986	LACM	LACM	LACM CIT 5089	LACM CIT 532
Specifien # Family	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae
Subfamily	Equinae	Equinae	Equinae	Equinae	Equinae	Anchitheriinae	Equinae	Equinae	Equinae
, i	1	I	1	I	I		1	1	1
Tribe	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini		Hipparionini	Hipparionini	Equini
a 1 / 1									
Subtribe	M 1.	N/ 1.	M 1.	M 1.	M 1.	11 1.	N7 1 · · ·	N7 1 · · ·	A 1 .
Genus	Merychippus	Merychippus	Merychippus	Merychippus	Merychippus	Hyponippus	Neonipparion	Neonipparion	Acritonippus
Species	catamartus	catamartus	catamartus	caiamarius	catamartus		Jioresi	arellanoi	seversus
Site	Tonopah	Tonopah	Tonopah	Tonopah	Tonopah	Beatty Buttes	Yepomera	Yepomera	Mascall Type
							(Rincon)	(Rincon)	
Site #	CIT 172	CIT 172	CIT 172	CIT 172	CIT 172	CIT 371	CIT 275	CIT 289	CIT 532
Formation	Tonopah	Tonopah	Tonopah	Tonopah	Tonopah	Beatty Butte	Salada	Salada	Mascall
	Ĩ	1	Ĩ	1	1	2			
Region	Great Basin	Great Basin	Great Basin	Great Basin	Great Basin	Northwest	Mexico	Mexico	Northwest
Subragion	Nevada	Nevada	Nevada	Nevada	Nevada	Northern Great	Chihuahua	Chihuahua	Columbia
Subregion	Ivevada	INCVALIA	Ivevada	Ivevada	Ivevada	Basin	Chindanda	Chinidanda	Plateau
Age	8.7	8.7	8.7	8.7	8.7		Hh4	Hh4	14.13356239
Decimal	38.22	38.22	38.22	38.22	38.22	42.45	28.63	28.63	44.51
Saumaa	Maagunamant	Maagunamant	Maggunamant	Maagunamant	Maaguramant	Maagunamant	Maggunamant	Maagunamant	Maagunamant
Source	weasurement	Weasurement	Weasurement	Weasurement	Measurement	Wieasurement	Weasurement	Measurement	Measurement
21 DI				77 77					
3LPL				22.21					
4LPL									
1LML						21.93		21.13	
2LML									
3LML					27.08				
2UML	21.78	22.91	22.16				24.13		19.26
LTRL									

Repository	LACM								
Specimen #	CIT 651	Emiles	Emiler	Emiles	CIT 661	Emiles	CIT 665	Emiler	CIT 668
Family	Equidae								
Sublamily	Equinae								
Tribe	Hipparionini								
Subtribe									
Genus	Merychippus	Mervchippus							
Species	californicus	calamarius							
Species	canjornicus	caramarias	catamartas	caramarias	catamartas	catamartas	caramarius	caramartas	caramartas
	Coalinga								
Site	Merychippus	Tonopah							
	Zone								
Site #	CIT 129	CIT 172							
F (*	T 11	T 1	T 1	T 1	T 1	T 1	T 1	T 1	T 1
Formation	Temblor	Tonopah	Tonopah	Ionopah	Tonopah	Tonopah	Ionopah	Tonopah	Tonopah
Region	Coast Ranges	Great Basin							
~	San Joaquin								
Subregion	Valley	Nevada							
Age	17.3	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7
Decimal	36.32	38.22	38.22	38.22	38.22	38.22	38.22	38.22	38.22
Source	Measurement								
2LPL									
3LPL									
4LPL									
1LML	18.36			18.86				20.93	
2LML									
3LML		• • • • •					25.18		
2UML		20.98	22.15		23.14	19.58			21.48
LTRL									

Repository	LACM								
Specimen #	CIT 669		Emiles	CIT 6/3	CIT 6/4	CIT 6/5	CIT 6/6	CIT 6/8	CIT 680
Family	Equidae	Anchitheriinne							
Subtaininy	Equiliae	Equillae	Equillae	Equillae	Equillae	Equillae	Equiliae	Equinae	Allellittlerillide
Tribe	Hipparionini								
Subtribe									
Genus	Mervchippus	Hypohippus							
Species	calamarius	affinis							
~									-55
Site	Tonopah								
Site #	CIT 172								
Formation	Tonopah								
Region	Great Basin								
Subregion	Nevada								
Age	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7
Decimal	38.22	38.22	38.22	38.22	38.22	38.22	38.22	38.22	38.22
Source	Measurement								
21.PL									
3LPL									22.81
4LPL									
1LML		19.25	19.32	19.95		19.73	16.97	21.56	
2LML									
3LML									
2UML	22.32				23.11				
LTRL									

Repository	LACM	LACM	LACM	LACM	RAM	RAM	SDNHM	SDNHM	SDNHM
Specimen #	Equidae	CIT 884	CIT 886	Equideo	7146 Canidaa	7 361	28595	28595 Canidaa	29092 Seinridee
Fainity	Equidae	Anchitheriinae	Anchitheriinae	Equidae	Borophaginae	Equidae	Lasparaguaninga	Uasparaguaninga	Sciurinae
Sublaininy	Equillae	Ancinuieriniae	Alicinuleriniae	Equinae	Borophaginae	Equinae	nesperocyolillae	Hesperocyonniae	Sciurmae
Tribe	Hipparionini			Hipparionini	Borophagini	Hipparionini			Sciurini
Subtribe					Cynarctina				
Genus	Mervchippus	Archaeohippus	Hypohippus	Mervchippus	Microtomarctus	Scaphohippus	Mesocvon	Mesocvon	Protosciurus
Species	calamarius	mourningi		calamarius		sumani	corvphaeus	corvphaeus	
-1			C I'				51	51	
C *4	T 1	Coalinga	Coalinga	TT 1	W11 C	WILD	EastLake	EastLake	EastLake
Site	Tonopan	Merychippus	Merychippus	Tonopan	webb G	webb D	Shores	Shores	Shores
		Zone	Zone						
Site #	CIT 172	CIT 129	CIT 129	CIT 172	V94063	V94060	3280	3280	3280
Formation	Tonopah	Temblor	Temblor	Tonopah	Barstow	Barstow	Otay	Otay	Otay
D	Creat Desir	Court Domos	Court Domos	Creat Desire	Creat Davin	Creat Desir	Peninsular	Peninsular	Peninsular
Region	Great Basin	Coast Ranges	Coast Ranges	Great Basin	Great Basin	Great Basin	Ranges	Ranges	Ranges
Subragion	Nevada	San Joaquin	San Joaquin	Nevada	Mojave Desert	Mojave Desert	Peninsular	Peninsular	Peninsular
Subregion	Ivevada	Valley	Valley	Nevaua	Wojave Desert	Mojave Desert	Ranges	Ranges	Ranges
Age	8.7	17.3	17.3	8.7		Ba1	Ar1	Ar1	Ar1
Decimal	38.22	36.32	36.32	38.22	35.03	35.03	32.65	32.65	32.65
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL			19.74						
3LPL									
4LPL									
					22.76		16.98	16.98	
2LML		14.11							
3LML	21.07	14.11		21.92		25.07			
2UML	21.97			21.82		25.07			(21
									0.31

Repository	SDNHM 42851	SDNHM 42851	SDNHM 88919	SDNHM 88919	SDNHM 104317	SDNHM 104317	SDSM 10607	SDSM 16742	SDSM 16744
Family	Canidae	Canidae	Canidae	Canidae	Canidae	Canidae	Equidae	Equidae	Equidae
Subfamily	Hesperocyoninae	Hesperocyoninae	Hesperocyoninae	Hesperocyoninae	Hesperocyoninae	Hesperocyoninae	Equinae	Equinae	Equinae
Tribe							Hipparionini	Hipparionini	Hipparionini
Subtribe									
Genus	Mesocyon	Mesocyon	Mesocyon	Mesocyon	Mesocyon	Mesocyon	Hipparion	Hipparion	Hipparion
Species	coryphaeus	coryphaeus	-			-	condoni	condoni	condoni
_			FastLake	FastI ake	McMillin	McMillin			
Site	Salt Creek 1	Salt Creek 1	Business	Business	Rolling Hills	Rolling Hills	Buena	Toppenish-	Buena
Site	San Creek I	San Creek I	Center Site 35	Center Site 35	Ranch, Neigh. 9	Ranch, Neigh. 9	Ducha	Goldendale	Buena
~			Center, Site 35	Center, Site 55	12	12			
Site #	3566	3566	3331	3331	5611	5611	6414	6415	6414
Formation	Otay	Otay	Otay	Otay	Otay	Otay	Ellensburg	Ellensburg	Ellensburg
	Peninsular	Peninsular	Peninsular	Peninsular	Peninsular	Peninsular	N7 . 1		
Region	Ranges	Ranges	Ranges	Ranges	Ranges	Ranges	Northwest	Northwest	Northwest
61	Peninsular	Peninsular	Peninsular	Peninsular	Peninsular	Peninsular	Columbia	Columbia	Columbia
Subregion	Ranges	Ranges	Ranges	Ranges	Ranges	Ranges	Plateau	Plateau	Plateau
Age	Ar1	Ar1	Ar1	Ar1	Ar1	Ar1	C13	C13	C13
Decimal	32.65	32.65	32.65	32.65	32.65	32.65	46.34	46.34	46.34
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
21 DI									22.92
2LPL 21 DI									23.82
JLPL ALDI									
4LFL 1LML	17.05	17.05	16.61	16.61	16.68	16.68	23.28		
2LML	17.05	17.05	10.01	10.01	10.00	10.00	23.20	23 54	
3LML								20101	
2UML									
LTRL									

Repository	SDSM 16753	SDSM 16757	SDSM 66313	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP
Specifien #	Fauidae	Fauidae	Fauidae	Equidae	Fauidae	Fauidae	Fauidae	Equidae	Fauidae
Subfamily	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Anchitheriinae
Jawining	Equina	Equina	Equinat	Equinat	Equinar	Equinar	Equina	Equina	
Tribe	Hipparionini	Hipparionini	Hipparionini	Equini	Equini	Equini	Equini	Equini	
Subtribe									
Genus	Hipparion	Hipparion	Hipparion	Acritohippus	Acritohippus	Acritohippus	Acritohippus	Acritohippus	Hypohippus
Species	condoni	condoni	mppunton	seversus	seversus	seversus	isonesus	seversus	osborni
~									
Site	Moxee	Buena	Horse Locality	Mascall General	Mascall Misc. 2	Mascall Misc. 2	Schneider Ranch	Schneider Ranch	Virgin Valley
Site #	6425	6414	6367	67153	884	884	903	903	1065
Formation	Ellensburg	Ellensburg	Ellensburg	Mascall	Mascall	Mascall	Mascall	Mascall	Virgin Valley
Region	Northwest	Northwest	Northwest	Northwest	Northwest	Northwest	Northwest	Northwest	Northwest
	Columbia	Columbia	Columbia	Columbia	Columbia	Columbia	Columbia	Columbia	Northern Great
Subregion	Plateau	Plateau	Plateau	Plateau	Plateau	Plateau	Plateau	Plateau	Basin
Age	Cl3	Cl3	Cl3	14.13356239	14.13356239	14.13356239	14.13356239	14.13356239	Dusin
Decimal	46.34	46.34	46.34	44.51	44.51	44.51	44.49	44.49	41.65
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL					19.14				24.6
3LPL					10111				
4LPL			24.22						
1LML		19.72		15.76					
2LML									
3LML	21.71					18.26	21.05	20.72	
2UML									
LTRL									

Repository	UCMP	UCMP	UCMP	UCMP	UCMP 21214	UCMP 21249	UCMP 21325	UCMP 21386	UCMP 21308
Specifien # Family	Fauidae	Canidae	Fauidae	Fauidae	Fauidae	Equidae	Fauidae	Equidae	Fauidae
Subfamily	Anchitheriinae	Borophaginae	Anchitheriinae	Anchitheriinae	Anchitheriinae	Equinae	Equinae	Equinae	Equinae
Tribe		Borophagini				Hipparionini	Hipparionini	Equini	Hipparionini
Subtribe Genus Species	Hypohippus osborni	Cynarctina Tephrocyon rurestris	Hypohippus osborni	Archaeohippus mourningi	Hypohippus	Merychippus californicus	Merychippus californicus	Acritohippus stylodontus	Scaphohippus intermontanus
Site	Virgin Valley 4	Rodent Hill	Stewart Springs	Coon Canyon	Coon Canyon	Coalinga North	Merychippus Zone 1	Coon Canyon	Coon Canyon
Site #	1085	1399	2027	2058	2057	2124	2124	2058	2057
Formation	Virgin Valley	Barstow	Esmeralda	Barstow	Barstow	Temblor	Temblor	Barstow	Barstow
Region	Northwest	Great Basin	Great Basin	Great Basin	Great Basin	Coast Ranges	Coast Ranges	Great Basin	Great Basin
Subregion	Northern Great Basin	Mojave Desert	Nevada	Mojave Desert	Mojave Desert	San Joaquin Valley	San Joaquin Valley	Mojave Desert	Mojave Desert
Age Decimal	41.86	Ba2 35.05	8.7 38.59	35.03	35.03	17.3 36.32	17.3 36.32	35.03	Ba1 35.03
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL 3LPL							19.42		
4LPL 1LML 2LML 3LML	20.17	17.82	19.42	13.42		20.9			21.36
2UML LTRL					24.1			21.32	
Repository	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP
---------------------	--------------------	----------------------	----------------	--------------	-------------------	--------------	--------------	--------------	--------------
Specimen #	22351 Eastidate	22388 E autilia a	<u>22391</u>	23088	23098 Escrites	<u>23209</u>	<u>23214</u>	<u>23287</u>	<u>23307</u>
Family Subfamily	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae
Sublaininy	Equinae	Equinae	Equillae	Equinae	Equinae	Equinae	Equiliae	Equillae	Equinae
Tribe	Hipparionini	Equini	Equini	Equini	Equini	Equini	Equini	Equini	Equini
Subtribe									
Genus	Hipparion	Pliohippus	Pliohippus	Acritohippus	Acritohippus	Dinohippus	Dinohippus	Dinohippus	Dinohippus
Species	anthonvi	spectans	spectans	seversus	seversus	leidvanus	leidvanus	leidvanus	leidvanus
~		-1	-7						
a .	¥	5 1 1 11	5 1 1 1			Mt. Eden	Mt. Eden	Mt. Eden	Mt. Eden
Site	Ironside	Rattlesnake 11	Rattlesnake 11	Mascall 5	Mascall 1	General	General	General	General
Site #	3037	3060	3060	3059	3043	6573	6573	6573	6573
Formation	Iuntura	Rattlesnake	Rattlesnake	Mascall	Mascall	Mt Eden	Mt Eden	Mt Eden	Mt Eden
1 of mation	Juntara	Rattleshake	Rattleshake	Masean	Wasculf	Int. Eddi			
Region	Northwest	Northwest	Northwest	Northwest	Northwest	Peninsular	Peninsular	Peninsular	Peninsular
riegion						Ranges	Ranges	Ranges	Ranges
Subregion	Columbia	Columbia	Columbia	Columbia	Columbia	Peninsular	Peninsular	Peninsular	Peninsular
	Plateau	Plateau	Plateau	Plateau	Plateau	Ranges	Ranges	Ranges	Ranges
Age	Cl3	Hh2	Hh2	14.13356239	14.13356239	Hh4	Hh4	Hh4	Hh4
Decimal	44.31	44.52	44.52	44.51	44.51	33.89	33.89	33.89	33.89
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL	27.75				19.46	29.14	31.03		23.34
3LPL									
4LPL									
1LML		24.72							
2LML									
3LML								26.99	
2UML			24.72	20.23					
LTRL									

Repository	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP 20063	UCMP	UCMP	UCMP
Specifien # Family	Equidae	Fauidae	Equidae	Equidae	Equidae	Equidae	Fauidae	Fauidae	Fauidae
Subfamily	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equidae	Equinae	Equinae
Tribe	Equini	Equini	Equini	Equini	Equini	Equini	Equini	Hipparionini	Hipparionini
Subtribe Genus Species	Dinohippus leidyanus	Dinohippus leidyanus	Dinohippus leidyanus	Pliohippus	Pliohippus	Pliohippus	Acritohippus seversus	Hipparion	Hipparion
Site	Mt. Eden	Mt. Eden	Warren Syncline 2	Rattlesnake 9	Rattlesnake 11	Rattlesnake 11	Gateway	Black Hawk Ranch	Black Hawk Ranch
Site #	3269	3269	2503	3057	3060	3060	3472	3310	3310
Formation	Mt. Eden	Mt. Eden	Horned Toad	Rattlesnake	Rattlesnake	Rattlesnake	Mascall	Green Valley	Green Valley
Region	Peninsular Ranges	Peninsular Ranges	Great Basin	Northwest	Northwest	Northwest	Northwest	Coast Ranges	Coast Ranges
Subregion	Peninsular Ranges	Peninsular Ranges	Mojave Desert	Columbia Plateau	Columbia Plateau	Columbia Plateau	Columbia Plateau	Bay Area	Bay Area
Age	Hh4	Hh4	Hh4	Hh2	Hh2	Hh2	14.13356239	C13	C13
Decimal	33.89	33.89	35.09	44.48	44.52	44.52	44.76	37.82	37.82
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL 3LPL	27.26	26.38	29.05		31.61				
4LPL						29.31			
1LML									
2LML									
3LML				27.62			10.10	2 0 (1	28.47
2UML							18.19	20.61	
LTRL									

Repository	UCMP	UCMP 34080	UCMP 34000	UCMP 34001	UCMP 34102	UCMP 34100	UCMP 34308	UCMP 34511	UCMP 34507
Family	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae
Subfamily	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae
, i i i i i i i i i i i i i i i i i i i	1	Ĩ	Ĩ	Ĩ	1	1	1	1	1
Tribe	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Equini	Hipparionini	Equini
Subtribe Genus Species	Hipparion	Hipparion	Hipparion	Hipparion	Hipparion	Hipparion	Pliohippus	Hipparion	Pliohippus fairbanksi
Site	Black Hawk Ranch	Martin Creek 2	Black Hawk Ranch	Black Hawk Ranch					
Site #	3310	3310	3310	3310	3310	3310	3905	3310	3310
Formation	Green Valley	San Pablo	Green Valley	Green Valley					
Region	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges					
Subregion	Bay Area	Bay Area	Bay Area	Bay Area					
Age Decimal	Cl3 37.82	C13 37.82	Cl3 37.82	Cl3 37.82	C13 37.82	Cl3 37.82	Cl2 37.55	Cl3 37.82	Cl3 37.82
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL 3LPL 4LPL	25.98	24.9	24.56	22.01					32.03
1LML 2LML 3LML 2UMI					23.97	26.43	24.5	19 52	
LTRL								17.52	

Repository	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP
Specimen #	54598 Equideo	Sejuridae	<u> </u>	55807	358/1	Equidad	<u> </u>	<u>380//</u>	<u>58/99</u>
Subfamily	Equidae	Sciurinae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae
Subluinity	Equinae	Belarinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equilite
Tribe	Hipparionini	Marmotini	Equini	Equini	Equini	Hipparionini	Hipparionini	Hipparionini	Hipparionini
Subtribe Genus Species	Hipparion forcei	Spermophilus	Pliohippus	Pliohippus	Pliohippus	Hipparion	Neohipparion	Neohipparion	Hipparion
Site	Black Hawk Ranch	Black Hawk Ranch	Stormy's Camp 1	Ingram Creek 8	Ingram Creek 8	Ingram Creek 10	Brady Pocket 1	Brady Pocket 1	Brady Pocket 1
Site #	3310	3310	2729	3952	3952	3954	4845	4845	4845
Formation	Green Valley	Green Valley	Dove Spring	San Pablo	San Pablo	San Pablo	Truckee	Truckee	Truckee
Region	Coast Ranges	Coast Ranges	Great Basin	Coast Ranges	Coast Ranges	Coast Ranges	Great Basin	Great Basin	Great Basin
Subregion	Bay Area	Bay Area	Mojave Desert	Bay Area	Bay Area	Bay Area	Nevada	Nevada	Nevada
Age	C13	C13	C12	C12	C12	Cl2	C13	C13	C13
Decimal	37.82	37.82	35.41	37.54	37.54	37.53	39.93	39.93	39.93
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL 3LPL 4LPL 1LML 21 MI							22.77	30.87	22.66
	25.44				34 22				
2UML	23.77		29.73	30.29	37.22	20.38			
LTRL		9	22.110	20.22		20.00			

Repository	UCMP 39095	UCMP 39505	UCMP 39663	UCMP 39880	UCMP 40315	UCMP 45135	UCMP 45136	UCMP 45136	UCMP 45292
Specifien #	Equidae	Equidae	Fauidae	Equidae	Fauidae	Fauidae	Fauidae	Fauidae	Fauidae
Subfamily	Equinae	Equinae	Equinae	Anchitheriinae	Equinae	Equinae	Equinae	Equinae	Equinae
Subluiniy	Equinae	Equinue	Equinae	Thienderinae	Equinue	Equinae	Equinae	Equinae	Equinae
Tribe	Equini	Hipparionini	Equini		Equini	Hipparionini	Hipparionini	Hipparionini	Equini
Subtribe Genus Species	Acritohippus seversus	Hipparion	Pliohippus	Archaeohippus ultimus	Acritohippus seversus	Hipparion	Hipparion	Hipparion	Pliohippus
Site	Mascall 16	Newton	Orinda Schoolhouse	Crooked River	Crooked River 2	Ingram Creek 11	Ingram Creek 1	Ingram Creek 1	Siesta Valley 2
Site #	4830	5006	5017		4949	5512	3616	3616	3652
Formation	Mascall	San Pablo	Mulholland	Mascall	Mascall	San Pablo	San Pablo	San Pablo	Siesta
Region	Northwest	Coast Ranges	Coast Ranges	Northwest	Northwest	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges
Subregion	Columbia Plateau	Bay Area	Bay Area	Columbia Plateau	Columbia Plateau	Bay Area	Bay Area	Bay Area	Bay Area
Age	14.13356239	C12	Hh2	14.13356239	14.13356239	C12	Cl2	C12	C13
Decimal	44.51	37.50	37.83	44.05	44.08	37.54	37.54	37.54	37.87
Source	Measurement	Measurement	Measurement	Downs 1956	Measurement	Measurement	Measurement	Measurement	Measurement
2L.PL		27.45					20.92		
3LPL		21.73					20.72		
4LPL									
1LML	19.01								24.26
2LML									
3LML			31.18	13.7	22.11	25.15		21.41	
2UML LTRL									

Repository	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP
Specimen #	45305	48718	50552	50665	50667	50670	50680	50750	50909
Family	Equidae	Equidae	Equidae	Equidae	Equidae	Canidae	Equidae	Equidae	Equidae
Subfamily	Equinae	Anchitheriinae	Equinae	Anchitheriinae	Equinae	Borophaginae	Equinae	Equinae	Equinae
Tribe	Hipparionini		Hipparionini		Hipparionini	Borophagini	Hipparionini	Hipparionini	Hipparionini
Subtribe Genus Species	Hipparion tehonensis	Archaeohippus	Scaphohippus sumani	Archaeohippus mourningi	Scaphohippus sumani	Cynarctina Tephrocyon rurestris	Scaphohippus sumani	Scaphohippus sumani	Scaphohippus sumani
Site	Mt. Diablo Country Club 1	Dry Canyon W	Dry Canyon W	Dry Canyon W	Dry Canyon W	Dry Canyon W	Dry Canyon W	Dry Canyon W	Dry Canyon W
Site #	5509	5666	5666	5666	5666	5666	5666	5666	5666
Formation	Green Valley	Caliente	Caliente	Caliente	Caliente	Caliente	Caliente	Caliente	Caliente
Region	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges
Subregion	Bay Area	Transverse Ranges	Transverse Ranges	Transverse	Transverse	Transverse	Transverse	Transverse	Transverse Ranges
Age	C13	Ranges	Bal	Ranges	Bal	Ranges	Bal	Bal	Bal
Decimal	37.84	34.67	34.67	34.67	34.67	34.67	34.67	34.67	34.67
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL 3LPL 4LPL									
1LML				12.04		20.84	20.34		
2LML	17.82								
3LML		13.36							
2UML			21.72		19.75			20.16	17.52
LTRL									

Repository	UCMP 50010	UCMP	UCMP 51000	UCMP 51050	UCMP 51075	UCMP 51080	UCMP 51128	UCMP 51130	UCMP 51170
Specifien #	Equidae	Equidae	Equidae	Equidae	510/5 Equidae	Equidae	51120 Equidae	Equidae	51170 Equidae
Subfamily	Equinae	Equinae	Equinae	Equinae	Anchitheriinae	Anchitheriinae	Anchitheriinae	Equinae	Equinae
Tribe	Hipparionini	Hipparionini	Hipparionini	Hipparionini				Hipparionini	Hipparionini
Subtribe Genus Species	Scaphohippus sumani	Scaphohippus sumani	Scaphohippus sumani	Scaphohippus sumani	Archaeohippus mourningi	Archaeohippus	Archaeohippus	Scaphohippus sumani	Scaphohippus sumani
Site	Dry Canyon W	Dry Canyon W	Dry Canyon W	Dry Canyon W	Dry Canyon W	Dry Canyon W	Dry Canyon W	Dry Canyon W	Dry Canyon W
Site #	5666	5666	5666	5666	5666	5666	5666	5666	5666
Formation	Caliente	Caliente	Caliente	Caliente	Caliente	Caliente	Caliente	Caliente	Caliente
Region	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges
Subregion Age Decimal	Transverse Ranges Ba1 34.67	Transverse Ranges Ba1 34.67	Transverse Ranges Ba1 34.67	Transverse Ranges Ba1 34.67	Transverse Ranges 34.67	Transverse Ranges 34.67	Transverse Ranges 34.67	Transverse Ranges Ba1 34.67	Transverse Ranges Ba1 34.67
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL 3LPL 4LPL 1LML 2LML 31 MI	19.29	19.7	19.67	17.47	14.16	16.08	12.09	23.1	19.04
2UML LTRL					14.10				

Repository	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP
Specimen #	51180	51183	51230	51230	51255	51300	51310	51326	55002
Family	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae
Subfamily	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Anchitheriinae	Anchitheriinae	Equinae
Tribe	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini			Equini
Subtribe Genus Species	Scaphohippus sumani	Scaphohippus sumani	Scaphohippus sumani	Scaphohippus sumani	Scaphohippus sumani	Scaphohippus sumani	Archaeohippus	Archaeohippus	Pliohippus
Site	Dry Canyon W	Dry Canyon W	Dry Canyon W	Glory Gorge 1					
Site #	5666	5666	5666	5666	5666	5666	5666	5666	5703
Formation	Caliente	Caliente	Caliente	Caliente	Caliente	Caliente	Caliente	Caliente	Caliente
Region	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges					
Subregion	Transverse	Transverse	Transverse	Transverse	Transverse	Transverse	Transverse	Transverse	Transverse
Å = -	Ranges	Ranges	Ranges	Ranges	Ranges	Ranges	Ranges	Ranges	Ranges
Age Decimal	34.67	34.67	34.67	34.67	34.67	34.67	34.67	34.67	34.81
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL		20.54							
3LPL					18.6				
4LPL									
1LML			11.55	21.93			12.04	12.2	
2LML									
3LML									24.58
2UML	19.59					19.22			
LTRL									

Repository	UCMP	UCMP	UCMP 56278	UCMP 58222	UCMP 58234	UCMP 58244	UCMP 62771	UCMP 65620	UCMP 67024
Specifien #	Equidae	Fauidae	Fauidae	Canidae	Fauidae	Equidae	Equidae	Equidae	Equidae
Subfamily	Equinae	Equinae	Equinae	Borophaginae	Equinae	Equinae	Equinae	Equinae	Equinae
Tribe	Hipparionini	Hipparionini	Equini	Borophagini	Hipparionini	Hipparionini	Hipparionini	Equini	Hipparionini
Subtribe Genus Species	Scaphohippus sumani	Scaphohippus sumani	Pliohippus	Borophagina Epicyon haydeni	Neohipparion trampasense	Hipparion tehonense	Hipparion	Pliohippus fairbanksi	Hipparion
Site	Dry Canyon W	Dry Canyon W	Black Hawk Ranch	Kendall- Mallory 1	Kendall- Mallory 1	Kendall- Mallory 1	Caldecott Tunnel 3	Black Hawk Ranch	Black Hawk Ranch
Site #	5673	5666	3310	6107	6107	6107	6224	3310	3310
Formation	Caliente	Caliente	Green Valley	Contra Costa Group	Contra Costa Group	Contra Costa Group	Orinda	Green Valley	Green Valley
Region	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges
Subregion	Transverse Ranges	Transverse Ranges	Bay Area	Bay Area	Bay Area	Bay Area	Bay Area	Bay Area	Bay Area
Age Decimal	Ba1 34.75	Ba1 34.67	Cl3 37.82	Cl3 37.82	Cl3 37.82	Cl3 37.82	Cl2 37.83	Cl3 37.82	Cl3 37.82
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL 3LPL 41 PI						21.6			
4LFL 1LML 2LML	20.39	17.98		34.24					
3LML 2UML LTRL			26.77		21.8		20.92	30.53	20.12

Repository	UCMP 67959	UCMP	UCMP	UCMP 77031	UCMP	UCMP 78400	UCMP	UCMP 05111	UCMP 95112
Specifien #	Equidae	Fauidae	Fauidae	Fauidae	Fauidae	Fauidae	Fauidae	Fauidae	Fauidae
Subfamily	Equinae	Equidae	Equidae	Equinae	Equinae	Anchitheriinae	Equinae	Equinae	Equinae
Subluiniy	Equinae	Equinue	Equinae	Equinue	Equinae	7 memaner mae	Equinae	Equinae	Equinae
Tribe	Equini	Equini	Equini	Hipparionini	Equini		Hipparionini	Hipparionini	Hipparionini
Subtribe									
Genus Species	Pliohippus	Acritohippus stylodontus	Acritohippus stylodontus	Hipparion tehonense	Pliohippus fairbanksi	Archaeohippus	Hipparion forcei	Hipparion forcei	Hipparion forcei
Site	Quatal Canyon S 20	Coon Canyon	Coon Canyon	Kendall- Mallory 1	Black Hawk Ranch	Dry Canyon W	Black Hawk Ranch	Black Hawk Ranch	Black Hawk Ranch
Site #	5905	6605	6605	6107	3310	5666	3310	3310	3310
Formation	Caliente	Barstow	Barstow	Contra Costa Group	Green Valley	Caliente	Green Valley	Green Valley	Green Valley
Region	Coast Ranges	Great Basin	Great Basin	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges
Subregion	Transverse Ranges	Mojave Desert	Mojave Desert	Bay Area	Bay Area	Transverse Ranges	Bay Area	Bay Area	Bay Area
Age	Cl2			C13	C13	~	C13	C13	C13
Decimal	34.82	35.03	35.03	37.82	37.82	34.67	37.82	37.82	37.82
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL									
3LPL	19.62								
4LPL			24.5	17.5	22.21	12.05			
ILML 21 MI			24.5	17.5	23.21	12.95			
2LNL 31 MI									
		24 92					20.5	22.85	22.92
LTRL		21.22					2012	22.05	,_

Repository	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP
Specimen #	Fauidae	Equidae	Equidae	Equidae	T31052	Equidae	Equidae	<u>100194</u>	100218 Equidae
Family	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Borophaginae	Equidae
Subranniy	Equinac	Equiliae	Equinac	Equiliae	Equiliae	Equiliae	Equinae	Dorophaginae	Equinae
Tribe	Hipparionini	Hipparionini	Hipparionini	Equini	Hipparionini	Hipparionini	Hipparionini	Borophagini	Hipparionini
Subtribe Genus Species	Hipparion forcei	Neohipparion trampasense	Hipparion tehonense	Pliohippus fairbanksi	Hipparion forcei	Hipparion forcei	Hipparion forcei	Cynarctina Microtomarctus	Merychippus californicus
Site	Black Hawk Ranch	Kendall- Mallory 1	Kendall- Mallory 1	Black Hawk Ranch	Black Hawk Ranch	Black Hawk Ranch	Black Hawk Ranch	Path 15	Path 15
Site #	3310	6107	6107	3310	3310	3310	3310	99563	99563
Formation	Green Valley	Contra Costa Group	Contra Costa Group	Green Valley	Green Valley	Green Valley	Green Valley	Temblor	Temblor
Region	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges	Coast Ranges
Subregion	Bay Area	Bay Area	Bay Area	Bay Area	Bay Area	Bay Area	Bay Area	San Joaquin Valley	San Joaquin Vallev
Age	C13	C13	C13	C13	C13	C13	C13	17.3	17.3
Decimal	37.82	37.82	37.82	37.82	37.82	37.82	37.82	36.32	36.32
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL 3LPL 4LPL									
1LML								15.3	14.26
2LML									
3LML	2 0.0 7	10.6	21.15	2 0 5 0	21 2 <i>C</i>	21 5 0	10 50		
2UML	20.95	18.6		29.59	21.56	21.53	19.58		

Repository	UCMP 166234	UCMP 166250	UCMP 166252	UCMP 166260	UCMP 166271	UCMP 166276	UCMP	UCMP 311296	UCMP 311685
Family	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Canidae
Subfamily	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Anchitheriinae	Equinae	Borophaginae
Tribe	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini	Hipparionini		Hipparionini	Borophagini
Subtribe Genus Species	Merychippus californicus	Merychippus californicus	Merychippus californicus	Merychippus californicus	Merychippus californicus	Merychippus	Desmatippus avus	Scaphohippus sumani	Cynarctina Paracynarctus kelloggi
Site	Path 15	Path 15	Path 15	Barstow 20	Barstow A-H				
Site #	99563	99563	99563	99563	99563	99563	99563	RV6401	RV5201
Formation	Temblor	Temblor	Temblor	Temblor	Temblor	Temblor	Temblor	Barstow	Barstow
Region	Coast Ranges	Coast Ranges	Coast Ranges	Great Basin	Great Basin				
Subregion	San Joaquin Valley	San Joaquin Valley	San Joaquin Valley	Mojave Desert	Mojave Desert				
Age	17.3	17.3	17.3	17.3	17.3	17.3	17.3	Ba1	Ba2
Decimal	36.32	36.32	36.32	36.32	36.32	36.32	36.32	35.03	35.03
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL		20.32							
3LPL		20.32							
4LPL									
1LML				18.09					14.28
2LML									
3LML	21.50		17 42		17.92	10.09	10.70	20.70	
2UML I TPI	21.39		17.43		17.83	19.08	19.79	20.79	

Repository	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP 220010	UCMP	UCMP	UCMP
Specimen #	511/52 Equideo	315104 Equideo	SISI25 Capidaa	515197 Equideo	<u>518/00</u>	520010 Equidad	520015 Equideo	<u>520018</u>	<u>320048</u>
Subfamily	Equinae	Equinae	Borophaginae	Equidae	Borophaginae	Equinae	Equinae	Equinae	Equinae
Tribe	Hipparionini	Equini	Borophagini	Equini	Borophagini	Equini	Equini	Equini	Equini
Subtribe Genus Species	Scaphohippus intermontanus	Acritohippus stylodontus	Cynarctina Microtomarctus conferta	Pliohippus fairbanksi	Borophagina Borophagus secundus	Dinohippus leidyanus	Dinohippus leidyanus	Dinohippus leidyanus	Dinohippus leidyanus
Site	Barstow Z			Fish Lake Valley 15	Warren	Warren	Warren	Warren	Warren
Site #	RV5801	RV7212	RV7210	RV7034	RV8102	RV8125	RV6834	RV8107	RV8115
Formation	Barstow	Barstow	Barstow	Esmeralda	Horned Toad	Horned Toad	Horned Toad	Horned Toad	Horned Toad
Region	Great Basin	Great Basin	Great Basin	Great Basin	Great Basin	Great Basin	Great Basin	Great Basin	Great Basin
Subregion	Mojave Desert	Mojave Desert	Mojave Desert	Nevada	Mojave Desert	Mojave Desert	Mojave Desert	Mojave Desert	Mojave Desert
Age Decimal	Ba1 35.03	35.03	35.03	Cl2 37.92	Hh4 35.09	Hh4 35.09	Hh4 35.09	Hh4 35.09	Hh4 35.09
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL 3LPL 4LPL 1LML 2LML 3LML 2UML	21.31	16.99	15.36	22.23	27.51	20.61	26.5	28.26	27.8

Repository	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP	UCMP
Specimen #	320050	320053	320852	320853	320854	320855	320858	323375	(V302~1)
Family	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Equidae	Sciuridae
Subfamily	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	Equinae	
Tribe	Equini	Equini	Hipparionini	Hipparionini	Equini	Hipparionini	Hipparionini	Equini	
Subtribe									
Genus	Dinohippus	Dinohippus	Scaphohippus	Scaphohippus	Acritohippus	Scaphohippus	Scaphohippus	Acritohippus	
Species	leidvanus	leidvanus	intermontanus	intermontanus	stylodontus	intermontanus	intermontanus	stylodontus	
Sprins	tetayantas	ieidyddinas			sigioticititis			bijtedennib	
Site	Warren	Warren Microsite	Cache Peak		Cache Peak	Cache Peak	Cache Peak	Barstow Z	Kendall- Mallory 1
Site #	RV8110	RV7702	RV8212	RV8215	RV8237	RV8244	RV8228	RV5801	6107
			 D	 D			 D	5	Contra Costa
Formation	Horned Toad	Horned Toad	Bopesta	Bopesta	Bopesta	Bopesta	Bopesta	Barstow	Group
Region	Great Basin	Great Basin	Great Basin	Great Basin	Great Basin	Great Basin	Great Basin	Great Basin	Coast Ranges
Subregion	Mojave Desert	Mojave Desert	Mojave Desert	Mojave Desert	Mojave Desert	Mojave Desert	Mojave Desert	Mojave Desert	Bay Area
Age	Hh4	Hh4	Ba1	Ba1		Ba1	Ba1		C13
Decimal	35.09	35.09	35.17	35.17	35.19	35.18	35.18	35.03	37.82
~									
Source	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
2LPL			21.74	21.88					
3LPL									
4LPL									
1LML	17.78	21.32					19.27	19.4	
2LML									
3LML									
2UML					20.65	20.65			
LTRL									9.51

Specimen #(V302~1)19757631028320552213532155923841Family SubfamilySciuridaeEquidaeSciuridaeEquidaeCanidaeCanidaeCanidaeCanidaeCanidaeSubfamilyEquinaeSciurinaeEquinaeEquinaeBorophaginaeBorophaginaeBorophaginaeBorophaginae	23842 Canidae Borophaginae Borophagini Cynarctina
Family SubfamilySciuridaeEquidaeSciuridaeEquidaeCanidaeCanidaeCanidaeSubfamilyEquinaeSciurinaeEquinaeBorophaginaeBorophaginaeBorophaginaeBorophaginae	Canidae Borophaginae Borophagini Cynarctina
Subfamily Equinae Sciurinae Equinae Borophaginae Borophaginae Borophaginae Borophaginae	Borophaginae Borophagini Cynarctina
	Borophagini Cynarctina
Tribe Equini Marmotini Hipparionini Borophagini Borophagini Borophagini Borophagini	Cynarctina Dama ann an tua
Subtribe Genus SpeciesPliohippus Pliohippus spectansAmmospermophilus junturensisHipparion HipparionCynarctina Tephrocyon rurestrisCynarctina Epicyon SaevusCynarctina Paracynarctus kelloggi	kelloggi
Site Kendall- John Day Mallory 1 Pliocene Poison Basin Black Butte Red Basin Dalles Red Basin Red Basin	Red Basin
Site # 6107 2341 2448 2494	
Formation Contra Costa Group Rattlesnake Juntura Butte Creek Chenoweth Butte Creek Butte Creek	Butte Creek
Region Coast Ranges Northwest Northwest Northwest Northwest Northwest Northwest Northwest	Northwest
SubregionBay AreaColumbiaColumbiaColumbiaColumbiaColumbiaColumbiaColumbiaPlateauPlateauPlateauPlateauPlateauPlateauPlateauPlateau	Columbia Plateau
Age Cl3 Hh2 Cl3 Cl3 Ba2 Cl3 Ba2 Ba2	Ba2
Decimal 37.82 44.49 43.76 43.76 43.54 45.55 43.57 43.54	43.54
Source Measurement Measurement Measurement Measurement Measurement Measurement Measurement Measurement	Measurement
2LPL 26.39	
3LPL	
4LPL	
1LML 22.65 18.64 26.01 17.96 18.36	17.66
JLWL 211MI	
LTRL 10.01 7.06	

Repository	UO	UO	UO	UO	UO	UWBM	UWBM	UWBM	UWBM
Specimen #	24191	42501	53807	Y-672		42690	42691	42694	42695
Family	Canidae	Canidae	Canidae	Equidae	Canidae	Equidae	Equidae	Equidae	Equidae
Subfamily	Borophaginae	Borophaginae	Borophaginae	Equinae	Borophaginae	Equinae	Equinae	Equinae	Equinae
Tribe	Borophagini	Borophagini	Borophagini	Hipparionini	Borophagini	Hipparionini	Hipparionini	Hipparionini	Hipparionini
Subtribe Genus Species	Cynarctina Tephrocyon rurestris	Borophagina Epicyon saevus	Borophagina Epicyon haydeni	Hipparion condoni	Cynarctina Tephrocyon rurestris	Hipparion	Hipparion	Hipparion	Hipparion
Site	Red Basin	Black Butte	Black Butte	Ellensburg	Mascall	Zillah	Zillah	Zillah	Zillah
Site #	2495					A9429	A9429	A9429	A9429
Formation	Butte Creek	Juntura	Juntura	Ellensburg	Mascall	Ellensburg	Ellensburg	Ellensburg	Ellensburg
Region	Northwest	Northwest	Northwest	Northwest	Northwest	Northwest	Northwest	Northwest	Northwest
Subregion	Columbia Plateau	Columbia Plateau	Columbia Plateau	Columbia Plateau	Columbia Plateau	Columbia Plateau	Columbia Plateau	Columbia Plateau	Columbia Plateau
Age	Ba2	C13	C13	C13	14.13356239	C13	C13	C13	C13
Decimal	43.57	43.76	43.76	46.99	44.51	46.99	46.99	46.99	46.99
Source	Measurement	Measurement	Measurement	Measurement	Downs 1956	Measurement	Measurement	Measurement	Measurement
2LPL 31 PI						26.74	-	-	-
4LPL						-	24 47	19 74	21.18
1LML	17.97	29.1	30.77	17.7	20	-	-	-	-
2LML									
3LML						-	-	-	-
2UML						-	-	-	-
LTRL						-	-	-	-

Repository	UWBM	UWBM	UWBM	YPM	YPM	YPM
Specimen #	42696	42697	42699	1128	11274	12720
Family	Equidae	Equidae	Equidae	Equidae	Equidae	Canidae
Subfamily	Equinae	Equinae	Equinae	Anchitheriinae	Anchitheriinae	Borophaginae
Tribe	Hipparionini	Hipparionini	Hipparionini			Borophagini
Subtribe Genus Species	Hipparion	Hipparion	Hipparion	Desmatippus avus	Desmatippus avus	Cynarctina Tephrocyon rurestris
Site	Zillah	Zillah	Zillah	Cottonwood Creek	Mascall	Crooked River
Site #	A9429	A9429	A9429			
Formation	Ellensburg	Ellensburg	Ellensburg	Mascall	Mascall	Mascall
Region	Northwest	Northwest	Northwest	Northwest	Northwest	Northwest
Subregion	Columbia Plateau	Columbia Plateau	Columbia Plateau	Columbia Plateau	Columbia Plateau	Columbia Plateau
Decimal	46.99	46.99	46.99	44.50	44.51	44.05
Source	Measurement	Measurement	Measurement	Downs 1956	Downs 1956	Downs 1956
2LPL	-	-	-			
3LPL	-	-	-			
4LPL	-	-	-	16.6		21.0
ILML 21 MI	21.1	23.19	23.38	10.0		21.9
2LIVIL 31 MI						
2UML	-	-	-		17.2	
LTRL	-	-	-		17.2	
	-	-	-			I

APPENDIX C

CHAPTER IV RECENT DATA

- Repository Collection in which specimen is located
- Specimen # Identification number of specimen
- Taxonomy (Family, Genus, Species) Specimen taxon
- Latitude Decimal latitude at which specimen was collected
- MAT Mean annual temperature of locality at which specimen was collected
- Mass Mass of specimen (kg for canids and equids, g for sciurids)

Repository	Specimen #	Family	Genus	Species	Latitude	MAT	Mass
MSB	83943	Canidae	Canis	latrans	29.00	25.30	16.00
MSB	152162	Sciuridae	Spermophilus		43.52	5.56	46.40
MSB	152168	Sciuridae	Spermophilus		43.52	5.56	121.00
MSB	152289	Sciuridae	Spermophilus	mollis	43.52	5.56	70.70
MSB	152339	Sciuridae	Spermophilus	mollis	43.50	5.56	69.60
MSB	152340	Sciuridae	Spermophilus	mollis	43.50	5.56	63.90
MSB	152352	Sciuridae	Spermophilus	mollis	43.50	5.56	72.70
MSB	152418	Sciuridae	Spermophilus	mollis	43.52	5.56	84.30
MSB	152422	Sciuridae	Spermophilus	mollis	43.52	5.56	78.00
MSB	152424	Sciuridae	Spermophilus	mollis	43.52	5.56	124.00
MSB	155314	Sciuridae	Spermophilus	columbianus	44.60	4.44	221.00
MSB	155398	Sciuridae	Spermophilus	beldingi	41.68	9.61	280.00
MSB	155400	Sciuridae	Spermophilus	lateralis	41.68	9.61	126.00
MSB	155494	Sciuridae	Spermophilus	beldingi	41.68	9.61	188.00
MSB	155513	Sciuridae	Spermophilus	lateralis	44.42	9.94	111.00
MSB	155514	Sciuridae	Spermophilus	lateralis	44.42	9.94	124.00
MSB	155515	Sciuridae	Spermophilus	lateralis	44.42	9.94	150.00
MSB	155516	Sciuridae	Spermophilus	lateralis	44.42	9.94	181.00
MSB	155544	Sciuridae	Spermophilus	beldingi	44.41	9.94	280.00
MSB	155616	Sciuridae	Spermophilus	columbianus	45.87	12.00	370.00
MSB	196503	Sciuridae	Spermophilus	beecheyi	35.51	15.06	540.00
MSB	196504	Sciuridae	Spermophilus	beecheyi	35.51	15.06	395.00
MSB	196505	Sciuridae	Spermophilus	beecheyi	35.51	15.06	390.00
MSB	196506	Sciuridae	Spermophilus	beecheyi	35.51	15.06	330.00
MSB	196507	Sciuridae	Spermophilus	beecheyi	35.51	15.06	450.00
MSB	196508	Sciuridae	Spermophilus	beecheyi	35.51	15.06	390.00
MSB	196509	Sciuridae	Spermophilus	beecheyi	35.51	15.06	350.00
MSB	196510	Sciuridae	Spermophilus	variegatus	35.51	15.06	358.00
MSB	196511	Sciuridae	Spermophilus	beecheyi	35.51	15.06	285.00
MSB	196512	Sciuridae	Spermophilus	beecheyi	35.51	15.06	440.00
MSB	196513	Sciuridae	Spermophilus	beecheyi	35.51	15.06	358.00
MSB	196514	Sciuridae	Spermophilus	beecheyi	35.51	15.06	330.00
MSB	196515	Sciuridae	Spermophilus	beecheyi	35.51	15.06	300.00
MSB	196516	Sciuridae	Spermophilus	beecheyi	35.51	15.06	345.00
MSB	199681	Sciuridae	Spermophilus	beecheyi	35.52	15.06	460.00
MSB	199698	Sciuridae	Spermophilus	beecheyi	35.51	15.06	215.00
MSB	224755	Sciuridae	Spermophilus	belaingi	42.20	11.83	124.00
MSB	225606	Sciuridae	Spermophilus	1 . 1	42.20	7.11	281.00
MSB	227120	Sciuridae	Spermophilus	lateralis	39.24	/.11	/1.00
MSB	227196	Sciuridae	Spermophilus	lateralis	39.24	/.11	72.00
MSB	227606	Sciuridae	Spermophilus	lateralis	44.93	8.83	217.00
MSB	22/00/	Sciuridae	Spermophilus	lateralis	44.93	15.06	223.00
MSB	230382	Sciuridae	Spermophilus Spermophilus	beecheyi	33.31 25.51	15.00	310.00
MSD	230614	Sciuridae	Spermophilus Spermophilus	beecheyi	25.51	15.00	363.00
MSD	230044	Sciuridae	Spermophilus Spermophilus	beecheyi	25.51	15.00	570.00
MSD	230001	Sciuridae	Spermophilus Spermophilus	baaahayi	25.51	15.00	245.00
MSD	230674	Sciuridae	Spermophilus Spermophilus	beecheyi	25.51	15.00	545.00 705.00
MCD	230601	Sciuridae	Spermophilus	beecheyi	25 51	15.00	195.00
MCD	230001	Sciuridae	Spermophilus	beecheyi	25 51	15.00	220.00
MCD	230720	Sciuridae	Spermophilus	beecheyi	25 51	15.00	450.00
MCD	230735	Sciuridae	Spermophilus	beecheyi	35.51	15.00	4JU.UU 815 00
MCD	230730	Sciuridae	Spermophilus	narmii	50.20	5 17	500.00
MCB	231900	Sciuridae	Spermophilus	parryii	59.59	5.17	505.00
MSB	232031	Sciuridae	Spermophilus	paryii	59.40	5.17	660.00
MCB	232032	Sciuridae	Spermophilus	parpii	50.30	5.17	612.00
MCR	232033	Sciuridae	Spermophilus	parvii	59.30	5.17	556.00
INIOD	232034	Sciulidae	spermophilus	parryn	57.37	5.17	550.00

Repository	Specimen #	Family	Genus	Species	Latitude	MAT	Mass
MSB	232052	Sciuridae	Spermophilus	parryii	59.38	5.17	480.00
MSB	232053	Sciuridae	Spermophilus	parryii	59.39	5.17	508.00
MSB	232054	Sciuridae	Spermophilus	parryii	59.38	5.17	432.00
MVZ	191020	Cervidae	Odocoileus	hemionus	37.90	14.20	18.60
MVZ	191021	Cervidae	Odocoileus	hemionus	37.90	14.20	40.80
MVZ	201336	Sciuridae	Spermophilus	beecheyi	37.73	8.50	560.00
MVZ	201337	Sciuridae	Spermophilus	beecheyi	37.73	8.50	650.00
MVZ	201338	Sciuridae	Spermophilus	beecheyi	37.73	8.50	562.00
MVZ	201339	Sciuridae	Spermophilus	beecheyi	37.73	8.50	470.00
MVZ	201340	Sciuridae	Spermophilus	beecheyi	37.73	8.50	458.00
MVZ	201341	Sciuridae	Spermophilus	beecheyi	37.73	8.50	614.00
MVZ	201342	Sciuridae	Spermophilus	beecheyi	37.74	8.50	397.00
MVZ	201343	Sciuridae	Spermophilus	beecheyi	37.74	8.50	350.00
MVZ	201344	Sciuridae	Spermophilus	beecheyi	37.75	8.50	579.00
MVZ	201345	Sciuridae	Spermophilus	beecheyi	37.75	8.50	722.00
MVZ	201346	Sciuridae	Spermophilus	beecheyi	37.75	8.50	690.00
MVZ	201347	Sciuridae	Spermophilus	beecheyi	37.75	8.50	728.00
MVZ	201348	Sciuridae	Spermophilus	beecheyi	37.73	8.50	280.00
MVZ	207146	Sciuridae	Spermophilus	beecheyi	37.62	17.11	890.00
MVZ	207147	Sciuridae	Spermophilus	beecheyi	37.62	17.11	942.00
MVZ	207148	Sciuridae	Spermophilus	beecheyi	37.62	17.11	820.00
MVZ	207149	Sciuridae	Spermophilus	beecheyi	37.62	17.11	495.00
MVZ	207150	Sciuridae	Spermophilus	beecheyi	37.62	17.11	872.00
MVZ	207151	Sciuridae	Spermophilus	beecheyi	37.62	17.11	507.00
MVZ	207152	Sciuridae	Spermophilus	beecheyi	37.62	17.11	523.00
MVZ	207153	Sciuridae	Spermophilus	beecheyi	37.62	17.11	600.00
MVZ	207154	Sciuridae	Spermophilus	beecheyi	37.76	12.56	400.00
MVZ	207156	Sciuridae	Spermophilus	beecheyi	37.84	8.50	490.00
MVZ	207160	Sciuridae	Spermophilus	beecheyi	37.73	8.50	291.00
MVZ	207161	Sciuridae	Spermophilus	beecheyi	37.74	8.50	270.00
MVZ	207162	Sciuridae	Spermophilus	beecheyi	37.74	8.50	660.00
MVZ	207163	Sciuridae	Spermophilus	beecheyi	37.74	8.50	840.00
MVZ	207164	Sciuridae	Spermophilus	beecheyi	37.74	8.50	700.00
MVZ	207165	Sciuridae	Spermophilus	beecheyi	37.83	8.50	330.00
MVZ	207166	Sciuridae	Spermophilus	beecheyi	37.75	8.50	665.00
MVZ	207167	Sciuridae	Spermophilus	beecheyi	37.75	8.50	720.00
MVZ	208499	Sciuridae	Spermophilus	beecheyi	37.90	8.83	385.00
MVZ	208500	Sciuridae	Spermophilus	beecheyi	37.95	8.83	256.00
MVZ	216227	Sciuridae	Spermophilus	beecheyi	37.90	8.83	610.00
MVZ	216228	Sciuridae	Spermophilus	beecheyi	37.75	8.50	550.00
MVZ	216229	Sciuridae	Spermophilus	beecheyi	37.80	8.50	700.00
MVZ	216230	Sciuridae	Spermophilus	beecheyi	37.75	8.50	440.00
MVZ	216231	Sciuridae	Spermophilus	beecheyi	37.75	8.50	510.00
MVZ	216232	Sciuridae	Spermophilus	beecheyi	37.90	8.83	215.00
MVZ	216943	Sciuridae	Spermophilus	beecheyi	36.12	18.28	295.00
MVZ	217733	Sciuridae	Spermophilus	beecheyi	40.66	9.50	485.00
MVZ	217734	Sciuridae	Spermophilus	beecheyi	40.66	9.50	519.00
MVZ	217735	Sciuridae	Spermophilus	beecheyi	40.59	9.50	520.00
MVZ	217736	Sciuridae	Spermophilus	beecheyi	40.66	9.50	580.00
MVZ	217737	Sciuridae	Spermophilus	beecheyi	40.66	9.50	450.00
MVZ	217738	Sciuridae	Spermophilus	beecheyi	40.57	9.50	650.00
MVZ	217739	Sciuridae	Spermophilus	beecheyi	40.66	9.50	390.00
MVZ	217740	Sciuridae	Spermophilus	beecheyi	40.66	9.50	420.00
MVZ	217/41	Sciuridae	Spermophilus	beecheyi	40.59	9.50	630.00
MVZ	21/983	Sciuridae	Spermophilus	beecheyi	31.81	14.22	462.00
	218052	Sciuridae	Spermophilus	beecheyi	40.34	/.11 7.11	040.00
MVZ	218053	Sciuridae	Spermophilus	beecheyi	40.35	/.11	560.00

Repository	Specimen #	Family	Genus	Species	Latitude	MAT	Mass
MVZ	218054	Sciuridae	Spermophilus	beecheyi	40.34	7.11	540.00
MVZ	218685	Cervidae	Odocoileus	hemionus	37.90	14.20	29.50
MVZ	218695	Sciuridae	Spermophilus	beecheyi	37.40	16.28	641.00
MVZ	218697	Sciuridae	Spermophilus	beecheyi	37.39	16.28	511.50
MVZ	218698	Sciuridae	Spermophilus	beecheyi	37.40	16.28	695.00
MVZ	218700	Sciuridae	Spermophilus	beecheyi	37.40	16.28	715.00
MVZ	218709	Sciuridae	Spermophilus	beecheyi	37.40	16.28	415.00
MVZ	218715	Sciuridae	Spermophilus	beecheyi	37.40	16.28	355.30
MVZ	218718	Sciuridae	Spermophilus	beecheyi	37.41	16.28	344.00
MVZ	219138	Sciuridae	Spermophilus	beecheyi	40.44	7.11	540.00
MVZ	219139	Sciuridae	Spermophilus	beecheyi	40.43	7.11	393.00
MVZ	219140	Sciuridae	Spermophilus	beecheyi	40.43	7.11	493.00
MVZ	219141	Sciuridae	Spermophilus	beecheyi	40.43	7.11	465.00
MVZ	219214	Sciuridae	Spermophilus	beecheyi	36.59	15.61	475.00
MVZ	219215	Sciuridae	Spermophilus	beecheyi	36.80	9.61	450.00
MVZ	219216	Sciuridae	Spermophilus	beecheyi	36.80	9.61	539.00
MVZ	219217	Sciuridae	Spermophilus	beecheyi	36.80	9.61	445.00
MVZ	219576	Sciuridae	Spermophilus	beecheyi	40.39	16.44	600.00
MVZ	219577	Sciuridae	Spermophilus	beecheyi	40.39	16.44	660.00
MVZ	219659	Sciuridae	Spermophilus	beecheyi	40.16	17.22	558.00
MVZ	219660	Sciuridae	Spermophilus	beecheyi	40.16	17.22	485.00
MVZ	219661	Sciuridae	Spermophilus	beecheyi	40.16	17.22	490.00
MVZ	219662	Sciuridae	Spermophilus	beecheyi	40.16	17.22	612.00
MVZ	219663	Sciuridae	Spermophilus	beecheyi	40.16	17.22	521.00
MVZ	220163	Sciuridae	Spermophilus	beecheyi	40.58	7.11	440.00
MVZ	220336	Sciuridae	Spermophilus	beecheyi	36.38	13.72	378.00
MVZ	220337	Sciuridae	Spermophilus	beecheyi	36.38	13.72	547.00
MVZ	220454	Sciuridae	Spermophilus	beecheyi	40.57	7.11	410.00
MVZ	220495	Sciuridae	Spermophilus	beecheyi	40.85	9.50	600.00
MVZ	220665	Sciuridae	Spermophilus	beecheyi	40.45	7.11	470.00
MVZ	220666	Sciuridae	Spermophilus	beecheyi	40.41	7.11	650.00
MVZ	220667	Sciuridae	Spermophilus	beecheyi	40.41	7.11	222.70
MVZ	221749	Sciuridae	Spermophilus	beecheyi	39.25	14.67	485.00
MVZ	221750	Sciuridae	Spermophilus	beecheyi	39.27	14.67	595.00
MVZ	221751	Sciuridae	Spermophilus	beecheyi	39.27	14.67	470.00
MVZ	223371	Sciuridae	Spermophilus	beecheyi	35.67	16.00	358.00
MVZ	223372	Sciuridae	Spermophilus	beecheyi	35.69	16.00	298.00
MVZ	224844	Sciuridae	Spermophilus	beecheyi	35.44	16.00	340.00
MVZ	224845	Sciuridae	Spermophilus	beecheyi	35.44	16.00	302.00
MVZ	224846	Sciuridae	Spermophilus	beecheyi	36.59	15.61	630.00
MVZ	224847	Sciuridae	Spermophilus	beecheyi	36.62	15.61	588.00
MVZ	224848	Sciuridae	Spermophilus	beecheyi	36.79	15.61	400.00
	224849	Sciuridae	Spermophilus	beecheyi	36.79	15.01	391.00
	226261	Sciuridae	Spermophilus	beecheyi	30.59	15.01	652.00
	226262	Sciuridae	Spermophilus	beecheyi	30.59	15.01	492.00
	220203	Sciuridae	Spermophilus	beecheyi	37.90	0.00	739.00
	226264	Sciuridae	Spermophilus	beecheyi	37.90	8.83	603.00 599.00
MVZ LIAM	227066	Sciuridae	Spermophilus	beecheyi	37.90 57.10	8.83	388.00
UAN	25120	Souridae	Snameonhilur	nemionus	37.10 47.10	0.00	20.10
UAN	25140	Sciuridae	Spermophilus Spermophilu-	saturatus	47.10 50.61	0.39 5 17	220.00 545.00
UAN	25162	Sciuridae	Spermophilus Spermophilu-	parryu	50 61	J.17	525.00
UAN	35165	Sciuridae	Spermophilus	parryii	50.61	5.17	585.00
UAN	35167	Sciuridae	Spermophilus	parryii	58 10	0.80	335.00
UAN	/1852	Sciuridae	Spermophilus	parrytt heldingi	JO.19 15 13	-0.00 7 0/	225.00
UAN	41055	Soluridae	Spermophilus	baldingi	45.45	7.04	223.00
UAN	41034	Sciuridae	Spermophilus	beldingi	45.45	7.94	204.00
UAM	44.511	Sciuridae	spermopnius	Detaingi	43.43	1.94	203.30

Repository	Specimen #	<u>Family</u>	Genus	Species	Latitude	MAT	Mass
UAM	44512	Sciuridae	Spermophilus	beldingi	45.43	7.94	248.70
UAM	50371	Sciuridae	Spermophilus		45.72	7.94	173.40
UAM	55974	Sciuridae	Spermophilus	parryii	61.31	-3.06	200.00
UAM	56007	Sciuridae	Spermophilus	parryii	61.83	-3.06	375.00
UAM	56050	Sciuridae	Spermophilus	parryii	61.79	-3.06	400.00
UAM	56051	Sciuridae	Spermophilus	parryii	61.79	-3.06	350.00
UAM	56818	Sciuridae	Spermophilus	parryii	61.83	-3.06	500.00
UAM	56819	Sciuridae	Spermophilus	parryii	61.83	-3.06	375.00
UAM	57775	Sciuridae	Spermophilus	parryii	61.32	-3.06	420.00
UAM	57860	Sciuridae	Spermophilus	parryii	61.32	-3.06	110.00
UAM	57861	Sciuridae	Spermophilus	parryii	61.32	-3.06	160.00
UAM	57871	Sciuridae	Spermophilus	parryii	61.32	-3.06	160.00
UAM	64431	Sciuridae	Spermophilus	parryii	59.63	5.17	186.00
UAM	64432	Sciuridae	Spermophilus	parryii	59.63	5.17	238.00
UAM	64572	Sciuridae	Spermophilus	parryii	59.64	5.17	455.00
UAM	64595	Sciuridae	Spermophilus	parryii	59.60	5.17	434.00
UAM	100768	Sciuridae	Spermophilus	parryii	61.16	3.50	444.00
UAM	102369	Sciuridae	Spermophilus	parryii	61.63	-2.06	660.00
UAM	102417	Sciuridae	Spermophilus	parryii	60.79	-3.06	455.00
UAM	102418	Sciuridae	Spermophilus	parryii	60.79	-3.06	580.00
USNM	215841	Sciuridae	Spermophilus	beecheyi	34.40	16.50	51.80
USNM	215842	Sciuridae	Spermophilus	beecheyi	34.40	16.50	52.00
USNM	243323	Canidae	Canis	lupus	56.80	5.89	41.30
USNM	243328	Canidae	Canis	lupus	56.30	6.61	36.70
USNM	243329	Canidae	Canis	lupus	56.30	6.61	43.50
USNM	243330	Canidae	Canis	lupus	56.30	6.61	27.70
USNM	243331	Canidae	Canis	lupus	56.60	6.61	32.70
USNM	243332	Canidae	Canis	lupus	56.60	6.61	40.80
USNM	243333	Canidae	Canis	lupus	56.30	6.61	40.80
USNM	243334	Canidae	Canis	lupus	55.40	7.33	34.50
USNM	243335	Canidae	Canis	lupus	55.40	7.33	32.70
USNM	266543	Cervidae	Odocoileus	hemionus	42.50	8.10	42.00
USNM	275834	Sciuridae	Spermophilus	saturatus	47.80	8.72	239.70
USNM	275835	Sciuridae	Spermophilus	saturatus	46.20	11.11	314.00
USNM	275836	Sciuridae	Spermophilus	saturatus	46.20	11.11	201.00
USNM	484951	Sciuridae	Spermophilus	beecheyi	38.80	15.56	148.00
USNM	484967	Sciuridae	Spermophilus	elegans	40.70	8.83	279.70
USNM	484969	Sciuridae	Spermophilus	mollis	39.20	7.11	135.90
USNM	513838	Sciuridae	Spermophilus	tereticaudus	29.00	25.30	100.00
USNM	513839	Sciuridae	Spermophilus	tereticaudus	29.00	25.30	82.00
USNM	513840	Sciuridae	Spermophilus	tereticaudus	29.00	25.30	97.00
USNM	513841	Sciuridae	Spermophilus	tereticaudus	29.00	25.30	115.00
USNM	513843	Sciuridae	Spermophilus	tereticaudus	29.00	25.30	100.00
USNM	513844	Sciuridae	Spermophilus	tereticaudus	29.00	25.30	178.00
USNM	513846	Sciuridae	Spermophilus	tereticaudus	29.00	25.30	192.00
USNM	513847	Sciuridae	Spermophilus	tereticaudus	29.00	25.30	117.00
USNM	513848	Sciuridae	Spermophilus	tereticaudus	29.00	25.30	147.00
USNM	514041	Sciuridae	Spermophilus	tereticaudus	29.00	25.30	98.00
USNM	525526	Canidae	Canis	latrans	26.30	25.30	8.00
USNM	525529	Sciuridae	Spermophilus	tereticaudus	28.90	25.30	86.00
USNM	528799	Sciuridae	Spermophilus	beecheyi	32.50	25.30	485.00
USNM	530149	Canidae	Canis	latrans	28.90	25.30	10.50
USNM	531426	Sciuridae	Spermophilus	atricapillus	26.40	25.30	350.00
USNM	531427	Sciuridae	Spermophilus	atricapillus	25.30	25.30	500.00
USNM	531428	Sciuridae	Spermophilus	atricapillus	25.30	25.30	510.00
USNM	565927	Sciuridae	Spermophilus	brunneus	44.10	11.06	194.00
UWBM	12561	Canidae	Canis	latrans	47.60	10.28	7.27

Repository	Specimen #	Family	Genus	Species	Latitude	MAT	Mass
UWBM	32821	Canidae	Canis	latrans	48.10	10.61	8.30
UWBM	33347	Canidae	Canis	latrans	47.80	11.33	14.40
UWBM	35534	Canidae	Canis	latrans	48.30	10.50	11.82
UWBM	38272	Canidae	Canis	latrans	47.60	11.61	7.30
UWBM	38273	Canidae	Canis	latrans	47.60	11.61	11.90
UWBM	38275	Canidae	Canis	latrans	47.70	11.33	12.20
UWBM	38276	Canidae	Canis	latrans	47.50	10.28	8.45
UWBM	38277	Canidae	Canis	latrans	47.70	11.33	9.95
UWBM	38278	Canidae	Canis	latrans	47.70	11.33	11.50
UWBM	38279	Canidae	Canis	latrans	47.50	10.28	9.65
UWBM	38280	Canidae	Canis	latrans	47.50	10.28	9.45
UWBM	38281	Canidae	Canis	latrans	47.50	10.28	9.20
UWBM	38282	Canidae	Canis	latrans	47.70	11.33	10.40
UWBM	38283	Canidae	Canis	latrans	47.50	10.28	11.15
UWBM	38284	Canidae	Canis	latrans	47.50	10.28	10.35
UWBM	38285	Canidae	Canis	latrans	47.50	10.28	12.15
UWBM	38287	Canidae	Canis	latrans	47.70	11.33	11.14
UWBM	38292	Canidae	Canis	latrans	47.50	10.28	11.85
UWBM	38294	Canidae	Canis	latrans	47.80	11.33	9.80
UWBM	38295	Canidae	Canis	latrans	47.70	11.33	11.60
UWBM	38296	Canidae	Canis	latrans	47.70	11.33	7.75
UWBM	38297	Canidae	Canis	latrans	47.50	10.28	9.10
UWBM	38298	Canidae	Canis	latrans	46.90	9.78	15.90
UWBM	38299	Canidae	Canis	latrans	47.80	11.30	11.20
UWBM	38300	Canidae	Canis	latrans	47.50	10.28	5.00
UWBM	38303	Canidae	Canis	latrans	46.90	9.78	9.40
UWBM	38304	Canidae	Canis	latrans	47.70	11.33	13.60
UWBM	38305	Canidae	Canis	latrans	47.70	10.28	12.10
UWBM	38306	Canidae	Canis	latrans	47.70	11.33	12.40
UWBM	38307	Canidae	Canis	latrans	47.70	11.33	15.10
UWBM	38308	Canidae	Canis	latrans	46.90	9.78	10.10
UWBM	38309	Canidae	Canis	latrans	47.50	10.28	9.25
UWBM	38310	Canidae	Canis	latrans	47.50	10.28	12.80
UWBM	38311	Canidae	Canis	latrans	47.70	11.33	13.35
UWBM	38312	Canidae	Canis	latrans	47.50	10.28	10.65
UWBM	38313	Canidae	Canis	latrans	47.50	10.28	9.85
UWBM	38314	Canidae	Canis	latrans	47.50	10.28	10.05
UWBM	38315	Canidae	Canis	latrans	47.70	11.33	13.40
UWBM	38316	Canidae	Canis	latrans	47.50	10.28	11.85
UWBM	38317	Canidae	Canis	latrans	47.50	10.28	9.80
UWBM	38318	Canidae	Canis	latrans	47.50	10.28	10.80
UWBM	38319	Canidae	Canis	latrans	47.50	10.28	12.15
UWBM	38320	Canidae	Canis	latrans	47.50	10.28	8.90
UWBM	38321	Canidae	Canis	latrans	47.70	11.33	9.40
UWBM	38322	Canidae	Canis	latrans	47.50	10.28	5.80
UWBM	38323	Canidae	Canis	latrans	47.50	10.28	13.15
UWBM	38324	Canidae	Canis	latrans	47.70	11.33	10.10
UWBM	38325	Canidae	Canis	latrans	47.50	10.28	11.80
UWBM	38326	Canidae	Canis	latrans	47.60	11.30	4.70
UWBM	38626	Canidae	Canis	latrans	42.90	6.78	11.25
UWBM	38627	Canidae	Canis	latrans	42.90	6.78	10.34
UWBM	39393	Canidae	Canis	latrans	47.60	8.00	10.90
UWBM	39394	Canidae	Canis	latrans	47.70	11.33	8.90
UWBM	39395	Canidae	Canis	latrans	48.30	10.50	9.77
UWBM	60984	Canidae	Canis	latrans	47.20	10.94	7.70
UWBM	60985	Canidae	Canis	latrans	47.20	10.94	9.50
UWBM	60986	Canidae	Canis	latrans	47.20	10.94	6.80

Repository	Specimen #	Family	Genus	Species	Latitude	MAT	Mass
UWBM	79559	Canidae	Canis	latrans	47.50	10.94	3.21
UWBM	81147	Canidae	Canis	latrans	48.50	8.30	5.80
UWBM	81148	Canidae	Canis	latrans	48.50	8.30	5.20
UWBM	81149	Canidae	Canis	latrans	47.10	9.89	2.60
UWBM	81785	Canidae	Canis	latrans	47.40	11.28	5.58
UWBM	81801	Canidae	Canis	latrans	47.80	11.61	9.53
UWBM	81805	Canidae	Canis	latrans	47.40	11.28	11.24

REFERENCES CITED

Alroy, J. 1998. Cope's rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731-734.

Alroy, J. 2003. Taxonomic inflation and body mass distributions in North American fossil mammals. Journal of Mammalogy 84:431-443.

Alroy, J., P.L. Koch, and J.C. Zachos. 2000. Global climate change and North American mammal evolution. Paleobiology 26:259-288.

Ashton, K.G., M.C. Tracy, and A. de Quiroz. 2000. Is Bergmann's Rule valid for mammals? American Naturalist 156:390-415.

Ashton, K.G. 2002a. Do amphibians follow Bergmann's Rule? Canadian Journal of Zoology 80:708-716.

Ashton, K.G. 2002b. Patterns of within-species body size variation of birds: strong evidence for Bergmann's Rule. Global Ecology and Biogeography 11:505-523.

Ashton, K.G., and C.R. Feldman. 2003. Bergmann's Rule in nonavian reptiles: turtles follow it, lizards and snakes reverse it. Evolution 57:1151-1163.

Barnosky, A.D. 2001. Distinguishing the effects of the Red Queen and the Court Jester on Miocene mammal evolution in the northern Rocky Mountains. Journal of Vertebrate Paleontology 21:172-185.

Barnosky, A.D., E.A. Hadly, and C.J. Bell. 2003. Mammalian response to global warming on varied temporal scales. Journal of Mammalogy 84:354-368.

Behrensmeyer, A.K., S.M. Kidwell, and R.A. Gastaldo. 2000. Taphonomy and paleobiology. Paleobiolgy 26:103-147.

Bergmann, C. 1847. Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Gottinger Studien 3:595-708.

Berteaux, D., M.M. Humphries, C.J. Krebs, M. Lima, A.G. McAdam, N. Pettorelli, D. Réale, T. Saitoh, E. Tkadlec, R.B. Weladji, and N.C. Stenseth. 2006. Constraints to projecting the effects of climate change on mammals. Climate Research 32:151-158.

Black, C.G. 1963. A review of North American Tertiary Sciuridae. Bulletin of the Museum of Comparative Zoology 130:1-248.

Blackburn, T.M., and K.J. Gaston. 1996. Spatial patterns in the body sizes of bird species in the New World. Oikos 77:436-446.

Blackburn, T.M., and B.A. Hawkins. 2004. Bergmann's Rule and the mammal fauna of northern North America. Ecography 27:715-724.

Bowen, R.G., W.L. Gray, and D.C. Gregory. 1963. General geology of the northern Juntura Basin. Transactions of the American Philosophical Society 53:22-34.

Bradshaw, W.E., and C.M. Holzapfel. 2010. Light, time, and the physiology of biotic response to rapid climate change in animals. Annual Review of Physiology 72:147-166.

Bravo-Cuevas, V.M., and I. Ferrusquía-Villafranca. 2006. *Merychippus* (Mammalia, Perissodactyla, Equidae) from the Middle Miocene of state of Oaxaca, southeastern Mexico. Geobios 39:771-784.

Calede, J.J.M., S.S.B. Hopkins, and E.B. Davis. 2011. Turnover in burrowing rodents: the roles of competition and habitat change. Palaeogeography, Palaeoclimatology, Palaeoecology 311:242-255.

Camp, V.E., M.E. Ross, and W.E. Hanson. 2003. Genesis of flood basalts and Basin and Range volcanic rocks from Steens Mountain to the Malheur River Gorge, Oregon. Geological Society of America Bulletin 115:105-128.

Carrasco, M.A., B.P. Kraatz, E.B. Davis, and A.D. Barnosky. 2005. Miocene Mammal Mapping Project (MIOMAP). http://www.ucmp.berkeley.edu/miomap/

Creighton, G.K. 1980. Static allometry of mammalian teeth and the correlation of tooth size and body size in contemporary mammals. Journal of the Zoological Society of London 191:435-443.

Damuth, J. 1993. Cope's rule, the island rule and the scaling of mammalian population density. Nature 365:748-750.

Darwin, C.R. 1859. On the Origin of Species by Means of Natural Selection. John Murray, London, 502 pp.

Davis, E.B., and N.D. Pyenson. 2007. Diversity biases in terrestrial mammalian assemblages and quantifying the differences between museum collections and published accounts: a case study from the Miocene of Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology 250:139-149.

Downing, K.F. 1992. Biostratigraphy, Taphonomy, and Paleoecology of Vertebrates from the Sucker Creek Formation (Miocene) of Southeastern Oregon. PhD Dissertation, University of Arizona, Tucson, 485 pp.

Downs, T. 1956. The Mascall fauna from the Miocene of Oregon. University of California Publications in Geological Sciences 31:199-354.

Erlinge, S. 1987. Why do European stoats *Mustela erminea* not follow Bergmann's Rule? Holarctic Ecology 10:33-39.

Gingerich, P.D. 2003. Mammalian responses to climate change at the Paleocene-Eocene boundary: Polecat Bench record in the northern Bighorn Basin, Wyoming. Geological Society of America Special Paper 369:463-478.

Goodwin, H.T. 2008. Sciuridae; pp. 355-376 in C.M. Janis, G.F. Gunnell, and M.D. Uhen (ed.), Evolution of Tertiary Mammals of North America Vol. 2: Small Mammals, Xenarthrans, and Marine Mammals. Cambridge University Press, Cambridge.

Gotelli, N.J., and A.M. Ellison. 2004. A Primer of Ecological Statistics. Sinauer, Sunderland, 510 pp.

Gould, G.C., and B.J. MacFadden. 2004. Gigantism, dwarfism, and Cope's rule: "nothing in evolution makes sense without a phylogeny." Bulletin of the American Museum of Natural History 285:219-237.

Henshaw, P.C. 1942. A Tertiary mammalian fauna from the San Antonio Mountains near Tonopah, Nevada. Carnegie Institute of Washington Contributions to Paleontology 530:77-168.

Hollister, E.B., A.S. Englewood, A.J.M. Hammett, T.L. Provin, H.H. Wilkinson, and T.J. Gentry. 2010. Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. The ISME Journal 4:829-838.

Hooper, P.R., G.B. Binger, and K.R. Lees. 2002. Ages of the Steens and Columbia River flood basalts and their relationship to extension-related calc-alkalic volcanism in eastern Oregon. Geological Society of America Bulletin 114:43-50.

Hopkins, S.S.B. 2007. Causes of lineage decline in the Aplodontidae: testing for the influence of physical and biological change. Palaeogeography, Palaeoclimatology, Palaeoecology 246:331-353.

Hopkins, S.S.B. 2008. Reassessing the mass of exceptionally large rodents using toothrow length and area as proxies for body mass. Journal of Mammalogy 89:232-243.

Humboldt, A., and A. Bonpland. 1807. *Essay on the Geography of Plants*. Schoell, Paris, 296 pp.

James, F.C. 1970. Geographic size variation in birds and its relationship to climate. Ecology 51:365-390.

Hunt, R. M. 1998. Amphicyonidae; pp. 196-221 in C. M. Janis, K. M. Scott, and L. L. Jacobs (ed.), Evolution of Tertiary Mammals of North America. Cambridge University Press, Cambridge.

Intergovernmental Panel on Climate Change. 2007. Climate Change 2007: Synthesis Report. IPCC, Geneva, 104 pp.

Janis, C.M. 1990. Correlation of cranial and dental variables with body size in ungulates and macropodoids; pp. 255-299 in J. Damuth, and B.J. MacFadden (ed.), Body Size in Mammalian Paleobiology. Cambridge University Press, Cambdridge.

Janis, C.M., J. Damuth, and J.M. Theodor. 2000. Miocene ungulates and terrestrial primary productivity: where have all the browsers gone? Proceedings of the National Academy of Sciences 97:7899-7904.

Kellogg, L. 1910. Rodent fauna of the Late Tertiary beds of Virgin Valley and Thousand Creek, Nevada. University of California Publications in Geological Sciences 5:421-437.

Koch, P.L. 1986. Clinal geographic variation in mammals: implications for the study of chronoclines. Paleobiology 12:269-281.

Korpimäki, E., and K. Norrdahl. 1989. Avian predation on mustelids in Europe 1: occurrence and effects on body size variation and life traits. Oikos 55:205-215.

Lillegraven, J.A. 1972. Ordinal and familial diversity of Cenozoic mammals. Taxon 21:261-274.

Lindsey, C.C. 1966. Body sizes of poikilotherm vertebrates at different latitudes. Evolution 20:456-465.

MacFadden, B.J. 1986. Fossil horses from "Eohippus" (*Hyracotherium*) to *Equus*: scaling, Cope's Law, and the evolution of body size. Paleobiology 12:355-369.

MacFadden, B.J. 1992. Fossil Horses: Systematics, Paleobiology, and Evolution of the Family Equidae. Cambridge University Press, Cambridge, 369 pp.

MacFadden, B.J., N. Solounias, and T.E. Cerling. 1999. Ancient diets, ecology, and extinction of 5-million-year-old horses from Florida. Science 283:824-827.

Martin, J. E. 1997. Progression of borophagines (Carnivora: Canidae) in the Pacific Northwest. Journal of Vertebrate Paleontology 17:62A.

Martin, J.E., and D.C. Pagnac. 2009. A vertebrate assemblage from the Miocene Rattlesnake Ridge Member of the Ellensburg Formation, central Washington. Museum of Northern Arizona Bulletin 65:197-216.

Martin, L. D. 1998. Felidae; pp. 236–242 in C. M. Janis, K. M. Scott, and L. L. Jacobs (ed.), Evolution of Tertiary Mammals of North America. Cambridge University Press, Cambridge.

Meiri, S., and T. Dayan. 2003. On the validity of Bergmann's Rule. Journal of Biogeography 30:331-351.

Millar, J.S., and G.J. Hickling. 1990. Fasting endurance and the evolution of mammalian body size. Functional Ecology 4:5-12.

Morea, M.F. 1981. The Massacre Lake Local Fauna (Mammalia, Hemingfordian) from Northwestern Washoe County, Nevada. PhD Dissertation, University of California, Riverside, 262 pp.

Munthe, K. 1989. The skeleton of the Borophaginae (Carnivora: Canidae). University of California Publications in Geological Sciences 133:1-115.

Prothero, D.R. 2004. Did impacts, volcanic eruptions, or climate change affect mammalian evolution? Palaeogeography, Palaeoclimatology, Palaeoecology 214:283-294.

Ray, C. 1960. The application of Bergmann's and Allen's rules to the poikilotherms. Journal of Morphology 106:85-108.

Retallack, G.J. 2004a. Late Oligocene bunch grassland and early Miocene sod grassland paleosols from central Oregon, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 207:203-237.

Retallack, G.J. 2004b. Ecological polarities of mid-Cenozoic fossil plants and animals from central Oregon. Paleobiology 30:561-588.

Retallack, G.J. 2005. Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols. Geology 33:333-336.

Retallack, G.J. 2007. Cenozoic paleoclimate on land in North America. Journal of Geology 115:271-294.

Riedman, M. 1990. The Pinnipeds: Seals, Sea Lions, and Walruses. University of California Press, Berkeley, 439 pp.

Rodríguez, M.Á., M.Á. Olalla-Tárraga, and B.A. Hawkins. 2008. Bergmann's Rule and the geography mammal body size in the Western Hemisphere. Global Ecology and Biogeography 17:274-283.

Rose, P.J., D.L. Fox, J. Marcot, and C. Badgley. 2011. Flat latitudinal gradient in Paleocene mammal richness suggests decoupling of climate and biodiversity. Geology 39:163-166.

Rosenzweig, M.L. 1968. The strategy of body size in mammalian carnivores. American Midland Naturalist 80:299-315.

Royer, D.L. 1999. Depth to pedogenic carbonate horizon as a paleoprecipitation indicator? Geology 27:1123-1126.

Russell, D. E. 1956. Clarendonian Fauna of Juntura, Oregon. M.A. thesis, University of California, Berkeley, 95 pp.

Schad, W. 1977. Man and Mammals: Toward a Biology of Form. Waldorf, New York, 302 pp.

Sheldon, N.D., G.J. Retallack, and S. Tanaka. 2002. Geochemical climofunctions from North American soils and application to paleosols across the Eocene-Oligocene boundary in Oregon. Journal of Geology 110:687-696.

Shotwell, J.A. 1961. Late Tertiary biogeography of horses in the Northern Great Basin. Journal of Paleontology 35:203-217.

Shotwell, J. A. 1963. Pliocene mammalian communities of the Juntura Basin. Transactions of the American Philosophical Society 53:7-21.

Shotwell, J.A. 1968. Miocene mammals of southeast Oregon. Bulletin of the University of Oregon Museum of Natural History 14:1-67.

Shotwell, J.A. 1970. Pliocene mammals of southeast Oregon and adjacent Idaho. Bulletin of the University of Oregon Museum of Natural History 17:1-103.

Shotwell, J. A., and D. E. Russell. 1963. Mammalian fauna of the upper Juntura Formation, the Black Butte local fauna. Transactions of the American Philosophical Society 53:42-69.

Simpson, G.G. 1964. Species density of North American recent mammals. Systematic Biology 13:57-73.

Smith, F.A., A.G. Boyer, J.H. Brown, D.P. Costa, T. Dayan, S.K.M. Ernest, A.R. Evans, M. Fortelius, J.L. Gittleman, M.J. Hamilton, L.E. Harding, K. Lintulaakso, S.K. Lyons, C. McCain, J.G. Okie, J.J. Saarinen, R.M. Sibly, P.R. Stephens, J. Theodor, and M.D. Uhen. 2010. The evolution of maximum body size of terrestrial mammals. Science 330:1216-1219.

Smith, K.F., and J.H. Brown. 2002. Patterns of diversity, depth range and body size among pelagic fishes along a gradient of depth. Global Ecology and Biogeography 11:313-322.

Tedford, R.H., L.B. Albright III, A.D. Barnosky, I. Ferrusquia-Villafranca, R.M. Hunt, Jr., J.E. Storer, C.C. Swisher III, M.R. Voorhies, S.D. Webb, and D.P. Whistler. 2004. Mammalian biochronology of the Arikareean through Hemphillian interval (late Oligocene through early Pliocene Epochs); pp. 169-231 in M.O. Woodburne (ed.), Late Cretaceous and Cenozoic Mammals of North America. Columbia University Press, New York.

Tedford, R.H., X. Wang, and B.E. Taylor. 2009. Phylogenetic systematics of the North American fossil Caninae (Carnivora: Canidae). Bulletin of the American Museum of Natural History 325:1-218.

Trites, A.W., and D. Pauly. 1998. Estimating mean body masses of marine mammals from maximum body lengths. Canadian Journal of Zoology 76:886-896.

Turner, A., and M. Antón. 1997. The Big Cats and Their Fossil Relatives. Columbia University Press, New York, 234 pp.

Van Valkenburgh, B. 1990. Skeletal and dental predictors of body mass in carnivores; pp. 181-206 in J. Damuth, and B.J. MacFadden (ed.), Body Size in Mammalian Paleobiology. Cambridge University Press, Cambridge.

Van Valkenburgh, B., X. Wang, and J. Damuth. 2004. Cope's rule, hypercarnivory, and extinction in North American canids. Science 306:101-104.

Wallace, R.E. 1946. A Miocene mammalian fauna from Beatty Buttes, Oregon. Carnegie Institution Contributions to Paleontology 551:113-134.

Wang, X. 1994. Phylogenetic systematics of the Hesperocyoninae (Carnivora: Canidae). Bulletin of the American Museum of Natural History 221:1-207.

Wang, X., and R.H. Tedford. 2008. Dogs: Their Fossil Relatives and Evolutionary History. Columbia University Press, New York, 219 pp.

Wang, X., R.H. Tedford, and B. E. Taylor. 1999. Phylogenetic systematics of the Borophaginae (Carnivora: Canidae). Bulletin of the American Museum of Natural History 243:1-391.

Yang, J., R.A. Spicer, T.E.V. Spicer, and C. Li. 2011. 'CLAMP Online': a new webbased tool and its application to the terrestrial Paleocene and Neogene of North America. Paleobiology and Paleoenvironment 91:163-183.

Zachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686-693.