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DISSERTATION ABSTRACT 

 

Jennifer Lyn Hoy 

 

Doctor of Philosophy 

 

Department of Biology 

 

September 2011 

 

Title: The Development of Excitatory Synapses and Complex Behavior 

Approved:  _______________________________________________ 

Philip Washbourne 

 

Excitatory glutamatergic synapses facilitate important aspects of communication 

between the neurons that govern complex forms of behavior.  Accordingly, small 

differences in the molecular composition of glutamatergic synapses have been suggested 

to underlie neurodevelopment disorders, drive evolutionary changes in brain function and 

behavior, and enhance specific aspects of cognition in mammals.  The appropriate 

development and later function of these structures in the adult involves the well-

coordinated activities of hundreds of molecules. Therefore, an important goal in 

neuroscience is to identify and characterize how specific molecules contribute to the 

development of excitatory synapses as well as how manipulations of their function 

impact neural systems and behavior throughout life.  This dissertation describes two 

important contributions toward this effort, 1) that the newly discovered molecule, 

Synaptic Cell Adhesion Molecule 1 (SynCAM1) specifically contributes to the early 

stages of glutamatergic synapse formation and 2) that Neuroligin1 (NL1) contributes to 

the mature function of glutamatergic synapses and mature forms of behavior in vivo.   

In the first set of experiments, I developed an in vitro cell based assay in order to 

determine the minimal molecular components necessary to recruit developmentally 
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relevant glutamate receptor subtypes to sites of adhesion mediated by SynCAM1. In 

these experiments we discovered that protein 4.1B interacted with SynCAM1 in order to 

cause the specific recruitment of the NMDA type glutamate receptor containing the 

NR2B subunit. In the second set of experiments, we show that expression of NL1 missing 

the terminal 55 amino acids enhanced short term learning and flexibility in behaving 

mice while increasing the number of immature excitatory postsynaptic structures. 

Interestingly, this behavioral profile had components more consistent with 1 month old 

juvenile controls than age matched control littermates. In contrast, full length NL1 

overexpression impaired learning and enhanced perseverance while yielding an increase 

in the proportion of synapses with mature characteristics.  These results suggest that 

NL1‟s C-terminus drives the synaptic maturation process that shapes the development of 

complex behavior. Both studies bolster our understanding of how specific molecules 

impact the development of excitatory synapses and complex behavior.  

This dissertation includes both my previously published and unpublished co-

authored material.  
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CHAPTER I 

INTRODUCTION 

 

AN OVERVIEW 

An important goal in neuroscience is to create a mechanistic account of the 

biological basis for behavior. Such an explanation may be applied ambitiously towards 

identifying the origin of disease states and their respective cures; or, less practically, may 

satisfy our deep curiosity regarding the origins of our own thoughts and actions.  An 

important step towards generating this knowledge was the discovery that the brain most 

directly generates behavior through spatio-temporally regulated communication across 

distinct neural substrates, or neural systems.  Such communication is facilitated via 

chemical synapses, and it is known that the function of these microscopic structures are 

shaped by a complex interplay between genetics and the environment in which we 

develop. Thus, one reasonable starting place with which to begin to understand the 

origins of behavior is to investigate the processes that govern synapse formation and 

function throughout life. The goal of the work in this dissertation was to contribute 

towards a significant enhancement in our understanding of the mechanisms that support 

the early development of one of the most prevalent forms of synapses, the excitatory 

glutamatergic type.   An important advance also supported by this work more directly 

links the development of glutamatergic synapses to the progression of complex forms of 

behavior such as learning, memory and social interaction.   

  

THE LINK BETWEEN SYNAPTOGENIC MOLECULES AND THE 

DEVELOPMENT OF SPECIFIC BEHAVIORS  

 Human infants are not born with the innate ability to play the violin or compose a 

sonata.  Not much in our evolutionary history would require that such skills would be 

necessary at birth. Rather, infants have far greater priorities such as ensuring that they are 

well.  Accordingly, they are born with the perceptual capabilities and motor skills 

necessary to perform this task minutes after birth (Cantrill et al., 2004; Creedy et al., 

2008).  However, with time, and the acquisition of basic skills such as learning to move 
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the hand with coordination, a young child could begin to rapidly acquire the ability to 

play a violin, or even an instrument invented yesterday.  Moreover, many older adults are 

often faced with the unpleasant observation that young adults acquire new information 

and motor skills more rapidly than themselves.  Luckily, those same older adults can take 

comfort in the fact that they are at least one up on most 5 year olds in that they have a 

better idea of the what, where and when that happened to them last week. All of these 

observations taken together, and backed up by a multitude of cognitive studies, imply 

that: 1) some behaviors and brain functions are largely hardwired prenatally (innate 

ability to suckle), 2) that the development and acquisition of specific behaviors follows a 

prescribed trajectory (you learn to walk before you talk)  and 3) that the brain, and the 

neural circuits that support its function, occupy distinct states of modifiability throughout 

life (Lister and Barnes, 2009)  

As glutamatergic synapses facilitate the proper function of individual neural 

systems as well as the communication between them during behavior, it is a fair 

assumption that the complement of molecules present at the synapse at any one stage of 

development shapes the characteristics of the behavior as described above. This predicts 

that changes in molecules that impact the process of synaptogenesis perinatally and 

throughout life should broadly impact those behaviors and perceptual abilities that exist 

at birth as well as the acquisition of later behaviors throughout life.  Conversely, the 

acquisition of complex behaviors such as learning to speak will be specifically affected 

when manipulations are made to the molecules whose expression ramps up just when 

experience may most influence that behavior.  Being able to test such predictions will be 

key to establishing firm links between synaptic molecules and the aspects of behavioral 

performance they may underlie.  

To test these predictions, one must first characterize the spatio-temporal 

expression pattern of synaptic molecules.  In parallel, studies must also define the 

developmental trajectories of important behaviors as well as the neural substrates that 

support them.  The so called synaptogenic cell adhesion molecules form one class of 

powerful regulators of glutamatergic synapse formation and function.  The expression 

patterns of a subset of these molecules such as synaptic cell adhesion molecule 1 

(SynCAM1) and Neuroligin1 (NL1) suggest that they are in the right place at the right 
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times to mediate important, yet distinct, aspects of the development of the brain and 

behavior (Biederer, 2005; Sara et al., 2005; Washbourne et al., 2004a).   Importantly,  

both SynCAM1 and NL1 have been found to be required for the execution of normal 

learning, memory and social behaviors in the adult and both have been linked to human 

neurological disorders such as mental retardation and autism (Wang et al., 2009; Zhiling 

et al., 2008).  However, these molecules have both overlapping and non-overlapping 

expression patterns which may imply distinct contributions to neural circuit formation 

and function. Neurological disorders such as autism are thought to relate to malfunctions 

in synapse formation and function at distinct developmental periods within distinct neural 

substrates (Penzes et al., 2011; Zoghbi, 2003)  Therefore, further work describing the 

molecular activities of synCAM1 and NL1, and defining how they contribute towards the 

function and formation of synapses at specific developmental stages, has the potential to 

advance our understanding of the biological basis of important complex behaviors.  First, 

this dissertation describes the contributions of SynCAM1 towards a potentially 

ubiquitous role in initial glutamatergic synapse formation that may impact many stages of 

brain development and function.  Second, I describe work that establishes how NL1 

appears to play a distinct and necessary role in the maturation of excitatory synapses, a 

process that underlies the progression of learning, memory and social behavior in mice.  

As more than 1,000 different molecules are found at the glutamatergic synapse at any 

given developmental stage, studies such as these begin to clarify how and when they may 

all come together to support age typical aspects of brain function.  This seems a necessary 

first step towards generating a satisfying understanding of how the brain produces 

behavior. 

This dissertation includes both my previously published and unpublished co-

authored material.  
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CHAPTER II 

THE NOVEL CELL ADHESION MOLECULE SYNCAM1 CONTRIBUTES 

TOWARDS THE EARLY DEVELOPMENTAL STAGES OF 

GLUTAMATERGIC SYNAPSE FORMATION: SYNCAM1 RECUITS NMDA 

RECEPTORS VIA PROTEIN 4.1B  

  

The work described in this chapter was previously published in Molecular and 

Cellular Neuroscience,Vol. 42, 2009.  I am first author as I primarily developed the cell 

clustering based assays, gathered and analyzed the related data from neuronal and non-

neuronal cultures, and wrote the manuscript with advising and editing performed by P. 

Washbourne and J. Constable.  J. Constable also performed the biochemistry that was 

critical to the interpretation of the other data sets, while Z. Fu with the support of S. 

Vicini, performed critical functional assays to verify how protein manipulations impacted 

functional synaptic transmission in a developmentally relevant way. 

 

1. INTRODUCTION 

 Unraveling the mechanisms by which synapses form during development of the 

central nervous system is essential to understanding the origin of neurodevelopmental 

disorders and cognitive impairment (Zoghbi, 2003). Synaptogenesis is a multi-step 

process that is initiated by contact between two neurons. As this contact becomes 

adhesive prior to becoming a synapse (Chow and Poo, 1985), it has long been 

hypothesized that cell adhesion molecules (CAMs) are key to the early events of 

synaptogenesis (Bloch, 1989).  One huge stride forward in our understanding of synapse 

formation was the realization that CAMs not only mediate the adhesion at synapses, but 

also initiate the recruitment of crucial synaptic components such as synaptic vesicles in 

the axon and neurotransmitter receptors in the dendrite (Barrow et al., 2009; Biederer et 
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al., 2002; Nam and Chen, 2005; Scheiffele et al., 2000; Sytnyk et al., 2002). For review 

see (Washbourne et al., 2004a).   

 Recently, a family of immunoglobulin-domain containing CAMs, called 

SynCAMs, were identified as potent inducers of presynaptic terminals, when expressed 

in non-neuronal cells and cocultured with neurons (Biederer et al., 2002). This 

synaptogenic potential is shared with a handful of other CAMs, including the neuroligins 

(Nlgns) and their presynaptic partners the neurexins (Dean et al., 2003; Scheiffele et al., 

2000), netrin-G ligands (NGLs) (Kim et al., 2006) and synaptic cell adhesion-like 

molecules (SALMs) (Ko et al., 2006; Wang et al., 2006). While it appears that all of 

these molecules are able to induce the formation of the presynaptic terminal, their ability 

to recruit postsynaptic components has been less well studied. To date, the most heavily 

investigated interactions lie within the intracellular domain of NL1. NL1 can interact 

with the postsynaptic density protein PSD-95 through a type I PDZ binding motif (Irie et 

al., 1997), and can recruit NMDA-type glutamate receptors through both the PDZ 

binding motif and the WW domain (Barrow et al., 2009; Iida et al., 2004).  

Similarly, SynCAMs also possess intracellular interaction domains including a 

type II PDZ binding motif and a FERM (4.1, ezrin, radixin, moesin) binding motif 

(Biederer, 2005; Biederer et al., 2002). Potential interacting molecules, or effectors, have 

been identified, however, none of these interactions have been explored for their role in 

postsynaptic differentiation.  In vitro and in yeast-two-hybrid studies, SynCAM1 was 

shown to bind calcium/calmodulin-dependent serine protein kinase (CASK) (Biederer et 

al., 2002), Syntenin1 (Biederer et al., 2002; Meyer et al., 2004) and glutamate receptor 

interacting protein (GRIP) 1 (Meyer et al., 2004) via the C-terminal PDZ-binding 

domain.  All three proteins are thought to play a scaffolding role in recruiting or 

organizing proteins at a variety of cellular junctions (Funke et al., 2005). In addition, 

SynCAM1 can bind to erythrocyte protein band 4.1-like 3 (protein 4.1B) via the 

juxtamembranous FERM binding domain (Yageta et al., 2002), an interaction which is 

thought to promote cell adhesion.  All four molecules (CASK, Syntenin1, GRIP1 and 

4.1B) are expressed in the CNS, have multiple protein-protein interaction domains and all 

could potentially play a role in the development of the postsynaptic specialization. 
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We investigated these potential effectors of SynCAM1 in terms of their ability to 

recruit NMDARs to sites of synaptic adhesion. We focused on NMDARs as they appear 

to be the first glutamate receptors recruited to synapses during synaptogenesis (Barrow et 

al., 2009; McAllister, 2007; Petralia et al., 1999; Washbourne et al., 2002)  We identified 

protein 4.1B as a potent and specific SynCAM1 effector molecule for the recruitment of 

NMDARs. Surprisingly, we also identified protein 4.1N as a specific SynCAM1 effector 

for AMPAR recruitment. These results were confirmed by electrophysiological studies in 

an HEK293 cell/neuronal co-culture assay (Biederer and Scheiffele, 2007; Fu et al., 

2003).  Imaging and electrophysiological studies of hippocampal neurons in culture 

demonstrate an important role for protein 4.1B during synapse formation and the 

recruitment of NMDARs to synapses. Thus, our experiments establish 4.1 proteins as 

SynCAM1 effector molecules that impact necessary aspects of postsynaptic development. 

This molecular activity may underlie the development of glutamatergic synapses 

throughout the nervous system as SynCAM family members are expressed throughout 

the nervous system and are present at birth. 

 

2. RESULTS 

The Cell Adhesion Molecule / Receptor Recruitment Assay (CAMRA) 

The initial goal of this work was to identify and characterize potential 

postsynaptic effector molecules for SynCAM1. We therefore characterized an assay that 

could be used to identify molecules sufficient to recruit glutamate receptors upon 

clustering of SynCAM1, or any CAM, in a postsynaptic configuration.  The approach 

employed was an adhesion-based recruitment assay that measures microsphere mediated 

clustering of recombinant molecules expressed in non-neuronal COS7 cells that we call 

the Cell Adhesion Molecule / Receptor Recruitment Assay (CAMRA).  In the CAMRA, 

microspheres coated with antibodies against the protein of interest bound and aggregated 

many copies of a specific CAM that were expressed in COS7 cells (Fig.1A). 

Subsequently, we visualized co-transfected molecules and determined whether they were 

also accumulated at the site of microsphere binding (Fig.1B).  
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Figure 1. The Cell Adhesion Molecule / Receptor Recruitment Assay (CAMRA). (A) 

Model of clustering events in transfected COS7 cells after microsphere application when 

it is directed against tagged cell adhesion molecules (CAMs) on the surface of cells also 

expressing an intracellular effector molecule (Effector) and surface neurotransmitter 
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receptors (Receptor).  (B) Quantification of surface receptor immunofluorescence 

intensity around a single microsphere.  Enlarged image depicts defined areas in a single 

channel that are used to determine intensity increases at microsphere. An average of the 

intensity within the area of annulus1 equals intensity of fluorescence at microsphere, the 

area of annulus 2 equals intensity of fluorescence in background, while the white circle is 

area taken by the microsphere.  The left panel depicts the microsphere in the context of 

the whole cell, with all three fluorescence channels, CAM (blue), effector (green) and 

receptor (red). (C) PSD-95 was recruited to areas with HA-Nlgn1 accumulation in 

contact with microspheres (arrow head). Scale bar equals 2 (D) NMDARs were 

recruited to sites of contact with microspheres and accumulations of Nlgn1 only when 

PSD-95 was co-transfected into COS7 cells. (E) Quantification of intensity increases of 

surface NMDARs at sites of contact in presence and absence of PSD-95 (165.9 ± 29.6% 

vs. 59.3 ± 18.1%, p < 0.01, n = 14, error bars represent s.e.m.). 

 

 We first tested the CAMRA utilizing a well characterized protein complex known 

to interact at the synapse: Nlgn1, PSD-95 and the NMDAR composed of NR1 and NR2B 

subunits.  Nlgn1 interacts with PSD-95 (Irie et al., 1997) and this interaction appears to 

regulate NMDAR recruitment to Nlgn1 clusters in cultured hippocampal neurons (Nam 

and Chen, 2005). Specifically, we asked whether microsphere-directed aggregation of an 

HA-tagged Nlgn1 (HA-Nlgn1) would promote GFP-tagged PSD-95 (PSD-95-GFP) co-

accumulation. Cells transfected with these molecules were incubated with anti-HA 

antibody-coated microspheres for 1 hour at 37°C. We chose this time as we have 

previously determined that aggregation of PSD-95 to Nlgn1 clusters takes on the order of 

one hour in neurons (Barrow et al., 2009). After fixation and immunolabeling, the 

fluorescence intensities of extracellular HA and internal GFP were measured at 

microspheres (Fig.1B, annulus 1) and compared to background intensity levels (Fig.1B, 

annulus 2). We observed a 123.9 ± 10.9% (n = 15) increase in fluorescence intensity of 

PSD-95-GFP at microspheres relative to background (Fig.1C, arrowheads). Therefore, 

we conclude that PSD-95-GFP was recruited to sites of HA-Nlgn1 clustering at 

microspheres, thus reflecting a relationship previously described (Irie et al., 1997). 

Further, this effect on the recruitment of PSD-95 is specific to the interaction with Nlgn1 

as PSD-95-GFP did not accumulate at HA-SynCAM1 mediated sites of contact with 

microspheres relative to background (11.9 ± 4.5%, n = 15; Fig.2C and Supplemental 

Fig.1). 
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 Next, we analyzed whether surface-expressed NMDARs (NR1 and GFP-NR2B) 

localized to sites of HA-Nlgn1 aggregation at microspheres.  We chose the NR2B 

subunits as these receptor subunits are most relevant to the early development of the 

glutamatergic postsynaptic density (Durand and Konnerth, 1996; Isaac et al., 1997; 

Washbourne et al., 2002; Wu et al., 1996). We compared conditions in which PSD-95 

was either present or absent in the transfected cells (Fig.1D).  As predicted, the surface 

level of NMDARs (as determined by labeling of the extracellular GFP tag) was 

significantly higher at microspheres when PSD-95 was co-transfected (165.9 ± 29.6% vs. 

59.3 ± 18.1%, p < 0.01, n = 14; Fig.1E).  Thus, we conclude that the CAMRA allows us 

to reliably measure the accumulation of an effector molecule (PSD-95) at sites of 

microsphere-mediated CAM (Nlgn1) clustering, and quantify the concomitant 

recruitment of NMDARs in the presence of the effector.   

 

Potential SynCAM1 effector molecules 

 To determine if SynCAM1 could fulfill a similar role in glutamate receptor 

recruitment via one of its potential effector proteins, we employed the CAMRA to 

identify effector molecules that were sufficient to increase the accumulation of NMDARs 

to sites of SynCAM1 clustering.  We tested four SynCAM1 binding proteins that had 

been identified in vitro: protein 4.1B, CASK, Syntenin1 and GRIP1.     

 COS7 cells were transfected with HA-SynCAM1, NR1, GFP-NR2B and one of 

the candidate effectors and then we applied microspheres directed to HA-SynCAM1 

(Fig.2A,B).  In the absence of an effector, there was a small increase in the accumulation 

of surface NMDARs (surface GFP-NR2B; 35.4 ± 16.33%) at microspheres that had clear 

accumulations of HA-SynCAM1 (110.56 ± 13.53%, n = 15; Fig.2A,B).  This result was 

analogous to the Nlgn1-NMDAR-only co-transfected condition, and there was no 

significant difference between those two conditions (p = 0.2136; Fig.1D). Thus, we 

conclude that in the absence of effectors, the CAMs themselves may only promote small 

increases in NMDAR recruitment. PSD-95 is not predicted to interact with the 

intracellular domain of SynCAM1 (Biederer, 2005; Meyer et al., 2004), therefore, we 

measured surface NMDAR recruitment to sites of HA-SynCAM1 mediated adhesion in 

the presence of PSD-95-GFP as a negative control (Fig.2A).  Surface NMDAR 
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recruitment under these conditions was not significantly different than HA-SynCAM1 

alone (33.5 ± 7.6% vs. 35.4 ± 16.3%, p = 0.5897, n = 15; Fig.2B).   

 Of the candidate effectors examined, only the addition of protein 4.1B produced 

a dramatic increase in NR1/NR2B accumulation at microsphere-mediated sites of HA-

SynCAM1 aggregation relative to control (148.7 ± 13.3% vs. 35.4 ± 16.3%, p < 0.005, n 

= 15; Fig.2A,B).  Surface NMDAR intensities at microspheres applied in the presence of 

CASK (71.6 ± 16.9%, p = 0.0421, n = 15), Syntenin1 (68.9 ± 20.5%, p = 0.2134, n = 15), 

or GRIP1 (35.2 ± 9.1%, p = 0.9669, n = 15), were not significantly different from the 

PSD-95 condition nor each other after correction for multiple comparisons (Fig.2B).  

However, CASK and Syntenin1 trend towards significance suggesting that there may be 

a basal level of NMDAR recruitment by these effector proteins, but not by GRIP1 and 

PSD-95. In conclusion, the screen revealed that protein 4.1B is a potent effector molecule 

of SynCAM1 in recruiting NMDARs to microsphere-mediated sites of adhesion. 

 

SynCAM1 interacts with protein 4.1B to specifically recruit NMDARs 

 Given the weak effect of three of the four potential effector proteins in recruiting 

NMDARs to SynCAM1 adhesion sites, we explored the nature and specificity of their 

interactions with SynCAM1 (Fig.2C and Supplemental Fig.1).  We compared effector 

recruitment measures to our negative control: PSD-95-GFP accumulation at microsphere 

mediated sites of HA-SynCAM1 clustering.  As measured by the percent increase of 

GFP-tagged effector at microspheres relative to background, HA-SynCAM1 only drives 

the accumulation of 4.1B (114.1 ± 11%, p < 0 .005, n = 15), CASK (123 ± 16.9%, p < 

0.005, n = 15) and Syntenin1 (91.8 ± 12.2%, p < 0.005, n = 15) compared to PSD-95 

(Fig.2C).  HA-SynCAM1 is unable to efficiently recruit GRIP1 in this assay despite 

previous reports of a direct interaction (26.4 ± 13.3%, p = 0.4068, n = 15).  Thus, protein 

4.1B, CASK and Syntenin1 are all recruited to sites of microsphere-induced SynCAM1 

clustering in COS7 cells to a similar extent, yet protein 4.1B is significantly different in 

its ability to cause NMDAR accumulation at microspheres.  Taken together, this suggests 

that protein 4.1B possesses the most potent recruitment activity on NMDARs compared 

to all effectors examined.    
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Figure 2. Protein 4.1B is a potent SynCAM1 effector molecule, recruiting NMDARs to 

sites of adhesion with microsphere. (A) Close up images of individual microspheres 

applied to cells transfected with SynCAM1 (blue), NMDARs (red) and one of the 

candidate effectors indicated on the left (not fluorescently labeled in these experiments).  

Arrowheads indicate examples of contact sites at microsphere where HA-SynCAM1 was 

aggregated.  (B) Quantification of NMDAR recruitment via the candidate effector 

molecules.  Protein 4.1B significantly increased intensity of receptor staining at 

microspheres relative to control (148.7 ± 13.3% vs. 33.5 ± 7.6%, p < 0.005*, n = 15). (C) 

Quantification of effector recruitment via SynCAM1 to sites of adhesion at microspheres 

(p < 0.005*, n = 15, error bars represent s.e.m.; * with correction for multiple 

comparisons). 
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 To further explore the specificity of the interaction between SynCAM1 and 

protein 4.1B, we examined aggregation of 4.1B-GFP at microspheres directed towards a 

mutant HA-SynCAM1 lacking the FERM binding domain (HA-SynCAM1ΔFERMb; 

Fig.3A).  Full length 4.1B-GFP did not co-accumulate at microsphere-induced HA-

SynCAM1ΔFERMb aggregation (29.4 ± 9.1%, n = 15; Fig.3C,D).  Similarly, 4.1B 

lacking its FERM domain (4.1BΔFERM) did not accumulate at sites of HA-SynCAM1 

aggregation (Fig.3B,C).   To confirm that protein 4.1B was recruited specifically to 

clustered HA-SynCAM1 and not just to densely packed adhesion sites, we measured 

4.1B-GFP accumulation using HA-NLG1 as the targeted CAM.  In this case, 4.1B-GFP 

did not significantly co-localize to microspheres where large amounts of HA-NLG1 were 

localized (16.7 ± 6.4%, n = 15; Fig.3D).  As an additional test of specificity of our 

CAMRA, we determined whether NMDARs would aggregate at microspheres directed 

against HA-SynCAM1 in the presence of 4.1BΔFERM.  As compared to the negative 

control, we observed no significant difference in NMDAR accumulation at microspheres 

under this condition (33.9 ± 7.6% vs. 33.5 ± 7.6%, p = 0.4429, n = 15). 

 As our assays show co-localization and not strictly a biochemical interaction, we 

performed immunoprecipitation experiments.  Immobilization of HA-SynCAM1 on 

protein-A-sepharose beads led to the recovery of 4.1B-GFP from transfected COS7 cells 

(Fig.3E, lane 4, Bound).  In contrast, HA-SynCAM1ΔFERMb failed to co-

immunoprecipitate 4.1B-GFP (Fig.3E, lane 7, Bound), while deletion of the PDZ binding 

domain (HA-SynCAM1∆PDZIIb) left the interaction with 4.1B intact (Fig.3, lane 8, 

Bound). Similarly, deletion of the FERM domain of 4.1B blocked recovery of 4.1B 

(Fig.3, lane 6, Bound), whereas deletion of the similar sized C-terminal domain (CTD; 

Fig.3B) did not affect interaction with HA-SynCAM1 (Fig.3E, lane 5, Bound).  In 

conclusion, we have demonstrated that the interactions between SynCAM1 and protein 

4.1B require the FERM binding domain of SynCAM1.  Similarly, protein 4.1B‟s 

localization to SynCAM1 at the membrane and its effect on NMDAR recruitment is 

dependent upon its FERM domain.  
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Figure 3. Direct interactions between SynCAM1 and protein 4.1B are mediated via key 

protein-protein interaction domains. (A) Model depicting known protein-protein 

interaction domains for SynCAM1 and the deletion mutant HA-SynCAM1ΔFERMb.   

(B) Model depicting known protein-protein interaction domains for protein 4.1B and the 

deletion mutants 4.1BΔFERM and 4.1BΔCTD. (C) Images showing the lack of 

recruitment of protein 4.1B to sites of contact with microspheres when mutant proteins 

were transfected. (D) Quantification of localization of protein 4.1B to microspheres in the 

presence of either HA-SynCAM1 full length, HA-SynCAM1FERMb, or Nlgn1. Protein 

4.1B can only be recruited to adhesion sites with microspheres via full length SynCAM1 

(p < 0.001, n = 15). Error bars represent s.e.m. (E) Immunoprecipitation experiments 

confirm the specificity of the direct interaction between SynCAM1 and protein 4.1B. 

Recombinant and tagged versions of SynCAM1 (HA-SynCAM1) and 4.1B (GFP-4.1B) 

were immunoprecipitated using an antibody to the HA tag. Bound proteins and input 
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proteins were visualized in Western blots using antibodies to the tags (anti-GFP and anti-

HA). Deletion of the PDZ binding domain of SynCAM1 (HA-SynCAM1∆PDZIIb) and 

the C-terminal domain of 4.1B (GFP-4.1B ∆CTD) did not affect the interaction of these 

two partners. In contrast, deletion of the FERM binding domain of SynCAM1 (HA-

SynCAM1 ∆FERMb) and the FERM domain of protein 4.1B (GFP-4.1B ∆FERM) 

completely abolished the interaction of SynCAM1 and protein 4.1B.     
 

Protein 4.1B enhances synaptogenic properties of SynCAM1 

 Given the strong effect of protein 4.1B on the localization of NMDARs to sites of 

adhesion in the CAMRA, we decided to determine whether incorporation of protein 4.1B 

enhanced the development of a functional postsynaptic apparatus by using an HEK293 

cell/neuronal co-culture assay (Fu et al., 2003). It was previously demonstrated that 

neurons co-cultured with non-neuronal cells expressing SynCAM1 formed functional 

presynaptic contacts onto those heterologous cells (Biederer et al., 2002; Sara et al., 

2005).  It is thought that SynCAM1 expressed in this fashion stabilizes contact with axon 

terminals through binding of its transynaptic partner located in those terminals.  Activity 

from these stabilized axons can then be sensed at the HEK cell via co-transfected 

glutamate receptors.  If a molecule such as 4.1B should have the ability to enhance the 

localization of functional glutamate receptors to the sites of contact with the neurons, 

then we reasoned that this effect would be reflected in the properties of the mEPSC‟s 

measured in this assay.  

 First, we transfected HEK293 cells with SynCAM1 and NMDAR subunits (NR1 

and NR2B) and co-cultured these cells with cerebellar granule neurons. 

Electrophysiological analysis verified the existence of synaptic currents resembling 

endogenous neuron-neuron synaptic responses (Fig.4A).  Nearly 53% (52.6.± 2.8%) of 

HEK293 cells transfected with NMDAR subunits and SynCAM1 showed miniature 

excitatory postsynaptic currents (mEPSCs) in the presence of TTX (Fig.4B), while 

mEPSCs could only be detected in 9% (8.4± 1.2%) of HEK293 cells transfected with 

only the NMDARs and GFP. This suggests that functional presynaptic terminals are 

forming onto HEK293 cells expressing NMDARs. Due to the high affinity of NMDARs 

for glutamate (Hollmann and Heinemann, 1994), it is impossible to determine whether 

NMDARs are localized to the „synaptic‟ sites.  
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 The addition of protein 4.1B to SynCAM1 and NMDAR transfected HEK293 

cells resulted in a significant, 30% increase in the number of cells with recordable 

NMDAR-mEPSCs over SynCAM1 alone (82.2 ± 11.8%, p < 0.05, n = 20; Fig.4A and 

B).  The increase in the percentage of cells with detectable mEPSCs was abolished by 

either removing the FERM binding domain in SynCAM1 (SynCAM1ΔFERMb) or the 

FERM domain from protein 4.1B (4.1BΔFERM; Fig. 4B). Similarly, addition of CASK, 

an effector molecule that interacts with SynCAM1 (Fig.2C and Supplemental Fig.1), but 

that did not significantly recruit NMDARs in the CAMRA (Fig.2B), did not increase the 

number of cells with detectable NMDAR mEPSCs above SynCAM1 alone (Fig.4B). 

These results suggest that 4.1B may either be increasing the localization of NMDARs to 

synaptic sites, as suggested by the CAMRA, or that protein 4.1B may act to increase the 

adhesive nature of SynCAM1 and thereby improve the formation of presynaptic 

terminals onto HEK293 cells. 

 Detailed analysis of the NMDAR-mediated mEPSC events revealed that the 

addition of 4.1B significantly enhanced mEPSC frequency onto HEK293 cells (300% vs. 

SynCAM1 alone, p < 0.05; n = 10; Fig.4A and C), when compared to cells transfected 

with just SynCAM1 alone. This effect was abrogated by deletion of the SynCAM-

binding FERM domain (Fig.4C) and was not elicited by CASK (data not shown).  

Despite these strong effects on mEPSC frequency, it was surprising that we did not 

observe a significant increase in the peak amplitude of NMDA-mEPSCs as we expected 

given the CAMRA results (Fig.4D). However, we noticed that in about 35% of HEK293 

cells co-expressing SynCAM1 and protein 4.1B a proportion of NMDAR-mEPSC events 

were larger than any observed in other experimental groups (vs. SynCAM1 only,  p = 

0.085, n = 10; Fig.4A, lower panel, and D).  One possibility for why this effect did not 

strongly bear out in a significant deviation of the group mean is that we lack strict control 

over the expression levels of NMDARs in transfected HEK293 cells, and this particular 

effect may strongly depend on the levels of NMDARs present.   

 As already mentioned, NMDARs have a very high affinity for glutamate and may 

well be detecting presynaptically-released glutamate at non-synaptic sites in addition to 

those closely juxtaposed to axon terminals. The results of the CAMRA (Fig.2) strongly 

support that 4.1B facilitates an increase in the concentration of NMDARs at sites of 
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contact, however, it does not exclude the possibility that 4.1B may also enhance the 

stabilization of functional presynaptic terminals transynaptically via SynCAM1.  To test 

whether 4.1B‟s effects on the frequency of mEPSCs in the HEK293 co-culture study was 

at least partially due to a change in the number of stabilized presynaptic terminals, we 

labeled the co-cultured HEK293 cells with antibodies to SynapsinI, PSD95 and 

Gephyrin.  We then quantified the area of SynapsinI positive regions located on 

transfected HEK293 cells that did not colocalize with the postsynaptic markers PSD95 or 

Gephyrin. We found that SynCAM1 expressed in HEK293 cells significantly increased 

the proportion of SynapsinI positive surface area as compared to GFP transfected only 

(8.9±1.5% vs. 4.9±0.9%, p < 0.02, n=17; Fig.4F) confirming previous studies of 

SynCAM1‟s ability to induce presynaptic differentiation on its own (Biederer et al., 

2002; Sara et al., 2005). Surprisingly, the addition of 4.1B to SynCAM1 transfected 

HEK293 cells caused a significant increase in Synapsin I labeling relative to SynCAM1 

only cells (8.9±1.5% vs. 13.9±1.7%, p < .02, n = 17; Fig.4E&F).  Experiments using 

either of the deletion mutants, SynCAM1ΔFERMb or 4.1BΔFERM, showed that the 

FERM binding interaction was necessary for the increase in presynaptic stabilization that 

addition of protein 4.1B yielded above that of SynCAM1 alone (SynCAM1 vs. 

SynCAM1ΔFERMb + 4.1B: p = 0.26, n = 14; SynCAM1 vs. SynCAM1 + 4.1BΔFERM: 

p = .49 n = 13; Fig.4F). This result suggests that cytosolic protein 4.1B acts to enhance 

the formation of presynaptic terminals onto SynCAM1-expressing HEK293 cells. 

 If the enhancement of mEPSC frequency that 4.1B elicits can be wholly 

accounted for by the enrichment of presynaptic terminals that we measured with 

SynapsinI labeling, then co-transfected glutamate receptors of the AMPA type could 

register similar changes in mEPSC frequency when 4.1B is present in conjunction with 

SynCAM1. To test this, the co-culture analysis was also performed by transfecting GluR1 

in place of NR1/NR2B.  In this case, SynCAM1 alone was again sufficient to cause a 

significant increase in the percentage of cells with recordable AMPAR currents over 

control transfection conditions (p < 0.05, n = 8). However, the co-expression of protein 

4.1B with SynCAM1 did not further increase the proportion of HEK293 cells with 

recordable AMPAR-mEPSCs (data not shown).  This suggests that the observed 

morphological increase in presynaptic contact due to the addition of protein 4.1B (Fig.4F) 
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was not enough to significantly enhance mEPSC detection via AMPA type receptors.  

Taken together, the HEK/neuron co-culture studies, in conjunction with the CAMRA 

experiments, suggest that SynCAM1interacts with 4.1B to facilitate enhanced 

localization of functional NMDARs to sites of contact and to enhance presynaptic 

stabilization.  
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Figure 4. Protein 4.1B specifically enhances measures of NMDA-EPSCs and presynaptic 

differentiation in the HEK293 cell/neuronal co-culture assay.  (A) Representative 

recordings of NMDA-mEPSCs from HEK293 cells transfected with either SynCAM1 

and the NMDAR subunits (NR1/NR2B, top), or SynCAM1, 4.1B and the NMDAR 

subunits (bottom). The synaptic currents were measured in Mg
2+

-free extracellular 

solution with TTX.  Gray traces are magnified individual NMDAR-mEPSCs. (B) 

Percentage of transfected HEK293 cells with recordable NMDA-mEPSCs in each 

experimental condition. SynCAM1 significantly enhanced recorded NMDA-mEPSCs 

over control conditions (p < 0.05, n >20). Protein 4.1B together with SynCAM1 

significantly increased the number of cells with recordable currents over SynCAM1 alone 
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conditions (p < 0.05, n > 20), while perturbing interactions mediated via the FERM 

domain canceled this increased activity.  (C) Protein 4.1B significantly increased the 

frequency of NMDA-mEPSCs when compared to SynCAM1 alone conditions or the 

4.1BΔFERM mutant (p < 0.05, n = 10). (D) Cotransfection of protein 4.1B did not 

significantly increase the amplitude of NMDA-mEPSCs (p = 0.09, n = 10). Error bars 

represent s.e.m. (E) Cotransfection of protein 4.1B significantly enhanced presynaptic 

stabilization.  Immunolabeling of HEK293 cells transfected with SynCAM1 and 4.1B 

(upper left), co-cultured with neurons and labeled for Synapsin I (upper right), PSD-95 

and Gephryin (lower left).  Arrows indicate regions of induced presynaptic contact where 

markers of postsynaptic structures are missing. Scale bar equals 20 µm. (F) 

Quantification of the percent surface area of transfected HEK293 cells covered with 

Synapsin I, and not PSD95 or Gephyrin, labeling under different transfection conditions. 

SynCAM1 significantly enhances percent surface area covered with Synapsin I over GFP 

conditions (* = p < 0.02, n = 17) and SynCAM1 plus 4.1B significantly increases percent 

surface area covered by synapsin I over SynCAM1 alone conditions (* = p < 0.02, n = 

17). Error bars represent s.e.m. 

 

Specific effect of protein 4.1 family members on glutamate receptor recruitment 

 We decided to confirm the specificity of the SynCAM1-4.1B effect on NMDARs 

and not AMPARs using our CAMRA. When we co-expressed HA-SynCAM1, 4.1B and 

the GluR1 subunit in COS7 cells and applied microspheres directed to HA-SynCAM1, 

we found that there was significantly less clustering of GluR1 relative to the induced 

recruitment of NR1/NR2B described earlier (34.9 ± 16.8% vs. 148.7 ± 13.3%, p < 0.001, 

n = 15; Fig.5A & D).  This suggests there are specific mechanisms by which protein 4.1B 

recruits only NMDARs (NR1/NR2B).   

 To determine whether lack of recruitment of GluR1 is not a deficit of the 

CAMRA, we considered generating an alternative adhesion complex in COS7 cells that 

might recruit GluR1. Protein 4.1B belongs to a family of proteins that were first 

identified in erythrocytes (An et al., 1996) and later found to have a significant role in 

stabilizing the cytoskeleton by promoting the association of F-actin with tetrameric 

spectrin (Correas et al., 1986).  The family members, coded for by distinct genes, are 

differentially expressed in distinct cell populations (Hoover and Bryant, 2000; Parra et 

al., 2000; Peters et al., 1998), but all may potentially interact with SynCAM1 via their 

conserved FERM domains.  In particular, 4.1N is an additional family member highly 

expressed in neurons that localizes to postsynaptic specializations (Scott et al., 2001).  

Protein 4.1N interacts directly with GluR1 and promotes its recruitment to postsynaptic 
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densities and to the plasma membrane (Shen et al., 2000).  Therefore, we determined 

whether SynCAM1/4.1N could form an adhesion complex at microspheres and whether 

this would promote GluR1 clustering (Fig.5B, C and E).  As predicted, protein 4.1N is 

recruited to HA-SynCAM1 clusters at microspheres (100 ± 12.7%, n = 15; Fig.5B).  

Additionally, GluR1 specific clustering was induced by this complex, while NR1/NR2B 

could not be recruited to HA-SynCAM1/4.1N adhesion sites (139.8 ± 24.4% vs. 33.4 ± 

7%, p < 0.001, n = 15; Fig.5C & E).  Thus, our experiments identify an additional 

SynCAM1 effector molecule, protein 4.1N. Our results further suggest that NMDAR and 

AMPAR recruitment specificity may be mediated by differential CAM / effector 

adhesion complexes.  
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Figure 5. Specificity of 4.1 effector proteins to glutamate receptor recruitment. (A) 

Protein 4.1B did not significantly enhance recruitment of AMPA type receptors (GluR1) 

as compared to NR1/NR2B type receptors (arrowhead). Scale bar equals 2 m. (B) 

Protein 4.1N was recruited to sites of HA-SynCAM1 accumulation in contact with 

microspheres (arrowheads). (C) Protein 4.1N induced significant recruitment of GluR1, 

but not NR1/NR2B, containing receptors to adhesion sites at microspheres (arrowheads). 

(D) Quantification of GluR1 recruitment vs. NR1/NR2B recruitment via protein 4.1B 

(34.9 ± 16.8% vs. 148.7 ± 13.3%, p < 0.001, n = 15). (E) Quantification of GluR1 

recruitment vs. NR1/NR2B recruitment via protein 4.1N (139.8 ± 24.4% vs. 33.4 ± 

6.95%, p < 0.001, n = 15). Error bars represent s.e.m. 
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Synaptic localization of protein 4.1B 

 Intrigued by these initial observations in the COS7 and HEK293 cell culture 

assays, we sought to complete a series of experiments to determine the relevance of 

protein 4.1B function in the neuronal context. Previous biochemical studies have reported 

that 4.1B is detected in PSD fractions prepared from rat forebrain, and could therefore be 

localized to excitatory synapses in vivo (Scott et al., 2001). To confirm synaptic 

localization of 4.1B, we immunolabeled cultured hippocampal neurons with antibodies to 

4.1B and the markers Synapsin I and PSD-95 at 4, 8 and 12 days in vitro (DIV).  

Synapsin I is a protein that associates with synaptic vesicles and is thus located in 

presynaptic terminals, while PSD-95 is located in the glutamatergic postsynaptic density 

(Cho et al., 1992; Fletcher et al., 1991; Hunt et al., 1996). The immuno-labeling of 

protein 4.1B revealed a highly punctate distribution at all ages examined (Fig.6A). At 

4DIV, an age at which very few synapses have formed (Washbourne et al., 2002), protein 

4.1B was localized in distinct puncta (3.7 ± 0.5 puncta/20μm, n = 10), some of which (3.4 

± 1.2% of total 4.1B puncta) were colocalized with the few synapses present, i.e. sites of 

colocalization of Synapsin I and PSD-95. The vast majority (81.9 ± 4.9 puncta/20μm, n = 

10) were not colocalized with either Synapsin I or PSD-95 (Fig.6A,C) as 4.1B puncta far 

outweighed the presence of either Synapsin or PSD-95 puncta. However, almost all 

synapses present in the cultures at 4DIV (and at all other time points examined) 

demonstrated colocalization of protein 4.1B immunoreactivity (84.6 ± 7.7%, 98.5 ± 

0.8%, 91.6 ± 2.1% of synapses at 4, 8 and 12 DIV, respectively: Fig.6B). Thus, as the 

number of synapses increased during development in vitro, the distribution of 4.1B 

puncta switched from not being associated with either pre- or postsynaptic markers to 

being colocalized with both Synapsin I and PSD-95 (Fig.6C).  Interestingly, the intensity 

of the puncta decreased with age (Supplementary Figure 2), suggesting that the presence 

of protein 4.1B at synapses decreases with increasing maturity. Taken together, these 

results strongly suggest a function for 4.1B at synapses, and that protein 4.1B may play 

an important role during the early phases of synapse formation.    
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Figure 6. Localization of endogenous protein 4.1B in cultured hippocampal neurons. (A) 

Immunolabeling of protein 4.1B (green) with the synaptic markers PSD-95 (red) and 

Synapsin I (blue) at 4, 8 and 12 DIV. Arrowheads indicate examples of protein 4.1B 

localization. Synaptic sites, areas enriched in all three proteins are white in the merged 

image (bottom row). Scale bar equals 10 m. (B) Quantification of the percentage of 

synapses that show protein 4.1B localization over time in culture. Error bars represent 

s.e.m. (C) Quantification of the distribution of protein 4.1B puncta as determined by 

colocalization with synapsin I, PSD-95, both (Synaptic) or neither markers. Error bars 

represent s.e.m. (* p < 0.05, ** p < 0.01, n = 10).  

 

Protein 4.1B enhances synaptic localization of NMDARs in hippocampal neurons 

 Because protein 4.1B is localized to synapses in hippocampal neurons (Fig.6), it 

was interesting to examine whether 4.1B could recruit NMDARs to “true” synapses, 

analogously to recruitment seen in the CAMRA and in HEK293/CGC co-cultures (Fig.2 

and 4). To specifically label surface exposed NMDARs, we transfected cultured 

hippocampal neurons at 7 DIV with a plasmid to express GFP-tagged NMDAR subunit 

2B (GFP-NR2B). We also cotransfected expression plasmids for 4.1B or a short hairpin 
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RNA (shRNA) construct to 4.1B, to manipulate the expression levels of protein 4.1B. 24 

hours later, we labeled GFP-NR2B subunits present at the neuronal surface by exposing 

live, transfected neurons to GFP antibodies at 4°C (Washbourne et al., 2004b). 

Subsequently, neurons were fixed and permeabilized to visualize total GFP-NR2B 

(Fig.7A) and synaptophysin.  

 We first characterized the effectiveness of the shRNA. Expression of the 4.1B 

shRNA resulted in a 25% decrease in the intensity of 4.1B puncta 24 hours after 

transfection (from 9216 ± 621 a.u. to 6895 ± 423 a.u. for ctl and 4.1B shRNA, 

respectively, n = 11, p < 0.05). This may be an underestimation of knock-down as we did 

not take into account diffuse dendritic and cell body levels. Furthermore, knockdown was 

only performed for 24 hours, a relatively short time period. This short time period was 

important as we did not want high levels of GFP-NR2B expression to compromise 

trafficking pathways to synapses. Additionally, we attempted to target a time period in 

development when 4.1B production would be high to compensate for the short expression 

period of the shRNA. Despite the relatively weak reduction in 4.1B levels with this 

shRNA protocol, we measured a significant reduction in the normalized intensity of 

punctate surface GFP-NR2B at synapses, as determined by colocalization with 

synaptophysin, when compared to mismatch (Ctl) shRNA (71.8% ± 10.6 of ctl, n = 11, p 

< 0.05; Fig. 7B). This reduction in NR2B surface intensity was not apparent at non-

synaptic sites (83.1% ± 10.2 of ctl, n = 11, p = 0.3; Fig.7B). We also measured the ratio 

of surface to total GFP-NR2B to determine whether 4.1B was involved in delivery of 

NMDARs to the plasma membrane, as has been suggested for 4.1N (Shen et al., 2000). 

The ratio of surface-labeled to total GFP-NR2B subunits was unchanged in all conditions 

(n=11 per condition, p > 0.05), suggesting that 4.1B specifically recruits NMDARs to 

synapses including both internal and surface pools. 

 In contrast to knock-down with shRNA, overexpression of protein 4.1B resulted 

in an enhancement of the surface localization of GFP-NR2B at synapses (163.4% ± 9.7 of 

ctl, n = 11, p < 0.05; Fig.7B). The increase in surface localization of NR2B to synapses 

was abrogated by deletion of the FERM domain (ΔFERM, 122.4% ± 10.1, n = 11, p = 

0.064; Fig. 7B). These results suggest that protein 4.1B plays an important role in the 
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delivery of NMDAR subunits to synapses in hippocampal neurons, and that the FERM 

domain through which it may interact with SynCAM1 is necessary for this function.  

 

Figure 7. Protein 4.1B enhances NMDAR localization at synapses. (A) Transfected 

hippocampal neurons were incubated with antibodies to GFP (rb) at 4°C to label surface 

GFP-NR2B (surface, red) and subsequently fixed, permeabilized and reincubated with 

GFP antibodies (ms) to reveal total GFP-NR2B (total, green) and antibodies to synapsin I 

(not shown). Scale bar = 50 μm. (B) Quantification of the intensity of surface GFP-NR2B 

puncta at synaptic and non-synaptic sites in hippocampal neurons expressing shRNA to 

4.1B (4.1B shRNA), control shRNA (Ctl shRNA), 4.1B and 4.1B ΔFERM and empty 
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vector (pCDNA3) for 24 hours. Error bars represent s.e.m. (* p < 0.05). (C) Neurons 

expressing shRNA to 4.1B (4.1B shRNA) and GFP, control shRNA (Ctl shRNA) and 

GFP, 4.1B-GFP, 4.1B ΔFERM-GFP or GFP alone for 48 hours were immunolabeled 

with antibodies to synapsin I and PSD-95. Scale bar = 50 μm. (D) Quantification of the 

numbers of synapses per 20 μm of dendrite as determined by the colocalization of 

synapsin I and PSD-95. Error bars represent s.e.m. (* p < 0.05, n = 11). 

 

Protein 4.1B enhances synaptogenesis in hippocampal neurons 

 In our co-culture experiments between CGCs and HEK293 cells, we noted a 

significant increase in both NMDAR mEPSC frequency and percentage of cells with 

recordable mEPSCs with cotransfection of protein 4.1B and SynCAM1, suggesting a 

great facilitation of functional synapse formation between neurons and HEK293 cells. 

(Fig.4). To test whether protein 4.1B exhibited a similar effect on functional synapse 

formation in neurons, we either increased or decreased 4.1B expression levels for two 

days (from 6 DIV to 8 DIV) and immunolabeled neurons with antibodies to the pre- and 

postsynaptic markers SynapsinI and PSD-95, respectively (Fig.7C). Quantification of the 

numbers of synapses, i.e. sites of colocalization of SynapsinI and PSD-95, revealed that a 

reduction in protein 4.1B expression levels due to shRNA expression results in a 3-fold 

decrease in synapse number (from 1.13 ± 0.2 synapses/20μm to 0.38 ± 0.06 

synapses/20μm for ctl and 4.1B shRNA respectively, n = 11, p < 0.05; Fig. 7D). In 

contrast, increasing 4.1B expression levels by expressing 4.1B-GFP increased synapse 

number 1.7-fold (from 0.88 ± 0.2 synapses/20μm to 1.48 ± 0.3 synapses/20μm for GFP 

and 4.1B-GFP, respectively, n = 11, p < 0.05; Fig.7D). Synapse number was normalized 

to control conditions. This increase in synapse number was completely abolished by 

deletion of the FERM domain (4.1B ΔFERM-GFP, 0.64 ± 0.1 synapses/20μm, n = 11, p 

> 0.05; Fig.7D). This suggests that 4.1B is sufficient and necessary to drive the formation 

of synapses between hippocampal neurons in culture and that this activity is dependent 

on the FERM domain. 
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Protein 4.1B specifically enhances NMDAR currents in         

hippocampal neurons 

 To further characterize the potential role of protein 4.1B on NMDAR recruitment 

in neurons, we analyzed the functional consequences of manipulating protein 4.1B 

expression levels in dissociated hippocampal neuronal culture. We were interested in 

whether protein 4.1B exacted effects analogous to those observed in our other assays.  

We recorded NMDA-mEPSCs in the presence of TTX, NBQX and BMR in a solution 

lacking Mg
2+

, as previously described in detail (Fu et al., 2005).  To minimize variability 

due to cell heterogeneity and to measure synaptic currents with optimal space clamp and 

resolution, we selected hippocampal neurons with relatively small cell body size (15-

20µm) and simple dendritic arborization. We compared recordings from neurons 

expressing either GFP, 4.1B-GFP, 4.1BΔFERM-GFP or 4.1B shRNA with GFP at 12-14 

DIV (Fig.8).  Protein 4.1B overexpression significantly increased both mean frequency 

(0.09 ± 0.02 Hz in GFP cells, 0.17 ± 0.01 Hz in 4.1B-GFP expressing cells, p < 0.05; n 

>30) and amplitude of NMDA-mEPSCs as compared to GFP expressing cells (19.2 ± 3.3 

pA in GFP cells, 26.4 ± 2.7pA in 4.1B-GFP cells, p < 0.05; n >30; Fig.8A-C), whereas 

the deletion of the FERM domain in 4.1B prevented the increase in frequency and 

amplitude (0.12 ± 0.03 Hz, 18.4 ± 2.3pA, respectively). The expression of 4.1B shRNA 

significantly decreased the frequency of NMDAR mEPSCs (0.05 ± 0.02 Hz), but not 

peak amplitude (15.6 ± 3.7 pA, p = 0.09, n > 30). It is possible that the knock-down by 

the 4.1B shRNA was not sufficient to significantly reduce the NMDAR mEPSC peak 

amplitude. However, our results are consistent with the idea that 4.1B plays a role in 

recruiting NMDARs to synapses in cultured hippocampal neurons.  

 The NR2B subunit of the NMDAR has been shown to be more prevalent at 

synapses during development, with NR2A gradually taking over at mature synapses 

(Tovar and Westbrook, 1999).  NR2B subunits cause a slow decay time component in 

NMDAR current kinetics (Kohr and Mody, 1994; Kohr and Seeburg, 1996; Monyer et 

al., 1994). Upon analysis of the decay time constant of NMDA-mEPSCs (τw) from our 

4.1B-expressing cultured hippocampal neurons, we noticed that decay was significantly 

prolonged when compared to control transfected cells (212.5 ± 32.9 ms in GFP control 

cells, 275.6 ± 25.2 ms in 4.1B expressing cells, p < 0.05; n >30; Fig.8D). No significant 
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effect on τw was seen in neurons expressing 4.1BΔFERM or 4.1B shRNA (198.6 ± 21.8 

ms in 4.1BΔFERM cells, 188.3 ± 38.4 ms in 4.1B shRNA cells, p = 0.58; Fig.8D). The 

effect on τw indicates that protein 4.1B might specifically increase the recruitment of 

NR2B-containing NMDARs to synaptic sites. To further test this hypothesis, we recorded 

mEPSCs in the presence of ifenprodil(10 M), as it is a specific antagonist of 

NR1/NR2B-containing NMDARs (Mott et al., 1998). Changes in our measures in the 

presence of ifenprodil should then reflect the proportion of the NMDARs containing only 

NR1 and NR2B subunits. Application of ifenprodil to neurons overexpressing 4.1B 

resulted in a 73% (73 ± 5%, n = 12) decrease in mEPSC frequency compared to before 

ifenprodil application (Supplementary Fig. 3). This inhibition was only marginally 

decreased in the GFP only expressing neurons (69 ± 2%, n = 12, p > 0.05). This suggests 

a potentially small increase in the NR2B only population of NMDARs when 4.1B is 

overexpressed. However, we did measure a significant difference between 4.1B 

overexpression and 4.1B knock-down with shRNA (60 ± 4%, p = 0.03). Taken together, 

the small changes in ifenprodil sensitivity might reflect the presence of heterotrimeric 

NR1/NR2A/NR2B NMDARs containing, which are likely not as sensitive to ifenprodil 

as NR1/NR2B NMDAR subtypes. Nevertheless, our results are consistent with the idea 

that protein 4.1B enables the recruitment of NMDARs containing NR2B subunits to 

synapses.   

 To test whether the effects of protein 4.1B were specific to NMDARs and not to 

AMPARs, we recorded from transfected hippocampal neurons in the presence of BMR 

and TTX. No significant effects were seen for AMPAR-mEPSC mean frequency (0.48 ± 

0.08 Hz in GFP cells, 0.56± 0.14 Hz in 4.1B-GFP overexpressing cells, p = 0.79; n = 16) 

or amplitude of mEPSCs (40.1 ± 10.3 pA in GFP cells, 57.8 ± 13.7pA in 4.1B-GFP cells, 

p = 0.51; n = 16; Fig.8E-G).  Taken together, these results demonstrate that protein 4.1B 

exhibits the same glutamate receptor specificity as characterized in our CAMRA and 

HEK293 co-culture assays. 
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Figure 8. Protein 4.1B enhances NMDAR mediated synaptic events in cultured 

hippocampal neurons. (A) Representative traces of isolated NMDA-mEPSCs recorded 

from hippocampal neurons (12-14 d.i.v) in Mg
2+

 free solution with TTX (0.5 µM), 

NBQX (5 µM) and BMR (50 µM) under different transfection conditions.  (B) 

Overexpression of protein 4.1B increases and knock-down of 4.1B with shRNA 

decreases NMDA-mEPSC frequency (p < 0.05, n >30) (C) amplitude (p < 0.05, n >30) 

and (D) τw (p < 0.05, n >30) in hippocampal neurons. (E) Representative traces of 

isolated AMPA-mEPSC recordings in hippocampal neurons in presence of TTX (0.5 

µM) and BMR (50 µM) in regular ECS with Mg
2+

 (F) 4.1B-GFP did not significantly 

affect the frequency of AMPA-mEPSCs (p = 0.79, n=16) or (G) amplitude (p = 0.51, 

n=16).   Error bars represent S.E.M.  
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3. DISCUSSION 

While a large number of proteins have been localized to the postsynaptic density 

and are thought to contribute towards its development and function (Reviewed in (Dillon 

and Goda, 2005; Feng and Zhang, 2009), it remains unclear which molecular interactions 

are sufficient to recruit glutamate receptors to synaptic sites early in synapse 

development.  In particular, the relatively novel synaptic cell adhesion molecule 

SynCAM1 has yet to be shown important for postsynaptic development and, thus, even 

less is known about its potential interactions leading to receptor recruitment. In this series 

of studies, we have used a microsphere-based assay, the CAMRA, and an HEK293-

neuronal co-culture assay as effective tools to screen potential SynCAM1 effector 

molecules sufficient to induce glutamate receptor recruitment. We identified protein 4.1B 

as a specific and potent effector of NMDAR recruitment to SynCAM1 adhesion sites. We 

also observed that other potential effectors could interact with SynCAM1 (CASK, 

Syntenin1), but these molecules did not impact NMDAR recruitment to the extent of 

4.1B in our assays.  Negative results in the case of these experiments do not completely 

rule out the possibility that these molecule do not play any role in NMDAR trafficking.  

For example, it was recently discovered that CASK plays a significant role in trafficking 

of NMDARs to the membrane surface and their localization to synapses in cultured 

hippocampal neurons (Jeyifous et al., 2009). However, it is clear that this activity of 

CASK requires that it work in tandem with SAP97, and that manipulations of CASK do 

not impact measures of synapse formation independently of changes in levels of NR1 at 

synaptic sites in neurons (Jeyifous et al., 2009).   Thus, our assay may truly reflect 

whether any one type of molecule is sufficient to interact with SynCAM1 to recruit 

glutamate receptors. Furthermore, in an attempt to determine the degree of specificity that 

SynCAM1 and protein 4.1B have on the recruitment of glutamate receptor types, we 

identified 4.1N as an additional SynCAM1 effector molecule sufficient to differentially 

recruit AMPA type receptors.  

In this set of studies we were able to demonstrate three key findings regarding the 

function of protein 4.1B.  Specifically, protein 4.1B facilitated the direct aggregation of 

NMDARs at sites of contact and adhesion, enhanced morphological measures of 

presynaptic differentiation, and specifically enhanced the frequency of NMDAR, not 
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AMPAR, mediated mEPSCs. Thus, this is the first report of a role for protein 4.1B at 

excitatory synapses and is the first demonstration of a potential mechanism by which 

SynCAM1 may directly participate in the early developmental process of postsynaptic 

differentiation.  The results obtained in COS7 cells and the HEK293 cell/neuron co-

culture help clarify that protein 4.1B largely promotes the development of functional 

postsynaptic structures in neurons containing NMDARs with a very specific composition. 

First, overexpression of protein 4.1B in neurons enhanced localization of NMDARs to 

synapses (Fig.7), and increased the peak amplitude of NMDAR-mediated mEPSCs 

(Fig.8), but not that of AMPAR-mediated mEPSCs. In keeping with this, knock-down of 

4.1B with shRNA resulted in a decrease in synaptic levels of NMDARs (Fig.7), however, 

surprisingly it had no significant effect on peak amplitude (Fig.8).  These results suggest 

specific and potent effects of protein 4.1B specifically on NMDAR recruitment.  The 

significant effect on the peak amplitude of mEPSC in cultured neurons is in line with the 

direct recruitment effects observed in the CAMRA, while it is surprising that we did not 

observe a significant increase in peak amplitude of mEPSCs from co-cultured HEK293 

cells expressing SynCAM1 and protein 4.1B.  As discussed previously, this particular 

measure in the HEK293 cell co-culture may be more sensitive to the particular levels of 

NMDARs present in transfected cells, which is a factor that cannot be strictly controlled 

in the assay.  Therefore, we consider this feature a limitation to determining the exact 

localization and levels of NMDARs in transfected HEK293 cells.  However, this 

limitation is addressed if the other measures obtained in the assay are interpreted in light 

of the direct recruitment measurements calculated in the CAMRA, where we can more 

specifically measure localization and levels of NMDARs at sites of adhesion.  

For example, the increase in frequency of mEPSCs and percentage of HEK293 

cells with recordable synaptic events seen when protein 4.1B is co-expressed with 

SynCAM1 suggests that either 4.1B is increasing the localization of NMDARs to release 

sites that would otherwise have been undetectable and/or that 4.1B is enhancing the 

formation of presynaptic terminals onto HEK293 cells.  We conclude that this 

enhancement of frequency is only partially explained by an increase in presynaptic 

stabilization onto transfected cells which we quantified by labeling presynaptic terminals 

in co-culture (Fig.4E &F).  However, the enhanced localization of NMDARs specifically 
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to synaptic release sites presumably augments the detection of NMDAR mediated 

mEPSCs and contributes significantly to the observed effects of protein 4.1B, especially 

given that 4.1B does not similarly enhance the detection of AMPAR mediated mEPSCs 

in co-culture nor hippocampal culture. 

Indeed, we do find that the combined data from our assays strongly support that 

protein 4.1B also has a role in the stabilization of functional presynaptic terminals via 

trans-synaptic interactions. Our studies using the HEK293 cell / neuronal co-culture assay 

and the overexpression studies in hippocampal neurons suggest that postsynaptically 

localized protein 4.1B exerts an effect on presynaptic differentiation or release in addition 

to its effects on receptor recruitment. The increase in mean mEPSC frequency in 

hippocampal neurons suggests either an increased number of presynaptic contacts or 

enhanced vesicle release at existing contacts. This result is supported by labeling of 

presynaptic terminals in the HEK293cell/neuron co-culture study.  However, we 

repeatedly fail to observe an increase in AMPA mediated mEPSCs in every assay, 

suggesting that protein 4.1B largely exerts its effect via its NMDAR specific recruitment 

capabilities postsynaptically. Regardless, protein 4.1B may either (1) act to enhance the 

adhesive nature of SynCAM1 contact sites, resulting in more release sites, or (2) 

modulate vesicle release properties in a retrograde fashion through SynCAM1 adhesion 

to mediate presynaptic differentiation. Thus, protein 4.1B plays a partial role in 

stabilization or function of presynaptic structures, but further experimentation will be 

needed to clarify its trans-synaptic role in neurons. 

Given that protein 4.1B, a molecule most notably involved in cytoskeletal 

organization (Sun et al., 2002), exerted such a direct and strong effect on NMDAR 

recruitment to synapses, it is interesting to consider how it may perform its role at the 

postsynaptic density. 4.1 family proteins regulate actin dynamics via direct binding 

through their spectrin-actin binding (SAB) domain.  Furthermore, NMDAR localization 

to synaptic sites requires significant actin stabilization, while non synaptic clusters of 

NMDARs can be maintained even when the actin cytoskeleton is destabilized (Allison et 

al., 1998).  Moreover, spectrin has even been reported to directly bind NMDARs in the 

brain (Wechsler and Teichberg, 1998). As our assay revealed differential receptor 

recruitment activity of two 4.1 family members, 4.1B and 4.1N, their functions at the 
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synapse are not simply explained by the possession of a single protein-protein binding 

region such as the SAB domain. It will be important in future studies to determine which 

domains differentially modulate NMDAR versus AMPAR recruitment and which 

processes are actin dependent and independent. 

The specificity of the recruitment of NR2B subunit containing NMDARs, as 

measured by the weighted decay constant τw (Fig.8), is particularly interesting, as 

recruitment of the NR2B subunit is especially relevant to early developmental processes. 

NR2B subunits are more prevalent at synapses than NR2A during early development 

(Stocca and Vicini 1998)(Tovar and Westbrook, 1999). Furthermore, scaffolding 

molecules such as SAP102 and PSD-95 appear to mediate the NR2B to NR2A switch 

that is a key feature of synaptic maturation (van Zundert et al., 2004). It is possible that 

4.1B must now also be considered in playing a role in this process. However, consistent 

with the role for protein 4.1B at “young” developing synapses, we found that the 

endogenous localization of protein 4.1B to excitatory synapses in neuronal culture 

appeared very early (4 DIV) and the intensity at synapses dropped off with time though 

it‟s localization did not (Supplemental Fig.2).   Previous in situ hybridization studies in 

newborn mouse brain show specific protein 4.1B expression in the purkinje cell layer of 

the cerebellum, regions CA1 and CA3 of the hippocampus and throughout the cortex 

(Parra et al., 2000).  Many of these regions are primarily the targets of major 

glutamatergic inputs and so it is interesting to speculate that protein 4.1B regulates 

excitatory postsynaptic differentiation in these areas before or near birth.  

The protein structure of the 4.1 family proteins has been intensively studied, and 

it is clear that in addition to the FERM, CTD and SAB domains, critical Ca
2+

-sensitive 

and insensitive calmodulin binding domains regulate the association between 4.1 proteins 

and transmembrane proteins in erythrocyte membranes (Nunomura et al., 2000).  

Ca
2+

/calmodulin is known to be a key regulator of processes underlying synapse 

formation such as actin cytoskeleton dynamics (Konur and Ghosh, 2005; Oertner and 

Matus, 2005; Saneyoshi et al., 2008) and glutamate receptor activity and localization 

(Ehlers et al., 1996; Wyszynski et al., 1997).  This suggests that a 4.1 family member‟s 

activities and dynamics would be subject to the specific regulatory mechanisms known to 

affect glutamate receptor recruitment to the synapse and subsequent synaptic maturation.  
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Such dynamics have not yet been reported for 4.1 molecules as they have been for other 

synaptic proteins (Sharma et al., 2006), but would further support the idea that protein 

4.1B could act as a regulated developmental signal central to the specific localization of 

glutamate receptors.  

Interestingly, we demonstrated that both family members (4.1B and 4.1N) were 

readily recruited to adhesion sites via SynCAM1. We assume that 4.1N also binds to 

SynCAM1through its FERM domain, as it is about 73% identical to the FERM domain of 

4.1B (Parra et al., 2000). However, 4.1N and 4.1B show completely opposite specificities 

for glutamate receptor subtypes (Fig. 5). 4.1N is known to bind to GluR1 through the 

CTD (Shen et al., 2000), a domain that is also 73% identical to the CTD of 4.1B (Parra et 

al., 2000). This means that enough amino acids have changed between 4.1N and 4.1B in 

the CTD to switch binding from AMPAR subunits to NMDAR subunits. Alternatively, 

the ~30% amino acid difference between 4.1B an 4.1N can simply abrogate binding of 

4.1B to AMPARs and other domains have acquired the ability to bind NMDARs directly 

or indirectly. 4.1B has at least three additional domains (U1, U2 and U3) that show 

significant sequence differences compared with other 4.1 proteins. These domains have 

no identified protein interaction or regulatory roles as yet. We hypothesize that these U 

domains might play a role in positively regulating the interaction of 4.1B with NMDARs 

but not with AMPARs.  Future studies investigating the effects of 4.1B deletion 

constructs will provide insight into these possibilities 

 

4. METHODS 

Expression Vectors and Constructs 

Human 4.1B cDNA was obtained from Irene Newsham (University of Texas, 

Houston, TX). Deletions of the FERM domain (∆FERM; amino acids 106-302) and the 

C-terminal domain (∆CTD; amino acids 894-1097) were performed by PCR. Full length 

and the deletion mutants were subcloned into pEGFP-N1 (Clontech, Mountain View, 

CA) and pCDNA3. To generate shRNA to mouse 4.1B, the following sequence of 4.1B 

was subcloned into the pSuper vector (Brummelkamp et al., 2002): 5′- 

CGTGACCGGCTTCGAATAA -3. For control shRNA, the following sequence was 

used: 5‟ – GATCTGAAGGCGCCTATAC – 3‟.   HA-SynCAM1 was obtained by PCR 
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from mouse cDNA using the following primers:     gccgaagcttatggcgagtgctgtgctgccg and 

tcgggaattcctagatgaagtactctttctttcttcgg.  An HA tag and SalI site were inserted using the 

megaprimer PCR technique: cttctccttcaatcactgtagcgtagtctgggacgtcgtatgggtagtcgactttag 

taaacagattctgtcc.  Deletion of the FERM binding domain (∆FERMb; amino acids 376-

389) was performed by megaprimer PCR:  ggccgctattttgccgccaaaggagccgatgac. The PDZ 

binding domain (∆PDZIIb; amino acids 415-418) was generated by PCR. The resulting 

HA-tagged constructs were transferred to pCDNA3.  4.1N-GFP was a gift from Richard 

Huganir (Johns Hopkins University, Baltimore, MD). GFP-NR2B was provided by Anne 

Stephenson (University College London, UK). Syntenin1-GFP was provided by Jeremy 

Henley (University of Bristol, UK). Myc-CASK was a gift from Ben Margolis 

(University of Michigan, Ann Arbor, MI) and GRIP1-GFP was obtained from Casper 

Hoogenraad (Erasmus Medical Center, Rotterdam, NL). GluR1-GFP has been described 

previously (Washbourne et al., 2002). 

 

COS7 Cell Culture and Transfection   

 COS7 cells (ATCC
® 

Manassas, VA) were plated at a density of 50,000 cells per 

ml onto poly-L-lysine (Sigma,
 
St. Louis, MO) coated glass coverslips and maintained in 

DMEM, 10%FCS, 25 units Penicillin and 25 µg streptomycin/ml.  24 hours later, or 

approximately at 60-70% confluency, cells were transiently transfected with 3.5 µg total 

DNA per well of a 12 well plate using lipofectamine 2000 (Invitrogen).  Transfection 

reagent was added to wells containing DMEM, 10% FCS without pen/strep and 

incubated for 4-5 hours at which time the media was replaced by fresh DMEM, 10%FCS 

and 2mM kynurenic acid.  Microsphere clustering is performed on live cells 28-30 hours 

later.    

 

Microsphere Preparation  

100µl of ProteinA coated microspheres (~1µM diameter; Bangs laboratory, Inc) 

were resuspended in 750 µl of protein A/G buffer (0.1 M TE and 0.15 M NaCl, pH 7.5) 

and then centrifuged at 4ºC, 10,000xg  for 5 minutes. The supernatant was discarded and 

microspheres were washed similarly two more times.  After the final wash, microspheres 

were resuspended in 50 µl protein A/G buffer and 50 µl COS7 maintenance media with 
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target IgG (10µg α-HA, rabbit polyclonal, Bethyl Laboratories Inc., Montgomery, TX). 

Microspheres were incubated with antibody solution for 1hr at 4ºC with gentle agitation 

and vortexing every 5-10 minutes.  After incubation microspheres, were washed three 

times in the same manner as before using protein A/G buffer.  

 

Microsphere Application and Surface Immunolabeling   

6-9 µl of prepared microsphere suspension was added to transfected COS7 cells 

in 1 ml of fresh media and plates were swirled gently to distribute microspheres.  

Microspheres were incubated with cells for 35-45 minutes at 37 ºC.  Live cells were then 

rinsed 2x gently with warmed 1xPBS, then fixed for 8 minutes in 1.5% PFA, 4% sucrose 

at 4ºC.  After fixation, coverslips were blocked with 10%BSA, 1% blocking reagent 

(Roche) for 30 minutes at room temperature.  Primary solution, antibodies against HA 

(anti-mouse IgG1, 1:1000, Covance, Emeryville, CA) and GFP (chicken polyclonal, 

1:1000, Chemicon-Millipore, Billerica, MA) in 5% BSA, 0.5% blocking reagent, was 

added for 45 minutes (to not more than 1 hour) at room temperature. Coverslips were 

washed and incubated in secondary antibodies for 35-40 minutes at room temperature 

(Alexa Fluor® 633 goat α-mouse IgG1 1:800, Alexa Fluor® 546 goat α-chicken IgG 

1:800 Molecular Probes  Eugene, OR).  A control stain on cells with only internal GFP 

(GFP-NR2B alone without NR1 co-transfection or a GFP tagged-effector) was always 

performed in parallel to the described experiments.  In the experiments where surface 

receptor accumulation was measured, the effectors were not GFP tagged.  Additionally, 

CAM - Effector colocalization experiments were conducted independent of CAM – 

Effect or - Receptor experiments.  

 

Hippocampal Cell Culture and Immunolabeling  

Medium density hippocampal cultures were prepared from embryonic day 19 

Sprague Dawley rat pups as described (Brewer et al., 1993), with minimal modifications. 

Briefly, neurons were plated in plating media (10% FCS, 20 mM dextrose, 25 units 

Penicillin and 25µg streptomycin in MEM (Invitrogen/GIBCO)) at a density of 40,000-

60,000
 
cells/ml on 12 mm coverslips coated with poly-L-lysine (Sigma,

 
St. Louis, MO) 

and incubated for 4-5 hours.  This media was changed for the remainder of culturing to a 
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maintenance medium (Neurobasal medium (Invitrogen, Carlsbad, CA), 1x B-27 

(Invitrogen), 0.5 mM  Glutamax-I (Invitrogen), 50 units Penicillin/ 50µg Streptomycin 

(Sigma) and 0 .07% beta-Mercaptoethanol).  Neurons were fed fresh maintenance media 

in half changes every three days in culture.  This protocol was slightly modified in the 

preparation of the hippocampal neurons for the electrophysiology where neurons where 

derived from P1 mice. Endogenous staining of protein 4.1B (goat polyclonal to 

EPB41L3/DAL-1, 1:500 Abcam Inc. Cambridge, MA), PSD-95 (mouse monoclonal 

IgG2A clone 28/43, 1:250, James Trimmer – UC Davis/NIMH NeuroMab Davis, CA) 

and SynapsinI (rabbit polyclonal 1:800, Chemicon-Milipore, Billerica, MA) were 

performed on hippocampal neurons from 4 to 12 d.i.v.  Cells were fixed 10 minutes in 

4% PFA + 4% sucrose at 4ºC and then 5 minutes in 100% MeOH at -20 ºC, permeablized 

in 0.25% Triton X-100 for 5 minutes at room temperature and blocked for 1hour in 

10%BSA+ 1% Blocking reagent (BR; Roche). Cells were incubated in primary solution 

(antibodies + 3% BSA+ 0.3% BR) for 3 hours at room temperature and then in secondary 

antibodies for 45 minutes at room temperature (Alexa fluor® 546 Goat anti-mouse 

IgG2A and 633 Goat anti-rabbit 1:600 Molecular Probes® Eugene, OR and Cy™ 2 

Donkey anti-Goat 1:600 Jackson Immuno Research, West Grove, PA). 

 

Surface Immunolabeling of GFP-NR2B in Hippocampal Cell Culture  

Hippocampal neuronal cultures were prepared as described previously, and then 

transfected at 7 d.i.v. with a 1:5 mixture of GFP-NR2B to untagged target plasmid: either 

control shRNA, 4.1BshRNA, 4.1B full length, 4.1B ΔFERMb or plasmid vector.  A total 

of 4-5µg of plasmid DNA was transfected using the Calcium Phosphate transfection kit, 

ProFection®  (Promega, Madison, WI ).  Neurons were incubated in precipitate for up to 

1 hour and then placed back into fresh media with pen/strep and allowed to express for 24 

hours.  To label surface GFP-NR2B, total  GFP-NR2B and presynaptic structures, 

transfected neurons were washed gently 2 times in fresh ACSF at room temperature and 

then fresh media without pen/strep plus anti-GFP antibody (rabbit polyclonal, 1:1000 

Chemicon-Millipore, Billerica, MA) was added for 15-20 minutes at 4ºC.  Cells were 

gently washed afterwards 3x in 4ºC PBS and then fixed with 4% PFA for 20 minutes at 

4ºC.  Fixed cells were treated with 0.25% tritonX-100 for 5 minutes at room temperature, 
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blocked in 10% BSA+1%  Roche Blocking medium for 1 hour at room temperature.   

Secondary for the surface labeled GFP was added for 30 minutes at room temperature 

(Alexa fluor® 546 Goat anti-rabbit).  After washing, primaries against GFP (chicken 

polyclonal, 1:1000, Chemicon-Millipore, Billerica, MA) and Synaptophysin (mouse 

monoclonal 1:1,500, SIGMA, Saint Louis, MO) were added for 1 hour  at room 

temperature.   Cells were washed again and then secondary against the primaries for total 

GFP and synaptophysin was applied for 45 minutes at room temperature (Alexa fluor® 

488 Goat anti-chick and Goat anti-mouse IgG1,1:600 Molecular Probes® Eugene, OR).  

To confirm that we label surface GFP specifically in each experiment, we ensured that 

GFP only, and/ or GFP-4.1BFL controls did not have significant immune label in the 546 

channel.  Further all puncta that had signal in the 546 channel also contained 488 signal, 

confirming that we label both surface and total GFP.   

 

All studies were conducted with approved protocols from both the University of 

Oregon Animal Care and Use Committee and the Georgetown University Animal Care 

and Use Committee, in compliance with NIH guidelines for the care and use of 

experimental animals.  

 

Imaging, Quantification and Statistical Analysis  

COS7 cells were imaged on an inverted Nikon TU-2000 microscope with an EZ-

C1 confocal system (Nikon) with a 100x oil-immersion objective (1.45 NA).  Cells were 

imaged blind to specific co-transfection conditions. Cells were chosen for analysis if 

there were clear examples of microspheres with accumulations of the target CAM at site 

of contact (an average of a 110 ± 11.8% increase in intensity of HA-NLG1 of HA-

SynCAM1 was measured at microspheres relative to background levels in the cell where 

visible accumulation was scored). 14-15 microspheres from 14-15 individual cells were 

chosen from three independent experiments in each condition. All channels were scanned 

sequentially and in the same plane of focus as apparent CAM aggregation. Images 

obtained in a given channel were obtained at constant laser intensities and the gain 

adjusted to just below intensity saturation.  Images were converted to bitmaps and 

average intensity was analyzed surrounding an individual microsphere in each channel 
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using Image Pro Plus
®
 software.  Briefly, average intensity increase at a given 

microsphere was calculated as follows: (Imicrosphere – Ibackground) / Ibackground * 100% = “% 

increase in intensity at microsphere” (Fig.1B).   Imicrosphere is the average intensity in an 

annulus immediately surrounding the microsphere that is equal in width to the radius of 

the microsphere (annulus 1 in Fig.1B).  Ibackground is the average intensity in an annulus 

surrounding the first around the microsphere (annulus 2 in Fig.1B) plus the average 

intensity in the area of the microsphere itself. The data are expressed in percent intensity 

above background, and given our conservative estimates of what is signal we are more 

likely to have underestimated total protein accumulation rather than overestimated.  We 

did not assume a normal distribution of our CAMRA data and given the sample size in 

each experimental condition, we applied the non-parametric Mann Whitney test in all 

comparisons.  Bonnferroni‟s correction was applied to correct for multiple comparisons 

in the NMDAR and effector CAMRA experiments. Ten planned comparisons were made 

among the control and treatment groups.  Given this number of multiple comparisons, 

comparison-level significance was tested at an alpha level of 0.0051 for an experimental-

level Type I error rate of 0.05. Significance is depicted in graphs as asterisks: * is p < 

0.05, ** is p < 0.01 and *** is p < 0.005.  The non-parametric Mann Whitney-U was also 

used to test for significance in the comparisons of neuronal expression data unless 

otherwise noted.  All data are expressed as mean ± standard error of the mean. 

  

Immunoprecipitation and Western Blotting  

COS7 cells were transfected with the plasmids of interest and cultured for 24 

hours.  Cells were lysed in 250µl of lysis buffer (150mM NaCl, 50mM Tris-HCl, 0.5mM 

EDTA, 0.2% Triton X-100 and protease inhibitor tablets, pH7.4) for 45 minutes at 4ºC 

with agitation.  This mixture was centrifuged at 14,000 x g for 5 minutes at 4ºC and the 

supernatant collected. 20 µl of the supernatant was used as the input sample. 115 µl was 

incubated with 3 µg of anti-HA (mouse monoclonal; Bethyl Laboratories) overnight at 

4ºC with rotation, and 115µl was incubated without antibody.  The following day, 50 µl 

of protein-A-sepharose beads in lysis buffer was added to both samples and incubated for 

2 hours at 4ºC with rotation.  Protein-A-sepharose beads were collected by centrifugation 

and washed 3 times in lysis buffer.  Bound proteins were eluted with 100 µl Laemmli 
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sample buffer, boiled, separated on an SDS-PAGE gel, transferred to nitrocellulose 

membranes and probed with either anti -HA rabbit (1:1000; Bethyl Laboratories) or anti -

GFP rabbit (1:1000; Invitrogen). 

 

CGC and HEK293 Cell Co-culture and Transfection  

Primary cultures of mouse cerebellar granule cells (CGC) were prepared from 

postnatal day 5-7 (P5-7) from C57Bl6 mice. Mouse pups were sacrificed by decapitation 

in agreement with the guidelines of the Georgetown University Animal Care and Use 

Committee. The cerebella were dissociated as described in (Gallo et al., 1987). Cells 

were dispersed with trypsin (0.25 mg/ml, Sigma, St. Louis, MO) and plated at a density 

of 1.1x10
6
 cells/ml on glass coverslips (Fisher Scientific, Pittsburgh, PA) coated with 

poly-L-lysine (10 µg/ml; Sigma) in 35 mm Nunc dishes. The cells were cultured in basal 

Eagle's medium supplemented with 10% bovine calf serum, 2 mM glutamine, and 100 

µg/ml gentamycin (all from Invitrogen Corporation Carlsbad, CA), and maintained at 

37
o
C in 5% CO2. The final concentration of KCl in the culture medium was adjusted to 

25 mM (high K+). To achieve functional synapse formation, at 5 d.i.v. the medium was 

replaced with the low (5 mM) potassium medium (MEM supplemented with 5 mg/ml 

glucose, 0.1 mg/ml transferrin, 0.025 mg/ml insulin, 2 mM glutamine, 20 µg/ml 

gentamicin, Invitrogen, and cytosine arabinofuranoside 10 µM, Sigma) as previously 

described (Chen et al., 2000; Prybylowski et al., 2002). Human embryonic kidney 293 

cells (HEK293; American Type Culture Collection, Rockville MD, ATCC No. 

CRL1573) were grown in Minimal Essential Medium (Gibco BRL, Gaithersburg, MD), 

supplemented with 10% fetal bovine serum, 100 units /ml penicillin (Gibco BRL), and 

100 units/ml streptomycin (Gibco BRL), in a 5% CO2 incubator. Exponentially growing 

cells were dispersed with trypsin, seeded at 2x10
 5

 cells/35-mm dish in 1.5 ml of culture 

medium and plated on 12 mm glass cover slips. HEK293 cells after transfection were 

dispersed with trypsin and plated on CGC cultures at a density of 1x10
 4

 cells/12-mm 

coverslip. HEK293 cells were transfected as described in (Vicini et al., 1998) using a 

modification of the calcium phosphate precipitation technique. Briefly, mixed plasmids 

(3 µg total) were added to the dish containing 1.5 ml MEM culture medium for 12-16  
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hours at 37oC under 5% CO2. Greater than 80% of cells expressed all the plasmids 

transfected as assessed independently with pEGFP, pDsRED2 and pECFP plasmids (not 

shown; Clontech). 

 

HEK293 Cell/Cerebellar Co-culture for Synaptic Labeling 

Human embryonic kidney 293 cells were grown in Minimal Essential Medium 

(Gibco), supplemented with 10% fetal bovine serum in a 5% CO2 incubator. 

Exponentially growing cells were dispersed with trypsin, seeded at 2 x 105 cells/35-mm 

dish in 1.5 ml of culture medium. HEK293 cells were then transfected within 24hrs after 

splitting as described Fu et al. (2003). Briefly, mixed plasmids (3 µg total) were added to 

the dish containing 1.5 ml MEM culture medium for 12–16 h at 37°C. HEK293 cells 

after transfection were dispersed and plated on CGCs cultures (DIV5) at a density of 2 

x10
4
 cells/12-mm coverslip. 2 days later, live cultured HEK293-neuron co-culture was 

fixed with 4% paraformaldehyde, 4% sucrose in PBS for 10 min, and washed three times 

in PBS.  Fixed neurons were permeabilized with 0.25% Triton X-100/PBS for 5 min, 

washed several times with PBS (5min per wash), and incubated in 10% bovine serum 

albumin in PBS for 1 hr to block non-specific staining. Cells were then incubated 

overnight (4ºC) with the following primary antibodies: rabbit anti-synapsin1 antibody 

(1:1000; Chemicon, Temecula, CA), mouse anti-PSD-95 antibidy (1:100, abcam) and 

mouse anti-gephyrin (1:1000; mAb7α; Synaptic Systems). After washing with PBS, cells 

were incubated with goat anti-rabbit indocarbocyanine (Cy3)-conjugated secondary 

antibodies (1:1000; Jackson ImmunoResearch, West Grove, PA) and goat anti-mouse 

Alexa Fluor 647 –conjugated secondary antibodies for 1hr at RT. Prepared cells were 

imaged on an inverted Nikon TU-2000 microscope with an EZ-C1 confocal system 

(Nikon) with a 100x oil-immersion objective (1.45 NA).  Cells were imaged blind to 

specific co-transfection conditions and specific criteria for chosen cells were set as per 

(Biederer and Scheiffele, 2007).  Breifly, the measure taken and compared was percent of 

HEK293 cell surface area covered by synapsin I label where PSD95 and Gephryin signal 

were absent.   Each channel was scanned sequentially at constant laser intensities and 

gain was set just below saturation.  Images were processed and analyzed using Image Pro 

Plus
®
 software. Briefly, images were threshholded to subtract background in a 



 

42 

 

 

semiautomatic fashion to obtain average intensity and area of labeled regions.  Data is 

expressed as mean ± s.e.m. and a two-tailed unpaired Student's t test was employed to 

determine significant differences between target comparisons (* = p < 0.05). 

 

Electrophysiology  

 The recording chamber was continuously perfused at 5 ml/min with ECS composed 

of (in mM): NaCl (145), KCl (5), MgCl2 (1), CaCl2 (1), HEPES (5), glucose (5), sucrose 

(25), phenol red (0.25mg/l) and D-serine (5 µM) (all from Sigma) with pH adjusted to 7.4 

with NaOH. All experiments were performed at room temperature (24-26°C). The 

recording solution contained (in mM): potassium gluconate (145), HEPES (10), ATP.Mg 

(5), GTP.Na (0.2), and BAPTA (10), adjusted to pH 7.2 with KOH.  Electrodes were pulled 

in two stages on a vertical pipette puller from borosilicate glass capillaries (Wiretrol II, 

Drummond, Broomall, PA).  Pipette resistance ranged from 5 to 7 MΩ. NMDA-mEPSCs 

were pharmacologically isolated using bicuculline methiobromide (BMR, 50 µM), TTX (0.5 

µM) and 2,3-Dihydro-6-nitro- 1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide 

(NBQX, 5 µM) (all from Sigma) in a Mg
2+

-free solution, while AMPA-mEPSCs were 

recorded in presence of BMR (50 µM) and TTX (0.5 µM) in regular extracellular solution 

(ECS) with Mg
2+

. Solutions and drugs were delivered locally with a Y-tube device (Murase 

et al., 1989). Whole-cell voltage-clamp recordings from neurons and HEK293 cells were 

made at –60 mV and performed at room temperature using an Axopatch 200 or an 

Axopatch-1D amplifier (Axon Instruments, Union City, CA). A transient current response 

to a hyperpolarizing 10 mV pulse was used to assess resistance and capacitance throughout 

the recordings. Currents were filtered at 2 kHz with a low-pass Bessel filter (Frequency 

Devices, Haverhill, MA), digitized at 5-10 kHz using an IBM-compatible microcomputer 

equipped with Digidata 1322A data acquisition board and pCLAMP9 software (both from 

Molecular Device Co., Sunnyvale CA).  

Off-line data analysis, curve fitting, and figure preparation were performed with 

Clampfit 9 (Molecular Device) software. NMDA-mEPSCs' decay was fit using Clampfit 9 

(Molecular Device) from averages of at least 20 events selected with Minianalysis 

(Synaptosoft Inc, Fort Lee).  The decay phase of currents was fit using a simplex algorithm 

for least squares exponential fitting routine with a double exponential equation of the form 
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I(t) = If X exp(-t/τf) + Is X exp(-t/τs), where Ix is the peak current amplitude of a decay 

component and τx is the corresponding decay time constant. To allow for easier 

comparison of decay times between experimental conditions, the two decay time 

components were combined into a weighted time constant τw = [If/(If+Is)]  τf + [Is /(If+Is)] 

 τs. All data are expressed as mean ± standard error of the mean, P-values represent the 

results of analysis of variance (ANOVA) for multiple comparisons or two-tailed unpaired 

Student's t tests.  



 

44 

 

 

CHAPTER III 

THE INTRACELLULAR REGION OF NL1 REGULATES BEHAVIORAL AND 

SYNAPTIC MATURATION 

The work described in this chapter was submitted to Neuron and contains co-

authored material.  I am first author as I worked in close collaboration with P. 

Washbourne to develop the main hypotheses addressed in this work, and analyze and 

interpret the data.  I also composed the manuscript with advisement from P. Washbourne, 

and with vital editing provided by J. Constable, R. Arias, R. Chebac, M. Kyweriga and 

M. Wehr. R. Arias was instrumental in the organization, collection and analysis of 

behavioral data.  R. Chebac was vital in the organization and collection of the 

immunostaining staining data. M. Kyweriga under advisement from M. Wehr gathered 

the data on sensory-evoked responses in auditory cortex, initially screened mouse lines in 

basic behavioral tests and aided in the development of our behavioral analysis methods. 

L. Davis aided significantly in the development of necessary analytical methods. 

 

1. INTRODUCTION 

 While the development of neural systems and behavior certainly requires an 

appropriate balance between synaptic stabilization and flexibility, it is unclear how such 

an equilibrium may be achieved.  It is possible that certain molecular factors specifically 

facilitate, or permit,  potentiation and stabilization of glutamatergic synapses at precise 

stages of development, while other factors may serve to limit, or prevent, forms of 

plasticity that would potentiate a synaptic connection and preclude it from serving a 

future role in encapsulating experience.  Such mechanisms could mark specific subsets of 

synapses for modification during developmental periods characterized by heightened 

rates of specification and stabilization, and preserve a second immature population that 

retained a more dynamic state such as that more prevalent during early development. 

Studies of the expression and function of the NMDA receptor subunits NR2A, NR2B and 

NR3A, reveal that such mechanisms may exist (Carmignoto and Vicini, 1992; Crair, 

1999; Crair and Malenka, 1995; Perez-Otano and Ehlers, 2004; Roberts et al., 2009; 

Sheng et al., 1994).  
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A clear picture of the regulatory molecules that underlie immature synaptic states 

versus more mature states does not exist.  For example, higher levels of the NMDAR 

subunit NR2B and the scaffolding protein SAP102 exist earlier in mammalian 

development and are thought to underlie the dynamic nature of newly formed synaptic 

structures, or rather, immature synaptic structures (Washbourne et al., 2004b; Zheng et 

al., 2010; Zheng et al., 2011).  Conversely, levels of the NMDAR subunit NR2A and the 

scaffolding molecules SAP97 and Shank increase as a synapse matures and higher levels 

of these proteins are associated with the larger, more stable synaptic structures that are 

found in mature adult mammals (Fu et al., 2005; Petralia et al., 2005; Sala et al., 2001).  

While the eventual increase in NR2A at excitatory synapses appears to be activity 

dependent, it remains unclear which molecules expressed at excitatory synapses are 

necessary to orchestrate this important developmental progression in vivo. It is also 

unknown how such developmental switches in protein localization at excitatory synapses 

impact the maturation of complex forms of behavior such as learning and memory. 

Neuroligin1 (NL1) is a well characterized synaptic cell adhesion molecule that plays 

a prominent role in activity-dependent synaptic maturation in vitro (Chubykin et al., 

2007; Wittenmayer et al., 2009).  Moreover, manipulations of NL1 function in vivo also 

suggest that it is required to stabilize memory in adult animals (Jung et al., 2010; Kim et 

al., 2008), while ubiquitous overexpression causes a deficit in learning and an increase in 

the preponderance of highly potentiated synapses that are limited in plasticity (Dahlhaus 

et al., 2010). Previous in vitro studies of the intracellular signaling capabilities of NL1 

suggest that it may regulate such crucial processes via its PDZ and WW binding domains 

(Barrow et al., 2009; Chih et al., 2005; Iida et al., 2004; Meyer et al., 2004; Tallafuss et 

al., 2010), while others suggest that synaptic targeting and its enhancement of glutamate 

receptor mediated synaptic transmission may be independent of this intracellular 

signaling (Dresbach et al., 2004; Prange et al., 2004; Shipman et al., 2011). This implies 

that NL1 may exact its effect on the maturational status and plasticity of glutamatergic 

synapses via proteins capable of interacting with these domains, but its specific role at the 

synapse in vivo is still a matter of debate.  Importantly, NL1, as well as related family 

members such as NL3, and scaffolding molecules purported to interact with NL1 via the 

C-terminus, have been implicated in developmental disorders such as autism (Bourgeron, 
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2009; Durand et al., 2007; Glessner et al., 2009; Jamain et al., 2003; Pampanos et al., 

2009).  One hallmark of such disorders is an abnormality in the structure and 

modifiability of dendritic spines, the cellular site of the majority of glutamatergic 

synapses (Penzes et al., 2011). This suggests that resolving the mechanisms by which 

NL1 may regulate the relative stability of mature synapses in vivo may facilitate our 

ability to understand the proper development of important behaviors. 

Here, we compared the behavioral and synaptic phenotypes of mice overexpressing 

the full length version of NL1 (HA-NL1FL) versus a version missing the terminal 55 

amino acids (HA-NL1∆C) in order to determine which molecular factors mediated NL1‟s 

influence on the state of glutamatergic synapses in vivo.  We observed that full length 

NL1 overexpressing animals showed deficits in learning and increased perseverance in 

reversal tasks, while mice expressing NL1 with the intracellular deletion were more 

flexible in behavior, similar to juvenile animals. Furthermore, we found key changes in 

spine morphology and synaptic protein content that were consistent with the idea that we 

induced the large scale maturation of synapses in the full length NL1 animals, while 

delaying key developmental milestones of synapse maturation in animals with the 

truncated form.  Comparison of the two lines of mice illuminate the significance of NL1 

C-terminus signaling in vivo, and point towards a richer understanding of the key 

molecular targets that potentially gate the maturation of glutamatergic synapses and 

complex behavior. 

 

2. RESULTS 

Generation of HA-NL1FL and HA-NL1∆C transgenic mice 

The intracellular C-terminus of NL1 contains both the PDZ binding and WW 

binding motifs which are thought to underlie important aspects of glutamatergic 

postsynaptic development. To understand the contribution of these signaling domains to 

behavioral and synaptic maturation within known mnemonic neural systems in vivo, we 

employed a genetic system to target our manipulations to the forebrain. We generated 

mice that express the coding region for either Neuroligin1 full length (NL1FL) or 

Neuroligin1 missing the terminal 55 amino acids (NL1∆C) under the tetO promoter that 

is induced by the tetracycline transactivator protein (tTA).  Both versions of NL1 were 
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tagged with the hemaglutinin (HA) peptide sequence on the N- terminus to facilitate 

localization and quantification of transgene expression in situ (HA-NL1FL and HA- 

NL1∆C, Figure 1A).   After generation of the founder groups, mice were backcrossed to 

the C57BL /6J strain of mice prior to being crossed to mice that expressed tTA driven by 

the CaMKIIα promoter (Mayford et al., 1996). Double transgenic progeny from these 

crosses were obtained at the expected Mendelian frequencies in both cases (HA-NL1FL 

and HA-NL1∆C), and were subsequently examined for basic health, behavior, fertility, 

morbidity and mortality rates (Moy et al., 2006; Moy et al., 2004) .  No overt changes in 

health, nor gross behavior were found (data not shown).  

To effectively compare and contrast the behavioral and synaptic profiles between 

the two lines of mice, we needed to confirm that the expression patterns of the transgenes 

in both lines of animals were similar.  We characterized the expression patterns by 

performing immunocytochemistry on brain sections, and found comparable expression 

levels of the transgenes in similar cell types within both transgenic lines.  

Immunolabeling for the HA tag demonstrated that in both lines of animals, the transgenes 

were expressed in a subset of the expected forebrain nuclei and neural circuits based on 

employing the CaMKIIα-tTA driver line. This included the amygdala (Amg) and specific 

cell populations within the neocortex such as the retrosplenial granular (RSG) formation 

and layers II/ III & V of the somatosensory cortex (SS1) and other primary sensory areas, 

though notably, we did not observe high levels in visual cortex  (Figure 1B). Neither 

transgene was detected in the striatum (data not shown). Importantly, HA expression in 

both lines of mice was observed within the hippocampal circuit, the system primarily 

associated with the explicit forms of learning and memory behaviors previously shown to 

rely on NL1 function (Blundell et al., 2010; Dahlhaus et al., 2010) (Figure 1B, red box).  

HA expression was also primarily confined to cell populations within CA1, while no 

significant levels of HA were observed in cell bodies within region CA3 or the dentate 

gyrus (Figure 1C & 1D).  Accordingly, subcellular localization of HA, dendritic 

localization, within the hippocampal circuit was restricted to the stratum oriens (SO), 

stratum radiatum (SR) and stratum lacunosum moleculare (SLM) of CA1.  

Surprisingly, we noticed an approximately 2 fold increase in levels of HA-NL1FL 

and HA-NL1∆C in the SLM relative to the SR (SLM:SR intensity ratio 2.1 ± 0.3 vs. 2.5 



 

48 

 

 

± 0.4, HA-NL1FL and HA-NL1∆C respectively, n.s., Figure 1B lower right,1C & 1D).   

This relative increase in HA levels in the SLM vs. the SR, does not parallel the relative 

intensity levels of PSD95 between SLM and SR (SLM:SR ratio of PSD95: 0.75 ± 0.04 

vs. 0.80 ± 0.04 respectively, n.s. Figure 1C & 1D). It is unlikely that this difference in 

localization is due to differences in trafficking between NL1FL and NL1 missing the 

PDZ and WW domains as both of our lines show these same localization effects. Also, 

we observed that both transgenes, when imaged at higher magnification in the SLM and 

SR, primarily localized to sites positive for PSD95 immunolabeling and were far less 

frequently observed to co-localize with GABA-ARα1 (Figure 1E & 1F). This is 

consistent with previous reports that NL1 trafficking to synapses is independent of C-

terminus signaling (Dresbach et al., 2004; Prange et al., 2004).  

Finally, labeling of the HA-tag together with cell nuclei (DAPI) in hippocampal 

sections showed that approximately 35.2% ± 2.3% of CA1 cells expressed the HA-

NL1∆C within the cell body at higher levels than surrounding cells.  We did not see this 

effect in the HA-NL1FL mice (Figure 1C & 1D). However, overall cell densities in the 

CA1 regions of both lines were not different from each other.  This suggests that this 

difference did not appear to enhance non-specific effects such as cell death. Therefore, 

the expression patterns present in the two lines of mice are comparable and allowed for a 

straightforward comparison of behavioral and synaptic profiles.  
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Figure 1. Expression of HA-NL1FL and HA-NL1∆C in transgenic mice. (A) Schematic 

of the protein structure of HA-NL1FL and HA-NL1∆C encoded by the constructs that 

were used to generate transgenic mice. Abbreviations: Hemaglutinin epitope tag (HA), 

transmembrane domain (TM), purported gephyrin binding motif (GB), WW binding 
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domain (WW), PDZ type II binding domain (PDZ). (B) Immuno-labeling of HA shows 

localization patterns of the HA-NL1 constructs. Top panel: retrosplenial angular gyrus 

(RSG), layers II/III and V of somatosensory cortex (SS1) and the hippocampus (Hip), 

arrow heads, scale bar equals 2 mm. Lower left panel: Expression in the amygdala 

(Amg), arrow head, scale bar equals 300 µm. Lower right panel: Expression in specific 

strata of the hippocampus, arrow heads, stratum oriens (SO), stratum radiatum (SR), 

stratum lacunosum moleculare (SLM). Scale bar equals 200µm. Dark areas reflect 

positive labeling.  Sections analyzed were between -1.58 mm and -2.30 mm of bregma. 

(C & D) Immunolabeling of PSD95 (green), DAPI (blue) and HA epitope tag (red) for 

HA-NL1FL (C) and HA-NL1∆C (D), scale bar equals 200µm.  Quantification of both 

HA and PSD95 intensity levels between SLM and SR. All intensities normalized to SR 

levels.  (E & F) Higher magnification and quantification of co-localization between HA 

and markers of excitatory (PSD95) vs. inhibitory (GABA-ARα1) synaptic markers, (E) 

HA-NL1FL mice and (F) HA-NL1∆C mice. See Supplemental Figure 1 for discussion 

of imaging processing. Differences in co-localization patterns in all cases were not 

significant. Error bars represent SEM, significance determined by Student‟s t-test, n = 3 

pairs and * = p < 0.05, ** = p < 0.01 and *** = p < 0.001. 

 

Manipulation of NL1 intracellular signaling distinctly alters behavioral 

performance in learning and memory tasks 

We reasoned that distinct behavioral differences during complex behavior 

between these two lines would argue for a significant role for NL1 intracellular signaling 

domains at synapses. Given that global manipulations of NL1 function have been found 

previously to impact explicit learning and memory behaviors (Blundell et al., 2010; 

Dahlhaus et al., 2010), we first characterized the behavioral performance of our 

transgenic lines employing the Morris water maze.  Using this task, we gauged learning 

and memory behaviors in four separate phases. First, a two-day visually cued learning 

acquisition phase assessed gross changes in sensory processing and abilities to grasp the 

task goals. Second, acquisition training to find the location of a hidden platform using 

visual cues in the surrounding environment was applied to measure learning rates over 

many trials. Third, we administered a probe trial where the platform was removed and the 

searching pattern of the mice was analyzed over a 60 second time window to assess recall 

behavior.  Finally, reversal training to find a new location measured flexibility by 

determining how quickly searching behavior would adjust when the location of the 

platform was changed.   
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HA-NL1FL mice took longer than littermate controls to reach the location of a 

hidden platform in the Morris water maze over six days of training (RMANOVA, main 

effect of genotype: F(1,17) = 63.2, p < 0.001, and main effect of genotype x day 

interaction: F(5,107) = 2.78, p < 0.05, n = 10 pairs), while visually cued performances, were 

indistinguishable from control littermates (Figure 2A - 2A”).  Analysis of probe trial 

performance after acquisition training revealed a significant increase in the distance to 

first cross the former platform location in the HA-NL1FL mice relative to controls (147.4 

± 29.3 cm vs. 79.3 ± 6.8 cm, respectively, p < 0.05, n = 10 pairs, student‟s t-test, Figure 

2B and 2B’). The HA-NL1FL mice also made fewer crosses over the former platform 

location (3.6 ± 0.4 vs. 5.7 ± 1.2 crosses, p < 0.05, student‟s t-test, n = 10 pairs). However, 

both groups similarly preferred searching within the target quadrant relative to the other 

quadrants (Figure 2B, 2B’’ and Supplemental Figure 1A). These results support the 

idea that learning and recall behaviors in this spatial task are impaired relative to controls 

in the absence of gross changes in visual processing and motor skills. 

In addition to the specific changes in learning and memory behavior as gauged by 

the first portion of water maze testing, HA-NL1FL mice also took longer to efficiently 

localize the reversed platform location than controls in the last phase of the water maze 

task (RMANOVA main effect of genotype: F(1,17) =  5.21, p < 0.025 and main effect of 

genotype x day interaction: F(5,107) =  2.51, p < 0.05, n = 10 pairs, Figure 2C-2C’’).  On 

day two of reversal training the HA-NL1FL mice made more crosses of the former 

platform location than controls (3.4 ± 0.5 vs.1.4 ± 0.4, respectively, p < 0.05, student‟s t-

test n = 10 pairs, Supplemental Figure 1B), while the controls spent less time in the 

quadrant that formerly contained the platform (13.7 ± 0.7 % vs. 39.2 ± 3.2 %, controls vs. 

HA-NL1FL mice respectively, p < 0.01, Supplemental Figure 1B).  Therefore, the 

overall behavioral profile of the HA-NL1FL mice in reversal training reflects an increase 

in perseverance for previously trained information and general lack in flexibility. These 

results suggest that in addition to learning and memory behavior, flexibility in these 

behaviors was also sensitive to overexpression of NL1. 

To understand whether there was a general deficit to acquire explicit information, 

we also examined learning and recall behavior in the object recognition task.  In this task, 

an animal is allowed to explore two identical objects over a single exposure period and is 
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then removed from the environment with a specific delay period while one of the objects 

is replaced with a novel one. Spending more time with the novel object when they are put 

back into the environment is interpreted as accurate learning and recall performance. We 

administered this task with two delay periods between exposures, 1 hour and 24 hours, to 

assess short term and long term recall respectively.  We observed a lack of preference for 

a novel object after a 1 hour delay between object exposures in the novel object task 

(49.9 ± 5.4% time with new object vs. 50%, n.s., Wilcoxon-signed rank test, n = 10 pairs, 

Supplemental Figure 1C). This result precluded testing for recall after a 24hr delay. 

These results strengthen the idea that the HA-NL1FL mice exhibit a distinct reduction in 

their ability to learn and recall explicit forms of information in the absence of a more 

general deficit in sensory processing.    

The behavioral profile observed in the HA-NL1FL mice sharply contrasted that 

observed in the HA-NL1∆C mice during water maze testing and object recognition. The 

HA-NL1∆C mice displayed no deficits in the acquisition training phase of the task 

(Figure 2D and 2D’). Surprisingly, we observed a significant difference in behavior 

during the visually cued portion of training. There was a significant decrease in the 

distance to reach the platform location by the fourth trial of visually cued training on the 

first day accounting for a significant decrease in latency to reach the cued target (309.4 ± 

81.3 cm vs. 539.0 ± 74.3 cm, HA-NL∆C mice vs. controls respectively, p < 0.05, 

Student‟s t-test, n = 10 pairs, Figure 2D’’; Average Latency: 29.9 ± 4.8 s vs. 42.4 ± 3.9 s, 

respectively, p < 0.05). Together, these results show that there were no deficits in strict 

measures of learning, but rather there may have been an advantage in learning the task 

goals during the visually cued trials.  During the probe trial, HA-NL1ΔC mice showed no 

difference in the distance they took to first cross the location of the former platform as 

compared to controls (Figure 2E and 2E’), nor any difference in the number of crosses 

of the former platform location (5.0 ± 0.5 vs. 4.1 ± 0.8, n.s.). Interestingly, the HA-

NL1∆C mice spent less time in the target quadrant than controls over the entire trial, 

though they still retained more of a preference for the target quadrant than would be 

predicted by chance (41.7 ± 4.0 % vs. 64.9 ± 7.3, HA-NL1∆C mice vs. controls 

respectively, p < 0.01, Figure 2E and 2E’’). These results suggest that they showed less 

persistence in searching the former location, but showed no significant deficits in strict 
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measures of recall during this phase of testing. During reversal training, HA-NL1∆C 

mice located the position of the new target faster than controls (main effect of genotype: 

F(1,19) = 11.56, p < 0.001, main effect genotype x day interaction: F(5,119) = 3.01, p < 

0.025, n = 10 pairs, Figure 2F) and more directly on the fourth trial ( 222.3 ± 36.6 cm vs. 

434.6 ± 82.4 cm, p < 0.05, n = 10 pairs, Student‟s t-test, Figure 2F’). We may therefore 

conclude that this group of animals is more flexible in this task.  

Investigation of recall behavior in the object recognition task confirmed that the 

HA-NL1∆C mice showed no learning difference over a short, 1 hour, delay as their 

novelty preference was similar to controls (Supplemental Figure 1C). However, we 

observed impairment for recall after a single exposure with a delay of 24 hours (Novelty 

preference: 49.9 ± 8.8% vs. 50%, p < 0.05, n = 10 pairs, Wilcoxon-signed rank test, 

Supplemental Figure 1D). This suggested that object recognition learning over the short 

term occurred similarly to controls in this task, but that the memory was less stable over 

24 hours with a single trial exposure.  Similar results were achieved in a spatial version of 

the object recognition task (data not shown), suggesting that the change in recall behavior 

generalized to multiple forms of explicit memory formation, but may not have been 

observed in the Morris water maze due to high repetition in training with short delays in a 

single day. 

Overall, examination of behavior in the Morris water maze suggests an absence of 

learning and recall deficits such as those observed in the NL1FL animals. Instead, we see 

evidence that they have improved performance in the visually cued phase of training, and 

that they show enhanced flexibility as evidenced by less persistence in searching the 

location that formerly contained the platform during the probe trial, and locating the new 

target location faster than controls during reversal. These results suggest that NL1‟s 

intracellular signaling plays a significant role in the execution of learning and memory 

behaviors.  

Due to the potential role of the C-terminus of NL1 in the maturation of synapses, 

we hypothesized that the behavioral enhancement in flexibility might be the result of 

retention of juvenile behavioral traits.  To address this idea, we had to first characterize 

juvenile performance in C57BL/6J mice in the Morris water maze.  One month old  mice 

were able to perform the task and showed no significant difference in their learning 
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acquisition curve as compared to 3 month old adult mice (Figure 2G and 2G’).  Similar 

to the HA-NL1ΔC mice, we found a significant decrease in the distance to reach the 

visually cued platform on the fourth trial of training (243.9 ± 29.7 cm vs. 99.8 ± 68.7 cm, 

juveniles vs. adults, respectively, p < 0.05, n = 9 pairs, Student‟s t-test, Figure 2G’’). 

During the probe trial, distance to first cross the former target location as well as the 

number of crosses made over 60 seconds (4.3 ± 0.7 vs. 5.0 ± 0.6, n.s.), were not different 

from adults (Figure 2H and 2H’).  Juveniles and mature adults spent more time in the 

target quadrant than would be expected by chance, but differed in their degree of 

preference (43.9 ± 2.9% vs. 54.9 ± 3.3%, respectively, p < 0.05, Figure 2H and 2H’’). 

Finally, during reversal training, adults took longer to find this novel location than the 

juveniles (Figure 2I) and they were less direct than juveniles (537.4 ± 102.5 cm vs. 280.1 

± 40.6 cm, p < 0.05, n = 10, Student‟s t-test, Figure 2I’). The juveniles also showed a 

lack of persistence in searching the former target area in the fourth trial of the first day of 

reversal training as compared to the adults (former platform location crosses: 1.49 ± 0.02 

vs. 3.43 ± 1.30, respectively, p < 0.05).  It is important to note that we observed such 

changes in flexibility in the absence of changes in direct measures of recall such as path 

length to platform location, similar to the observations we made for NL1∆C mice.  Thus, 

the characteristics of the behavioral profile of juvenile mice in the Morris water maze are 

decidedly similar to those of the HA-NL1∆C animals, suggesting that expression of the 

NL1 deletion is not only distinct from full length expression, but also maintains learning 

and memory related behavior in a more juvenile state.   
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Figure 2. Manipulations of NL1 intracellular signaling distinctly alters behavioral 

performance in learning and memory behaviors. (A, D & G) Mean latency in seconds (s) 

of transgenic or juvenile mice (red) and their controls (black) during the acquisition phase 

of training to reach a hidden platform location. A difference in latency was only detected 

for the HA-NL1FL mice (p < 0.001, n = 10). Days of training labeled A1 through A6. 

(A’, D’ & G’) Differences in distance measures were consistent with differences found 

from latency measures. Mean path length in centimeters (cm) to reach the hidden 

platform on the first trial of day 3 (A3) were different between only the HA-NL1FL mice 

and their controls (p < 0.05, Student‟s t-test). (A’’, D’’ & G’’) Mean path lengths to 

reach visually cued platform on the fourth trial of the first day (V1) were different 

between both the HA-NL1∆C mice and their controls (p < 0.05, Student‟s t-test, n = 10), 

and the juveniles vs. adults (p < 0.01, Student‟s t-test, n = 9). (B, E & H) Exemplary 

search path of an HA-NL1FL, HA-NL1∆C and juvenile mouse, respectively, during the 

probe trial. White box indicates former location of the platform and white lines divide the 

pool into quadrants analyzed. (B’, E’ & H’) Mean path length to first cross the target was 

different between groups for only the HA-NL1FL mice (p < 0.05, Student‟s t-test). (B’’, 

E’’ & H’’) Total time in the target quadrant (TQ) was similar to controls for the HA-

NL1FL mice but different for both the HA-NL1∆C and juvenile mice (p < 0.01 and p < 

0.05, respectively), OQ: opposite quadrant. (C, F & I) Mean latencies (s) to find a new 

platform location, days of training are labeled as R1 through R7.  Reversal training 

performance was different for all groups, with HA-NL1FL mice taking more time over 

days to reach the new target location (p < 0.001), while the HA-NL1∆C and juvenile 

mice found the new location faster on the first day of training (p < 0.05 and p < 0.05 

respectively). (C’, F’ & I’) Mean path lengths to the new target on the fourth training 

trial of day 1 (R1) were similar between the HA-NL1FL mice and their controls, but 
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different for the HA-NL1∆C and juvenile mice relative to their controls (p < 0.05 and p < 

0.05). (C’’, F’’ & I’’) Path length to new target was longer between only the HA-NL1FL 

mice and their controls during the first training trial of the second day (R2, p < 0.01, 

Student‟s t-test). See Supplemental Figure 2 for additional behavioral measures and 

control data. Error bars equal SEM, significance determined with RMANOVA with 

Tukey‟s post hoc, n = 10 pairs unless otherwise noted, * = p < 0.05, ** = p < 0.01 and 

*** = p < 0.001. 

 

 

NL1 intracellular signaling regulates morphological characteristics of spines and 

synapses in the SLM 

Previous in vivo studies of NL1 function suggest that this gene facilitates the 

maturation of excitatory synapses (Dahlhaus et al., 2010). Therefore, we hypothesized 

that the behavior  observed in our mice may have been driven by a change in the relative 

proportion of mature to immature synapses.  To determine whether we could identify the 

predicted shifts in the synaptic population, we measured both spine morphology and the 

presence of mature excitatory and inhibitory synaptic markers in the hippocampus of both 

HA-NL1FL and HA-NL∆C mice.  Given the expression pattern of our transgenes, we 

were afforded the opportunity to examine how such alterations may have been specific to 

targeted layers within the hippocampus (Figure 1C and 1D).   We labeled CA1 neurons 

in the hippocampus with DiI and imaged dendrites and spines from the SLM and SR 

target layers at high magnification. In HA-NL1FL mice, there is a greater than 2 fold 

increase in the average area of spine heads in the SLM (220.4 ± 25.0% vs. 100 ± 8.3%, 

respectively, p < 0.01, n = 36, Student‟s t-test), but no significant change in density 

(Figure 3A). Interestingly, we did not see significant changes in spine head area (100 ± 

9.9% vs.119.8 ± 8.2%, n.s.) nor density (100 ± 4.1% vs.110.0 ± 8.2%, n.s.) in the SR of 

HA-NL1FL animals. This is consistent with the idea that the region with the highest level 

of transgene expression was the most impacted.  When spine parameters were measured 

and compared in HA-NL1∆C animals relative to their controls, we found a significant 

21% increase in the density of spines in SLM (100 ± 10.0% vs. 121.0 ± 6.2%), and a 

trend toward a decrease in spine head area (100 ± 8.5% vs. 85.9 ± 14.1%, p = 0.08, n = 

36, Student‟s t-test, Figure 3B). No significant difference in density (100 ± 8.7% 

vs.114.1 ± 4.9%, n.s.) nor spine head area (100 ± 16.8% vs. 115.1 ± 10.9%, n.s.) were 
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found in the SR. Given that increases in spine head size parallel increases in maturation 

and synaptic potentiation with experience-dependent remodeling (Kasai et al., 2010a; 

Kasai et al., 2010b; Wilbrecht et al., 2010), it is noteworthy that we see a significant shift 

towards an increase in the size of spine heads in the HA-NL1FL mice.  Importantly, no 

such change was brought about by HA-NL1∆C, but rather we observed an increase in the 

number of spines and a decrease in their size relative to controls specifically in the SLM, 

suggesting a retention of immature spine characteristics in this region. 

  As another measure to characterize the maturity of synapses as a function of 

transgene expression, we quantified the area, intensity and density of Synapsin I puncta, a 

marker of mature presynaptic terminals, and PSD95-positive puncta, a marker of mature 

postsynaptic densities, in the SLM.  In HA-NL1FL mice, we found significant changes 

consistent with an increase in the prevalence of mature synaptic structures in SLM.  The 

average area and intensity of Synapsin I puncta was increased relative to littermate 

controls (area: 158.5 ± 5.4 % vs. 100 ± 11.5 %, p < 0.01, Figure 3C, intensity: 130.5 ± 

9.7 % vs. 100 ± 5.4 %, p < 0.05), while the average area of PSD95 puncta was enhanced 

without significant changes in intensity (area: 173.2 ± 15.0 % vs. 100 ± 16.1 %, p < 0.01, 

Figure 3C, intensity: 111.2 ± 4.7 % vs. 100 ± 12.6 %, n.s.). These changes are consistent 

with an increase in the proportion of mature synaptic structures present, however, we 

failed to observe a significant increase in the frequency of co-localization between 

PSD95 and Synapsin I (123.5 ± 9.8 % vs. 100 ± 13.5 %, n.s.). This corroborates the idea 

that HA-NLFL overexpression in this line altered the state of the synapses present, but 

that we could not detect a significant increase in synapse number in the SLM.    

Remarkably, we observed distinct changes in Synapsin I and PSD95 labeling in 

the HA-NL1∆C mice that were consistent with the presence of more immature synaptic 

structures.  In this line of mice, we detected a significant decrease in the area of Synapsin 

I positive puncta (area: 72.9 ± 4.9 % vs. 100 ± 5.8 %, p < 0.05, Figure 3D) and a non-

significant trend towards a decrease in the area of PSD95 puncta (70.1 ± 6.12% vs. 100 ± 

12.2%, p = 0.0991, Figure 3D).  No significant changes in Synapsin I, nor PSD95 

intensity were observed (SynapsinI: 113.4 ± 1.6 % vs. 100 ± 7.9 %, n.s., PSD95: 113.2 ± 

1.7 % vs. 100 ± 5.8 %, n.s.).  Consistent with the changes in spine numbers, we also 

observed a significant increase in the density of PSD95 puncta (137.8 ± 4.4 % vs. 100 ± 
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7.8%, p < 0.05, Figure 3D) but not a matching increase in Synapsin I puncta density 

(110.5 ± 4.9 % vs. 100 ± 5.8 %, n.s.), nor change in the density of puncta that are positive 

for both PSD95 and Synapsin I (90.5 ± 10.9 % vs. 100 ± 8.8 %, n.s.).  Previous studies 

have reported that PSD95 may play a role in recruiting mature forms of glutamate 

receptors to synapses and it is certainly present at mature synapses.  However, other 

studies have found PSD95 associated with highly mobile clusters of postsynaptic proteins 

that are in transport to newly formed and nascent synapses (Gerrow et al., 2006).  Our 

discovery of a significant increase in the number of PSD95 only puncta (without 

Synapsin I), may therefore be consistent with the idea that the number of newly formed/ 

immature synaptic structures able to initially recruit low levels of PSD95 is increased in 

the HA-NL1∆C animals, but that the lower levels of PSD95 present may not be sufficient 

to stimulate the other features of synaptic maturation such as an increase in markers of 

mature presynaptic terminals such as Synapsin I.  

Finally, the relative intensity of PSD95 to Gephyrin was also measured in order to 

test the possibility that changes in NL1 function altered the relative balance of excitation 

to inhibition, as changes in this measure mark important developmental transitions in 

plasticity and could partially account for the observed changes in behavior (Hensch, 

2004; Hensch and Fagiolini, 2005; Southwell et al., 2010).  Changes in the relative 

excitation to inhibition have also been reported in mice overexpressing NL1 more 

ubiquitously (Dahlhaus et al., 2010). Surprisingly, we observed a trend towards a 

decrease in the ratio of PSD95 to Gephyrin in HA-NL1FL mice relative to controls (56.9 

± 10.8 % vs. 100 ± 10.8 %, p = 0.076). This was supported by an increase in Gephyrin 

intensity in the HA-NL1FL mice as well as a slight decrease in PSD95 intensity 

(Normalized Gephyrin Intensity: 146.2 ± 16.6 % vs. 100 ± 22.7 %, p = 0.1139).  We 

observed no significant changes in the ratio of PSD95 to Gephyrin in the HA-NL1∆C 

mice (75.5 ± 13.5% vs. 100 ± 11.2 %, n.s.). Our results suggest that overexpression of 

NL1 in the hippocampus, specifically in SLM, results in an increase in the mature 

characteristics of excitatory synapses and tips the balance of excitation to inhibition in 

regions of CA1.  In contrast, expression of the C-terminal deletion protein leads to an 

increase in the number of smaller postsynaptic structures and fails to change the relative  

ratio of excitation to inhibition that can be detected by our measures.  This supports the  
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idea that NL1‟s terminal region is required to elicit key hallmarks of synaptic maturation, 

and that NL1∆C maintains a synaptic state more commonly associated with earlier stages 

of development. 

 
Figure 3. NL1 intracellular signaling regulates the morphological characteristics of 

spines and synapses in SLM. (A & B) Exemplary images of dendritic spine segments of 

(A) control vs. HA-NL1FL mice and (B) control vs. HA-NL1∆C mice, scale bar equals 

2.5 µm.  The mean spine head area was increased for only the HA-NL1FL mice, while 

spine density was only increased in the HA-NL1∆C mice (p < 0.05, Student‟s t-test, n = 

36 pairs).(A’ & B’) Cumulative distributions of spine head sizes across 36 dendritic 
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segments from each group were shifted in the HA-NL1FL mice (p < 0.00001, 

Kolmogorov-Smirnov test), while the difference in the cumulative distributions of spine 

head size between controls and HA-NL1∆C mice suggested a trend towards a decrease in 

area (p = 0.077, Kolmogorov-Smirnov test). (C & D) Representative images and 

quantification of Synapsin I and PSD95 positive puncta characteristics of (C) controls vs. 

HA-NL1FL mice and (D) controls vs. HA-NL1∆C mice. The average areas of Synapsin I 

and PSD95 puncta were larger in HA-NL1FL mice than controls, but there was no 

significant difference in PSD95 density. In the HA-NL1∆C mice, the average area of 

Synapsin I puncta was decreased, with a trend towards a decrease in average PSD95 

puncta area (p = 0.0512) and an increase in PSD95 density.  Areas positive for 

immunostaining are black (see Supplemental Experimental Procedures and Supplemental 

Figure 4). The merge image is shown in color, with Synapsin I in purple, PSD95 in green 

and areas of overlap appearing white. Arrows highlight Synapsin I and PSD95 co-

localization, scale bar equals 2.5 µm. Error bars are SEM, Student‟s t-test performed in 

all cases unless otherwise noted, n = 4 pairs.  # = p < 0.08, * = p < 0.05, ** = p < 0.01 

and *** = p < 0.001. 

 

Distinct changes in synaptic protein composition in HA-NL1FL versus HA-NL1∆C 

mice 

Studies characterizing the molecular state of excitatory synapses across 

development have found activity-dependent changes in the prevalence of specific 

isoforms of postsynaptic scaffolding molecules and glutamate receptors at distinct 

developmental stages (Petralia et al., 2005; van Zundert et al., 2004; Zheng et al., 2011)  

We therefore predicted that manipulation of NL1 function should impact the postsynaptic 

scaffolding molecules and glutamate receptors associated with progression through 

development and synaptic maturation and potentiation.  For example, synapses in an 

immature state would be predicted to have higher levels of NR2B and SAP102, and their 

prevalence should decrease with development. In contrast, synaptic structures in a mature 

state would show high levels of NR2A, GluR1 and SAP97, and the prevalence of these 

markers should increase over development as entire systems mature. To understand how 

NL1 exerted its effects on synaptic state, we examined the protein composition of 

synapses in both the HA-NL1FL and HA-NL1∆C animals via quantitative 

immunoblotting of isolated synaptosomal fractions from hippocampal tissue.  

Overexpression of NL1FL within restricted regions of the hippocampal formation led to a 

significant increase in synaptic levels of Synapsin I, NR2A, and SAP97, with trends 

towards an increase of large effect size in NR1 and Shank family members (Figure 4A) 
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and GluR1 and GluR2 (Supplemental Figure 2).  We observed no significant changes in 

the synaptic levels of PSD95, nor the key inhibitory synaptic marker Gephyrin.  In 

contrast, expression of HA-NL1∆C resulted in enhanced levels of NR2B and SAP102 in 

synaptosomal fractions, and a small, but significant increase in PSD95 was measured 

(Figure 4B).  Notably, HA-NL1∆C was not able to facilitate an increase in Shank family 

members, nor NR2A levels as its full length counterpart did, but rather yielded a 

significant decrease in SAP97 (Figure 4B).  These changes are consistent with the idea 

that there was an overall enrichment of mature synaptic markers in the hippocampi of the 

HA-NL1FL animals, and that there was an enrichment of immature synaptic markers in 

the HA-NL1∆C animals.  Furthermore, these results suggest specific scaffolding 

molecules, namely SAP97 and Shank, and SAP102, may have played a significant role in 

determining the observed differential synaptic states, respectively. 

To confirm that the changes in synaptic protein levels directly related to the level 

of expression of our transgenes, we analyzed immunostaining characteristics of a few key 

synaptic proteins specifically within the SR versus the SLM, as we noted a significant 

difference in transgene localization between these target layers.  The intensity and area of 

NR2B puncta specifically within the SLM of HA-NL1∆C animals was enhanced relative 

to controls (Intensity: 136.8 ± 3.8 vs. 100 ± 9.4%, p < 0.05, Area: 143.5 ± 7.4 vs. 100 ± 

8.3, p < 0.01, Figure 4D). We also noted a trend towards an increase in levels of NR2B 

within the SR as well (Intensity: 130.8 ± 11.5 vs. 100 ± 7.6, p = 0.071, Area: 132.2 ± 16.9 

% vs. 100 ± 7.0 %, p = .1937), but no significant change in levels within the molecular 

layer of CA3 were detected (Intensity: 100 ± 9.6% vs. 111.3 ± 7.1%, n.s.).  We failed to 

identify any changes in measures of NR2B immunofluorescence within the hippocampus 

of HA-NL1-FL mice (Figure 4C). 

Immunolabeling with an antibody to all three Shank family members (panShank) 

revealed that levels of one or all members were specifically increased in the SLM of the 

HA-NL1FL mice relative to controls (Intensity: 135.2 ± 1.6 % vs. 100 ± 2.7 %, 

respectively, p < 0.01, Area: 131.7 ± 18.9 % vs. 100 ± 12.6 %, p < 0.05, Figure 4E) and 

not increased in the HA-NL1∆C mice (Figure 4F).  No significant changes in intensity 

nor area of panShank labeled puncta were found in the SR. Our results demonstrate that 

we induced the largest changes in maturation in regions with higher levels of transgene 
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expression in the hippocampus, specifically, the SLM. Thus, we conclude that the 

intracellular C-terminal region of NL1 aids in the maturation of excitatory synapses, i.e. 

transitioning from an NR2B-rich and Shank-poor state to one with high Shank levels and 

low NR2B.  
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Figure 4. Distinct changes in synaptic protein composition in HA-NL1FL versus HA-

NL1∆C mice. (A & B) Representative western blots of synaptosomal fractions from the 

hippocampus of (A) controls vs. HA-NL1FL mice and (B) controls vs. HA-NL1∆C mice.  

Synaptosomes from the same mouse in each group are shown for every blot, with the 

group mean intensity plotted on the right normalized to control levels. The HA-NL1FL 

mice (red) expressed higher levels of the glutamate receptor NR2A, and the scaffolding 

molecule SAP97 and trended towards an increase in Shank family members as compared 

to controls, while the HA-NL1∆C mice expressed higher levels of NR2B and SAP102, 

with a small increase in PSD95, and a decrease in SAP97 as compared to their controls 
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(See Supplemental Figure 3 for detailed statistics and additional data).  (C & D) 

Representative images of a 36µm
2
 region of SLM from sectioned tissue immunolabeled 

for NR2B from (C) controls vs. HA-NL1FL mice and (D) controls vs. HA-NL1∆C mice.  

Average intensity and area of puncta from the two groups is graphed below. No 

differences were detected between HA-NL1FL mice and their controls, while there was a 

significant increase in NR2B intensity and area of puncta specifically in the SLM of HA-

NL1∆C mice as compared to their controls. Scale bar equals 2 µm, and arrows highlight 

puncta for comparison. (E & F) Representative images of a region of SLM labeled for 

panShank from (E) controls vs. HA-NL1FL mice and (F) controls vs. HA-NL1∆C mice. 

There was an increase in the average intensity and area of panShank puncta in the HA-

NL1FL mice specifically in the SLM, but there was no difference in measures of 

panShank intensity, nor area of puncta in the SLM between the controls and HA-NL1∆C 

mice. Scale bar equals 2 µm, and arrows highlight puncta for comparison. Significance 

was determined with Student‟s t-test in all cases, n = 4 pairs and # = p < 0.104 * = p < 

0.05, ** = p < 0.01, *** = p < 0.001. 

 

The changes in synaptic protein levels correlate with specific aspects of behavioral 

performance 

We were surprised at how closely maturation of behavior matched that of 

excitatory synapses. To determine whether there was indeed a significant correlation 

between synaptic changes and the degree to which behavior shifted, we compared NR2B 

levels in the HA-NL1∆C mice and controls to the degree of flexibility exhibited during 

their reversal training (Figure 2 & Figure 5). First, we compared NR2B intensity levels 

to distance to reach the new location on the fourth training trial on the first day of 

reversal training.  We examined this trial as we noticed that the largest time differences to 

reach the new location occurred here. Additionally, most of the HA-NL∆C mice failed to 

visit the former location of the target first before finding the new location during this 

trial, shortening the distance they traveled before reaching the new location and reflecting 

a lack of persistence in searching the previous location (Figure 2F’). We included both 

control and HA-NL1∆C mice in this analysis to determine whether NR2B levels in the 

SLM were related to the behavioral performance independent of the presence of the 

transgene.  That is, we wanted to know whether the natural variation in this behavior 

present in the control group was also related to NR2B levels. Increased levels of NR2B 

correlated with shorter distances to reach the new target location on a mouse-by-mouse 

basis (Figure 5A).  Importantly, NR2B levels did not correlate with distance to first reach 
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the former target location in the probe trial, a more direct measure of recall accuracy 

(Figure 5B), suggesting that NR2B levels in the SLM do not reflect recall per se.  

Another robust phenotype that we noticed in the HA-NL1∆C mice was a lack in 

persistent searching of the target quadrant and a strikingly different spatial distribution in 

their search patterns during the probe trial preceding reversal training.  We therefore 

tested whether dwell time in the target quadrant also negatively correlated with NR2B 

levels and reflected an increase in flexibility.  Comparisons of target quadrant dwell times 

to NR2B levels only yielded a relationship that approached significance (Figure 5C.)  It 

was possible that substantial information about the distribution of the search path was lost 

in only accounting for time spent in the target quadrant.  For example, analyzing only 

dwell time in the target quadrant artificially constrains what is a "targeted searching 

behavior" since it discounts locations and visits to neighboring quadrants (which may still 

reflect persistent searching if those locations are near the border of the target.  Therefore, 

we derived a metric based on the distribution of radial distances between any two points 

of the search path to more specifically describe the localization of the search path (see 

Experimental Procedures).  “Path Dispersion”, or the full-width at half-maximum 

(FWHM) of the two-point radial distance distribution, increases as searching expands 

over the area of the pool and decreases as searching becomes more localized to a 

confined region (Figure 5D, compare the path of mouse X vs. Z). Path dispersion was 

highly correlated to NR2B levels (Figure 5E), suggesting that it may serve as a valid 

complementary method for assessing important changes in searching behavior during the 

probe trial. To validate the idea that the degree of dispersion may have facilitated finding 

the new location faster, or rather, also reflected enhanced flexibility, we compared path 

dispersion to distance to reach the new location on the fourth training trial.  This directly 

showed that if a mouse had a more distributed search pattern during the probe trial, it  

also located the new target location more directly at the end of the first day of reversal 

training regardless of genotype (Figure 5F).  Together, this series of comparisons 

suggests that higher NR2B levels in the SLM are tied to enhanced performance during 

reversal training and more dispersed search patterns during the probe trial.   

 

 



 

66 

 

 

 

Figure 5. Correlation between levels of NMDAR subunit NR2B in the SLM and 

flexibility behavior. (A)  NR2B intensity in the SLM correlated with the distance to reach 

the platform in the fourth training trial of reversal day 1 on a mouse by mouse basis (p < 

0.05, n =10, 5 controls and 5 NL1∆C mice). (B) NR2B levels did not correlate with 

distance to first cross the former platform location during the probe trial, suggesting 

specificity in the relationship between SLM NR2B levels and measures of flexibility.   

(C) The correlation between NR2B levels and percent time spent in the target quadrant 

during the probe trial approached significance for a negative correlation (p = 0.0617, n = 

10). (D) Exemplary two-point radial distance distributions for three search paths from 

mouse X (black), Y (green) and Z (blue). The full width at half max (FWHM) of each 

distribution was taken as the defining characteristic of the distribution, called “Path 

Dispersion”, and used as the metric for cross correlation analyses (see Experimental 

Procedures for detailed description of measure). The individual search paths and the 

color-coded path dispersion score in cm are shown below  for mouse X, Y and Z. (E) The 

more NR2B in the SLM, the more “Dispersed” the search area during the probe trial of 

water maze testing (p < 0.025, n = 10). (F) The path dispersion measure also correlated 

with distance to reach the new target location during reversal training (p < 0.05). 
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Manipulations of NL1 intracellular signaling impact social behavior and sensory 

evoked responses in the cortex. 

NL1 function has been linked to social behavior as well as learning and memory 

in studies where genetic manipulations were more ubiquitous (Blundell et al., 2010) 

Moreover, it is unclear which neural circuits may process social information (Insel and 

Fernald, 2004) We therefore studied whether our manipulations could also impact social 

behavior in order to address the relevance of NL1-mediated synaptic maturation on this 

complex form of behavior.  First, the three chambered social preference test allowed us to 

gauge basic social preferences (Moy et al., 2004) In the first phase, the test animal is 

given a choice to interact with either an inanimate object or an age and sex matched 

stranger mouse.  In the second phase, the test animal is given a choice of the previously 

introduced mouse and a novel social partner. Typically, mice of our background strain 

prefer social interaction over that with an object, and interaction with a novel partner over 

that of a familiar (Moy et al., 2004).  We observed no significant differences in the 

behavior of the HA-NL1FL mice relative to the controls, which performed as expected in 

this task (Figure 6A). We thus conclude that there is an absence of a significant deficit in 

basic social behavior in this line of mice.   

As more complex forms of social interaction could have still been impaired, we 

also measured aggression and dominance behavior in male mice employing both the 

resident-intruder task and dominance tube test (Duncan et al., 2004; Messeri et al., 1975; 

Moy et al., 2004)  In the resident-intruder task male mice are separately housed for up to 

7 days in order to establish a home territory and then an age, weight and sex matched 

intruder is introduced and several measures of basic social interaction and more 

aggressive acts are scored.  Introduction of an intruder mouse under these conditions 

typically induces overt acts of aggression in our background strain of mice.  We also saw 

no significant difference between the HA-NL1FL mice and controls in their interaction 

during this task (Supplemental Figure 4A, left graph).  The dominance tube test can 

also be used to confirm differences in dominance, as it pits two mice against each other in 

a confined tube in which a more dominant male would force the less dominant to retreat.  

This test assesses more subtle levels of dominance that may be present, but may not result  
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in more aggressive acts such as mounting or fighting. We again found no difference in 

this behavioral test between the HA-NL1FL mice and their controls (Supplemental 

Figure 4A, right graph). 

In contrast, HA-NL1∆C mice were different from controls on many measures of 

sociability. They failed to show a characteristic preference for social novelty, while still 

displaying a strong preference for social interaction in general in the three chambered 

social preference test (Figure 6B).  This lack of preference for a novel partner is unlikely 

to be due to the previously described differences in learning and memory as similar tests 

for novel objects revealed a preference for novel objects with a delay between exposures 

of up to an hour.  In these tests for social novelty, the delay between different phases of 

testing is only 10-15 minutes.  Therefore, we observe selective changes in social novelty 

preference versus a change in preference for novelty per se.  This implies that the HA-

NL1∆C mice either had a specific deficit in their ability to detect social novelty, or did 

not prefer novel social partners to the familiar if they could discriminate. Interestingly, 

we found that juvenile mice of the same background strain (C57BL/6J) also lacked a 

preference for social novelty without lacking preference for social interaction, as 

compared to adult mice (Figure 6C). This suggests that more complex features of social 

interaction are affected in the HA-NL1∆C mice and that the effects are similar to the 

normal social behavior exhibited by juvenile mice.  
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Figure 6. Manipulations of NL1 intracellular signaling affect social behavior. (A)  

Performance in the three chambered social preference task. Mean time in seconds (s) 

spent in the chamber with either a social partner (S) or an object (O), is depicted for both 

controls (black bars) and HA-NL1FL mice (red bars) in the left graph.  Mean time spent 

in a chamber with either a familiar social partner (F) or a novel social partner (N) is 

depicted in the graph to the right. Both controls and HA-NL1FL mice preferred to spend 

time with a social partner vs. an object and a novel partner vs. a familiar (n =10 pairs). 

(B) There was no difference in preference for social interaction over interaction with an 

object for HA-NL1∆C mice (red bars in left graph). However, the HA-NL1∆C mice did 

not show the characteristic preference for a novel social partner and instead were equally 

engaged with a familiar (F) and novel (N) mouse (red bars in right graph, n = 10).  (C) 
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Juvenile mice preferred social interaction to investigating an inanimate object, but also 

did not display preference for social novelty (n = 9). See Supplemental Figure 4 for 

additional behavioral measures. Error bars are SEM, significance was determined with 

RMANOVA, with Tukey‟s post hoc and * = p < 0.05, ** = p < 0.01, *** = p < 0.001. 

 

We also observed strong changes in aggressive and dominant social behavior in 

males. In measures of social interaction employing the resident-intruder paradigm, our 

transgenic mice were less likely to engage in a fight (Supplemental Figure 4B, left 

graph, 56.7 ± 3.3% vs. 16.7 ± 1.1% vs. controls vs. HA-NL1∆C mice, p < 0.025, n = 9 

pairs).  However, there are no significant effects in other forms of social interactions 

during this test including dominant mounting behaviors (data not shown).  The HA-

NL1∆C mice were more likely to be submissive when pitted against group housed 

control mice in the dominance tube test (Supplemental Figure 4B, right graph). The 

performance of our controls in this task indicates that group housed mice are equally 

likely to exhibit dominant or submissive behavior, while the HA-NL1∆C transgenics lost 

more bouts than would be predicted by chance if only half of the group were submissive 

to opponent mice.  Overall, these results suggested that expression of HA-NL1∆C 

resulted in a decrease in overt acts of aggression in addition to the lack of preference for 

social novelty. 

While the changes in social behavior were surprising given the restricted 

expression pattern, recent studies of likely downstream targets of NL1 such as Shank 

family members suggested that altered synaptic transmission from the cortex may 

partially contribute towards changes in social behaviors (Peca et al., 2011)  Interestingly, 

we found highest levels of our transgenes in the SLM of the hippocampus, a region that 

receives direct input from the entorhinal cortex via the perforant pathway and may 

critically support the coordinated cortical-hippocampal dynamics that are thought to 

support many forms of behavior apart from learning and memory (Gordon, 2011; 

Hasselmo and Schnell, 1994; Hasselmo et al., 1995)  Furthermore, we found similarly 

high levels of expression of our transgenes in specific regions of cortex (Figure 1B). 

Therefore, we measured sensory-evoked responses in the auditory cortex to determine 

whether we could detect functional changes in the cortex that were consistent with the 

previously observed synaptic changes thoroughly characterized in the hippocampus 
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(Figure 3 and Figure 4).   We could not detect a significant change in the relationship 

between neuronal firing rates and stimulus strength in the auditory cortex of HA-NL1FL 

mice (Figure 7A). In contrast, we found a significant shift in the threshold for evoking 

sensory responses in the HA-NL1∆C transgenic mice as compared to controls (Figure 

7B). However, basic auditory responses such as the startle reflex were unaffected (data 

not shown).   Interestingly, such a shift in the threshold for sensory evoked responses is a 

characteristic developmental milestone in the auditory cortex, where a decrease in the 

threshold to elicit a change in firing rate accompanies developmental progression (de 

Villers-Sidani et al., 2007; Moore and Irvine, 1979)   Furthermore, the higher threshold 

for sensory-evoked responses seen in both typical juveniles as well as our NL∆1C mice is 

consistent with the idea that there is a decrease in synaptic strength within auditory 

cortex, or within other regions that provide input to the auditory cortex, relative to 

normally developed adults. 

 

 

Figure 7. Manipulations of NL1 affect sensory evoked responses in cortex. (A) Mean 

spike counts for neurons in the auditory cortex activated by differing levels of stimulus 

strength (white noise clicks) are plotted for both controls (black) and HA-NL1FL mice 

(red). No significant changes in sensory-evoked responses were found in the HA-NL1FL 

mice relative to controls. (B) HA-NL1∆C mice showed an increase in the stimulus 

threshold necessary for eliciting an increase in firing rate (p < 0.001, n = 11 pairs). Error 

bars are SEM, and significance was determined by RMANOVA. 
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3. DISCUSSION 

In this study, we present concrete evidence for the importance of the intracellular 

C-terminal region of NL1 in the maturation of synapses in vivo and evidence that this 

synaptic maturation within discrete forebrain nuclei is correlated with a maturation of 

complex behaviors.  Specifically, we showed that overexpression of NL1FL in the 

hippocampus results in memory deficits and perseverance for already learned targets, 

whereas expression of truncated NL1 improved flexibility, highly reminiscent of juvenile 

behavior. In addition, social behaviors were tipped towards a juvenile-like state in HA-

NL1∆C mice, and sensory-evoked responses in the auditory cortex confirmed that at least 

one feature of neural circuit function was maintained in a more immature state when HA-

NL1∆C expression was spatially restricted to regions of the forebrain.  At the cellular 

level, we examined synaptic spines and the localization of key proteins to synapses in the 

hippocampus; NL1FL expression resulted in a bias towards mature synapses, i.e. large 

spine heads containing more NR2A, Shank, SAP97 and GluR1, and NL1ΔC expression 

resulted in immature synapses, i.e. smaller spines containing more NR2B and SAP102.  

This suggests that the manipulations of NL1 that we introduced were sufficient to alter 

the maturational states of glutamatergic synapses and that such changes correlated with 

developmentally relevant changes in behavior and brain function. 

We propose a simple model whereby NL1 C-terminal signaling facilitates a series 

of molecular steps that act to enhance the recruitment of Shank family members and 

SAP97 which in turn promote the maturation and potentiation of excitatory synaptic 

structures (Figure 8).  The data suggest that activities carried out by the last 55 amino 

acids lead to the replacement of juvenile synaptic scaffolding molecules with a more 

mature complement of proteins, as expression of NL1∆C could not induce the increase in 

factors that characterize mature synaptic structures. Furthermore, expression of NL1∆C 

led to retention of immature synaptic markers such as SAP102 and NR2B while repelling 

SAP97.  This suggests that this molecule enacted a dominant negative activity that 

prevented the accumulation of mature synaptic factors.  Such a molecular process could 

have prevented the activity-dependent synaptic elimination of early born synapses that is 

known to accompany development and simultaneously halted their maturation. This 

mechanism could account for the observed increase in the number of synapses found with 
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an immature synaptic protein complement in the HA-NL1∆C mice (Figure 4B and 4D). 

Interestingly, recent in vitro studies in organotypic cultures have found a novel regulatory 

region within the C-terminal region of NL1 that was necessary to enhance several 

features of synapse formation and function (Shipman et al., 2011).  This implies that non-

PDZ intracellular domains within NL1 may also play a significant role in synaptic 

development, however our results clearly suggest that long term in vivo manipulation of 

NL1 signaling via the PDZ domains impacts synaptic and behavioral maturation.  

Therefore, future studies dissecting the intracellular activities of NL1 in vivo are 

necessary to illuminate whether NL1 may play mechanistically distinct roles during 

initial synapse formation versus maturation. 

 

 

Figure 8. Model for NL1‟s role in late phases of synaptic maturation.  NL1 mediates the 

transition from an immature synaptic state to a mature synaptic state via its intracellular 

signaling. NL1 C-terminus signaling is required for the replacement of immature 

scaffolding molecules such as SAP102 with mature forms such as SAP97 and Shank 

family members.  This change brings about the replacement of NR2B containing 
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NMDARs with those composed of NR2A, which may ultimately underlie the observed 

changes in spine morphology induced by overexpression of the full length NL1.  

 

The last 55 amino acids of NL1 support crucial features of synaptic maturation that 

are linked to developmentally regulated changes in synaptic stability. 

The expression level of an array of postsynaptic scaffolding molecules and 

glutamate receptors have been observed to change as a function of developmental 

progression and the gradual accumulation of stronger, more stable glutamatergic 

synapses. Scaffolding molecules such as SAP102, PSD95, PICK1, SAP97, Shank1 and 3 

are known to interact with the PDZ binding motif of NL1 and each have been implicated 

in mediating a subset of the synaptic changes that parallel the development of neural 

circuits (Meyer et al., 2004; Petralia et al., 2005; Tallafuss et al., 2010; van Zundert et al., 

2004; Zheng et al., 2011)  Individually, several of these molecules have also recently 

been reported to impact learning, memory and social behaviors. Our study of NL1 

overexpression is the first to investigate the effects of this manipulation on key 

scaffolding molecules as well as behavioral progression (Dahlhaus et al., 2010)  

Therefore, our results clarify and extend our understanding of NL1 synaptic recruitment 

capabilities in vivo.  

Shank protein family members and SAP97 synaptic localization were up-

regulated by the overexpression of full length NL1. It is therefore possible that these 

proteins partially facilitated the observed increase in mature synaptic structures and 

deficits in spatial learning observed in the HA-NL1FL animals. Shank1 and 3 contain 

PDZ domains that can bind to the C-terminus of NL1 and they form an integral part of 

the postsynaptic density (Sheng and Kim, 2000) Further, both family members have been 

suggested to support increases in spine head size, and other critical features of synapse 

maturation such as AMPA receptor trafficking to synapses and enhanced synaptic 

potentiation (Sala et al., 2001) A study examining the phenotype of Shank1 null mice 

found an increase in the number of smaller, weaker spines in the hippocampus that 

correlated with a specific enhancement in spatial learning and memory behaviors (Hung 

et al., 2008).  Shank3 also regulates the size and density of dendritic spines, but is more 

highly expressed in distinct regions of the brain as compared to Shank1. Interestingly, 
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knockout, or other reductions, of Shank3 function spares learning and memory behaviors 

while altering social behavior (Bangash et al., 2011; Bozdagi et al., 2010; Peca et al., 

2011) Overall, this suggests that Shank family members affect the potentiation of 

glutamatergic synapses throughout the brain, and that this cellular process impacts 

complex behaviors such as learning, memory and social interaction.  

Like Shank proteins, SAP97 has been reported to enhance the mature 

characteristics of synapses, namely the size and complexity of dendritic spines (Kim and 

Sheng 2004, Poglia 2010). It is thought that its ability to target NR2A and GluR1 type 

subunits to synapses directly mediate its ability to potentiate glutamatergic synapses 

(Gardoni et al., 2003; Mauceri et al., 2007; Nakagawa et al., 2004; Sans et al., 2001; 

Schluter et al., 2006).  Enhancements to the levels of both GluR1 and NR2A accompany 

maturation of synapses and neural circuits through development and insertion of GluR1 

at synapses has been equated with synaptic potentiation and increases in synaptic strength 

(Malinow and Malenka, 2002)  Our model posits that it is primarily through these 

scaffolding molecules that NL1 drives increases in levels of NR2A and GluR1, such as 

those observed in this study.  It is possible that these events then lead to an enhancement 

in the proportion of large spines in the SLM, limiting the substrate available for 

modification during experience.  This could account for impaired spatial learning and 

enhanced behavioral perseverance for learned information. 

We did not see a decrease in Shank localization at synapses in the HA-NL1∆C 

mice, but did observe a highly significant decrease in SAP97 and an increase in SAP102 

(Figure 4B) This suggests that opposing levels in SAP97 and SAP102 proteins may 

account for the larger population of smaller, immature synaptic structures discovered in 

the HA-NL1∆C mice. SAP102 is a scaffolding protein that is highly motile early in 

development, and believed to underlie the early organization of glutamatergic synapses. 

It is possible that such a molecule partially defines the state of a glutamatergic synapse as 

immature by limiting or selectively enhancing the availability of key receptor subtypes 

such as the NMDAR subunits NR2B and NR2A.  Consistent with this idea, culture 

studies show that SAP102 is part of an NMDAR transport packet (Washbourne et al., 

2004b) and differentially affects the recruitment of NR2B and NR2A to synaptic 

contacts, biasing towards a preferential trafficking of NR2B (van Zundert et al., 2004; 
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Zheng et al., 2011). Further, the relative ratio of NR2B to NR2A at synapses has 

important functional consequences for the strength and plasticity of those synapses. It is 

thought that the eventual replacement of NR2B with NR2A facilitates mature forms of 

plasticity that lead to the long term stabilization of synaptic connections (Vicini et al., 

1998).  In support of this idea, this switch occurs just prior to developmental periods 

characterized by rapid synaptic specification (van Zundert et al., 2004).  Moreover, 

artificially elevating NR2B levels in the adult causes enhanced spatial learning thus 

validating the idea that it supports a bias towards plasticity and away from rigid 

stabilization (Tang et al., 1999).  Therefore, we propose that our manipulations of NL1 

impacted levels of key scaffolding molecules that induced a developmentally relevant 

change in the complement of glutamate receptors present at the synapses in our lines of 

mice. 

 

Alterations of NL1 function within specific neural circuits supported 

developmentally relevant shifts in behavior 

Previous manipulations of NL1 function in vivo implicate the molecule in 

specifically altering long term synaptic potentiation and stabilization (Blundell et al., 

2010; Dahlhaus et al., 2010; Kim et al., 2008), a process mechanistically tied to those 

involved in the activity-dependent validation of synapses during critical periods of 

sensory system development.  Accordingly, these modifications in NL1 function in the 

adult also impaired acquisition and long term retention of a variety of forms of memory. 

Therefore, prior to our study, it was an open question as to how NL1 function may 

specifically impact the development of mnemonic systems. Studies of learning and 

memory behaviors in rats suggest that explicit mnemonic systems and behavior undergo a 

substantial transformative period early in juvenile development where the capacity to 

learn and remember changes dramatically (Brown and Kraemer, 1997; Rossier and 

Schenk, 2003; Rudy, 1994). More recent evidence suggests that less stable hippocampal 

place fields can be found in juveniles as compared to the adult rat, and it is known that 

the long term stability of hippocampal place fields rely on NMDAR-mediated activity 

(Kentros et al., 1998; Langston et al., 2010; Scott et al., 2011).  However, creating a clear 

picture of the molecular processes that underlie this developmental transition, and 
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whether they rely on developmentally relevant shifts in NMDAR activity, requires the 

genetic access that is currently only afforded by studies in mice. Here, we provided some 

of the first evidence that explicit forms of learning in juvenile mice may be accomplished 

in a manner similar to adults by at least one month of age (Figure 2G – 2I‟‟). This 

suggests that potential sensitive periods for the development of this complex behavior 

may take place between eye opening (conferring the ability to visually explore an 

environment) and one month of age, and that the more subtle aspects of this behavior are 

still being shaped after one month postnatal in mice.  Our results in the NL1∆C mice are 

consistent with the idea that specific perturbations of NL1 function may have prevented 

typical developmental advancement of both learning and memory behavior. 

The correlation between NR2B and flexibility, such as the one we found with 

NR2B levels (Figure 5), would help explain our other observations regarding synaptic 

and behavioral changes in both our lines of mice. We predicted, based on previous 

studies, and subsequently confirmed, that the full length version of NL1 would enhance 

the proportion of mature synaptic structures present in the forebrain relative to controls, 

thus limiting the number of synapses subject to further potentiation and modification with 

experience (Figure 3A, 3A’, 3C, Figure 4A and 4E).  This activity would then bear out 

in a deficit to modify behavior with repeated experience as few synapses would be 

available for event related potentiation, resulting in learning and memory deficits and a 

general lack in flexibility.  Further, we had anticipated that expression of the truncated 

version of NL1 would simply fail to elicit the enhanced proportion of synapses in a 

highly potentiated state, resulting in a failure to induce the changes in behavior seen with 

NL1FL. However, this manipulation resulted in mice that were more similar to juveniles 

than to that of age matched adults (Figure 2D – I’’). The HA-NL1∆C mice exhibited 

short term learning and flexibility enhancement, with a slight deficit in long term memory 

retention with a single trial exposure. This behavioral profile would be consistent with an 

increase in the proportion of synapses in a highly modifiable state that were more 

difficult to maintain in a highly potentiated form. Studies of NR2B function suggest that 

a difference in NR2B levels could support such a change in state.  Conversely, studies of 

NR2A function also seem to suggest that specifically enhancing the levels of this 

subtype, could strengthen and stabilize synaptic contacts facilitating many of the 
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morphological and functional hallmarks of synaptic maturation, while limiting bi-

directional synaptic modification.  Therefore, the changes in the proportion of NMDAR 

subunit types that we observed in our mice are likely to underpin many of the 

concomitant changes in synaptic morphology, function and behavior that were measured. 

Finally, it is unclear how varying states of synaptic maturation may impact social 

behavior, but the behavioral data examining NL family function in vivo suggests that 

there may be a link between the cellular processes governed by NLs and social 

interaction (Blundell et al., 2009; Dahlhaus and El-Husseini, 2010; Hines et al., 2008; 

Jamain et al., 2008).   Studies that seek to understand social interaction in mice often 

center on studies of play in young male animals and aggression in older males. It is 

unclear what developmentally related synaptic mechanisms may account for the 

observation that these behaviors appear differentially prevalent between young and 

mature male mice.  Interestingly, NMDAR hypofunction has been linked to enhanced 

aggression in male mice, further implicating changes in glutamate-mediated signaling 

over development as a process that underlies important aspects of complex social 

behavior (Duncan et al., 2009). This suggests that age-specific aspects of NMDAR 

signaling could regulate the development of social interaction. This idea is consistent 

with our observations that we find reduced aggression and enhanced flexibility in social 

preference in the HA-NL∆C mice when we also find enhancement in juvenile forms of 

scaffolding proteins and NMDAR subunit composition.  Therefore, it is interesting to 

speculate that these changes in social behavior also reflect maintenance of more juvenile 

like characteristics, and that such changes may be linked to the state of modifiability of 

glutamatergic synapses within specific neural systems (Figure 1B).  Taken together, this 

set of studies validates the role of NL1-mediated processes in the maturation of complex 

behaviors, and hones in on the molecular pathways that may specifically regulate 

flexibility in such behaviors. 

These results validate the idea that specific NL1 intracellular signaling domains 

regulate late stages of synaptic maturation in vivo, and provide the first evidence, that  

artificially manipulating the relative proportion of glutamatergic synapses in one state 

versus another in vivo, within specific neural systems, alters behavioral traits that change 

as a function of development.  
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4. METHODS 

All studies were conducted with approved protocols from the University of 

Oregon Institutional Animal Care and Use Committee, in compliance with NIH 

guidelines for the care and use of experimental animals. 

 

Transgenic Mouse Generation and DNA Constructs   

Neuroligin1 was amplified and GFP tagged as described in (Fu et al., 2003).  The 

GFP was replaced with an HA epitope tag sequence via PCR and was inserted into 

pTRE-tight (Clontech) via the vector pCDNA3 using HindIII and XhoI and then HindIII 

and XbaI sites.  The TetO-HA-NL1FL was linearized with XhoI and injected into 

embryos. The HA-NL1∆C was similarly created except that the last 55 amino acids were 

deleted via PCR with the following reverse primer (NL1-∆C: 

ggtctcgagctacctcctcatagcaagagtataatctggg). Constructs were confirmed with sequencing 

and successful transgenesis was confirmed via genomic PCR and Western blot of 

forebrain homogenate for the HA tag   

All single transgenic mice (TetO-HA-NL1∆C positive or  TetO-HA-NL1FL 

positive) as well as double transgenic mice (CamKIIα-tTA /TetO-HA-NL1∆C postitive) 

were first examined for basic health and behavior according to standard methods (Moy et 

al., 2004).  No overt changes in health, reproduction and behavior were observed. 

Further, single transgenics were used as controls in all experiments to exclude 

nonspecific effects of transgenesis resulting in the changes observed. 

 

Immunocytochemistry, Microscopy and Image Processing  

In most cases, brains from 4 animals of each genotype were dissected 

immediately from animals euthanized by decapitation with isoflurane anesthesia and 

flash frozen with liquid nitrogen. Brains were stored at -80ºC for up to 3 weeks until 

sectioned. For the animals used in the NR2B and behavioral comparisons, samples from 

5 mice in each group were prepared. Frozen tissue was cryosectioned to 8µm thickness. 

Sections on slides were then fixed with 4% PFA solution in phosphate buffered saline 

(PBS) for 30 minutes at 4 °C, followed by 3 5-minute rinses in PBS with gentle agitation.  



 

80 

 

 

Antigens were made accessible with a 0.05% trypsin wash for 5 min at room temperature 

and washed with PBS.  Slides were then blocked, incubated in specified primaries, 

washed and followed with appropriate secondary antibody (See Supplemental 

Experimental Procedures for details of procedures). 

Images were taken on an inverted Nikon TU-2000 microscope with an EZ-C1 

confocal system (Nikon) with either a 10x or 100x oil immersion objective (1.45 NA). 

Sections were imaged blind to specific conditions.  Images were processed and quantified 

in Image Pro Plus® (Media Cybernetics). Briefly, three 100 µm
2
 regions within each 

hippocampal area per section was selected for analysis, automatically thresholded and 

puncta selected with the automatic bright objects feature. Measures of mean intensity and 

area were recorded for each punctum and average densities of puncta per 100 µm
2
 were 

calculated.  The process was repeated for three separate sections from each mouse 

analyzed, with 3 mice analyzed in each condition.  Staining in CA1 SR, SLM and the 

molecular layer of CA3 were measured. Group means were compared and statistical 

significance was determined using the Student‟s t-test with α level set at 0.05. 

 

Synaptosomal Preparations and Western Blotting 

The hippocampal formation, including the subiculum, was dissected from 

experimental mice and homogenized in 1.5ml of buffer (4mM HEPES, 320mM Sucrose, 

protease inhibitor tablets (Roche), pH7.4) using a Potter-Elvehjem tissue grinder. 

Homogenate was centrifuged for 10 minutes at 850xg, the supernatant was removed and 

centrifuged at 12000xg for an additional 10 minutes.  Pellet was resuspended in 2ml 

buffer and centrifuged for 10 minutes at 14000xg.  The final pellet was resuspended in 

500l of buffer. Protein concentration was determined using the BioRad DC Protein 

Assay kit.  Samples were diluted in sample buffer (312mM Tris-HCl, pH6.8, 50% 

glycerol, 10% SDS, 0.05 Bromophenol blue and 25% -Mercaptoethanol) to a final 

concentration of 0.3g/l.  A total of 3g was loaded onto an SDS-PAGE gel, with 

samples from 4 animals per genotype, transferred to nitrocellulose membranes and 

probed with the antibodies shown at a dilution of 1:1000 (see Supplemental Experimental 

Procedures for sources of antibodies). 
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Behavior 

Basic reflex and health assessment follows (Moy et al., 2004). Briefly, mice were 

screened for weight differences, coat condition, abnormal tooth length, reproductive 

capability, gross visual functions such as forepaw reaching towards a distant object, and 

basic motor capabilities such as climbing rates and clinging times to an inverted wire 

cage lid.  

 

Morris Water Maze  

The Morris water maze task was based on the standard methods for spatial 

learning in rodents (Vorhees and Williams, 2006)  Each transgenic cohort consisted of 10 

double positive male mice and 10 control males positive for one of the two transgenes. In 

the juvenile analysis, 8 juvenile males and 8 adult males from a previous breeding by the 

same parents were compared. Briefly, the mice were tested for their ability to find an 

escape platform (diameter = 12 cm) on four different components in the following order: 

1) a two day visible platform acquisition, 2) a six day hidden (submerged) platform 

acquisition phase with the target moved to a different location, 3) a subsequent probe trial 

in the absence of the platform and 4) a hidden platform training in a new location 

(reversal training). In each case except the probe trial, the criterion for learning was an 

average latency of 15 s or less to locate the platform across a block of four consecutive 

trials per day separated by rest periods of 3-5 minutes (see Supplemental Experimental 

Procedures for further details of training and measures).  All data were analyzed with 

repeated measures ANOVA (RMANOVA), followed by Tukey‟s post hoc test to 

compare means of interest, with α level set at 0.05. 

 

Path Dispersion Metric 

To characterize the spatial distribution of search paths relative to locations 

searched by the animal (animal centric) as opposed to regions more generally defined by 

the location of the target and the observers perception of the task goals (observer/task 

centric), we developed a strategy to calculate and describe the spatial relationship 

between all the points in a track (Figure 5D).  We first built the two-point distance 

distribution of the track, P(r). This is done by measuring the distance, r,  from each point 
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in the track to every other point in the track, binning the distances into 0.5cm bins 

centered at, r = 0.5, 1.0, 1.5…. n, and then counting the number of measured distances 

that fall into each bin. We then normalized the bin counts to the total number of distances 

measured, equal to , where N is the number of points in the track (Figure 5D). 

Therefore, highly localized search patterns will have narrow distributions shifted toward 

smaller r, while more dispersed search paths will have wider distributions shifted toward 

larger r. In order to condense this clustering information into a single number, we 

measured the full width at half max (FWHM) of P(r). The HM of P(r) is calculated as the 

maximum value of P(r)/2 and the two r values, r+ and r-  for which P(r) = HM are then 

found from the distribution.  The FWHM is then calculated as FWHM = r+ - r-  Note that 

it is not necessarily accurate to interpret P(r) as a probability distribution, that is using 

P(ri) to calculate the probability of finding a second track point within + 0.5cm of a 

radius, ri measured from an initial track point. This interpretation fails due to the finite 

size of the maze pool. The finite size of the pool constrains the area the animals are able 

to explore, and thus width of the measured P(r) distributions.  Despite this limitation, the 

FWHM values can still be employed as a direct measure of track localization, or rather, 

the clustering of locations visited within the animal‟s search path.  We define FWHM as 

“Path Dispersion” because the measure increases with an increase in the distribution of 

the path taken by the animal over a larger area of the pool. 

 

Object Recognition 

The experiment was performed as described in (Bevins and Besheer, 2006) 

Briefly, mice were individually habituated to an open-field round container (30 cm in 

diameter x 30 cm in height) for 15 minutes. The training session followed the habituation 

session by 10 minutes. During the training session, two novel objects were placed in the 

open field, and the animal was allowed to explore for 20 min. All trials were recorded by 

video, and measures of time spent exploring each object, time to first make contact with 

an object, percent thigmotaxis, and which object was first approached were scored. 

Criteria for active exploration included sniffing, touching and circling the objects.  After 

a delay from initial exploration of one hour, the animal was placed back into the same 

box in which one of the familiar objects during training was replaced by a novel object 
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and allowed to explore freely for 15 min. A preference index, a ratio of the time spent 

exploring the novel object (retention session) over the total time spent exploring both 

objects, was used to measure recognition memory. Data were calculated as mean ± SEM. 

Significant differences from chance performance were determined by Wilcoxon-signed 

rank test, with α level of 0.05.  Chance performance was assumed to be 50% time at each 

object. 

 

Three Chambered Social Preference Test  

This test was performed as described in (Moy et al., 2004) The test was performed 

in three phases: (A) Habituation. The test mouse was first placed in the middle chamber 

and allowed to explore for 10 min, with the doorways into the two side chambers open. 

Each of the two sides contained an empty wire cage. The wire cages were 11 cm in 

height, with a bottom diameter of 10.5 cm.  A weight was placed on the top of each cage 

to prevent movement. Wire cages were cleaned with EtOH between trials and washed 

thoroughly at the end of each testing day. (B) Sociability. After the habituation period, 

the test mouse was enclosed in the center compartment of the social test box, and an 

unfamiliar mouse (a group housed “stranger” mouse), was placed in one of the wire cages 

of the side chambers chosen semi-randomly.  This insured a mixture of right and left 

locations were tested within each group and accounted for potential biases in side 

preference. After the stranger mouse was in place, the test mouse was allowed to explore 

the entire social test box for a 10-min session. Sessions were recorded by video and 

scored by two blinded and trained observers.   Number of approaches of stranger and 

object were scored.  Total time and track distribution within each chamber was calculated 

using Image Pro Plus, and percentage of time spent near either cup was the metric 

displayed in Figure 6. (C) Preference for social novelty.  Immediately following the 

sociability test, each mouse was tested in a third 10-min session with a choice of the 

familiar stranger vs. a novel group housed stranger mouse of the same strain, age and sex. 

The same measures as mentioned above were calculated and social novelty preference 

could be calculated by comparing time differences in the interactions with the familiar 

and novel mouse. Significance was determined by repeated measures ANOVA and the α 

level set at 0.05. 
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Spine Density and Morphology Quantification 

Brains from 3 animals of each genotype were sectioned immediately after 

euthanasia by isoflurane followed by decapitation.  150μM thick coronal sections were 

cut at room temp on a vibratome and placed into 2% PFA for 30 minutes. Sections were 

then placed on slides and covered in 1xPBS.  DiI crystals (Sigma-Aldrich®) were 

sparsely inserted into stratum oriens of region CA1 in the dorsal hippocampus as well as 

directly in the synaptic target layer SLM or SR. Tissue was monitored for distribution of 

DiI labeling between 1-5 days. 4-5 serial sections containing both hemispheres from each 

animal were labeled with DiI.  12 well isolated dendrites from both proximal Sr, and 

SLM were imaged at 100x magnification using a Nikon C1 confocal microscope (see 

above) and quantified.  Results were averaged across three animals for each genotype, 

yielding a total of 36 individual dendrites analyzed per hippocampal layer, per genotype 

(see Supplemental Experimental Procedures for details on dendritic branch selection 

criteria). Composite images were created from 10-20µm thick z-stacks taken at 0.2µm 

increments with a small pinhole.   Spine density, number of spines per 10 µm of dendrite, 

and spine head area were measured using ImageJ.  Prior to outlining spines for analysis, 

images were converted to 8-bit greyscale, deconvolved and thresholded until individual 

spines were clearly dissociable.   

 

Auditory Cortex Electrophysiology 

Briefly, each mouse was anesthetized and the left temporal cortex was surgically 

exposed (craniotomy and durotomy) and covered with 1.5% agarose in 0.9% saline. 

Tungsten electrodes, with 1-2 MΩ impedances were employed to find cortical regions 

with strong multiunit responses to click trains, determined audio-visually. Click trains 

were presented at 80 dB SPL, for 25 ms in duration with inter-stimulus intervals of 500 

or 1000 ms.  Each mouse had 1-4 recording sites in layer 3-5 of auditory cortex (Mean 

depth = 419 µm, Range: 314-580 µm, n = 21). The rate level function measures neural 

spike counts driven by increasing sound amplitude in dB (SPL) for white noise (WN) 

clicks. The number of spikes were summed from a 50 ms window, beginning at the 

stimulus onset using a spike detection threshold of 3 SD over 40 trials. Subjects: 5 control 
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male mice with 11 recording sites (range of 1-4) and 4 transgenic male mice with 10 

recording sites (range of 1-3) were used for these experiments. Significance was 

determined with repeated measures ANOVA with the α level set at 0.05. 
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CHAPTER IV 

CONCLUSIONS 

 

PARALLEL MECHANISMS FOR INITIATING THE EARLY STAGES OF 

GLUTAMATERGIC SYNAPSE FORMATION MAY EXIST 

Using a cell adhesion molecule receptor recruitment assay or CAMRA we have 

identified the 4.1 proteins, protein 4.1B and 4.1N, as postsynaptic effector molecules of 

the recently discovered cell adhesion molecule SynCAM1.  My studies have revealed 

three important and novel findings: 1) SynCAM1 interacts with protein 4.1B to directly 

recruit NMDARs shortly after synaptic-like contact; 2) Postsynaptic protein 4.1B 

enhances presynaptic differentiation through SynCAM1; and 3) proteins 4.1B and 4.1N 

differentially regulate glutamate receptor recruitment to sites of adhesion.   Studies in 

cultured hippocampal neurons suggest that 4.1B plays an important role in the 

recruitment of NR2B-containing NMDARs to synapses during development. Thus, these 

studies delineate a novel function for 4.1 proteins in the recruitment of specific glutamate 

receptor types to synapses. This result adds 4.1B proteins to the panoply of proteins that 

impact the trafficking of the early arriving glutamate receptor subunit NR2B, suggesting 

that some functions of SynCAM1 are redundant or act in parallel with other cell adhesion 

molecules that are expressed over similar time periods in order to ensure that building a 

functional synapse occurs properly.  Interestingly however, SynCAM1 only knockout 

mice do exhibit a behavioral phenotype  (Takayanagi et al., 2010). This result suggests 

that there are some functions of SynCAM1 that change the properties of the synapse in 

ways that have important consequences on behavior, but cannot be compensated for in its 

absence. It is also not uncommon that a single protein may play distinct functional roles 

at multiple stages of development.  Perhaps SynCAM1‟s early roles are redundant with 

other proteins, but it may serve later functions at the synapse for which compensatory 

mechanisms do not exist. As synaptic function is critically dependent on the complement 

of glutamate receptors present, it will be interesting to identify the full array of receptors 

types that are affected by manipulations of SynCAM1 levels.  Therefore, determining 

how SynCAM1 may perform both similar and unique molecular functions at the synapse 
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relative to other adhesion molecules is important to understanding the development of the 

brain and behavior.   

 

THE DEVELOPMENT OF COMPLEX FORMS OF BEHAVIOR CRITICALLY 

RELY ON SYNAPTIC MOLECULES THAT SUPPORT THE MODIFICATION 

OF SYNAPSES WITH EXPERIENCE 

Our results validate that specific NL1 intracellular signaling domains regulate late 

stages of synaptic maturation in vivo, and provide the first evidence to our knowledge, 

that artificially manipulating the relative proportion of glutamatergic synapses in one 

state versus another in vivo within specific neural systems alters behavioral traits that 

change as a function of development.  NL1 has been implicated in the NMDAR and 

activity dependent synaptic elimination that shapes the development of complex features 

of sensory processing (Chubykin et al., 2007).  Such synaptic refinement activities are 

known to underlie critical periods for the rearrangement of primary sensory neural 

circuits and the development of specific aspects of sensory perception. If synaptic 

pruning is not appropriately carried out during these discrete windows of time, there are 

lasting deficits in neural circuit organization and sensory perception throughout life 

(Hubel and Wiesel, 1970). It is therefore interesting to speculate that NL1 may regulate 

similar developmental processes specifically within mnemonic systems when they are 

most susceptible to experience dependent modification.  

 Indeed, it is interesting to speculate that the development of the cortical and 

hippocampal circuits required to form explicit types of memory in the adult possess such 

a sensitive period earlier in development.  There are some studies to suggest that such a 

developmental period exists (Langston et al., 2010; Scott et al., 2011).   Previous studies 

of the development of mnemonic systems suggest that prenatal and early postnatal 

periods of development are particularly vulnerable to pharmacological insults.  That is, 

introduction of particular substances that interfere with global aspects of brain function 

during discrete stages of development can lead to lasting consequences on learning and 

memory behaviors in mice (Meng et al., 2011).  It is unclear which developmental 

processes may account for these observations as entire endocrine systems and synapse 

types were ubiquitously impacted by these perturbations.  Therefore, interesting future 
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experiments will be to specifically assess whether NL1 may critically regulate such a 

sensitive period for the development of mnemonic and social systems in juvenile mice. 

Such a study interpreted in light of the data described in this dissertation would point 

more directly to the specific synaptic activity that has a bearing on the development of 

learning and memory behavior.  This would constitute a thorough understanding of the 

how, when and where NL1 acts in order to impact behavior, and studies such as these are 

the necessary first steps towards understanding the biological basis of behavior. 
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APENDIX A 

SUPPLEMENTAL  

MATERIAL FOR CHAPTER II 

 

Supplemental Figure 1. Recruitment of effector molecules to sites of HA-SynCAM1 

mediated adhesion with microspheres.  HA-SynCAM1 clustering via microspheres 

recruits protein 4.1B, CASK and Syntenin1, but not GRIP1 and PSD-95 (arrowheads).   
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Supplemental Figure 2. Protein 4.1 puncta decrease in intensity during development. 

(A) Immunolabeling for protein 4.1B, synapsin I and PSD-95 at 4 and 12DIV 

demonstrates an increase in the number of overall 4.1B puncta and decrease in their 

intensity. (B) Quantification of the mean puncta intensity for protein 4.1B 

immunolabeling over time in culture. Errors bars are s.e.m. (n = 11, **p < 0.01). 

 

 

 

 

 

 

 

 

 



 

91 

 

 

 
Supplemental Figure 3. Analysis of mEPSCs after ifenprodil application. We measured 

mEPSC frequency in transfected hippocampal neurons before and during application of 

the NR1/NR2B containing NMDAR specific antagonist ifenprodil. The only significant 

difference seen was between 4.1B overexpression and 4.1B knock-down with shRNA (p 

= 0.02, n =12). 
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APPENDIX B 

SUPPLEMENTAL MATERIAL FOR CHAPTER III 

 

 
Supplemental Figure 1. (A) Hippocampal section stained for panShank imaged at 10x, 

scale bar equals 200 µm, white box indicates area depicted in (B) which is magnified at 

60x.  Scale bar equals 20 µm, white box is area enlarged, de-convolved and analyzed in 

smaller panels to right.  Scale bar in small panel is 5µm, and lower right panel is the 

above after black and white inversion to ease perception of puncta characteristics.  
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Supplemental Figure 2. Additional 

measures of learning and memory 

behaviors in transgenic mice. (A) 

Exemplary tracks from controls 

from the same cohort of animals 

tested in Figure 2 in the Morris 

water maze. The tracks of the 

controls demonstrate that they 

performed as expected in the task, 

persisting in searching a discrete 

area over the former location of the 

platform. (B) Detailed behavioral 

analysis of the reversal behavior for 

the HA-NL1FL line of mice on day 

two (R2) of reversal training. The 

number of crosses over the former 

location was higher in the HA-

NL1FL mice as shown by the 

middle graph (1.4 ± 0.432 vs. 3.4 ± 

0.5, controls vs. HA-NL1FL mice 

respectively, p < 0.05, Student‟s t-

test n = 10 pairs). The percent time 

spent in the quadrant that formerly 

contained the platform vs. the time 

spent in the new platform location 

by the HA-NL1FL mice and 

controls was different (Old location: 

13.7 ± 0.7 vs. 39.2 ± 3.2% 

respectively, controls vs. HA-

NL1FL mice respectively, p < 0.01 

New location: 34.2 ± 5.5% vs. 10.2 

± 2.9%, p < 0.01, Student‟s t-test, n 

= 10 pairs. (C) Object recognition 

results presented as percent time 

spent with the new object after a 

1hour delay.   HA-NL1FL mice 

failed to prefer the novel object 

after a 1 hour delay (76.1 ± 4.5% 

vs. 49.9 ± 5.4% novelty preference, 

controls vs. HA-NL1FL mice 

respectively, p < 0.01 for controls), 

while HA-NL∆C mice performed 

no differently than controls; both 

groups preferred the novel object 

(62.2 ± 3.7% vs. 60.2 ± 1.5% 

novelty preference, controls vs. HA-
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NL1∆C respectively, p < 0.05 in both cases). (D) Novel object recognition after a 24 hour 

delay between exposures revealed a deficit in recognition memory in the HA-NL1∆C 

mice (65.8 ± 3.4% vs. 49.8 ± 8.8%, controls vs. HA-NL1∆C mice respectively, p < 0.05 

for controls and n.s. for HA-NL1∆C).  Error bars are SEM, significance was determine 

by Wilcoxon-signed rank test, n = 20, unless otherwise noted and * = p < 0.05, ** = p < 

0.01 and *** = p < 0.001. 

 

 

 
Supplemental Figure 3. Western blot data from synaptosome preparations and complete 

statistical analysis of intensity level differences. (A) Blots depict representative AMPA 

subunit levels from a member of the control group (left lane) and the HA-NL1FL mice 

(right lane).  Levels trended towards an increase for both GluR1 and GluR2, but never 

reached significance.  (B) Similar results were seen for the HA-NL1∆C mice. Error bars 

are SEM, and significance was determined with Student‟s t-test, 
#
 = p < 0.1, * = p < 0.05, 

** = p < 0.01  
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and *** = p < 0.001.  (C & D) Summary statistics for levels of all synaptic proteins 

analyzed from hippocampal synaptosome fractions from (C) controls vs. HA-NL1FL 

mice and (D) controls vs. HA-NL1∆C mice. 

 

Supplemental Figure 4. Aggressive social interactions are only affected in the HA-

NL1∆C mice. (A) Attack frequency during the resident-intruder task is depicted in the 

left graph for controls (black) and  HA-NL1FL mice (red).  Win frequency during the 

dominance tube test is graphed to the right. No difference between the two groups was 

observed during either test. (B)  HA-NL1∆C mice (red)  were less aggressive as they 

attacked less frequently than controls during the resident intruder-test (Left graph, 16.7 ± 

1.1% attacked vs. 56.7 ± 3.3%, p < 0.025, RMANOVA, n =  9 pairs, Tukey‟s post hoc) 

and lost more bouts in the dominant tube test (right graph,  only won 30 ± 11% of bouts 

vs. 63 ± 13 %, p < 0.05, RMANOVA, n =  9 pairs, Tukey‟s post hoc).  Error bars are 

SEM, * = p < 0.05 and ** = p < 0.025. 
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Supplemental Experimental Procedures 

Immunocytochemistry, Microscopy and Image Processing  

Slides were blocked in a 1% Roche Block (Roche) and 10% normal goat sera 

solution in PBS for 1 hr at room temperature.   Sections were incubated with the 

following primary antibodies in the block solution overnight at 4°C:  HA (mouse IgG1 

Bethyl, TX) 1:300, PSD95 (mouse IgG2a 28/43 NeuroMab, CA) 1:400, Synapsin1 

(rabbit polyclonal Millipore, CA) 1:400, panSHANK (mouse IgG1 N23B/49 NeuroMab, 

CA ) 1:400 and NR2B (mouse IgG2a N59/36 NeuroMab, CA) 1:300.  Slides were 

washed 3x 5 minutes in PBS at room temperature with gentle agitation. Alexa Fluor dye 

labeled secondary antibodies (Invitrogen), 1:500 were incubated for 2 hours at room 

temperature.  Slides were washed 3x 5 minutes with PBS and mounted in Fluoromount 

G+DAPI (SouthernBiotech). 

 

Synaptosomal Preparations and Western Blotting 

Primary antibodies used in western blotting:  PSD95 (mouse IgG2a 28/43 

NeuroMab, CA), Synapsin1 (rabbit polyclonal Millipore, CA), NR1 (mouse IgG1 BD 

Pharmingen), NR2B (mouse IgG2a N59/36 NeuroMab, CA), NR2A (rabbit abcam, MA), 

Neuroligin1 (mouse IgG1 N97A/31 NeuroMab, CA), Neuroligin1 (mouse IgG1 4C12 

Synaptic Systems, Germany), HA (rabbit Bethyl, TX), Actin (mouse IgG2 Millipore, 

CA), Gephyrin (mouse IgG1 Synaptic systems, Germany), GluR1 (rabbait abcam, MA), 

GluR2 (mouse IgG2a Millipore, CA), panSHANK (mouse IgG1 N23B/49 NeuroMab, 

CA), Pick1 (mouse IgG1 L20/8 NeuroMab, CA), SAP97 (mouse IgG1 K64/15 

NeuroMab, CA), SAP102 (mouse IgG1 N19/2 NeuroMab, CA). Western blots were 

quantified using Image Pro Plus® and intensity was expressed as percentage of control. 

Statistical analysis was performed using Students t-test with α level set at 0.05. 

 

Behavior and  Morris Water Maze Details 

In the visible platform test, each animal was given 4 trials per day, across 2 days, 

to swim to an escape platform cued by a textured cylinder extending above the surface of 

the water. For each trial, the mouse was placed in the pool at one of four possible 

locations (randomly ordered), and then given 60s to find the cued platform.  Once on the 
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platform, even if placed there, they remained for at least 10 seconds. Measures were 

taken of latency to find the platform, swimming distance, and swimming velocity, via the 

Image Pro Plus® automated tracking system and custom Matlab programs. Following 

visual training, mice were trained on the hidden platform test.  Using the same procedure 

as described above, each animal was given four trials per day, for up to 9 days, to learn 

the location of the submerged platform. At the end of the day that the group met the 15s 

criterion for learning, or else on day 9 of testing, mice were given a 1-min probe trial in 

the pool with the platform removed. Quadrant search was evaluated by measuring percent 

of time spent in each quadrant of the pool, path length to first cross and number of 

crosses of former location. Following the acquisition phase, mice were tested for reversal 

learning, using the same procedure but with the target moved to the opposite quadrant.  

 

Elevated Plus-maze Test for Anxiety-like Behaviors 

Mice were given one 5-min trial on the plus-maze, which had two closed arms, 

with walls 40 cm in height, and two open arms. The maze was elevated 50 cm from the 

floor, and the arms were 21 cm long. Animals were placed on the center section (9.5 cm 

× 9.5 cm), and allowed to freely explore the maze. Measures were taken of time on, and 

number of entries into, the open and closed arms. Percent open arm time was calculated 

as 100 × (time spent on the open arms/ (time in the open arms + time in the closed arms). 

Percent open arm entries were calculated using the same formula, but using the measure 

for entries. 

 

Social Dominance Tube Test  

The dominance tube apparatus (Messeri et al., 1975) was constructed out of 

plexiglass and consisted of a 36 cm long tube with a diameter of 3.5 cm that is attached 

on either end to a start cylinder (measuring 10 cm in diameter).  At the center of the tube 

was a removable perforated partition that allowed for olfactory investigation, but not 

physical contact. A singly housed experimental mouse and an unfamiliar group-housed 

mouse of similar age, weight and sex were placed in opposite start boxes and allowed to 

habituate to the apparatus for 3 min. When the animals met in the middle of the tube after 

the habituation period the center partition was lifted. The test was video recorded and 
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concluded once one mouse had forced the other back. In the event of a tie, where the 

mice managed to squeeze past each other, the trial was noted but not included in the 

comparison statistics.  Each mouse was subjected to 3-4 bouts depending on the rare 

event of a tie. Dominance behavior was measured over 3 separate trials for each mouse as 

compared to three different strangers. Start sides were randomized.  Significance was 

determined by repeated measures ANOVA with α level set at 0.05 and Tukey‟s post hoc 

test to report significant differences in mean performances. 

 

Resident-Intruder Test  

Mice were housed individually for 7–8 days before an unfamiliar group-housed 

control mouse of the same sex and comparable weight was introduced to the resident's 

home cage.  Food was removed 1 hour prior to testing and all mice were habituated to the 

testing room for 1 hour prior to introduction of the intruder mouse.  Behavior was 

monitored and video recorded for the first 10 min after introduction of the intruder, or 

until an attack occurred, whichever came first.  Measures of attack frequency, attack 

latency, dominant mounting, investigatory sniffing (sniffing directed toward the partner), 

chasing and grooming were recorded as described (Duncan et al., 2009).   All measures 

were scored by two blinded observers and the total scores between the two observers 

were averaged.  Animals were subject to three rounds of intruder presentation. 

Significance was determined by repeated measures ANOVA and the α level set at 0.05. 

 

Spine Density and Morphology Quantification 

Neurites were selected for analysis on the basis of: 1) location within the 

hippocampal stratum, 2) isolation from neighboring neurites, 3) clarity of spine labeling, 

4) close proximity to tissue surface to minimize light scattering, 5) low frequency of 

regularly spaced varicosities around 2µm in diameter and 6) validation that the neurite 

came from a CA1 pyramidal neuron.   Spine head area in control animals within CA1 

SLM ranged from approximately 0 .1µm
2
 to 0.78 µm

2
, closely resembling measures 

reported in other studies of spine head size in SLM. 
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Auditory Cortex Electrophysiology 

Mice were anesthetized with a Ketamine (100 mg/kg body mass), Medetomidine 

and Acepromazine cocktail, and given supplemental doses to maintain anesthesia. 

Atropine and Dextromethasone were also administered to reduce tracheal secretions and 

cerebral edema. The mouse‟s temperature was maintained at 37 +/-1 C.  
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