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An examination of evidence-based practices for mathematics reveals that a solid 

grasp of key algebraic topics is essential for successful transition from concrete to 

abstract reasoning in mathematics. In addition, experts indicate a need to emphasize 

formative assessment to allow results to inform instruction. To address the dearth of 

technically adequate assessments designed to support data based decision making in 

algebra, this study examined (a) the validity of algebra and mixed computation 

curriculum-based measurement for predicting mid-year general math and algebra 

outcomes in 8th grade, (b) growth rates for algebra and mixed computation CBM in the 

fall of 8th grade, (c) whether slope is a significant predictor of general math and algebra 

outcomes after controlling for initial skill, and (d) whether growth rates differ for pre-



v 

algebra and algebra students. Participants were 198  eighth grade pre-algebra (n = 70) and 

algebra (n = 1 28) students from three middle schools in the Pacific Northwest. Results 

indicate moderate relationships between fall performance on mixed computation and 

algebra CBM and winter SAT - 1  0 and algebra performance and significant growth across 

the fall. Growth was not found to predict general math and algebra outcomes after 

controlling for initial skill. Future studies should examine (a) growth rates over an 

extended period of time with a larger sample of classrooms, (b) instructional variables 

that may impact growth across classrooms, and (c) the impact on student performance 

when data gleaned from the mixed computation and algebra CBM are used to support 

data based decision making in middle school algebra and pre-algebra classrooms. 
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CHAPTER I 

INTRODUCTION 

1 

According to the 2007 Trends in International Mathematics and Science Study 

(TIMSS), of 36  and 48 countries that assess students in the 4th and 8th grades, U.S.  

students ranked 1 3 th and lith, respectively (NCES, 2009). Based on the results of the 

same study, only 6% of eighth graders in the United States scored at the advanced level 

in mathematics compared to nearly 40% of the students from the highest performing 

countries. Within U.S. borders, results from the 2009 National Assessment of 

Educational Progress (NAEP) indicate that although there are small upward trends in 

student math performance in grade 8,  only 39% and 34% of students scored in the at or 

above proficient category in grades 4 and 8 respectively, and gaps between subgroups are 

growing. For instance, only half as many 8th grade students categorized as socio­

economically disadvantaged scored in the at or above proficient category when compared 

to peers from higher socioeconomic backgrounds, and only 9% of students with 

disabilities met the same standard (NAEP, 2009). As evidenced by historical trends of 

the NAEP and TIMSS assessments, mathematics achievement in the United States is 

likely to continue to lag behind the achievement of other nations, unless mathematics 

education in the U.S .  receives additional attention in research and practice. 



Recommendations for Mathematics Education 

In 200 1 ,  the National Research Council (NRC) established a panel of experts to 

confer on the current state of mathematics education in the United States, emphasizing 

the variability that exists in math standards, curricula, development and foci of 

assessments, and teaching practices from state to state, ultimately leading to varying 

degrees of math proficiency between states and other countries. As a result, the NRC 

made several recommendations, including (a) coordinating curriculum, assessment and 

instruction materials, and professional development around mathematically-focused 

school improvement goals; (b) improving students' mathematical learning through 

coordinated, continual, and cumulative reliance on scientific evidence and systematic 

evaluation; and (c) conducting additional research "on the nature, development, and 

assessment ofmathematical proficiency" (NRC, 200 1 ,  p. 4 1  0). In short, the findings of 

the NRC with respect to the current state of mathematics demonstrate a need for 

increased understanding about mathematics instruction and assessment. 

2 

In congruence with NRC findings, the National Math Advisory Panel (NMAP) 

released its recommendations in early 2008, identifying specific areas for increased focus 

in mathematics instruction, highlighting the need to overhaul mathematics curricula, and 

emphasizing algebra as a point of access for students moving from concrete to abstract 

mathematics. Recommendations from the final NMAP report demonstrate the need for 

additional research to support instructional practices in mathematics and a multi-pronged 

instructional focus to emphasize conceptual understanding, procedural fluency, and 
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automaticity with basic calculations (NMAP, 2008). In addition, the NMAP report 

identified several areas for continued research, including "ways to enhance teachers' 

effectiveness, including teacher education, that are directly tied to objective measures of 

student achievement, and item and test features that improve the assessment of 

mathematical knowledge" (NMAP, 2008, p. xxvi) . In short, the National Math Advisory 

Panel called for increased study of evaluation procedures used to examine skills that lead 

to mathematical proficiency. 

Other NMAP (2008) recommendations specifically related to assessment include 

a call for regular use of formative assessment results to design and individualize 

instruction, national assessments to document and track student achievement and 

progress on critical topics in math, increased standards for technical adequacy of 

assessments, and an increased focus on algebra. Consistent with the NMAP report, the 

National Council of Teachers of Mathematics (NCTM) also recommends that teachers be 

equipped to identify what students know and need to learn, and supports the use of 

assessments that provide direct information to teachers and students about the learning 

process (NCTM, 2000). Based on findings from NRC and NMAP reports, coupled with 

NCTM recommendations, it is clear that additional research on mathematics assessment 

designed to advance instruction is critical to increase student math outcomes. 

Evidence-Based Practices in Mathematics 

Additional expert reports discuss and recommend evidence-based practices for 

mathematics instruction and assessment (e.g. ,  Gersten, Chard, Jayanthi, Baker, Morphy, 



& Flojo, 2008). These practices include the use of explicit, systematic instruction; word 

problem instruction based on underlying structures; fact fluency instruction; model 

representations and heuristics; multiple representations and a range of examples; student 

verbalization of math learning; peer assisted learning; and formative assessment 

procedures linked to feedback. In addition, experts in the fields of mathematics and 

education (e.g., Miller & Hudson, 2007; NMAP, 2008; Wu, 1 999) indicate instruction 

must emphasize multiple types of knowledge throughout learning to support adequate 

understanding of math content, and that precision of language is essential to support 

student integration of new concepts with already learned material. These practices are 

described in greater detail in the following paragraphs. 
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Explicit, systematic instruction. Explicit, systematic instruction is composed of 

instructional delivery principles and instructional design components (Kame'enui & 

Simmons, 1 990). Instructional delivery principles include using appropriate pacing, 

allowing adequate processing time, giving students frequent opportunities to respond, 

monitoring responses, and providiing immediate feedback (Kame'enui & Simmons, 

1 990). Instructional design principles include targeting big ideas, priming background 

knowledge, using strategic integration, employing conspicuous strategies, scaffolding 

learning, and providing judicious review (Kame'enui & Simmons, 1 990). Examples of 

explicit, systematic instruction in the context of mathematics include providing clear 

models for solving problems using a range of examples; giving students ample 



opportunities to practice newly learned skills and share mathematical solutions using 

think alouds; and sharing feedback with students throughout instruction (NMAP, 2008). 
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Word problem and fact fluency instruction. Word problems provide a unique 

context for students to grapple with mathematical problems they might face in the real 

world. In addition, studies that emphasized word problem instruction using underlying 

structures of word problems found statistically significant increases in student problem­

solving skills (Gersten et al., 2009). Fact fluency instruction is also important, because it 

supports automaticity with basic facts, which reduces the cognitive load required when 

students attempt to solve word or other complex problems (Ketterlin-Geller, Baker, & 

Chard, 2008). Although instruction should not focus entirely on fact fluency 

development, it is recommended that mathematics interventions include a daily dose of 

fluency instruction and practice (Gersten et al., 2009). 

Model representations and heuristics. Model representations and heuristics are 

enduring methods for portraying problem attributes or solving processes that can be 

applied across problems. For example, Jitendra and colleagues (e.g., Jitendra, DiPipi, & 

Perron-Jones, 2002; Jitendra, Hoff, & Beck, 1999) have studied the use of schema-based 

problem solving, which employs visual representations of problem-solving processes that 

can be applied to multiple word problem types (e.g., change problems, compare 

problems). As previously noted with respect to word problem instruction, it is 

recommended that instruction represent mathematical ideas using visual images and that 



representations for problem solving focus on underlying problem structures to increase 

generalizability of skills (Gersten et al., 2009) . 

Types of knowledge. Research indicates several types of knowledge are 

important to the development of skills in mathematics (Miller & Hudson, 2007; Wu, 

1999). These types of knowledge include declarative (i.e., knowing "that" with 

automaticity), conceptual (i.e., understanding major concepts, relationships, and 

connections), procedural (i.e., knowing "how" to complete a task or process), and 

conditional (i.e., understanding when and why a strategy can be used; discriminating 

between problems that allow application of strategies and those that don't) .  To build 

these types of knowledge in mathematics, strategies that allow for increased depth of 

knowledge should be employed (Miller & Hudson, 2007). 
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Multiple representations and examples. To support student development of 

conditional knowledge, multiple representations and examples should be utilized 

throughout instruction. Moreover, examples used to illustrate mathematical ideas should 

be carefully chosen to allow students to develop foundational knowledge before students 

grapple with non-examples (Kame'enui & Simmons, 1 990). In addition, Concrete­

Representational-Abstract (CRA) sequences can be used to support depth of 

mathematical knowledge (Miller & Hudson, 2007). Using concrete strategies (i.e., three­

dimensional objects and experiences) builds students' conceptual knowledge. 

Representational strategies (i.e., two-dimensional pictures, drawings, or diagrams) 

support students to develop procedural skills. Abstract strategies (i.e., solving problems 



without pictorial representations or manipulatives) are conducive to ample practice, 

which supports fluency development. 

Precision of language. It is important that precise language is used when 

teaching students mathematical content because (a) mathematics content is vocabulary­

laden, (b) students may commit definitions to memory for later recall, and (c) if slightly 

inaccurate definitions are used, students may confuse concepts and strategy application. 

Research indicates that for language to be precise it must be mathematically correct, 

developmentally appropriate, and longitudinally coherent (Ball & Bass, 2002). 

Student verbalizations, peer assisted learning, and motivational strategies. 
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Research also indicates students who use think aloud or question asking strategies for 

solving problems have improved math performance relative to students who are not 

taught to use these strategies (Gersten et al. ,  2008). Similar to recommendations for 

explicit, systematic instruction, it is suggested that teachers model how to use these 

strategies using examples and non-examples to support accurate application of these 

strategies (Gersten et al. ,  2009). Studies suggest peer assisted learning contributes to 

increased student outcomes when students are trained to monitor and provide feedback on 

each other' s  responses (e.g. ,  Calhoon & Fuchs, 2003). Motivational strategies (e.g. ,  

reinforcing student engagement, rewarding students for accomplishments, having 

students chart their progress) may also support student learning in mathematics, 

especially for students who may have experienced prior failure or difficulties learning 

mathematical content (Gersten et al. ,  2009). 
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Formative assessment. Formative assessment allows educators to obtain 

information about student performance during the learning process. Information gleaned 

from this type of assessment can be used to provide feedback to students about their 

performance and can support teacher decisions about instructional grouping and student 

understanding of recently taught content. Research suggests when the results of 

formative assessment are used by teachers to make instructional modifications and are 

communicated to students, student performance increases (Gersten et al. ,  2008). In 

addition, a recent report from the Institute of Education Sciences (IES; Gersten et al., 

2009) indicates two types of formative assessment (i.e., screening and progress 

monitoring) should be a component of any multi-tiered system of instructional support. 

Given the federal demand for all students to be proficient in mathematics by 20 14  (No 

Child Left Behind, 200 1)  and the implications for the role of formative assessment in 

evaluations for special education service provision (Individuals with Disabilities 

Education Improvement Act, 2004), school systems are beginning to consider how 

mathematics fits within a multi-tiered approach. Therefore, a focus on technically 

adequate formative assessment designed to support instructional decision-making in 

mathematics is particularly crucial. 

Algebra as a Critical Topic 

Although considerably less research has examined mathematics education when 

compared to the area of reading, several major themes have been identified in 

mathematics that can be connected to a broad set of important math skills (e.g., Gersten, 
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Jordan, & Flojo, 2005 ; NMAP, 2008). For example, number sense has emerged as an 

overarching skill in mathematics, foundational to the development of mathematical 

knowledge, despite a lack of definitional consensus about the construct (Gersten et al., 

2005). The literature also reveals some support that students must master basic skills as a 

means of reducing cognitive load when they grapple with higher-level mathematical 

problems (e.g., Gersten & Chard, 1 999; Ketterlin-Geller et al ., 2008; Wu, 1 999). Finally, 

research suggests that algebra serves as the gateway to higher mathematics (Ketterlin­

Geller et al., 2008), providing a bridge between concrete and abstract reasoning (Wu, 

2009). In addition, students who understand algebra tend to be more prepared for 

college, higher-level math courses, and jobs in a technology-driven economy (Checkley, 

2001 ). A number of states require a specific course in algebra for high school graduation, 

25% of all students take algebra prior to entry to high school, and those students who take 

a course in algebra prior to high school entry are more likely to enroll in advanced 

mathematics coursework (Education Commission of the States, 1997). As states move 

toward requiring algebra coursework and/or proficiency for graduation from high school, 

adequate preparation for algebra in the early grades and in middle school becomes 

particularly salient. 

Student mathematical proficiency-the fundamental goal of mathematics 

instruction-is defined as having five independent, yet critical strands, which include (a) 

conceptual understanding, (b) procedural fluency, (c) strategic competence, (d) adaptive 

reasoning, and (e) productive disposition (NRC, 2001 ). The NCTM (2000) reported that 
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students should be able to problem-solve, reason, communicate, connect, and represent 

concepts in the areas of number and operations, measurement, algebra, geometry, and 

data analysis and probability; however, these are specific skills within broad categories of 

mathematics that do not take into account the integrated nature of math learning 

(Milgram, 2005; Wu, 1 999). To initiate a more coherent approach to mathematics 

instruction, in 2006 the NCTM developed a set of focal points for each grade level 

targeting increased focus on fewer topics each year (NMAP, 2008); however, it appears 

that most math curricula have yet to follow suit: At present, mathematics instruction in 

the United States is largely aligned with textbooks that address topics "a mile wide and 

an inch deep" (Schmidt et al. ,  2007). 

Perhaps as a result of the surface level content coverage in textbooks and the 

fragmented nature of instruction in many mathematics classrooms (Schmidt et al. ,  2007), 

there is some confusion about the nature of algebra and the topics that comprise a solid 

initial course in algebra. The NMAP (2008) final report distinguished algebra from 

school algebra, indicating that although the definition of algebra may be broad, school 

algebra can be defined more narrowly in the context of Major Topics of School Algebra 

(i.e., symbols and expressions, linear equations, quadratic equations, functions, algebra of 

polynomials, and combinatorics and finite probability) . In addition, mathematicians 

indicate that five underlying topics in algebra are essential for effective instruction in 

mathematics: (a) variables and constants, (b) decomposing and setting up word problems, 

(c) symbolic manipulations, (d) functions, and (e) inductive reasoning and mathematical 
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induction (Milgram, 2005). These topics in basic algebra provide the foundation for the 

development of broad mathematical knowledge; thus, students need instruction on these 

topics to experience success in mathematics. In addition, research indicates that a focus 

on rational numbers is important to support students in acquiring the abstract reasoning 

skills they will need for success in algebra (Wu, 2009). For educators looking to support 

mathematical proficiency and prepare their students for courses in higher-level 

mathematics, instructional efforts in algebra (and subsequent assessments designed to 

examine learning) should be aligned with these expert recommendations. 

Study Purpose 

Based on the premise that the aforementioned key topics (i.e., Milgram, 2005; 

NMAP, 2008) are those most critical to the development of enduring mathematical 

knowledge, it is essential that math teachers accurately identify (a) skills matched to each 

of these key topics, (b) which of these skills students have mastered, and (c) those skills 

requiring additional instruction. Consequently, the field of mathematics education needs 

access to formative evaluation tools capable of yielding results that provide educators 

with information they need to effectively design and adapt instruction to support student 

progress in skills leading to mastery of key algebra topics. Founded on the premise that 

formative evaluation is necessary for teachers to monitor student progress toward 

understanding mathematical concepts and has been indicated as an evidence-based 

instructional practice, a focus on algebra is critical for success in mathematics, 

technically adequate formative evaluation tools designed to inform teachers about student 
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learning i n  algebra are i n  their infancy, and instruction in middle school has the potential 

to impact student trajectories in mathematics, the purpose of this study is to evaluate the 

technical adequacy of several formative evaluation tools in middle school math with a 

focus on algebra. The following chapter provides additional discussion of the 

development, uses, and technical adequacy of formative evaluation, and solidifies the 

rationale for the present study. 



CHAPTER II 

LITERATURE REVIEW 
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In the last chapter, statistics were cited supporting the need for increased 

emphasis on mathematics education in research and practice. In addition, 

recommendations from experts in the field were discussed, calling for an augmented 

focus on algebra in instruction and assessment. Formative evaluation was indicated as a 

means of assessment necessary to support teachers' access to direct information about 

student learning and an evidence-based practice for improving student outcomes. This 

chapter describes formative evaluation in greater detail, provides examples of types of 

formative evaluation and the decisions that can be made from each, and discusses the 

literature on formative evaluation in mathematics with respect to student outcomes. 

Evaluating the Effects of Instruction 

To comprehensively approach the design and delivery of instruction, teachers 

need assessment tools that provide them with information about student learning, before, 

during, and after the learning process. Specifically, teachers need assessments designed 

to identify student misconceptions, support adaptations to instruction, and evaluate 

student mastery of learning objectives when teachers interpret student results. To this 

end, multiple types of evaluation are useful in schools, including summative and 

formative evaluation. 
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Summative evaluation. Summative evaluation, commonly defined as assessment 

oflearning, indicates the extent to which a student learned the objectives associated with 

the content of the test (Stiggins, 2001 ) .  Examples of surnmative evaluations include end­

of-year state tests, national assessments, and chapter or unit tests. Typically, results from 

surnrnative evaluations allow educators to consider student proficiency with content at 

the end of an instructional period (Ketterlin-Geller et aL, 2008). Results from 

surnrnative evaluation allow educators to consider answers to questions about student 

mastery of content. For example, an entity interested in accountability information, such 

as whether or not students have met mathematics standards at the end of a school year, 

may ask students to complete a test addressing objectives that should have been taught 

during the year to answer questions about student mastery of content. At the classroom 

level, a teacher interested in whether or not students mastered the content taught during 

an instructional unit may give a chapter test to gain insight into the content students 

learned as a result of instruction. Although summative evaluation is an important tool for 

schools to use in reporting and analyzing instructional results, it is outside the scope of 

this study to examine this topic in depth. 

Formative evaluation. In contrast to surnrnative evaluation, which occurs after 

learning, formative evaluation is described as assessmentfo r learning (Stiggins, 2001 ), 

where student scores serve as indicators of overall understanding in a topic (Lembke & 

Stecker, 2007), before or during the learning process. Data gleaned from well-designed 

formative evaluations allow educators to make decisions about student performance 
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while students are still learning a skill (Kelley, Hosp, & Howell, 2008). Several types of 

formative evaluation exist, including screening assessments (i.e., brief assessments 

administered at the beginning of an instructional period to identify students in need of 

additional instructional support), diagnostic tests (i.e. ,  tests that provide information 

about depth of understanding of specifically identified concepts), and progress 

monitoring measures (i.e., frequently administered measures that indicate student 

progress toward objectives over time). 

Screening and diagnostic measures provide useful information for educators 

looking to identify skills needing instruction. Screening measures are typically efficient 

measures given to a large group of students that allow educators to answer decisions 

about student knowledge or skill in a broad mathematical domain. For example, a school 

may choose to administer a screening assessment to all of its students at the beginning of 

the year to identify those students who may benefit from additional support to meet end­

of-year math goals and subsequently provide these students with extra doses of math 

instruction. In contrast, diagnostic assessments probe depth of skill in a domain and are 

administered to a smaller group of students to more narrowly define and hone in on skill 

and knowledge deficits. Results from diagnostic assessments allow an educator to best 

identify an appropriate start point for instruction. In the aforementioned example for 

screening assessments, an intervention teacher may choose to administer to any number 

of her students a diagnostic assessment after screening procedures have occurred, to 

determine the specific objectives she should target in her instruction. Results from 
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screening and diagnostic assessments can support system-level and instructional grouping 

decisions by providing information to educators about the types of services and 

instruction that students may need in order to meet mathematics goals or standards. 

A third type of formative evaluation, progress monitoring, is uniquely positioned 

to inform instructional decisions on an ongoing basis. By definition, "progress 

monitoring is a scientifically based process used to assess students' academic 

performance (relative to a target outcome) and evaluate the effectiveness of instruction" 

(National Center on Progress Monitoring; NCPM, 20 1 0). In order to support these 

proposed uses (i.e., to allow educators make accurate decisions from the results of 

progress monitoring measures over time), it is necessary for measures to be robust 

indicators of important skills, for forms to have roughly equivalent difficulty, and for 

student performance to be reliable across forms (Francis, Santi, Barr, Fletcher, Varisco, 

and Poorman, 2008). Because progress monitoring allows educators to make decisions 

about the effectiveness of instruction while students are learning, progress monitoring is 

well positioned to support teachers' decisions to adapt instruction based on student 

performance results. As a consequence of the described cyclical process of using 

ongoing data to inform instructional changes (see Figure 1 ), progress monitoring carries 

the power to improve student outcomes. 
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Figure 1. Process for using formative data to inform instructional decisions. 
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Formative evaluation is essential if educators intend to make timely instructional 

decisions about the supports needed to ensure students make progress toward annual 

goals and objectives (Chard, Ketterlin-Geller, Jungjohann, & Baker, 2009). As noted in 

the last chapter, Gersten et al. (2009) recommends the use of formative assessment for all 

students in a multi-tiered system of instruction, to identify students at-risk for failure and 

monitor the effectiveness of interventions for struggling students. In addition, the 

literature reveals support for formative evaluation as a means for increasing student 

outcomes in mathematics. 

Review of Formative Evaluation Studies 

Recent meta-analyses suggest that formative evaluation can have moderate effects 

in increasing student outcomes when the results of assessments are communicated to 

teachers and students (Gersten, Baker, & Chard, 2006; Gersten et al. ,  2008). Fuchs and 
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Fuchs ( 1990) studied the use of Curriculum-Based Measurement (CBM) to support 

instructional decision-making. In the study, teachers in the treatment condition 

administered CBM probes two times a week for several months. Teachers set goals, 

graphed student progress using a computer-based program, and received decision rule 

prompts from the program to adapt instruction or goals given student progress. For those 

in the basic treatment plus skills analysis condition, teachers were also given data 

displaying student mastery of skills and problem types attempted. Results revealed 

strong positive effects for students whose teachers were in the treatment condition 

containing skills analysis when compared to either the control group or basic treatment 

condition. 

Fuchs, Fuchs, Phillips, Hamlett, and Karns ( 1 995) studied a peer-tutoring program 

in mathematics that systematically incorporated formative assessment and communicated 

feedback to teachers and their pupils, resulting in positive outcomes for students. In this 

study, the teacher assessed student skill weekly using progress monitoring measures. 

Biweekly, research assistants summarized results of progress monitoring assessments and 

gave reports to the teacher to support any necessary instructional modifications. Also 

biweekly, students were given computer-generated graphs of their performance over time 

and were trained to ask a series of questions about their performance and how they might 

improve in the next two-week period. During peer tutoring, tutors were trained to give 

feedback to students whenever they wrote a digit, praising correct responses and 

providing additional help when tutees responded incorrectly. Combined with other 



components of the intervention, Fuchs et al. ( 1995) found positive effects of the peer 

tutoring program for students when compared to students in the contrast condition. 
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Calhoon and Fuchs (2003) studied the effects of Peer-Assisted Learning 

Strategies (PALS) and the use of CBM on math outcomes for high school students with 

disabilities. In the treatment condition, students completed weekly CBM probes and 

participated in PALS sessions with peers two times a week for 30 minutes each session. 

Teachers were given weekly graphs of student performance and class reports 

summarizing individual student mastery of skills and normative data. The researchers 

found an effect size of .40 for the PALS + CBM condition using a standardized measure 

of math computation skills; however, they also found a smaller negative effect for PALS 

+ CBM with respect to student performance on a state high school graduation exam with 

a greater focus on math application items. 

Allinder, Bolling, Oats, and Gagnon (2000) studied teachers uses of curriculum­

based measurement across three conditions: (a) control, (b) CBM only, and (c) CBM plus 

self-monitoring. All students in the CBM conditions were trained to use a computer­

based progress monitoring system and taught a test-taking strategy that promoted 

efficient completion of problems addressing mastered skills. Teachers were taught a set 

of decision rules for use when examining student performance graphs related to changing 

student goals and modifying instruction. Teachers in the CBM plus self-monitoring 

condition had regular conference sessions with research assistants, where they reflected 

on student performance and developed instructional plans for the next two-week period. 
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Results of the study indicated that students of teachers in the CBM plus self-monitoring 

condition made the greatest gains of the three groups on a standardized math computation 

test, which suggests teacher use of formative assessment data has the potential to 

positively impact student performance in math. 

Fuchs, Fuchs, and Prentice (2004) studied the effects of teaching for transfer and 

using self-regulation strategies in math problem-solving lessons delivered over three 

weeks for students with math and reading disabilities. Students were taught rules to 

reach problem solutions and features of problems that transferred to other problems. 

Throughout lessons, students scored independent work, charted their scores, set a goal for 

the next day's work, and were asked to make connections between transfer lessons and 

real world experiences. The researchers found that students at risk for math and reading 

disabilities demonstrated less improvement on an outcome measure than did students at 

risk for math or reading disabilities or no disabilities at alL However, results also 

indicated that students in the treatment condition made greater improvement than 

students in the control condition, across all subgroups. Study findings, coupled with 

authors' previous work examining the same treatment condition (e.g., Fuchs et al., 2003), 

indicate self-regulation (i.e., feedback to students) is effective for increasing student math 

outcomes (Fuchs et al. ,  2004). 

Taken together, these studies indicate that formative evaluation plays an 

important role in mathematics instruction and has the potential to increase student 

outcomes when results are communicated to teachers and students. Given the critical 



2 1  

nature of algebra skill development and the utility of formative evaluation for improving 

student outcomes, it is important that research examine formative evaluation in the 

context of algebra, to support the aim of providing teachers with tools that will allow 

them to be more effective instructors of algebra content. In addition, because progress 

monitoring has been indicated as a means of formative evaluation that permits timely 

instructional decision-making and evaluation of annual goals and objectives (Chard et al. ,  

2009), progress monitoring tools for mathematics should be  examined. 

Progress Monitoring in Mathematics 

As defined at the beginning ofthis chapter, progress monitoring is a method of 

formative evaluation that is designed to support educators' instructional decisions. 

Specifically, the results from progress monitoring measures can be used to assess student 

progress and guide instructional adaptations that support student success. A 

recommended means for assessing sufficient progress and using performance data to 

inform instructional decisions is the use of general outcomes measures (GOMs), such as 

CBM (Burns, Deno, & Jimerson, 2007; Hintze, 2008). 

Curriculum based measurement. CBM was developed in the late 1980's as a 

subset of curriculum-based assessment, with a distinct set of qualities designed to support 

educators in collecting regular data, graphing student progress, and evaluating student 

learning over short periods of time (Shinn & Bamonto, 1 998). The essential features that 

distinguish CBM from other formative evaluation methods include its: (a) sensitivity to 

differences in performance among individuals, (b) sensitivity to differences in 
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performance within individuals over time, (c) use as an indicator of student performance, 

and (d) focus on basic skills (Shinn & Bamonto, 1998) . To support these principles, 

CBM tasks are typically brief, focus on long-term goals, and utilize standardized 

administration procedures (Foegen, 2006). Because of the characteristics that make 

CBM unique, CBM measures can indicate student skill in a topic at a specific time and 

provide data on how proficiency changes over time (Foegen, 2006) . Although originally 

established to support special education implementation (Fuchs & Shinn, 1989), many 

teachers use CBM as a method of formative evaluation in reading and mathematics to 

determine whether instruction and intervention contribute to student learning (Deno, 

2002; Deno, Fuchs, Marston, & Shin, 2001; Shinn & Bamonto, 1998). 

CBM and m athematics. In mathematics, the bulk of the research examining the 

use of CBM for progress monitoring has focused on implementation in the elementary 

grades. Clarke and Shinn (2004) studied several CBM measures designed for early 

intervention in mathematics and determined that the early math measures were reliable 

and valid for predicting end of year outcomes in mathematics for first-grade students. 

Fuchs, Fuchs, Hamlett, Walz, and Germann (1993) examined growth rates for math CBM 

to support instructional planning in elementary grades. Similarly, VanDerHeyden and 

Burns (2005) found that the use of CBM for instructional planning resulted in improved 

student skill in one elementary school. Burns, VanDerHeyden and Jiban (2006) studied 

the relationship be�ween student performance on the SAT -9 and correct digits on basic 

and mixed skill probes in an attempt to define categories of performance for math CBM. 
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In this study, fluency scores demonstrated a moderate positive correlation (r = .55) with 

SAT-9 performance for 2nd_5th grade students (Burns et al. ,  2006). In addition, a more 

recent meta-analysis indicated an overall small to moderate effect size for the use of 

CBM when the results of progress monitoring assessments were used to inform 

instructional decisions (Gersten et al. ,  2008). 

Although research on progress monitoring in mathematics is beginning to receive 

increased attention in the elementary grades, research on the use of CBM to assess 

secondary mathematics skills is limited. Gersten and Chard ( 1999) discussed the 

correlation between number sense and outcomes for secondary students, emphasizing 

automaticity as a critical skill for success in advanced mathematics. Helwig, Anderson, 

and Tindal (2002) studied the usefulness of concept-based CBM and found strong 

correlations between student performance and a computer-adapted outcome measure for 

students with learning disabilities (r = .61) and general education students (r . 80). 

More recently, Ketterlin-Geller et al. (2008) have argued for the relevance of CBM 

performance as an indicator of success in broad math content at the middle school level. 

Foegen and others (e.g., Foegen, 2000; Foegen & Deno, 2001; Foegen, Jiban, & Deno, 

2007) have examined the technical adequacy of CBM measures at the middle school 

level from a variety of perspectives. However, findings reveal that experts have not 

reached consensus on the development and foci of math CBMs (e.g . ,  mixed computation 

algorithms, pre-algebra algorithms, problem solving applications, multiple choice or 

matching tasks), leaving practitioners with little evidence on which to base instructional 



decisions (Foegen et al. ,  2007). Moreover, unlike CBMs for reading, few studies have 

examined the tenability of CBM for progress monitoring in middle school math. 
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Studies of rate of change. To determine whether a curriculum-based measure is 

technically adequate for progress monitoring, three research stages are needed (Fuchs, 

2004). These research stages include studies of (a) the technical features of the measure 

at one point in time (i.e., static performance); (b) the technical features of the rate of 

change, or slope, of performance; and (c) the utility of the measure for applied use 

(Fuchs, 2004). To date, much of the research in mathematics CBM has targeted the first 

research stage; that is, the bulk of math CBM research has explored the validity of 

measures (e.g., for predicting outcomes on a standardized, norm-referenced test; or with 

respect to other test items on the measure) as a singular examination of the technical 

adequacy of the test. Those studies that have occurred at stage two have largely focused 

on measures appropriate for use with earlier grades .  

For example, Hojnoski, Silberglitt, and Floyd (2009) administered four Pre­

School Numeracy Indicators (PNis) monthly in seven Head Start classrooms, between 

October and May. Hojnoski et al. (2009) found that measures studied demonstrated 

significant linear growth across the school year, though rates of progress were not 

examined with reference to an important outcome. Fuchs et al. ( 1 993) also studied math 

CBMs for evidence of expected slopes. Measures were administered to students in 

grades one through six weekly in year one and biweekly in year two. The authors 

suggest, based on significant results for slope, students' scores are expected to grow 
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between .30 and .75 correct digits each week for grades one through six; however, 

ambitious growth rates of .50 to 1 .20 may also be used for goal setting. Thurber, Shinn, 

and Smolkowski (2002) conducted a confirmatory factor analysis to examine the 

constructs tested by Mathematics Computation Curriculum Based Measurement (M­

CBM). In this study, the researchers identified Computation and Applications as two 

distinct, yet highly related, constructs assessed by the measures studied, with M-CBM 

providing moderate evidence of computational skill for fourth grade students (Thurber et 

al. ,  2002). Interestingly, Thurber et al. (2002) also found a strong relationship between 

Reading skill and both Computation and Applications. Clarke and Shinn (2004) studied 

the concurrent and predictive validity of four early mathematics measures with respect to 

three criterion outcomes. The researchers collected first grade student performance data 

for each early math measure at three points in the school year (i.e., fall, winter, and 

spring) and found significant, positive changes in performance scores across the school 

year; however, formal growth modeling was not an element of the study design. 

Similarly, Foegen (2008) examined the technical features of six middle school 

math CBMs with respect to end of year outcomes on the Iowa Test of Basic Skills 

(ITBS). Results of this study indicate increases in student performance across two to 

three points during the year for each of the measures (i.e., Monitoring Basic Skills 

Progress-Computation, Concepts and Applications; Basic Facts; Estimation; Complex 

Quantity Discrimination; and Missing Number) and grades studied (i.e . ,  6, 7, and 8 ;  

Foegen, 2008). Because the study collected data at only three points during the year, 



26 

included students who missed one administration point, and a considerable amount of 

variability could be identified in student scores from one data point to the next, additional 

research is needed to assess whether the slope of progress for any of the measures studied 

is stable enough to allow for instructional decision-making across the school year. 

To move the field of math CBM forward, research should first begin to examine 

rates of change with respect to measures that provide some evidence for meeting 

technical adequacy standards in research stage one. In addition, as previously mentioned, 

the bulk of math CBM research has targeted explorations in the elementary grades. 

Because middle school math and algebra provide the foundation for later mathematics 

success, research efforts should prioritize examinations of evaluation and instruction for 

this age group. 

Technical Adequacy of Math Progress Monitoring 

Requirements of validity evidence. Messick ( 1986) identified four facets of test 

validity: (a) construct validity, (b) values implications, (c) relevance and utility, and (d) 

social consequences. Good and Jefferson ( 1 998) described these facets in the context of 

CBM, observing that measures of student performance should not only measure the 

construct they intend to measure, they should also be directly linked to a purpose and 

have high benefit relative to the impact on the academic environment. Moreover, 

Messick ( 1 989) defined validity as "an integrated evaluative judgment of the degree to 

which empirical evidence and theoretical rationales support the adequacy and 

appropriateness of inferences and actions based on test scores and other modes of 
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assessment" (Messick, 1 989, p. 5). These theories provide the foundation for the 

imperative that requires an examination of evidence before deeming a test worthy of use. 

More recently, the American Educational Research Association (AERA), the 

American Psychological Association (AP A), and the National Council on Measurement 

in Education (NCME) developed a set oftest standards for psychologists and educators, 

which indicate there are several types of test evidence that may be used to make validity 

inferences: (a) evidence based on test content, (b) evidence based on response processes, 

(c) evidence based on internal structure, (d) evidence based on relations to other 

variables, and (e) evidence based on consequences of testing (AERA, APA, & NCME, 

1 999). Considering contemporary perspectives of validity in conjunction with 

documented validity for the general use of CBM (e.g., Deno, 2002; Good & Jefferson, 

1998), research should target the validity of CBM for progress monitoring with respect to 

modern validity standards. That is, studies of the technical adequacy of CBMs must 

frame research questions and measure features in the context for which the measure will 

be used, because validity is not attributed to tests or test scores, but to their uses (Kane, 

1 992) .  

Necessary features of measures designed for progress monitoring. Because 

progress monitoring measures are intended to provide information to educators about 

student changes in performance over time, the technical features associated with progress 

monitoring may vary with respect to other modes of formative evaluation. For example, 

while issues of reliability and validity are important for diagnostic and screening 
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assessments, the nature of progress monitoring is such that it requires stringent 

interpretation of technical features of the test with respect to slope. Francis et al. (2008) 

define five essential characteristics of progress monitoring assessments: (a) they are 

administered across regular intervals, (b) they are brief and easy to administer, with 

moderately little training required, (c) scores should use a consistent metric for 

interpretability and comparison of scores across test sessions, (d) scores should be 

predictive of important end of year outcomes, and (e) forms should be free of 

measurement artifacts so slopes of progress can be attributed to student skills, rather than 

changes in forms. 

In addition, the NCPM (2007) has developed a reference list of criteria for 

identifying appropriate progress monitoring tools. For progress monitoring assessments 

to be appropriate, they should be reliable, valid, sensitive to student improvement, linked 

to improving student learning or teacher planning, have adequate yearly progress 

benchmarks, and have specified rates of improvement. Of the 34 measures the NCPM 

reviewed, only six address mathematics skill, and three of these meet the criteria for use 

with middle school students (NCPM, 2007). Foegen (2006, 2008) recently developed 

middle school mathematics measures designed to assess general math and algebra skills; 

however, these measures have not yet been reviewed by the NCPM. To support the use of 

assessments that are valid for instructional decision-making in mathematics, a more 

comprehensive analysis of middle school progress monitoring tools is needed to 
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accordance with NCPM and other validity standards. 
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The present research will expand on Foegen's  work (2000-2009) examining the 

technical adequacy and associated uses of CBMs for middle school mathematics by 

studying validity evidence of several math CBMs for use as progress monitoring 

assessments in gth grade. To contribute to the research base with respect to the technical 

adequacy of middle school math CBMs, this study will explore rates of progress for 

mixed computation and algebra CBMs and examine whether students' slopes can be used 

to predict their performance on a mid-year math outcome. In the context of modern 

validity standards, this study aims to examine whether mixed computation and algebra 

CBMs meet the standards for use as progress monitoring instruments, using evidence 

based on relations to other variables. 

Summary 

Because middle school math prepares students for algebra and algebra is 

considered the gateway to graduation from high school and for other life opportunities 

(Ketterlin-Geller et al. ,  2008; NMAP, 2008), it is important that research focus on the 

development and utility of technically adequate formative measures of middle school 

math and algebra skills. In addition, to determine whether measures can be used to 

accurately gauge student progress, studies are needed to explore the sensitivity and 

anticipated rates of progress for progress monitoring measures in middle school 

mathematics (Calhoon, 2008). In order to contribute to the research base with respect to 
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current evaluation tools available for use in classrooms for guiding math instruction, this 

study investigates the validity of middle school math CBM for predicting mid-year 

mathematics outcomes on a standardized, published, norm-referenced test (See Figure 2) . 

Finally, this study examines expected rates of progress for gth grade pre-algebra and 

algebra students on several middle school math CBMs, following the premise that (a) 

students do not develop abstract reasoning and algebraic skills overnight (i.e., it is 

expected that pre-algebra students will make more growth on measures of early algebra 

skill during the course of this study, while students in algebra will make more growth on 

measures of more advanced algebra skill), and (b) differences in growth rates have 

important instructional significance. Specifically, this study aims to answer the following 

research questions: 

1 .  What is the relationship between mixed computation CBM and general 

math performance? What is the relationship between mixed 

computation CBM and algebra performance? 

2 .  What is the relationship between algebra CBM and general math 

performance? What is the relationship between algebra CBM and 

algebra performance? 

3 .  How much growth can be expected during fall of gth grade on mixed 

computation and algebra CBM? 

4. Do growth rates predict algebra or general math outcomes, above and 

beyond initial skills? 
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5 .  Are there differences in  measure growth rates for pre-algebra or  algebra 

students? Are there differences for the predictive relation between 

growth rates and algebra or general math outcomes for either group? 

Algebra 

Pre-Algebra 

Basic Skills 

Figure 2. Relationships explored between mixed computation and algebra CBMs and 
outcome measures for algebra and pre-algebra students in the present study. Mixed 
Computation represents mixed computation CBM; Basic Skills, Algebra Foundations, 
and Translations represent algebra CBMs. T1 ,  T2, T3 , T4, and T5 represent the 
measurement occasions that occurred for each of the CBMs. SAT - 1 0  and Algebra 
Composite represent the two outcome measures administered in the study. 
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The first and second chapters of this dissertation reviewed relevant literature and 

provided a rationale for the present study, which examines rates of progress on mixed 

computation and algebra CBMs and relations between student performance on these 

CBMs and math outcome measures for 8th grade students in pre-algebra and algebra 

classrooms. The third chapter ofthis manuscript will describe study participants, provide 

evidence for CBMs administered, describe features of math outcome measures, and 

elucidate study procedures. A data collection timeline and data analysis procedures will 

also be described. 

Participants 

Participants were recruited from three school districts in the northwest region of 

the United States. All participants were glh grade pre-algebra or algebra students. After 

receiving approval from school and district administrators to conduct the study, the 

researcher obtained recommendations for glh grade math teacher contacts at middle 

schools in each district. The researcher contacted teachers via email, explained the study, 

and requested responses from interested teachers. After the researcher talked with 

teachers who expressed interest in the study, answered teacher questions about the study, 

and confirmed that interested teachers met study specifications (i.e., taught 8th grade pre­

algebra or algebra courses), the researcher scheduled a visit to explain the study to 
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students, distribute a passive consent letter for parents, and request student assent to 

participate. In total, three teachers in three schools in three districts (i.e., one teacher per 

school per district) agreed to allow their students to participate in the study. Across the 

three schools, ten classrooms met the criteria for 8th grade pre-algebra or algebra content 

and 232 students and their parents gave consent to participate in the study. Students in 

five classrooms received pre-algebra instruction; students in the remaining five 

classrooms received algebra instruction. Demographic data for participants are provided 

as a function of publicly available data for each school. 

School A. School A is the primary middle school for a district located in a small 

town (i.e., approximately 2,000 people), situated outside a mid-sized city. In 2008-2009, 

4 1 8  students attended School A. In the same year, 27% of students at School A qualified 

for free and reduced price lunch, 1 %  were English Language Learners, and 1 3% were 

identified as having disabilities. The student population was categorized as 93% White, 

3% Hispanic, and 2.5% Asian/Pacific Islander. The participating teacher at School A 

was male. Among other courses, he instructed three 5 5-minute sections of pre-algebra 

and one 55-minute section of algebra each day. In 2008-2009, School A met the criteria 

for adequate yearly progress (A YP) for all sub-groups represented at the school. 

School B. School B is the primary middle school for a district located in a small 

city (i.e., approximately 5 ,000 people), situated outside the second largest metropolitan 

area in the state. In 2008-2009, 503 students attended School B. In the same year, 5 1% 

of students at School B qualified for free and reduced price lunch, 5% were English 
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Language Learners, and 1 9% were identified as having disabilities. The student 

population was categorized as 8 1 %  White, 1 2% Hispanic, 3% American Indian/ Alaskan 

Native, and 1 .5% Asian/Pacific Islander. The participating teacher at School B was male. 

Among other courses, he instructed two 55-minute sections of pre-algebra and two 5 5-

minute sections of algebra each day. In 2008-2009, School B met the criteria for A YP for 

all sub-groups represented at the school. 

School C. School C is one of several middle schools in a district located in a mid­

sized city (i.e. , approximately 60,000 people), situated in the second largest metropolitan 

area in the state. In 2008-2009, 6 1 7  students attended School C. In the same year, 6 1% 

of students at School C qualified for free and reduced price lunch, 7% were English 

Language Learners, and 1 6% were identified as having disabilities. The student 

population was categorized as 72% White, 1 8% Hispanic, 2.5% Black, 2 .5% Multiethnic, 

2% American Indian/ Alaskan Native, and 2% Asian/Pacific Islander. The participating 

teacher at School C was male. Among other courses, he instructed two 1 1  0-minute 

blocks of general science and algebra each day. In 2008-2009, School B met the criteria 

for A YP for all sub-groups represented at the school, except students with disabilities. 

Measures 

Several measures were used to answer the research questions targeted by this 

study. The independent variables in the study were student performance on each of the 

four CBM measures, across measurement occasions: (a) Mathematics Computation 

Curriculum-Based Measurement, 2nd Version (M-CBM2); (b) Basic Skills; (c) Algebra 
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Foundations; and (d) Translations. The dependent variable in  the study was student 

performance on the Stanford Achievement Test, lOth Edition, composed of Math 

Procedures and Math Problem Solving subtests. In addition, an algebra aggregate score 

was calculated, hereafter referred to as the Algebra Composite, using selected items from 

the Math Problem Solving subtest of the SAT-10. 

M-CBM2. Math Computation Curriculum-Based Measurement, 2nd Version, 

is a group-administered, four-minute progress monitoring measure, developed by 

AIMSweb (see Appendix A). AIMSweb provides roughly 30 alternate forms of M­

CBM2 for ih and 8th grades and reports each form is designed to be roughly equivalent in 

difficulty. The gth grade M-CBM2 probes examine student skill in addition, subtraction, 

multiplication, and division of whole numbers, fractions, and decimals; and fraction, 

decimal, and percent conversions. Standardized directions allow students to skip 

problems they "really don't know how to do," and tell students to round to the hundredths 

place and keep fractions in their simplest form (Shinn, 2004). The total score for student 

performance on M-CBM2 consists of the sum of the number of digits computed correctly 

in each answer in four minutes. Little information is available from AIMSweb about the 

technical adequacy of M-CBM2; however, studies of the reliability and validity of M­

CBM at grades 3 and 4 demonstrate moderate to strong correlation coefficients. Thurber 

et al. (2002) found that M-CBM demonstrated strong correlations with measures of basic 

facts computation (median r = . 82) and moderate to strong correlations with published, 

standardized tests (r = .42 to .63). According to the NCPM (2007), AIMSweb math 
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measures meet the foundational psychometric standards of  reliability and validity. Still, 

M-CBM2 is a relatively new measure, when compared to the M-CBM measure designed 

for administration to students in grades 1 through 6. Consequently, reliability and 

validity of M-CBM2 for use as a static indicator and progress monitoring measure in 

middle school will be further explored in this study. 

Basic Skills. The Basic Skills measure (see Appendix B) addresses basic algebra 

knowledge, by examining student skills in applying proportional reasoning, "solving 

simple equations, applying the distributive property, working with integers, and 

combining like terms" (Foegen, Olson, & Perkmen, 2005). Each five-minute, group­

administered probe consists of 60 problems, with the total score being the number of 

problems answered correctly in five minutes (Foegen, 2009). Students receive full credit 

for responses that are mathematically equivalent to the correct answer. According to the 

technical manual, in the high school setting, reliability estimates for single form 

administration of the Basic Skills measure ranges from .7 1  to .89  (Foegen et al., 2005). 

When scores are aggregated (i.e., two scores are averaged), the reliability of the Basic 

Skills measure ranges from .85 to .88 .  Aggregated scores demonstrated moderate 

correlations with the student composite scores on the Iowa Algebra Aptitude Test (r 

.56) and low correlations with computation subtest scores on the Iowa Test of 

Educational Development (r = .40). Measure reliability appears to be within the 

acceptable range for progress monitoring decisions (Salvia & Ysseldyke, 2007); however, 

validity evidence based on relations to other variables may be insufficient, depending on 
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the content assessed by the criterion measure. Consequently, the validity of the measure 

will be further examined in this study with respect to standardized measures of general 

math and algebra achievement for gth grade students, at one point in time and over the 

course of the fall  of 81h grade. 

Algebra Foundations. A five-minute, group-administered measure with 42 

items (see Appendix C), Algebra Foundations assesses student skill in four core areas of 

algebra: (a) reading graphs, (b) evaluating variables and expressions, (c) solving 

equations and simplifying expressions, and (d) identifying rules from tables and 

combinations of numbers (e.g., patterns). The total score on the measure is the number of 

problems answered correctly in five minutes (Foegen, 2009). According to the technical 

manual, in the high school setting, single form reliability for the Algebra Foundations 

measure ranges from .59 to . 7 1  (Foegen et al., 2005) .  Aggregated score reliability for 

two administrations ranges from .73 to .76. Aggregated scores demonstrate moderate 

correlations with student composite scores on the Iowa Algebra Aptitude Test (r .57) 

and low correlations with computation subtest scores on the Iowa Test of Educational 

Development (r = .29). Similar to the Basic Skills measure, the strength of validity 

evidence for Algebra Foundations may depend on the criterion measure. The reliability 

and validity of Algebra Foundations will be further examined in this study to determine 

its appropriateness for use in 8111 grade classrooms as a static indicator of achievement and 

progress monitoring measure with respect to general math and algebra outcomes. 
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Translations. The Translations measure was developed in  close alignment with 

the Connected Mathematics Project (CMP) curriculum, in an effort to examine 

conceptual applications of algebra with reduced reliance on symbols (Foegen, 2009). 

The measure is a seven-minute, 42-item assessment of students ' skills in matching data 

tables, graphs, and equations and their knowledge of the effect of slight changes in one 

component to other relevant information (see Appendix D). To control for guessing on 

the measure, the total score is computed as the number of problems answered correctly 

minus the number of problems answered incorrectly in seven minutes. Skipped problems 

are not counted incorrect. Students are told not to guess on items, as an incorrect guess 

will penalize their score. According to Foegen et al. (2005), in the high school setting, 

single form reliability estimates for the Translations measure range from .46 to .66 and 

aggregated score reliability estimates range from .60 to .72, below the recommended 

standard for progress monitoring. Aggregated scores demonstrate moderate correlations 

with student composite scores on the Iowa Algebra Aptitude Test (r = . 35) and low 

correlations with the computation subtest of the Iowa Test of Educational Development (r 

= .29); however, these estimates are derived from administration in settings that employ 

traditional math curricula. Authors of the test speculate that the Translations measure 

may fare better in a classroom that relies on a concept-based curriculum, such as CMP 

(Foegen, 2009). In addition, this measure was included in the present study given a 

theoretical interest in studying assessments of conceptual understanding in mathematics. 
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Stanford Achievement Test, lOth Edition. The SAT- 1 0  is a standardized, norm­

reference test designed to assess academic content knowledge in a range of disciplines 

from kindergarten through 1 2th grade. For the purposes of this study, only the gth grade 

mathematics subtest was administered. The SAT- 1 0  math subtest is an un-timed, group­

administered, multiple-choice assessment, constructed of two subtests: Math Problem 

Solving and Math Procedures. The math portion of the SAT - 10  is expected to take 80 

minutes to complete (i.e. , 50 minutes for Math Problem Solving, 30 minutes for Math 

Procedures) . Aligned with the NCTM Principles and Standards for School Mathematics, 

the SAT - 1  0 math sub tests measure content and processes in number sense and 

operations; patterns, relationships, and algebra; geometry and measurement; and data, 

statistics, and probability (Pearson Education, 2009). Skills in mathematical 

communication and representation; estimation; mathematical connections; and reasoning 

and problem solving are also assessed. Scores provided on the SAT-1 0  include scaled 

scores, national and local percentile ranks and stanines, grade equivalents, and normal 

curve equivalents (Pearson Education, 2009); however, only raw scores were used for 

this study. More information about the development of the SAT- 1 0  can be obtained from 

Pearson Education. 

Algebra Composite. Because it was expected that the SAT-1 0 would provide a 

strong indication of student general math performance but might be too diffuse to more 

narrowly examine content taught in algebra classrooms, an Algebra Composite score was 

created from items on the SAT - 1 0  to allow for an examination of relations between 
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measure scores and algebra outcomes. To identify the items that would construct the 

composite score, each Math Problem Solving and Math Procedures item was compared to 

algebra test items identified by the National Assessment for Educational Progress 

(NAEP, 2003-2009). In addition, the researcher compared target skills of test items to 

NCTM Focal Points for grade eight and referenced Milgram's (2005) key topics in 

algebra. 

After reviewing these standards and test items, eight algebra items were identified 

from the SAT-I 0 Math Problem Solving subtest to include in the Algebra Composite, 

because they represent content that is fundamentally algebraic in nature. While other 

items on the SAT- 1 0  may address algebra skills in combination with other topics, those 

that were included in the Algebra Composite are unlikely to be disputed as algebra items 

when considered relative to the other test items and domains purported by SAT - 1 0  

publishers. For example, an item requiring students to identify the equation that 

symbolizes the graphical representation of a linear equation was included in the 

composite, while an item asking students to identify the perimeter of an object given a 

figure was not included in the composite. The target skills of each of the items included 

in the Algebra Composite are listed in Table 1 ,  along with examples of tasks similar to 

those required by included items. Cronbach's  Alpha was computed to examine the 

internal consistency of items included in the Algebra Composite. The reliability 

coefficient for the eight Algebra Composite items (a = .68) i s  approaching the generally 
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accepted value of a =  .70, which provides some evidence for use of the Algebra 

Composite as a criterion measure of an algebra-related construct. 

Table 1 

Target Skills and Example Tasks for SAT-10 Items Included in the Algebra Composite 

Item Descriptor Target Skill 

MPS 21 Extend a pattern involving 
figures representing perfect 
squares 

MPS 22 Determine an equation given a 
table of x and y values 

MPS 23 Identify an equivalent algebraic 
expressiOn 

MPS 24 Solve an algebraic equation (in 
terms of a variable) 

MPS 25 Identify a linear equation from a 
graph and two ordered pairs 

MPS 26 Evaluate an expression for 
specific values 

MPS 27 Solve an inequality (in terms of 
a variable) 

Example Tasks 

Given a visual display of a pattern 
representing numbers, identify the 
next two numbers in the sequence 

Given a function table for (x, y), 
identify the equation that represents 
the ordered pairs in the table 

Given an expression containing two 
unknowns with coefficients, 
identify an equivalent expression 

Given an equation containing three 
terms and one unknown, determine 
the value of the unknown. 

Given a graph of a linear equation 
and two identified ordered pairs, 
choose the equation that represents 
the linear equation 

Identify the value of a ratio 
expression containing three 
unknowns when values for the three 
unknowns are provided 

Given an inequality containing one 
unknown, identify a possible value 
for the unknown 
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MPS 3 8  Identify coordinates for a point 
on a graph of a linear equation 

Given a linear equation and its 
graph, identify an ordered pair the 
line includes. 

Note. MPS = Math Problem Solving. Item descriptor numbers indicate item numbers on 
the SAT- 1 0. Target skills parallel those defined by NAEP (2003-2009) .  

Procedures 

Prior to beginning the study, the researcher obtained training to administer and 

score each of the CBM measures used in the study design. To prepare for data collection, 

the researcher worked with teachers to develop a bi-weekly schedule for CBM and 

outcome measure administration, with no more than one week between CBM 

administrations across sites for each data point. Students who missed researcher 

administration of CBM probes were not permitted to complete missed probes. School 

staff was not trained to administer each measure, and time and distance constraints did 

not allow the researcher to travel to each school site a second time each week for 

additional administration sessions. SAT - 1 0  data collection occurred approximately two 

months after the final CBM data point at each site. See Table 2 for a data collection 

time line for this study. 
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Table 2 

Data Collection Timeline 

Data Point Time School Measures Administered* 

1 October, week 4 A M-CBM2 

November, week 1 B and C Basic Skills 

Algebra Foundations 

2 November, week 1 A Basic Skills 

November, week 2 B and C Algebra Foundations 

Translations 

M-CBM2 

3 November, week 3 All Algebra Foundations 

M-CBM2 

Basic Skills 

4 December, week 1 All Basic Skills 

M-CBM2 

Algebra Foundations 

5 December, week 3 All M-CBM2 

Basic Skills 

Algebra Foundations 

Translations 

SAT- 1 0  February, week 3 A Math Problem Solving 

February, week 4 B and C Math Procedures 

*Note. Measures were administered in the order listed at each corresponding 
administration session. 
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After a schedule was agreed upon at each school site and consent was obtained 

from all participants, the researcher prepared packets containing all of the CBM measures 

to be administered for the duration of the study. Each packet intended for algebra course 

classrooms contained a cover sheet used to match each student to his/her packet; four 

forms of three of the CBM measures: (a) M-CBM2, (b) Basic Skills, and (c) Algebra 

Foundations; and two forms of the Translations measure. For pre-algebra course 

classrooms, the Translations measure was not included in the packet. The researcher 

randomized the order of each CBM measure in the packet using a Latin square design 

(Stewart, 2007) to allow for randomized administration and control of practice effects at 

each testing session. 

Before the first administration, all participants were assigned a random 

identification number, which was written in the top right corner of each CBM measure 

and on the packet cover sheet. At the first administration, students were directed to write 

their name on their cover sheets but not on any of the measures. At each administration, 

the researcher only removed the CBM measures from each packet that had been 

completed in that day's testing session. Cover sheets were kept in the classroom in a 

secure location with packets containing measures not yet completed. Prior to 

administration of the SAT- 1 0, the researcher recorded the same random identification 

number used for student packets on SAT- 1 0  teleforms. These were matched to student 

cover sheets and distributed to students for testing. Cover sheets were stored in the 

classroom following SAT- 1 0  testing to allow for subsequent data collection permitted by 
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approved IRB # E 117-10. Per this IRB, cover sheets will be destroyed before the end of 

Fall 2010. 

During each administration session, the researcher administered the M-CBM2, 

Basic Skills, and Algebra Foundations measures to all of the students in each classroom. 

At the 2nd and 5th administrations, the researcher administered the Translations measure 

to students in algebra classrooms. This measure was only administered twice to account 

for the number of alternate forms available for the measure while still allowing for an 

approximation of growth in data analysis. In addition, the Translations measure was only 

administered to algebra students because of the increased duration of the measure and the 

difficulty of the tasks included in the measure. Because each of the CBM measures is 

timed, each testing session lasted 20-30 minutes, depending on the schedule of measures 

for the testing session. After each administration, the researcher scored completed probes, 

entered scores into an Excel spreadsheet using random identification numbers, and 

returned probes and score reports to each school at the subsequent testing session. To 

facilitate teacher use of student performance data for instructional decisions, the 

researcher matched student work and score reports to student names using student cover 

sheets while in each classroom. 

In February, the researcher returned to each participating classroom to administer 

the SAT-10. On the first day of SAT-10 testing, the researcher read standardized 

administration directions to students and walked through practice examples for the Math 

Procedures and Math Problem Solving subtests ofthe SAT-10. For schools A and B, on 
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the first day of SAT - 1 0  testing, students were given at least 50 minutes to complete SAT-

1 0  activities. For schools A and B, on the second day of SAT-10 testing, the teacher 

allowed students at least 30 additional minutes to complete SAT- 1 0  activities. For school 

C, students were assessed by the researcher in one day and were given at least 80 minutes 

to complete the SAT-10. Following the second day of SAT- 1 0  administration for schools 

A and B and the first day of SAT - 1  0 testing for school C, the researcher collected all 

SAT - 1  0 booklets and teleforms for scoring and data entry. 

According to the SAT - 1  0 manual, it is recommended that students receive at least 

80 minutes for completion of the Math Procedures and Math Problem Solving subtests; 

however, the test is not timed. Although it would have been desirable to allow students 

as much time as needed to complete all items on the SAT -10, it was not feasible to do so 

given consent procedures and initial agreements with study sites. 

Data Analysis 

To answer the first two research questions targeted by this study concerning the 

strength of the relations between measures, Pearson correlation coefficients were 

computed and examined for relations between each CBM, SAT- 1 0  subtests, the SAT-10  

total score, and the Algebra Composite score. To address research questions three 

through five for the Translations measure, Multiple Regression was used to examine gain 

scores between the znct and 5th administrations (i.e., those measurement occasions where 

the Translations measure was administered to students) . To answer research questions 

three through five for the three measures that were administered on more than two 
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measurement occasions (i.e. , M-CBM2, Basic Skills, and Algebra Foundations), data 

were analyzed using the principles of Hierarchical Linear Modeling (HLM) outlined by 

Raudenbush and Bryk (2002). 

HLM allows for simultaneous modeling of predictors in nested samples and more 

accurate interpretation of variance than is explained by levels of systems. For example, 

student outcomes following an intervention are likely influenced by the quality of 

implementation of the intervention, teacher or classroom level variables, and school level 

variables. To attribute all variance in student outcomes to the intervention does not 

accurately depict the influence of the system on the outcome. In this study, HLM was 

used to model student growth over time within several schools, where growth (i.e . ,  

performance over time) is expected to vary as a function of individual student learning, 

which may vary across classrooms. The use of HLM allowed for an examination of 

growth rates across five measurement occasions for individual students on mixed 

computation and algebra CBM. In this study, HLM also allowed for an examination of 

the relationship of student slopes with respect to SAT - 1 0  and algebra outcomes in pre­

algebra and algebra classrooms. Specific aspects of HLM analyses (e.g., predictors, 

modeling decisions, final models) are described in the following chapter. 
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In chapter three, initial participants, measures of interest, and study procedures 

were described. Methods for data analysis were outlined, including bivariate correlations, 

the use of Hierarchical Linear Modeling to study growth rates and slopes of progress 

relative to SAT- 1 0  and algebra mid-year outcomes, and Multiple Regression to model 

student performance gains using the Translations measure. In this chapter, participants 

will be further defined following procedures for managing missing data and descriptive 

statistics will be provided for each predictor of interest in the study. Analyses and results 

will be described in the context of study research questions and general implications of 

results will be discussed. 

Missing Data 

To prepare data for analysis, missing data were examined. Of the initial sample 

of 232 students, 2 1 9  participated in the SAT- 1 0  assessment. Scores for the 13 students 

who did not take the SAT - 1  0 were not included in the analysis. Of the remaining 2 1 9  

students in the sample, 2 1  students missed more than one full day of CBM testing. A 

comparison of SAT - 1 0  total score means for students missing more than one full day of 

CBM testing and the rest of the sample was not significant, F(2, 217) = 0.01, p = .92. In 

addition, comparing SAT -1 0 subtest and total score means by classroom, school, and 

content did not reveal significant results, suggesting differences in SAT- 1 0  means for 
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students who missed more than one full day of CBM testing were no greater than they 

would be by chance. Significant differences between students missing more than one full 

day of CBM testing and the rest of the sample could not be identified with respect to 

outcome variables; thus, those students who missed more than one full day of CBM 

testing were removed from the data set, to allow for more accurate modeling of growth 

across the sample for all measurement occasions. The final sample included 198 pre­

algebra (n = 70) and algebra (n = 128) students across ten classrooms in three schools. 

The median number of participants per classroom was 23 (range = 3 - 32) and the median 

number of participants per school was 53 (range = 53 - 92) . 

Descriptive Statistics: Final Sample 

CBMs. Descriptive statistics for each measurement occasion of the M-CBM2, 

Basic Skills, Algebra Foundations, and Translations measures for all participants in the 

final sample are provided in Table 3 .  Mean scores across measurement occasions 

demonstrate a general upward trend, which suggests student math performance improved 

over time. Overall, standard deviations are acceptable for the sample; however, the size 

of the standard deviation relative to the mean score for the first administration of the 

Translations measure indicates moderate variability in student performance on the 

measure at the first administration. An examination of distributions indicates roughly 

normal distributions for each measure across measurement occasions; however, some 

positive skew is associated with the Translations measure, indicating a number of 

students earned scores of zero on the measure at both data points. 
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Closer inspection of mean scores indicates some trajectory differences for M­

CBM2, Algebra Foundations, and Basic Skills. For the M-CBM2 and Algebra 

Foundations measures, there is a slight decline in mean scores at the second 

administration. For the Algebra Foundations measure, the mean score for the third 

administration is also below the mean score for the first administration. For both 

measures, if the first administration were to be removed from the data set, remaining 

mean scores would indicate a positive trend across all administrations. For the Basic 

Skills measure, there is considerable variability in mean scores across administrations. 

Between the first and fifth administrations there was a small increase in student scores; 

however mean scores do not indicate a stable positive trend over time. See Graph 1 for a 

visual display of mean scores across data points. 

Table 3 

Descriptive Statistics for Algebra and Mixed Computation CBM by Time 

Measure/Time 

M-CBM2 

Time 1 

Time 2 

Time 3 

Time 4 

Time 5 

n 

1 87 

1 87 

193 

1 94 

1 84 

Min 

0 

3 

0 

0 

1 

Max M 

6 1  23 .74 

66 22.87 

68 25 .69 

74 26.70 

87 29.70 

SD 

1 0.01  

9 . 12  

11 .44 

12.27 

1 3 .53 
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Measure/Time n Min Max M SD 

Basic Skills 

Time 1 187 0 26 10.80 5 .63 

Time 2 187 1 32 11.52 5 .78 

Time 3 193 0 27 8 .81 5 . 83 

Time 4 195 0 37 12.66 6.56 

Time 5 184 1 30 11.84 6.10 

Algebra Foundations 

Time 1 187 0 32 15.01 6.23 

Time 2 187 0 33  12. 82 5 . 82 

Time 3 193 0 31  14.36  6.52 

Time 4 194 0 3 5  15.37 6.98 

Time S 184 3 40 16.79 7.98 

Translations 

Time 2 120 0 27 8 .49 7.40 

Time S 120 0 32 11.88  7.48 

Outcome measures. Descriptive statistics for the SAT-10 subtests (i.e. ,  Math 

Procedures and Math Problem Solving), SAT-10 total score, and Algebra Composite are 

provided in Table 4. Standard deviations relative to mean scores indicate considerable, 

but acceptable, variability in student performance on the Math Procedures subtest of the 

SAT-10, which may be related to student completion of test items. Although students 

were given 80  minutes to complete the SAT-10, not all students completed every item. 

An examination of SAT-10 item scores reveals most of the students who did not 
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complete all items completed proportionately fewer Math Procedures items than Math 

Problem Solving items. Consequently, the variation in Math Procedures performance 

may be at least partially related to insufficient time to complete the subtest, which is 

reinforced by positive skew in the distribution of scores. However, examination of 

distributions indicates normal distributions for the Math Problem Solving subtest and 

SAT - 1 0  total score. The Algebra Composite distribution is negatively skewed, indicating 

students, on average, performed better on algebra items than the SAT-1 0  as a whole. 
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Graph 1. Graph of mean scores by measurement occasion. CD = Correct Digits (for M­
CBM2 only). 
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Table 4 

Descriptive Statistics for SAT-I 0 and Algebra Outcomes 

Measure n Min Max M SD 

Math Procedures 198 0 29 8 .75 6.32 

Math Problem Solving 198 0 45 24.82 9.24 

SAT-10 198 0 74 33 .57 13 .51 

Algebra Composite 198 0 8 5 .09 2.16 

Descriptive Statistics By Course 

CBMs. Descriptive statistics for each measurement occasion of the M-CBM2, 

Basic Skills, Algebra Foundations, and Translations measures for pre-algebra and algebra 

classrooms are provided in Table 5 .  Mean scores and standard deviations follow a 

pattern similar to the pattern described for all classrooms: With the exception of the Basic 

Skills measure and the first administration of M-CBM2 and Algebra Foundations, mean 

scores indicate a positive linear trend over time (see Graph 2). 

A comparison of means for pre-algebra and algebra students indicates higher 

mean performance at all data points for students in algebra classrooms, with one 

exception: The mean score for the second administration of the Translations measure is 

considerably higher for the five students who moved from pre-algebra classrooms to 

algebra classrooms during the study. In addition, an examination of mean scores across 

measures indicates, relative to students in algebra classrooms, students in pre-algebra 

classrooms performed better on M-CBM2 (i.e., comparing mean measure scores across 
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groups, relative scores for students in pre-algebra classrooms were highest on M-CBM2). 

It is possible that mean performance for pre-algebra students is highest (in relative terms) 

on the M-CBM2 measure, because these students may spend more time receiving 

instruction or practice with the types of skills assessed by the M-CBM2 measure (e.g., 

mixed computation with rational numbers), when compared to the skills assessed by the 

other CBMs (e.g., combining like terms, evaluating and solving equations). 

Table 5 

Descriptive Statistics for Algebra and Mixed Computation CBM by Time and Course 

Measure/ 
Pre-Algebra Algebra 

Time n Min Max M SD n Min Max M SD 

M-CBM2 

Time 1 63 0 42 1 9.00 8 .07 1 24 4 6 1  26. 1 5  1 0.07 

Time 2 67 3 40 2 1 .28 7.93 1 20 3 66 23.75 9.64 

Time 3 67 0 49 20.48 1 0.22 1 26 6 68 28.46 1 1 . 12 

Time 4 69 0 47 21 .64 9.90 125  0 74 29.49 12 .59 

Time 5 67 1 5 5  25.09 1 1 .90 1 17 4 87 32.34 1 3 .75 

Basic Skills 

Time 1 63 0 1 5  7.46 3 .3 1 124 1 26 1 2.49 5 . 8 1  

Time 2 68 1 1 6  8 .57 3 .58 1 19 2 32  1 3 .20 6. 12  

Time 3 67 0 1 2  5 .07 3 . 1 4  126 1 27 1 0.80 5.96 

Time 4 69 0 18 8 .91  4.20 126 0 37  1 4.7 1  6.72 

Time 5 67 2 20 8 .79 4. 1 3  1 1 7 1 3 0  1 3 .59 6 .37 



Pre-Algebra 

Measure/ 

Time 
n Min Max M SD 

Foundations 

Time 1 63 

Time 2 68 

Time 3 67 

Time 4 69 

Time 5 67 

Translations 

Time 2 0 

Time 5 5 

0 

0 

0 

0 

3 

1 

19 10.17 4 .92 

26 9.25 4.32 

23 9.64 4.72 

22 10.70 5 .24 

27 12.19 5 .37 

28 17.20 11.95 

Note . Foundations = Algebra Foundations. 

5 5  

Algebra 

n Min Max M SD 

124 0 

119 0 

126 4 

125 0 

117 4 

120 0 

115 0 

32 17.47 5 . 38  

3 3  14.87 5 .59 

3 1  16.87 5 .94 

3 5  17.94 6.48 

40 19.42 8 .05 

27 8.49 7.40 

32 11.65 7.21 

Outcome measures. Descriptive statistics for the SAT-10 subtests (i. e . ,  Math 

Procedures and Math Problem Solving), SAT-10 total score, and Algebra Composite for 

pre-algebra and algebra classrooms are provided in Table 6. Similar to mean scores for 

the full sample, pre-algebra and algebra mean scores indicate higher math performance 

for students in algebra classrooms relative to students in pre-algebra classrooms. 

Variation in Math Procedures scores is greater for pre-algebra students than algebra 

students. It may be that there is a greater range of skill in pre-algebra classrooms due to 

parameters defining placement in pre-algebra coursework in gth grade. 
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Table 6 

Descriptive Statistics for SA T-10 and Algebra Outcomes by Course 

Pre-Algebra Algebra 

Measure n Min Max M SD n Min Max M SD 

Math 70 0 23 5 .39 4 .71  128 0 29 1 0.59 6.34 
Procedures 

Math 70 0 37 1 8 .69 7.43 1 28 0 45 28 . 1 7  8 .39 
Problem 
Solving 

SAT- 1 0  70 5 57  24.07 9.90 128  0 74 38.77 1 2.36 

Algebra 70 0 8 4.00 2 . 1 2  1 28 1 8 5 . 69 1 .94 
Composite 

Bivariate Correlations 

Reliability of M-CBM2. An examination of correlations between 

administrations of M-CBM2 indicates moderate relationships between forms of the 

measure (r = .49 to .74; see Table 7). Correlations indicate relationships are stronger 

between performances on measurement occasions that occurred closer together, which is 

expected: Because it is assumed that students will learn over time, performances on 

measures of the same skills that are administered in closer succession should be more 

highly correlated than performances on measures administered after a greater lapse of 

time. However, the relation between proximal administration sessions (e.g. ,  first 

administration and second administration, second administration and third 
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administration) does not suggest sufficient strength for use in progress monitoring, 

according to the standards of reliability indicated by Salvia and Y sseldyke (2007). 
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Graph 2. Graph of mean scores by measurement occasion and course group. CD = 
Correct Digits (for M-CBM2 only). Translations: Pre-Algebra score at data point 5 is 
based on n = 5. 

Validity of M-CBM2. To explore the relationship between student performance 

on M-CBM2 and outcome measures, bivariate correlations were computed between 

student performance on the M-CBM2 measure and on both subtests of the SAT-10 (i.e., 

Math Procedures, Math Problem Solving), as well as total score (see Table 7). In 
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addition, bivariate correlations were computed between student performance on the M-

CBM2 measure and student performance on the Algebra Composite, to examine potential 

differences in the predictive relations between M-CBM2 and outcome measures (see 

Table 7). 

Table 7 

Bivariate Correlations Between M-CBM2 and SA T-I 0 and Algebra Outcomes 

Data 
Points 

1 

2 

3 

4 

5 

Outcomes 

MPRO MPS SAT- 1 0  Algebra 

.3 1 

.22 

.39 

.3 1 

.3 1 

.35 

.24 

.37  

.36  

.32 

.38 

.27 

.44 

.39 

.37 

.28 

.23 

.29 

.33 

.28 

M-CBM2 Data Point 

1 2 3 4 

. 58  

.6 1 .63 

. 54 .52 .62 

.49 . 5 1  .74 .64 

5 

Note. Correlations are based on n = 1 87 (data point 1 ), n 1 76 (data point 2), n 1 82 
(data point 3), n = 1 83 (data point 4), and n = 1 73 (data point 5). All correlations are 
significant at p < .05. 

Correlation coefficients indicate low to moderate positive relationships (r .27 to 

.44) between M-CBM2 performance in the fall and SAT- 1 0  performance in the winter. 

Student performance on M-CBM2 demonstrates low correlations with student 

performance on the Algebra Composite (r = .23 to .33) .  Because the Algebra Composite 

contains items that are more purely algebraic in nature, it is not surprising that 
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performance on M-CBM2 demonstrates stronger correlations with performance on SAT­

I 0 total and subtest scores than with performance on the Algebra Composite: As a 

measure of mixed computation with rational numbers, it is expected that performance on 

M-CBM2 would be more highly related to performance on another measure more 

inclusive of general mathematical topics. 

According to Salvia & Y sseldyke (2007), acceptable validity coefficients may 

vary according to types of validity and the purposes for which assessments may be used; 

however, coefficients above .60 are generally desirable. Using this standard as a means 

for evaluating validity evidence of M-CBM2 with respect to relations to other variables 

(AERA, AP A, & NCME, 1 999), the validity coefficients for M-CBM2 identified in the 

present study do not appear to have sufficient strength to provide evidence for use of the 

measure to predict student performance on either the SAT - 1 0  or the Algebra Composite. 

This finding suggests static fall M-CBM2 scores (i.e., correlations between scores at each 

data point and outcome measure scores) may not sufficiently predict student general math 

or algebra performance for students in the middle of gth grade, which limits the utility of 

the measure as a progress monitoring tool in middle school. 

Reliability of Basic Skills, Algebra Foundations, and Translations. An 

examination of correlations between administrations of algebra CBM indicates strong 

relationships between alternate forms (see Tables 8- 1 0) .  Consistent with the findings for 

M-CBM2, forms that were administered in closer succession demonstrate greater strength 

in association. For the Basic Skills and Algebra Foundations measures, correlations 
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between forms are strong (r = .75 to .85 and r = .74 to . 8 1 ,  respectively), which indicates 

alternate forms are measuring the same behavior. In fact, correlations between 

successive administrations (e .g., first administration correlated with second 

administration, second administration correlated with third administration) using single 

forms indicate high levels of reliability (r .80 or greater across forms) across nearly all 

comparisons, which provides strong evidence for the use of the measures to reliably 

capture the same student behaviors across time. For the Translations measure, alternate 

forms correlate only moderately (r . 54). However, these forms were administered 

nearly eight weeks apart, thus we would expect to see a reduced relationship between 

student performances across the two forms. Consequently, the correlation between the 

two administrations of Translations cannot serve as an indicator of the reliability of the 

measure. 

Validity of Basic Skills, Algebra Foundations, and Translations. To explore 

relationships between algebra CBM and general math outcome measures, bivariate 

correlations were computed for student performance on each algebra CBM (i.e, Basic 

Skills, Algebra Foundations, and Translations) with both subtests of the SAT-1 0  (i.e., 

Math Procedures, Math Problem Solving, and SAT- 1 0  total score) . Additional bivariate 

correlations were computed between algebra CBMs and the Algebra Composite, to 

explore relations between student performances on algebra CBM and a measure of 

algebra outcomes (see Tables 8- 1 0). 



Table 8 

Bivariate Correlations Between Basic Skills and SAT-10 and Algebra Outcomes 

Data 
Points 

1 

2 

3 

4 

5 

Outcomes 

MPRO MPS SAT - 1 0  Algebra 

.42 

.41  

.48 

.38  

.37 

.64 

.61  

.60 

.6 1  

. 56 

.63 

.60 

.63 

.60 

.56 

.54 

.50  

.50  

.46 

.46 

Basic Skills Data Point 

1 2 3 4 

. 84 

.80 .85  

.78 . 8 1  . 8 1  

. 72 .75 .78 .80 

5 

Note. Correlations are based on n = 1 87 (data point 1 ), n = 1 76 (data point 2), n = 1 82 
(data point 3), n = 1 84 (data point 4), and n 1 73 (data point 5). All correlations are 
significant at p < . 0 1 .  

6 1  

Bivariate correlations between student performances o n  algebra CBM and general 

math outcomes indicate moderate to strong predictive relationships for Basic Skills and 

Algebra Foundations and moderate predictive relationships for Translations. Student 

performances on Basic Skills and Algebra Foundations measures were more strongly 

correlated with performances on the Math Problem Solving subtest (r = .56 to .64 and r 

.59 to .66, respectively), and SAT- 1 0  total (r = .56 to .63 and r = .58  to .64), 

respectively), than they were with the Math Procedures subtest (r = .37 to .48 and r = .37 

to .46, respectively). Performance on the Translations measure was moderately 

correlated with performance on the Math Problem Solving subtest (r = .43 and .46) and 



SAT- 1 0  total (r = .25 and . 38); however the predictive relationship between student 

performance on the Translations measure and student performance on the Math 

Procedures subtest (r -.09 and . 1 3 ) was negligible and not significant (p > .05). 

Table 9 
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Bivariate Correlations Between A lgebra Foundations and SAT-I 0 and Algebra Outcomes 

Outcomes Algebra Foundations Data Point 

Data MPRO MPS SAT- 1 0  Algebra 1 2 3 4 5 
Points 

1 .44 . 64 .64 .53 

2 .42 .66 .64 .56 .75 

3 .46 .60 .63 .56 . 8 1  .80 

4 .37 .59 . 58  . 52 .74 .76 .80 

5 .41 .63 .63 .56 .75 .79 .80 . 80 

Note. Correlations are based on n = 1 87 (data point 1 ), n = 1 76 (data point 2), n = 1 82 
(data point 3), n = 1 83 (data point 4), and n = 1 73 (data point 5). All correlations are 
significant at p < . 0 1 .  

The relations between student performance on algebra CBM and the Algebra 

Composite are moderate and positive. Performance on the Basic Skills measure was 

related to performance on the Algebra Composite (r = .46 to . 54) with greater strength 

than was indicated in the relations with Math Procedures, but less strength than was 

indicated in the relations with Math Problem Solving or SAT-1 0  total scores. Student 

performance on the Algebra Foundations measure was moderately correlated with student 



performance on the Algebra Composite (r . 53  to .56), similar to findings for relations 

with Math Problem Solving and SAT- 1 0  total scores. Correlations between student 
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performance on the Translations measure and the Algebra Composite (r = .44 to .4 7) and 

the Translations measure and the Math Problem Solving subtest (r .43 to .46) indicate 

stronger relations than were found between student performance on Translations and 

other general math outcome measures, which may due to the nature of the content 

assessed by the Translations measure (i.e., conceptual algebra knowledge). 

Table 1 0  

Bivariate Correlations Between Translations and SA T-1 0 and A lgebra Outcomes 

Outcomes Translations Data Point 

Data 
Points 

2 

5 

MPRO MPS SAT - 1 0  Algebra 2 

. 1 3  .46* .38* .47* 

- .09 .43 * .25* .44* .54* 

Note. Correlations are based on n = 1 1 6, for both data points. *Correlations are 
significant at p < .01 .  

5 

The reported bivariate correlations indicate stronger relations between variables 

that can be considered similarly complex: Considering the CBMs examined in this study 

in a hierarchy of perceived task complexity, M-CBM2 assesses skills taught prior to 

topics in algebra, Basic Skills is considered the most basic of the algebra measures, 

Algebra Foundations is representative of typical algebra content, and Translations--the 
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most complex of the measures-assesses advanced conceptual thinking in an initial 

algebra course. In this regard, it is expected that student performance on the Basic Skills 

measure would be less related to performance on the Algebra Composite, while student 

performance on the Algebra Foundations and Translations measures would be more 

highly related to student performance on the Algebra Composite. Conversely, it is 

expected that student performance on the Algebra Foundations and Translations measure 

would be less related to performance on a measure of math calculation (e.g., Math 

Procedures), while student performance on Basic Skills and M-CBM2 would demonstrate 

increased relations to general math outcomes. The hypotheses were largely confirmed by 

the present study. 

Using this recommendations of Salvia and Ysseldyke (2007) as a standard for 

validity evidence based on relations to other variables (AERA, APA, & NCME, 1 999), 

Basic Skills and Algebra Foundations approach providing sufficient evidence of validity 

for predicting SAT-1 0  performance. Following the same validity principles, student 

performance on Algebra Foundations may be valid for predicting an algebra outcome. 

Still, additional research related to item and content composition of Algebra Foundations 

and a more established algebra outcome measure may allow for increased understanding 

of the skills assessed and overall utility of the measure. The Translations measure may 

also be valid for predicting an algebra outcome; however more research with additional 

forms would be needed to further examine the findings of this study. 
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Hierarchical Linear Modeling 

As identified in the data analysis section of the last chapter, HLM was used to 

answer study research questions three, four, and five for the M-CBM2, Basic Skills, and 

Algebra Foundations measures. For research question three, a 3-level model (i.e., level 1 

= time, level 2 = students, level 3 = classrooms) was used to examine growth rates for the 

measures. For research question four, residual values for slopes and intercepts obtained 

from the 3-level model were utilized in a second, 2-level model to explore growth rates 

with respect to SAT- 1 0  and Algebra Composite scores. For research question five, 

course (i.e., pre-algebra or algebra) was added as a predictor at the classroom level to 

examine any differential effects on outcome variables for students in pre-algebra or 

algebra classrooms with respect to research questions three and four. Relevant modeling 

decisions and results are discussed in the context of remaining research questions in the 

following sections. 

3-Level Growth Model 

Three parallel, three-level HLM models were used to account for the time of 

administration of the measures, individual student variation, and possible classroom level 

influences with respect to growth rates for the M-CBM2, Basic Skills, and Algebra 

Foundations measures. The outcome variable for each model was student scores on the 

measure of interest in the model (i.e. , M-CBM2, Basic Skills, or Algebra Foundations), 

and time was a predictor in each model. 
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An examination of level two and level three variance components revealed 

significant variability (p < . 00 1 )  at both levels for each measure model, which provided 

further support for the use of HLM to analyze the results of this study. Calculation of the 

unconditional intraclass correlation coefficient (ICC) provided an estimate of the 

proportion of variance attributable to time (level 1 ), individual students (level 2) and 

classrooms (level 3). Specifically, 73% of the variance in measure scores on Algebra 

Foundations, 74% of the variance in measure scores on Basic Skills, and 55% of the 

variance in measure scores on M-CBM2 was attributable to individuals and classrooms, 

while 27%, 26%, and 45% of the variance in measure scores was attributable to time, 

respectively. The fully unconditional, or null, model (i.e., including no predictors) was:  

Level- l Model 

Level-2 Model 

Jroy = f;Joo1 + roy 

Level-3 Model 

f3oo; = Yooo + #OOJ 

where Y1y was the ith student's score on the measure of interest at the tth time point in 

classroom}, Jroy was the predicted initial status on the measure for student i in classroom 

j, and ety was the ith person's residual at time t in classroom}. At level two, f3oo1 

represented the predicted mean initial status in classroom} and roy was the residual for 
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student i from that mean. At level three, y000 represented the mean initial status across all 

classrooms and poo1 represented the residual for classroomj. 

Modeling decisions. To develop an unconditional growth model for each 

measure, a time predictor was included in the model. Because the time that lapsed 

between each testing session was not consistent across all three schools for the first three 

administration sessions, it was necessary to model differences in administration timing to 

support accurate analyses and interpretation of results. Several time models were 

considered for the three-level HLM model. Two of the models captured time as a raw 

construct corresponding to the data point: one model employed time forward (e.g., data 

point 1 ,  2, 3 ,  4,  5), while the other used time in reverse (e.g. ,  data point 5, 4, 3 ,  2, 1) .  The 

remaining two models specified the time predictor with more precision, corresponding to 

the number of weeks in the data collection timeline (e.g. ,  week 1 ,  2, 3 ,  4, 5 ,  6, 7, 8) or 

weeks in reverse (e.g. , week 8, 7, 6, 5, 4, 3 ,  2, 1 ) .  Comparing each time model (i .e. ,  time, 

time in reverse, weeks, or weeks in reverse) to the unconditional, or null model (i.e., the 

model containing the outcome, but no time or other predictors) for each measure, 

deviance statistics were examined for significance as an indicator of model fit. 

Three factors were of interest with respect to determining the best time predictor 

model: (a) choosing a time predictor model that would allow the researcher to answer 

research questions, (b) identifYing the time predictor model containing the smallest 

deviance statistic (i.e . ,  the best model fit), and (c) choosing one time model for the three 

CBM measures modeled (i.e., M-CBM2, Basic Skills, and Algebra Foundations) to 
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support consistent interpretation of results. With respect to the first criterion, research 

questions dictated examination of growth rates after the inclusion of initial skill, which 

ruled out "reverse" models (i.e., because, reverse models would constrain the intercept as 

final skill). Regarding the second criterion, the "weeks" model provided the best fit for 

the Basic Skills and Algebra Foundations measures, but the "time" model provided the 

best fit for the M-CBM2 measure. Closer examination of deviance statistics revealed that 

the difference between "time" and "weeks" models for M-CBM2 (i.e., time minus weeks 

= 6791 .36 - 6788 .74 = 2.62) and Basic Skills (i.e., weeks minus time = 5288.62 -

5284.74 = 3 .88) was relatively small, while the difference between "time" and "weeks" 

models for Algebra Foundations was fairly large (i.e., weeks minus time = 542 1 .78 -

5399.23 = 22.55). All reported deviance statistics were significant atp < .00 1 .  

Using the three stated criteria for choosing a consistent model to support 

interpretation across measures, the "weeks" model was used for analysis. As a product of 

choosing an appropriate time predictor model, HLM models were created for each of the 

three measures (i.e., M-CBM2, Basic Skills, and Algebra Foundations), where weeks 

were included as a predictor of measure scores. Reliability estimates were explored 

across each of the measure models to examine model functioning. All measure models 

indicated strong reliability for intercepts (r = .62 - .88), and low to moderate reliability 

for slopes (r = . 1  0 - .54). In general, all models indicate they were functioning at least as 

well at the classroom level as they were at the individual level. 
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Random effects for intercepts and slopes were included in each model at levels 2 

and 3 to examine systematic variation in measure scores as a result of included predictors 

(see Tables 1 1 - 1 3) .  Interpretation of variance components for the random efiects revealed 

significant (p < .08) unexplained variance at levels two and three for intercepts and 

slopes, for all measures .  Pseudo-R2 statistics were calculated to allow for examination of 

the proportion of variance in measure scores attributable to the inclusion of the time 

predictor, relative to the null model. For the M-CBM2 model, the pseudo-R2 statistic 

indicated that 22% of the total variance originally attributable to individuals and 

classrooms was explained by including the time predictor. For the Basic Skills model, the 

pseudo-R2 statistic indicated that 8% of the total variance originally attributable to 

individuals and classrooms was explained by including the time predictor. For the 

Algebra Foundations model, the pseudo-R2 statistic indicates that 20% of the total 

variance originally attributable to individuals and classrooms was explained by including 

the time predictor. 

Conditional ICCs were also calculated, to examine the proportion of variance 

explained at each level for each measure model after including the time predictor (see 

Tables 1 1 - 1 3) .  For the M-CBM2 model, 48% of the variance in measure scores was 

attributable to time, 43% of the variance was attributable to individual students, and 9% 

of the variance was attributable to classrooms. For the Basic Skills model, 26% of the 

variance in measure scores was attributable to time, 55% of the variance was attributable 

to individual students, and 1 9% of the variance was attributable to classrooms. For the 
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Algebra Foundations model, 28% of the variance in measure scores was attributable to 

time, 4 1% of the variance was attributable to individual students, and 3 1 %  of the variance 

was attributable to classrooms. These ICCs indicate the amount of variance in measure 

scores that are attributable to time, individual students, and classrooms, when data is 

examined using the unconditional growth model. Because no predictors were of interest 

to at the student or classroom levels to answer initial research questions, the final HLM 

growth model was: 

Level- l Model 

Ytu = noy + 7rJu(WEEKS)tiJ + eu1 

Level-2 Model 

noy = fJoo1 + roy 

'lrJij = fJ IOJ + r1!J 

Level-3 Model 

fJoo1 Yooo + /-lOOJ 

fJJOj = YJOO + /-lJOj 

where YtiJ was the ith student's score on the measure of interest at the tth time point in 

classroomj, nou was the predicted initial status on the measure for student i in classroom 

j, 7riu was the rate of change in measure scores across weeks, and e1u was the ith person' s 

residual at time t in classroomj. At level two,fJoo1 represented the predicted mean initial 

status in classroomj, roy was the residual for student i from that mean,.fJJo1was the rate of 

change in measure scores across weeks associated with classroomj, and r1y was the 
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residual for student i from that rate of change. At level three, Yooo represented the mean 

initial status across all classrooms, fJoo; represented the residual for classroomj, y 100 was 

the mean rate of change for all classrooms, and fJIOJ was the residual for classroomj from 

the mean rate of change. 

Table 1 1  

Fixed Effects and Variance Components for M-CBM2, Final Growth Model 

Fixed Effect 

Predicted initial status 

Growth rate 

Random Effect 

Time (level 1 )  

Students (level 2) 

Weeks 

Classrooms (level 3) 

Weeks 

Coefficient 

22.43 

0 .94 

Variance Component 

47.0 1  

4 1 .33 

0.97 

8 .40 

0 .59 

Variance Decomposition (Percentage by level) 

Level l 

Level 2 

Level 3 

47. 8  

43 .0 

9.2 

se 

1 . 12 

0 . 1 7  

df 

1 8 8  

1 88 

9 

9 

t Ratio 

20.04 

5 .69 

x2 

493 .03 

284.36 

39.23 

23 .20 

p 

.000 

.000 

p 

.000 

.000 

.000 

.006 
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How much growth can be expected? Research question three requires an 

examination of slopes and p-values for the unconditional growth model for each measure 

(i.e., M-CBM2, Basic Skills, and Algebra Foundations). Fixed effects indicate growth in 

measure scores is significant atp < .05 (see Tables 1 1 - 13). For M-CBM2, it is predicted 

that the average 8th grade student will score 22.43 correct digits on an M-CBM2 probe 

given at the beginning of fall ;  for each week that passes, the average gth grade student's  

performance is expected to increase 0.94 digits. For Basic Skills, it i s  predicted that the 

average gth grade student will answer correctly 9.73 items on a Basic Skills probe given 

at the beginning of fall; for each week that passes, the average 8th grade student's 

performance is expected to grow by 0.22 items.  For Algebra Foundations, it is predicted 

that the average 8th grade student will answer 1 2. 95 items correct on an Algebra 

Foundations probe given at the beginning of fall; for each week that passes, the average 

gth grade student's performance is expected to increase .39 items. Multiplying the growth 

rate by the number of weeks in the study allows for a determination of total growth in 

student performance across the fall  for each measure. Data was collected in this study for 

eight weeks. On average, during this study student performance grew 7.52 correct digits 

on M-CBM2, 1 .76 items correct on Basic Skills, and 3 . 1 2  items correct on Algebra 

Foundations. These growth rates may be used to provide educators with an indication of 

expected growth on the studied measures in the fall of 8th grade. 



Table 1 2  

Fixed Effects and Variance Components for Basic Skills, Final Growth Model 

Fixed Effect 

Predicted initial status 

Growth rate 

Random Effect 

Time (level 1 )  

Students (level 2) 

Weeks 

Classrooms (level 3)  

Weeks 

Coefficient 

9.73 

0.22 

Variance Component 

8 . 84 

1 8.66 

0.04 

6.52 

0.03 

Variance Decomposition (Percentage by level) 

Level l 

Level 2 

Level 3 

25.9 

54.9 

1 9.2 

se 

0.90 

0.07 

df 

1 88 

1 8 8  

9 

9 

t Ratio 

1 0.80 

3 . 1 4  

x2 

942.20 

2 17.75 

66.69 

23 .38 

p 

.000 

. 0 13  

p 

.000 

.068 

.000 

.006 

73 
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Table 1 3  

Fixed Effects and Variance Components for Algebra Foundations, Final Growth Model 

Fixed Effect 

Predicted initial status 

Growth rate 

Random Effect 

Time (level 1 )  

Students (level 2) 

Weeks 

Random Effect 

Classrooms (level 3 )  

Weeks 

Coefficient 

1 2.95 

0 .39 

Variance Component 

1 0.03 

14 .26 

0. 1 8  

Variance Component 

1 0.77 

0 .01  

Variance Decomposition (Percentage by level) 

Level l 

Level 2 

Level 3 

28.4 

41 .0  

30.6 

2-Level Empirical Bayes Coefficient Model 

se 

1 . 1 0  

0.07 

df 

1 88 

1 88 

df 

9 

9 

t Ratio 

1 1 .72 

6.05 

x2 

695 .76 

274.45 

x2 

129.09 

1 5 .79 

p 

.000 

.000 

p 

.000 

.000 

p 

.000 

.07 1 

To explore whether growth rates predicted general math or algebra outcomes 

above and beyond initial skills, two-level models were used to examine growth rates and 



predicted initial status for measures included in the study with respect to SAT- 1 0  and 

Algebra Composite scores. Two-level unconditional, or null, models were created for 

SAT - 1 0  and Algebra Composite outcomes. In the 2-level Empirical Bayes Coefficient 

(EC) models, level one represented individual students and level two represented 

classrooms. Reliability estimates for each model were explored. Both unconditional 

measure models revealed strong reliability (SAT- 1 0, r = . 85 ;  Algebra Composite, r 
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.8 1 ) .  An examination of the variance components for both null models indicated 

significant variability (p < . 00 I )  in student outcomes as a function of classrooms (level 

2), which provided further support for the use of HLM to analyze the results of this study. 

Calculation of the unconditional intraclass correlation coefficients (ICC) allowed 

for examination of the proportion of variance attributable to individual students (level 1 )  

and classrooms (level 2). Specifically, 73% of the variance in  SAT- 1 0  scores was 

attributable to individual students, while 27% was attributable to classrooms. 77% of the 

variance in Algebra Composite scores was associated with individual students, while 

23% ofthe variance was associated with classrooms. The unconditional, or null, model 

was 

Level- l Model 

Yy = fio1 + ry 

Level-2 Model 

fio1 == Yoo + /JOJ 
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where Yii was the ith student's  score on the outcome of interest (i.e. ,  SAT-10 or Algebra 

Composite) in classroom},floj represented the average score on the outcome measure, 

and r ii was the residual for student i from that mean. At level two, Yoo represented the 

mean score on the outcome of interest across all classrooms and Jloj represented the 

residual for classroom}. 

Modeling decisions. Empirical Bayes Coefficients (ECs) for each final three­

level measure model were extracted from 3-level model analyses for use in the two-level 

EC models. Using these values, an EC model was created for each CBM with more than 

two measurement occasions (i.e. ,  M-CBM2, Basic Skills, and Algebra Foundations), for 

each of the outcomes of interest (i.e. , SAT- 1 0  and Algebra Composite). In all, six EC 

models are included in this analysis. 

At level one, predictors added to EC models consisted of Empirical Bayes 

Coefficients (i.e., residual values plus fitted values) for slopes and intercepts for each 

student with respect to each measure. The EC values were added at level one as grand­

mean centered predictors to constrain the intercept to be the mean outcome measure score 

for students with average predicted CBM initial status and average CBM slope. The EC 

values for intercepts and slopes were selected for use in the model because (a) the 

coefficients provide direct information about individual students' predicted initial status 

and slopes on each CBM, (b) EC values control for imbalances in sample size, (c) EC 

values respond well to the presence of missing data, and (d) EC values provide a 



conservative estimate of variance. No additional predictors were included at levels one 

or two in the initial EC models. The final (conditional, fixed effects) EC model was 

Level-l Model 

Y!i = .f3o1 + .f31j(EC INTERCEPT) + fhj(EC SLOPE) + r!i 

Level-2 Model 

f3oJ = Yoo + JlOJ 

.f311 = Y1o 

fl21 = Y2o 
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where Y!i was the ith student's score on the outcome of interest (i.e., SAT-10 or Algebra 

Composite) in classroomj,j301 represented the average score on the outcome measure for 

students with average slope and intercept EC values for the CBM of interest, ./311 

represented the change in the outcome measure corresponding with a change in intercept 

EC value for a student in classroomj,./321 was the change in the outcome measure 

corresponding with a change in the slope EC value for a student in classroom}, and r!i 

was the residual for student i in classroom}. At level two, Yoo represented the mean 

outcome score across all classrooms, y 1o was the mean intercept EC value for the CBM 

of interest, Y2o was the mean slope EC value for the CBM of interest, and p01 represented 

the residual for classroom}. 

Random effects were explored at level two, in part because significant variance 

was identified at the classroom level in the conditional, fixed effects model; however, 

simultaneously including random effects for the slope and the intercept yielded non-
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significant random variance and low degrees of freedom, suggesting the number of units 

at level two may have been insufficient to estimate random variance for the parameters. 

In addition, including random effects did not affect the significance of the fixed effects, 

which will be a primary source of data to answer research questions four and five. 

Consequently, variance was constrained as fixed for each measure model. Because 

random variance was not included in any model, the fixed effects model became the final 

model, thus pseudo-R2 statistics could not be computed. 

Reliability estimates were explored across each of the measure models to examine 

model functioning. Models containing M-CBM2 or Basic Skills demonstrated strong 

reliability (r .66 to .79) for both SAT- 1 0  and Algebra Composite outcomes. The model 

containing Algebra Foundations and SAT-1 0  outcomes demonstrated poor reliability (r 

.01 ), while the model containing Algebra Foundations and Algebra Composite scores 

demonstrated moderate reliability (r .42). This result suggests, with the exception of 

Algebra Foundations with SAT - 1 0  outcomes, model intercept reliability is acceptable. 

Conditional ICCs were calculated to determine the amount of variance in outcome 

measures associated with individual students and classrooms, after including EC values 

for predicted initial skills and slopes in each model (see Tables 1 4- 1 9) .  In the model 

containing SAT-1 0  outcomes and M-CBM2 coefficients, conditional ICCs indicated 79% 

of the variance in SAT - 1 0  outcomes was associated with individual students, while 21% 

of the variance was associated with classrooms. For the model containing SAT- 1 0  

outcomes and Basic Skills coefficients, 89% of the variance in SAT-1 0  outcomes was 
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associated with individual students, while 1 1 % was associated with classrooms. For the 

model containing SAT-10 outcomes and Algebra Foundations coefficients, > 99% of the 

variance in SAT -10 outcomes was associated with individuals, while < 1 %  was 

associated with classrooms. For Algebra Composite scores, the inclusion ofM-CBM2 

coefficients in the model indicated 83% of the variance in Algebra Composite scores was 

associated with individual students, while 1 7% was associated with classrooms. For the 

model containing Algebra Composite scores and Basic Skills coefficients, 91% of the 

variance was associated with individual students, while 9% was attributable to 

classrooms. For the model containing Algebra Composite scores and Algebra 

Foundations coefficients, 96% of the variance in Algebra Composite scores was 

associated with individual students, while 4% was associated with classrooms. Taken 

together these conditional ICCs indicate that more than three fourths of the variance in 

general math and algebra outcome measures is associated with individual student 

differences, while less than one fourth of the variance in general math and algebra 

outcome measures is associated with classrooms. 

Comparing models across outcomes, the Algebra Composite, Algebra 

Foundations model demonstrated more variance at the classroom level when compared to 

the SAT -10, Algebra Foundations model, while for other measure models, variance 

trended in the opposite direction. Corresponding to student performance on the Algebra 

Foundations measure, classrooms explain more variance in algebra outcomes than they 



do in general math outcomes. It was hypothesized this difference could be due to the 

presumed instructional focus of the classroom (i.e. ,  pre-algebra or algebra course) . 

Table 14 

Fixed Effects and Variance Components for M-CBM2, Empirical Bayes Coefficient 
Model with SAT-10 Outcomes 

Fixed Effect Coefficient 

32.65 

Intercept residual 0 .68 

Slope residual 0 .48 

Random Effect Variance Component 

Students (level 1 )  1 17.87 

Classrooms (level 2) 30.67 

Variance Decomposition (Percentage by level) 

Level l 

Level 2 

79.4 

20.6 

se 

1 .97 

0.22 

1 .62 

df 

9 

t Ratio 

1 6.57 

3 . 1 5  

0 .30 

56.47 

p 

.000 

.002 

.766 

p 

.000 

a SAT - 1 0  represents the average SAT -1 0 score for a student with an average intercept 
and average slope EC value. 
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Table 1 5  

Fixed Effects and Variance Components for M-CBM2, Empirical Bayes Coefficient 
Model with Algebra Composite Outcomes 

Fixed Effect 

Algebra Compositea 

Intercept residual 

Slope residual 

Random Effect 

Students (level 1 )  

Classrooms (level 2) 

Coefficient 

4.95 

0.07 

0.2 1 

Variance Component 

3 .33 

0.68 

Variance Decomposition (Percentage by level) 

Level l 83 .0 

Level 2 1 7.0 

se t Ratio 

0.30 1 6.50 

0.04 1 .82 

0 .30 0.70 

df 

9 48 .43 

p 

.000 

.07 1 

.484 

p 

. 000 

8 1  

a Algebra Composite represents the average Algebra Composite score for a student with 
an average intercept and average slope EC value. 

Does slope predict outcomes, above and beyond initial skills? Research 

question four requires an examination of fixed effect coefficients and their corresponding 

p-values. The EC values associated with intercepts contribute significantly to SAT-1 0  

and Algebra Composite scores (see Tables 14- 1 9), where a 1 -unit increase i n  predicted 

initial skill is associated with increased SAT - 1  0 and Algebra Composite scores. EC 
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values for slopes indicate small increases in SAT· l 0 and Algebra Composite scores when 

M·CBM2 slopes increase; moderate increases in SAT· l O  and small decreases in Algebra 

Composite scores when Basic Skills slopes increase; and moderate decreases in SAT� l O  

and small increases in Algebra Composite scores when Algebra Foundations slopes 

increase. However, fixed effect coefficients for slope were not significant and cannot be 

accurately interpreted. 

These results indicates that slope does not predict SAT - 1 0  and Algebra 

Composite scores above and beyond initial skills for any CBM included in this study. 

Overall, results indicate students who have higher performance on M�CBM2, Basic 

Skills, or Algebra Foundations probes at the beginning of fall of 8th grade (i.e., higher 

initial skills) will score higher on general math or algebra outcome measures. Measure 

slopes should be examined over a longer period of time to gain more insight about their 

utility for predicting general math and algebra outcomes in middle school mathematics, 

above and beyond initial skills. 

Table 1 6  

Fixed Effects and Variance Components for Basic Skills, Empirical Bayes Coefficient 
Model with SA T-10 Outcomes 

Fixed Effect Coefficient se t Ratio p 

SAT- l Oa 33 .37  1 .32  25.20 .000 

Intercept residual 1 .5 8  0.26 6. 1 3  .000 

Slope residual 2.28 8 .76 0.26 .795 



Random Effect 

Students (level 1 )  

Classrooms (level 2) 

Variance Component 

93.37 

1 1 .59 

Variance Decomposition (Percentage by level) 

Level l 89.0 

Leve1 2 1 1 .0 

df p 

9 28.3 1 .001 

a SAT - 1  0 represents the average SAT - 1  0 score for a student with an average intercept 
and average slope EC value. 

Table 1 7  

Fixed Effects and Variance Components for Basic Skills, Empirical Bayes Coefficient 
Model with Algebra Composite Outcomes 

Fixed Effect Coefficient 

Algebra Compositea 5.05 

Intercept residual 0.22 

Slope residual -0.52 

Random Effect Variance Component 

Students (level 1 )  2.93 

Classrooms (level 2) 0.29 

se 

0.22 

0.04 

1 .47 

df 

9 

t Ratio 

23 .35 

5 .06 

-0.36 

25. 1 9  

p 

.000 

.000 

.721 

p 

.003 

83 
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Variance Decomposition (Percentage by level) 

Level l 9 1 .0 

Level 2 9.0 

a Algebra Composite represents the average Algebra Composite score for a student with 
an average intercept and average slope EC value. 

Table 1 8  

Fixed Effects and Variance Components for Algebra Foundations, Empirical Bayes 
Coefficient Model with SAT-1 0  Outcomes 

Fixed Effect 

SAT-l Oa 

Intercept residual 

Slope residual 

Random Effect 

Students (level 1 )  

Classrooms (level 2) 

Coefficient 

33.57 

2.25 

-4.63 

Variance Component 

90.53 

0.03 

Variance Decomposition (Percentage by level) 

Level l 1 00.0 

Level 2 0.0 

se 

0.68 

0.27 

3.78 

df 

9 

t Ratio 

49.45 

8 .25 

� 1 .23 

4.95 

p 

.000 

.000 

.222 

p 

>.500 

a SAT� 1 0 represents the average SAT - 1 0  score for a student with an average intercept 
and average slope EC value. 



Table 1 9  

Fixed Effects and Variance Components for Algebra Foundations, Empirical Bayes 
Coefficient Model with Algebra Composite Outcomes 

Fixed Effect Coefficient 

Algebra Compositea 5 .08 

Intercept residual 0.27 

Slope residual 0.08 

Random Effect Variance Component 

Students (level 1 )  2.62 

Classrooms (level 2) 0. 1 1  

Variance Decomposition (Percentage by level) 

Level l 95 .9 

Level 2 4. 1 

se 

0. 1 6  

0.06 

0 .71  

df 

9 

t Ratio 

3 1 .63 

4.77 

0 . 1 1  

1 4.40 

p 

.000 

.000 

. 9 1 5  

p 

. 1 08 

85 

a Algebra Composite represents the average Algebra Composite score for a student with 
an average intercept and average slope residual 

Differences for Algebra and Pre-Algebra Classrooms 

The 3-level final growth models and the 2-level EC models were used to answer 

research question five. To determine whether there were differences in measure growth 

rates for pre-algebra or algebra students during the fall, course (i.e., algebra or pre-
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algebra) was added as a predictor to the 3-level unconditional growth models. To explore 

whether there were differences in the predictive relation between growth rates and 

algebra or general math outcomes for pre-algebra and algebra students after taking into 

account predicted initial skills, course was also added as a level two predictor to each 2-

level EC model. 

3-Level growth model. The final (unconditional) growth model containing time 

predictor and measure scores at each measurement occasion indicated significant 

variability at levels two and three. Course was examined as an additional predictor at 

level three in an attempt to explain classroom variance in measure scores and explore 

differences for these groups with reference to research questions. Adding course as a 

predictor at level three, the content growth model was 

Level- l Model 

Yt!i = rroii + 7ri!i(WEEKS)t!i + et!i 

Level-2 Model 

rroii = fJoo1 + roii 

'lrJii = fJ IOJ + r Iii 

Level-3 Model 

fJoo1 = Yooo + Yooi(COURSE) + JIOOJ 

fJIOJ = YJOo + Yioi(COURSE) + JIIOJ 

where Yt!i was the ith student' s score on the CBM of interest at the tth time point in 

classroomj, rroii was the predicted initial status on the measure for student i in classroom 
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j, 7rJif was the rate of change in measure scores across weeks, and etif was the ith person's 

residual at time t in classroom}. At level two,f3ooj represented the predicted mean initial 

status in classroom}, roif was the residual for student i from that mean,.f31oj was the rate of 

change in measure scores across weeks associated with classroom}, and r1u was the 

residual for student i from that rate of change. At level three, Yooo represented the mean 

initial status across all pre-algebra classrooms, YoOJ indicated the difference in the 

intercept associated with enrollment in an algebra course, ttooj represented the residual for 

classroom}, y wo was the mean rate of change for all pre-algebra classrooms, y 101 

indicated the difference in the slope associated with algebra classrooms, and #10j was the 

residual for classroom} from the mean rate of change. 

Pseudo-R2 statistics were calculated to allow for examination of the proportion of 

variance in CBM scores explained by including course as a predictor, relative to the 

unconditional growth model. For all models, the pseudo-R2 statistic indicated that little 

to no additional variance in growth rates was explained by adding course as a predictor at 

level three. However, an examination of ICCs indicates that course explained the bulk of 

the variance in growth rates attributable to classrooms. When course was included as a 

predictor at level three, variance associated with classrooms decreased by approximately 

6% for M-CBM2, variance associated with classrooms decreased by nearly 1 7% for 

Basic Skills, and variance associated with classrooms decreased by over 20% for Algebra 

Foundations (see Tables 20-22). It's possible that these decreases in variance are 

associated with the type of skills the measures assess. For example, because Algebra 
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Foundations assesses more complex algebra-focused skills than the other measures, 

including course as a predictor at the classroom level may have explained the bulk of the 

variance associated with classrooms for this measure. 

Table 20 

Fixed Effects and Variance Components for M-CBM2, Course Growth Model 

Fixed Effect Coefficient 

Predicted initial status 14.05 

Course a 5.34 

Growth rate 0.24 

Coursea 0.45 

Random Effect Variance Component 

Time (level 1 )  47.00 

Students (level 2) 4 1 .06 

Weeks 0.98 

Classrooms (level 3) 2 .21  

Weeks 0.06 

Variance Decomposition (Percentage by level) 

Level l 

Level 2 

Level 3 

5 1 . 5  

46.0 

2 .5 

se 

2 .66 

1 .57 

0 .50 

0.30 

df 

1 88 

1 88 

8 

8 

a Course: 0 = Pre-algebra classrooms, 1 = Algebra classrooms 

t Ratio 

5 .30 

3 .39 

0.48 

1 . 52 

x2 

493 . 1 3  

284.42 

1 8 .73 

1 9.47 

p 

.000 

.0 1 1  

.642 

. 1 66 

p 

.000 

.000 

.0 16  

.0 13  
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The course growth model indicates that, when course is added as a predictor in 

the model, intercepts predict CBM scores for algebra students (p < .05), but intercepts for 

pre-algebra students (with the exception of M-CBM2) and slopes for pre-algebra and 

algebra students are not significantly different from zero (see Tables 20-22). Coefficients 

in the course growth model indicate, on average, students in algebra classrooms have a 

higher predicted initial status than pre-algebra students in the fall on all three CBMs. 

Specifically, students in algebra classrooms are expected to score 5 .34 correct 

digits higher than students in pre-algebra classrooms on M-CBM2 probes at the 

beginning of the fall. Students in algebra classrooms are also expected to score 4.98 

items higher for Basic Skills and 6.52 items higher for Algebra Foundations, when 

compared to pre-algebra students at the beginning of fall. For pre-algebra students taking 

M-CBM2 probes, predicted initial status was also a significant predictor of measure 

scores: Pre-algebra students are expected to begin the fall scoring 1 4.05 correct digits, 

and algebra students are expected to score 1 9.39 (i.e., 1 4.05 + 5 .34) correct digits at the 

beginning of fall .  After adding course as a predictor in the model, slopes for CBMs 

decreased overall and were no longer significant. It's possible that slopes are not 

significant because course confounds slopes for each CBM, because the data collection 

timeline employed in this study was not long enough to allow students to demonstrate 

significant growth in pre-algebra or algebra classrooms, or because students in the sample 

did not improve math skills assessed by the measures studied (e.g. ,  instruction did not 



lead to measure-relevant learning during the fall) . Future studies should incorporate 

methodology to explore these issues. 

Table 2 1  

Fixed Effects and Variance Components for Basic Skills, Course Growth Model 

Fixed Effect Coefficient 

Predicted initial status 2. 1 6  

Course a 4.98 

Growth rate 0.08 

Course a 0. 1 0  

Random Effect Variance Component 

Time (level 1 )  8 .85 

Students (level 2) 1 8 .40 

Weeks 0.04 

Classrooms (level 3) 0.78 

Weeks 0 .03 

Variance Decomposition (Percentage by level) 

Level l 

Level 2 

Level 3 

3 1 .5 

65.6 

2.9 

se 

1 .57  

0.93 

0.23 

0. 1 4  

df 

1 88 

1 88 

8 

8 

a Course: 0 = Pre-algebra classrooms, 1 Algebra classrooms 

t Ratio 

1 .3 8  

5 .3 5  

0 .35  

0.68 

x2 

941 .8 1  

2 1 7 .66 

16 .22 

2 1 .73 

p 

.204 

.000 

.739 

. 5 1 3  

p 

.000 

.068 

.039 

.006 

90 
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Table 22 

Fixed Effects and Variance Components for Algebra Foundations, Course Growth Model 

Fixed Effect Coefficient 

Predicted initial status 2.89 

Course a 6.52 

Growth rate 0. 1 8  

Course a 0. 1 4  

Random Effect Variance Component 

Time (level 1 )  1 0.02 

Students (level 2) 1 4. 1 4  

Weeks 0. 1 7  

Classrooms (level 3) 1 .2 1  

Weeks 0.01 

Variance Decomposition (Percentage by level) 

Level l 

Level 2 

Level 3 

39.2 

56.0 

4.8 

se 

1 .64 

0.98 

0.22 

0 . 1 3  

df 

1 88 

1 88 

8 

8 

a Course: 0 = Pre-algebra classrooms, 1 = Algebra classrooms 

t Ratio p 

1 .77 . 1 1 5 

6.63 .000 

0 .84 .427 

1 .07 .3 1 8  

x2 p 

695.92 .000 

274 .52 .000 

23.54 .003 

1 3 .72 .089 

2-Level EC Model. Significant variability (p < .05) at the classroom level was 

identified for each of the final EC models containing intercept and slope residuals for M-

CBM2, Basic Skills, and Algebra Foundations measures with respect to SAT- 1 0  and 
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Algebra Composite outcomes, with the exception of the Algebra Foundations, SAT- 1 0  

model. Course was examined as an additional predictor at level two in an attempt to 

explain classroom variance in measure scores and explore possible differences for these 

groups with reference to research questions. Adding course as a predictor at level two, 

the course EC model was 

Level- l Model 

Yy= .f3o1 + .f31j(EC INTERCEPT) + .f32j(EC SLOPE) + ry 

Level-2 Model 

.f3oJ = Yoo + JIOJ 

J3IJ = y 10 + y u(COURSE) 

ft21 = Y2o + Y21(COURSE) 

where Yywas the ith student' s score on the outcome of interest (i.e., SAT- 1 0  or Algebra 

Composite) in classroom},.f3o1 represented the average score on the outcome measure for 

students with average slope and intercept EC values, j311represented the change in the 

outcome measure corresponding with a change in intercept EC value for a student in 

classroom}, j321 was the change in the outcome measure corresponding with a change in 

the slope EC value for a student in classroom}, and riJ was the residual for student i in 

classroom}. At level two, Yoo represented the mean outcome score across all pre-algebra 

classrooms, y 10 was the mean intercept EC value in pre-algebra classrooms, y 1 1  was the 

difference in the intercept EC value associated with algebra classrooms, Y2o was the mean 



slope EC value in pre-algebra classrooms, y21 was the difference in the slope EC value 

associated with algebra classrooms, and flOJ represented the residual for classroom}. 
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Pseudo-R2 statistics were calculated to allow for examination of the proportion of 

variance in SAT- 1 0  and Algebra Composite outcomes explained by including course as a 

predictor, relative to the final (conditional) EC model. For the M-CBM2 and Algebra 

Foundations models, the pseudo-R2 statistic indicated that roughly zero additional 

variance in SAT - 1 0  and Algebra Composite outcomes was explained by adding course as 

a predictor at level two. For the Basic Skills models, the pseudo-R2 statistic indicated 

that adding course to each model explained an additional 2.4% of the variance in SAT- 1 0  

outcomes and 3 . 1 %  o f  the variance in Algebra Composite scores (see Tables 23-28). 

By including course as a predictor at level two, it is possible to examine whether 

EC intercepts and slopes for each measure predict algebra or general math outcomes for 

students in algebra classrooms compared to students in pre-algebra classrooms. For all 

measures, slopes did not predict SAT - 1 0  or Algebra Composite scores above and beyond 

initial skills. However, initial skills significantly predicted SAT- 1 0  and Algebra 

Composite scores for some measures (see Tables 23-28). 

On average, for students in pre-algebra classrooms, predicted initial skills on M­

CBM2 and the Algebra Foundations measure contributed significantly to SAT- 1 0  and 

Algebra Composite scores: for every one-unit increase in the EC intercept value (i.e. ,  

predicted initial skills on the CBM), SAT- 1 0  performance increased by 0.98 and 2.48 

points, respectively. For every one-unit increase in the EC intercept value, Algebra 
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Composite performance increased by 0.13 and 0.23 points, respectively (p < .07). No 

significant differences were observed with respect to either algebra or general math 

outcomes by predicted initial skill on either of the measures for students in algebra 

classrooms. For the Basic Skills measure, predicted initial skill demonstrated a 

significant (p < . 07) predictive relationship with SAT- 1 0  and Algebra Composite scores: 

In pre-algebra classrooms, for every one unit increase in the in the EC intercept value, 

SAT-10 and Algebra Composite scores increased by 2.72 and .55  points, respectively. In 

algebra classrooms, for every one unit increase in the EC intercept value, SAT- 1 0  and 

Algebra Composite scores increased by 1.35  (i.e., 2 .72 - 1 .37) and . 1 7  (i.e., 0.55 - 0.38) 

points, respectively. 

These results suggest, on average, initial status on the Basic Skills differentially 

predicts general math and algebra outcomes for students in pre-algebra and algebra 

classrooms, where higher predicted initial status in pre-algebra classrooms is associated 

with increased performance on outcome measures and higher predicted initial status in 

algebra classrooms results in relatively smaller increases in performance on outcome 

measures. As noted previously, if the measures included in this study are considered in a 

hierarchy of difficulty, M-CBM2 assesses the most basic math skills, Basic Skills can be 

considered a basic measure of algebra skill, and Algebra Foundations assesses core 

algebra skill. Based on the fmding that increases in initial status on the Basic Skills 

measure contribute to reduced increases in performance on the SAT-10 and Algebra 

Composite in algebra classrooms relative to pre-algebra classrooms, it' s  possible that the 



Basic Skills measure is more sensitive to differences in skill among students in pre-

algebra classrooms when compared to students in algebra classrooms. 

Table 23 

Fixed Effects and Variance Components for M-CBM2, EC Course Model with SAT-10 
Outcomes 

Fixed Effect Coefficient se t Ratio p 

SAT-lOa 33 .41  1 . 89 1 7.70 .000 

Intercept residual 0 .98 0.42 2.37 .0 1 9  

Courseb -0.41  0.50 -0.83 .4 1 1  

Slope residual 1 .56 3 . 1 8  0 .49 .624 

Courseb - 1 .6 1  3 . 86 -0.42 .676 

Random Effect Variance Component df p 

Students (level 1 )  1 1 7 .42 

Classrooms (level 2) 26.03 9 48.29 .000 

Variance Decomposition (Percentage by level) 

Level l 8 1 .9 

Level 2 1 8. 1  

a SAT-1 0  represents the average SAT-1 0  score for a student with an average intercept 
and average slope residual 
b Course: 0 = Pre-algebra classrooms, 1 Algebra classrooms 
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Table 24 

Fixed Effects and Variance Components for M-CBM2, EC Course Model with Algebra 
Composite Outcomes 

Fixed Effect Coefficient se t Ratio p 

Algebra Compositea 5 .08 0.30 16.96 .000 

Intercept residual 0.13 0.07 1.88 .061 

Courseb -0.08 0.08 -0.99 .322 

Slope residual 0.34 0.53 0.64 .523 

Courseb 0.19 0.64 -0.30 .763 

Random Effect Variance Component df p 

Students (level 1 )  3 .29 

Classrooms (level 2) 0.64 9 44.97 .000 

Variance Decomposition (Percentage by level) 

Level l 83.7 

Level 2 16.3 

96 

a Algebra Composite represents the average Algebra Composite score for a student with 
an average intercept and average slope residual 

b Course: 0 = Pre-algebra classrooms, 1 = Algebra classrooms 
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Table 25 

Fixed Effects and Variance Components for Basic Skills, EC Course Model with SAT-I 0 
Outcomes 

Fixed Effect Coefficient se t Ratio p 

SAT-lOa 35 .21 1.14 30.91 .000 

Intercept residual 2.72 0.68 4.01 .000 

Courseb -1.37  0.73 -1.89 .060 

Slope residual 4 .38  23.27 0.19 . 851 

Courseb -2.40 24.52 -0.10 .923 

Random Effect Variance Component df p 

Students (level 1) 91.13 

Classrooms (level 2) 4.98 9 15 .12 .087 

Variance Decomposition (Percentage by level) 

Level l 94. 8  

Level 2 5 .2 

a SAT -10 represents the average SAT -10 score for a student with an average intercept 
and average slope residual 
b Course: 0 = Pre-algebra classrooms, 1 = Algebra classrooms 
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Table 26 

Fixed Effects and Variance Components for Basic Skills, EC Course Model with Algebra 
Composite Outcomes 

Fixed Effect Coefficient 

Algebra Compositea 5.29 

Intercept residual 0.55 

Courseb -0.38  

Slope residual -7.32 

Courseb 7.42 

Random Effect Variance Component 

Students (level 1 )  2 .8 1  

Classrooms (level 2) 0.29 

Variance Decomposition (Percentage by level) 

Level l 

Level 2 

90.6 

9.4 

se t Ratio p 

0.24 22.20 .000 

0. 1 2  4.40 .000 

0. 1 3  -2. 83 .006 

4.32 - 1 .70 .09 1  

4.60 1 .62 . 1 07 

df p 

9 24.89 .003 

a Algebra Composite represents the average Algebra Composite score for a student with 
an average intercept and average slope residual 
b Course: 0 = Pre-algebra classrooms, 1 = Algebra classrooms 



Table 27 

Fixed Effects and Variance Components for Algebra Foundations, EC Course Model 
with SAT-1 0  Outcomes 

Fixed Effect 

SAT-l Oa 

Intercept residual 

Courseb 

Slope residual 

Courseb 

Random Effect 

Students (level 1 )  

Classrooms (level 2)  

Coefficient 

34.44 

2.48 

-0.59  

-2. 5 1  

-0.08 

Variance Component 

90.33 

0.02 

Variance Decomposition (Percentage by level) 

Level l 1 00.0 

Level 2 0.0 

se t Ratio p 

1 .03 33 .29 .000 

0.48 5 . 1 5  .000 

0.80 -0.74 .459 

6.92 -0.36 .7 17  

9.63 -0.01 .994 

df p 

9 3 .47 >.500 

a SAT - 1  0 represents the average SAT -1 0 score for a student with an average intercept 
and average slope residual 

b Course: 0 = Pre-algebra classrooms, 1 = Algebra classrooms 
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Table 28 

Fixed Effects and Variance Components for Algebra Foundations, EC Course Model 
with Algebra Composite Outcomes 

Fixed Effect Coefficient se t Ratio p 

Algebra Compositea 5.09 0 .23 22.52 .000 

Intercept residual 0.23 0. 1 0  2.36 .0 1 9  

Courseb 0.06 0. 1 5  0.37 .71 1 

Slope residual 1 .3 8  1 .26 1. 1 0  .275 

Courseb -.79 1 .75 - 1 .03 .307 

Random Effect Variance Component df p 

Students (level 1 )  2 .61  

Classrooms (level 2) 0. 12 9 1 4.94 .092 

Variance Decomposition (Percentage by level) 

Level l 95.6 

Level 2 4.4 

1 00 

a Algebra Composite represents the average Algebra Composite score for a student with 
an average intercept and average slope residual 

b Course: 0 Pre-algebra classrooms, 1 = Algebra classrooms 
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Multiple Regression and Paired Samples t-test 

Because the Translations measure was only administered at two time points 

during the fall, there is insufficient data to model student growth from student scores on 

this measure. However, gain, or change, scores can be examined in light of the 

remaining applicable research questions (i.e., research questions three and four) as an 

approximation for growth. A paired samples t-test was used to identify the amount of 

gain students demonstrated between early and late fall administrations of the Translations 

measure. Multiple Regression was used to examine Translations gain scores with respect 

to SAT- 1 0  and Algebra Composite outcomes (see Tables 29-32) for students in algebra 

classrooms. 

Table 29 

Overall Results for Translations Regression Model Predicting SAT-I 0 

Model Summary 

R R2 Adjusted R2 R2 change 

.470 .22 1 .206 .03 1 

ANOVA 

Source ss df MS F p 

Regression 3206 .21  2 1 603 . 1 1 1 4.73 .000 

Residual 1 1 3 1 8 .69 1 04 1 08 .83 

Total 1 4524.90 1 06 



Table 30 

Regression Coefficients for Translations Model Predicting SAT-I 0 

Variable b 

Intercept 30.68 

Data point 2 0.53 

Data point 5 0 .33 

Note. SE = standard error, sr 

Table 3 1  

SE t 

1 .92 1 5 .95 

0 . 1 7  3 . 1 4  

0. 1 6  2 .02 

semipartial correlation. 

B 

0.32 

0.21 

sr 

.27 

. 1 8  

1 02 

p 

. 000 

.002 

.046 

Overall Results for Translations Regression Model Predicting Algebra Composite 

Model Summary 

R R2 Adjusted R2 R2 change 

. 660 .43 5  .423 . 073 

ANOVA 

Source ss df MS F p 

Regression 1 54.32 2 77. 1 6  35 .48 .000 

Residual 200. 1 0  92 2. 1 8  

Total 354.42 94 



Table 32 

Regression Coefficients for Translations Model Predicting Algebra Composite 

Variable b SE t 

Intercept 3 .78  0.29 1 3 .00 

Data point 2 0 . 1 7  0 .03 4 .53 

Data point 5 0.09 0.03 3 .44 

Note. SE = standard error, sr = semipartial correlation. 

B 

0.43 

0.32 

sr 

.36 

.27 

p 

.000 

.000 

.001 

1 03 

How much gain can be expected? Although growth could not be modeled for 

the Translations measure, mean gain during the fall can be examined. At the first 

administration of the Translations measure (i.e., data point 2), the mean score was 8.49 

items correct (see Table 3). The mean score on the Translations measure at the second 

administration (i.e., data point 5) was 1 1 . 88  items correct (see Table 3). A paired 

samples t-test was conducted to compare mean Translations scores across the two 

administrations. Differences in mean scores were significant t( 106) = 5.20, p < .00 1 .  

Translations scores significantly increased during the fall, with a mean gain of 3.52 items. 

Does gain predict outcomes, above and beyond initial skills? Although student 

performance on the first administration of the Translations measure (i.e., data point 2) 

explained more variance in scores on the SAT- 1 0  and Algebra Composite, the unique 

contribution of the second administration of the Translations measure (i.e., data point 5) 

to outcome scores was significant for the SAT - 1 0  model, F(2, 1 04) = 1 4. 73,  p < .001 and 
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the Algebra Composite model, F(2, 92) = 3 5.48, p < .00 1 .  An examination of the 

unstandardized betas for the SAT- I 0 and Algebra Composite models (see Tables 30 and 

32) indicates the amount of raw change in outcome measure scores that corresponds with 

a one-unit change in the predictor. For each additional item scored correct on the 

Translations measure, it is expected that algebra students will answer between .33 and .53 

additional items correct on the SAT - 1 0  and between . 1 7  and . 09 additional items correct 

on the Algebra Composite, depending on time of administration. These results indicate 

gains in Translations measures explain variance in general math and algebra outcomes. 

Consequently, the Translations measure demonstrates promise for use as a progress 

monitoring measure for algebra students in gth grade. Future studies should examine this 

measure in greater depth and attempt to model growth using additional data points. 



CHAPTER V 

DISCUSSION 
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This study investigated the technical adequacy of mixed computation and algebra 

CBM in middle school with respect to general math and algebra outcomes. With the 

intent of contributing to the research base concerning evaluation tools available for use in 

middle school mathematics classrooms, this study examined the reliability, validity, and 

expected growth rates of existing CBMs. Moreover, this study targeted progress 

monitoring in middle school algebra as an important area of development because experts 

indicate algebra acts as an access point for success in advanced mathematics and beyond 

and formative assessment is linked to positive results for students. Results from this 

study indicate that students make growth on mixed computation and algebra CBMs 

during the fall of gth grade; however, growth does not appear to predict mid-year general 

math or algebra outcomes above and beyond initial skills. This chapter discusses these 

findings in light of current literature, identifies limitations of the present study, and 

provides suggestions for additional, related research. 

Implications for Theory and Practice 

Research suggests, to validate a measure for use in progress monitoring, a three­

stage process is needed, involving an exploration of (a) the technical adequacy of the 

measure at one point in time; (b) the technical features associated with slope, perhaps 

relative to a target domain; and (c) the use data gleaned from the measure for informing 
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instruction and intervention (Fuchs, 2004; Hojnoski et al. ,  2009). This study explored the 

technical adequacy of mixed computation and algebra CBM at the first and second stages 

of the validation process. Correlations observed between mixed computation CBM and 

outcome measures were slightly lower than those identified in earlier studies (e.g. ,  

Thurber et al., 2002), while correlations between algebra CBM and outcome measures 

were moderately higher than those identified previously (e.g., Foegen et al., 2005).  

Importantly, although rates of progress did not predict outcome measures above and 

beyond initial skills, growth for students on mixed computation and algebra CBM in the 

fall of 81h grade was significant. Slopes of progress for mixed computation and algebra 

CBM are largely undefined in published research; thus, it is difficult to identify whether 

the findings of the present study converge with other research. Consequently, it is 

important that research continues to focus on stage two developments with middle school 

progress monitoring measures and examine whether the findings in this study are 

consistent with new research. 

Using the standards recommended by Salvia and Ysseldyke (2007), correlations 

observed in this study indicate acceptable levels of reliability for algebra CBM in 81h 

grade, but limited reliability for M-CBM2. In addition, although the CBM measures 

studied may not be technically adequate for important individual educational judgments 

with the sample assessed in this study, algebra CBM approaches a standard of validity 

evidence based on relations to the SAT - 1 0  and Algebra Composite that may support its 
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use as a screening measure. In this regard, algebra CBM may be appropriate for lower 

stakes decisions, such as day-to-day instructional planning. 

Results of this study also indicate initial status predicts outcomes across all 

measures (except for M-CBM2, for predicting the Algebra Composite). Predicted initial 

status on M-CBM2, Basic Skills, Algebra Foundations, and Translations contributed to 

increases in SAT - 1 0  and Algebra Composite scores. These contributions were significant, 

which demonstrates that, for gth grade students in this sample, initial status on mixed 

computation and algebra CBM was indicative of later performance on an established 

measure of general math and algebra skills. Findings about the significance of initial 

status for predicting mid-year outcomes provides further evidence that algebra CBM may 

allow classroom teachers to make decisions about whether students are on track at the 

beginning of fall to meet mid-year goals, and may support instructional decision-making 

by encouraging teachers to instruct upon skills students cannot demonstrate across the 

measures. 

Finally, this study provides some evidence to support the use of measures with 

strong face validity. Teachers of pre-algebra and algebra students may be less willing to 

use M-CBM2 than algebra CBM based on the appearance of the measures, because 

algebra CBM looks more relevant to the instruction that occurs in pre-algebra and algebra 

classrooms. Based on the preliminary analyses conducted in this study, teachers' 

inclinations to prefer algebra CBM over mixed computation CBM in 8th grade math 

classrooms is likely appropriate: correlations between M-CBM2 and outcome measures 
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were weak, while correlations between algebra CBM and outcome measures were 

moderate to strong. Also, though initial status on M-CBM2 was predictive of SAT - 10  

outcomes, it was not predictive of  Algebra Composite scores, which suggests, for algebra 

teachers working to prepare their students for courses in algebra and advanced 

mathematics, M-CBM2 may have less immediate relevance. 

Limitations 

Several limitations can be associated with this study. First, sample constraints 

may have influenced the generalizability of study findings, because the study was limited 

to 8th grade students and was conducted only in the Pacific Northwest region of the 

United States. Also, the number of classrooms containing student participants was on the 

low end of the acceptable range for HLM analyses. As a result, random variation could 

not be fully explored for each of the measures studied, which may limit understanding of 

the impact of classrooms on student progress, especially in attempts to quantifY any 

differences in slopes between students in pre-algebra and algebra classrooms or examine 

instructional differences that my have impacted progress across teachers or schools. 

Second, based on initial agreements with teachers in participating classrooms and 

subsequent requests for additional time for students to complete outcome measures, SAT­

I 0 administration procedures were not identical across all three participating school sites. 

At schools A and B, students were assessed across two days. On the first day of testing 

the researcher administered the test; on the second day of testing, the teacher provided 

additional time for students to finish test items. In contrast, at school C, SAT-10  testing 
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was conducted in one day, by the researcher. In addition, while all students received at 

least 80 minutes to complete both subtests of the SAT- 1 0, some ofthe students did not 

complete the test, which likely affected student scores on the outcome measure, and more 

heavily impacted the second administered subtest of the SAT- 1 0  (i.e., Math Procedures). 

By not allowing as much time as was needed to complete the test or constraining time 

allowed across sites for consistency, variation in results is difficult to analyze. 

Third, school schedule changes mid-study affected student participation in the 

study. At school A, administrative efforts were made to keep students with the same 

math teacher, despite changes to class composition (e.g., Student 1 moved from period 2 

with teacher A to period 5 with teacher A). At school B, student schedules were largely 

overhauled, especially in pre-algebra classrooms, based on changes to the school's master 

schedule. As a result, the number of participating students from pre-algebra classrooms 

at school B is low. In addition, across the three schools, a total of five students moved 

from pre-algebra to algebra during the study; however these students were retained in the 

pre-algebra condition for the purposes of analyses. The nature of conducting research in 

schools requires flexibility, thus, means for managing missing data were planned at the 

onset of the study and used during analyses to limit the impacts of attrition on results. 

Fourth, classroom context was different in each of the schools. Curricula varied 

in author, content, and year, although all were considered traditional in design. Also, 

teachers approached study participation differently. Teachers of participating classrooms 

were provided with raw and summarized student data after each measurement occasion 



1 1 0 

and told they could use the data to support instructional planning. Although all teachers 

talked with students about the meaning of the assessments and the rationale for their 

participation, incentives for student improvement varied across schools. To motivate 

students to continue to put effort into completing assessments after the first two 

administration sessions, one teacher chose to announce and provide extra credit for 

students who made progress between measurement occasions. Another teacher decided 

to not assign homework on days the researcher came to the classroom to administer 

assessments. A third teacher provided no extrinsic reinforcement for student 

performance or participation. Although these factors have been documented, sample size 

prohibits a comprehensive analysis of the effects ofthese differences across sites. 

Future Directions 

To address the limitations and further examine the results of this study in 

additional contexts, research should explore growth rates with an increased number of 

classrooms, across geographical regions and grade levels. Also, because slopes did not 

predict general math or algebra outcomes above and beyond initial skills, future studies 

examining growth rates for these measures should extend the data collection timeline 

(e.g., to the end of the school year) and/or increase the total number of data points in 

accordance with recommendations for best practices in methodology (e.g., Raudenbush 

& Bryk, 2002). In addition, when algebra CBM is used in practice, measure developers 

recommend that the first data point not be used for interpretation and instead be used as a 

stabilization point to allow students to become familiar with the tasks of the measures 
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(Foegen, personal communication, April 2 1 ,  20 1 0). If the first administration for Algebra 

Foundations was removed from the data set, mean scores would demonstrate a 

consistently positive linear trend (as would the scores for M-CBM2). The first 

administration was included in analyses to more accurately model student behavior 

across fall for the purposes of research. However, it may be useful to examine study 

results excluding the first data point to explore any differences in growth on the measures 

or in the predictive relation between initial skills or slope and SAT - 1 0  or Algebra 

Composite scores. 

If the CBM measures studied are to be used at a single point in time as an 

indicator of mid-year general math or algebra outcomes, it will be important to examine 

the use of the measures for screening. Technically adequate screening assessments allow 

educators to make decisions about student skill in a broad mathematical domain, and 

study results suggest the measures studied are indicative of broad general math and 

algebra skills. In this regard, it may be valuable to examine how measures might be used 

as a set (e.g., administer two or three measures and take the mean or median) to predict 

math outcomes. However, in order to validate any of the studied CBMs for screening, 

additional research is needed with larger samples and in the context of instructional 

decision making to examine the technical adequacy and utility of the measures for this 

purpose. Also, reading has been identified as an area of development that may be highly 

correlated with math skill (e.g., Fuchs et al., 2004; Thurber et al. ,  2002). It may be 
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important to examine the role of oral reading fluency with respect to student growth and 

outcomes in mathematics. 

Although measure reliability and validity for a purpose are necessary features of 

any assessment, research suggests that additional components of technical adequacy 

should be established for a measure to be appropriate for progress monitoring (Ardoin & 

Christ, 2009; Francis et al., 2008). Because progress monitoring measures are intended 

to provide a linear snapshot of student skill in a content domain, it is important that any 

variation in student scores over time can be attributed to student growth rather than 

standard error (Francis et al., 2008). Given this premise, technically adequate progress 

monitoring measures require an appropriate number of alternate forms and documented 

consistency in the difficulty across forms (Ardoin & Christ, 2009). For the Translations 

measure, the development of alternate forms is of particular importance, if student growth 

on the measure is to be studied. 

Similarly, although measure content appears to target algebra skills, future studies 

should examine item level content of mixed computation and algebra CBM relative to 

well-respected outcome measures, such as the SAT- 1 0, to explicitly identifY the 

standards measured by each test. By moving research on middle school math CBM into 

these domains and linking measures to algebra standards, results have the potential to 

better inform uses of the measures for data based decision-making in mathematics. This 

research did not purport to explore these features of mixed computation or algebra CBM; 
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thus, to examine the item and form difficulty, internal consistency, and specific skills 

targeted by the measures studied, additional analysis of test items and forms is needed. 

In addition, this study did not examine content alignment between classroom 

instruction and outcome measures. If the SAT - 1 0  or Algebra Composite do not 

accurately represent the content taught in the pre-algebra and algebra classrooms studied, 

the finding that slope does not predict these outcomes above and beyond initial skills has 

little meaning: It is possible that an outcome measure that may be more aligned with 

either the CBMs administered or the content taught to students may result in different 

findings. To gain additional insight on this issue, future studies should explore the 

alignment between content taught to student participants, the content assessed by the 

outcome measure, and the content assessed by each CBM administered. For example, 

future studies with these measures might employ the use of an algebra-focused outcome 

measure derived from algebra course fmal exams or, at the least, utilize a teacher rating 

system to identify the extent to which an outcome measure and administered CBMs are 

aligned with intended course content. 

Recent research also indicates that instructional variables can impact growth 

patterns across classrooms (Hojnoski et al . ,  2008). In this regard, it' s  possible that 

evaluating the technical adequacy of an assessment using outcome measures administered 

months after the initial administration of the tool being evaluated (as was done in the 

present study) may not provide a sufficient depiction of the technical adequacy of the tool 

or the nature of skill development. Because instruction invariably occurs between 
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administration of the initial measure and administration of the outcome measure for 

students in schools, it is difficult to define whether changes in student performance are 

the result of accurate measurement (i.e, true changes in student skill), variability in 

measure items or forms, or a combination of factors. If measure difficulty has not been 

studied, the extent to which performance on one measure predicts skills on a second, 

distal measure becomes even more ambiguous. In this regard, in addition to analyzing 

measure difficulty and constructs assessed, it is important to document the quality of 

instruction students receive when measures are studied with respect to later outcomes, 

especially if differences emerge between classrooms, instructors, or schools (Raudenbush 

& Bryk, 2002). By conducting observations throughout the assessment period (e.g., 

tracking the use of other evidence-based practices in mathematics, documenting student 

engagement and other alterable classroom variables such as student practice), changes in 

student skill can be more accurately matched to measure sensitivity across student 

groups. 

Conclusion 

Assessment-the process of collecting data to make decisions about students-is 

important because results allow educators to better identify student strengths and 

weaknesses and make decisions about instruction with increased accuracy (Salvia & 

Y sseldyke, 2007). In the context of expert recommendations, assessment in mathematics 

needs additional study. Specifically, experts call for development and study of objective 

measures of mathematics achievement that provide direct information to teachers and 
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students about the learning process (NCTM, 2000) . Simultaneously, experts recommend 

an increased focus on algebra content in math instruction and assessments (NMAP, 

2008), and research on evidence-based practices in mathematics indicates formative 

assessment has the power to increase student outcomes when results are used by teachers 

and communicated to students (Gersten et al., 2008). Consequently, studies of formative 

assessment measures that are technically adequate for instructional decision-making in 

algebra are needed to support student achievement in mathematics. 

In consideration of the technical features described by Francis et al. (2008), which 

are required for a measure to be appropriate for progress monitoring (i.e. ,  administration 

across regular intervals, brief and easy to administer, scores use a consistent metric, 

scores are predictive of important end of year outcomes, and forms are :free :from 

measurement artifacts), this study provides evidence that existing mixed computation and 

algebra CBM meet the first three criteria. Results also indicate initial status is predictive 

of mid-year general math performance, which provides some evidence for the fourth 

criterion. Criterion five was not addressed in this study. With respect to the criteria set 

forth by the NCPM (2007), mixed computation and algebra CBM probes appear to be 

reliable, sensitive to student improvement, and have specified rates of improvement; 

however, more research is needed to identify whether the tools are valid for progress 

monitoring, determine if they can be linked to improved student learning or teacher 

planning, and specify adequate yearly progress benchmarks. 
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In summary, despite the indication that the measures studied may have 

questionable technical adequacy for progress monitoring with this sample, the measures 

may prove useful for other means of formative evaluation. Given the limitations of any 

single study, progress monitoring should not be ruled out for any of the measures studied. 

Instead, more research is needed to identify whether student growth is stable enough on 

the studied CBMs to be used for progress monitoring. 
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A� MathematiC& ComputaUon {Rei. 2000) P� MQl'lltor 12 • Otadtl8 
"ltru haw 4 rnlrnltes to writ� your answers to sewml kinas t>f malh pr®lems< Look � � �1 careruliy. fry to 
work eacn pwbiom, trut Jt you REALlY don't �mow ht>W ro dl1 tt, put an X owr It and � to the next one. Don't skip 
at®n<:L Some pr0bl$m$ require you to read ttl� mutn.!Ctions oo !he page. Reduoo r;aet�ons to Ulelr most ctm1mon form, 
and mood decimals w lh8 'ltloooandlhs �oo. 

25.5 
x 3  

-

C<!l!lll:;ltilrHIE�" "" "'"""*­
..---

26% ot 20 
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All'd\n� MdlematiceC� (Ret. illOI) P� M<mltt>¥#2� Gl'DS 
'rou 1"4tve 4 mimJtes to wlift* YQil!' answers to � kinds of math problsms. Look at eru::tr problem cerefuUy, Try to 
wmk each problem, but if you REALLY OOr!'t know how to do it. put an X t:MK ft and vo to too next one. Oon't ll!dp 
around. SOme problems r�ulre you to read tl'le �om on ttMl � R&duoe fractiMs to thoor tTIOiSt common bm, 
and round dedmals to the thousandths plaoo. 

f;j 
1( 1.5 

.. .. 
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Solve: 
9 + a ""  tS a =  Hi-6=g 

Bvalume: Simplify: 12 3 9 - 4d+ 2 + 1d  

Simpllt)r 
�+ 4 + !x + S  S(b - 3)-b 

Solve: So!ve: 
12 - e �4 « ""  q • S e 3Q q 

SimplifY: 
4(3 + .r) - 1  

b +  + 2 + w(w�5) 

Solve: Solve: 
r ll I ft. ""12 �a 
_ _ _  ,_ , .. S it ..,  in. 6 IS 

�; 1 l(f- 2) 4 i/> + S(b- 1) 

E�«' Simplify: -5 + {-4)- 1 s + lf - 4¥  

Solve: 
ti3 + C '* 9  (" "' x + 4 .., 7  X "'  

s� 
;a�,- !} +  4 •tc Ss: -�(g + !) + 9  

SimpBJYt 
lm - 9(m + 2)  

Serve: 
:Ht. ... 1 yd. 12 48 
_ fl • 9 yds, - ;:;; - tr =  2 B 

Simplify: 
,.}+y-4y+3f' 



""" 
�; 
3 • 8 ""m m •  

�: 
-9 + 5 + 8 

Simplify: 
� + l{x- S)-l  

e: 
d- 5 ""' 4  t/rtR 

Simplify: 
$(3 +1)- �+ 6 

Solve: 
4 qts. • l  pl. 
-·-· . qts. • H �  gals. 

ify: 
�+ l) -B:y 

14 -7 + {- 3) 

Solve:. 
36 
� #Ill;,$' $ ""'  6 

Simpll� 
le -;l(e,- 4) 

Solve: 
6 + 7 = F  

- 5 + 6 - 6  

S1mplify: 
4 +  1(1(1 -r) 

Solve: 
2.5 ent. '"" l 
_cm. = 6 in.  

6a+la-9 + �  

Ewhlatt; 
- 1 + 4 {-7) 

Solve: 
500 10 
- !II\ -

j 2 

Hvaluater 
-2+ (-S)+ {- � 

1 22 

} '*'  
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AU In t:be empty 
box: 

J( ) 0( ) 

lf y > 9, two �we values for Evaluate; 
)' are_ ud __  9 • 4� 6 

Evaluate 2%' + 4y wh:�n 
x • 2 and y•- 3 

Write Ute c�n for chis 
pbr�: 
6 14# than n nuht�Htr 

Write a word phrase for tbts 
�}m:saioru 
100 - 7  

Simplify. 
1f+ (2/+h 

Evaluate: 
(-2) • (- 4)  

g ::::. 2 __ _ 

g = - l  __ _ 

What is the slope? 

\\r'b.at is the y..,ifit�pt'l 

Solve: 
n + 3 !1# 8  
n =  

Write me expression for thht 
phrase: 
9 mullipltml 111 a I'J«Mher 

6 - l(b - 4) 



What is the slope? 

What Is tM y-i�? 

All is the e�DPtY 
�: 

Write a word p!mlse for BVIJU�te: 

expression: (- 12 + 4) + 3 
X + 4  

If 2a + 4 c:· 20. two possible Scdve: 
'lllll.uu far a are Ml;f 24 + x .,.. 6 

X lli<  

far �s 

�: 15 - S = x  
8 � th(m twt�::e a �m� x• 

Evlill"* 
10 - 'i + 8 + 2 lln - 5 + 3 - 7n 
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