E D
FLICH.

=

S

ive

5
MEXHE HAIGHA OF

O N

2|

=

o

M

[—

creat
commons

x=, @o
t

PSESPNE=INE
o)

LICt:

s

2 SESE 0
12

O M

M, o

=
=
g

C
MNZERLEAlL A

=R
==
==}
==

o Ol M&
o Ol M&
CSi &2 =4S Matof

oll
0

Ju
o

180

o

Ju
s

o
R0
B

79)

Rr

Ol M&=2 THOI=O0lLt b

7l56t=,
b

LICH

H

A

X ESLICh
2

b

S
er

E

o
=

I 2

HOd

ot |

[¢]

H

=

[¢

o]
lection

=

=

Disclaimer
Co

L

=

SHAl LEEHLH O OF
NE2RH Ex2 61D

=

]

0l N2 0| =3 & 72 (Legal Code)

PN
)

4

A0 OE 08K Hels 22 ol o

(=) =|
2 9=

http://creativecommons.org/licenses/by-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nd/2.0/kr/

DEVELOPEMENT OF DATABASE AND
STORED PROCEDURES FOR
E-COMMERCE SYSTEM

U A Al 2EE

[|

Of

FH OB H| O] & S MEZZ AN
N

7
°

r

X| =2 dt &

10

20194 8

F

rot

i

=X

09
-
ot
rHo

CH

ok

f

74

O

=z

Ok
|oF

Ff

3Hl

MOHAMMAD HAZIQ BIN MASLAN

Table of Contents

Abstract

Chapter 1: INtrodUCtiONoovviiiiiiee e 1
1.1 Background of reSearchccc.covioiiiciiieecece e 1
1.2 ReSearch ObJECTIVES.coviiiieiecee e 2
Chapter 2: Literature REVIEWc.oooiiiiiiiecieceeeeee e 4
2.1 E-COMMEBICE .ottt ettt 4
2.2 Database and stored proCeduUre........ccoieeieciieieeceece e 5
Chapter 3: Database Design and Stored Procedure..................ccccooeeiiiiiienn, 9
3.1 Database deSIZNccviiiieiicie e 9
3.2 Basic stored procedures deSigN......c.cccveeiiieiiiie e 17
3.3 Advance stored procedure deSi8Ncccvevieeiieiieiiiecie e 23
Chapter 4: Implementation and Experimentc.ccccooiiiiiiiiiiienccee 26
4.1 Database implementation ..o 26
4.2 Stored procedure implementationcccccoeveiviiiiiiiec e 29
4.3 Website implementation ... 32
Chapter 5: Conclusion and Further Works...............ccccoocviviiiiiiiiicie 36
APPENAIX .ot 38
Appendix a: Database SQL and Tablesoovviviiiicieecceece e 38
Appendix b: Stored ProCeAUIEScoivii i 49
REFEIENCES.o 52

List of Figures

2.1 Database design example for e-commerce [5].......cccccevveevvieiiiieiieeiieein, 6
2.2 The Workings of Stored Procedurecccoccvveviieiiiiiiicieeciece e 7
3.1 Overall Structure of Databaseccceiiiiiiiiiiii 9
3.2 USEI SECHION ...ttt 10
3.3 INVENTONY SECTION it e e e e 12
3.4 Order SECTION ..ttt 13
3.5 PaymMeENT SECTION ... it e 14
3.6 DElIVENY SECLION c..viiiie et 15
3.7 Database Table ..o 16
3.8 Basic Stored Procedure DESIZNccovviiiiieiiiiecee e 17
3.9 StOred ProCEAUIE ...ttt 19
3.10 UpdateOrderTable COdes ... 23
4.1 SQL for customer_detailoouveioeeieiece e 26
4.2 Table for customer_detail........ccoouviiiiiiiiiicc e 27
4.3 SQL FOr INVENTONY . .c.viiiciee e 28
4.4 Table for INVENTOINY ..o 28
4.5 SQL for iINVENTONY IMaEES....cvii e 28
4.6 Table for iNVeNtory iMagescoveioveeicee e 27
4.7 Stored Procedure for Add Datacccooveieiiiniiiieiceee e 29
4.8 add_inventory stored proCeduUreoovviivcie e 29
4.9 Stored Procedure for Credit Card........coviiieriiieiiiiececeeeee e 30
4.10 Stored Procedure TIHEEI ..o 31
A, 1T MAIN PO ettt 32

4.12 Buying A Product..............
4.13 Adding Inventory (Admin)
4.14 Admin Main Page..............

Development of Database and Stored Procedure for

E-Commerce Systems

Mohammad Hazig Bin Maslan

Department of Computer Engineering,

Graduate School, Korea Maritime Ocean University

Advised by:

Prof. Hyu-Chan Park

Abstract

E-commerce has been an important entity in our daily life. Mobile
commerce will make up to 45% of total revenue of e-commerce transaction by
2020. Database design is important in creating e-commerce application. Previous

work on the database design for e-commerce application is improved.

This thesis further improve previous work on database design for e-
commerce application. The method of using stored procedure technique in
creating an e-commerce application is also applied. We propose two design that
is applied for e-commerce application, which is the database design and the
stored procedure technique.

The first proposes an improve design on e-commerce application database.
We introduce a simple design that is applied and used in e-commerce application,
further improving the previous design. The design focus on a simple approach to
a database for e-commerce application.

The second proposes on using the stored procedure technique in creating
the database. Stored procedure used as a middleware for the application and the
database. The stored procedure is categorised in two, which is the basic and
advance stored procedure techniques. We explained on applying stored procedure
technique on an e-commerce application.

The proposed stored procedure and database can applied to the creation

of an e-commerce application.

Chapter 1 : Introduction

1.1 Background of Research

E-commerce has been an entity that is part of our daily life. More and more
business are adapting the e-commerce business model to improve their existing
business. Creating a new application will likely create new chances not to just
the business but also the developers and the users itself [1]. To show the
importance of e-commerce, in 2017 there were 1.66 billion online buyers. A case
study shows that mobile commerce will make up to 45% of total e-commerce
revenue by 2020. To stay relative in the business world most small and medium
business need to start adapting to the e-commerce way of doing business.

E-commerce has the potential to drive the economy of a country to the
next level with assured streamlined online business operations, enhanced income
and profitability. Even with all the potential, that e-commerce can provide for the
owners and customers, there is challenges in using an e-commerce system or
application for a business.

Everything starts with building a web site or an application that will fill
or help the business. A good website or application needs a good foundation to
begin with. The website or application must have a good foundation and a good

aim in terms to fulfil the needs of the application itself. To achieve this there is a

few important aspects in terms of creating the application, and one of them is
database and stored procedure.

Database is an important aspect of any application. The techniques to
design database for any given application is becoming more complicated even
for the experienced programmer. A guide or way to design a database for e-
commerce using the stored procedure technique is needed in order to further
improve the needs and demands of e-commerce in the market.

To create an effective e-commerce website or application we must start
from the database design, and an approach from the stored procedure side of the
database design. Stored procedure can have its advantages on use and an effective

stored procedure can help its user and its designer.

1.2 Research Objectives

1) Preparing a base framework for database creation in e-commerce sector

Database is important in any application, and with the growing of E-
Commerce sector a framework is needed for creating database in an E-Commerce
application. This framework is to help programmers or designers in creating their

own database for their own e-commerce program in the future.

2) Stored procedure design for e-commerce application

Stored procedure technique is important as it can improve performance of
an e-commerce application. Having a design that can be used as a guide is
important to help programmers. This research may achieve that stored procedure
will be widely used in the creation of e-commerce application.

3) Testing how effective in using stored procedure for e-commerce system

This research is to test the impact of using stored procedure in an e-
commerce application. Will it improve and increase the effectivity of the e-
commerce application, or will it affect the design of e-commerce application in a

negative way.

Chapter 2 : Literature Review

2.1 E-Commerce

E-commerce means electronic commerce. Any business that is done over the
internet is considered E-commerce. E-commerce is usually related to a website

in the internet which provide, products or services from the portal.

The act to transform, create and redefine relationship between
organization and individual through electronic communication and digital

information passing is e-commerce [1].

E-commerce is changing the that way business approaches their
customers to sell the products and services. New methodologies are evolving and
the relationship between geographic distances in forming a business has been
lowered. [2]. With the rapid devolvement of the communication technologies, e-
commerce will be the future of shopping. E-commerce will have a very important

role in the 21 century for business of both small and large companies.

With the internet, distances between customer and business become closer
[3]. Today we can see that more and more business is using e-commerce as a
means to provide services and products, and with e-commerce being easily

accessible by everyone, e-commerce is growing at a very fast pace.

In 2018 e-commerce has achieved a sales grow of 18%. Worldwide
consumers purchase around $2.86 trillion compared to $2.43 trillion of 2017 on
the web, as reported by Jessica Young [3]. This shows an amazing growth and

importance for the e-commerce market.

E-commerce has become an important aspect of the business, and some
business started to adopt multiple digital channels to promote their business. A
Forbes case studies shows that business that adopts multiple digital channels
outperforms business that does single or dual channels by 300%. With this, we

can see the significance of E-commerce in today growing business.

2.2 Database and Stored Procedure

Database is a collection of information that is organized so that it can be easily
accessed managed and updated. Database is an important aspect in a creation of
any type of system. A good database design will affect the system significantly
and how we approach the database itself will change on how we approach the

system. Database design plays an important role in e-commerce application.

Database is organized into rows, columns and tables and it is indexed to
make sure that retrieving information from a database is faster. New information
can be added to a database, and data can be updated and deleted. With the help
of Structured Query Languages (SQL), database has become more manageable

and easier to control.

1 1 1 1
AD d User Accounts, Customer
System Data P § atn Sessions, and Service and
romotion Profiles Feedback
1 1 1
. . Order, Invoice,
Price Agent Shopping Cart and Payments
1 1 1 1
Vendor-
Specific Catalog Inventory Delivery
Products

Fig. 2.1 Database Design Example for E-Commerce [5]

Figure 2.1 shows a database design for e-commerce proposed by Il Yeol
Seong [5]. The design shows the important component that is needed in an e-
commerce application. The database design may change with time, but the basic
structure stays the same. The application programmer may change the design by
the need of its application. This design shows how the database is linked to one
another and shows the important of each database. This design can be further
improved by simplifying more on the design itself. Some parts can be combined
as a sector or group, for example the inventory and catalogue. There is no need
to create two separate databases when we can apply stored procedure to reuse the

data inside the databases.

A stored procedure is a program written in procedure and trigger language
that is stored as part of the database. Stored procedures can be called by client
applications or by other stored procedures or triggers. Triggers are almost
identical to stored procedures with one exception, the way they are called.
Triggers are called automatically when a change to a row in a database table
occurs. This paper examines stored procedures first followed by triggers. As we
will see, most of what is said about stored procedures applies to triggers as well.
A stored procedure can also access or modify data in a database, but it is not tied

to a specific database or object.

Application

13

Stored Procedure

>

Fig. 2.2 the Workings of Stored Procedure

Figure 2.2 shows how a stored procedure interact with the application and
the database. With the use of a stored procedure, any information that is needed
by an application from a database will go through the stored procedure before
accessing the database. This made the control of an application much easier and
much manageable especially in the database side. Stored Procedure will act as a
middleware between the application and database itself and stored procedure will

control the flow of the data entering and exiting the database.

As told by Guy Harisson and Steven Feuerstein [4], a stored procedure
can improve the performance, reliability and maintainability of any My-SQL
based application, but it is not a universal solution and should only be used when

it is needed and appropriately.

Chapter 3 : Database and Stored Procedure Design

3.1 Database Design

A new database design is proposed to further improve the existing design of [5].
This database design focus on the simplicity for the user and the database will be

divided into a few sections

Order Section

®

Payment
Section

Inventory

User Section Section

Delivery
Section

Fig. 3.1 Overall Structure of Database

As shown in figure 3.1, the base database design will consist of five main
sections, which are user section, inventory section, order section, payment

section and delivery section. Every section has its own database tables and each

tables have its own use. The reason that the database is divided into section is to
give an ease of design in creating a database table. This also will give a better

understanding on the needs of the database

1) User Section

As shown in figure 3.2, the user section is designed to be used by both the
user and admin of the e-commerce application. It consists of four tables, which

are the user account, user, address and addr_state

user
X == address
account_num
- (PK) Street_1
user_account account_id (FK)
. — Street_2
accout_id (PK) Name S
postcode
account_pw Phone_num

address_state (FK)

user address
- account_num (FK)

email_add

addr_state
address_state

Fig. 3.2 User Section

User account table is the main table used to keep user login data. Any

login data from the user will be stored here, and before accessing the user table,

10

all users must go through the user account table. User table will keep the user
information and data, which is needed by the e-commerce application. This user
table may be changed appropriately based on the needs of specific e-commerce

application.

The address table is for storing the address of the users. It is designed in
a separate table to give the admin more control and more details on the address
itself. Different tables will use the address, so it is better to have more detailed

information. The addr_state table is to keep the state of address in the table.
2) Inventory Section

As shown in figure 3.3, the inventory section is one of the important
sections in the database design. This inventory section would be one of the mostly
used section among all. This section is expected to have a higher usage traffic

compared to other sections.

The inventory section consists of shop _cart, inventory, inventory images,
inventory category and event. The inventory table would be the main table for

the e-commerce application.

11

|
Inventory

inventory_id (PK) inventory_images

shop_cart inv_price ?n\qmg

inv_id (FK) I inv_name _ inv_id (FK)
Order Section [+ cart id (PK) inv_amount

order_amount inv_category (FK)

inv_images (FK)

total_price
J event
inv_id (FK)
] discount_event
User Section LIETE0 L FELEE T event_id (PK)
inv_category (PK)
inv_cat_code

Fig. 3.3 Inventory Section

This is where all the inventory or products information will be updated
for the application. The inventory is divided into category, which will be inserted
in the inventory_category table. With this, the category for the inventory is more
organized. It will be easier for the user in terms of searching a product by
inventory and it will help the admin in terms of sorting out inventory according
to the category. The images for the inventory would be stored inside the
inventory_images table. One inventory might have more than one product image,
so this would help further in sorting up the images for the inventory as the foreign

key of the table is inv_id.

12

The event table is for special events regarding a product, the event could
be a special offer or discount for the specific product. Event can be removed or
added in this table. The shop cart table is to keep temporary data that is used by
the user when they are browsing the inventory. All this data will be linked to the

user section and the order section.

3) Order Section

As shown in figure 3.4 the order section consists of three tables which is
order hist, order and order detail. User will use order section when they are

making orders.

. ——— :::E::ZLnt num EIREEL GEEL
User Section —‘ order_id (FK) (FK) order id (PK)
STREr GEE . order_id (FK) _ | cart_id (FK)
order_price order_date order_price
order _amount order_detail
order_price
Payment Inventory ‘
Section Section
Fig. 3.4 Order Section

The main table would be the order table where it will be linked to the user.
Any order made from the inventory will first go to the order table. The order

detail is for user to check any order made from the cart in the inventory section.

13

The order history is for previous order made by the user in the e-commerce
application. This will be linked to the user section or block and other parts of the

database table.

4) Payment Section
As shown in figure 3.5 the payment section is where a payment is made
after passing through the order section. This section consists of three tables,

which are credit_card, payment and invoice.

Order Section

credit_card Payment
User Section account_num (FK) payment_id (FK)
cc_num payment_amount
card_num account_num
_— Delivery
invoice Section
invice id (PK)

Payment_id (FK)
user_address

Fig. 3.5 Payment Section

14

Credit_card table is where the user credit card detail is kept and where the
transaction will be done. The payment table is where all payment is recorded for
the user and admin and e-commerce application to process. Invoice is done when
the payment is made and confirmed, and the invoice will be generated and send

to the user with the user address taken from the user section.

5) Delivery Section
As shown in the figure 3.6, the delivery section consist of two tables,

which are delivery and del status.

Order Section

delivery

User Section delivery id
invoice_id del_status

account_num (FK) | deli_status (PK)
user_address

deli_date

deli_status (FK)

Fig. 3.6 Delivery Section

The delivery table is where any delivery will be recorded and checked

before the delivery is done to the user. The del status is for the admin to set what

15

type of status that the admin wants in the e-commerce application,” for example

delivered or in process. The delivery will only be done after payment is made.

VST order_detail P

accout_id (PK) @ Eﬁér—ld inv_id (FK)

L der hi order cart_id (FK) _ cartid (PK) —— _Imemy -
:«:I«;::«::TFK) ;c?g%n_m order_price order_amount :::i;?[z_ld et
order_date —_— order_id (FK) fotal_price L inv_name —

== order_price order_date inv_amount

?gﬁ unt_rm order_amount order_detail inv_category (FK)

account_id (FK) order_price inv_images (FK)

Name ‘

Phone_num s I%ymenl‘

user_address acmu_nl » payment_id (FK)

email_add m (FK) — payment_amount

T — ceum account_num inventory_images
Steet 1 card_num inv_img
Street 2 i L @ Inventory_category T A
addr_state postoode InIce delivery iny_category (PK)
ad dr;ss stle EET S A invice_id (PK) del d inv_cat_code
= account_num (FK) L — Payment id EENL event
(FK) TR inv_id (FK)
user_address | ey discount_event
user_address el B [
deli_date i szl
@ deli_stas (FK) deli stas (PK)

Fig. 3.7 Database Table

As shown in the figure 3.7 the database design is focused around
simplicity and connectivity between database tables. The table are divided into a

few sections and all the sections have its own tables.

All the tables will be linked or connected to one others by specific stored
procedure. The stored procedure will control the data flow from one table to

another, and it will decide which data will enter in to a specific table.

16

3.2 Basic Stored Procedures Design
Stored procedure design can be approach in a simple way. It is a simple
way to retrieve the data we need, and these basic designs can be used repeatedly.

The design is usually just retrieving from and inserting data into the database.

ADD DELETE EDIT
DATA DATA DATA
DATABASE

Fig. 3.8 Basic Stored Procedure Design
A basic stored procedure design will normally consist of three parts for
each database. Those are add data, edit data and delete data from a database.
Stored procedure is designed usually to be very specific to a given action. A basic
stored procedure design will usually involve three actions that are required in

almost all database.

17

Some databases or table will have the same stored procedure such as add
data, but will be designed specifically for a certain action. Stored procedure is
coded in a way that it can be used for any kind of tables depending on the need
of the situation. There is no limit for the number of stored procedures that can be

stored in a database for a specific table.

Create Procedure "AddCategory (UCName Varchar (50))

BEGIN
Insert into category (CategoryName) Values (UCName);
END

As shown in the code above, it is an example of a basic stored procedure
design. It is mainly used to update a database where it will insert the data into
CategoryName. It can improve the performance in a way that the query can be

repeated without typing the code repeatedly.

Create Procedure ‘ChangeProductAvailability’ (in CPAID int, in
CPAStatus
varchar (255))
Begin
Declare AstatusUpdate Varchar (255);

Set AstatusUpdate = CPAStatus;

Update Product

set ProductAvialablity = AstatusUpdate

Where ProductID = CPAID;
END

Another example is a simple stored procedure that can actually be used in

terms of updating a data with the given query. Rather than entering a specific data,

18

the stored procedure itself will do the data management and enter the data into

the table. It will improve the performance of certain aspect of the DBMS.

\Website / Application
Form

call the stored
procedure query

Stored Procedure

Query

insert data to database from
stored procedure query

\4

Database

Fig. 3.9 Stored Procedure

As shown in the figure 3.9 we can see how a simple stored procedure

works. The stored procedure query can be used to insert a data into the database.

Compared to the normal method where the data is directly inserted into the

database the stored procedure will insert the data into the database. The stored

19

procedure will only be activated when needed. This gives an advantage to the
programmer where the programmer will only have to apply a specific stored
procedure for a specific action. The basic stored procedure will provide more

control over the program that is being created by the programmer.

This is the stored procedure for the databases. Most stored procedure would have
the same type of add, delete or edit data because, they are basic operations on

data. The stored procedures are created for the tables in Fig 3.7 database tables.

1) add user

The add_user stored procedure is used to register any user to the database.
It is a basicstored procedure to add data but it can involve multiple tables which
are user_account , user and address.
2) edit_user

The edit_user is to edit any information that is already registered inside
the database. This can be used both by the admin and by the user itself.
3) delete_user

The delete user is to remove any user from the database. This stored
procedure can remove specific data that is linked to a specific user.
4) add addr_ state

The add addr_state is used to add new state into the addr_state table.

20

5) delete addr state
Remove any data from the addr _state table.
6) add_inventory
Add data to the inventory table and add related image. This will mostly
be used by the admin of the website.
7) delete inventory
Delete data from the inventory table.
8) edit_inventory
Edit specific data from the inventory table
9) add event
Add any event that is related to the inventory. The data will be inserted
into the event table.
10) delete_event
Remove data from the event table.
11) add_inv_category
Add data to the inventory_ category table.
12) delete_inv_category
Remove data from the inventory category table
13) add_shop_cart

Add data to shop_cart table

21

14) delete_shop cart

Clear all the current data in the shop_cart table.
15) edit_shop cart

Edit or change the data in the shop cart table.
16) add delivery stats

Add delivery status in the del status table.
17) delete_delivery_stats

Remove a data from del_status table.
18) delete delivery

Remove any data from the delivery table.

22

3.3 Advance Stored Procedure Design

Stored procedure can be used to extensively in a database and the more
complicated stored procedure will work better. One stored procedure can be used
for multiple databases, and it can act as a bridge between databases. Some of the

designed stored procedure are listed below.

1) Updating Order Table Stored Procedure

CREATE DEFINER="root' @ localhost' PROCEDURE ‘UpdateOrderTable

(in UOTDate date, in UOTItemID int, in UOTCustID int, in UOTAmount int, in
UOTOrderStatus varchar (255))
BEGIN
Declare CustomerAddress varchar (255);
Declare CustomerName Varchar (255);
Declare CustomerPhone int (50);
Declare ItemName varchar (255);
Declare ItemPrice int (50);
Declare ItemAmount int (50);
Set CustomerAddress = (Select CustAddress from Customer Where CustID = UOTCustID);
Set CustomerName = (Select CustName from Customer Where CustID = UOTCustID);
Set CustomerPhone = (Select CustPhone from Customer Where CustID = UOTCustID);
Set ItemName = (Select ProductName from Product where ProductID = UOTItemID);
Set ItemPrice = (Select ProductPrice from Product where ProductID = UOTItemID);
Set ItemAmount = (Select ProductAmount from Product where ProductID = UOTItemID);
update Product set ProductAmount = ProductAmount - UOTAmount where ProductID =
UOTItemID;

Insert into CustOrder
(OrderDate,OrderAddress,OrderltemName,OrderltemAmount,OrderltemPrice,OrderCustNa
me,OrderCustPhone,OrderStatus)
values

(

UOTDate, CustomerAddress, [temName, UOTAmount, ItemPrice * UOTAmount,
CustomerName, CustomerPhone, UOTOrderStatus

)i

END

Fig. 3.10 UpdateOrderTable Codes

23

Fig 3.10 shows an example of a created stored procedure. This stored
procedure retrieve data from the application and replace it with the existing data
in the database.

2) Purchasing_item

This is an advance stored procedure that is implemented when a user
purchases an item from the e-commerce application. It will deduct an inventory
value from the inventory table, and take the price amount of purchased item from
the order table. The item detail will also be taken from the order table and will be
recorded inside the invoice table. With this stored procedure, we can see a few

different transactions are involved between tables.

3) Delivery

The delivery stored procedure is to transfer data between the invoice, the
user address and the status of the delivery. When a payment is made and an
invoice is created the delivery, stored procedure will record the data and transfer

data from the address table to the delivery table.

4) Updating_order

The updating_order stored procedure is used to mainly update any order.
Any order made previously will be updated from the order table to the order
history table, and the information will be taken from order detail. Rather than

making three different stored procedure for one same query, one stored procedure

24

is made to ensure all the transactions are done at the same time to avoid any

mistakes.

25

Chapter 4 : Implementation and Experiment

4.1 Database Implementation

The system used for the implementation is Windows 10. The processors is Intel
(R) Core (TM) i7-7700HQ CPU @2.80GHz with a RAM of 8GB. The system is
running on a 64-bit Operating system.

Two applications are involved for the implementation. For the database
implementation, MySQL Workbench 8.0 CE is used. Visual Studio 2017 is used

for the application design.

1) Customer Detail Table
As we can see from the figure 4.1, there is a few different SQL involved in
declaring the data type. The customer_detail table is connected directly to

login_account table where customer will use to login to the application or website.

create table customer_detail

(

account_num int neot null auto increment,

cust_acc_id varchar (52) not null unique,

cust_name varchar (52) not null,

cust_phone_num int (22) not null,

cust_address varchar () not null,

email_add varchar (52) not null,

primary key (account_num),

foreign key (cust_acc_id) references login_account(account_id)

|H

Fig. 4.1 SQL for customer_detail

26

Indexes in Table Index Details

Visible Kiy Type Uni... Columns Key Mame:
Y= PRIMARY BTREE YES inv_id Index Type:
= inv_images_code BTREE NO inv_images_code Allows NULL:
¥= inv_category BTREE NO - inv_category Cardinality:
Comment:
= o User Comment:

Columns in table

Column Type Mullable Indexes
inv_id int{11) NO PRIMARY
inv_price int(50) NO
inv_name varchar(250) NO
inv_amount int(250) NO
inv_category varchar(250) YES inv_category
inv_images_code varchar(250) YES inv_images_code

Fig. 4.2 Table for customer_detail

Inventory_images table uses a different SQL, it is directly link to the
Inventory table but it is a different entity that uses to store the Images for the
inventory. For the image, we use the medium blog query, it is used in SQL to
keep image data in the database.

Fig 4.3 and 4.4 shows the SQL and the table involve in the inventory table.
Fig 4.5 and 4.6 shows the SQL and table for inventory_images. These two tables
are related to one another but is created differently to provide more control for

the admin.

27

2) Inventory Table

create table inventory

(

inv_id int not null auto_increment,

inv_price int (52) not null,

inv_name varchar () not null,

inv_amount int () not null,

inv_category varchar (Vs

inv_images_code wvarchar (B

primary key (inv_id},

foreign key (inv_images_code) references inventory images(inv_img_code),
foreign key (inv_category) references inventory_category(inv_cat)

)i
Fig. 4.3 SQL for inventory
Indexes in Table Index Details
Visble Key Type Uni... Columns Key Name:
¥=| PRIMARY BTREE YES account_num Index Type:
Y= cust_acc_id BTREE YES cust_acc_id Allows NULL:
Cardinality:
Comment:
User Comment:
< >

Columns in table

Column Type Mullable Indexes
account_num int(11) NO PRIMARY
» cust_acc_id varchar(50) NO cust_acc_id
cust_name varchar(50) NO
» cust_phone_num int{20) MO
cust_address varchar(250) NO
» email_add varchar(50) MO

Fig. 4.4 Table for inventory

create table inventory_images

(

inv_img_code varchar () not null,
img_name varchar () not null,
image_text mediumblcb,

primary key (inv_img_code)

|H

Fig. 4.5 SQL for inventory_images

28

Indexes in Table Index Details

Visible Key Type Uni... Columns

e Key Mame:
= PRIMARY BTREE YES inv_img_code

Index Type:
Allows NULL:
Cardinality:
Comment:

Q User Comment:

Columns in table

Column Type Mullable Indexes
inv_img_code varchar{250) NO PRIMARY
img_name varchar{250) NO
image_text mediumblob YES

Fig 4.6 Table for inventory_images
4.2 Stored Procedure Implementation
Stored procedure are implemented differently. From the basic stored
procedures to the more advance stored procedures. We will see the basic stored

procedures and then the advance design stored procedure.

Add Data
Stored Procedure

Inventory

Fig. 4.7 Stored Procedure for Add Data

29

Basic stored procedure as shown in figure 4.7 uses simple query. This
stored procedure is more direct and created specifically for the task on storing

data into the inventory table.

CREATE DEFINER="root @ localhost™ PROCEDURE ~AddProduct™(
UpdatePName varchar (255),

UpdatePAmount int (50),

UpdatePPrice int (50),

UpdatePCategory varchar (50),

UpdatePDescription varchar (255),

BEGIN
T insert into Product (ProductName,ProductAmount,ProductPrice,ProductCategory,ProductDescription)
values (UpdatePName,UpdatePAmount_.UpdatePPrice_.UpdatePCategor‘y,UpdatePDescriptiode
END

Fig. 4.8 add_inventory Stored Procedure

As shown in figure 4.8 the stored procedure will retrieve the data and
insert it into the given database in the query, where in this case is the inventory
table. This stored procedure is one way and usually only involve one SQL

statement and one table.

Invoice Payment

Stored

Procedure

U

Credit Card

Fig. 4.9 Stored Procedure for Credit Card
30

As shown in the figure 4.9, this stored procedure is created to connect
three different tables with just one transaction. What it will do is, when this is
called it will update the table invoice and payment based on the credit card used
to pay for the transaction.

Stored procedure may be a trigger from the main application to the
database program. As shown in the figure 4.10, a trigger is inserted in the codes
for the application. A connection needs to be set up with the database before the
stored procedure can be called and triggered. When the connection is set up the
stored procedure will be declared, and the command type will be declared. This
trigger will be inserted in the respective button to where the admin or programmer

wants it to be called.

protected void SaveButton_Click(object sender, ent e)
{
using (t sqlCon = new t (connectionString))
{
sqlCon.Open();
sqlCommand2 = new 1 ("AddProduct", sqlCon);
sqlCommand2.CommandType = .StoredProcedure;
sqlCommand2.Parameters.AddWithValue("UpdatePName", InvName.Text.Trim());
sqlCommand2.Parameters.AddWithvalue(" t.ToInt32(InvAmount.Text.Trim()));
sqlCommand2.Parameters.AddWithValue("Upda ',ToIntBZ(InvPrice.Text.Trimd)));
sqlCommand2.Parameters.AddWithValue("Up ry", InvDescription.Text.Trim());
sqlCommand2.Parameters.AddWithValue("UpdatePAvailability”, InvAvailability.Text.Trim());
sqlCommand2.ExecuteNonQuery();
Clear();

SuccessMessage.Text = "Submitted Successfully";

Fig. 4.10 Stored Procedure Trigger

31

4.3 Website Implementation

The website was implemented in two sites that are the user site and the
admin site. The two sites have a few major differences, for example, the user site
is more focused on the ease of experience and simplicity. It gives the user a more
basic but necessary control over what they want to view and what they want to
search.

The admin site focuses on more of detailed list and structures. There are
less images involved to save space and to ensure unimportant information is
involved. The admin of the site will have control on most information displayed

at the website.

[Search | Login Sign Up
Product Special offer Unbound v Contact Us

Fig. 4.11 Main Page.

32

The figure 4.11 shows the website main page, as shown there is a search
bar to help the user search on specific item on the site. The site does not require
user to login to use it but it is a choice for the user itself.

A few different stored procedures are used in the main page, for example
at the search bar a stored procedure is used. The stored procedure retrieve the
data from the search bar and implement a search based on the requirement. It will
then display the data in a new page with the format that is implemented by the
admin. In this instance, at least 1 stored procedure is implemented in each button

and the display of banner, and offered items will also be involved with stored

procedure.
[Search l Login Sign Up
Product Special offer Unbound » Contact Us

Inventory Images Inventory Details

T-Shirt: Husky
»Price: RM 99
Colour: Green
Size Available:
SS- XL

Purchase

Fig. 4.12 Buying a Product

33

As shown in the figure 4.12 the base design of the website will stay the
same. The image will be taken from the inv_image table that is linked to the
inventory itself. The content will be changed depending on the needs or the
customer choices. After the customer confirmed on a product, it will be inserted
in a shopping cart where the details will be hold and collected until the purchased
is confirmed.

Figure 4.13 and figure 4.14 above shows how the admin pages are
implemented. The admin pages are designed for admin to edit or remove any data
from the database with ease. This give admin control on what can be viewed.
This implementation .also helps to provide admin a simple way to insert any data

for the website.

34

Add Inventory

Inventory Name [

Inventory Amount [

Inventory Price [

Inventory Category |Unbound ¥ |

Inventory Description |

Inventory Image [Zs

Save | Clear |

Fig. 4.13 Adding Inventory (Admin)

Sign out
Inventory Invoice Customer List Delivery List ‘
Insert New | Update Remove

Check Box Inventory ID Inventory Price Inventory Name Inventory Amount Inventory Category Inventory Images Inventory Status
I™ [CheckBox1]
I™ [CheckBox2]
I™ [CheckBox3]
I~ [CheckBox4]

Fig. 4.14 Admin Main Page

35

Chapter 5: Conclusion and Further Works

As a conclusion, a few factors can be recorded in the design of database and
stored procedure for e-commerce. The research uses a basic design for e-
commerce application that aims to help customer and admin in terms of
maintaining or browsing the application.

Stored Procedure can improve a design or flow for any databases. It
provides a means of control for the database designer or web programmer in
terms of creating the database itself. Stored procedure can be designed as very
specific query or broader query depending on the needs of the database. This
gives a sense of control over what is needed for the application, and only creating
a query that will be used for the application.

By using stored procedure in any e-commerce application, the query for
a specific action can be reused without creating a new query. Some triggers in
stored procedure can be used for different situation, and they provide a sense of
ease for the design.

Stored procedure query has specific uses, that for each action we need a
specific stored procedure. There may be some stored procedures that are usable
in multiple actions but it is better to create a stored procedure for each given
action.

The amount of stored procedure needed for an e-commerce application

using stored procedure will increase the more complicated the e-commerce
36

application is. Research can be done to improve the limitation of using stored

procedure.

37

APPENDIX A : Database SQL and Tables

1) address Table

" postcode” int(

1

2

3

4) NOT NULL,

5 “address_state” warchar(50) DEFAULT NULL,
6

F

8

9

CREATE TABLE "address’ (
“street_1" varchar(
“street_2° varchar(

) NOT NULL,

) DEFAULT NULL,

“address_sccount” int{11) DEFAULT NULL,

KEY "address_state’ (" address_state’),

COMNSTRAINT "address_ibfk_1" FOREIGN KEY (address_state”) REFERENCES “add_state™ (" state”™)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

Indexes in Table Index Details
Visble Key Type Uni... Columns Key Name:
V= address_state BTREE NO address_state Index Type:
Allows MULL:
Cardinality:
Comment:
User Comment:
<
Columns in table
Column Type Mullable Indexes
> street_1 varchar(250) NO
s street 2 varchar(250) YES
» postcode int{25) NO
» address_state varchar({50) YES address_state
» address_account int{11) YES

38

2) addr_state table

1 CREATE TABLE " add_state™ (
2 “state” warchar(=0) NOT NULL,
3 UNIQUE KEY “state” [state”)
<) ENGINE=InnoDB DEFAULT CHARSET=utfémb4 COLLATE=utfémb4_09200_ai_ci
Indexes in Table Index Details
Visible — Key Type Uni... Columns Key Name:
V= state BTREE YES state Index Type:
Allows MULL:
Cardinality:
Comment:
User Comment:
< >

Columns in table

Column Type Mullzble Indexes
» state varchar(50) NO state

3) credit_card tables

1 CREATE TABLE ~credit_card”™ (

2 “user_account” int({50) DEFAULT MULL,

3 “cc_num” int(50) NOT NULL,

4 “card_num’ int(50) NOT NULL,

5 KEY “user_account’ (" user_account’),

6 CONSTRAINT "credit_card_ibfk_1" FOREIGN KEY (' user_account’) REFERENCES ’customer_detail” (" account_num™)
7) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

39

Columns in table

Indexes in Table Index Details
Visible Kiy Type Uni... Columns Key Mame:
¥=| user_account BTREE NO user_account Index Type:
Allows MULL:
Cardinality:
Comment:
. User Comment:

Column Type Mullable Indexes
» user_account int(50) YES user_account
5 cc_num int(50) NO
» card_num int(50) NO

4) user tables

CREATE TABLE " customer_detail” (
“account_num” int(11) NOT NULL AUTO_INCREMENT,
“cust_acc_id” varchar(50) NOT NULL,

“cust_name” warchar(50) NOT NULL,

*cust_phone_num® int(20) NOT NULL,

" cust_addresz” wvarchar(250) NOT NULL,

‘email_add" warchar(50) NOT NULL,

PRIMARY KEY (" account_num’),

UNIQUE KEY "cust_acc_id" (" cust_acc_id"),

CONSTRAINT ' customer_detail_ibflk,_1" FOREIGN KEY (cust_acc_id") REFERENCES "login_account” (" account_id™)

[P =T = e RV S T

-

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

Indexes in Table Index Details
Visible Key Type Uni... Columns Key Name:
¥=| PRIMARY BTREE YES account_num Index Type:
= cust_acc_id BTREE YES cust_acc_id Allowws NULL:
Cardinality:
Comment:
User Comment:
£
Columns in table
Column Type Nullable Indexes
» account_num int(11) i [] PRIMARY
» cust_acc_id varchar(50) MO cust_acc_id
» cust_name varchar(50) i []
» cust_phone_num int(20) MO
» cust_address varchar(250) i []
» email_add varchar(50) MO

40

5) del_status tables

1 CREATE TABLE " del_status™ (
2 “dell_status” warchar() NOT NULL,
3 UNIQUE KEY “dell_status" (" dell_status")
4) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
Indexes in Table Index Details
Visible Key Type Uni... Columns Key Mame:
¥= dell_status BTREE YES dell_status Index Type:
Allaws NULL:
Cardinality:
Comment:
User Comment:
£ >

Columns in table

Caolumn Type Nullable Indexes
o dell_status varchar(250) NO dell_status

6) delivery tables

i CREATE TABLE " delivery” (

2 "delivery_id" int(11) NOT NULL AUTO_INCREMENT,

3 “invoice_id" int(50) NOT NULL,

4 “acc_num” int(50) DEFAULT NULL,

5 "user_address’ warchar() DEFAULT NULL,

5] “deli_date” date DEFAULT NULL,

7 “deli_status” varchar(250) DEFAULT NULL,

8 PRIMARY KEY (delivery_id"),

9 KEY " deli_status™ (" deli_status"),
10 CONSTRAINT " delivery_ibflk_1" FOREIGN KEY (deli_status’) REFERENCES "del_status™ (" dell_status")
11) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

41

Indexes in Table Index Details
Visible Key Type Uni... Columns Key Name:
V= PRIMARY BTREE YES delivery_id NS
V= deli_status BTREE NO deli_status Allows NULL:
Cardinality:
Comment:
User Comment:
£ >
Columns in table
Column Type Mullable Indexes
5 delivery_id int(11) NO PRIMARY
> invoice_id int(50) MO
3 acc_num int(50) YES
> user_address varchar{250) YES
> deli_date date YES
> deli_status varchar{250) YES deli_status

7) eventitem tables

(= I T S e

CREATE TABLE °eventitem” (
“event_inv_id" int(50) DEFAULT NULL,
“event_id” int(11) NOT NULL AUTO_INCREMENT,
PRIMARY KEY (" event_id"),
UNIQUE KEY “event_id" (" event_id"),
KEY “event_inv_id" ("event_inv_id"),
CONSTRAINT ' eventitemn_ibfl_1" FOREIGN KEY (event_inv_id") REFERENCES "inventory”™ (" inv_id")
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

Indexes in Table Index Details
Visible Key Type Uni... Columns Key Name:
¥= PRIMARY BTREE YES event_id iRy
V= event_id BTREE YES eventid Allows NULL:
¥= event_inv_id BTREE NO event_inv_id Cardinality:
Comment:
User Comment:
< >
Columns in table
Column Type Mullable Indexes
> event_inv_id int{50) YES event_inv_id
> event_id int{11) NO PRIMARY, event_id

42

8) inventory tables

1 CREATE TABLE "inventory™ (
2 “inv_id" int(11) NOT NULL AUTO_INCREMENT,
3 “inv_price” int(50) NOT MULL,
4 “inv_name” wvarchar() NOT NULL,
5 “inv_amount” int() NOT NULL,
6 "inv_category” warchar() DEFAULT NULL,
7 "inv_images_code’ varchar(250) DEFAULT NULL,
8 PRIMARY KEY ("inv_id"),
9 KEY inv_images_code” (inv_images_code’),
10 KEY "inv_category’ (inv_category’),
11 CONSTRAINT 'inventory_ibfk_1" FOREIGN KEY (" inv_images_code”) REFERENCES " inventory_images’ (inv_img_code™),
12 CONSTRAINT ‘inventory_ibflk_2" FOREIGN KEY (" inv_category”) REFERENCES " inventory_category’ (inv_cat’)
13) ENGINE=InnoDB DEFAULT CHARSET=utfdmb4 COLLATE=utf8mb4_0900_ai_ci
Indexes in Table Index Details
Visible Key Type Uni... Columns Key Name:
Y= PRIMARY BTREE YES inv_id Index Type:
inv_images_code BTREE NO inv_images_code Allowes NULL:
o = i i .
V= inv_category BTREE NO inv_category Cardinality:
Comment:
User Comment:
£ >
Columns in table
Column Type MNullable Indexes
» inv_id int{11) MO PRIMARY
> inv_price int{50) MO
3 inv_name varchar(250) i []
» inv_amount int{250) MO
» inv_category varchar(250) YES inv_category
» inv_images_code varchar(250) YES inv_images_code

9) inventory category tables

CREATE TABLE " inventory_category” (
“inv_cat” warchar() NOT NULL,

PRIMARY KEY (inv_cat’),
UNIQUE KEY “inv_cat” (inv_cat™)

O U L R

“inv_cat_code” wvarchar(50) NOT NULL,

) ENGINE=InnoDB DEFAULT CHARSET=utfémb4 COLLATE=utf8mb4_0900_ai_ci

43

Indexes in Table Index Details

Visible Key Type Uni,.. Columns Key Name:
>§ PRIMARY BTREE YES inv_cat Index Type:
V= inv_cat BTREE YES inv_cat Allows MULL:
Cardinality:
Comment:
) % User Comment:

Columns in table

Colurmn Type Mullable Indexes
5 oinv_cat varchar(250)]u] PRIMARY, inv_cat
» inv_cat_code varchar(50) NO

10) inventory_images tables

1 CREATE TABLE " inventory_images” (

2 “inv_imag_code” varchar() NOT NULL,

3 “img_name” warchar() NOT NULL,

4 “image_text” mediumblob,

5 PRIMARY KEY (inv_img_code’)

6) ENGINE=InnoDB DEFAULT CHARSET=utfémbd4 COLLATE=utf8mb4_0900_ai_ci
Indexes in Table Index Details
Visible Key Type Uni... Columns Key Name:

DE PRIMARY BTREE YES inv_img_code Index Type:

Allows MULL:
Cardinality:
Comment:

3 = User Comment:

Columns in table

Column Type Mullable Indexes
> inv_img_code varchar(250) NO PRIMARY
» img_name varchar(250) NO
5 image_text mediumblob YES

44

11) invoice tables

1 CREATE TABLE " invaoice™ (
2 “invoice_id” int(11) NOT NULL AUTO_INCREMENT,
3 “inv_payment” int(50) DEFAULT NULL,
4 “user_address’ wvarchar(250) DEFAULT NULL,
5 PRIMARY KEY (invoice_id"),
6 KEY “inv_payment” (" inv_payment’),
7 CONSTRAINT “invoice_ibflk_1" FOREIGN KEY (" inv_payment’) REFERENCES "payment’ (payment_id")
8) ENGINE=InnoDB DEFAULT CHARSET=utfémb4 COLLATE=utfémb4_0900_ai_ci
Indexes in Table Index Details
Visible Key Type Uni... Columns Key Name:
= PRIMARY BTREE YES invoice_id TR
= inv_payment BTREE NO inv_payment Allows NULL:
Cardinality:
Comment:
User Comment:
£ >

Columns in table

Column Type Nullable Indexes
> invoice_id int(11) NO PRIMARY
» inv_payment int(50) YES inv_payment
» user_address varchar(250) YES

12) login_account tables

CREATE TABLE login_account” (
“account_id" warchar(50) NOT NULL,
“account_pw’ warchar(50) NOT NULL,
PRIMARY KEY (account_id"),
UNIQUE KEY “account_id" (" account_id")
) ENGINE=InnoDB DEFAULT CHARSET=utfdmb4 COLLATE=utf8mb4_0900_ai_ci

[=,) IR N I

45

Indexes in Table Index Details

Visible Key Type Uni... Columns Key Name:
Y= PRIMARY BTREE YES account_id Index Type:
V= account_id BTREE YES account_id Allows NULL:
Cardinality:
Comment:
User Comment:
< >
Columns in table
Column Type Mullable Indexes
» account_id varchar(50) NO PRIMARY, account_id
» account_pw varchar(50) NO

13) order_detail tables

1 CREATE TABLE "order_detail” (
2 “order_id” int(11) NOT NULL AUTO_INCREMENT,
3 “order_cart” int(50) DEFAULT NULL,
4 “order_price” int(50) DEFAULT MULL,
5 PRIMARY KEY (' order_id"),
6 KEY 'order_cart’ (" order_cart’),
7 CONSTRAINT ' order_detail_ibflk_1" FOREIGN KEY (' order_cart’) REFERENCES "shop_cart” (" cart_id")
8) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0%00_ai_ci
Indexes in Table Index Details
Visble Key Type Uni... Columns Key Name:
= PRIMARY EBTREE YES order_id Index Type:
+= order_cart BTREE NO order_cart Allows NULL:
Cardinality:
Comment:
User Comment:
£ >

Columns in table

Calumn Type Mullable Indexes
» order_id int(11) NO PRIMARY
» arder_cart int(50) YES order_cart
» arder_price int(50) YES

46

14) order_history tables

(=R = R B S T R

CREATE TABLE "order_hist™ (
“order_hist_id" int(50) DEFAULT NULL,
‘order_date_hist” date DEFAULT NULL,
“order_price_hist” int(50) DEFAULT NULL,
“order_amount_hist® int{50) DEFAULT NULL,
KEY “order_hist_id" (" order_hist_id"),

CONSTRAINT " order_hist_ibfk_1" FOREIGN KEY (order_hist_id") REFERENCES

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0300_ai_ci

“order_detail

" (Corder_id™)

Indexes in Table Index Details
Visble Key Type Uni... Columns Key Name:
= order_hist_id BTREE NO order_hist_id T
Allows MULL:
Cardinality:
Comment:
User Comment:
<
Columns in table
Column Type Mullable Indexes
» order_hist_id int(50) YES order_hist_id
» order_date_hist date YES
» order_price_hist int(50) YES
» order_amount_hist int(50) YES

15) payment tables

(=N T I Y P

CREATE TABLE payment” (

“payment_id” int(
“payment_amount” int(

) NOT NULL AUTO_INCREMENT,
) NOT NULL,

cust_pay_acc_num’ int(50) DEFAULT NULL,
PRIMARY KEY (payment_id"),

KEY "cust_pay_acc_num’ (

cust_pay_acc_num’),

CONSTRAINT ~“payment_ibflk_1" FOREIGN KEY (cust_pay_acc_num’) REFERENCES " customer_detail” (" account_num ™)
) ENGINE=InnoDB DEFAULT CHARSET=utfsmb4 COLLATE=utf8mb4_0900_ai_ci

47

Indexes in Table Index Details

Visible Kiy Type Uni... Columns Key Name:
= PRIMARY BTREE YES payment_id Index Type:
¥=| cust_pay_acc_num BTREE NO cust_pay_acc_num Allows MULL:
Cardinality:
Comment:
a A User Comment:

Columns in table

Column Type Mullable Indexes
> payment_id int{11) NO PRIMARY
» payment_amount int{50) NO
% cust_pay_acc_num int{50) YES cust_pay_acc_num

16) shop_cart tables

1 CREATE TABLE “shop_cart” (
2 “inven_id" int{50) DEFAULT NULL,
3 cart_id” int(11) NOT NULL AUTO_INCREMENT,
4 “order_amount” int(50) DEFAULT NULL,
5 “total_price” int(50) DEFAULT NULL,
5 PRIMARY KEY (cart_id"),
7 KEY “inven_id" (" inven_id"),
8 COMNSTRAINT “shop_cart_ibfk_1" FOREIGN KEY (" inven_id") REFERENCES "inventory’ (inv_id")
9) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
Indexes in Table Index Details
Visible Key Type Uni... Columns Key Name:
= PRIMARY BTREE YES cart_id Tl iy
V= inven_id BTREE NO inven_id Allows NULL:
Cardinality:
Comment:
User Comment:
< >

Columns in table

Column Type Mulable Indexes
> inven_id int{50) YES inven_id
5 cart_id int{11) NO PRIMARY
> order_amount int(50) YES
> total_price int(50) YES

48

APPENDIX B: Stored Procedures

1) AddCreditCard

CREATE DEFINER="root’@" localhost® PROCEDURE °AddCreditCard” (CCUserAccount int (250), CCNum int (50), CCardNum int (250))
BEGIN

insert into credit_card (user_accountycc_numycard num) values (CCUserAccount,CCnum,CCardium);
END

2) AddDeliveryData

. %CREATE DEFINER="root’@ localhest” PROCEDURE °AddDeliveryData' (deliID int (250), invoiceID int(250),accnum int (250),useraddress varchar (250),delidate date,
belistatus varchar (250))
BEGIN
insert into delivery (delivery id,invoice_id,acc_numyuser_address,deli date,deli_status) values (deliID,inveiceID,accnumyuseraddress,delidate,delistatus];
END

3) AddInventory

® (REATE DEFINER="root’ @ localhost™ PROCEDURE ~AddInventory (AddPrice Int (50), AddName Varchar (250), AddAmount int (50), AddCategory varchar (257))
BEGIN
insert into inventery (inv_price,inv_name,inv_amount,inv_category) values (AddPrice,AddName,AddAmount,AddCategory);
END

4) AddNewState

| CREATE DEFINER="root @ localhost™ PROCEDURE ~AddNewState” (AddAddressState varchar (50))
BEGIN
insert into add_state (state) values (AddAddressState);
END

5) AddCustomerAddress

CREATE DEFINER="root’@ localhost™ PROCEDURE "CustomerbomeAddress™(StreetOne varchar (250), StreetTwo Varchar (252), AddressPostCode int (25),AddressState varchar (50), userad
BEGIN

declare accountaddress int (20);

set accountaddress = useraddressaccount;

insert into address (street_1,street 2,postcode,address_state,address_account) values (StreetOne,StreetTue,AddressPostCode,AddressState,accountaddress);
END

49

6) CustomerRegistration

AR T}

® [ICREATE DEFINER="root’@ localhost’ PROCEDURE "CustomerRegistration’ (InsertCustAccID varchar (50), InsertCustName Varchar (50), InsertPhoneNum int (27),
InsertAddress varchar (250), InsertEmailAddress varchar (50))

BEGIN
T insert into customer_detail (cust_acc_id,cust_name,cust_phone_num,cust_address,email add)
values (InsertCustAccID,InsertCustiame, InsertPhonelum, InsertAddress,InsertEmailAddress);
END

7) Del_Status

[< [[#]
! CREATE DEFINER="root @ localhost™ PROCEDURE ~del_status” (DellStatus varchar (252))
BEGIN
insert into del_status (dell_status) wvalues (DellStatus);
END

8) Deletelnventory

® (REATE DEFINER="root @ localhost™ PROCEDURE ~DeleteInventory” (InventoryID int (25))
BEGIN

Delete from inventory where inv_id = InventoryID;

Enj

9) EditAddress

5 CREATE DEFINER="root’@ localhost™ PROCEDURE ~EditAddress’ (EditStreetl varchar (250), EditStreet2 Varchar (257), EditPostCode int (25), EditState varchar (57), EditAccountAddre
EIBEGIN

update address
set street 1 = EditStreetl
where address_account = EditAccountAddress;

update address
set street_2 = EditStreet2
where address_account = EditAccountAddress;

update address
set postcode = EditPostCode
where address_account = EditAccountAddress;

update address
set address_state = EditState
where address_account = EditAccountaddress;

END

50

10) EditCustomerDetail

), ECAddress varchar (

), ECEmailAddress varchar (59), CustAcclum ini|

“EditCustomerDetail (ECName Varchar (57), ECPhoneNum int (

® CREATE DEFINER=root @ localhost™ PROCEDURE

EIBEGIN
Declare NameUpdate varchar (50)3

Declare PhoneNumUpdate int (20)3
Declare Addresslpdate varchar (250);
Declare Emailupdate varchar (50);
Set NameUpdate = ECName;

Set PhoneNumUpdate = ECPhonehum;
Set AddressUpdate = ECAddress;
= ECEmailaddress;

set Emailupdate =

Update customer_detail
Set cust_name = Namelpdate

Where account_num = CustAcchum;

Update customer_detail
set cust_phone_num = PhoneNumUpdate
where account_num = CustAcchum;

Update customer_detail
Set cust_address = AddressUpdate
Where account_num = CustAcchum;
update customer_detail

Set email add = EmailUpdate
Where account_num = CustAcchum;

END

11) EditInventory

€

)» EditName Varchar

), EditAmount int (

)» EditCategory varchar (250),EditID int)

Tnventory’ (EditPrice Tnt (

cot” @ localhost™ PROCEDURE

® CREATE DEFINER
BEGIN

update inventory

set dny_name = EditName

where inv_id = EditID;

update inventory
set inv_price = EditPrice
where inv_id = EditID;

update inventory
set inv_amount = EditAmount

where inv_id = EditID;
update inventory
set iny_category = EditCategory
where inv_id = EditID;

END

12) UpdateOrderTable

»

.
ElBEGIN

Declare CustomerAddress varchar (255);

Declare CustomerName Varchar (255);

Declare CustomerPhone int (52);

Declare ItemName varchar (255);

Declare ItemPrice int (50);

Declare ItemAmount int (50);

Set CustomerAddress = (Select CustAddress from Customer Where CustID = UOTCustID);

Set Customerlame = (Select CustName from Customer Where CustID = UOTCustID);

Set CustomerPhone = (Select CustPhone from Customer Where CustID = UOTCustID);
Set ItemName = (Select ProductName from Product where ProductID = UOTItemID)j

Set ItemPrice = (Select ProductPrice from Product where ProductID = UOTItemID);

(Select ProductAmount from Product where ProductID = UOTTtemID);

Set TtemAmount =

values

(

UoTDate,
CustomerAddress,
Itenllame,

UOTAmount

ItemPrice * UOTAmount,
Customerhame
CustomerPhone,
UoTorderStatus

update Product set ProductAmount = ProductAmeunt - UOTAmount where ProductID = UOTItemID;
Insert into CustOrder (OrderDate,OrderAddress,OrderTtemName,Order]temimount,OrderTtenPrice ,0rderCustiame,OrderCustPhone, OrderStatus)

CREATE DEFINER="root’@ localhost™ PROCEDURE ~UpdateOrderTable” (in UOTDate date, in UOTItemID int, in UOTCustID int, in UOTAmount int, in UOTOrderStatus varchar (

o1

References

[1] Bhat, Dr. Shahid & Kansana, Keshav & Majid, Jenifur, (2016), “A Review
Paper on E-Commerce”, Asian Journal of Technology & Management
Research , [ISSN: 2249 —0892], Vol. 6 — Issue: 1, pp 16-21.

[2] Abdul Gaffar Khan (2016), “Electronic Commerce: A Study on Benefits
and Challenges in an Emerging Economy”, Global Journal of Management
and Business research: (B) Economics and Commerce, Online ISSN : 2249-
4588, Vol 16 — Issue : 1, pp 18-22.

[3] Jessica young (2019). “Global E-commerce Sales Grow 18%”. Online
Records: https://www.digitalcommerce360.com/article/global-ecommerce-
sales/

[4] Guy Harrison, Steven Feuerstein (2006), My SQL Stored Procedure
Programming, ISBN : 0596100892

[5] II- Yeol Song (2000), “Database Design for Real — E-Commerce Systems”,
IEEE Data Engineering Bulleting, Vol 23, No.1, pp 23-28

[6] Varshney, Upkar & Vetter, Ron. (2001), “A framework for the emerging
mobile commerce applications”, Proceedings of the 34th Hawaii
International Conference on System Sciences — 2001, pp 1-10.

[7] Hameed, K., Ahsan, K., & Yang, W. (2010), “Mobile Commerce and
Applications: An Exploratory Study and Review”, Journal of Computing
Volume 2 Issue 4, ISSN 2151-9617, pp 110-114

[8] Oluwaseye Omowa (2016), Development of an E-Service App on the
Android Platform., Oulu University of Applied Sciences

[9] Courtney B. Thaden (2010), Analysis of Multi-Platform Mobile Application
Development, University of North Dakota. UMI: 1560009

[10] Wei, H., & Godfrey, T. (2006), Database Middleware and Web Services for
Data Distribution and Integration in Distributed Heterogeneous Database
Systems, IKE.

52

https://www.digitalcommerce360.com/article/global-ecommerce-sales/
https://www.digitalcommerce360.com/article/global-ecommerce-sales/

[11] van der Meer, Sven. (2002), Middleware and Application Management
Architecture.

[12] Roland Balk (2016), Database programming made easier, University of
Twente, Formal Methods & Tools group

[13] Hawick, Ken & A. James, H. (2019). “Middleware Issues for Mobile
Business and Commerce.”
https://www.researchgate.net/publication/239830008

[14] Seshasayee, B. (2008), Middleware-based services for virtual cooperative
mobile platforms, Georgia Institute of Technology.

[15] Adam H. Mitz (2004). The Design and Implementation of Database-

Access Middleware for Live Object-Oriented Programming. Report
Number : WUCSE- 2004-21

53

Acknowledgements

First, I want to thanks Prof. Hyu Chan Park for giving me the chance to
continue my master at Korea Maritime Ocean University. Without his constant
support and guidance, I would never have the chance to study at KMOU, and I
would never completed my thesis. Thank you for all the support and guidance

that is given.

Secondly, I would like to thank Prof. Ok Keun Shin and Prof. Jang Se Lee
for evaluating my thesis. Without your criticism and help my thesis will never be

what it is today. Thank you for your criticism and help regarding my thesis.

Finally yet importantly, I would like to thank all my family and friends
that is directly or indirectly involved with my thesis. Without your constant

support, I would never be able to be where I am today. Thank you.

20193 8& Mohammad Haziq Maslan
54

	Chapter 1: Introduction
	1.1 Background of research
	1.2 Research objectives
	Chapter 2: Literature Review
	2.1 E-Commerce
	2.2 Database and stored procedure
	Chapter 3: Database Design and Stored Procedure
	3.1 Database design
	3.2 Basic stored procedures design
	3.3 Advance stored procedure design
	Chapter 4: Implementation and Experiment
	4.1 Database implementation
	4.2 Stored procedure implementation
	4.3 Website implementation
	Chapter 5: Conclusion and Further Works
	Appendix
	Appendix a: Database SQL and Tables
	Appendix b: Stored procedures
	References

<startpage>8
Chapter 1: Introduction 1
1.1 Background of research 1
1.2 Research objectives 2
Chapter 2: Literature Review 4
2.1 E-Commerce 4
2.2 Database and stored procedure 5
Chapter 3: Database Design and Stored Procedure 9
3.1 Database design 9
3.2 Basic stored procedures design 17
3.3 Advance stored procedure design 23
Chapter 4: Implementation and Experiment 26
4.1 Database implementation 26
4.2 Stored procedure implementation 29
4.3 Website implementation 32
Chapter 5: Conclusion and Further Works 36
Appendix 38
Appendix a: Database SQL and Tables 38
Appendix b: Stored procedures 49
References 52
</body>

