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Natural biological variation exists at different geographic scales. We compared

phenotype distribution across latitude, region and habitat type in threespine stickleback

(Gasterosteus aculeatus) to determine local adaptation. To quantify variation in

photoperiodic response, the day length cue was used to time sexual maturation and

morphological characters across these various scales. Using lab-reared lines, we

developed an index of sexual maturation and experimentally determined critical

photoperiod for Alaskan and Oregon populations. Results showed that photoperiodic

response existed in Alaskan but not Oregon populations. We also collected

morphological data and made comparisons between wild Alaskan and Oregon

populations and found similarities within habitat type across latitude but differences

across region and habitat type. These data support the hypothesis that local adaptation
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results in variation across geography and habitat and, in stickleback, parallel evolution of

morphological phenotypes within similar but geographically distant habitats.
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CHAPTER I

INTRODUCTION

Natural variation can be examined at different geographic scales, which can be

conceived of as a series of nested distributions of organismal range. The largest scale

encompasses an organism's entire range with the greatest differences in abiotic factors at

the northern and southernmost points of the distribution. Within that total range are

smaller, more localized distributions in which there are no differences in seasonal

occurrence, but observable differences in local climatic conditions or other abiotic

factors. Within a region populations may inhabit different habitat types, which may vary

in local abiotic factors and community interactions. In this thesis, differences in

phenotype will be described and compared across large-scale geographic distance

(latitude), across local geographic area (region within latitude) and among habitat types.

Across large-scale geography, differences among populations might be due to

differentiation by isolation. However, the role of local selective forces must also be

considered. An observed phenotype may be the result of the selective force exerted by an

environmental parameter such as geographic variation or habitat.

We used threespine stickleback (Gasterosteus aculeatus) to investigate the

relative importance of geographic distance between populations compared to selection for

differences in phenotype among habitats. Threespine stickleback are small, hoiarctic fish

found in both marine and freshwater habitats. Ancestral marine populations colonized

freshwater habitats and gave rise to derived forms, which underwent extensive

phenotypic diversification. Characters such as morphology, courtship behavior, nuptial

coloration and the timing of breeding vary among populations. These characters are

readily observable and address both physiological and morphological phenotypes.

Previous work has focused on either physiological or morphological differences in

phenotype, but rarely both. This thesis presents salient data on both types of characters.

Stickleback breed in early spring and the timing of this behavior is cued by length

of day (photoperiod). Chapter II is a comparison of photoperiodic response between lab-
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reared Oregon and Alaskan lines of stickleback. The resulting data showed that

reproduction is highly associated with photoperiod in the Alaskan population, but not in

the Oregon population. This suggests a heavier reliance on photoperiod at more northerly

latitudes. We propose this may be due the shorter length of breeding and growing time at

higher latitudes.

Chapter III compares variation in morphological characters for different

populations among habitat types and across regions in Oregon. The data showed

differences in body shape and armor phenotypes, suggesting that stickleback are affected

by local selective pressures. Additional comparisons of morphology between Oregon and

Alaskan populations showed similar patterns. These results support the hypothesis that

local selection influences phenotype across geography and habitat type and provide

evidence for parallel evolution across geography.

Chapter IV is a summary of the conclusions drawn from the experimental results

from chapters II and III.
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CHAPTER II

LATITUDINAL VARIATION IN PHOTOPERIODIC RESPONSE OF THE

THREESPINE STICKLEBACK (GASTEROSTEUS ACULEATUS) IN WESTERN

NORTH AMERICA

Introduction

At temperate and polar latitudes with distinct summer and winter seasons, the ability to

exploit the favorable season, to avoid or mitigate the unfavorable season, and to make a

timely transition between the two lifestyles are all components of fitness. Animals use the

length of day, or photoperiod, to time their seasonal development, reproduction,

migration and dormancy (Bradshaw and Holzapfel 2007). Generally, the influence of day

length on the seasonal activities of vertebrates increases with latitude but, compared to

arthropods, there are very few studies involving vertebrates and none, to our knowledge,

involves latitudinal variation among populations of a single species of fish. Herein, we

consider intraspecific variation in response to day length of northern and southern

populations of the threespine stickleback, Gasterosteus aculeatus.

In fish with long gonadal cycles, reproduction and migration are generally cued by

a combination of a circannual clock whose period of oscillation is approximately annual

and by increasing and decreasing day lengths that serve to "set" the circannual clock; fish

with short gonadal cycles are less dependent on a circannual clock and more dependent

on a direct response to a single constant day length (Bromage et al. 2001). The threespine

stickleback is a small fish found in marine, estuarine and freshwater habitats (Bell and

Foster 1994) that has long been a model for studies of ecology and behavior (Wooten

1976), and has recently been used for studies of the microevolution of developmental

processes (Cresko et al. 2007). It has a weak circannual rhythm, has a strong response to

constant day lengths and is distributed in the Holarctic from about 35-70oN (Baggerman
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1985; Bornestaf and Borg 2000).

The most thorough studies of photoperiodism in stickleback use populations

collected from nature, mainly the Baltic Sea (ca. 56-59°N). At this latitude, long days

promote reproduction in both males and females during the late spring and early summer

(Borg1982; Borg et al. 2004). In males, long days promote a sexual syndrome of color

change from drab to bright, territoriality, kidney hypertrophy and spiggin (glue for nest

building) production, nest building, and courtship (Borg et al. 2004). In early fall, fish go

through a brief refractory period (Borg 1982). Later in the fall, fish become

reproductively responsive to long days and critical photoperiod (the median day length

required to trigger breeding phenotype) declines, likely due to decreasing autumnal day

lengths and temperature (Baggerman 1972, 1985). Increasing day lengths in the spring

then promote gonadal maturation in females and spiggin production in males so that, in

the southern Baltic, the breeding season ofmarine stickleback peaks from early May to

early July (Borg 1982).

In the Rhone delta at ca. 43°N the breeding season of anadromous stickleback

peaks earlier in February and March (Crivelli and Briton 1987). While Crivelli and Briton

(1987) did not identify the environmental cues determining the migration and spawning

in the Rhone delta, the difference in phenology between the Baltic and Rhone delta

populations suggests that there may be a geographic difference in response to day length

between northern and southern European populations. To pursue the question of

geographic variation in photoperiodic response of threespine stickleback, we determined

photoperiodic response of G. aculeatus from western North America over a range of

18°N latitude. Previous studies in Europe have considered wild-caught fish whose

photoperiodic response may be altered by their environmental history. To determine

genetic difference among geographic populations, we used the first or third (Alaskan, 61

generation of laboratory maintained fish, reared them on short days, and upon attaining

adult size, exposed them to different constant day lengths at 20°C.
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Methods

Threespine Stickleback Collecting and Lines

The Alaskan stock was collected from Rabbit Slough (61 °34' N, 149°15' W). In nature,

this population has an anadromous life history with spring runs beginning in mid-

May and ending in mid-June. The animals used for these experiments were G3 outbred

descendants from wild-caught individuals. The Oregon stickleback were collected from

Eel Creek (43°35' N, 124°11' W), which is a small perennial creek contiguous with the

Pacific Ocean via a larger, connecting waterway. This population is likely resident within

the stream system as all fish trapped in Eel Creek show a consistent low-armor phenotype

(indicative of resident freshwater fish) and a unique body morphology that is a subset of

that found in the larger connecting creek (Yeates-Burghart and Bolle, unpublished).

Furthermore, fish in breeding condition are found in Eel Creek only during a short time

from mid-March to late April. The animals used for these experiments were Gl outbred

descendants from wild-caught individuals.

The experimental fish were produced and hatched using standard crossing protocol

(Cresko et al. 2004). To prevent transmission of disease or parasites, stickleback embryos

were bleached in a 6% solution of sodium hypochlorite on days 2 and 5 post fertilization.

After hatching, the fry were put in a 75.7L aquarium at a density of 1.25 fish per liter

under a 10:14 light:dark (L:D) cycle in water of 7 ppt salinity (Instant Ocean Brand) at

20°C. Juvenile stickleback were fed dry food (Zeigler Larval APlOO, 250-450 microns)

and freshly hatched brine shrimp. Adults were fed dry food (Nelson's silver cup fish feed,

trout fry, 0.59-1.38 mm).

Photoperiod Cabinets and Husbandry

Experiments were run in light-tight, air-cooled cabinets located in climate-controlled

rooms held at 20°e. Photoperiod cabinets consisted of six 29x40x53 cm

(HxWxD) chambers with five shelves each. Each shelf accommodated three, 4 L,

continuously aerated tanks and was illuminated by a "twilight" lamp (a single Lumex

SLX-LX5093UWC/G "water cool" white LED in a 3.5 cm translucent spherical

reflector) and a "daytime" fixture (Sylvania white, nine-LED strip light,
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LEDIUC/W/9/W). Twilight was simulated by turning on the twilight bulb for 15 min

before and for 15 min after the daylight fixture. Twilight and daylight were programmed

with Chrontrol XT electronic timers. Fish were fed daily and the water was changed with

7 ppt Instant Ocean saline solution every two days in each tanle For experiments, each

tank contained one male and one female adult fish, at least 8 months old and at least 50

mm in length. Any fish that died was not replaced. At the end of the experiments all

surviving fish were included in the data. Experiments with Alaskan fish were run in two

blocks. The first block used a broader span of day lengths to identify the region of the

critical photoperiod. The second block repeated day lengths at which there had been

incidental death in the first block (to increase sample size) and also used a narrow span of

day lengths to refine the estimate of the critical photoperiod. The data from both blocks

were combined. Experiments with Oregon fish were run as a single block. Experiments

with both Alaskan and Oregonian fish were run for six weeks.

Assays ofSexual Maturation

In stickleback, ovarian growth and kidney hypertrophy are reliable indicators of sexual

maturation (Mayer et al. 2004). Ovaries enlarge during the maturation of eggs; male

kidneys enlarge during the production of spiggin. To quantify sexual development across

light treatments, we calculated the OSI and KSI, the ovary-somatic index and the kidney­

somatic index. Kidneys or ovaries were excised and dried to constant mass with their

respective owners at 37°C using a Mettler AT26 1 DeltaRange electronic balance. The

OSI was calculated as the ratio of ovary to total body mass and the KSI as the ratio of

kidney to total body mass.

Results

As shown in Figure 1, sexual maturation in Alaskan sticklebacks exhibited a sigmoid

dose-response curve that increased with day length for both OSI (ANOVA: F7,63

= 6.51; P<O.OOl) and KSI (ANOVA: F7,51 = 3.52; P = 0.004). Sexual maturation in

Oregon sticklebacks did not vary with day length for either OSI (F5,55 = 1.80; P =0.127)

or KSI (F5,62 = 1.49; P = 0.128).
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aculeatus) from western North America. OS1 and KS1, ratio of ovary and kidney to total body mass in
females and males, respectively. Error bars show ± 2SE. OS1 and KS1 are multiplied by 103 to provide
positive values on a loglO scale.

Discussion

While photoperiod affects the timing of seasonal activities in many organisms,

intraspecific, geographic variation in photoperiodic response has been widely considered

only in arthropods (Danilvevkii 1965; Tauber et al. 1986; Danks 1987; Bradshaw and

Holzapfel 2007). Even among farmed finfish where photoperiodic control of migration,

maturation, and reproduction is widespread (Bromage et al. 2001), there are, to our

knowledge, no explicit comparisons of photoperiodic response among populations within

a species. In threespine stickleback, all previous studies of photoperiodic response have

used wild-caught fish where the environmental influence on reproduction is unknown;

none of the studies have considered photoperiodic response over a wide climatic range.

Herein, we have shown that the more northern, Alaskan population of the

threespine stickleback, Gasterosteus aculeatus, is strongly photoperiodic while the more

southern, Oregon population shows no significant response to photoperiod (Fig. 1).

Since all of our experiments were run with laboratory-reared fish in the Gl or G3

generation to minimize field effects, we conclude that the differences in photoperiodic
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response between Alaskan and Oregon populations represent genetic differences between

them.

The focal Alaskan population used in our study is anadromous (Cresko 2000,

Cresko et al. 2004, Karve et al. 2008), but we do not know whether the migratory

behavior of the Oregon population is entirely within fresh water as in upstream

populations in the Navarro River of California, USA (Snyder and Dingle 1990), or

involves migration from estuarine or marine habitats. A stronger photoperiodic response

would be expected in long-distance migrating populations (Clarke et al. 1994, Quinn and

Adams 1996). The lack of a discernible photoperiodic response in the Eel Creek, Oregon,

population could reflect a strictly freshwater habitat where proximal cues such as food

and temperature could be sufficient for timing reproduction.

Nonetheless, the increase in photoperiodic response of northern threespine

stickleback is consistent with other vertebrates. In more northern populations of

Scandinavian frogs, where there is a strictly limited growing season, day length provides

a firm, regulating cue for seasonal reproduction; in more southern populations, frogs use

day length to modulate temperature-dependent processes (Laurila et al. 2001). In lizards,

with increasing latitude, day length has an increasing effect on metabolic rate (Angilleta

2001), on growth rate (Uller and Olsson 2003), and on ability to maintain a constant body

temperature during the spring (Lashbrook and Livezey 1970). In mammals, with

increasing latitude, short days have an increasing tendency to induce gonadal regression

in mice (Heidemann et al. 1999; Lowrey et al. 2000; Lynch et al. 1981; Sullivan and

Lynch 1986) or embryonic dormancy in mustelids (Thorn et al. 2004). Hence, the general

vertebrate pattern, including that of Gasterosteus aculeatus, is a pattern of an increasing

influence of day length in the timing of important seasonal life-history events with

increasing latitude among intraspecific populations. We propose that increasing reliance

on day length by vertebrates at higher latitudes is due to an increasing use of a highly

reliable, anticipatory cue to prepare in advance for an increasingly narrow window of

opportunity for reproduction and development.
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Bridge

We have established clear genetic differences in the critical day length and formal

properties of the physiological phenotype of photoperiodic response between an Alaskan

and an Oregon population of stickleback. Based on the results of this assay across

latitude, we can conclude that phenotypic heterogeneity correlates with geographic

location on a large scale. In chapter two, we addressed this question with greater

resolution by examining a suite of morphological characters across region and among

different habitats in populations of Oregon stickleback.
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CHAPTER III

MORPHOLOGICAL VARIATION IN THREESPINE STICKLEBACK ACROSS

DIFFERENT REGIONS AND HABITATS IN OREGON

Introduction

Observations of phenotypic variation among natural populations catalyzed investigations

into the processes underlying evolution (Bradshaw and Holzapfel 2007). Examining

variation across a geographic scale to identify whether there is a relationship between

habitat and character can help resolve questions about the relative importance of isolation

by distance as compared to local selective forces on phenotypic diversity (Laurila,

Pakkasmaa and Merila 2001; Lynch, Heath and Johnston 1981; O'Malley and Banks

2008). Cataloging and quantifying natural variation is the first step in determining

whether there is a causal relationship between selection and phenotype leading to local

adaptation (Cresko et. al. 2007; Kimmel et al. 2005).

Threespine stickleback (Gasterosteus aculeatus) are small fish that exist

holarctically from approximately 30 to 70'N (Bell and Foster 1994). Stickleback have

long been a model for the study of ecology and behavior (Wooton 1976), and have

recently been applied to studies focusing on microevolution of developmental processes

(Cresko et al. 2007). Subsequently, a number of laboratory genetic and genomic tools

have been developed for stickleback, making them amenable for studies of the genetic

basis of evolving traits (Kingsley et al. 2004).

Stickleback can be found in most every type of marine, estuarine and freshwater

habitats of the Northern hemisphere, and this naturally abundant species complex

possesses a large amount of phenotypic variation (Cresko et al. 2007; Crivelli and

Britton, 1987; Mayer, Borg and Pall 2004; Pressley, 1980; Reimchen, 1989; Walker

1997). Threespine stickleback have undergone repeated adaptive radiations since the
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deglaciation of northern temperate latitudes approximately 10,500- 12,000 B.P (Bell and

Foster 1994; McPhail 1994; Walker 1997; Booth, Troost, Clague and Waitt 2004). The

glacial maxima extended south to approximately the 47th parallel. With glacial retreat,

invasion of previously ice-locked or unavailable habitat by ancestral anadromous fish

allowed for rapid opportunistic colonization into empty niches (Reusch, Wegner and

Kalbe 200 I). At latitudes falling below the glacial maxima, ice-locked habitat was not a

barrier to colonization and invasion of water bodies likely occurred earlier (Booth et al.

2004). Range expansion of threespine stickleback in freshwater habitats produced two

outcomes. First, colonization of formerly empty northern waterways led to rapid

diversification in behavioral and morphological variation that is the hallmark of

threespine stickleback today (Bell and Foster 1994; Baker and Foster, 2002; McKinnon

and Rundle 2002). Anadromous stickleback are representative of a more ancestral body

shape and armor phenotype (Walker and Bell 2000, McKinnon et al. 2004). The

remarkable diversity of deviations from the ancestral marine state in stickleback

morphology suggests that novel phenotypes have evolved in response to colonization of

previously unavailable habitat by anadromous populations (Walker 1997). Common

environmental pressures such as predator regime and prey community composition exist

within and between ecotypes and may have substantial impact on the diversity of

morphology in stickleback across geography (Walker 1997). Second, the range expansion

fell along a north-south axis, creating a geographic distribution with a large latitudinal

component (Baumgartner and Bell 1984; Bell 1981). These outcomes provide the

elements necessary to investigate the effects of selective pressure on phenotype across

habitat type and geography at a variety of scales.

Repeated evolution of similar body morphology between geographically

separated populations sharing a common habitat type suggests that widespread parallel

selection for phenotype is common in threespine stickleback (McPhail 1994; Walker

1997; McKinnon et al. 2004). Convergence of character states independently derived

from ancestral marine populations, such as body size, morphology and, robustness of

armoring frequently co-vary across distant, but similar ecotypes (McKinnon and Rundle
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2002). Parallel evolution of similar ecomorphs has evolved in geographically separated

replicate habitats (Walker 1997; Baumgartner and Bell 1984). However, it is unclear over

what magnitude of geographic variation this parallel evolution is likely to occur in

threespine stickleback. This paper is a survey of variation among habitat types and

geographically separated populations at two different scales, across regions in Oregon,

and between Oregon and Alaska. Our goal was to determine the relative importance of

geographic distance between populations compared to selection for differences in

phenotype among habitats.

Methods

Study Sites

We chose to examine phenotypic variation in populations of stickleback from three

regions and compared variation in morphological phenotype among regions and between

different habitat types found within each region. These regions differ in local abiotic

conditions such as watershed connectivity and salinity and are isolated by distance and

geographic barriers that restrict gene flow between adjacent ranges. The coastal region

extends from the Pacific Ocean to the foothills of the Cascade Mountains approximately

60 miles east and inland. The valley region encompasses the extent of the Willamette

valley floor and the western base of the Cascade Mountains range. The central region

begins on the east side of the Cascade Mountains and extends to the foothills of the

Ochoco Mountain range (Table IlL 1).
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Table III 1 A descriPtIOn of the re210ns and habitat types in Ore2on
Region: Description:

Coast Characterized by typical temperate seasonality, significant connectivity between water bodies and tidal
fluxuation at the confluence of river and ocean. Additionally, salinity gradients extend inland and water
appears either turbid or clear/tannic. Lakes of all sizes are most common in this region and often have
perennial outlet streams.

Valley The valley floor is characterized by temperate seasonality has reduced perennial connectivity between
water bodies; no salinity gradient and water clarity ranges from clear to moderately turbid. Lakes are more
isolated with fewer outlet streams.

Central This region is over 170 miles inland from the coast. It experiences an extreme temperate seasonality in
which water body connectivity is significantly reduced for the majority of the year. Water temperatures
fluctuate greatly across seasons. There is no salinity gradient and water clarity ranges from clear/tannic to
turbid water. Lakes are very isolated in this region and small lakes occur infrequently.

Habitat Type: Description:

Estuary Rivers and bays that are directly contiguous with the Pacific Ocean and which undergo cyclical tidal
fluctuation. Salinity measurements> Oppt during tidal events.

River Rivers and streams that mayor may not be contiguous with the Pacific Ocean, but do not undergo tidal
fluctuation or have a salinity measurement above 0 ppt at the point of sampling.

Lake Water bodies that may be minimally connected to other water bodies, but are completely isolated from the
ocean by physical barriers or lack of outflow streams.

Habitat types were chosen based on commonality across regions with the

exception of the estuarine habitat, which is restricted to the coast range (Table III. 1).

Each habitat type was defined by the characteristics of the water body in which samples

were collected to standardize comparisons between categories. Estuarine habitats were

contiguous with the Pacific Ocean and experienced tidal and salinity fluctuation in water

levels. Riverine habitats were either contiguous or not contiguous with the ocean, not

tidally influenced at the point where samples were collected and had a salinity reading of

oppt. Lacustrine habitats had little connectivity to other water bodies and were

completely isolated from the ocean via physical barriers or lack of outflow streams.

For coastal locations, fish were categorized as estuarine, riverine and lacustrine if

individuals found at the collection site were found in breeding condition. This helped

increase the certainty that populations were breeding in the habitats in which they were

found.

Collection and Preparation ofStickleback Specimens

Excepting two populations, samples of30 fish were collected at each of various time

points from September 2006 to February 2009 to gain a representative subset of the
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morphological variation present in each group across time (Table III.2). This was

particularly important for coastal populations which were not as geographically isolated

as populations from other regions. Fish were trapped using 1/8" mesh minnow traps

baited with salmon eggs set for 24h durations. All individuals were euthanized in the

field according to University of Oregon approved IACUC protocols with a buffered

MS222 solution, preserved in 100% ethanol. A subset of the fish was haphazardly chosen

from each collection and placed in 100% formalin in order to fix tissue. Subsequently

fish were stained using Alizarin Red to visualize bones, a technique described previously

in Cresko et al. (2004).

Table III.2 17 Oregonian and 7 Alaskan populations from 3 different habitat types were surveyed
for morphological variation.
State Region Habitat Popnlation Samples Population GPS Latitude GPS

Type per
Acronym

Longitude
population

Oregon: Coast Estuary Smith River 30 SMES 43.808 ON 124.239 ow

Estuary Cushman Slough 30 CSES 43.046 "N 124.178 oW

Estuary Dean Creek 30 DCES 43.855 "N 124.006 ow

Estuary Winchester Creek 30 WCES 43.366 "N 124.409 oW
S.

Estuary South Jetty 30 SJES 44.066 "N 124.157 oW

Estuary Miner Creek 30 MCES 43.503 "N 124.584 ow

River Tenmile Creek 30 TMRV 43.728 ON 124.340 oW

River Eel Creek 16 ECRV 43.594 "N 124.218 oW

Lake Upper Pony Creek 30 UPLA 42.428 "N 124.385 oW
Reservoir

Lake Lower Pony Creek 30 LPLA 43.422 "N 124.264 oW
Reservoir

Willamette River Riverbend 30 RVRV 44.079 "N 123.029 oW
Valley

Central River Deschutes River 30 DERV 43.944 "N 121.551 oW

River Crooked River 30 CRRV 44.293 "N 120.839 oW

Lake Paulina Lake 30 PALA 43.713 "N 121.358 oW

Lake South Twin Lake 30 STLA 43.883 "N 121.798 oW

Lake Wickiup Reservoir 30 W[LA 43.848 ON [21.848 oW

Lake Crane Prairie 30 CPLA 43.801 "N 121.079 oW
Reservoir

Alaska: Coast Estuary Mud Bay 30 MBES 59.636 "N 151.500 oW

Estuary Resurrection Bay 30 RBES 60. 1300 N 149.374°W

Estuary Salmon Creek 22 SCES 60.130oN 149.374°W

Lake Mud Lake 30 MDLA 61.563 "N 148.949 oW
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Collection ofEnvironmental Data

To ensure consistency in classing habitat types and consistent collection from the same

place we took the GPS coordinates for each site and measured a series of environmental

variables including but not limited to contiguity with the ocean, whether or not the area

was tidally influenced, salinity (ppt), turbidity and water temperature (Table 111.2).

Data Collection

All specimens were photographed under standardized conditions using a Nikon

D70 SLR camera. Landmark and linear measurements were collected for a suite of

morphological characters including, but not limited to, standard length (SL), lateral plate

counts and pelvic spine length from the left side of each specimen and body shape. Every

fish scored had a standard length (SL) measurement> 24mm to ensure adult body

proportions and armor character development. SL was taken from the anterior tip of the

premaxilla to the posterior end of the caudal peduncle (Fig. III.lA).

To quantify variation in armor phenotypes, the number of lateral plates were

counted from anterior to posterior along the left side of each specimen (Fig III.lB) and

the length of each left pelvic spine (mm) was measured from base to tip. (Fig. 111.1 C)

Landmark data to quantify body shape (Fig. III.lD) were collected using the

morphometrics program Morpho J (version 1.00b) and linear measurements were

digitized using tpsDIG2 (version 2.12). For body shape, we collected data from 26

standardized landmarks from the left side of each specimen. The positioning of

landmarks and basic technique was adapted from previous work done using geometric

morphometrics on stickleback (Walker 1997; Walker 2000; Adams, Rohlf and Slice

2004).
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Figure 111.1 Linear and morphometric measurements taken for stickleback. A) The standard length of
each specimen was taken from the anterior tip of the premaxilla to the posterior end of the caudal peduncle.
This allowed all linear and morphometric measurements to be standardized for each individual. B) Lateral
plates were counted from the most anterior to posterior along the left side of each specimen. C) The length
of each left pelvic spine (mm) was measured from the base of the connecting socket to the tip of the
structure. D) We took morphological data based on 26 predetermined physical landmarks from the left side
of each specimen. This technique was adapted from previous work that addressed stickleback body shape
using geometric morphometries.

Data Analyses

Data was collected for body shape using geometric morphometries. This allowed for

comparison of shape variation to be addressed at two different levels of resolution. First,

this method removed the confounds of natural heterogeneity of size among individuals by

standardizing each specimen by the group SL. Second, the standardization of individuals

allowed population data to be compiled and compared between groups.

We took the raw landmark data for each specimen and compiled it within

population. The data was then graphed on a deformation grid to examine the mean shape

of a population based on where the grid warped. We could compare similarities and

differences in the amount of grid warping among populations to draw conclusions about

shape differences among groups. The shape data was compared using canonical variates

analyses (eVA) among populations from the same habitat among different regions and

different habitats within the same region. This assessment was performed to correlate any

differences observed in phenotype with change in the independent variable. By holding

habitat type constant, any differences in phenotype observed in populations among
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regions could be associated with region (Walker 1997). By holding geographic effects

constant, we could isolate and correlate observed differences with habitat type.

Linear measurements increase with the size of the fish. We standardized all linear

measurements to the SL of the individual from which they came. To compare left pelvic

spine size with respect to fish SL we regressed each size measurement and retained the

residuals from this relationship to use as a SL standardized length of the left pelvic spine

(Karve, von Hippel and Bell 2008).

The comparisons made among armor phenotypes in Oregon populations

comprised two types. First, we compared variation among regions within river habitats.

Next, we compared variation among habitat types within the coastal region.

Results

Body Shape: Habitat (River) X Region (Coast, Valley, Central)

We used Canonical Variates Analysis (CVA) for populations of stickleback from riverine

habitats across coast, valley and central regions to determine whether region had an effect

on body shape (Table III.2). The resulting data showed tight clustering of river

populations with no overlap between different regions (Fig. 111.2). Individuals from

replicate habitats in the same region looked more similar to one another than they did to

riverine fish from other regions.

The coastal populations varied from the other two regions by having the highest

CVl values. However, they showed similar values to central Oregon populations for

CV2. The cluster for the valley population fell below the coastal region and mostly above

the central region on the CVl axis. They also had the highest CV2 values. Central

populations showed the lowest CV1 values.
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Figure 111.2 Results for the comparison of habitat type within coastal region in Oregon. Each dot
represents all of the compiled landmark data for each individual within a population, then each population
within a habitat type. The data cluster in groups based on habitat type, indicating differences in morphology
among groups. There is variation among habitats within region and fish living in different habitats tend to
look more similar to one another than to fish from other habitats. Cluster overlap between estuarine and
riverine data shows relative interconnectedness of these habitat types within this region. However, there is
almost no overlap in the lake data, implying habitat isolation.

Body Shape: Region (Coast) X Habitat Type (Estuary, River, Lake)

We compared CVs for stickleback populations within the coastal region among estuarine,

riverine and lacustrine habitat types to determine whether there was an effect on body

shape (Table III.2). The resulting data showed clustering of population body shape for

each habitat category with moderate overlap among groups.

Populations in estuarine and river habitats showed similar CV 1 and CV2 values

with the majority of overlap in CVl (Fig. III.3). The values for CVl fell slightly higher in

estuarine populations than they did in riverine populations. The values for CV2 fell

slightly lower in estuarine populations than they did in riverine or lacustrine populations.
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There was no overlap in CV1 or CV2 values between estuarine and lacustrine

populations. The values for CV1 were different for estuarine and lacustrine populations.

Estuarine populations showed a higher CV1 value. Coast and lake habitats had similar

values for CV2, with coast data falling slightly lower on the axis.

Riverine populations showed data overlap with both other habitat types. They also

had the highest CV2 values for any habitat type. Lacustrine populations had the lowest

CV1 values. They also had almost no shape overlap with either estuarine or riverine

populations. Estuarine and riverine populations shared more commonalities in body

shape with each other than either group did with lacustrine populations.
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Figure 111.3 Results for the comparison of habitat type across region in Oregon. There is variation
among regions within habitat type. Distinct clusters show that differentiated ecomorphs exist within rivers
across geography. This suggests that habitat isolation curtails gene flow between regions and that selective
pressure varies across geography even within the same kinds habitat.

Lateral Plate Count: Habitat (River) X Region (Coast, Valley, Central)

We compared the number oflateral plates for riverine populations across coast, valley

and central regions (Table rrI.2). Coastal riverine populations showed clear differences in
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the number of plates present (Fig. IlIA). Of the two populations sampled, Tenmile Creek,

was high-plated with the average plate number being ~27. The other, Eel Creek, was low­

plated with the average being ~ 6. All individuals within a population were consistent

with respect to phenotype. The valley population was polymorphic for plate phenotype.

Plate counts ranged from low to high with an average of ~13. Both central populations

were low-plated with an average of ~6 plates.
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Figure IlIA Lateral plate counts for stickleback in river systems across Oregon regions. Mean counts
(95% CIM) of the number oflateral plates on the left side of stickleback in five populations in each of three
regions. Coastal populations show distinctly different plating phenotypes that may be the result of
differences in the amount of introgression by marine alleles. The valley population has an intermediate
phenotype that suggests either some marine gene flow or the initial stages of reduction in this character.
Central populations are isolated from other regions and show a consistent low plate phenotype.

Left Pelvic Spine Length: Region (Coast) X Habitat Type (Estuary, River, Lake)

We compared the residuals for length of the left pelvic spine among the different habitat

types in the coastal region (Table III.2). Variation in this character was observed across

habitat type, however no clear pattern was observed (Fig. IlLS) One estuarine population

(Cushman Slough) had larger values for spine length than any other group overall.

Additionally, two other estuarine populations, Miner Creek and Winchester Creek South,
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had lower left pelvic residuals than any other estuarine group, but were not different from

one another. There was a significant difference between residuals for the two riverine

populations. There were no differences in residuals between the two lake populations.

Nor were there differences in residual values between lake populations and fish from any

other habitat type.
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Figure IlLS The resulting residuals for length ofthe left pelvic spine among the different habitat
types in the coastal region of Oregon and Alaska. Mean lengths (95% elM) of the residuals for the left
pelvic spine on the left side of stickleback for nine populations from Oregon and four Alaskan populations
from coastal estuaries and lakes. This character was relatively undifferentiated in Oregon estuary and lake
populations, with the exception of one putatively anadromous population. Alaskan populations showed
distinct differences in spine length between habitat types. These results suggest that there may be
differences in local selective pressure across geographic distance.

OR X AK Lateral Plate Count: Region (Coast) X Habitat Type (Estuary, River, Lake)

We compared lateral plate counts for coastal estuarine and lacustrine populations from

Oregon and Alaska (Table III.2). The results for both states showed congruent patterns
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with the highest plate counts in estuarine populations and the lowest counts in lacustrine

populations (Fig. 111.6)

The mean number of lateral plates differed very little between Oregon and

Alaskan populations within habitat type. Estuarine populations from Oregon had ~ 26

plates while Alaskan populations had ~29. Lacustrine populations from Oregon had ~ 5

plates and Alaskan populations had ~7. There was no overlap in the standard errors

between Oregon and Alaskan data.

Figure 111.6 Comparisons of lateral plate counts for coastal estuary and lake populations from
Oregon and Alaska showed parallel phenotypic development across geographic distance. Estuarine
populations had the highest lateral plate counts and lake populations had the lowest plate counts. Mean
counts (95% elM) of the number of lateral plates on the left side of stickleback for eight Oregon and four
Alaskan estuary and lake populations.

OR X AK Left Pelvic Spine Length: Region (Coast) X Habitat Type (Estuary, River, Lake)

We compared the residuals for length of the left pelvic spine among estuarine and

lacustrine habitat types between the coastal regions of Oregon and Alaska (Table 111.2)

Independent of habitat type, Oregon populations had larger residual values than Alaskan

populations in most cases (Fig. 111.5) Pelvic spines were longer in Oregon estuarine and

lacustrine populations than in comparable Alaskan populations. However, the relative

differences across habitat types in Alaska mirrored those in Oregon. Both Alaskan and
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Oregon estuarine populations had larger residual values for left pelvic spine length in

comparison to lacustrine populations.

Discussion

The Role o/Geographic Distance in Partitioning Phenotypic Variation Across Oregon

We examined the effects of geographic separation on phenotype distribution for body

shape and lateral plate counts in Oregon populations. Riverine stickleback from different

regions across Oregon showed variation in both characters (Fig. III.2, Fig. III. 4).

The body shape data was clustered within habitat type among regions indicating

differentiated ecomorphs existing within the same habitat type across geography.

Additionally, lateral plate phenotypes clearly varied among regions. The lack of overlap

between clusters and the large difference in numbers of lateral plates among regions

indicated that there was little or no gene flow between river populations from each

region. Populations from river habitats in the same region had more consistent

morphology with one another than with populations from other regions, suggesting that

local regional factors played a role in body shape. Alternatively, lateral plating

phenotypes showed a trend more closely associated with biotic inputs from marine

populations. These outcomes suggest that community structure among habitats isolated

by distance may have different biotic and abiotic limitations.

A contributing factor to the pronounced shape difference observed in coastal

populations compared to valley and central populations is the larger amount of gene flow

from marine fish. Permanent connectivity between watersheds is greatest in the coast

range, which increases the chances ofmarine and resident fish meeting and hybridizing.

Repeated introgression maintains marine genes in coastal populations such as those found

in estuaries, rivers and accessible lakes.

Of the two coastal riverine populations surveyed one had a markedly higher

number of lateral plates than the other (Graph III.3). Lateral plating is heritable and fish

from Tenmile Creek are more subject to marine genetic input from high-plated fish. The

Eel Creek population had very low plate counts that reflected little or no genetic
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influence from marine sources. This suggests that the amount of gene flow between

resident and migratory fish is an important component in the evolution of this character

among populations. The high plated phenotype is more likely to be maintained in the

Tenmile Creek population due to repeated exposure to and hybridization with marine

fish. The Eel Creek population experiences prezygotic reproductive isolation by breeding

in a location in which potential interaction with anadromous fish is absent.

The valley population of stickleback comes from the Mckenzie River, a water

body that is ultimately contiguous with the Pacific Ocean. Valley stickleback showed

differentiation in body shape and polymorphism in lateral plating, which may be the

result of indirect accrual of marine alleles along the river gradient. However,

morphological analyses do not reflect substantial similarities between valle)' and coastal

body shape. Alternatively, the differences in shape and variation in lateral plating might

be incipient transition to a derived freshwater phenotype. The transition from a high­

plated phenotype to a reduced-plate phenotype with concurrent shape change after

colonization of freshwater habitats has been documented in other work (Barrett, Rogers

and Schluter 2008). The age of this population is undocumented.

There was more similarity in body shape between valley and central populations

than the difference expected based on the relative isolation of populations in each region.

Comparisons of populations from these regions had more body shape characteristics in

common than either group had with coastal populations. A possible explanation for this

may be recent anthropogenically-caused introduction of stickleback to central Oregon.

The historical presence of these fish is unknown before the 1980's in that area.

The lateral plate counts for central riverine stickleback reflected a uniformly low­

plated phenotype. Unlike the coastal populations, riverine fish from the central region

were isolated from gene flow with populations east of the Cascade Mountains.

Additionally, they came from geographically separated populations within the central

region. The biotic and abiotic conditions of both rivers were consistent between

populations. The lack of gene flow between populations and the similarity between
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environmental factors suggests that habitat type plays a role in shaping morphological

outcomes in stickleback.

Central Oregon populations of stickleback exist under abiotic parameters that are

markedly different than those observed in the other regions. Connectivity of watersheds

is significantly reduced and often seasonal, the climatic disposition of the central region

is drier, annual temperature fluctuations are greater among seasons and the geologic

makeup of the area is much older than that of the other regions. Physical barriers (dams)

prevent all natural gene flow from marine sources and lack of contiguity between

watersheds isolates the central region from valley populations.

Phenotypic Variation is Also Distributed Across Different Habitats in the Same Region

We compared body shape and length of pelvic spines among different habitat types

within the coastal region. There were distinct differences in body shape associated with

habitat type, but pelvic spine length did not show any prevalent trends (Fig. IlL5).

One estuarine population, Cushman Slough, had larger residual values than any

other population for pelvic spine length. This population is likely anadromous, based on

its seasonal abundance and may be reflecting a marine phenotype with respect to pelvic

spine length. There is less certainty about the life histories of the other estuarine

populations. No other populations from any habitat type showed an independently

significant result like Cushman Slough. Possible explanations for the lack of strong

correlation outcome include: 1) pelvic spine length may not be a character undergoing

evolution in these habitats. In the coastal region, abiotic and biotic factors such as local

climate, geology and community composition are similar across habitats. This might

reduce potentially divergent selective pressure on the character resulting in a consistent

phenotype due to a common environment. 2) Alternatively, pelvic spine length may

exhibit a conserved and unvaried phenotype due to heavy selection independent of habitat

type.

The data for body shape were loosely clustered among habitats within the costal

region (Fig. IlL3). However, the spread of the data suggests that coastal habitats have
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greater connectivity and potential for gene flow. A high degree of connectivity among

watersheds may act reductively on phenotypic variation among adjacent populations.

Abiotic and biotic factors are likely to be more alike in contiguous coastal habitats and

the opportunities for gene flow are increased.

Fish from estuarine, riverine and lacustrine habitats within the coast region all

clustered phenotypically to varying degrees. Estuarine populations had no clear overlap

with lacustrine populations, but showed many similarities to riverine fish. Riverine

populations exhibited phenotypic overlap with both lacustrine estuarine populations.

Estuary and river habitat types tend to be highly contiguous and estuarine fish are

known to spawn in both brackish and fresh water (Bell and Foster 1994). This

strengthens the possibility for gene flow between estuarine and riverine populations and

clearly delineates a geographically discernable phenotype gradient that begins at the

ocean and moves inland.

The overlap of the estuarine and riverine data can be explained by the distinctly

different life histories of the two riverine populations sampled. Interestingly, they both

come from the same river system and presumably experience very similar biotic and

abiotic pressures. One population showed a shape phenotype more similar to estuarine

fish due to hybridization with seasonally co-occurring anadromous stickleback. The

second population showed a more derived phenotype unique to the system.

The first population comes from a large slow-moving river that is directly

contiguous with the Pacific Ocean called Tenmile Creek in Lane County, Oregon. It has

resident populations of stickleback and in early spring, anadromous fish migrate in to

spawn. There is overlap in the breeding period between resident and anadromous

populations and hybridization is highly likely. This hypothesis is supported by the

observation that fish from Tenmile Creek share many morphological similarities with

estuarine populations.

The second population comes from Eel Creek, a small perennial stream indirectly

contiguous with the Pacific Ocean via the larger, connecting Tenmile Creek. This

population is considered resident within the Tenmile-Eel Creek system. Fish migrate



27

upstream to spawn in Eel Creek during early spring and return to Tenmile Creek by late

April. For the remainder of the year, no stickleback reside in Eel Creek. Adult fish are

characterized by a unique suite of morphological characteristics that distinguish them

from other populations surveyed in the system. This specific morphotype is the only one

found in Eel Creek and only during breeding season. Furthermore, anadromous fish have

been found above the outlet where Eel Creek flows into Tenmile Creek. However, no

anadromous fish have been trapped in Eel Creek despite regular sampling from 2007­

2009. Based on these observations, it is unlikely that the Eel Creek population hybridizes

with anadromous migrants regardless of overlapping breeding season.

These significantly different populations are representative ofthe large amount of

phenotypic diversity found in Oregon populations and were chosen to illustrate the

difficulty of quantifying such variation even at a relatively small scale.

The data showed a small amount of overlap between lacustrine and river

populations. This overlap may be due to the relatively recent isolation and early stages of

divergence of the lake populations found in Pony Creek Reservoir. The lake sites contain

remnant populations of stickleback that historically resided in Pony Creek, a freshwater

creek that was transformed into a reservoir approximately 50 years ago. This population

does not undergo any natural gene flow with outside populations, but may still retain

ancestral riverine characters. Phenotypic differentiation in this case suggests a different

set of environmental parameters between lakes and other habitat types.

Parallel Phenotypic Development Between Alaskan and Oregon Populations Supports

the Role o/Natural Selection in Local Adaptation

Coastal region was held constant between Oregon and Alaska and the number of lateral

plates present and pelvic spine length for populations in analogous habitat types was

compared across a large geographic scale (Fig. III.5 , III.6). The emergent trend suggests

that local habitat may have a greater effect on shaping phenotype than isolation by

geographic distance.
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Estuarine populations in both Oregon and Alaska had higher lateral plate counts

than lacustrine populations from either state. Furthermore, the differences in plate

number within habitat type between states were very small. This suggests that differences

may be due to variation in local selection.

The standard error for both habitat types was largest for Oregon populations. This

indicated a larger amount ofphenotypic variation in the plating character that may be

explained by the age of Oregon populations relative to those found in Alaska. Older

populations have had more time for buried variation to surface and to diverge from the

ancestral phenotype. Alternatively, the range of biotic and abiotic factors that influence

phenotype may be less specific in Oregon. This may result in more flexibility with

respect to phenotypic output.

Additionally, Oregon and Alaskan populations of estuarine and lacustrine

stickleback showed differences in the residuals of the left pelvic spine length (Fig III.S).

In all except two cases, Oregon estuarine and lacustrine populations had larger residual

values than Alaskan populations indicating longer spine length. A possible explanation

for the differences observed might be that local selective pressures differ across large

geographic distance. In the coastal region, abiotic and biotic factors such as local climate,

geology and community composition are similar across habitats within region, but may

be different in the same region across latitude. Pelvic spine length may be undergoing

divergent evolution in estuarine and lacustrine habitats across latitude resulting in

differing phenotypes due to local selective pressure.

Similar environments, independent of geographic proximity, are imbued with

groupable categories of biotic and abiotic variables that affect stickleback morphology

predictably, resulting in ecomorphi~ divergence (Walker 1997, Reusch et al. 2001). The

widespread examples of parallel evolution of morphology and armor phenotypes that

occur across latitude and longitude among populations of threespine stickleback suggest

that local selective processes are involved in phenotypic output (McPhail 1994; Walker

1997; McKinnon et al. 2004).
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We made comparisons across three geographic scales in Oregon and asked

questions about the role of local selective forces on phenotypes and isolation. Body

morphology and armoring are local phenotypes that showed two development trends: 1)

differentiation within habitat type across region 2) parallel evolution within habitat type

and region across larger geographic scales. These results imply that the selective forces

associated with habitat type may have a stronger influence on morphological variation

than geographic separation.

These data support the hypothesis that local adaptation results in variation across

geography and habitat type. Furthermore, there is parallel evolution of morphological

phenotype within geographically distant habitat types.
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CHAPTER IV

CONCLUSIONS

Natural variation occurs at different geographic scales. Species distributions often span

such scales and show phenotypic variation that may be the result of selective pressure

from the local environment. Understanding the associations between environmental

variables and phenotype can illuminate the underpinnings of selection at smaller scales.

To address this, we compared physiological (photoperiodic response) and morphological

(body shape and armoring) phenotypes from populations of threespine stickleback from

different habitat types, regions and across latitude.

We experimentally compared photoperiodic response between an Alaskan and

Oregon population and found that the northern population was photoperiodic, but that the

southern population was not. Photoperiodic response is a local phenotype that is

genetically based and these results suggest local adaptation to photoperiod at different

latitudes (Bradshaw and Holzapfel, 2007).

We analyzed data on a suite of morphological characters using geometric

morphometrics and linear analyses and made comparisons among different habitat types

across coastal, valley and central regions of Oregon. We discovered significant

differences in body shape, number of lateral plates and the length of pelvic spines

distributed among habitat types and across regions. Additionally, we found similar

patterns in these characters across habitat type in comparisons of Oregon and previously

well studied Alaskan populations. The parallel association between morphology and

habitat type in geographically distinct populations in Oregon and Alaska supports the

hypothesis that threespine stickleback are affected similarly by local selection regimes

resulting in parallel morphological adaptation.

Future work should build on these findings by addressing the underlying genetic

architecture of both photoperiodism and the morphological variation described herein to
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determine whether there is a genetic basis for adaptation in these characters. Additionally,

it would be worthwhile useful to determine the phylogenetic history between Oregon and

Alaskan populations in order to better understand the differences observed between

groups.
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