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Dynamical Analysis and Robust Control Synthesis for Water

Treatment Processes

Bui Duc Hong Phuc

Korea Maritime and Ocean University

Department of Convergence Study on Ocean Science and Technology

Abstract

Nowadays, water demand and water scarcity are very urgent issues due to
population growth, drought and poor water quality all over the world. Therefore,
water treatment plants are playing a vital role for good living condition of human.
Water area needs more concentration study to increase water productivity and
decrease water cost. This dissertation presents the analysis and control of water
treatment plants using robust control techniques. The applied control algorithms
include H., gain scheduled and observer-based loop-shaping control technique. They
are modern control algorithms and very powerful in robust controlling of systems
with uncertainties and disturbances. The water treatment plants include a
desalination system and a wastewater process. Since fresh water scarcity is getting
more serious, the desalination plants are to produce drinking water and wastewater
treatment plants give the reusable water. The desalination system is a RO one used
to produce drinking water from seawater and brackish water. The nonlinear
behaviors of this system is carefully analyzed before the linearization. Due to the
uncertainty caused by concentration polarization, the system is linearized using

linear state-space parametric uncertainty framework. The system also suffer from
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many disturbances which water hammer is one of the most influential one. The
mixed robust H. and p-synthesis control algorithm is applied to control the RO
system coping with large uncertainties, disturbances and noises. The wastewater
treatment process is an activated sludge process. This biological process use
microorganisms to convert organic and certain inorganic matter from wastewater
into cell mass. The process is very complex with many coupled biological and
chemical reactions. Due to the large variation in the influent flow, the system is
modelized and linearized as a linear parametric varying system using affine
parameter-dependent representation. Since the influent flow is quickly variable and
easily to be measured, the robust gain scheduled robust controller is applied to deal
with the large uncertainty caused by the scheduled parameter. This control algorithm
often gives better performances than those of general robust H. one. In the
wastewater treatment plant, there exist an anaerobic digestion, which is controlled
by the observer-based loop-shaping algorithm. The simulations show that all the
controllers can effectively deal with large uncertainties, disturbances and noises in
water treatment plants. They help improve the system performances and safeties,
save energy and reduce product water costs. The studies contribute some potential
control approaches for water treatment plants, which is currently a very active

research area in the world.
Key words: Desalination, Reverse osmosis, Wastewater treatment, Activated sludge,

H. robust control, Robust gain scheduling control, Water hammer, Uncertainty

modeling, Linear parameter-varying system, Observer-based controller.
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Chapter 1. Introduction

Freshwater makes up a very small fraction of all water in the world. While 70
percent of the earth surface is covered by water, only 2.5 percent of it is freshwater.
However, almost of freshwater is entrapped in glaciers and snowfields. Essentially,
only 0.007 percent of the water in our planet is available for 7 billion people.
Nowadays, when world population increases rapidly, the lack of fresh water is
becoming a more and more urgent issue in many areas of the world. Currently, nearly
1 billion people in the developing world don’t have safe drinking water.

Water demand includes some major parts: domestic, public, industrial and
agriculture demand. The domestic demand is the water required in private building
for drinking, bathing, gardening, sanitary purpose, etc. The public demand represents
the water demand for public utility purpose such as washing of public parks,
gardening, washing on roads, public fountain. The industrial demand is the water
demand for plants, factories and the agricultural demand is the water used for the
irrigation of crops or the watering of livestock. Water demand of human cannot
decrease, but the freshwater source is decreasing due to pollutant and climate change.

There have been many water treatment plants operating to produce freshwater.
However, due to the efficiency, the price of product water is still high for most of
world population who are poor. Furthermore, the demand side seem to be higher than
the supply side. Therefore, water treatment is one of the most important areas that
needs more investment. Water treatment is a process making water more acceptable
for a specific end-use. The end-use may be drinking, industrial water supply,
irrigation, river flow maintenance or other uses. The water treatment compromises
two main branches, sea and brackish water desalination, and wastewater treatment.
The desalination is mostly for producing drinking water and wastewater treatment is
mainly to convert wastewater into reusable water which is safely for people and
surrounding environment. The current major techniques in those two branches

include reverse osmosis (RO) and activated sludge process (ASP), respectively.
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In water area, control techniques mostly call the name of simple ones such as PID
control, fault tolerant control...However, under higher disturbances, those kinds of
controller may not guarantee the robustness of the control system. In order to
guarantee system performance in harsh working conditions having more
uncertainties, disturbances or noises and to lower product water cost, it is necessary
to apply some powerful control method. In this dissertation, the robust H. and gain
scheduled control technique are applied to control RO and ASP system, respectively,
to contribute some significant advantages. In the following sections, some
comprehensive introductions are first given to provide some overviews of the control

systems.
1.1 Reverse osmosis process

Historically, desalination developed as a means of providing freshwater in arid
countries such as Saudi Arabia, Qatar, UAE...Recently, due to the growing
populations, desalination has been spread out all over the world and become
important source of fresh water in many places such as major cities in Australia,
Singapore, Spain, India, California...The annual world production of desalination
illustrated in Fig.1 showing that this kind of filtration is growing very fast and it will
be the main source of fresh water in future.

Some desalination technologies have been developed during the last decades to
produce low cost and qualified water. Two of the most important technologies are
multi-stage flash distillation (MSF) and RO process (Alatiqgi et al., 1999). MSF is a
water desalination technology that distills sea water by flashing a portion of the water
into steam in multiple stages arranged as countercurrent heat exchangers. RO is a
water purification technology that uses semipermeable membranes to remove ions,
molecules, and larger particles from drinking water. In reverse osmosis, an applied
pressure is used to overcome osmotic pressure so that the pure solvent is allowed to
pass to the membrane whereas the solute is retained on the pressurized side. Reverse

osmosis can remove many types of dissolved and suspended species from water,

| bt ey T
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including bacteria, and is used widely in the production of potable water. In recent
years, the market share of RO desalination has widely expanded because of
significant improvements and advantages in membrane technology. RO plants have
lower energy consumption, investment cost, space requirements and maintenance

than other desalination processes (Gambier, 2006).
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Fig. 1 Growth in world water production from seawater desalination. Source

desaldata.com

In 1748, the process of osmosis through semipermeable membranes was first
discovered by Jean-Antoine Nollet, a French scientist-cleric. Initial 200 years, it was
only a phenomenon observed in the laboratory. In 1950, the desalination of seawater
using semipermeable membranes was first carried on by the University of California
at Los Angeles (UCLA). At that time the permeate flux was too low to be
commercially used until the discovery of asymmetric membranes by Sidney Loeb
(UCLA) and Sourirajan at the National Research Council of Canada. They used
cellulose acetate polymer as the material for the asymmetric membranes which
includes an effectively thin "skin" layer supported atop a highly porous and much
thicker substrate region. The invention was so effective that it let fresh water pass
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through at a good enough flux for reverse osmosis to be proven available for
commercial use. Hereafter, John Cadotte, of FilmTec Corporation developed the
process by discovering that membranes with particularly high flux and low salt
passage could be made by interfacial polymerization of m-Phenylenediamine and
trimesoyl chloride. This kind of membrane are very strong and durable. Nowadays,
almost all commercial reverse osmosis membrane is made by this method.

In 1965, Coalinga, California became the first site of the RO plant.

In 1977, Cape Coral, Florida became the first municipality to use the RO process
on a large-scale with an initial operating capacity of 3 million gallons per day.

By the end of 2001, there were about 15,200 desalination plants in operation or
under construction all over the world. Nowadays, RO technique has been conquered
the desalination market. It spreads out from the large-scale plants for cities, mid-
scale plants for small communities and small-scale systems for home water
purification. (wikipedia.org)

In literature, many studies and mathematical models about RO have been reported.
They are mainly classified into two categories: the membrane transport model and
the lumped parameter model. Some earlier models were presented separately by
many authors like Johnson (1980b), Soltaniesh and Gill (1981), Mazid (1984). Slater
et al. (1985) used non-linear differential equations to present a transient membrane
mass transfer model for a small scale RO unit, representing the system conditions,
fluxes, solute concentrations and rejections. Davis and Leighton (1987) described
the transport of the concentrated boundary layer under laminar flow. Alatiqi et al.
(1989) introduced a MIMO transfer function model for the desalination process from
the experimental data for closed-loop control. Fountoukidis (1989) developed
transient models for membrane fouling phenomena. Masahide and Shoji (2000)
estimated the transport parameters of RO membranes for sea water desalination.
Riverol and Pilipovik (2005) used the feed forward neural network to predict the
performance of RO systems. Gambier et al. (2007) introduced a lumped parameter
dynamic MIMO model for the fault diagnosis purpose. Chaaben et al. (2008)

developed a MIMO model relating input and output variables by empirical transfer

| bt ey T
Collection @ kmou 4



matrix through a small photovoltaic reverse osmosis desalination unit. The above
models describe either the steady state mass transfer phenomena, or the transient
dynamics of membrane concentration polarization, and can be used to evaluate the
process performance. Hence, some mathematical models and transfer functions have
been ready for control purposes.

In RO plants, the system parameters change fast because of fouling. Consequently,
membrane cleaning has to be carried out often and process parameters obtained
before and after cleaning are very different. Hence, if the controller was optimally
adjusted, the control performance will not be acceptable in some operational stages.
Furthermore, in a typical RO unit, membranes are very sensitive to feed water
temperature, salinity and pressure variations. Therefore, RO systems often operate
under many uncertainties. Besides, due to the change in global weather, uncertainties
and disturbances are getting larger for desalination plants. Since the hardware and
software in RO controlling is now powerful enough, it’s necessary to apply a
powerful control strategy that can simultaneously deal with large uncertainties,
disturbances and noises; rather than fixed proportional-integral-derivative (PID)
controller.

Several contributions with varying approaches have been made in the
literature to automatic stabilize RO systems. Among the control methods,
conventional PID is the most popular due to its simplification. PID can be used as a
standard PID controller or redesigned into multiple single-input single-output
structure for a more effective control strategy (Alatigi et al. 1989). Many other
researchers also develop their control approaches based on PID, such as Kim et al.
(2009) applied Immune-Genetic Algorithm to get PID parameters for RO system,
Gambier & Badreddin (2011) designed multi objective optimization based PID
controller so that the control loop was less sensitive to parameter changes, and
Rathore et al. (2013) used PID tuning in RO to self-tune the parameters of the
controller. Another common control algorithm is model predictive control (MPC)
which has the ability to allow RO plant to operate with various permeate fluxes
(Robertson et al., 1996; Abbas, 2006; Ali et al., 2010). This approach has some
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robustness characteristics, but the uncertainty level allowed is not high. Less
common controllers for RO system include fuzzy logic (Jafar & Zilouchian, 2002),
optimal control (Gambier, 2006), fault tolerant control and feed-forward/feed-back
based on Lyapunov control law (McFall et al., 2007, 2008). However, at this stage
there has been no work on a robust H.. controller that simultaneously deals with

uncertainties, disturbances and measurement noises in RO system.
1.2 Activated sludge process

Desalination plants often produce drinking water while wastewater treatment
plants convert wastewater into reusable water or safely water for environment. There
are two wastewater treatment plants namely chemical and biological wastewater
treatment plant. They are built for treating sewage, industrial wastewater or
agricultural wastewater. In this dissertation, activated sludge process is studied,
which is the main section of a biological wastewater treatment plant.

Activated sludge is a process in which a mass of microorganisms is cultivated to
break down organic matter into carbon dioxide, water, and other inorganic
compounds. Basically, the activated sludge process includes an aeration tank,
clarifier, biomass return, and waste biomass disposal. The separation of the active
biomass from the treated wastewater is performed by settling in clarifiers but may
also be done by other methods, including flotation and membrane filtration. The
activated sludge process was discovered in 1913 in the United Kingdom by Ardern
and Lockett. Initially, the design and operation of ASPs were mostly based on the
empirical rules of thumb. Since the 1950’s, many researchers and engineers have
applied theories of reactor design and microorganism growth to wastewater
treatment systems, making it possible to describe substrate degradation,
microorganism growth, and plant performance in terms of mathematical models
(wikipedia.org). In particular, the Eckenfelder (1955) and Lawrence-McCarty (1970)
activated sludge models gained widespread practical application due to their ability

to predict the plant performance (Huo, 2005). The two models set the basis for many
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others developed models. Especially, the Monod’s formulation introduced in
Lawrence-McCarty model plays a core role to modelize the growth of
microorganisms.

Based on the models above, many other advanced models have been created. Up
to this end, Activated Sludge Models ASM family (ASM1, ASM2-ASM2d, ASM3)
proposed by the International Water Association (IWA) are the most commonly
applied mathematical models for the modelling of the biological wastewater
treatment plants.

The Activated Sludge Model No. 1 (ASM1) (Henze et al., 1986) is considered as
the reference model, since this model triggered the general acceptance of WWTP
modelling, first in the research community and later on also in industry. The ASM1
essentially describes a single-stage activated sludge system performing simultaneous
COD (Chemical Oxygen Demand) oxidation, nitrification and denitrification
processes. (Gernaey, 2004)

In 1995, the Activated Sludge Model no. 2 was introduced. This model included
nitrogen removal and biological phosphorus removal. The ASM2 model was
expanded in 1999 into the ASM2d model, where denitrifying phosphorus-
accumulating organisms were included.

The ASM3 model (Gujer et al., 1999) was also developed for biological N
removal WWTPs, with basically the same goals as ASM1. The ASM3 model is
intended to become the new standard model, correcting for a number of defects that
have appeared during the usage of the ASM1 model (Gujer et al., 1999). The major
difference between the ASM1 and ASM3 models is that the latter recognises the
importance of storage polymers in the heterotrophic activated sludge conversions
(Gernaey, 2004).

Three models have been successfully applied to full-scale treatment plants and
shown to be a good compromise between the complexity of the activated sludge
processes and prediction of the plant behavior under dynamic conditions
(Hassanpour, 2014). Among these models, the ASML1 is one of the most important

models. Since its first development in 1986, it has been well and widely applied in
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many practicing projects. It has become a reference for many scientific and practical
projects, and has been implemented (in some cases with modifications) in most of
the commercial software available for modelling and simulation of WWTPs
(Gernaey, 2004). It come to a conclusion that through its developments and
contributions, nowadays, ASP is currently the best documented and most widely
used process for the control of secondary wastewater treatment plants.

The control of ASP is challengeable, due to the complexity in biochemical
reactions and the variation in flow and concentration at the influent. Several control
strategies have been reported to be applied for ASP. They include the conventional
PI, PID and cascade control algorithms. The common method was the feed-forward
of influent ammonia to handle disturbance rejection in combination with cascade
control such as in the study of Ingildsen et al. (2002), Krause et al. (2002), Vrecko
et al. (2003), Yong et al. (2005), Vrecko et al. (2006), Zhang et al. (2008) and
Thornton et al. (2010); Fuzzy control (Meyer and Popel, 2003; Serralta, 2002; Baroni
et al., 2006; Yong et al., 2006) is also popular in ASP control. It has been widely
used in combination with Pl controller. Meyer and Popel (2003) applied a fuzzy
controller to control the DO (dissolved oxygen) set-point and the ratio of aerobic and
anoxic zones for a pilot plant. The control system is a combination of feed-forward
of influent ammonia with feedback effluent ammonia and nitrate as well as the
effluent ammonia time variation. A similar control strategy was also found in the
study of Serralta et al. (2002) and Yong et al. (2006), where DO and nitrate are
controlled with fuzzy controller. Influent and effluent ammonia was used as inputs
to the controller. Baroni et al. (2006) implemented of a fuzzy logic controller with
full scale in a predenitrification system. Both the DO set-point and the air supply was
controlled through fuzzy logics. The performance was stable and good in energy
saving.

In robust control aspect, Georgieva (1999) applied state-space H.. control to an
ASP system, dealing with parametric uncertainty in the system. The controlled and
manipulated variable was chosen as the biomass and recycle flow rate, respectively.

The performance of the control system is better comparing to the PI controller.
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Recently, model predictive control (MPC) has been widely used since its ability
to handle constraints and to include multiple variables (Weijers, 2000; Sanchez &
Katebi, 2003; Holenda et al., 2008; O'Brien et al., 2011). The set-point of DO was
controlled by Sanchez & Katebi (2003) using MPC. The authors compare three
different MPC controllers with a single PI controller with constant set-point. The
result showed that there were some improvement in the performance the controller
structure was easy to implement. Holenda et al. (2008) used MPC for DO tracking
with a process model incorporating classical DO dynamics. The result compared to
standard P1 control only shows marginal improvements on effluent quality. A full-
scale plant was controlled using MPC in O'Brien et al. (2011). In this work, the
improvement is that the on/off control strategy for the surface aerators in an activated
sludge process for BOD-removal is replaced by a black-box model of the aeration in
combination with feedforward of the influent BOD load.

Along with MPC, Generic algorithm (GA) also gives some benefits for ASP
control (Yamanaka et al.; 2006 and Beraud et al.; 2009). Yamanaka et al. (2006)
used the Benchmark Simulation Model to evaluate a cost minimization control
problem. The set-points of the process based on optimization using a simplified
process model and GA. The optimizer determined an appropriate ammonia set-point
which the lower level PI controller tracks. Beraud et al. (2009) also applied Multi-
objective GA to optimize the set-point for ASP in three consecutive aerobic zones.
Comparing to the conventional GA, the obtained energy reduction is of 10-20 % with
maintained treatment performance. Besides the mentioned control approaches, less
popular algorithms applied for ASP control includes linear quadratic optimal control,
self-tuning control, adaptive linearizing control (Bastin, 1990; Ferreira, 1996).

Till now, the existing controllers for ASP have not addressed the large variation
of the influent flow and concentration. Due to this variation, the ASP dynamics has
big changes during it operation time, acting like a nonlinear system. Under the
robustness point of view, the current most powerful H. control still has some
limitations in controlling of ASP, since the controller is designed for linear system.

Therefore, the robust gain scheduling controller will be designed to deal with
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nonlinear behavior of ASP, driving the system stably to the optimal energy

consumption.
1.3 Robust Hs and gain scheduling control

It is known that to design a control system for a water treatment plant satisfying
the control requirements, it needs a reasonably accurate model of the real system.
However, real plants are hard to be described exactly by mathematical models.
Furthermore, the designed controller must handle the uncertainties which make the
state of the real plant differs from its mathematical model. A controller that is able
to handle model uncertainties and disturbances is said to be robust, and the theory to
design that controller is called robust control theory.

H. (i.e. "H-infinity") methods are used in control theory to control uncertain
systems achieving robust stabilization with guaranteed performance. In this
framework, the control problem is expressed as a mathematical optimization
problem and then the controller is calculated to solve this optimization. He
techniques have the advantage over classical control techniques in that they are
readily applicable to multivariate systems with coupling channels and they can deal
with uncertain systems and modelling errors as well as exogenous disturbances.
These methods were introduced into control theory in the late 1970s-early 1980s
by George Zames (1981), and Zames and Francis (1983), known as the H.. optimal
control theory. The H. optimization approach and the p-synthesis/analysis method
have been well developed and applied. The label H is related to the fact that a proper
rational matrix function is stable if and only if it is analytic and uniformly bounded
in the open right half plane defined by Re(s) > 0. The H. norm is the maximum
singular value of the function over that space. p-synthesis is the representation of the
structured singular value define by Doyle (1982).

In the early of 1990s, the succeed of H. robust control technique in control
systems such as distillation columns, hard-disk drives, and the inverted-pendulum

made the industrial community see how to apply the new method and enjoy the
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benefits brought from this control technique. Till now, it has proved its abilities
through many complex applications, especially in control of systems that operate in
the environment existing much disturbance such as satellites, airplanes, vehicles,
ships.

The robust control theory is well established for linear systems but almost all real
plants have nonlinear characteristics. If the plant operates in a narrow region, the
robust control methods can be applied to design a linear robust controller for a
respective linear system achieved from linearization and the nonlinearities are treated
as model uncertainties. However, for real nonlinear processes, where the operating
region is large, the linear robust controller may not be able to meet the performance
specifications. Therefore, nowadays the control design for nonlinear systems is very
concentrate and important.

Gain scheduling is one of the most common used controller design approaches
for nonlinear systems and has a wide range of use in industrial applications. Gain
scheduling appears in the 1960s. Most of its early applications were in flight control
and aerospace areas. Then, gradually, this approach has been used almost
everywhere in control engineering, which was greatly advanced with the
introduction of linear parameter-varying (LPV) systems by Jeff. S. Shamma (1988).
The reason is using the LPV paradigm, ones can describe nonlinear system as a
family of linear systems and hence can investigate the stability of these systems.
Nowadays, when gain scheduling controller is designed using robust control theory,
the performance has been much improved.

Packard (1994) and Apkarian et al. (1995) consider LPV design approaches which
are based on small gain theory, which allowed to construct a robust gain scheduled
controller. The robust GS controller is more powerful but still conservative for real
parameters. Becker et al. (1993, 1994) generalized the approach to seek a single
quadratic Lyapunov function to ensure Hw-like performance for all possible
trajectories of the LPV plant. The improvement essentially comes from the ability of
the quadratic H.. performance formalism to handle real parameters. Due to the ability

to deal with the varying parameters and the combination with advanced stability
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criterions, nowadays the robust LPV gain scheduling belongs to the most popular
approaches to nonlinear control design.

In this dissertation, based on the parametric uncertainties, the operating range, and
the indirect measurement of concentration polarization, the RO system is controlled
by a robust H. controller. With the large variation of the influent flow of the ASP
and the availability of the measurement of this parameter, the robust gain scheduling
controller is applied to control the DO concentration in the system. The result of the
dissertation will be remarkable contributions for water treatment industry.

The sequel of this dissertation is organized as follows:

Chapter 2: The introduction about robust H.. and p-synthesis theory.

Chapter 3: The introduction about Robust gain scheduling theory.

Chapter 4: The introduction and modeling of the reverse osmosis system and the

application of the mixed robust H. and p-synthesis controller on the
RO system.

Chapter 5: The introduction and modeling of the activated sludge process and the

application of the robust gain scheduling controller on the ASP.

Chapter 6: The observer-based loop-shaping control of anaerobic digestion.

Chapter 7: Conclusion.
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Chapter 2. Robust H.. controller
2.1 Introduction

Throughout 1960s and 1970s, the optimal linear quadratic (LQ) control was
popular, largely applied in controlling with the work of Kalman. In the late 1970s,
the control practice showed some limitations of LQ control. Doyle (1978) showed
that there are no assurance for stability of LQG, which is an LQR control combined
with a Kalman filter.

The control theory literature started to look for a more robust approach. Zames
(1981) developed H. control which is more robust than LQ control. Since in LQ
control, the performance is measured with a 2-norm across frequencies, while He
control uses a oo-norm that cares the peak of the losses across frequencies. It can be
interpreted as the maximum magnitude of the disturbances affects the outputs.

The uncertainty sets in the H. approach are unstructured. They illustrate
perturbations of the model. These perturbation are bounded but have no particular
form. Recently, the structured perturbations have been studied such as parametric
uncertainty, diagonal uncertainty or uncertainty in some particular channel. The
robust control theory with structured uncertainty use the structured singular value
(u-synthesis) rather than the co-norm as a measure of performance. p-synthesis has
been getting some important stability and performance achievements. However the
design procedure is a more daunting task and the theory is not as fully developed as

the unstructured case.
2.2 Uncertainty modelling

Uncertainties are unavoidable in every real system. Uncertainties can be classified
into two types: disturbance and dynamics perturbations. The former includes
exogenous disturbance and sensor noises. The latter comes from the gap between

mathematical model and the actual dynamics of the system. It is known that
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mathematical model is just an approximation with some assumptions to simplify the
real system. Furthermore, in the modeling, some nonlinearities is ignored and there
IS no varying parameters as in real systems. The dynamics perturbations may
adversely affect the stability and performance of a control system. Therefore, this
kind of uncertainty is described in this section so that they are well considered under

robust control analysis.

2.2.1 Unstructured uncertainties

Dynamics perturbations such as unmodelled dynamics can occur at different parts
in a system. However, they can be lumped into a single uncertainty block A. Since
there is no information about the uncertainty except it bound, it is also referred as
unstructured uncertainty. This uncertainty can be described by different frameworks,
as following, where Gy(s) denotes perturbed uncertain system and Go(s) refers to the

nominal system:

G >

» 150 G

e 4 Ll ____
a) Additive uncertainty b) Inverse additive uncertainty
G, (s) =G(s) + A(s)Wy, (5) G, (s) =G(s)(I ~A(S)W,, ()G (s)) ™
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c) Input multiplicative uncertainty d) Inverse input multiplicative unc.

G, (8)=G(s)(I +A(s)W), (5)) G, (s) =G(s)(I —A(S)Wy, (s)) ™

e) Output multiplicative uncertainty ~ f) Inverse output multiplicative unc.

G, (5) = (1 + A(S\W,, ())G(s) G, (s) = (I —A(S)W,, (5))*G(s)
XN/ 2~ ‘l
: A Bo A |
| |
| |
u | N - ! [ y
| & '

g) Left coprime factor uncertainty

G, (s) =(M(s)+4y, () (N(5) +Ay ()

Fig. 2 Some common kinds of unstructured uncertainty

2.2.2 Parametric uncertainties

The unstructured uncertainty describes unmodelled dynamics and neglected
nonlinearities occurring mostly in high frequency ranges. However, in real system,
the dynamics perturbations also come from variations of certain parameters. They
occur in low frequency ranges and is called “parametric uncertainties”. Parametric
uncertainty i1s sometime called “structured uncertainty” since it models the

uncertainty is a structured manner. It is often expressed along with transfer function
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or state-space representation. For example, the parametric uncertainties of three
components in a mass spring damper system can be represented in the following

structure, using state-space representation:

w =
L 3

Fig. 3 Parametric uncertainty

2.2.3 Structured uncertainties
In some robust design problem, the uncertainties would include structured
uncertainties, such as unmodeled dynamics as well as parametric uncertainty. The

whole system then can be rearranged in a standard configuration of linear fractional

transformation F(M,A). The uncertainty block now has the structure:

A=diag[ol,,....51, A, Al S €CA, c Cmm )

f ) . ) )
where Ziszlri + Z LM =n, and n is the dimension of the uncertainty block A.

The total uncertainty block A now has two kinds of uncertainty: s is the repeated
scalar blocks and f full blocks.

2.2.4 Linear fractional transformation
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Linear fractional transformation (LFT) is a standard configuration to account the

uncertainties into a system. There are two categories, say upper and lower LFT.

w =

Q

w z
p > K

Fig. 4 Upper linear fractional transformation (left) and lower LFT (right)

G11 G12

, the input and output
G21 GZZ}

Providing that the system G is partitioned as G = {

relation in upper LFT is derived as:
2=[G,, +G,A(l ~G,A) Gy, |w=F, (G, A)w )
The lower LFT is calculated using:
F(G,K) =[Gy, +G,K(1 -G,,K) G, | ©)
2.3 Stability criterion

2.3.1 Small gain theorem

Consider a feedback configuration as in Fig. 5. Providing that G1 and G; are the

transfer function of LTI system.
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Theorem 2.3.1: If G; and G are stable, i.e G,,G, € #/_, then the closed-loop

system is internally stable if and only if ||GG,| <1and |G,G/ <1.

—> —» G
T A+

G, [&— <

Fig. 5 A feedback configuration

Note that the small theorem consider the norm of the closed loop system, therefore
it is independent on the sign of feedback.

The theorem actually came from Nyquist stability condition as stated in the
following. Consider an uncertain feedback system as in Fig. 6 where there is input

multiplicative uncertainty magnitude of |W,, (jo)|.

=~
5
<
>
_|_
o
Q
‘V\<

Fig. 6 Uncertain feedback system

The uncertainty loop transfer function becomes:
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L, =G, K =GK(1+W,A) = L+W,, LA, [A(jo)| <L,V (4)

According to Nyquist stability condition, the closed-system is robust stable if L

does not encircle the point -1 in the Nyquist diagram,

Im

Re

'Y
L4

|1+L|

0
-
[Was L] \

Fig. 7 Nyquist plot of closed-looop system for robust stability

From the Fig. 7, one can see that |1+L| is the distance from the point -1 to the
center of the disc representing Lp, and that |WwmL| is the radius of the disc.

Encirclements are avoided if none of the discs cover -1, it is also expressed as:

RS <=> W, L|<[l+L|,Ve

Ww,, L
<=>
1+L

<LVeo<=W,T|<lLVe (5)

<=>|W,T|. <1

2.3.2 Structured singular value () synthesis brief definition
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If there exista M - A structure as in Fig. 8

<

Fig. 8 M - Astructure

For M eC™", the structured singular value w.rt M , u, is defined as in Doyle

(1982):

1
M) = () [Ac A, det(1 —MA) 0] (6)
=>min{5'(A)|AGA’det(I _MA)ZO}Z ,uAéLM)

where &(A)is the maximum value of the uncertainty matrix A.
Suppose the peak (across frequency w) of the 1, (M) is S. This means that for
all perturbation matrices A with the appropriate structure, and satisfy

max&[A(ja))]<1/,B, the perturbed system is stable. Normally, g<1 is the

requirement for a maximum perturbation size 1.

2.4 Robustness analysis and controller design

2.4.1 Forming generalised plant and N-A structure
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Consider a typical control system as in Fig. 9 with the nominal system G, the
multiplicative input uncertainty expressed by Ww and A, the controller K. Inputs to
the system include r, d, n, which are reference, disturbance at system output, and
noise, respectively. These three inputs are weighted by their respective weighting
function, Wy, Wy, Wnh. They may be constant or dynamic which respectively describe
the frequency content of the set points, disturbances, and noise signals. u is the

control signal, e is the error and y is the measured output.

d
Wa
a4 )
r + + . +
— W PO K . G
n
VVH‘_

Fig. 9 A typical control system

In the procedure to create the M-A-like structure as in Fig. 8, the block diagram

in Fig. 9 is reconstructed as in Fig. 10. In this new formulation, a weighting function
Whe is added at the output to represent the performance requirement level. A, is the

fictitious perturbation used in case of robust performance analysis. The uncertainty
block A is isolated and form generalised plant P blocked in the dashed rectangular.

Z is the regulated output.
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Ua

A

Fig. 10 Block diagram of generalised plant P

From the block diagram in Fig. 10, a generalised P block can be formed by

grouping the blocks in the dashed rectangular. It shows that the generalised plant P

is further written as

uA
A 0 0 0 0| W, d
z = WG, WW; 0 O0|WG |l n @)
y _Gde _Wd _Wn Wr _Gde r
5 | u

with u, =Ay, and u=Ky
The current block diagram is then redrawn in a compact form as in Fig. 11
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Fig. 11 P-K grouping and N - A structure

In Fig. 11, the closed-loop transfer matrix N that connects the generalised plant P

with the controller K via a lower linear fractional transformation (LFT), is defined

by

Yal| u,

sl
where w=[d n r]T

N =|:|(P,K)=F)11+P12K(| _PzzK)ilpzl 9)
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(W, T, | W, KSWd W, KSW, W, KSW,
_WP SoGde WP So\Nd _WPToWn WPToWr

__Nll | N12 N13 Nl4 . NYAUA NVAW
_N21 ‘ Np Ny Ny N ‘ N

zu,

with T, =KG, (1 +KG,)™, T, =G, K(1 +G,K) ™ and S, =(1+G,K)™". N, is
the transfer matrix from ua to ya, A\ the transfer matrix from w to ya, N, the
transfer matrix from ua toz and N, the transfer matrix from w to z.

In this final form, the N - A structure is similar to M- A one, so that the robust
control synthesis based on small gain theorem and structured singular value can be

applied. Note that A block includes the unmodelled block A and the fictitious block
Ap.

2.4.2 Robustness analysis

The objectives of the Hw robust controller for any control system include:

e Nominal stability (NS): The system is internally stable with the nominal model
(no model uncertainty). A system is internally stable if all the transfer functions
of the closed-loop system are stable, i.e. there is no pole staying in the right half
plane of the complex plane.

e Nominal Performance (NP): The system satisfies the performance specifications
with the nominal model (no model uncertainty). The nominal system performance
depends on the sensitivity (So), which is a very good indicator of the disturbance
attenuation ability. To attenuate the disturbance effects, the singular value of Soin
the element N2 in Eq. (9) must be small. Therefore, to limit the value of S, the
performance weighting function Wp is selected and the controller is designed so
that
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”\NPSoWd ”ao <1 < 1, (N (jo)) <1, " (10)

where 1, (N,,(jw)) is the structured singular value of the nominal system that

respects to the uncertainty A.

Nominal performance includes disturbances and noises attenuation. To reduce
noises, the singular value of complementary sensitivity (To) in the element N3 in Eq.
(9) must be small. Note that To+So=1. This implies that, the disturbances and noises
reduction cannot be achieved in the same frequency range. Depending on the
characteristics of disturbances and noises, disturbances attenuation should be
achieved in low-frequency range and noises reduction should be achieved in high-
frequency range.

e Robust stability (RS): The system is stable for all perturbed plants about the
nominal model, up to the worst-case model uncertainty (including the real plant).

The robust stability criterion is written as
”V\lexl-l_l”OO <l & luA(Nll(ja)))<:L "w (11)

where 1, (N, (jw))is the structured singular value of the system that respects to

parametric uncertainty A.

¢ Robust performance (RP): The system satisfies the performance specifications for
all perturbed plants about the nominal model, up to the worst-case model
uncertainty (including the real plant). The robust performance property is

guaranteed if

[FA(N A =[N+ N A =N, PN | <1, VA [A] <1,

and robust stability 12)
12

s~ |Aa 0
S u(N)<L "o, A= 0 A
P
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where uncertain perturbation A includes A and fictitious perturbation A, that
represents the H_ performance specification in the framework of ux approach.

1; (N) is the structured singular value of the system that respects to A,

After having all the initial weighting functions, the DK-iteration of u-synthesis
toolbox in Matlab is applied to design the x controller for the system in case of
structured uncertainty. Otherwise, hinfsyn command in robust control toolbox will
be applied to design the H. robust controller.

The key design issue is to choose reasonable weighting functions Ww and Wp
satifying all the above requirements. The controller design procedure is a loop
including tries and tuning. The steps to design the controller are summarized as
follow:

Step 1. Model the uncertainty

Step 2. Weight the input signals by reasonable dynamics weighting functions or

constants

Step 3. Choose the uncertainty weighting function Wy and performance weighting

function Wp

Step 4. Create a generalized plant and forming M- A structure

Step 5. Design a robust controller using Matlab toolboxes, check the performance,

if not satisfied, go back to step 3.
2.5 Reduced controller

The achieved controller is efficient, however, its order is very high. This high-
order controller is very complex to be implemented practically. A high-order
controller will lead to high cost, difficult commissioning, poor reliability and
potential problem in maintenance. Therefore, it’s necessary to simplify the controller
into lower-order controller that achieves the same level of performance, so that it is

easier to be applied in RO system.

r --.. '-I.---. — = \
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The basis of model reduction is addressed as following. Given a stable model G(s)

of order n, with state space form is given as:

X(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(13)
where x(t) e R", Ae R™,BeR™™,C e R",u(t) : R —>R", y(t) : R > R
Assuming the system is stable, i.e matrix A is Hurwits. Find a reduced order model

Gr(s) of degree k (McMillan degree) such that the infinity norm of the error

IG(s) -G, (5)|, is minimized, w.r.t the same input u(t).

(1) e(1)

u(Y) G(s) (original) T

G,(s) (reduced)

Fig. 12 The idea of order reduction

In general, there are three main methods to obtain a lower-order controller for a
relatively high-order one: balanced truncation, balanced residualization and optimal
Hankel norm approximation. Each method gives a stable approximation and a
guaranteed bound on the error in the approximation. In this dissertation Hankel norm
approximation is chosen to reduce controller’s order. Therefore, the Hankel

reduction algorithm will be stated carefully in this section.

2.5.1 Truncation
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Let (A, B, C, D) be a minimal realization of a stable system G(s), and partition the

state vector x, of dimension n, into [Xl

. }Where X2 is the vector of n-k states that we
2

want to remove. The state-space form become:

X1 = Ailxl + A.szz + Blu
Xz = A21X1 + Azzxz + Bzu (14)
y = Cx +C,x, +Du

A k"-order truncation of the full system is given by Ga = (A11, B1, C1, D). The
truncated model Ga is equal to G at infinite frequency. Matrix A is in Jordan form so
it is easy to reorder the states so that x> corresponds to high frequency or fast mode.

For simplicity, assume that A is diagonalized as:

N (15
0 0 - A
and
by
sz? .C=[c, ¢, - ¢] (16)
bT

Then, if the eigenvalues are ordered so that |11|<|A2]..., the fastest modes are
removed from the model after truncation. The error between G and Ga is given as
follow (Skogestad and Postlethwaite, 2005):
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% &(ch’)

”G _Ga”m < Z

i—k+1 |Re(ﬂ1)|

17)

2.5.2 Residualization

In truncation as stated above, all states and dynamic associated with x, are

removed. In residualization, X, is set to zero in the state space. Then Xx. can be

calculated based on x1 and u, back substitution of x, gives:

% = (A1 = AP A)X + (B — A,A, B, U

(18)
y = (Cl - C2A‘521A21)X1 + (D _Czszlez)u
Providing that A2 is invertible and define
AY = All o A&z _21A21 (19)
B, = B, - A, Aglez (20)
C = G- C2A521A21 (21)
D, 2D _CzAz_lez (22)

then the residualization of G(s) is the reduced order model Ga(s)= (Ar, Br, Cr, Dr)
It is noted that truncation is better for the systems that require accuracy at high
frequency while residualization works well for low-frequency system.

2.5.3 Balanced realization

Balanced realization is an asymptotically stable minimal realization where the

controllability and observability Gramians are equal and diagonal.
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Let (A, B, C, D) be a minimal realization of a stable, rational transfer function
G(s). Then, (A, B, C, D) is called balanced if the controllability and observability
Gramian (P, Q) satisfy following Lyapunov equations:

ATQ+QA=-C'C (23)
AP +PA” =-BB' (24)
where
Q2 j er'CTCeMdt (25)
0
P2 [e"'BBTeMdt (26)
0

Any minimal realization of a stable transfer function can be balanced by state
similarity transformation, in other word, by changing of the basis of state and

Gramians into quadratic forms:
X—>TX,P>TPT",Q—>((T")'QT* (27)

Then the balanced realization between controllability and observability Gramian
can be achieved as:

Z 0
P:Q:diag(al,az,...,an)22:[Ol s J,Glzazz...20n>0 (28)
2

The o are the ordered Hankel singular value of G(s), defined as:

o, =y4(PQ) (29)

— I
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A full model then can be reduced by using balanced truncation, balanced
residualization or optimal Hankel norm approximation. The latest is the most popular

so it will be well stated in the next section.
2.5.4 Optimal Hankel norm approximation
Given a stable model G(s) of order n, with state space form is given as:

X(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) (30)

where

X(t) eR", AcR™, B e R™™,C e R",u(t) : R — R™: inputs, y(t) : R — R*:outputs

The Hankel norm of a system G = (A,B,C,D) is defined by:

[y?at
Gl =sup$—— (31)
[uydt

—00

Note that for any G and Gy,

[6-Gl, 2|re,

= HFG _FG,

=|G(s)-G, (9, (32)

The problem equals to find a Hankel operator I';; : L, (—0,0] — L,[0, ) which

solves:
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Minimize | — T, | subject to I is the Hankel operator for some G that rank
(T'g ) =, or it equals to find a reduced order model Gr(s) of degree k (McMillan

degree) such that the Hankel norm of the approximation error, |G(s) -G, (s)[, is

minimized, where the Hankel norm of a stable transfer function E(s) is defined as:

IE@)],, =P(PQ) = A (PQ) (33)

where P and Q are the controllability and observability Gramians of E(S). p is the
spectral radius (maximum eigenvalue) of PQ.

The Hankel operator maps past inputs to future system outputs. It ignores any
system response before time 0. In Hankel operator, the interest is to know how
energy is transferred between input to state and to output of the system. In other
words, the problem is to observe how much energy is released from some state x(0)
to the output and what is the minimal energy of input signal needed to drive system
to the state x(0).

'——»I Hankel operator l__l
~ /] | LTISYSTEM |——> R~

~
/
Past » i t o Future
input N v , output

Which states are Which states produces

I — 7 i . A

T

P (controllability) | X (State) O (observability)
easier to reach? more output?

Fig. 13 Hankel operation

Let G(s) be a stable, square, transfer function with Hankel singular values such as

0,20,2..20, 20, =0y, =...=0, >0,y =...20,>0 (34)
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then an optimal Hankel norm approximation of order k,G, (s), can be calculate as

follows:
Let (A, B, C, D) be a balanced realization of G(s) with the Hankel singular values

reordered so that the Gramian matrix is

T =diag(0y,0,,-,041 0y 11110 O igs s Oiy1)

A 35
2 diag(2,,01.41) %)
Partition matrices (A, B, C, D) to fit with X:
B
|:A11 Alz} :{Bl}cz[cl Cz] (36)
Ay Ay 2
Define (A, B,C, D) by:
A2T (G|<2+1A&T1 +2AZ — Gk+1clTUB1T) (37)
BAT (B -0,,CU) (38)
C2Cz -0, ,UBS (39)
D2D-o, U (40)
where U is a unitary matrix which satisfies:
B,=-C,U (41)
and
r£x?—o? 1 (42)

Collection @ kmou 33



Then

G 2| A8 F
(9)= s (s) (43)

where G, (s) is the stable optimal Hankel norm approximation of order k, and F(s) is

an antistable (all poles in the RHP) transfer function of order n-k-1. F(s) contains the
unstable modes, hence, it should be removed then only the stable modes remain.
When apply optimal Hankel norm approximation, the optimal simplified
controller is the one with minimum order while remains almost the same
characteristics with the original one. For example, given a full order controller with
34 orders. After applying optimal Hankel norm approximation, a 7-order controller
is achieved that has not much difference in frequency and closed-loop time response,
comparing to the full-order controller. In order to check whether the 7-order
controller is the lowest-order one that preserves system performance, the frequency
response of 6-order controller and its closed-loop time response are simulated and
the result shows that there are large differences from the original one. It can be
observed from Figs. 14 and 15 that the frequency and time response of the full-order
and 7-order controller have almost the same appearances. Meanwhile, the frequency
response of 6-order controller of the first channel has big deviation from the full-
order one. This leads to very bad closed-loop time response as in Fig. 15(c).

Therefore, it is safe to implement the 7-order controller instead of the full-order one.
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= 7 order
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Fig. 14 Frequency responses of full-order, 7-order and 6-order controller: (a)

channel 1; (b) channel 2
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Channel 1: product water flow

> E
(2]
~ o
E >
g £ ! —
I3 5 /
g I3
i 0.5 Reference |] g 0.5 Reference |]
2 |/ | full order s | 4 | full order
>

DE_’ 7 order S 7 order

00 1 2 a 0O 1 2

@) Time (s) (b) Time (s)

@ E
2 o
E >
21 g1 —
= v ©
@ 4 v
IS /' é /
i 05 /7 Reference |] g 05 Reference []
2 '," ------ full order s |/ | full order
e /7 6 order i 6 order
o 0 z 3 = 0 13

0 1 2 /7 1 2

(c) Time (s) (d) Time (s)

Channel 2: product water salinity

Fig. 15 Closed-loop time responses of full-order and reduced-order controller: (a)
and (b) the closed-loop time responses of full-order and 7-order controller; (c) and
(d) the closed-loop time responses of full-order and 6-order controller
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Chapter 3. Robust gain scheduling controller
3.1 Introduction

The robust H. controller can deal with parametric uncertainty, unmodeled
dynamics and nonlinearity. However, it is still conservative since the design is only
in some neighborhood of a single operating point. In many applications, the
controller must accommodate a plant with changing objectives, operating conditions,
and behaviors. Usually, a fixed controller cannot handle such changes without
significant deterioration in performance. Gain scheduling is a technique to increase
the region of attraction to a range of possible operating points so that the controller
fits with new conditions. In this framework, it is possible to model the system in such
a way that the operating points are parameterized by one or more variables, which
we call scheduling variables. Designers can linearize the system at several
equilibrium points, design a feedback controller at each point to optimize the
performance and robustness of the closed-loop system, and implement the resulting
family of linear controller as a single controller whose parameters are changeable by
monitoring the scheduling variables. The broad appeal of this technique arises from
addressing each situation individually rather than the entire set simultaneously.
Consequently, the synthesized controller may be optimized and tuned for its
respective situation without incurring trade-offs that compromise performance for
the remaining situations. Therefore, gain-scheduling is a common engineering
practice used to control nonlinear plants in a variety of engineering applications.

The classical gain scheduling needs the decomposition of the design a nonlinear
controller into the design of some linear controllers, so that well-established linear
control design techniques can be applied without restriction, as opposed to nonlinear
methods. However, the robustness, performance and nominal stability of the closed-
loop are not guaranteed. Classical gain scheduling controller design includes four
steps (Rugh & Shamma, 2000):
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Step 1. A family of LTI approximation of a nonlinear system at some chosen

equilibrium points is computed, which is parameterized by a gain
scheduled parameter @ (t). This parameter can be system parameter or
exogenous signal. The approximation is the Jacobian linearization at

equilibrium points.

Step 2: LTI controllers corresponding to the family of LTI models are designed

Step 3:

to achieve required performance and stability at each equilibrium point.
The set of LTI controllers is also parameterized by the gain scheduled
parameter @ (t). Even though @ (t) is time-varying, the classical gain
scheduling design are based on fixed values of &4 (t).

Implementation of the family of LTI controllers such that the coefficients
of the controllers are scheduled according to the current value of & (t). At
each equilibrium point, the scheduled controller has to linearize to the
corresponding LTI controller to give the best performance and stability.

This is also known as the interpolation of the local controllers.

Step 4: Checking the nonlocal performance of the gain scheduled controller by

Linearized

extensive simulation.

system \

Equilibrium
point (changed
due to ¢;)

Fig. 16 Gain scheduling framework
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Recently, robust gain scheduling control design has achieved new advantages. It
includes LPV and LFT synthesis. Both methods yield direct synthesis of a controller
by using L2 norm based methods, guaranteeing the robustness, performance and
nominal stability of the overall gain scheduling design. Furthermore, they are direct
synthesis, therefore no interpolation is needed (Rugh & Shamma, 2000).

The design of the robust gain scheduling controller consists two main steps:

Step 1: This step relates to the classical approach. A family of LTI of a nonlinear
system at some equilibrium points, parameterized by frozen values of gain
scheduled parameter & (t), is calculated.

Step 2: LPV and LFT control synthesis directly yield a robust gain scheduling
controller. Stability and performance specifications can be guaranteed a
prior as the gain scheduled parameter & (t) instead of its corresponding

frozen value is addressed in the design process.
3.2 Linear parameter varying (LPV) system
Consider a linear time invariant (LTI) system described by:

X = AXx+Bu
y=Cx+Du (44)
The robustness of the LTI system can be check through linear fraction
transformation (LFT) or linear matrix inequality (LMI).
Linear parameter-varying (LPV) systems are linear time-varying plants whose
state-space matrices are fixed functions of some vectors of varying parameters & (t)

in the scheduling space 2. The LPV systems are written in the form:

x=A(0)x+B(0)u
y=C(6)x+D(6)u (#9)

K‘-\. '-I.---. — = \
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The LPV systems have some interesting interpretation such as (Apkarian et al.,
1995):

e They can be considered as LTI system plants subject to time-varying parametric
uncertainty & (t).
e They can be the results of the linearization of nonlinear systems along trajectories

of the exogenous parameter & (t).

The first class of plants falls within the scope that the LTI robust control
techniques described, for example in Zhou et al. (1992). In the second class, the
parameter @ (t) is not an uncertainty since it is measured during system operation
time. The applied gain scheduling controller for this class can exploit the available
measurements of 4 (t) to increase control performance.

The LPV properties are global, since they concern the behavior of the system
along all possible trajectories of & (t). This problem is different from standard LTI
system stabilization, since the controller dynamics are restricted to depend on the
variation of gain-scheduled parameter. Note that the exogenous parameters & (t) are

supposed to be measured in real time during system operation.
3.3 Matrix Polytope

As defined in Apkarian et al. (1995), a matrix polytope is defined as the convex

hull of a finite number of matrices M; with the same dimensions. That is,

Co{M,,..M,} {Zawa >OZa 1} (46)

The LPV system is restricted as follow:
e The parameter dependence is affine; that is, the state-space matrices A(H),
B(8), C(¢),and D(&) depend affinely on & (t);

e The time-varying parameter @ (t) varies in a polytope ® of vertices w1, @y, ... ax;
that is,
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00 =Co{w,w,,.. v} (47)

Hence, the state-space matrices A(8),B(8),C(6), and D(&)vary in a polytope

of matrices whose vertices are the images of the vertices w1, ax, ... ax, which can be

eXpress as:

AB) BO) . J(A B)._ Awy By 1k 48
C@@) D(6) G D ; C(w.) D(w.) S 4o

Definition 3.3 (Apkarian et al., 1995)

An LPV system is called ‘polytopic’ if it can be represented by state-space

matrices A(6),B(8), C(8), and D(8), where the parameter vector ¢ ranges over

a fixed polytope, and the dependence of the state-space matrices on @ (t) is affine.
3.4 Polytope and affine parameter-dependent representation

There are two styles to represent the LPV system, including polytope and affine

parameter-dependence representation.
3.4.1 Polytope representation

The LPV system is described by:

{E(t))‘(:A(t)x+B(t)u )

y=C(t)x+D(t)u
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where E is non-singular matrix and satisfies (Apkarian et al., 1995):

A+ JE® | BO| [ k
{ Cw® ‘D(t)}e{;“iMJ%ZO,;ai:l}

(50)
= Co{M,,..M, } (convexcity)
and M is the polytope of vertices My,...,Mx represented by:
A+ JE | B
M, :={ c ) (51)
RN - 7
4
N B
u I M, -y
— :—b
I
I M; |
I e )
0N 1945 4 x4
Fig. 17 Polytope representation of LPV system
3.4.2 Affine parameter-dependent representation
In this style, the LPV system is described by:
E(p)x=A(p)x+B(p)u 2
y=C(p)x+D(p)u

where A(p), E(p) are affine function and p = (ps, ...px) are real parameters. Let
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A(p)+JE(P) | B(P) | k |ATIE | B
{ c(p) \D(p)}s“gp‘s"s‘{ C DJ 3
1 G(p) Iz :
|
| V2 Vy :
| [P bw |
| Y I
| : |
u! S, + p.S. %
| 0 i~ J
l‘) Py —:—D
T\ '\ 11/ v PR,

Fig. 18 Affine parameter-dependent representation of LPV system

3.5 Quadratic stability of LPV systems and quadratic (robust) H.. performance

Quadratic stability is actually the Lyapunov stability theorem. Lyapunov stability
is the mathematical extension of the energy conservation concepts associated with a
mechanical system: the motion of a mechanical system is stable if its total
mechanical energy decreases all the time. The basic procedure of this direct method
is to construct an energy-like function, referred to as the Lyapunov function, for the
dynamic system, and to examine the time-variation of this function as time
progresses.

The system x(t) = A(t)x(t), A(t) e 4 Vvt =>0is (Lyapunov) quadratically stable if:

JP=P" ~0ande >0 s.t.
. (54)
V(x)=x"Px,V(x)=x" (PA+ATP)x<0 VAe A
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<IP=P">=0st. AP+PA<0 VAeA

where A =Co{A,... A}

Since the technique for parameter-dependent controller synthesis based on the
small gain theorem and applicable to LPV plants with an LFT (linear fractional
transformation) (Packard, 1994; Apkarian and Gahinet, 1995) is still conservative
for real parameters, quadratic H.. performance is currently used for gain scheduling
control to give significant improvements. This notion is closely related to quadratic
stability (Barmish, 1985; Arzelier et al., 1991), and seeks a single quadratic
Lyapunov function to ensure Hx-like performance for all possible trajectories of the
LPV plant (Packard and Becker, 1992; Becker et al., 1993).

In this framework, the parameter is treated as real and should enter the state-space
matrices of the LPV plant in an affine fashion. The improvement essentially comes
from the ability of the quadratic H.. performance formalism to handle real parameters.

Given the LPV system and scalar y > 0. If there exists X = X" > 0 such that,

AX +XAT XCT B

®,(M,,X)=| CX =yl D |<0, Vi=1..k (55)

B DI =yl

then ®_(M,,X)<0, VM eCo{M,,..M, }and the Lyapunov function V (x) = X" Xx
establishes asymptotic stability and the £, gain of the input/output map is bounded

by . That is ||y|, < »|ul,along all possible parameter trajectories p.

3.6 Robust gain scheduling
3.6.1 LPV system linearization

Consider the nonlinear plant
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x=f(x,u,w,v)
z=9,(x,u,w,V) (56)
y = gZ(X’U’WlV)

where v is the parametric-dependent exogenous input.

The linearization is carried on around the equilibrium family:

% (p) = f(x.(p),u.(P), W, (p),V.(p)) =0
z,(p) = 9,(%. (p), u, (P), W, (P), v (P)) (57)
Ye(P) = 9, (X (P),Uc (P), W, (P), V. (P))

With the scheduling variable p(t) € 7 is real-time measurable.

w — P— A
V=P G
U — —p y

Fig. 19 The linearized LPV system

The Jacobian linearized system is written in the form:

Xs A(p) Bi(p) By(p) || %
z; |=1 Ci(p) Dy(p) Dy(p) || W; (58)
Ys | | Co(P) Dy(p) D,(p) ]| Us

where ¢ is the notion for the deviations of the respective component slightly away

from equilibrium family.

3.6.2 Polytope-based gain scheduling
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From this section, the LPV plant is analyzed considering the following

assumptions to simplify the derivation of the control synthesis:

e D2(p) =0, or equivalently D2 =0 fori =1, 2,...k;

e B2(p), C2(p), D12(p), D21(p) are parameter-independent, or equivalently Bai = B,
Coi = Cz, D12i = D12, D21 = D21 fori =1, 2,.. .k;

e The pairs (A(p), B2) and (A(p), Cz) are quadratically stabilizable and
quadratically detectable over p.

Consider the LPV plant G(p):

, w A(p) | B(p) B,
{ }G(p){u]e(w C.(p) ‘ D.(p) Dy (59)
y CZ D21 D22

where p(t) = (p(t),..., p(t)) is real-time measurable, G(p) e M 2Co{M,,..,M,},
A, B1, C1, D11 are affine functions of p(t) and physical parameter pi(t) is bounded by
[Pimin, Pimax]

G(p)
/

pr(l)

K(p) H—

w —P —) -
—

u

Fig. 20 Polytope-based Gain Scheduling
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The LPV controller K(p) has the state-space representation as follow:

¢=A(P)s+B(p)y
{U =Cy (pP)s+ Dy (p)y (60)
In the polytope style, the LPV controller is written in the form:
Ap) | Be(P) | & < [A(M)) | B (M)
K(p){cK(p) | DK(|0)}:iZzllociKi =iZ=1;ai {CK(Mi) | DK(Mi)} (61)

The closed-loop system T with the corresponding closed-loop system state vector

equals to & =[x, g]T . The closed-loop system becomes:

[émH/&. (O@) By (e(t»}{;(t)}

z(t) | [ Ca(0(1) Dy (O(1) | ot) (62)
T
where:
A B A+B,D,C, BC, ‘ B, +B,D,D,,
{ C, D; :| = B,C, Ac Bk Dy (63)

Cl + D12 DKCZ DlZCK ‘ Dll + D12 DK D21

The design objective is to find the robust gain-schedule controller K(p) satisfying
IT|. =]/ (G(p), K(p))|, <y forall admissible trajectories p(t). In other words, the

closed-loop system satisfies the quadratic H.. performance condition.
It turns out to solve the convex optimization problem by minimizing y such that

R=R" and S=S" satisfying the following LMls:
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T T

N, oT AR+RA RC, | B; N, [0

0 |1 CiR —y1 | Dy 0 1115 0 (64)
B N B/ Dj ‘ —7I

T T

TN, oT A'S :— SA  SB C#i N, |0

0 1 B,;S -yl | Dy 0 T1/< 0 (65)
B N B/ D ‘ —7I

and {R I}ZO,|:A B, :|::{A(Mi) B(M‘)] Nzand N are the base of
I S C, Dy C(M;) D(M;)

the null space spanned by (B, , D), (C,,D,,)

The following steps summarize the procedure to design a robust gain scheduling
controller for an LPV system using the above LMI approach:

Step 1: Derive an analysis condition for a desired closed-loop property

Step 2: Evaluate this condition on the closed-loop LPV system

Step 3: Transform the search for control parameters into a convex search

Step 4: If the convex search is successful, extract controller parameters.
3.6.3 LFT-based gain scheduling

An LFT model is in fact a special case of an LPV model, which is transformed by
an upper LFT of the know part G and the corresponding gain scheduling parameter

©; and a lower LFT between the know part LPV controller K and the gain scheduling

parameter ©. The framework is depicted in Fig. 21.
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Fig. 21 LFT-based gain scheduling

Consider the LPV plant G, the upper LFT is presented by:

H —F, (G(s),H){W}, Vo) e A
y u

(66)
A={diag{f1,,,...01,}:6,(t) eR}
where
x)] [A] B, B B, |[x(t)
q(t) _ Cy | Do Do Dy, || plt)
z(t) C,|Dy Dy Dy, w(t) (67)
y(t) _Cz D,y Dy D22_ u(t)
G
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As defined in Wu (2006) and depicted in Fig. 21, w is disturbance, z is the
controlled output, p, q are the pseudo-input and output, u is the control input and y is
the measurement for control.

The LPV plant can also be written as:

Dee Del D92 C,g
G(s)=| Dy Dy | Dy |+ C |(51-A)[B, B |B,] (68)
Dze D21 ‘ Dzz C2

Ac Rnxn’ Dgg e R™"

Specifically, the upper LFT is calculated as:

B, B,
Dy, |+ % o(l _Daee)_l[ca Dy | Daz] (69)
Dy, D,

F,(G(s).6)=

The lower LFT can be called the LPV controller u =F (K(s),d)y with state-
space representation as follow:

{«:z A (O@)E +B, (O(1)y 70)

u=C, (8(t))&+D, (8(t))y

Then the closed-loop interconnection of the resulting LFTs is transformed, again
using a lower LFT. The transformation yields the closed-loop interconnection system
T.

The design objective is to find the robust gain-schedule controller K(6) satisfying:

ITG.K.0)|, =|R(F.(G.0).FR(K.0)|, <y (71)

e 1
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Chapter 4. Mixed robust H., and p-synthesis controller applied for a reverse

osmosis desalination system

4.1 RO principles

4.1.1 Osmosis and reverse 0smosis

Osmosis is a natural tendency of water with a low concentration of total dissolved
solids (TDS) diffuses through a semi-permeable membrane into a higher solution of
TDS in order to balance the concentration between two sides of the membrane. The
membrane can reject most of dissolved molecules and ions, while allowing water to
permeate through. The pressure that causes this natural water flow is called osmotic
pressure, which is due to the difference in concentration between the both sides.

By applying a pressure that is an excess of the osmotic pressure to the high TDS
side, it can force the water to flow from the high TDS side into the low TDS side.
Therefore, the direction of water flow is reversed and the process is called reverse

osmosis, as shown in Fig. 22.

REVERSE
OSMOSIS

OSMOsIS

{Pressure

Semi-permeable Semi-permeable

Membrane Membrane
High TDS I Low TDS
<Low FLOW >

Fig. 22 Reverse osmosis principle

Reverse osmosis membrane can remove many types of molecules and ions from
solutions, including bacteria, and is used in both industrial processes and the

production of potable water
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4.1.2 Dead-end filtration and cross-flow filtration

Dead-end technique is used in simple filtration processes, where the flow of liquid
to be filtered is directed perpendicular to the membrane surface. This technique is
only effective when the fluid concentration is low or the packing tendency of the
filtered material does not produce a large pressure drop across the membrane
medium. Some common examples of dead-end filtration are home water filters,
vacuum cleaners and oil filters in automobiles. Typical industrial uses include the

sterile filtration of beer, and wine.

Dead-End Filter Operation

Permeate Side ® °
© °

Results in a rapid flux decline as particles accumulate.

Fig. 23 Dead-end filtration. (Source wikipedia.org)

In contrast, there are many process whose fluids have high concentration of
particles or macromolecules such as cells, proteins and precipitates that will rapidly
compact on the membrane surface when using dead-end filtration. Consequently, the
recovery ratio drops quickly to an unacceptable level. In these cases, a cross-flow
membrane system provides the means to maintain stable filtration rates and reduce
cleaning. The major different in cross-flow filtration process is the geometry of
membranes must suit the physical characteristics of the process fluid, normally the
pores are conical and smaller in the feed side. Cross-flow membranes can be
provided in tubular, flat sheet, spiral wound, and hollow fiber configurations, each

of which provides certain advantages for specific process needs.
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Crossflow Operation with

Asymmetric Membrane
Flow, Q (Crossflow Velocity, V)

Feed Side

"' ""'

Permeate Slde °

The pores are conical and smaller on the feed side

Fig. 24 Cross-flow filtration. (Source wikipedia.org)

4.2 Membranes

Reverse osmosis membranes have a pore size around 0.0001 pum. The mean size
of a water molecule is about 0.097 nm. Hence, water can go through the RO
membrane while the other factors with bigger sizes are prevented. After water passes
through a reverse osmosis membrane, it is essentially pure water. In addition to
removing all organic molecules, bacteria (sizes from 0.2 to 10 um) and viruses (sizes
from 0.02 to 0.4 um), reverse osmosis also removes most minerals that are presented
in the water. Reverse osmosis removes monovalent (eg. NaCl) ions, which means

that it desalinates the water.

Reverse Monovalent Multivalent ~ Suspended
Osmosis  Water  ions ions Viruses  Bacteria  solids
NN, X\ N N

N

Fig. 25 RO filtration

4.2.1 Structure and material
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Two materials make up the bulk of commercial RO membranes are cellulose
acetate and composite. The composite membranes usually exhibit higher rejection at
lower operating pressures than the cellulose acetate. The current RO membrane
market is dominated by thin film composite (TFC) polyamide types. This kind of
membrane consists of three layers: A polyester web acting as structural support
(backing), a microporous interlayer web, and an ultra-thin barrier layer on the upper
surface which is 0.2 um (see Fig. 26). The polyester support web has almost no effect
on membrane transport properties. It only has the effect on supporting the
membrane’s structure. Between the barrier layer and the support layer, a micro-
porous interlayer of polysulfonic polymer is added to enable the ultra-thin barrier
layer to withstand high pressure compression. The thickness of the barrier layer is
reduced to minimize resistance to the permeate transport. Membrane pore size is
normally less than 0.6 nm (0.0006 um) to achieve salt rejection consistently higher
than 99%. The selective barrier layer is often made of aromatic polyamide. With
improving chemical resistance and structural robustness, it offers reasonable
tolerance to impurities, enhanced durability and easy cleaning characteristics (Lee,
2011)

Thin barrier layer . .
Micro-porous inter

layer
\ /

/

Polvester web

Fig. 26 The structure of RO membrane

4.2.2 Hollow fine fiber membrane module
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This configuration uses membrane in the form of hollow fibers. These fibers may
be extruded from cellulosic or non-cellulosic material, which have the minimum
hollows size up to 42 micron (0.0016 inch). One membrane is a bundle of millions
of these fibers folded in half. The bundle is packed inside a pressure tube which
usually has a length about 120 cm (4 ft). The pressure tube is sealed at both ends to
form a sheet-like permeate output and a brine output which prevents the feed stream
from bypassing out. A perforated plastic tube in the center of the pressure tube will
serve as a feed water distributor. The assembly is called a permeator. The pressurized
feed saline water enters the permeator feed end through the center distributor tube,
passes through the tube wall, and flows radially around the fiber bundle toward the
outer permeator pressure shell. Water permeates through the outside wall of the
fibers into the hollow core of fibers, and to the product end of the fiber bundle, and
exits through the product connection at one end of the permeator. The left
concentrate water is rejected through brine tube in the other end of permeator.

The permeability of a hollow fiber module is low. Therefore, the concentration
polarization is also low at the membrane surface, resulting in a non-turbulent or
laminar flow regime. Normally, a single hollow fiber permeator can be operated at
up to 50-percent recovery and meet the minimum reject flow required to limit the
concentration polarization. The hollow fiber unit allows a large membrane area per
unit volume of permeator which results in compact structure. Hollow fiber
membranes are available for brackish and seawater applications. Due to their
compact structures, hollow fiber modules require feed water of lower concentration

than the spiral wound module configuration.
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Fig. 27 The construction and flow patterns in a hollow fiber membrane system
(Pfafflin, 2015)

4.2.3 Spiral wound membrane module

In spiral wound structure, a flat-sheet of composite membrane is folded in half
with the membrane facing inward. A feed spacer is then put in between the folded
membrane to form a membrane leaf. This assembly is sealed on three sides with the
fourth side left open for permeate to exit. The mesh spacer is to provide space for
feed water to flow between the membrane surfaces, and to induce turbulence and
reduces concentration polarization. A permeate spacer is added between membrane
leaves, forming membrane assemblies. Some of these assemblies are wound around
a central plastic tube. This tube is perforated to collect the permeate water from the
multiple leaf assemblies. The feed/brine flow through the element is a cross-flow
from the feed end to the opposite brine end, running parallel to the membrane surface.
In order to operate at acceptable recoveries, spiral systems are usually staged with
three to six membrane elements connected in series in a pressure tube. The brine
stream from the first element becomes the feed to the following element, and so on

for each element within the pressure tube. The brine stream from the last element
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exits the pressure tube to waste. The permeate water from each element enters the
permeate collector tube and exits the vessel as a common permeate stream. A single
pressure vessel with four to six membrane elements connected in series can be
operated at up to 50-percent recovery under normal design conditions. The brine seal
on the element feed end seal carrier prevents the feed/brine stream from bypassing
the following element. In comparison to the hollow fiber membrane, the spiral

wound membrane working under lower pressure while the recoveries are equal.

PRODUCT TUBE
BRINE SEAL
\‘\ [E =
ot

7 A—
RRIRREEG

\ PERMEATE
1)"!1 X i

CONCENTRATE

MLESH SPACER

REVERSE OSMOSIS

PERMEATLE PERMEATT MEMBRANIE

CARRIER
Fig. 28 The construction and flow patterns in a spiral wound membrane system
(Pfafflin, 2015)

4.3 Nonlinear RO modelling and analysis
4.3.1 RO system introduction

In RO system, the cleaning process has to be carried out when the membrane
permeability decreases to a threshold due to fouling. As usually, RO operation has
to stop under cleaning process. Since this process can lower system productivity, a

feed-flow-reversal RO system is to overcome that limitation. This kind of RO system
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uses alternate valves to reverse the flow, to automatically clean the membrane. One
of such model was developed by Bartman et al. (2009). This model based on a
macroscopic kinetic energy balance and is one of the irreversible thermodynamics
models. It assumes an incompressible fluid and constant internal volume and mass.
Skin friction through piping and membranes are negligible relating to hydraulic
losses in the throttling valves and across the membrane. The schematic of the model
is depicted in Fig. 29. The system includes a high-speed pump, a membrane and two
valves. The pump forces the feed seawater to go through the membrane to become
product water. The left high salinity water is rejected through concentration valve to
the energy recovery device, which is out of this dissertation’s scope. Two outputs,
the product water flow Fp and the system pressure Ps are controlled by the
concentration valve and bypass valve, respectively. The control input signals are the
resistances of those valves, Rvwc and Rw. Since the analysis is for the mathematical
equations under normal operation, the reversal valves are not included in the block

diagram.
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4 Product water v,
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>
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Concentration water
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Fig. 29 Block diagram of the current RO unit
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4.3.2 Modelling

Providing that the cross-sectional areas are identical for all pipes in the system,
the nonlinear differential equations describing the dynamics of flow velocities

through concentration and bypass valve are given in Bartman et al. (2009) as:

dv, A[ A Ar
dtb :V [S_K (Vf -V, _Vb)+7_0'5RVbezj (72)
d, Al A A
it v [K(Vf _V“_V")+7_O'5RV°VCZJ "

where V is the system volume, A pipe cross-sectional area, S membrane area, Km
overall mass transfer coefficient of the membrane, p fluid density, R\ concentration
valve resistance, Rw, bypass valve resistance, v water velocity, the subscript f
indicates feed stream, b the bypass stream, c the concentration stream and p the

product stream, Az is the osmotic pressure which is calculated using:

(1=R) +R(v _Vb)j] (74)

\Y

Aﬂ:CfﬂT{oﬁ(l—a)[
c

where S is a constant relating effective concentration to osmotic pressure, a an

effective concentration weighting coefficient, R the fractional salt rejection of the

membrane, T temperature.

The valves resistance Ry and Ry relate to the percent of opening of the bypass and

concentration valves through the following equation:

O:

1
’ ﬂm(AWNBp&J+¢

(75)
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where Ry indicate valve resistant, i and ¢ ate constants depending on the valve

properties. The resistant increasing will decrease the valve opening. All the

parameters are given in Table 1 (Bartman et al., 2009).

The outputs including product water flow Fp and system pressure Ps are defined

as:

(76)

(77)

Note that this model ignores the effect of CP. Although the system can

automatically self-clean, in the real plant, CP reduces the productivity and makes the

effect of some phenomena such as water hammer more severe. Therefore, in this

dissertation, CP will be analyzed and counted in the linearized system.

Table 1 The RO model parameters

Parameters Value Unit
\Y, 0.04 m3
p 1000 Kg/m3
v 10 m/s
Ap 1.27x10* M2
A 30 M2
Km 9.128x10°° s/m
Ct 10000 Mg/L
a 0.5
T 25 °C
R 0.993
L -12.135
B 151.442

n@ 61
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0 0.2641

Kw 9.218x1012
Ks 1.948x10°
k 2.4007x10°®

4.3.3 Nonlinear analysis

The problems of nonlinear systems are hard to be solved because of the
complexity and particularity of each plant. Up to now, no analytical solution has been
devised for them. Although some powerful methods have been developed for the
analysis and design of nonlinear systems, they all have their limitations. Therein, the
phase plane (phase portrait) analysis is widely used in the engineering.

In this paper, the nonlinear analysis is carried out under steady state condition.
Brackish water with concentration 10000 mg/L is constantly fed to the system at a
velocity of 10 m/s. The ideal temperature is 25°C. As seen in Fig. 30A, the phase
plane is the plot of two variables vc and vy, for a large number of initial conditions,
with constant parameters and fix control input values. This phase plane shows a
stable node at equilibrium point (4.511,1.123). It means this system is a stable system.
From any given initial values or perturbations of vc and vy, they will finally converge
to the equilibria. The figure also shows some areas where the trajectories are almost
straight lines, indicating faster convergences than those of in the other areas. The

faster convergences physically increase the system stability.
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Fig. 30 The phase plane (A) and nullclines (B) of the nonlinear RO system

The position of the equilibrium point also agrees with the nullclines plot in Fig.
30B. In this figure, two nullclines are defined by dvc/dt = 0 on one hand and dvy/dt =
0 in the other hand. The intersection of these curves corresponds to the equilibrium
point where dv¢/dt = 0 and dvu/dt = 0 simultaneously. From the graph of the nullclines,
it is possible to infer whether or not a system will be bistable. It can be seen that the
nuliclines only intersect in one place. Hence, one can conclude that the system is not
bistable, and there is only one equilibrium point. The vector fields in all the four
regions delimited by these nullclines converge to the equilibria, indicating a stable

node at the point.
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Note that vc and vy represent flow velocities through concentration and bypass
valve respectively, physical considerations restrict them to positive real numbers.

Therefore, the phase portrait of vc and v, only poses positive values of these variables.
4.3.4 Concentration polarization

In cross-flow RO process, solute rejected by the membrane forms a boundary
layer of high concentration at the membrane surface. The thickness of this layer
increases axially along the operation time and the length of filtration channel. This
phenomenon is called CP. It reduces the effective driving force and product water
flow. Ignoring of CP as in Bartman et al. (2009) makes the results unreal. Therefore,
in this section, CP is counted, and its influence on performance ratio is considered
and simulated.

There have been many studies on CP such as Niemi and Polasaari (1993) and
Kimura (1995). In these studies, CP layer is simplified as a uniform layer over the

membrane surface so that the CP index can be calculated using:
CP=—" "P_ e[Tj (78)

where C is the concentration, the subscript m indicates membrane wall, p refers to
product side and f the feed side, k the feed-side solute mass transfer coefficient and

Jw the permeate flux, which is given in the following equation.
J, =K, (P.-Ar) (79)

where Ky is the water permeability coefficient of the membrane
Noting that the salt flux through the membrane is also given in irreversible

thermodynamics model as:
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J,=CJ,=K,(C,-C,) (80)

where K; is the salt permeability coefficient of the membrane
Clearly, from Egs. (74) and (77), the permeate water concentration (product water

quality) is calculated by:

(81)

When CP is included, the component Ct in Eq. (74) should be replaced by Cn.
During the operation of RO plant, the CP index is increasing, and Cp, is also getting
higher. It will result in the increasing of the osmotic pressure, the velocities through
two valves and the product water concentration, as well as the decreasing of the
product water flow. Fig. 31 illustrates the effects of CP and feed concentration on
concentrate flow velocity and system performance ratio at steady state values of the

two control inputs.
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Fig. 31 CP index affects (A) on the concentration flow and (B) on the recovery

ratio

It can be seen that when the feed concentration and CP index increases, the
equilibrium value of concentrate flow velocity also increases. However, there is no
bifurcation point. It is also worth noting that the recovery ratio, which is the ratio
between product water and feed water, is decreasing with increasing feed
concentration (Fig. 31B). When the performance (recovery) ratio reaches a certain
low threshold (less than 20%), cleaning process should be carried out to guarantee
system efficiency and economic costs. With the influence of CP in the high
concentrate seawater RO plant, the cleaning process must be carried out more often.

4.4 Water hammer phenomenon
4.4.1 Water hammer, column separation and vaporous cavitation

Water hammer is the phenomenon occurring when there is a sudden starting or
stopping of liquid flow. During the sudden shutdown of a pump or closure of a valve,
there will be the formation of large pressure variations, cavitation, vibrations and
column separation. In water hammering, Kkinetic energy of the moving fluid is

converted into potential energy, causing waves of pressure and flow velocity back to
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the fluid source. As a consequence, there is a pressure rise and fall and the pattern is
repeated until the transients decay. These shock waves can also be of sufficient
magnitude to cause physical damages to pipes, equipment and personnel.
Joukowsky is considered as the first scientist to study about water hammering. In
1898 he derived his famous law about instantaneous water hammer. It states that the
piezometric head rises an amount AH resulting from a fast closure of a downstream

valve.

AH === (82)

where a is the wave speed, VO the initial flow velocity and g the gravitational
acceleration.
The time closure T, calculated to be less than 2L/a will cause a water hammer.

Where L is the pipe length.
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flows
== b m—

J

— =

Valve closes suddently-water
hammer At |§]

AY S

Fig. 32 Water hammer phenomenon

Column separation was first observed and analyzed by Joukowsky in 1900.
Column separation is the breaking of liquid in fully filled pipelines. This may occur
in a water-hammerring or at specific locations such as high points, knees or changing

in diameters, when the pressure in a pipeline drops lower than vapor pressure of that
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liquid, as shown in Fig. 33. Note that the atmospheric pressure equal to 1 atm while
the vapor pressure of water at 25°C is about 0.03 atm. In this phenomenon, liquid
columns are separated by a vapor cavities that grow and diminishes when the
dynamics of the system change. The collision of two liquid columns, or of liquid
columns with closed ends, may cause very large and nearly instantaneous rises in
pressure. These pressure rises travel through the pipelines and create heavy loads for
hydraulic machinery, pipes and supporting structures (Bergant, 2006).

Static pressure  Atmospheric pressure

FRTITAN

L e 4— 0.5s —p . .

Fig. 33 Pressure record exhibiting column separation [Adapted from Joukowsky
(1900)]

Vaporous cavitation exists when column separation occurs. In case the rising
pressure is not enough to break pipes, cavitation still cause the wear in system
equipment, finally resulting in leaks and ruptures. The phenomenon can be explained
by the collapsing voids that implode near to a metal surfaces causing cyclic
stress through repeated implosion. This results in surface fatigue of the metal causing
a type of wear which is often called cavitation.

There are two type of vaporous cavitation, which depends on the magnitude of
the void fraction of the vapor within the liquid occurring when column separation
happens. It is defined by the ratio between the volume of the vapor V, to the total

volume of the liquid-vapor mixture Vi (Wallis, 1969):

a,=V, IV, (83)
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If «,islarge (¢, =1), itis call the local large vapor cavitation. If «, is very small,

it will be call the distributed small cavitation.
4.4.2 Water hammer analysis and simulation

In some RO systems that utilize feed flow reversal as that of Bartman et al. (2009),
the valves close and open very often. With flow velocity greater than 1.5 m/s and
high operating pressure, by manipulating the valves, or a sudden RO plant shutdown,
water hammer often happens, and the transient pressure will be significantly high.
Therefore, water hammer phenomenon in such RO system must be sufficiently

realized for RO plant design and to avoid plant damages or failure.
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Fig. 34 Cases of water hammer in RO system

The theory of water hammer was introduced and developed very early as in
Parmakian (1963), and Chaudhry (1987). There exist some inherited studies and
simulations about water hammer such as in Saikia & Sarma (2006) and Saemi (2014).

The governing equations of water hammer are adapted from continuity and
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momentum in unsteady flow along a pipe. They include two partial differential

equations (PDEs) with respect to time and pipe’s length, as given in Juneseok (2008)

as follow:
aQ f
a0 =0 4
+0A ™ 2DQIQI (84)
a aQ
— =0
8t gA OX (85)

where X is the pipe’s length, Q = AV the discharge flow, H = P/pg the piezometric
head, f the friction factor, D the pipe internal diameter, and a is the wave speed,

which is calculated by

(86)

with Ks is the bulk modulus of fluid elasticity, p the density of the liquid, e the pipe
thickness, E the Young’s modulus of pipe elasticity, ¢ = 1-v/2, v is the Poisson’s ratio.
The Q? term is changed to Q|Q| so that the sign of the velocity can be considered.
Noted that the governing equations are nonlinear PDEs. There is no analytical
solution for this problem. Therefore, numerical methods such as finite-differences
should be used to solve these equations. The approach employed in this paper is the
McCormack method which was first applied by Chaudhry and Hussaini (1985). This
method adopts second-order explicit models for the analysis of single liquid transient
flows, based on the characteristic boundary lines defined by dx/dt = + a (C+,C-). This
algorithm uses predictor and corrector steps to solve the problem of PDEs. The
values of variables determined in the predictor part are used for the corrector part.
The solution yields the pressure head, H(x,t) and discharge flow, Q(x,t) at any

intersection of space node i and time level j.
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Fig. 35 The McCormack numerical method scheme

In the first alternative, the intermediate values of head and flow are calculated
through the predictor part (Juneseok, 2008):

c g Atat g
Hi - Hi AX gA (Qi+l Q|J) (87)
" AN (88)

Qi = QiJ _A_ gA(Hiju - Hij)_ RQij ‘Qij‘At' (<i<n)
X
Then the new values of head and flow are obtained through the corrector part:

At a?

j+1_£ j Wl 7o Mo ¥
H, _2[(Hi+Hi) AXQJA(Qi Q._l)} (89)

Q

Qi = %[(Qf +Q) _% gA(H; —H ) -RQ At}, (2<i<n+l) (90)
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The equations for the second alternative are written in similar way but with the
reverse direction of the spatial finite-difference approximation. Specifically, the
equation for predictor part is written as:

c_pg_Atat oy,
Hi = Hi AX A(Q Qi—l) (91)
Q;:Qii—ﬂ gA(H; —H/,)-RQ! [Q/[at, 2<i<n+]) (92)

and the corrector part:

Hﬂ“%{(H' +H, )—ﬁa—(Q.ﬂ Q)} (93)

Qii+1 _ %[(Qij )__ gA(HI+1 N At}, @<i<gn) (94)

The inclusion of boundaries is an important aspect of the numerical methods since
errors appearing at a boundary will be propagated throughout the computational
domain and lead to instabilities. The values of H and Q can be solved at the interior
points. However, at the boundaries, H and Q cannot be calculated since there is no
grid point outside the computational domain. Therefore, the boundary conditions
need to be included in the analysis by using the characteristic equations as follow
(Chaudhry and Hussaini, 1985):

When 4* =% _a
dt
oH .. oH*) a(oQ .. oQ
Ct+:| =+ T |+ = | = ==
+(6t+ OX J+gA[at+ ax] 29 DAQ|Q| (%5)
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When A" =—=-a

oM, M) Al jaQn) af oo
¢ '(atJr}b 8xj gA[ath/1 axj ZgDAQIQI 0 (%)

where the characteristic line C+ is valid for downstream and C- is for upstream

boundary and A is the Lagrange multiplier.

o B A4 Ax N+l

Fig. 36 Characteristic lines at boundaries
4.4.2.1 Water hammer in spiral wound membrane of RO system

The water flow inside the spiral wound membrane module can be simplified as

the flow in a rectangular membrane as shown in Fig. 37.
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Fig. 37 Unwound RO membrane mechanism [Adapted from Avlonitis et al.,
(2010)]

The feed water is fed into the membrane along x direction, while the permeate
water is flowing along a permeate channel from the close end to the open end, in 'y
direction. The permeate carrier which is laid between two membrane layers to form
a leaf. The leaf is glued in three sides and the opened side is connected to the
collecting tube. Since there is no flow along the x direction in the permeate channel,
the pressure in this direction is assumed constant. The local permeate velocity and

local permeate pressure are given in Avlonitis et al., (2010) as:

20K K. sinh

c.v. k
vV = q |:Pd ~We, + i ViKptd

Cf
In —Wifx 97)

)=
h, [ K, +KW(c, + fx)]cosh ™ Pk
q

coshx

2kfpmequ2 q
P(y)=——"————(AP-Wc,)| 1- +P (0,W) (98)

h (K, +KWc,) w

m w cosh
q
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where Ky is the water permeability coefficient, Ki the total mass transfer coefficient,
¢t the feed concentration, p the viscosity of the feed solution, W the width of the
membrane, ki the friction coefficient in the permeate channel, hp the height of the
permeate channel, q = m ,f=(cech)/L, B =P, (0,W)—P (0,W)the lost
pressure, x and y the distance along x and y axes, and a is the wave velocity.
Providing that there is a valve at the end of the permeate tube of a RO system.
Suppose the valve is closed suddenly so that the flow near the valve is completely
stopped. However, the permeate water in the membrane leaf still flow with velocity
up(x,y) at each point of the membrane. This make the water near the valve
compressed and the pressure is increasing rapidly, called hammer phenomenon. The
transient pressure at each point inside the membrane leaf is calculated as the

following equation (Avlonitis et al., 2010):
AP(X,y) = pav, (X, y) (99)
4.4.2.2 Simulation result

In this paper, water hammer phenomenon in RO system is simulated at
equilibrium condition with a sudden closure of concentration valve. Assume that the
valve is 25 m away from the pump and 5 m away from the membrane, and all
components are in the same horizontal plane. The steady state value of system
pressure is 31.57 bar and that of velocity through concentration valve is 4.511 m/s.
The wave profiles of internal pressure and velocity waves at the membrane are

simulated as in Fig. 38.
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Fig. 38 Water hammer wave profile of the transient pressure (A) and the
concentration flow velocity (B)

It can be observed that the magnitude of the first pressure wave is the maximum
one and can be very much higher than the initial pressure, while that of the first
velocity wave only equals to the initial flow velocity through concentration valve.
The pressure profile depends on initial pressure and flow velocity, the elasticity of
the fluid and pipe, the density of the fluid, the diameter and thickness of the pipe and
the valve closing time. Specifically, the maximum pressure is 103.4 bar, which is
3.27 times as big as the steady state one. This results in a huge hammering force
acting on the valve, the pipe, and the membrane. This behavior can lead to safety

issues if the pressure exceeds the safety rating of system components. Especially,
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this pressure can destroy the membrane since the maximum working pressure of
membranes are about 80 bars.
The result in Fig. 38A agrees with the famous fundamental Joukowski equation

(Joukowski, 1904) to calculate the maximum pressure in water hammer:
P.. =paAV +P, (100)

where AV is the velocity change of water in the pipeline.

Eq. (100) shows that the water hammer pressure depends on the characteristic of
the fluid and the pipe, and the system operating status just before the water hammer
happen.

It is known that CP phenomenon makes the velocity through concentration valve
increase. It means under the effect of CP, the transient pressure in water hammer will
be much higher, as illustrated in Fig. 39. For the feed seawater with a high
concentration greater than 40000 mg/L and CP index greater than 2, the transient
pressure will be greater than 100 bar, depicted by the bright area of the pressure
surface in Fig. 39. Hence, the CP phenomenon can cause more serious problems to

RO system if it is not sufficiently considered in the design and control of the process.
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Fig. 39 The transient pressure vs CP index and feed concentration in water hammer

4.4.3 Prevention of water hammer effect

Water hammer is an undesired phenomenon, whose effects need to be rejected as
much as possible. There are some methods can diminish water hammer. Those
approaches include designing the discharge pipes with lower flow velocity,
increasing the inertia moment of the pump, installing surge tanks, air chambers or
non-return valve in the piping system, and adding pressure control valve (Choon et
al., 2005). One of the simpler and efficient methods to minimize the damaging of
water hammer is to install the bypass pipe like that in the current model. Whenever
there is a sudden closure of the concentrate valve, the system pressure will jJump
immediately to a very high value (see Fig. 38). In order to prevent damages, the
bypass valve needs to be opened in time to discharge the transient pressure. This duty
must be carried out in milliseconds. Furthermore, the transient pressure profile is a
wave of alternative positive and negative pressure. Hence, the bypass valve must be

alternatively opened and closed in a manner so that system pressure is kept stable
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and safe. It is a hard job, and it needs a powerful controller to regulate the system. In

the next section, designers introduce a robust H., controller to handle this problem.

4.5 RO linearization

4.5.1 Nominal linearization

The nonlinear analysis showed that the nonlinear behavior of the system around
it unique equilibrium point is a stable node. Since there are many limitations on
controlling of a nonlinear system, the system can be linearized in the vicinity of its
equilibrium to utilize some good control theory for a linear system.

In the current RO system, besides the product water flow and system pressure,
product water concentration is added as the third output for linearized systems. These
three outputs are the most common controlled variables in RO systems.

Consider nonlinear differential equations given in Egs. (72-73) as follow:

X(t) = F(x(t)u(t)

0
y(t) = g(x(t),u(t)) (101)
where
. F,
X:[\\ﬂ’” {E:C]y: P |, f(x,u), and g(x,u) are given in Egs. (72), (73), (74),
b b C

P
(76), and (81), respectively.

Providing that the system equilibrium family including the equilibrium input
u*(5000, 310), the equilibrium point x*(4.511, 1.123) and the constant output
y*(2.369e3, 3.15e6, 180). Starting a little bit away from x* and applying slightly
different input from u*, the constant output will be slightly shifted away from y*,

where the deviations are expressed as:

K‘-\. '-I.---. — = \
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o, (t) = x(t)—x*
o,(t)=u(t)-u* (102)
5,() =y -y*

Substituting into Eq. (74) yields:

8,(t) = (5, (t)+x*,6, (1) +u*)
5,(t) = g(5,(t) + x*, 5, (t) +u*) (103)

By applying a Taylor expansion of the right hand side in Eq. (103), neglecting all

higher order terms,

S * % of of
o, (t) = f(x*u )+&L_x* 5X(t)+a‘x=x* o,(t) (104)
ag og
~ * 11* —__ e
5,0~a0ew) s Y 0.0+ D a0 (105

Noting that f(x*,u*) = 0, the state-space constant matrices are calculated using:

_a C:—a—g D:—a—g

e B b € o P

u=u* u=u* u=u* u=u*

of

~x (106)

X=X*

A:

whose the partial components are particularized in the appendix A.
The linear system which is so-called the Jacobian linearization of the original

nonlinear system about the equilibrium point (x*,u*) is displayed as

5,(t) = A, (1) + B3, (1)
o, (t)=Co,(t)+ Do, (1) (107)
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Having the state-space matrices, the transfer function from the inputs to outputs

is calculated using G(s) = C(sl-A)*B+D, as follow

T,5+K, T,5+K,,
s?+2fm,5+ @7 S°+2w,5+ @
T,8+K, T,5+K,,

G(s) =
) s +2lm, 5+ @}

n

T8 +K,,

s*+2l0. 5+ @]
T;s+Ks,

| S +28w,5+ )

s°+2,0, 5+ @]

(108)

where the nominal values of the parameters in the transfer function are listed in Table

2 and the respective parameters are given in the Apendix B.

Table 2 RO model parameter variations

Parameters Min. values Nominal values Max. values Unit
T1i 10.61 11.61 13.61 min
K11 26.75 31.75 37.75 unitless
T2 10.61 11.61 12.61 min
K12 34.26 38.26 42.26 unitless
To1 1.664 2.664 3.664 min

K21 3.03 8.03 11.03 unitless
To 1.339 2.339 3.339 min

K22 5.05 7.05 9.05 unitless
Ta1 -3.792 -2.792 -1.792 min

Ka1 -8.633 -7.633 -6.633 unitless
Ta2 -3.792 -2.792 -1.792 min

Kz2 -10.197 -9.197 -8.197 unitless
n 4.48 4.70 4.9 rad.s*!
& 1.04 1.068 1.15 unitless

4.5.2 Uncertainty modeling
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The varying of the parameters in Table 2 can be lumped into WwA structure and
displayed as an input multiplicative uncertainty as in the dashed block in Fig. 42. In
this framework A is used to model the uncertainty kind and level of RO unit, and Wu
is the uncertainty weighting function. The uncertainty in this model is assumed to be
real and structured. It stands for all the mismatch uncertainty in the system. The

perturbed plant is extracted and simply written as follows:

G, =G, (I +AW,,) (109)

0 W, 0
}and W, ={ M }
52 0 WM22

The set of perturbed plant is also defined as

o
where A=
0

11={G, |G, =G,(1+ 4N, ),0(4)<1 "] (110)

The perturbed system boundary I, (j®) at each frequency which includes the

possible plant Gr eIT is defined by Skogestad et al. (2005) as follow:

ly (joo) =max & (A(jow)Wy (jo))

:maxo__[Gfl(ja))(ér(ja))—Gr(ja)))} (111)

When max singular value o(A)=1, the weighting function W,, is chosen to

cover the boundary |, (jw) that satisfies:

Q(WM(ja)))ZIM(ja)) "o (112)
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The set of 1, and elements of weighting function W), in Egs. (111) and (112) are

plotted in Fig. 40. It can be seen that weighting function elements bound all the

possible I, .

Bode Diagram
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Bode Diagram
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Fig. 40 The Bode plots of uncertainty weighting function Wy and 1, : () Ww11 and
the set of Im11 in the first channel; (b) W22 and the set of lv22 in the second channel.

4.5.3 Parametric uncertainty linearization

The state-space matrices in Eq. (106) and the transfer function in Eq. (108) are
based on nominal parameter. In fact, the real RO system is an uncertain system with
variable membrane concentration Cr, due to CP phenomenon. Note that in this real
system, the feed concentration Ct in Eqg. (74) is replaced by the membrane
concentration Cn, whose value can vary up to 2.6Cy. Using the approach in Sam-sang

& Seok-kwon (2002), the variation of Cr, can be modeled as:
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C =C (I+EA,) (113)

where C_ is the nominal value, -1<A <1, and E indicates the maximum percent of

variation from nominal value. In this system, since C¢ = 10000 mg/L, then C_= 18000

and E = 0.44 are chosen to perform the range of possible variation.

The uncertain state variable model due to CP is now considered as:
X(t) | | A+AA B+AB || x(t)
y(t)| |C+AC, D+AD, | u()

¢ ol8a ool
C D c, D ||u®

nominal matrix uncertain matrix

(114)

Using the uncertain model of Cy, as in Egs. (112) and (113), the components of
the uncertain matrix are calculated and given in the appendix B. Then the uncertain

matrix can be factorized using singular value decomposition as:
Ai Bl Kl
E = = M, N
1 |:C1 D1 [ 1 1] (115)

where E, =USV *, {E}:usm,and [M, N,]=S""~*

From Egs. (114) and (115), a real linear system G, with the extra connections to

the uncertainty, the input wy and the output z; (see Fig. 41), can be represented as
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(116)

Note that the shorthand notation for the transfer function from u and wy to y and

z1 is defined as:

A | B 4
Gr{c D}:cr(sl—/x) B, +D, (117)

r r

The calculated values of Gy are also given in appendix B.

u G}" y
— —

Fig. 41 The real RO system with uncertain parameter Cr,

4.6 Robust H.. controller design for RO system
4.6.1 Control of uncertain RO system

Beside the parametric uncertainty caused by some parameter variations such as
Cm in section 4.5.3, the robust controlling of RO system should consider unmodelled
uncertainty (unmodelled dynamic) as depicted in Fig. 42. The unmodelled dynamic
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represented by Ww and Am, comes from some assumptions, approximations when
modelling the system or from the ignoring of some factors in the real system. This
kind of uncertainty can be modelled at the input (such as in this study), output or
parallel of the system. Furthermore, external disturbances and sensors noises always

exist in the operating system.

disturbance

A

|
: Wu — A}I
reference I L 4
K | ; )J—;I G,
) |

2

Fig. 42 Control scheme of uncertainty RO system

The measured output will be affected by sensor noise signals, normally in high
frequency. These feedback signals will be compared with the desired reference to
give the error which is fed into the controller K. The controller is said to be robust if
it can deal with both parametric and unmodelled uncertainty, with disturbance and
noise meanwhile satisfy the requirement criterions for robustness such as those

presented in the next section.
4.6.2 Robustness analysis and H. controller design

In modern multivariable control, robust H.. controller has been proved its ability
to deal with the systems with high uncertainties. In this paper, based on small gain
theorem and g-synthesis (Doyle, 1982), the mixed robust H.-x theory is applied to

control the current uncertainty RO system. In this framework, it is necessary to

r --.. '-I.---. — = \
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develop a generalized plant P accounting all possible affecting factors. In the block
diagram (see Fig. 43), besides the parameter uncertainty block 41, designers also
introduce unmodelled uncertainty at system input. They stand for some modeling
mismatches under the linearization process and unmodelled dynamics of actuators.
A performance weighting function Wp is added at the output of the system to perform
the level of the performance requirement. Ap is the fictitious perturbation
representing the Hoo performance specification of the w-synthesis framework in
Doyle (1982). The generalized plant also accounts some real inputs such as
disturbance d, sensor noise n and reference r, accompanied by their weighting
function Wq, Wn and W, respectively. Especially, water hammering is considered as
disturbance d. Therefore, the simulation result of water hammering in section 3 is
accounted into the control design. The controller is successfully designed if it can
deal with water hammering, noises and uncertainties while satisfies robust

performance and stability requirements.

[A, ]

s, ol ol i,
[ Ay |
N\~

Fig. 43 Generalized plant P

The generalized plant P is further written as:

r --.. '-I.---. — = \
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u, ]
_yAl_ UAM
y d
?ﬂ o) ) (118)
Yy r
- u
where
[0 G, 0 0 0 0 0
0 O 0 0 0 0| W,
A | R,
P: WP O WPGr WPWd O 0 WpGr = P P (119)
W, 0 W,G WMW, 0 0 |WG Az
-1 0 G W, -W W|-G

Note that the uncertainty block Ay, including three sub blocks, has the structure as
depicted in Fig. 44. In order to use u-synthesis for structured uncertainty, the closed-
loop transfer matrix that connects the generalized plant P with the controller K via a

lower linear fractional transformation. N is calculated as follow:

N = FI(P’ K) = P11+ PlZK(I - P22K)71P21

G © 0 0 0
=1 0 -W,T, |-W,KSW, -W,KSW, W,KSW,

0 W,GS | WSW,  -WTW, -W.TW, (120)
_ Ny/\,uu/\y Ny/\,uW
- NzuA Nzw

where

Ss=(1+KG,)™", S, =(1+G,K) !, T, =KG, (1 +KG,) !, T, =G, K (I +G,K) ™,
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are so-called the input, output sensitivity and complementary sensitivity functions,

respectively.

A
“1 Az
Uny Au| | Vau
ALl
L=F 4
W P zZ
u V
K o
N

Fig. 44 N-Ap structure

According to small gain theorem and g-synthesis (Doyle, 1982), nominal
performance, robust stability and robust performance conditions are satisfied for the
control system if the weighting functions Wp, Wn and the optimal controller K are

calculated so that the follow inequalities hold, respectively:

W, T, <1 & u,(Ny(jo)) <1, "o (121)
IWoSW, | <1 < 1, (N, (jo)) <1, "o (122)

F(N.A)| =‘ N + Ny, A (=N, AN [ <1,
» (123)

VAu'HAun <le o, (N)<L Yo

where g, (N)is the structured singular value of the closed-loop transfer matrix N

defined in section 2.3.3.
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4.7 Simulation result and discussion

The objective of the robust H. controller in this study is to cope with system
uncertainties, noises and to attenuate the transient pressure in water hammer
phenomenon. It is known that the membrane concentration Cr, is variable during the
operation time, and there exist unmodelled uncertainties in the modeling process. All
the uncertainties in this RO system are represented by the parameter variations of the
linearized transfer function as shown in Table 2. The uncertainties are chosen based
on the experimental reference (Chaaben & Andouls, 2008); however, with larger
ranges. It means the requirements for controller design in simulation condition is
more stringent than those in real system. For the sake of clarity, the designers built
three models named as nom, min, and max model using hominal, minimum, and
maximum parameters in Table 1, respectively. These models stand for the perturbed
system with uncertainties. The controller is expected to control all three models
without big differences in the performances, eliminate at least 50% of transient
pressure caused by water hammer effect and attenuate more than 70% of noises.

For the robust control synthesis, the suitable weighting functions are chosen.
Based on those functions, the controller K has been designed to satisfy the condition
given in Egs. (121-123). It is given in Appendix C. Then the transient responses of
the closed-loop system are examined. Structured singular values of nominal
performance, robust stability and robust performance are plotted in Fig. 44. It can be
observed that all the requirements for stability and performance in Egs. (121-123)
are satisfied, where all the maximum values are less than 1. The peak of nominal
performance, robust stability and robust performance plots are 0.63, 0.52 and 0.86,
respectively. The meaning of these number can be explained as follows: the nominal
performance with no uncertainty is easily satisfied since the peak is 0.63, being for
from 1. For robust stability, the uncertainty size can increase by a factor of 1/0.52 =
1.92 before the worst-case uncertainty yields instability. Consequently, the peak 0.86
of pAL(N) shows that even with 1/0.86 = 1.16 larger uncertainty, the perturbed

r --.. '-I.---. — = \
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system still be stable. If the uncertainty level gets higher than this limit, the

performance will become worse.
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Fig. 45 Structured singular value plots of the stability and performance for RO

system

The responses of the closed-loop systems are illustrated in Fig. 46. From the plot,
we can see that there are only slight differences between the three mentioned models.
All the responses are fast enough with rising times less than 1 second and there are
no overshoots. It means whatever values of the parameters given in Table 2 are, the
controlled system is still in good operation. Normally, the permeate water
concentration less than 500 mg/L is acceptable. Fig. 46C indicates good quality
product water is guaranteed. Note that the product water concentration and flow are
inversely related. It means there is a trade-off between product quality and quantity.
Therefore in this simulation, only the product water flow is chosen as controlled
variable, in accompany with the system pressure. Especially, Fig. 46B shows that the

response of the system pressure is less than 0.2s, which is very fast. It makes sense

r --.. '-I.---. — = \
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since the system pressure is the direct variable having effect on the other variables.

Controlling the system pressure is the key in system performance. The transient

responses prove that th

given uncertainties.

e controller effectively control the system and deal with the
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Fig. 46 Transient responses of the controlled system
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In the real operation time, the measured outputs are always distorted by sensor
noises. Noises often happen in high frequency range. The distortion caused by noises
can be attenuated with different levels depending on controllers. In the following
simulation, one noise signal at 102 rad/s is introduced in the first channel and another
one at 3103 rad/s is pushed into the second channel to check the responses of two
controlled variables. Note that since the system pressure is the direct controlled
variable, its sensor should operate in higher frequency. Fig. 47 shows that about 90%
and 80% of sensor noises are rejected, respectively. It means the controller can

protect the process from large distortion caused by noises.
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Fig. 47 Noise responses
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The most interesting concern is the ability of disturbance attenuation of the
controller. In this simulation, the transient pressure caused by water hammer effect
is introduced as a disturbance to the system. As discussed, this transient pressure has
damping wave profile and the magnitude of the first pressure wave is very high. Only
powerful controllers can handle this kind of disturbance to protect the system from
damages or eliminate some sounds coming out.

In this simulation, the water hammer is supposed to happen at 0.5"" second. The
initial system pressure is 31.57 bar. The simulated condition is chosen as the worst
case with the feed water concentration Cs= 50000 mg/L. The performance of the
controller is illustrated in Fig. 48. The illustration shows that without the controller,
the top pressure in the first wave is calculated at 103.4 bar. Under the effect of the
controller, this top pressure is reduced to 61.9 bar. It means 58% of the disturbance
is eliminated. This result is superior comparing to the best result presented in
literature, which is 33.33%. The elimination is also seen in the aspect of time. The
controlled transient pressure only happens in a halftime comparing to the
uncontrolled one.

120

uncontrolled transient pressure
controlled transient pressure

100¢

80r

60

401

Pressure (bar)

05 1' 15 2
Time (S) 230

Fig. 48 Water hammer attenuation ability
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From Fig. 48 one can observe that even though the transient pressure has the wave
profile with positive and negative values, the system is regulated effectively. It is
done as the result of the controller alternately closes and opens the bypass valve in a
manner being opposite to the value of the transient pressure. Note that the vacuum
pressure is harmful to the RO system in the aspect that it can cause erosion. Therefore,
not only high positive pressure wave but also negative ones must be regulated.

The safest way is to include a pressure reducing valve (PRV) and a check valve
at the discharge pipe. The PRV is to combine with the controlled bypass valve to
optimally reduce the transient pressure. The check valve is to allow air to be sucked
into the pipe under vacuum conditions. The combination between the controlled
bypass and safety valves will give the best performance for the RO system.

4.8 Conclusion

In this section, the reverse osmosis system is carefully studied, including the
nonlinear analysis, water hammer simulation, polarization concentration calculation.
Based on the analysis, the mixed robust H. and p-synthesis controller are
successfully designed and applied to control the RO system under uncertainties,
disturbance and noises. Especially, water hammer is considered as a disturbance in
the simulation. The simulation results show that the controller can eliminate 58% of
transient pressure and keep the system safe, avoiding membrane spoiling, vapor
cavitation and column separation. It also has good performance in dealing with

uncertainties and noises.
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Chapter 5. Robust gain scheduling control of activated sludge process

5.1 Introduction about activated sludge process

Nowadays, wastewater treatment (WWT) is a very active research
area. Wastewater can originate from domestic, industrial, commercial
or agricultural activities, surface runoff, stormwater, or from the combination of
them. The most popular method in WWT plants is the activated sludge process (ASP),
which directly removes the contaminants in the sewage through the biological
process (Jeppsson, 1996). The basis of the process lies in maintaining a mixture of
several microorganisms transforming the biodegradable pollutants (substrate) into
new biomass. The ASP has the advantage of producing a high quality effluent for
reuse purposes and maintenance costs. It is widely used by large cities and industrial
zones where large volumes of wastewater must be highly treated economically. The

process is also a good choice for small communities and facilities.
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Fig. 49 Block diagram of an activated sludge process

The block diagram of an activated sludge process is illustrated in Fig. 49. The

system includes an aeration basin with diffuser system, a secondary clarifier (settler)
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where the solids settle and are separated from treated wastewater, and pumps for
recycled and waste activated sludge.

The activated sludge consists of a mixed community of microorganisms, about
59% of bacteria and 5% of higher organisms such as protozoa, rotifers...The most
predominant microorganisms are aerobic bacteria, which need oxygen for their
operation. Rotifers and nematodes are most frequently found in systems with long
aeration periods.

Amoeboid forms, the flagellates, and the ciliates are the most protozoans in a
working sludge. Amoeboid predominates in young sludge. The flagellates are free-
swimmers and predominate in light mixed liquors during high food condition. Their
presence usually indicates poor effluent quality. Free-swimming ciliates
predominate when the food to microorganisms (F:M) ratio decreases. Stalked ciliates
predominate when there is an abundance of bacteria, giving good-quality effluent.
Filamentous bacteria can cause the sludge no to settle properly, called bulking. These
bacteria flourish when the excess sludge is not wasted at the proper rate.

In ASP, screened wastewater is mixed with varying amount of recycled sludge
containing a high concentration of microorganisms taken from the secondary
clarifier, and it becomes a product called mixed liquor. This liquor is then mixed in
the aeration system including aeration basin and diffuser is to provide oxygen to the
microorganisms. The aeration system makes wastewater pollutants contact with the
microorganism to treat the wastewater and reduce the pollutants. The
microorganisms are utilized to convert organic and certain inorganic matter from
wastewater into cell mass. The microorganisms used oxygen to break down organic
matter (food) for their growth and survival. Over time and as wastewater moves
through the aeration basin, food (BOD) decreases and cell mass (mix liquor
suspended solids-MLSS) increases. By the time the mixed liquor reaches the end of
the basin, the microorganisms have used most of the organic matter to produce new
cell mass.

In the bottom of the clarifier, the cell mass is settled to form a blanket of activated

sludge, separated from clearer water. The settled sludge which is also called activated
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sludge, is partly returned into the basin as RAS (returned activated sludge) and
wasted to become fertilizer. The returned activated sludge is to provide a
concentrated population of microorganisms back into the aeration basin. The effluent
is sent out for further treatment if required.

In the biological reactor, the dissolved oxygen (DO) affects the production of the
bioprocess. Too-high DO concentration will lead to a waste of energy, and lower
efficiency of the procedure. In case of too-low DO concentration, the activity of
microorganism is weak, which leads to the concentration of pollutant in the outflow
is high or leftovers, and the outflow could not reach the standard level, and become

stinking, harming the environment.
5.1.1 State variables

The state variables included in the ASM1 are the fundamental components that
act upon the process, but they are not always measurable or interpretable in many
practical applications. Therefore, some composite variables can be calculated from
the state variables in order to combine them into forms that are typically measured
in reality, such as COD (Chemical Oxygen Demand), TSS (Total Suspended Solids)
and TN (Total Nitrogen).

It is known that the ASM1 model allows us to describe phenomena of organic
matter and nitrogen removal. In fact, the main classification in the model state
variables is in organic matter, expressed in terms of COD, and nitrogen compounds.

In summary, the total COD balance of ASM1 is given in the following diagram:
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Fig. 50 COD components in ASM1 model

where the components are explained as follows:

Ss is the readily biodegradable solute. It is assumed to be made up of simple
soluble molecules easily absorbed by the organisms and metabolized for energy and
synthesis. Xs is the slowly biodegradable particulate, consisting of relatively complex
molecules that require enzymatic breakdown prior to absorption and utilization.

Si is the soluble inert and X, the particulate inert. They are nonbiodegradable
organic matter which are biologically inert and pass through the system without
change in their form and concentration. S; leaves the system through the secondary
clarifier effluent, whereas X; enmeshed in the settled sludge and leaves the system
mainly through the removal of excess sludge.

XsH Is the heterotrophic biomass and Xsa is the autotrophic biomass.
Heterotrophs are considered to growth in both anoxic and aerobic environments,
whereas autotrophs can only growth in aerobic environment. Anoxic growth of Xgn
and aerobic growth of Xga are also known as denitrification and nitrification process,
respectively.

Xp is an extra component included to take into account the inert particulate arising
from cell decay.

The total Nitrogen compound in the system (Mulas, 2006) is given as:
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TN = Sno + SnH + Snp + Xnp +0.086(XeH + Xga)+ 0.06(Xp (124)
+ Xi) [gN/m3]
where Sno is the nitrification of ammonia to nitrate nitrogen.

It is considered as a single step process. Snw is the free and saline ammonia
nitrogen. Snp is the soluble biodegrable organic nitrogen and Xnp is the particulate
biodegrable organic nitrogen.

Beside the state variables in the balances of total COD and nitrogen, the last two
components described in the ASM1 are the dissolved oxygen concentration (So), and

the alkalinity (SaLk). The alkalinity does not affect any other processes in the model.
5.1.2 ASM1 processes

In ASP, two major types of microorganisms carry out the biological reactions:
heterotrophs and autotrophs. The reactions taking place in the ASM1 was briefly
described by Jeppsson (1996) as follow.

e The aerobic growth of heterotrophs exerts oxygen and results in a production of
heterotrophic biomass. The growth rate depending on the concentration of both
readily biodegradable substrate (Ss) and dissolved oxygen (So). This process is
the main contributor to the production of new biomass and COD removal.
Ammonia is used as nitrogen source for synthesis and is incorporated into the cell
mass.

Ss + So+ SnH — XBH (125)

e The anoxic growth of heterotrophs (denitrification) occurs in aqueous
environment without dissolved oxygen with nitrate as the terminal electron
acceptor, with Ss the substrate and resulting in heterotrophs biomass and nitrogen
gas. Ammonia serves as nitrogen source for cell mass synthesis.

Ss + Sno + SnH—> XaH (126)
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e Aerobic growth of autotrophs (nitrification): Ammonia is oxidized to nitrate via
a single-step process (nitrification) resulting in production of autotrophic biomass
and giving rise to an associated oxygen demand. Ammonia is also used as the
nitrogen source for synthesis and incorporated into the cell mass. The process has
a marked effect on the alkalinity (both from the conversion of ammonia into
biomass and by the oxidation of ammonia to nitrate) and the total oxygen demand.
The growth rate is very slow.

So + SnH— Xea + So (127)

e The decay of heterotrophs is modelled on the death-regeneration hypothesis
proposed by Dold et al. (1980). The organisms die at a certain rate and a portion
of the material is considered to be nonbiodegradable adding up to the Xp fraction.
The remainder adds up to slowly biodegradable Xs. Organic nitrogen associated
with Xs becomes available as particulate organic nitrogen Xnp.

XeH — Xp + Xs+ Xnp (128)

e The decay of autotrophs takes exactly the same modelling approach as the decay
of the heterotrophs.

Xga—> Xp + Xs+ Xnp (129)

e The ammonification of soluble organic nitrogen regards the conversion of Snp
into SnH by a first order process mediated by active heterotrophs.

SnD — SnH (130)

¢ In the hydrolysis of entrapped organics, slowly biodegradable substrate trapped
in the sludge mass is broken down, producing Ss for the organisms to growth. The
process is modelled on the basis of reaction kinetics and occurs in aerobic and
anoxic environments. The rate of hydrolysis is reduced under anoxic conditions
compared to aerobic conditions by a factor i < 1.
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Xs — Ss (131)

e In the hydrolysis of entrapped organic nitrogen, Xnp is broken down to soluble
organic nitrogen at a rate defined by the hydrolysis reaction for entrapped
organics.

XND — Snp (132)

It should be noted that S, and X, are not included in any conversion process.
However, they must be considered because they are included in the COD
computation. The processes happening in ASM1 model are summarized graphically
in Fig. 51.

+
Slowly biodegarable
matter

Hydrolysis

A 4
Readily biodegarable
matter

Biological
growth

Biomass

Decay

" 4
Inert Material

l

Fig. 51 Biological process renewal scheme

5.1.3 The control problem of activated sludge process

The real-time control of the activated sludge faces some complex problems due
to the changing nature of the microbiological processes taking place in the bioreactor,
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the variability of the input flow and concentration, and the complex interactions
between different microorganisms.

Nevertheless, effective operation can be achieved by regulation of substrate and
other product levels and the maintenance of DO in the process above minimum
acceptable conditions. The system is multivariable in nature, however, taking into
account the fact that the time scale in which the oxygen operates is in minutes while
the substrate and other components evolve in the range of hours, it is possible to
decompose the control problem in two different layers, isolating the DO control from
the other ones that can be considered as disturbances.

As in the operation of ASP, oxygen is consumed by the microorganisms, it
becomes necessary to add enough oxygen to the water in order to comply with the
required minimum dissolved oxygen concentration (Roman et al., 2012). The DO
concentration can be controlled by mean of aerators and RAS flow. The operation of
aerators accounts for 50-90% of the total energy demand of a treatment plant.
Aerators can be divided into two main types: mechanical aerators and fine-bubble
diffused aeration, depicted in Fig. 52. The former is turbines moved by electrical
motors that represent the main energy and maintenance costs. The latter uses

compressor to inject air through submerged diffusers, which is short-called diffuser.

Electric motor Electric motor

Compressed air
- - — -
] ]

—  — NN — : e c . R
Feed loutput Feed T Air e T output
water water  water oo o', 7 _Bubles Tt o7 o] water

Air Air Air Air ] LR, ° K c. e L
flow flow flow flow
blade blade . . " .+ Finebublediscs K e, .
H I T T T T T T I TTTT TTT.
A) B)

Fig. 52 Two main type of aerators. A) mechanical aerator and B) fine-bubble

diffused aeration
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Nowadays, the diffuser is used more popular in ASP since it is more efficiently
in transfer oxygen. The measurement of the efficiency is expressed in term of
standard aeration efficiency (SAE), which factors in pressure and efficiency of the
mechanical equipment required to achieve a factor of oxygen transfer. The standard
aeration efficiency is the amount of oxygen transferred per unit of energy consumed.
Table 3 shows a brief summary of estimated SAE values for common types of
aeration equipment used for biological treatment. Aerator types include high- and
low-speed surface aerators, submersed jet aerators, fine-bubble disc diffusers, and
high density low flux (HDLF) fine-bubble diffusers.

Table 3 Efficiency ranges for various types of aeration equipment (Tchobanoglous

et al., 2003)
Type SAE, kg O2/kWh
Low-speed surface aerators 15-2.1
High-speed surface aerators 1.1-14
Submersed jet aerators 0.9-14
Fine-bubble diffusers, discs 2-7
HDLF fine-bubble diffusers 3-8

The RAS control is also very important to the ASP. The RAS distributes the
required microorganisms for the aeration basin to work in proper condition. Since
the RAS is pumped back to the aeration basin and eventually flows back to the
clarifier, if the RAS flow is too high, it will eventually cause a high hydraulic load
on the clarifier, preventing solids from settling. If the RAS flow is too low, the solid

will build up and finally spill over the clarifier weirs into the effluent.
5.2 System modelling

ASM1 model is decentralized and nonlinear due to the presence of Monod

kinetics equations. In order to design the controller, the process is modelled in the
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compound form, which classifies all the components in three group: dissolved
oxygen (DO), active microbial biomass (X) and the substrate (S). The compound
model can be found in Moreno (1991), which is also based on ASM1. In this model,
the DO time evolution is expressed by a dynamic mass balance where the oxygen
accumulation equates the oxygen supplied by the aerators and the oxygen consumed

by the microorganisms, given by the oxygen uptake rate, and a transport term:

% — KDy (€, ~¢)~OUR—q(c—c, ) /V (133)
where
Cir = (Ciqi +err)/q (134)

c is the DO concentration in the reactor, cs refers to the DO saturation level at the
working temperature, Ds indicates the aeration factor, OUR is the oxygen uptake
rate, cir the DO concentration of the flow into the reactor, ci the input flow
concentration, ¢ the sludge recycled flow concentration, g the input flow rate, qr the
sludge recycled flow rate, Kia dilution constant and V the reactor working volume.
The DO concentrations in the input flow and the sludge recycled flow are considered
constant: ¢i =2 mg/L and ¢, = 0.

The aeration factor Ds, is normalized varying between 0 and 1 representing the
percent of maximum power of the fine-bubble diffused system.

The oxygen uptake rate (OUR) plays an important role in the dynamic of the DO
as it represents the rate at which oxygen is consumed by the microorganisms, with
one term proportional to the activity of the microorganisms and another one to its

concentration:

OUR =K,z Xs+ KX (135)
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Here x is the biomass concentration in the bioreactor (mg/L), s corresponds to the
substrate concentration (mg/L) and the other parameters can be taken as constants
with values Ko = 0.2 x 10-3 h™%, Kx = 0.01L/mg, s = 4.079 x 10* ", The dynamics
of the biomass x and substrate s in the bioreactor can be described by Cristea et al.
(2011):

%zﬂxﬁx—de%ZJr\%(x"—x) (136)

%:_éﬂx Kss+sx+ dex?er Kcsx+\%(sir—s) (137)
where

x, = %G ; G 5 S ;quf 4=, +0, (138)

And the simulation parameters are given in Table 4.
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Table 4 ASP model parameters

Parameters Value Unit
Ko 0.2x10° ht
Kx 0.01 L/mg
Kax 10° ht
Kas 10° ht
Kex 1.33x10* ht
Kes 0.27x10* ht
Kia 0.4 ht
Ms 4.079x10* ht
Mx 0.1085 ht
a 0.5948

5996 m3
Cs 10.92 mg/L
ci 2 mg/L
cr 0

5.3 Model linearization

ASP is complex and difficult to control. However, effective operation can be
achieved by regulation of substrate and other product levels and the maintenance of
DO in the process above minimum acceptable conditions. Therefore, the DO
concentration is one of the principal parameters in an ASP. The amount of oxygen
supplied for the aeration basin should be equal to the amount required by the
microorganism to oxidize the organic material. Another potential measured variable
is substrate concentration in the recycle stream. The system is multivariable in nature,
however, taking into account the fact that the time scale in which the oxygen operates

is in minutes while the substrate and other components evolve in the range of hours,
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it is possible to decompose the control problem in two different layers, isolating the
DO control from the other ones that can be considered as disturbances (Cristea et al.,
2011). In this study, DO is chosen as the control variable. DO is controlled by the
fine-bubble diffused aeration system. In order to linearize the process as a
controllable system, the recycle-stream flow rate is chosen as the second manipulated

variable.

X(t) = f(x(t),u(t))
y(t) = g(x(t),u(t)) (139)

c

where X=| X |,u= Y=
a X

S
The Jacobian linearization is carried a little bit away from equilibrium point x*(2,
2550, 8.4) and equilibrium-input u*(0.29, 1325), and equilibrium output y*(2), the

components of the linear system are calculated using:

azd
OX [r=x*
~_ 9 _ 03368 —2.3324¢-04 ~0.0107
5996 (140)
_ 0 ~ % _p1852  8.9746
5996
0 -0.0578 146034
i 5996 |
, 3.356 —0.0004
B =] 0 03076 (141)
e | 0 —0.001
cadyl _[1 00
e (142)
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D_
ou

00
x=x*:|:o 0:| (143)

u=u*

where the symbolic partial matrices A, and B are given in Appendix D.

The scheduled parameter is the influent flow. It can be seen that the dynamics of
the system changes depending on the parameter gi in the matrix A. Through the
linearization, the nonlinear system is transformed to a linear parameter-varying

system, which is used to design a controller.
5.4 Robust gain-schedule controller design for activated sludge process

Conventional activated sludge is an aerobic process. The microorganism need free
oxygen to convert food into energy for their growth. For optimal performance, it is
very important to provide enough oxygen into the aeration tank. Typically, the
dissolved oxygen (DO) concentration in aeration tank is kept stable at 2 mg/L.
However, in waste water treatment plants, the influent water flow rate varies in large
ranges during daily and weekly operation time. As seen in the Fig. 53 (Cristea et al.,
2011), the variation range of the feed water is from 900-2100 m®/h. In this study, the
feed water is let to be random number in the range of [500-6000]. This variation will
cause big fluctuations in the DO concentration without an effective controller. The
aim of the controller is to keep the DO concentration stable at 2 mg/l in spite of the

variation of feed water.
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Fig. 53 The reference variation in influent flow (Cristea et al., 2011)

From the linearization, the linear system G is given under state space form as:

¢ c
Fa
X |=A| X +B{ }
$ s A
144
. (144)
y=C| X
S

where A, B, C are given in Eqgs (139-142)

In this case, the feed water g is the schedule parameter. The feed water flow is
easy to measure. Consequently, three parameter A11, A2, Asz in the state-space matrix

A are variable in their ranges as follow:

—0.687 < A, <-0.487; 0.115< A, <0.749; 0.872<A, <1.744 (145)
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From the state-space equation, it can be seen that the dynamics of the system is
changed depend on the variation of gi. The system is a LPV one and can be described

using affine parameter-dependent representation as follow:

E(g,)%x=A(q;)x+Bu

146
y=Cx (146)

G(qi):{

where A(qi) and E(qi) are affine matrices and gi = ( i1, Qi2, Qia) = ( A11, A2z, As3) are
real parameters based on Ai1, Az, Ass, respectively.

The LPV system G(q;i) then can be expressed in the form:

A(g)+ JE(g) | B 3 A + JE. | B,
G(qi){ (‘“2’ (q')ao}soiqusj.sj{ R D,l 147

]

where
[0 -2.332x10* -0.01] 3.356 -4.2x107* |
0 0 8974 0  0.0397
S,=|0 —0.0578 0| 0 ~0.001 (148)
1 0 o] o 0
0 1 0| o 0
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The above representation is equal to:
G(0) =Sy + AsS, + ApS, + AyS, (150)
G(g,) T
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7; "7‘}75-__:/5_ W/‘Ii_?
qi%l V3
uj SﬁZ%Sj N
j=1

Fig. 54 The affine parameter-dependent representation of the activated sludge

system

The robust gain scheduled controller design for the ASP from now become similar
to H. controller synthesis. From the block diagram of the control system as in Fig.
55, it’s necessary to create a generalized plant P including the LPV system G, the

gain scheduled controller K and weighting functions. The weighting functions are
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chosen to scale the respective signals depending on the control goals. In this study,
control error and control effort are weighted and chosen to be included in the
optimization so that the control system satisfies the desired DO concentration with

minimum energy consumption.

Wp P————m

{7

rot Y
X ¢ | K5 *G(q,)
qi _‘

Fig. 55 Block diagram of the control system

From the control block diagram, a generalized plant P is created by grouping the
LPV system G(qi), the weighting functions W, and W, and the external factor such
as reference r and noise n. The generalized plant is illustrated as the grey block in
Fig. 56. It is further written as in Eq. (151).

P(qy
i o 7 y!
Zy
. i W, y~
o 4 o
| G(q[) + Y+
‘ |
qi
______ |
]

Fig. 56 The parameterized generalized plant P
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Z, W, W, | -WG|n n
P | P
Z,|=| O 0| W, =5 Te |I" (151)
e -1 1| G |u a2 dy
\ P

In order to formulate the robust criterion for controller design, the grouping of the
generalized plant and the controller K is carried out by a lower linear fractional
transformation (LFT) as depict in Fig. 57. The LFT is further express as follow:

(152)

of —WpS0 WpS0
Fl(P' K) = P11+ PlZK(I - PzzK) I:)21 vi

“W,KS,  W,KS,

where S, = (1 +GK)™is the output sensitivity function, and it has the relation with

the complementary sensitivity function T, = GK(l + GK) 'such that S, +T, =

A A 4
[N}

P(q)

Fi(P,K)

Fig. 57 Lower LFT configuration
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In term of control synthesis, all these specifications can be summarized by the
following optimal problem: find the weighting functions and the gain scheduled
controller K s.t.

W, S
KS

which is called an S/KS mixed sensitivity problem. The problem is equal to solve

‘ <1 (153)

the LFT of the generalized system P and the controller K (see Fig. 57) s.t.
[R(P.K)[, <1 (154)

In the routine of controller design, the weighting functions are chosen as follow

to optimize the problem:

i :%’W“ B s+50.2 (159)
Then the chosen weighting functions are applied at the final stage to synthesize a
gain scheduled controller K which is optimized for each value of the scheduled
parameter @i, and it can auto tune whenever g; varies in its range. At any possible
value of gj, the controller has it respective dynamics and the optimal problem is still
satisfied. The gain scheduled controller therefore is not as complex as H.. robust
controller which is synthesized for entire set of parameter uncertainty simultaneously.

Consequently, the former is more focus and effective for the control system.

In this study,

W.,S
}WT(SH =0.59 <1, which is very good value since there will be a

large margin before the control system comes to its worst case.

5.5 Simulation result and discussion
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It is known that the DO concentration in ASP should be kept stable at 2 mg/l to
guarantee the best performance for the system. Too high DO concentration leads to
a waste of energy and too low DO concentration will weaken the activity of the
microorganism and the input waste water is not enough treated, resulting in a low-
quality effluent.

In Cristea et al. (2011), three motors were chosen as the mechanical aerators. They
are scheduled by a hybrid MPC to alternately operate in on/off manner to keep DO
concentration at 2 mg/l and minimize the consumed energy. The result in Fig. 58
shows that even the controller can keep the DO concentration above 2 mg/L, there
are still a lot of fluctuation. For more stringent output water, the above controlled

system is not satisfied. It also means the energy consumption is not minimized.

0 50 100 150
Time [h]

Fig. 58 Variant DO concentration at effluent in Cristea et al. (2011)

In this study, the fine-bubble diffuser continuously discharges compressed air into
the aeration tank. The air flow and RAS flow are controlled by the gain scheduled
controller so that the DO concentration is kept stable at 2 mg/l under large variations
of the input water flow. To illustrate the ability of the gain scheduled controller in
dealing with parameter variation (g; in this study), the simulation was carried on

using 50 random values of feed water flow gi. Fig. 59 shows that all the sample
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responses have rising time less than 0.15 h = 9 min and there is no considered
difference between them. The steady state errors are zeros. This is a very good result
since the output water’s quality is guaranteed in the best condition. It proves that the

designed controller can handle the long-range variation of the feed water.

24

221

Dissolved oxygen {mg/l}

0 0.1 0.2 0.3 0.4 0.5
Time (h)

Fig. 59 The set of transient responses of the control ASP under parameter variation

Since the controller dynamics is changing according to the parameter variation,
one of the advantages of the gain scheduled controller is its ability to be applied for
nonlinear system. In this study, designer built a nonlinear model of ASP in Simulink
environment to test the control system under influent variation. Two responses are
plotted in Fig. 60. The firs is the DO response of the system without the controller
and the second is the one controlled by the designed controller. The result shows that
without the controller, the DO concentration is varied in big magnitudes due to
influent changes. Being controlled by the gain scheduled controller, the DO
concentration is kept stable at exactly 2 mg/l and the rising time is very short with a
slight overshoot. It proves that the achieved controller can be applied for the real
nonlinear ASP.
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At high frequency ranges where the measurement noises happen, the controller is
designed so that the value of KS is small to reduce the effects of noises. Therefore,
beside the ability to eliminate disturbance caused by parameter uncertainty, the
controller can also attenuate sensor noises. In order to illustrate this ability, white
noise is introduced into the system as in Fig. 61. Simulation result shows that the
response is fluctuated but in very slight magnitudes compared to the noise
magnitudes. It can be conclude that most of noises are attenuated and the control
system is unsusceptible to noise.
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Fig. 62 Noise response of nonlinear controlled system

5.6 Conclusion

In this section, the ASP is linearized as an LPV system, due to large variation in the
influent flow rate. A robust gain scheduling controller is successfully designed to
regulate the DO concentration at 2 mg/L under the parameter variation and noise.
The controller is tested for both the linearized and nonlinear system. The simulation
results show that the controller is very active and can help to optimize the energy
consumption for the ASP.
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Chapter 6. Observer-based loop-shaping control of anaerobic digestion

6.1 Introduction

The sludge rejected from activated sludge process is not safe for the environment. It
needs further treatment. The most widely employed method for sludge treatment is
anaerobic digestion (AD). AD is a well-known process for renewable energy
production. In this process, about 40% to 60% of the organic solids is decomposed
into biogas. The chemical composition of the gas is 60-65% methane (CH4), 30-35%
carbon dioxide (CO2), plus small quantities of H2, N2, H2S and H20. Of these,
methane is the most valuable because it is a hydrocarbon fuel (giving 36.5 MJ/m3 in
combustion).The remainder is dried and becomes fertilizer or residual soil-like
material. The process happens in the environment without oxygen, that’s why it is

called anaerobic dioxide.
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Fig. 63 The diagram of activated sludge and anaerobic digestion system
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6.1.1 Control problem in anaerobic digestion

Controlled inputs or manipulated variables in automatic control of AD process
should have quick and significant impacts on the process. In AD process, depend on
the application, control variables can be methane flow rate, chemical oxygen demand
(COD) concentration in the effluent or volatile fatty acid (VFA) while feeding rate
is the most common manipulated variable. By using feeding rate as manipulate
variables, it is possible to simultaneously regulate the retention time and organic
loading rate, allowing microbial communities in the system to adapt to some
disturbances. The feeding rate can be represented by dilution rate which is the ratio

between the flow rate of the substrate and liquid volume of the digester.
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Fig. 64 The diagram of an anaerobic digestion system.

X4in

For industrial scale AD plants, basic parameters such as pH, temperature, mixed
liquor level, gas pressure, mixed liquor and biogas flow rate, should be monitored

on-line. However, in fact, on-line monitoring was not performed in many industrial
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scale plants. According to Spanjers and Lier (2006), only 10% among 400 industrial
scale AD plants worldwide are equipped with on-line analysis of COD, TOC, VFAs,
alkalinity, and biogas composition. It could be explained from the complexity in
operation and maintenance of the advanced analyzers or sensors. Additionally, high
capital and operation costs of these state-of-the art devices make it economically
unattractive for AD operators to embrace the technology.

For plants with on-line monitoring systems, real-time control was rare and even
the periodical data analysis was skipped. For the plants with real-time controllers,
the control system was simple, time-based, equipped with on—off controller.

Therefore, in this section, a robust loop-shaping controller is designed based on a
robust observer to control the COD concentration under disturbances and to observe

VFA, in case of there is no equipment to measure this parameter.
6.2 System modelling
The system is modelled based on the fourth-order model relating the mass balances

of acidogenic, methanogenic bacteria, chemical oxygen demand and volatile fatty
acids (Estrella et al. 2013) as follow:

% = (1 (%) —aD)x, (156)
X, = (16 (%,) —aD)X, (157)
X5 = (Xg0 — X5) D —Ky4 (%)%, (158)
Xy = (Xgin =% ) D+ Ky (X)X, — K3, (X,) X, (159)
13 (Xa) = Himay X ISKsl

X, (160)

1y (X)) = Moy
2 ? x4+K52+(x4/K,2)2
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where xi1 represents the acidogenic bacteria concentration (g/L); X2 is the
methanogenic bacteria concentration (g/L); x3 the chemical oxygen demand (COD),
X4 the volatile fatty acids concentration (VFA, mmol/L), x3,inand Xa,in denote the inlet

concentrations, z4(x;) and z,(x,) are the growth rates of acidogenic and

methanogenic bacteria, respectively.

Table 5 Parameter of the AD system.

Parameter Value Unit

o 05

ke 42.14

ko 116.5 mmol/g
ks 268 mmol/g
Mimax 0.05 ht
M2max 0.031 ht

Ks1 7.1 g/L

Ks2 9.28 mmol/L
Kiz2 16 mmol/L
X3,in 16 g/L

X4,in 68.78 g/L

The system is highly nonlinear and very difficult to be controlled due to the
interconnection between the state variables. From the nonlinear model, the system is
linearized using the parameter in Table 5 to achieve a LTI system, based on which
the control synthesis is designed. The manipulated variable is the dilution D, which
is performed by adding water to influent sludge. The controlled variable is the COD

concentration, and the observed state is VFA concentration.

6.3 Controller design
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6.3.1 Hoo loop-shaping controller

In the robust control approach, the control objective is to stabilize not only the
nominal plant G, but also the set of perturbed plant Gp. using a dynamic feedback
controller K. A loop-shaping technique allows the system designer to specify closed-
loop objectives by shaping the loop gains. If the function W1 and W- are the pre- and
post compensators, respectively, then the shaped plant with its coprime factorization
IS given by:

G, (5) =W, (S)G(S)W,(s) = M, N, (161)

Fig. 65 Shaped close-loop system.

where W is the identity matrix and Wy isa diagonal matrix which is used to shape
the frequency response of the nominal model and to specify the closed-loop
behaviors. Typically, the loop gains have to be large at low frequencies for good
disturbance rejection at both the input and output of the plant, and small at high
frequencies for noise rejection. In addition, the desired opened-loop shapes are
chosen to be approximately -20 dB/decade roll-off around the crossover frequency
to achieve desired robust stability, gain and phase margins, overshoot and damping.

In this section, the shaping functions Wy is chosen as:

(162)

s+20 Y
s+10°°

Wl(s) = (
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So that the shaped plant has the shape as in Fig 66. Since the system operates in
very low frequency range, it is shaped only in this frequency to eliminate the effect

of disturbance.
10° ———rrrrr———r — -
i C Nominal system G(s)
o 5 | p—— Shaped plant G (s)
106 :\\.I....;: ::( i i :
v N
St N
© I TN
> L RN
& ] N
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I To R e MR L
w T
10° b
10.21 i‘o _.1 - ,,2 i : ; .
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Frequency (radls)

Fig. 66 The singular value plot of the nominal and shaped loop

6.3.2 Coprime factor uncertainty

Robust stability bounds in terms of the H., norm are conservative if there are many
perturbation blocks at different position in AD system. To get tighter bounds for AD
system, the uncertainties are described using the left coprime factorization (LCF)
(McFarlane and Glover 1992) as depicted in the dashed rectangle in Fig. 67. In this
structure, uncertainty blocks enter and exit from the same position. Therefore, they
can be combined to form a full perturbation block.

Note that in the coprime factor uncertainty (CFU) description in Fig. 67, there is
no weighting block. The description is based on addictive perturbations to the LCF.

The robust stabilization problem is to stabilize the set of perturbed plants:
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G, =(M,+A,) (N, +A), [[Ay —Ay]l, <& (163)

where M_'N, =G, is the normalized LCF of the shaped plant, ¢ is the stability

margin, Ms, Ns, A,, andA e RH_ .

6.3.3 Control synthesis

For stringent tracking problem in AD system, one-degree-of-freedom controller will
not be sufficient to meet both requirements for reference tracking and disturbance
rejection. Hence, a dynamic 2-DOF controller is proposed using Hoyle et al. (1991)

approach. The 2-DOF feedback control scheme is depicted schematically in Fig. 67.

Fig. 67 2-DOF design configuration with coprime plant perturbation.

The 2-DOF controller includes the feedback part K> that satisfies the requirements
of internal and robust stability, disturbance rejection, measurement noise attenuation
and sensitivity minimization; and the pre-compensator Ky that optimizes the response
of the overall system to the command input such that the output of the system would
be close to that of a chosen ideal system T,. More explicitly, T, represents some
desired closed-loop transfer function between reference input and output

The shaped plant is supposed to be strictly proper, with a stabilizable and
detectable state-space realization
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B
G, {? 5} (164)

B
T = {? Or} (165)

To form the standard control configuration, a generalized plant P is defined as:

w1 [ o 0 ¢ 1]
Y, M 0 G |[w

S

e [=| M AT 1 4G, || r

T 0 Al 0 ||u, (169)
Y, M* 0 i G
i P ]
P is further calculated as:
A 0 |0 zCl!B]
0O A |B 0 {0
0 0 |0 o0 il
P=|c, 0 |0 1 0|2 (167)
pC, —p*C.| 0 pl 10
0 0 [pl 0 O
0 0 |0 1 o0

The 2-DOF loop-shaping controller in Fig. 67 can be separated into a state

estimator (observer) and a state feedback controller. According to Walker (1996),
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the state feedback stabilizing controller K(s) satisfying |F_(P,K)| <1 has the

following equations:

=AX, +H (CX —vY,)+ B
Ax +Br (168)

)A(s

K(s):<X =
T o T

U, = _Bs Xoollxs - Bs XoolZXr

where X_,,and X ,, are elements of

X X
x — oll 012 l
- |: X 021 X 022 ( 69)

in which X >0 is a solution to the following algebraic Riccati equation:

X _A+A'X_+C/C,~F'(D"JID)F =0 (170)
where
F=(D"JD)*(D"JC+B"X,) (171)
o2 %
7 {'Z . } (173)
0o I,

The observer-based control system is depicted in Fig. 68.
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Measured

Bs +| O ) | Cs output

u Shaped plant y
Gi(s) ¢

H

reference

Fig. 68 Structure of the two degree-of-freedom H., loop-shaping controller.

Noting that
F 2B X,y (174)
F 2B X, (175)

And the observer is calculated by solving following equation:
H,=-Z,C!] (176)

where Zs is the appropriate solutions to the generalized algebraic Riccati equation:
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(A-BS'D'C)Z+Z(A-BS*'D'C)" -ZC'R'CZ+BS™B' =0 (177)
with

R=1+DD', S=1+D'D (178)
6.4 Simulation result
Fig. 69 shows the response of the COD concentration under the effect of disturbance.
It can be seen that the COD concentration has only some slight changes due to large
disturbances. It means the COD is kept stable at desired value, despite the large
disturbances. The variation in COD is also eliminated whenever the disturbance

values are stable. The control action is also plotted in this figure, which shows some
changes to bring the COD back to the desired value.

Time response of effluent COD

25 N7, T T T 7]
.E B —— i ‘_‘ :
J1.5f e ref@rence
k=) e disturbance
] — COD
O .
O 1H e cONErol signal
0.5
ok : ‘ '
0 20 40 60 80 100
Time (h)

Fig. 69 The response of COD concentration under disturbance
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Fig. 70 shows the performance of the observer on the estimation of VFA state and
Fig. 71 shows the magnification at initial time of Fig. 70. Assuming that the initial
value of the real VFA is 60 mmol/l and that of the estimated VFA is 30 mmol/l. It
can be observed that the estimated state can track the real state in very short time, in

other words, immediately. The estimated error is 0 and the tracking is perfect.
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Fig. 70 The VFA estimation (upper) and its magnification (lower)
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6.5 Conclusion

By using the coprime uncertainty, the control system accounted for any kind of
uncertainty that can exist in ASP. The loop-shaping procedure allows designer to
shape the system as desired. The 2-DOF controller gives some flexibilities in the
robustness satisfaction and reference tracking. The above performances prove that
the observer based H.. loop-shaping controller is very active. Based on this control
configuration, the COD can be robustly regulated and the VFA value can be exactly
estimated, overcoming the limitation of difficulty in the implementation of complex

and expensive sensors or analyzers.
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Chapter 7. Conclusion

Nowadays, when water demand is rapidly increasing and water sources are
exhausted, water treatment becomes a very urgent problem all over the world.
Therefore, water area need more studies and contributions to guarantee enough
productivity and lower water cost. This dissertation contribute for water treatment
are by successfully applying high level control algorithms to robustly manipulate the
water treatment plants.

The water treatment plants being controlled in this study include RO and ASP
system. Each of the system is approximated from their respective nonlinear
differential equation. The nonlinear behaviors of RO system are carefully examined.
Especially, the water hammer phenomenon is well analyzed. The analysis shows the
potential danger of water hammering to the system. Water hammering is consider as
disturbance to the system and give some insights into the control design. The
uncertainty in RO system is modelled using linear state-Space parametric uncertainty
framework plus unmodelled dynamics. Hence, this is a kind of general uncertainty
model for RO system. The simulation shows that the robust mixed Heo-p controller
can cope with large parametric and unmodelled uncertainty, as well as sensor noises.
Especially, it can attenuate 58% of transient pressure caused by water hammer and
can regulate the system in short time. Using this controller will help reduce the
cleaning process, prolong the membranes life and lower product cost. The
comprehensive analyses, linearization with parametric uncertainty, and the robust
controller have remarkable contributions and are needed for the safe operation of any
RO system.

The RO system is linearized as an LTI system while the ASP system with
measurable scheduling parameter is modelled as an LPV system. Due to the large
variation in the influent flow, which is considered as a scheduling parameter, the
robust gain scheduling controller is applied to control the ASP system. In this control
system, the dynamic of the controller is changing with the scheduling parameter,

giving the best result for ASP system along its operation time. The simulation also
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shows that the control system give the identic responses for different perturbed
systems to keep the DO concentration stable and can deal with noise as well. In AD,
since some state variables such as VFA...are very complicated to be measured, the
robust observer based-controller is designed which is original from the 2 DOF loop-
shaping controller, to regulate the COD concentration and estimate the VFA
concentration. This kind of controller is useful for AD since the analyzers and
sensors are very difficult to be embraced.

Finally, through this dissertation, the three high level robust control techniques
are successfully designed to control two water treatment plants: RO-the desalination
system and ASP-the wastewater treatment system. The controllers can regulate the
plants under very harsh conditions such as high uncertainty, big disturbance such as
water hammer and flow variation, as well as estimate some state variables. They help
to protect the system, prolong the life of instruments, find a solution in the case lack
of instruments, increase productivity and contribute on lowering the product water
cost for people. Furthermore, the study and analysis of the two water treatment plants
also introduce many knowledge about water treatment system and excite more
consciousness of scientists and investors to cooperate in water treatment area giving

more low cost water for people.
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Appendices

Appendix A

Symbolic linearized partial matrices

A A A-R)+R(v, -v,) A
=——" __PC AT (1-a L 2 _PRyv
A SK, pV ATL-a) v v
AZ
A, :__p__pcfm(l_a)R
SK,, pV A1
A A"cm(l al)(1—R)+R(Vf—vb) A
POSK v v
A2 A A
=——" P C,AT(1-a)R-—"R,V,
Pz SK, pV AT (1-3) b
1A
Bllz_Evaf
B, =0
12 (A.2)
B,, =0
1A
Bzzz_Evthf
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Cll

=—A,.36.10°

C, =—A,.36.10°

C21 =

C22

PA, 1-R)+R(v; —v,)
- -C 1-a
SK. (AT (1-a) v

PA
SKp -C,fAT(1-a)R

Appendix B

Calculated values of linearized matrices

531 -2.016| _ [-0.0254 0
| -23 -503] | 0  -0.0254

[ —457.2 —457.2

00
~104.88 -92.08,D=|0 0
| 109.91 109.91 0 0
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(A.3)

(A4)

(B.1)



11.61s +31.75 11.61s +38.26
s?+10.345+22.09 s’ +10.34s+22.09
G(s)=| . 2005+803 2335+7.05
s*+10.345+22.09 s°+10.34s+22.09
~2.795-7.63 ~2.795-9.19
| +10.345+22.09 s°+10.345+22.09
| Ts+K, T,s+K, | (B2)
S“+2fw s+ $P+20m,5+ @]
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4572 —4572| O o~ )D 0
G, =|-10488 -9208| 0 0 -38296 0 (B.4)
109.91 10991 | O 0 0 0
e o .
| 0033 066 | O 0 0 0
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Appendix C

The weighting functions and analytical controller K

0.55+0.78
S+3.46
W, = C.1
M 0 0.52s +1.2 (€1
s+3.47
[ 0.85+1.5 }
— 0
5.55+10
4.85+35
W, = 0 it i C.2
2 6.5s+10* (€2)
0 0
Kll Klz
K=K, K, (C.3)
KSl K32

where:

~ 0.03s° +5.05x10°s’ +2.81x10"s" — 7.05x10"s” —1.96x10"'s" —3.68x10"'s —5.67x10’
- s° +8315s° +7.255" +1.57x10%s” +6.9x10°°s* + 2.11x10" s + 1610
_ 0.85° +7755° +5.58x10"s" +1.45x10"s" +4.35x10"s" +8.2x10"'s +1.26x10’
- s° +8315s° +7.25s5" +1.57x10°s” +6.9x10"s* + 2.11x10" s + 1610
_ 0.115° +6.76x10°s’ +1.23x10”s" +1.39x10"'s’ +3.09x10”s* +6.73x10" s +1.01x10°
- s° +8315s° +7.25s5" +1.57x10%s” +6.9x10"s” + 2.11x10" s + 1610
_ 1.235° —1.74x10"s’ —9.95x10"s" —6.63x10°s’ +1.26x10”s° +8.62x10" s +1.3x10’
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Appendix D

Symbolic linearized partial matrices of ASP
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