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Restoration of imperiled ecosystems has emerged as a national priority, but there

is little mechanistic understanding of how to restore ecosystems so as to sustain both

species diversity and ecosystem function. The main objectives of my dissertation were

(i) to develop an understanding of mechanisms that structure upland and wetland prairie

plant communities in Oregon's Willamette Valley, with particular focus on edaphic and

competitive controls over native and exotic species, and (ii) to apply this knowledge

toward more effective restoration ofprairie ecosystems. I used a combination of

experiments and analysis of natural gradients to examine the effects of succession,

competition, and environmental heterogeneity on plant community structure and

ecosystem function within a restoration framework.



IV

I conducted a large, replicated field experiment and a retroactive study of

previously restored wetland prairies to assess different site preparation techniques. These

techniques had variable effectiveness in suppressing the existing vegetation and seed

bank, thus providing different initial successional trajectories. However, over time plant

community structure converged due to a loss of early-successional species and the

increasing dominance of native bunchgrasses; hence, there was a negative relationship

between cover of native species and diversity. Only the more extreme treatments, such as

topsoil removal, had large impacts on soil functioning. These studies underscore the

importance of using a successional framework to guide restoration efforts.

Given the potential importance of competition between native and exotic grasses

in structuring prairie vegetation, I used a paired study of field and greenhouse

experiments to determine how abiotic factors influence the competitive hierarchies

between native and exotic grasses commonly found in upland and wetland prairies.

Exotic grasses dominated competitive interactions with the native grasses, but this

depended upon nutrient and moisture availability.

Finally, I used a laboratory experiment to determine the seasonal and edaphic

controls over nutrient and carbon cycling within a spatially heterogeneous upland prairie.

Manipulating moisture and temperature resulted in significant changes in nitrogen,

phosphorus, and carbon cycling, particularly in the winter. Under projected future

climate change, these changes will likely have large effects on plant community structure.

This dissertation includes my previously published and co-authored materials.
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CHAPTER I

INTRODUCTION

Many formerly extensive prairie ecosystems in the United States have been

dramatically reduced since Euro-American settlement. Several types, including prairies

in Oregon's Willamette Valley, have been listed as critically endangered ecosystems

(Noss et al. 1995). Historically, prairies covered much of the Willamette Valley (Hulse

et al. 2002, Whitlock and Knox 2002); however, 99% have been severely altered or

destroyed by invasion of non-native plants, land development for both agricultural and

urban uses, and fire suppression leading to succession to woodlands and forests (Finley

1994, Wilson et al. 1996). As a result, many ecosystem functions have been significantly

diminished (e.g., water quality), and a number of species dependent on prairie habitat

have been listed as threatened or endangered (e.g., Aster curtus, Erigeron decumbens var.

decumbens, Lomatium bradshawii, Icaricia icarioides fenderi). For these reasons, the

restoration and protection of these ecosystems has become a conservation priority.

Restoration is "the process of assisting the recovery of an ecosystem that has been

degraded, damaged, or destroyed" (Society for Ecological Restoration International

2004). Restoration activities are increasingly widespread, although it is a relatively new

scientific field (National Research Council 2001, Young et al. 2005). Over the past 20
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years, restoration ecologists have begun to integrate basic ecological principles into the

practice of restoration. Some of these principles include the role of competition

(Seabloom et al. 2003), successional theory and assembly rules (White and Jentsch 2004,

Walker et al. 2007), invasion biology (Hoopes and Hall 2002, Seabloom and van der

Valk 2003), abiotic factors (Corbin and D'Antonio 2004a), and disturbance ecology

(Huston 2004) in structuring ecosystems. However, there is still considerable potential

for further integration of ecology into restoration, and restoration practice provides an

excellent opportunity to test basic ecological theories (Bradshaw 1987).

The importance of competition in structuring plant communities has long been

debated by ecologists (e.g., Connell 1983, Grace 1991, Craine 2005). Some argue that

competition becomes more intense under stressful abiotic conditions (Tilman 1988),

while others argue that competition becomes less important under stressful abiotic

conditions and instead increases with increasing productivity (Grime 1977, Twolan-Strutt

and Keddy 1996). If competitive hierarchies vary along environmental gradients, it

follows that the abundance and distribution of species would also vary along that

gradient. In prairie ecosystems, the ability of aggressive exotic species to competitively

exclude native species has been identified as a primary obstacle to successful restoration

(Ewing 2002). Previous studies have shown than native species are able to survive in

stressful, nutrient-poor environments, but are outcompeted by exotic species under high­

resource conditions (Huenneke et al. 1990, Vinton and Burke 1997). However, other

studies have shown no effect of the abiotic environment on competitive hierarchies

(Bakker and Wilson 2001, Corbin and D'Antonio 2004b). This is still a current debate in
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ecology and restoration science, and more empirical evidence is needed to resolve this

issue.

Successional theory is one of the oldest concepts in ecology, beginning with the

contrasting viewpoints provided by the organismal concept of Clements (1936) and

Gleason's individualistic concept (1939). Currently, concepts of alternative stable states

and assembly rules have received much attention (Temperton et al. 2004, Schroder et al.

2005). Given that successional theory and assembly rules deal with how communities are

constructed, it is not surprising that restoration practitioners have a vested interest in the

applicability of these theories, and ecological restoration provides an ideal venue to test

these ideas (Sheley et al. 2006).

Invasion by exotic species is recognized as a leading threat to biodiversity and

ecosystem functioning (Vitousek et al. 1997, Mack and D'Antonio 1998, Chapin et al.

2000). Furthermore, the potential for successful restoration is seriously comprised by the

introduction of exotic species (Zedler 2000). Exotic species are estimated to cost the

United States $120 billion per year, and approximately half of endangered and threatened

species are considered to be at risk due to the presence of invasive exotic species

(Pimentel et al. 2005). In Oregon, it is estimated that greater than 25% of the flora and

fauna are non-native species (Meyerson and Mooney 2007). It is important to understand

the mechanisms that make some exotic species more invasive than others (e.g., small

seed size and high propagule pressure (Rejmanek and Richardson 1996, Zedler and

Kercher 2004)), and why certain ecosystems are more invasible than others (e.g., more

diverse communities may be more resistant to invasion (Naeem et al. 2000)).
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Abiotic factors (e.g., nutrient availability and hydrology) are clearly important in

structuring plant communities. Plant distributions are highly correlated with rainfall,

temperature, and elevation, and numerous studies have shown that manipulating

environmental factors can change plant species composition (e.g., van der Valk et al.

1994, Weltzin et al. 2003, Baer et al. 2005). Restoration attempts often are unsuccessful

because of insufficient consideration of the abiotic environment (e.g., trying to establish a

wetland community with improper hydrology (Mitsch and Wilson 1996)). To effectively

restore and conserve prairies, it is essential to understand how major abiotic processes

control plant community structure.

Disturbances can directly affect plant communities, but may also affect them

indirectly by altering resource availability (Burke and Grime 1996, Stohlgren et al. 1999).

Often land is in a highly-disturbed state prior to restoration, and the practice of

restoration can be a form of disturbance as well, both in terms of site preparation (e.g.,

tilling or topsoil removal) and site management (e.g., fire or mowing). In many cases,

restoration practitioners have found that periodic disturbance is necessary to maintain a

desired plant community. For example, in Pacific Northwest prairies, fire has been

identified as a tool that can favor native species and reduce invasion by woody species

(Clark and Wilson 2001, Kaye et aI. 2001); however, the intensity and frequency of fire

are key determinants of the effectiveness.

Successful conservation and restoration should incorporate all of these ecological

principles. No one factor determines the structure and composition of plant communities.

Rather, a variety of mechanisms must be considered, including the abiotic environment,

competition, succession, the impact of invasive species, and disturbance.
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Dissertation Research

The primary objective of my dissertation research was to understand the

mechanisms that structure prairie plant communities, with particular attention given to

native and aggressive exotic species and their interactions with edaphic controls. To

address this objective, I examined the effects of i) succession, ii) competition, and iii)

environmental heterogeneity on plant community structure and ecosystem function

within a restoration framework. In the following section, I detail the motivation and

objectives for each chapter in the remainder of my dissertation.

Chapter II is entitled "Plant community and soil responses to experimental

restoration techniques in a wetland prairie." This work is co-authored with Bitty Roy,

Bart Johnson, Jeff Krueger, and Scott Bridgham and has been submitted to Ecological

Applications for publication. Our applied objective in this study was to determine the

most successful site preparation techniques for restoring native biodiversity and

ecosystem function in a Willamette Valley wetland prairie. Additionally, we used this

study to examine i) the role of competition in controlling diversity and the relative

abundances of native and exotic plant species, ii) the degree to which plant community

structure affected soil function, and iii) whether different restoration treatments might

initiate different successional trajectories. To date, no other study has examined the

above- and belowground responses to wetland prairie establishment in any detail. We

established a large replicated field experiment to examine ten combinations of site

preparation techniques in a prior annual ryegrass (Lolium multiflorum Lam.) field. We

also compared the responses of the experimental treatments to three high-quality remnant

wet prairies and the adjacent agricultural field. Site preparation techniques included
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various combinations of tilling, herbicide application, solarization, and thermal weed

control. Plant (e.g., diversity, cover, and productivity) and soil responses (e.g., microbial

biomass, nutrient cycling, and respiration) were measured in the experimental treatments,

remnant prairies, and farm field for three years.

In Chapter III, entitled "Restoring wetland prairies: tradeoffs among native plant

cover, diversity, and ecosystem functioning," our objective was to assess the

effectiveness of two restoration techniques, topsoil removal and solarization, for restoring

native plant biodiversity and ecosystem function to agricultural fields that had retained

wetland hydrology. We examined previously restored sites that were one to [lve years

old and compared these responses to intact reference wetlands. Solarization and topsoil

removal were widely used techniques in the Willamette Valley for wetland prairie

restorations beginning in the 1990s. However, the outcomes have never been

quantitatively analyzed. In 2005, we sampled three sites each that were restored by

solarization or topsoil removal followed by seeding with native species and three remnant

prairies. At each site, we measured plant cover, diversity, and productivity, and soil

chemical, physical, and functional attributes. This work is co-authored with Bart

Johnson, Bitty Roy, Santiago Carreno, Julie Stewart, and Scott Bridgham.

In Chapters IV and V, I examine nutrient dynamics and competitive interactions

in an upland remnant prairie on Mt. Pisgah, near Eugene, Oregon, USA. Chapter IV,

entitled "Seasonal and spatial controls over nutrient cycling in a Pacific Northwest

prairie," is published in Ecosystems (Pfeifer-Meister and Bridgham 2007), contains co­

authored material with Scott Bridgham, and is copyrighted by Springer Science. Our

objective in this study was to understand the degree to which seasonal patterns of
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nitrogen, phosphorus, and carbon cycling depend on temperature and moisture

availability, and how these seasonal controls vary due to micro-heterogeneity in edaphic

conditions. Soil samples were collected seasonally across a south-facing hillslope at Mt.

Pisgah. Microbial respiration, net nitrogen mineralization, net nitrification, and

phosphorus availability were measured under field conditions and under varied

temperature and soil moisture conditions.

Chapter V is entitled "Abiotic constraints on the competitive ability of exotic and

native grasses in a Pacific Northwest prairie." This chapter is published in Oecologia

(Pfeifer-Meister et al. 2008), co-authored with Esther Cole, Bitty Roy, and Scott

Bridgham, and copyrighted by Springer-Verlag. Our objective was to test the

competitive dynamics among four grass species (two native and two exotic) under

varying nutrient and moisture conditions in an upland prairie. Theory suggests that

aggressive exotic species are competitively superior in high-quality habitats, and native

species are forced to take 'refuge' in low-quality habitats (Hoopes and Hall 2002, Lowe

et al. 2003). At the Mt. Pisgah study site, we observed that nutrient poor, wet areas had a

higher proportion of native species than nutrient rich, moderately moist areas

(unpublished data). Thus, we wanted to test the hypothesis that native species were

restricted to these low-quality sites due to the competitive exclusion by exotic species.

To test our hypothesis, we preformed a paired-competition study of field and greenhouse

experiments on the native perennial grasses, Danthonia californica Boland. and

Deschampsia cespitosa L., and the common exotic grasses, Schedonorus arundinaceus

(Schreb.) Dumort. and Lolium multiflorum Lam. In the field, we examined the effects of

aboveground competition on established juvenile plants in four areas of varying nutrient



and moisture conditions, and in the greenhouse, we examined the response of each

species in monoculture and interspecific competition trials under experimentally

manipulated nutrient and moisture availabilities.

In Chapter VI, I summarize the results from chapters II through V and conclude

with implications for restoration.

8



CHAPTER II

PLANT COMMUNITY AND SOIL RESPONSES TO EXPERIMENTAL

RESTORATION TECHNIQUES IN A WETLAND PRAIRIE

A paper submitted to Ecological Applications and co-authored with Bitty A. Roy,

Bart R. Johnson, and Scott D. Bridgham.

Introduction

Wetland restoration activities are widespread, both on a voluntary basis and as a

legal requirement for mitigating the destruction of natural wetlands. However, it is a

relatively new field with little accumulated scientific knowledge O'Jational Research

Council 2001), and restoration design is often based on anecdotal information and case

studies, rather than on rigorous experimental investigations of which restoration

techniques are most effective. The few comparative studies that have been conducted

often have lacked one or more attributes of good experimental design - randomization,

replication, or the inclusion of both treatments and controls. Furthermore, wetland

restorations have focused primarily on the establishment of native plant communities,

despite a national agenda of no-net-loss of overall wetland function O'Jational Research

Council 2001). Even with successful native plant establishment many wetland functions

9
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may be significantly diminished from those of natural wetlands (Simenstad and Thorn

1996, Zedler 2003). Moreover, restorations are not always successful in establishing a

native plant community; both natural and restored wetlands often are dominated by exotic

plant species (National Research Council 2001, Kellogg and Bridgham 2002). For these

reasons, wetland restoration provides a challenging venue for testing basic ecological

principles in an important applied framework.

Successional theory may offer the most appropriate framework for restoring and

maintaining diverse, native communities that are resistant to invasion from exotic species

over the long term (Temperton et al. 2004, Walker et al. 2007). Restoration activities try

to manipulate, and typically accelerate, secondary succession from a highly disturbed

state, generally beginning with suppressing extant vegetation and establishing an initial

group of desirable species that are either planted or seeded. The success of these

activities in maintaining low cover of exotic plant species is dependent on the

effectiveness of site preparation treatments in eliminating the existing plants and seed

bank of the site, as they are often dominated by exotic, invasive species. Despite the

obvious importance of site preparation, there have been very few studies that have

compared different techniques (e.g., Wilson and Gerry 1995, Ewing 2002, Adams and

Galatowitsch 2006). Even the best site preparation techniques are only partially effective

at eliminating unwanted residual plant species, and there is almost always a continuing

invasion of new propagules into a site. Consequently, understanding and directing

trajectories of plant community change over time are essential to achieve desirable

species diversity and composition. Site preparation techniques may also affect soil

properties, which not only will have consequences for ecosystem functioning, but may
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provide feedbacks that will determine future plant community successional dynamics.

Moreover, there are potential trade-offs between the effectiveness of a particular site

preparation technique in removing exotic plants and their seed bank, and impacts on soil

functioning. This underscores the importance of following restorations for multiple years

and measuring both above- and belowground responses.

The need for reliable, effective approaches to wetland restoration following land

use conversion is high. More than 50% of the original wetland area in the contiguous

U.S. has been lost to development (Dahl 2006). Wetland losses have been particularly

severe in the Willamette Valley in western Oregon. Since 1850, over 97% of wetland

prairies in the valley have been converted to agricultural or urban land uses (Hulse et al.

2002). Willamette Valley prairies, which historically comprised 32% of the valley floor

and foothills (Hulse et al. 2002), have been listed as a critically endangered ecosystem in

the United States (Noss et al. 1995).

Historically, conversion to agriculture has been the primary mode of wetland loss

in the U.S., with agricultural activities responsible for 70% of all wetland losses in the

last half century (Frayer et al. 1983, Dahl 2000). Similarly, in the Willamette Valley,

70% of wetland losses from the 1980s to the 1990s were due to agriculture (Bernet et al.

1999). The Willamette Valley is the world's largest producer of grass seed and many

native wet prairies have been lost to grass seed production. Given their imperiled status,

wetland prairies are the focus of extensive restoration efforts in the Willamette Valley,

and much of the potentially restorable wetland area is currently in grass seed production.

There have been no published studies of wetland prairie establishment in the

Willamette Valley and few conducted elsewhere (e.g., Green and Galatowitsch 2002,
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Adams and Galatowitsch 2006). To our knowledge, none of the few existing studies

examined the relationships between vegetation and soil processes in any detail. We used

a large replicated field experiment to examine the effectiveness of initial site preparation

techniques in restoring native plant biodiversity and soil functioning over three years in a

prior annual ryegrass (Latium multiflorum Lam.) field. We also compared responses of

the experimental treatments to three of the highest quality local intact wetland sites and

the adjacent agricultural field. We hypothesized that (1) treatments that most reduced the

seed bank would result in a lower cover of exotic species and higher native diversity; (2)

even the treatments most successful in establishing diverse native plant communities

would have very different community structure from local high-quality reference

wetlands; (3) treatments involving more physical disturbance to the soil would have

detrimental effects on various aspects of soil functioning; (4) differences in plant

community structure and productivity due to the treatments would cause significant

differences in soil properties; and (5) restored wetlands would have lower nutrient

availability and greenhouse gas emissions than the adjacent agricultural field.

Site Preparation Techniques

To ensure the relevance of site preparation techniques used in this study, we

collaborated with the Lane Council of Governments and City of Eugene to conduct a full­

day forum that drew on the knowledge oflocal restoration practitioners to select the

restoration methods. Our aim was to test both commonly used and emerging site

preparation techniques. The individual techniques were selected so they could be applied
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in different combinations to kill the existing vegetation (primarily 1. multiflorum) and

reduce the seed bank. Below is a brief description of each individual method.

Tilling: Tilling is a common restoration practice that reduces existing vegetation

through physical disturbance and prepares a site for seeding. This technique has

increased native species establishment in some restoration studies (Wilson and Gerry

1995, Barberi 2002), but it may also increase germination of species found in the seed

bank by bringing them to the soil surface. This is especially problematic in agricultural

fields where the seed bank is almost entirely non-native (Fitzpatrick 2004). Less is

known about the effect of tilling on ecosystem function in a restoration context, but

studies have shown that tilling can decrease soil microbial biomass and respiration

(Potthoff et al. 2005, 2006).

Herbicides: Numerous herbicides have been used in restoration studies, and their

application often results in the reduction of invasive species in the short term (Wilson and

Gerry 1995, Bakker et al. 2003). Three years post herbicide use, however, the density

and biomass of invasive grasses increased in a pothole wetland, with no effect on native

grasses and a reduction of native forbs (Sheley et al. 2006). Repeated applications of

conventional herbicides have proven more effective than a single application (Morgan

1997). Glyphosate is a typical non-specific herbicide used for these purposes, with an

average half-life of 60 days in soils (Feng and Thompson 1990). It has been shown to

have little in±1uence on soil microbial biomass and activity at standard application rates

(Wardle and Parkinson 1990).

Thermal Weed Control: This technique uses extreme temperatures (500-1000

DC) to kill both the seed bank and the existing vegetation with infrared burners, and thus
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is a potential alternative to herbicides (Fitzpatrick 2004). The machine applies a thin film

of water to the vegetation and then subjects the plants and seeds to intense heat that is

transferred to them through infrared energy, turbulent hot air, and boiling water. Species

size, as well as type, affects the success of this technique-smaller vegetation and forbs

are more easily eradicated than larger vegetation and grasses (Fitzpatrick 2004). Overall

though, this method has been little studied as a restoration technique.

Solarization: Solarization involves trapping heat from the sun underneath plastic

for several months to kill the vegetation and the seed bank near the surface of the soil.

This technique is most effective when the soil is moist as it conducts heat more

efficiently and promotes the germination of seeds (Egley 1990, Fitzpatrick 2004).

Studies have found that solarization has helped with the establishment of seeded native

forbs and grasses (Bond and Grundy 2001, Wilson et al. 2004, Moyes et al. 2005).

Solarization has also been shown to decrease the numbers of certain microbial species

(Bendavid-Val et al. 1997, Pinkerton et al. 2000, Wang et al. 2006), but this effect was

short lived (Wang et al. 2006).

Methods

Study Sites

Our experimental site was within Coyote Prairie, a 98-ha area located 3 km west

of Eugene, OR. This site was an undrained agricultural field (i.e., with intact wetland

hydrology) used in the production of Lalium multiflarum (annual ryegrass) seed for the

past 25 years. The field was tilled and burned annually in the fall until 2003 and

fertilized twice annually in the spring with 3.6 to 4.4 g nitrogen m-2 yr"l, 1.6 to 2.0 g
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phosphorus m-2 yfl, and 3.0 to 3.8 g potassium m-2 yf1 unti12004. Coyote Prairie was

originally acquired by The Nature Conservancy (TNC) in 2004 and now is owned and

managed by the City of Eugene. Our experiment was implemented on a 4.5 ha portion of

the field while the remaining area continued to be actively farmed for 1. multiflorum seed

production. The site is relatively flat with a slight slope from east to west of 0.35%.

Plots were located randomly across the 4.5-ha site, as well as across 1 ha of the actively

farmed adjacent portion. Both the treatment plots and the farm-field plots were arrayed

parallel to each other down the slope, and thus had similar water-table depths and surface

hydrology. Additionally, we chose the three nearest high-quality remnant prairies as

"reference sites." The reference sites included Willow Creek Natural Area (managed by

TNC), Oxbow West Prairie (managed by the City of Eugene and the U.S. Bureau of Land

Management (BLM)), and the North Greenhill Ashgrove Unit (managed by the City of

Eugene and BLM). These sites were all located within 4 km of Coyote Prairie. The soil

type for all sites is classified as Natroy series, very-fine, smectitic, mesic Xeric

Endoaquerts, and all sites have similar hydrology.

The local climate is Mediterranean with a mean annual daily maximum

temperature of 17.2°C, a mean annual daily minimum temperature of 5°C, and a mean

annual precipitation of 125 cm, with 113 cm of this falling between October and May

(http://wwwl.ncdc.noaa.gov/pub/datalccd-datalCCD_2005.pdf). Because of the

Mediterranean climate, wetland prairies in this region dry out through June, with peak

growing season in mid-June and almost complete senescence of vegetation by mid-July.

Established plants of many species begin to green up with the fall rains and continue to
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grow throughout the winter. Seedlings ofdifferent species emerge at different times

throughout the winter and spring.

Experimental Design

We conducted a three-year study to determine the most effective site preparation

techniques for wetland prairie restoration. Given the large number of potential treatment

combinations, an unbalanced factorial design was chosen that combined and contrasted

ten treatment combinations that would be most relevant for local wetland restorations

based upon the public forum (Table 2.1). Treatment plots were 15 m by 15 m in size

with 5 replicates of each treatment. Buffers of 10m between the plots and 23 m around

the edge of the entire site were established. The buffers were mowed periodically

throughout the experiment to reduce seed rain into the plots. The plots were big enough

that large pieces of equipment could be used to implement the treatments and thus ensure

that the results reflected actual restoration practices. Prior to treatment implementation,

the entire 4.5-ha site was mowed twice (on 14 May and 17 June 2004) and the L.

multiflorum thatch was removed.

A field disk and cultipacker were pulled by a tractor for the tilling treatment. The

soil was broken up by running a field disk to a depth of approximately 20 cm in opposite

directions on 18 and 23 June 2004. The cultipacker was used on 3 July to homogenize

plots for seeding. For the herbicide treatments, glyphosate (Roundup) was applied using

a Rears Pul-Tank with 7.5-m booms (Eugene, OR, USA), pulled by an ATV. The

summer herbicide application was applied on 20 July and the fall herbicide application on

1 October. For the solarization treatment, trenches were dug around the 15-m by 15-m
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experimental plots with a Ditch-Witch (Perry, OK, USA). Clear plastic (6 mil, 15-m

width) was placed over the plots, and edges were tucked into the trenches and buried on

21 July 2004. A Sunburst infrared burner (Eugene, OR, USA) was used on 11 August

2004 for the thermal weed control treatment.

Table 2.1. Experimental Design. The original design included ten site preparation
treatment combinations, the farm field, and three nearby reference prairies. However, the
summer herbicide application had no detectable effect on the plant communities or soil
response variables (p>0.3). For ease of interpretation, each treatment combination that
included summer herbicide was lumped with its equivalent counterpart (e.g., till, summer
herbicide has been combined with till), reducing the total treatment combinations from
ten to seven.

Original Treatments Collapsed Treatments
1 Summer Herbicide 1 Control: Summer Herbicide
2 Till 2 Till
3 Till, Summer Herbicide
4 Summer Herbicide, Thermal 3 Thermal
5 Till, Thermal 4 Till, Thermal
6 Till, Summer Herbicide, Thermal
7 Summer and Fall Herbicide 5 Fall Herbicide
8 Till, Summer and Fall Herbicide 6 Till, Fall Herbicide
9 Till, Solarization 7 Till, Solarization
10 Till, Summer Herbicide, Solarization
11 Farm Field 8 Farm Field
12 Reference Prairies 9 Reference Prairies

A seed mix of 15 native graminoid and forb species was sown in all plots with

hand broadcasters on 28 October 2004. These species are commonly used for restoration

of wet prairies throughout the Willamette Valley. The seed mix included five

graminoids, Agrostis exarata Trill., Carex densa (L. H. Bailey) L. H. Bailey, Danthonia

californica Bol., Deschampsia cespitosa (L.) P. Beauv., and Juncus tenuis Willd.; and ten

forbs, Camassia quamash (Pursh) Greene ssp. maxima Gould, Epilobium densiflorum



18
(Lindl.) Hoch & P.H. Raven, Grindelia integrifolia DC., Madia glomerata Hook.,

Microseris laciniata (Hook.) Sch. Bip., Plagiobothrysfiguratus (Piper) LM. Johnst. ex

M. Peck ssp.figuratus, Potentilla gracilis Douglas ex Hook. var. gracilis, Prunella

vulgaris L. ssp. lanceolata (W. Bartram) Hulten, Symphyotrichum hallii (A. Gray) G.L.

Nesom (syn. Aster hallii), and Wyethia angustifolia (DC.) Nutt. The overall seeding

density of all species in each plot was 850 mg seed/m2
, which is typical of restoration

practices within the Willamette Valley.

Within each of the larger 15-m by 15-m plots, three I-m by I-m subplots were

randomly located to monitor percent cover, species richness, and diversity. In two of

these subplots, we also examined the soil functional, physical, and chemical attributes

described below.

In each of the three reference wetland sites, we randomly chose five plots within

which we randomly placed three I-m by I-m subplots. We established five 15-m by 15­

m plots in the adjacent farm field, but due to the homogenous nature of the field only one

I-m by I-m subplot was sampled per plot for plant data and two I-m by I-m subplots

were sampled for soil variables.

Plant Sampling

In each of the 200 I-m by I-m subplots (150 experimental treatment, 45

reference, and 5 farm field), percent cover was measured by species using the point­

intercept method (Elzinga et al. 1998), and presence/absence was recorded for any

species not hit by a pin to calculate species richness and diversity. For the point-intercept

method, we constructed I-m by I-m aluminum frames with 25 equally spaced pins. Pins
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were dropped vertically and each touch by a plant was recorded by species, thus allowing

for greater than 100% cover. Plant cover was measured in the experimental restoration

plots in mid-June for 3 years after establishment (2005 - 2007), but in 2005 farm field

plots were not measured and in 2006 reference sites were not measured. Species

nomenclature followed the USDA plant database (http://plants.usda.gov), with the

exception of Schedonorus arundinaceus (Schreber) Dumortier (syn. Festuca arundinacea

or Lolium arundinaceum), which followed the Flora of North America (Flora of North

America Editorial Committee 1993+).

Aboveground net primary productivity (NPP) was estimated in 2006 at peak

standing biomass in each of the experimental and farm field subplots. Within each

subplot, three 10-cm by 10-cm plots were randomly located and clipped on 20-27 June

2006. The biomass was sorted into graminoids, forbs, woody, and thatch, dried at 60°C

for 48 hours, and weighed. Although we did not collect biomass data from the reference

sites in 2006, in 2005 biomass was collected in an identical manner at the same time of

year in the reference subplots. To estimate belowground NPP, we buried one in-growth

root core in each subplot within the experimental treatments (cores were not placed in the

farm field or reference sites). Root cores were made of nylon mesh (5-cm diameter, 15-

cm tall) and filled with root-free soil from the site. Cores were inserted on 17 September

2005, covered with a small rock, and removed on 3 July 2006 before significant summer

dry-season senescence. After removal, in-growth root cores were immediately washed

using a hydropneumatic root-washer (Gillison's Variety Fabrication, Benzonia, MI,

USA), and roots were dried at 60°C for 48 hours and weighed.



20
Soil Sampling

We conducted the soil sampling seasonally from the fall of2005 to the summer of

2006 in the experimental treatments (i.e., in the second year after establishment) and the

farm field. Soil sampling was not conducted seasonally in the reference sites because of

the logistical limitations of the large number of plots. In the fall (14 October 2005),

winter (13 January 2006), and spring (7 April 2006), in situ soil respiration was measured

using capped PVC chambers (l0.16-cm diameter, 35-cm tall). We placed chambers 5-cm

in the ground the day before each sampling after all aboveground plant matter was

clipped from the chamber location. On the day of the sampling, chambers were closed

with a rubber cap, and samples were drawn from the headspace and stored in pre­

vacuumed serum bottles sealed with rubber septa. After capping, samples were collected

at 0,30,60,90, and 120 minutes from each chamber. Soil temperature was measured at a

5-cm depth adjacent to each chamber at 60 minutes. Gas fluxes in all chambers were

measured within a 5-hour period on the same day. In the summer, it was impossible in

these hard shrink-swell clay soils to insert gas-tight chambers. Therefore, intact soil

cores were collected in the field (5 July 2006), immediately placed in Mason jars fitted

with septa, and incubated in the dark in the laboratory at the average in situ soil

temperature. Gas samples were collected at 0, 30, 60, 90, and 120 min after re­

equilibration with the atmosphere and stored as above. An equal volume (20 cc) of the

sample that was removed from the headspace of the Mason jars was replaced with N2 gas.

For all seasons, CO2 and CH4 were measured with a FID detector with a methanizer and

N20 was measured with an ECD detector on a SRI model 8610C gas chromatograph

(Torrance, CA, USA) within one week of sample collection.
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In the fall, winter, and spring after chambers were uncapped, we collected a soil

core (5.7-cm diameter, 8.5-cm depth) inside the chamber. In the summer, the soil

collected for the Mason jars was used for further analysis in the laboratory. In all

seasons, an adj acent core was also taken, placed in a Ziploc bag, buried back in its hole

and left in the ground for two weeks in order to measure net nitrogen mineralization and

net nitrification (Hart et al. 1994). Soils transferred back to the laboratory were stored in

a dark incubator at the average in situ soil temperature (l4.4°C in fall, 8.4°C in winter,

11.3°C in spring, and 17.5°C in summer). The day following gas collection, roots were

separated by hand from the soil cores, dried at 60°C for 48 hrs, and weighed to estimate

seasonal belowground biomass. On the same day, we extracted sub-samples of soil from

each core for N02- + N03- and NH4+ using 2 M KCl (Maynard and Kalra 1993) and

pol- using 0.5 M NaHC03 (Kuo 1996). The KCl and NaHC03 extracts were filtered

through Whatman No.5 and Whatman No.1 acid-washed filter paper, respectively, and

frozen until analysis. To determine net nitrogen mineralization and net nitrification, the

soils from the buried bags were extracted for N02-+N03- and NHt when removed from

the ground two weeks later. Net nitrification was calculated as the difference in N02- +

N03- and net nitrogen mineralization was calculated as the difference in N02- + N03- and

NHt over the two week incubation. NHt, N02- + N03-, and pol- were measured with

an Astoria II autoanalyzer (Astoria Pacific International, Clackamas, OR, USA) using the

phenate (Solorzano 1969), cadmium reduction (Wood et al. 1967), and ascorbic acid

methods (Murphy and Riley 1962), respectively.

We used the chloroform-fumigation method to determine microbial biomass

(Voroney and Winter 1993, Horwath and Paul 1994) on the soils collected from inside
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the chambers. The day after collection, sub-samples of soil were extracted with K2S04 to

determine initial total carbon and nitrogen. To determine initial phosphorus, we used a

sub-sample of the NaHC03 extracts. We then placed sub-samples of soil in 50-mL

centrifuge tubes, added chloroform to lyse microbial cells, and capped tubes for three

days. After fumigation, we again extracted soil with K2S04 and NaHC03and froze

extracts until analysis. To determine total carbon, we used the persulfate digestion

method (Wetzel and Likens 2000) on a sub-sample of the K2S04 extracts and measured

the C02 produced on a LiCOR 7000 infrared gas analyzer (Lincoln, NE, USA) set up to

measure discrete injections of C02. To determine total nitrogen, a sub-sample ofthe

K2S04 extracts were digested using potassium persulfate (Ameel et al. 1993) and N02- +

N03- was measured on the Astoria II autoanalyzer. We determined pol on the NaHC03

extracts as above. We calculated the final microbial biomass as the difference between

final and initial extracts for C, N, and P, with no extraction efficiency correction factor.

We measured pH using a 1:1 soil-deionized water slurry by weight. Bulk density

was determined by weighing the entire cores after collection and correcting for percent

moisture by drying a sub-sample at 60°C for 48 hours. We determined soil texture once

in the fall of2005 on dried soils sieved to less than 2-mm diameter. We used the

hydrometer method (Gee and Bauder 1986) to calculate percent clay. Percent sand was

determined by weight using a 53-J..tm sieve and percent silt was calculated by difference.

We measured total carbon and nitrogen once on dried, ground soils collected in the

summer 2006 using a Costech Analytical Technologies 4010 elemental combustion

analyzer (Valencia, CA, USA).
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Statistical Analyses

To determine the effect of site preparation on the plant communities, data from

the three I-m by I-m subplots were averaged, with the 15-m by 15-m plot used as the

replicate unit for statistical tests (i.e., n=5). Percent cover, species richness, and

Simpson's index of diversity (I-D), which considers both species richness and the

relative abundance of each species, was calculated for each plot, and repeated-measure

ANOVAs were run on the data using SPSS 11.0 for Windows. The between-subject

factor was treatment and the within-subject factor was year. Greenhouse-Geiser values

are reported to correct for violations of sphericity, and appropriate transformations were

used when necessary to normalize the distribution of the residuals. As data from the

reference sites and farm field were only available for two of the three years, these

treatments could not be included in the repeated-measures analyses. However, when

exploring the significant interaction between treatment and year, one-way ANOVAs were

run within a year and the reference and farm field data were included in these analyses as

appropriate. Tukey's pairwise comparisons were used to explore differences among

treatments within a year. Linear least squares regression was used to examine the

relationship between native and exotic percent cover and Simpson's index of diversity.

The productivity data were also averaged for each of the 15 by 15-m plots and

one-way ANOVA were conducted with treatment as the fixed main effect. Total

aboveground NPP, belowground NPP, and grass NPP were natural log transformed and

forb NPP was square root transformed to normalize the distribution of the residuals.

Belowground NPP did not include the farm field or reference sites in the analysis as in-
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growth root cores were not buried in these sites. Tukey's pairwise comparisons were

used to explore significant differences among treatments.

We compared plant community structure in the experimental treatments, farm

field, and reference sites over the three years using the nonparametric ordination

technique non-metric multidimensional scaling (J\TMS) (McCune and Grace 2002).

Community structure was described by creating a matrix ofthe cover of each species in

each plot. Species that were present, but not hit by a pin were assigned a cover of 0.5%.

For the NMS analysis, we used the relative Sorensen distance, with Monte Carlo tests

(1000 randomized runs), to test for statistical significance. We further tested for

community differences among treatments with the multi-response permutation procedure

(MRPP) using relative Sorensen distance (McCune and Grace 2002). In addition to a p­

value, this nonparametric test gives the chance-correlated within-group agreement, A, an

estimate of the effect size. Finally, we performed an indicator species analysis to help

describe the axes in our NMS ordinations. Significant indicator species, determined

using Monte Carlo tests (1000 randomized runs), are reported with the associated NMS

axes loadings for the ordination. To verify that the reference sites and farm field were

not driving the significant relationships seen in the ordination and associated tests, we

repeated the NMS, MRPP, and indicator species analysis with only the experimental

treatments. NMS, MRPP, and indicator species analyses were performed with PC-ORD

4.34 for Windows.

Similar statistical methods were used for the soil response variables. The two I-m

by I-m subplots were averaged and used as the replicate unit in the experimental

treatments and farm field (soil data were not collected in the reference sites). We
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performed one-way ANOVAs and used Tukey's pairwise comparisons to examine the

effect of treatment on bulk density, total carbon, total nitrogen, and soil texture (% clay,

% silt, % sand). We used repeated-measures ANOVAs to determine the effect of

treatment and season on nutrient concentrations (NH/, N02- + N03-, and P04
3
-), net

nitrogen mineralization, net nitrification, microbial biomass (carbon, nitrogen, and

phosphorus), soil respiration, % moisture, pH, and belowground biomass. To explore the

significant interactions between season and treatment, one-way ANOVAs were

conducted within a season with treatment as a fixed factor. For all ANOVAs, appropriate

transformations were made to normalize the distribution of the data, and Greenhouse­

Geiser values are reported for repeated-measures ANOVAs to correct for violations of

sphericity.

Results

The first summer herbicide application had no effect on plant community

structure (diversity, richness, cover; p>O.35) or measured soil response variables (p>O.3).

This treatment was ineffective because it was applied after a long period of drought when

plants were not actively growing. For ease of interpretation, we have therefore lumped

the summer herbicide application with its like counterpart (e.g., till/summer herbicide and

till only were combined), thus reducing the total number of treatments from ten to seven

(Table 2.1). One treatment had only a summer herbicide application (i.e., it was not

applied in combination with any other treatment). For this reason, we subsequently refer

to this treatment as 'control: summer herbicide'.
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Plant Community Responses

Site preparation treatments created large differences in plant community structure

and productivity. However, for the variables measured interannually (species diversity,

richness, and cover), the effect of site preparation treatments generally depended upon

year (Table 2.2).

Table 2.2. P-values for one-way and repeated-measures ANOVAs for the effect of
treatment and year (repeated-measures only) on plant response variables. Values in bold
are significant at an alpha <0.05. Aboveground NPP, grass NPP, forb NPP, and thatch
include farm field and reference sites. Repeated-measures response variables and
belowground NPP include experimental treatment plots only.

One-way ANOVA
Total Aboveground NPP
Grass NPP
Forb NPP
Belowground NPP
Thatch

Repeated-measures ANOVA
Total Cover
Native Cover
Exotic Cover
Species Richness
Native Richness
Exotic Richness
Simpson's Diversity
Native Simpson's Diversity
Exotic Simpson's Diversity

Treatment
<0.001
<0.001
<0.001

0.34
<0.001

Between
Treatment

<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001

0.045

Year
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001

Within
Year*Treatment

0.003
<0.001
<0.001
<0.001

0.956
<0.001
<0.001
<0.001

0.261

In 2005, total plant cover was higher in the till/solarization treatment than in all

other experimental treatments except the till-only treatment (data not shown). The

till/solarization treatment also had higher native cover than all other treatments in 2005

(Fig. 2.1 a). However, in 2006 native cover was lower in the control and till-only
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Figure 2.1. Mean native (A) and exotic (B) % cover for experimental treatments, farm
field, and reference sites in 2005,2006, and 2007. Error bars represent 95% confidence
intervals. Treatment by year interactions were significant at a p<O.OOl.

treatments and similar in the rest of the experimental treatments. In 2007, we observed

no differences among experimental treatments in native cover, but all had significantly

higher native cover than the reference sites and farm field. Exotic cover was lower in the

till/solarization, fall herbicide, and the tilllfall herbicide treatments than in all other

experimental treatments in 2005 and 2006, but by 2007 experimental treatment effects

were no longer evident (Fig. 2.1b). Interestingly, by 2007, the experimental treatments

had substantially lower (IS-fold) exotic cover than the reference sites. Not surprisingly,
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the farm field had the greatest exotic and total cover in all years measured as it was an

almost monotypic field of fertilized 1. multiflorum.

Overall, species richness was highest in the reference sites and lowest in the farm

field (Fig. 2.2a). In 2005 and 2006, the till/solarization treatment had lower total species

richness than all other experimental treatments. However, over time richness declined,

and by 2007 no differences were detected among experimental treatments. Native

species richness varied less among experimental treatments, but like total richness it

declined over time in the experimental treatments (Fig. 2.2b). In 2005, the experimental

treatments were not significantly different from the reference sites, but by 2007 all

experimental treatments had lower native species richness than the reference sites. As

there were no native species found in the farm field, native richness was lower in the

farm field than in all other treatments. In 2005, exotic richness was lower in the

till/solarization treatment than all other experimental treatments, but over time richness

declined in all experimental plots and this difference was no longer detectable by 2007

(Fig.2.2c). The reference site plots had twice as many exotic species as the experimental

plots in 2005, and by 2007, declines in the experimental plots left the reference plots with

seven times more exotic species.

In 2005, total Simpson's diversity, unlike richness, was not statistically lower in

the experimental treatments than the reference sites except in the till-only treatment (Fig.

2.2d). However, by 2007 all treatments except the till and the till/fall herbicide had lower

diversity than the reference sites. In 2007, the till/solarization treatment had the lowest

diversity among experimental treatments (only marginally lower than the fall herbicide

treatment: p<0.07), and the farm field had the lowest diversity overall. Native diversity
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Figure 2.2. Mean overall species richness (A), native species richness (B), exotic
species richness (C), overall Simpson's diversity (D), native Simpson's diversity (E), and
exotic Simpson's diversity (F) per m2 for experimental treatments, farm field, and
reference sites in 2005, 2006, and 2007. Error bars represent 95% confidence intervals.
Treatment by year interaction is significant at p<O.OOl for all response variables except
native species richness and exotic Simpson's diversity.
Note: High values for Simpson's index ofdiversity indicate high diversity.
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followed a similar trend as total diversity (Fig. 2.2e). In 2005, no differences in native

diversity in the experimental treatments or reference sites were detected. In 2006, the

till/solarization treatment had significantly lower native diversity than the control, and by

2007, the till/solarization treatment was significantly lower than all other treatments (only

marginally lower than the fall herbicide treatment: p<0.08). Treatment effects on exotic

diversity were not dependent upon year (Table 2.2). Experimental treatments were not

different from one another; however, the treatments had lower exotic diversity than the

reference sites and higher exotic diversity than the farm field (Fig. 2.2f). Over time,

unlike exotic richness, exotic diversity increased from 2005 to 2006 but decreased again

in 2007. This suggests that though fewer exotic species were found within the plots over

time (see Fig. 2.2c), the exotic species remaining became more evenly distributed in 2006

and 2007 when compared to 2005.

Total aboveground NPP was more than three times higher in the farm field than in

the experimental treatments and reference sites (Fig. 2.3a). Although the experimental

treatments were not significantly different from one another in total aboveground NPP,

the till/solarization treatment had higher graminoid NPP than the control or till-only

treatments and lower forb NPP than all experimental treatments except the fall herbicide

and till/fall herbicide treatments. The farm field also had higher aboveground thatch than

the experimental treatments and reference sites (Fig. 2.3b). Belowground NPP did not

differ among experimental treatments (Table 2.2), and it was not measured in the farm

field or reference sites.

A linear regression was conducted to examine the relationship between cover and

diversity as it appeared that plots with high native cover tended to have lower diversity.
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Figure 2.3. Aboveground net primary productivity (A) and thatch (B) in experimental
treatments, farm field, and reference sites. Aboveground NPP is further partitioned into
graminoids, forbs, and woody biomass. Error bars represent one standard error from the
mean and lower case letter differences indicate significant effects (p<0.05) among
treatments.
Note: Biomass data in the experimental treatments andfarm field were collected June of
2006 and biomass data for the references sites were collected in June of2005.

In 2005, there was not a significant relationship between native cover or exotic cover and

diversity (Fig. 2.4a,b). However, a negative association was observed between native

cover and diversity in 2006 (r2=0.59, p<O.OOl) and to a lesser extent in 2007 (r2=0.24,

p<O.OOl). Plots with high diversity had low native cover and vice versa. This trade-off
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appeared to be driven primarily by two dominant native perennial grasses, Agrostis

exarata and Deschampsia cespitosa. When regressing cover of these two species vs.

diversity, an even stronger relationship emerged (2006 r2=0.78, 2007 r2=0.65;

Supplemental Fig. 2.1). Also, the slope of this relationship became more negative over

the three years, suggesting an increasing inhibitory effect of the cover of these two native

grasses on diversity over time. The opposite pattern was observed with exotic cover and

diversity. In 2006 (r2=0.65, p<O.OOI) and 2007 (r2=0.52, p<O.OOI), plots with higher

exotic cover had higher overall diversity (Fig. 2.4b).
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To explore the relationship between plant community structure and treatments, we

used NMS to reduce our entire plant data set (i.e., individual species abundances) to two

axes (Fig. 2.5). Axis 1 and axis 2 explained 62% and 21 % of the variation in plant

community structure, respectively (for species loadings on axes see Supplemental Table

2.1), and treatments had significantly different plant community structures (A=0.52,

p<O.OOOl). From the ordination, it is clear that experimental treatments were more

similar to one another in plant community structure than to either the reference sites or

farm field. Initially, in 2005, differences in experimental treatments were apparent with

the till-only and till/solarization treatments being the most different from one another.

However, after three years, the experimental treatment effects were dampened (i.e.,

points became closer together). Over time the experimental treatments also became more

similar to the reference sites, that is, along axis 1, points progressed further right each

year, primarily due to a reduction in dominance of seeded annual forbs and L.

multiflorum in experimental treatments (Supplemental Table 2.1). Additionally, over

time plots became increasingly dominated by the native perennial bunchgrasses, Agrostis

exarata and Deschampsia cespitosa (i.e., points progressed further up on Axis 2).

Finally, the variance in the experimental treatments was much smaller than the variance

in the reference sites, suggesting that plants were more patchily distributed in the

reference sites than within the experimental plots.

To understand how plant communities were changing within the experimental

treatments, NMS and MRPP were run without the reference and farm field data (Fig.

2.6). Again significant differences were detected among the experimental treatments

(A=0.46, p<O.OOOl); axis 1 explained 66% of the variation and axis 2 explained 14% of



Figure 2.5. Nonmetric multidimensional scaling (NMS) of plant community structure in the experimental treatments, farm field, and
reference sites using relative Sorensen distance (A=O.52, p<O.OOO 1). All three years of plant data were ordinated together, but are split
for visual clarification (i.e., axes are equivalent for all three panels). Axis 1 explained 62% and axis 2 explained 21 % of the variation
in plant community structure. Although the analysis was performed on plots, the plot mean and 95% confidence intervals for each
treatment are shown for graphic representation. For plant species loadings on axis 1 and 2 see Supplemental Table 2.1.
Note: Plant community structure was not measured in the farm field in 2005 and reference sites were not measured in 2006.
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the variation. As seen in the larger ordination, treatments became more similar in plant

community structure over time; however, the relative ordering of treatments remained

similar. When examining the axis loadings ofsignificant indicator species (Table 2.3),

the till/solarization treatment had plant communities with a higher proportion ofperennial

graminoids and a lower abundance of annual graminoids, whereas the till, thermal,

till/thermal, and control treatments had a higher abundance offorbs and the annual exotic

grass, Lolium mult~florum. It is also interesting to note that over time, many native

annual species considered to be early successional species by local wetland practitioners

(e.g., Plagiobothrysfiguratus, Juncus bufonius, and Gnaphalium palustre) decreased in

abundance and perennial grasses began to dominate plant communities. L. multiflorum,

the agricultural species originally in the field, also dramatically decreased in abundance

over time in all experimental treatments.

Belmvground Responses

Overall, many of the belowground responses, including bulk density, total carbon

and nitrogen, carbon/nitrogen ratio, soil texture, phosphate availability, microbial

biomass phosphorus, and gravimetric percent moisture, showed no effect of treatment

(Table 2.4). Additionally, concentrations of nitrous oxide and methane gas never

increased above background concentrations over the course of the two-hour incubations

in any season, and as a result rates were not statistically different than zero. Not

surprisingly, season significantly affected all response variables measured over time

(with one exception, microbial biomass phosphorus). However, the purpose of this study
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was not to examine these seasonal dynamics, but instead, to understand how the

treatment effects varied across seasons.

Table 2.3. Species axis loadings for NMS ordination of experimental treatment plots
(see Fig. 6). Only significant (p<O.05) indicator species are reported. Native (N) and
exotic (E) origin, life history (A: annual, B: biennial, and P: perennial), and functional
group (G: graminoid, F: forb, and W: woody) are given for each species.

Species

Juncus bufonius
Lolium multiflorum
Montia linearis
Rubus armeniacus
Cirsium vulgare
Cicendia quadrangularis
Gnaphalium palustre
Sonchus asper
Camassia quamash var. maxima
Hypochaeris radicata
Epilobium densiflorum
Briza minor
Plagiobothrys figuratus ssp. figuratus
Veronica peregrina var. xalapensis
Cerastium glomeratum
Parentucellia viscosa
Centaurium erythraea
Madia glomerata
Juncus tenuis
Agrostis exarata
Deschampsia cespitosa
Schedonorus arundinaceus

Axis 1
Loading

-1.09
-0.96
-0.80
-0.79
-0.76
-0.73
-0.71
-0.71
-0.67
-0.51
-0.47
-0.46
-0.39
-0.36
-0.32
-0.29
-0.24
-0.17
0.29
0.33
0.52
0.55

Axis 2
Loading

-0.55
-0.41
-0.48
-0.29
0.10
-0.43
-0.30
-0.13
-0.22
0.14
-0.20
0.05
0.32
-0.35
-0.07
0.11
-0.20
0.50
0.58
-0.07
0.14
0.05

Species
Origin

N
E
N
E
E
N
N
E
N
E
N
E
N
N
E
E
E
N
N
N
N
E

Life
History

A
A
A
P
B
A
A
A
P
P
A
A
A
A
A
A

AlB
A
P
p
p
p

Funct.
Group

G
G
F
W
F
F
F
F
F
F
F
G
F
F
F
F
F
F
G
G
G
G

Treatment effects on ammonium and nitrate availability depended upon season

(Table 2.4). In the fall, both ammonium and nitrate levels were higher in the farm than in

the experimental treatment plots (Fig. 2.7). In addition, nitrate availability was lower in

the till/ solarization treatment than in all other experimental treatments except the till/fall

herbicide treatment (only marginally lower than the control and thermal treatments,

p<O.08). In the winter, nitrate availability was higher in the thermal treatment than in the
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control, till, till/herbicide, till/solarization, and farm field. No differences were detected

among nitrate levels in the spring, but in the summer the till/solarization treatment had

lower nitrate levels than all other treatments and the farm field had higher nitrate

availability than all other treatments. Ammonium levels did not vary significantly among

treatments in the winter, spring, or summer.

Table 2.4. P-values for one-way and repeated-measures ANOVAs for the effect of
treatment and season (repeated-measures only) on soil response variables. Data were
collected in the fall 2005, winter 2006, spring 2006, and summer 2006 in all experimental
treatments and farm field. Values in bold are significant at an alpha <0.05.
Note: NA =Not applicable because rates ofnitrous oxide and methane production never
significantly difftredfrom zero.

One-way ANOVA
Bulk Density
Total Carbon
Total Nitrogen
CarbonlNitrogen Ratio
Percent Clay
Percent Sand
Percent Silt

Repeated-measures ANOVA
Ammonium
Nitrate
Phosphate
Net Nitrogen Mineralization
Net Nitrification
Microbial Carbon
Microbial Nitrogen
Microbial Phosphorus
Soil Respiration
Gravimetric Percent Moisture
pH
Belowground biomass
Nitrous oxide flux
Methane flux

Treatment
0.39
0.24
0.22
0.25
0.99
0.98
0.89

Between
Treatment

0.611
<0.001

0.70
0.006

<0.001
0.005

<0.001
0.13

<0.001
0.26
0.005

<0.001
NA
NA

Season
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001

0.59
<0.001
<0.001
<0.001
<0.001

NA
NA

Within
Season*Treatment

<0.001
<0.001

0.34
0.05

<0.001
0.32
0.37
0.49
0.01
0.34
0.33

<0.001
NA
NA
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The treatment effects for net nitrogen mineralization, net nitrification, and soil

respiration also depended upon season (Table 2.4 and Supplemental Fig. 2.2). In the fall,

the farm had higher net mineralization rates than all treatments except the till/solarization

(marginally higher than the till/herbicide treatment, p<0.09). Net nitrogen mineralization

rates did not significantly vary among treatments in the winter, spring, or summer. Net

nitrification rates were significantly higher in the farm field than all treatments in the fall

and summer. In the winter, the thermal treatment had significantly more nitrate

immobilization than all treatments. In the spring, no significant differences were

detected. Soil respiration did not differ among treatments in the fall, winter, or summer,

but in the spring the farm field had higher CO2 respiration rates than all other treatments.

Microbial carbon and nitrogen biomass as well as pH differed significantly among

treatments, and these effects were not dependent upon season (Table 2.4 and

Supplemental Fig. 2.3). The till/solarization treatment had significantly lower microbial

carbon than the till-only, fall herbicide, thermal, and farm field treatments (marginally

lower in the till/fall herbicide and control treatments, p<O.l 0). Similarly, microbial

nitrogen biomass was lower in the tilllsolarization treatment than in the till-only, fall

herbicide, tilllfall herbicide, thermal, tilllthermal, and farm field treatments. Finally, the

farm field was more acidic than the till/herbicide, tilllsolarization, and tilllthermal

treatments.
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Discussion

Site preparation techniques, particularly solarization and the fall herbicide

application, had large effects on plant communities. Diversity, species richness, plant

cover, and productivity varied among treatment type within this wetland, but these effects

dampened over time as plant communities became more similar. In particular, the

communities became increasingly dominated by perennial native bunchgrasses. After

three years, the experimental treatments remained distinctly different from the three

reference sites, although there was a trend toward a convergence of plant community

structure (Fig. 2.5). Surprisingly, we found few differences among treatments in the

many belowground responses measured seasonally. However, soils showed a quick

recovery from their former agricultural state. Below, we detail key differences in plant

community structure and soil functional, chemical, and physical attributes among site

preparation techniques and address our five original hypotheses.

Comparison ofSite Preparation Techniques

Our first hypothesis that site preparation treatments that reduced the seed bank

(primarily 1. mult(florum) would result in a lower cover of exotic species and higher

native diversity than treatments that solely targeted the existing vegetation was supported

initially, although over time competitive dynamics among species appeared to become

paramount. Three of our treatments, solarization, fall herbicide application, and thermal

weed control, were designed to target the seed bank, although a preliminary seed bank

study indicated that the thermal treatment was not effective at reducing the seed bank

(results not shown). Initially the solarization and the fall herbicide application were the
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most effective treatments for decreasing exotic cover (Fig. 2.1 b). Similarly in a

California annual grassland, solarization decreased cover and seedling density of the

annual exotic grass, Bromus diandrus (Moyes et al. 2005). After three years, however,

all of the treatments had low exotic cover. This is likely because 1. multiflorum was not

a dominant competitor over multiple growing seasons and no other dominant exotic

species significantly colonized the plots during the course of the experiment. 1.

multiflorum has been shown to be competitively superior to native perennial grasses at

the seedling stage, including those species planted in this experiment (Pfeifer-Meister et

al. 2008), but our results suggest that once established, native perennials out-compete this

annual grass. In a California grassland, Corbin and D'Antonio (2004) demonstrated that

although competitive interactions initially favored exotic annual grasses, over time the

native perennial grasses were able to significantly reduce the productivity of the exotic

grasses. Similarly, Seabloom et al. (2003) demonstrated that if native perennial grasses

were not recruitment limited, they were able to decrease the biomass and seed production

of annual exotic grasses. If the site chosen for our experiment was initially dominated by

a more aggressive exotic competitor, the outcome would likely have been different,

perhaps with the solarization and fall herbicide treatments being the only site preparation

techniques able to maintain low exotic cover as they more effectively eliminated the

initial seed bank.

The solarization treatment also gave the highest initial native cover (Fig. 2.1 a),

but had the lowest native and overall species richness and diversity (Fig. 2.2). Over the

dry Pacific Northwest summer, the plastic that covered the solarization plots trapped soil

moisture while all other treatment plots dried out. After the plastic was removed in the
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fall and plots were seeded, native perennial grasses germinated earliest in the solarization

treatment (personal observation). As a result, in 2005 the proportion of the total native

cover comprised of native perennial grasses, particularly Deschampsia cespitosa and

Agrostis exarata, was three times greater in the solarization plots (62%) than all other

experimental treatments (24%, p<0.0001). Additionally, a greater proportion of

productivity in the solarization plots was from grass biomass and less from forb biomass

(Fig. 2.3a). Thus, there was a trade-off between high abundance of competitive native

bunchgrasses and species diversity (including native species diversity) in this treatment.

This trade-off is apparently not only due to the specific circumstances of our experiment,

as we have observed a similar negative correlation between native bunchgrass cover and

species diversity in a number of other restored wetlands that used a variety of initial

preparation techniques in local restoration sites (Pfeifer-Meister et aI., unpublished data).

Based upon the results of our research, local wetland practitioners have attempted to

mitigate this trade-off by decreasing the seeding density of native bunchgrasses and

planting forb species 1-2 years earlier than grasses to allow time for establishment. It

would be interesting to examine to what extent similar dynamics occur in wetlands in

other regions with a different suite of native species and climate.

As mentioned above, the fall herbicide application was quite effective at

decreasing exotic cover. However, our first July herbicide application had no effect on

plant community structure. Other studies have shown that multiple applications of

herbicide can be a more effective tool for reducing exotic species than a single

application (Morgan 1997). If our first application had been applied earlier in the

growing season, before this seasonal wet prairie dried out and L. multiflorum senesced,
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the double herbicide application may have had a greater effect. Our second fall

application was more successful because it was applied after the 1. mult(florum seed bank

had germinated. This highlights the importance of timing in the use of herbicides. In a

Washington seasonal wetland, applying glyphosate later in the season was more effective

than early-season applications for reducing Phalaris arundinacea abundance (Kilbride

and Paveglio 1999), and Adams and Galatowitsch (2006) demonstrated that the timing of

herbicide application can double the effectiveness of eradicating an exotic grass.

Neither the tilling nor the thermal treatments varied significantly from the control

treatment in terms of cover (Fig. 2.1), richness and diversity (Fig. 2.2), productivity (Fig.

2.3), or overall community structure (Figs. 2.5, 2.6). These treatments added no benefit

for establishing native plant communities over initial mowing. Tilling brings up the seed

bed, which conceivably could promote the establishment of exotic species, although in

the public forum to choose site preparation techniques, several local restoration

practitioners suggested that repeated tilling over several years might exhaust the seed

bank. Given the timing constraints of our funding, we were not able to explore the

effects of repeated tilling. Despite the fact that the thermal treatment was advertised as

being able to significantly reduce the seed bank, in our study it appeared to have little

effect in this regard. Instead, the thermal treatment acted more like a surface fire and was

effective at killing small seedlings. To be successful at reducing exotic species, this

technique would need to be applied at the time of seed germination.

Our hypothesis that treatments involving more physical disturbance to the soil

would have detrimental effects on soil functioning was not supported by our findings.

Tilling, the treatment with the greatest physical disturbance effect, had no effect on
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belowground function or soil chemical and physical properties. However, it is important

to note that over the past 25 years this field was actively tilled, and other studies have

shown that tilling can reduce soil microbial biomass carbon, total soil carbon, and soil

respiration when compared with soils not previously cultivated (Steenwerth et al. 2002,

Potthoff et al. 2005).

We found only modest support for our hypothesis that differences in plant

community structure and productivity due to the treatments would cause significant

differences in soil properties, as we observed few experimental treatment effects on

belowground responses after the first year. Part of this may have been because a year

was not long enough for observed changes in plant community composition to affect

belowground functional responses. The solarization treatment decreased microbial

biomass carbon and nitrogen across all seasons and nitrate availability in the fall and

summer (Fig. 2.7b, Supplemental Fig. 2.3). Other studies have shown a decrease in

various microbial groups such as bacterivores, fungivores, nematodes, and arbuscular

mycorrhizal fungi following solarization (Pinkerton et al. 2000, Schreiner et al. 2001,

Wang et al. 2006). In some cases, these results have been attributed to the indirect effects

of changes in plant communities rather than the direct effect of solarization (Schreiner et

al. 2001). It is unclear in our experiment whether the observed effects were direct or

indirect. The thermal treatment resulted in a slight increase in nitrate levels and as a

result, an increase in the net immobilization of nitrate in the winter (Fig. 2.7b,

Supplemental Fig. 2.2b).

Our hypothesis that restored wetlands would have lower nutrient availability than

the adjacent agricultural field was strongly supported. Although the experimental



46
treatments had minimal effects on belowground responses when compared with one

another, the soils were distinctly different from the L. multiflorum farm field. In various

seasons, the experimental treatments had lower nitrogen availability, net nitrogen

mineralization, net nitrification, and soil respiration than the farm field (Fig. 2.7,

Supplemental Fig. 2.2). As part of another study, nutrients were also measured in the

three reference sites in the spring (Pfeifer-Meister et aI., unpublished data). When

compared with the experimental treatments, ammonium and nitrate availability did not

significantly differ (p>O.3), suggesting that after restoration nutrient levels quickly

returned to 'natural' levels. Given that many potential wetland restoration sites

throughout the U.S. are currently in agriculture and receive fertilization, this is a

promising result. However, available nitrogen concentrations returned to low,

background levels in the farm field in the winter and spring, and for ammonium also in

the summer, suggesting a prudent nutrient management regime (Fig. 2.7). The degree of

long-term nutrient enhancement of the soil will depend on the specific management

practices within a field, so other sites may maintain higher soil nutrient availability for a

longer period post-restoration.

Contrary to our expectations, we did not find that restored wetlands had lower

greenhouse gas emissions than the adjacent agricultural field. Fluxes of nitrous oxide and

methane in the farm field and in the experimental plots never significantly differed from

zero in this study. In a more extensive study of gas emissions and denitrification, we

found that fluxes of nitrous oxide and methane and denitrification rates in these wet

prairies are co-limited by available nitrogen and labile soil carbon (Pfeifer-Meister et aI.,

unpublished data). Greenhouse gas fluxes have rarely been measured in wetland prairies
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or restored wetlands, and to our knowledge, never in a U.S. wetland with such a strong

Mediterranean climate (see review by Bridgham et al. 2006). Nitrous oxide emissions

are often very high in agricultural fields (Denman et al. 2007), but the prudent nutrient

additions appear to have minimized these emissions in our study field. Others have

suggested that restored wetlands may provide a strong soil carbon sequestration sink

(Euliss et al. 2006), but we have previously cautioned that the greenhouse gas emissions

from restored wetlands may nullify any overall positive effects on climate forcing

(Bridgham et al. 2006). Our study shows no effect of restoration on carbon sequestration

or greenhouse gas emissions one-year post-restoration, but it is likely that other types of

restored wetlands will have very different greenhouse gas emissions and carbon

sequestration rates. Further research in a variety of wetland types is necessary on this

important subject.

Ecological Lessons Learned

In addition to understanding the responses of plant communities and ecosystem

functions to the various site preparation techniques, we also gained valuable insight into

the underlying ecological mechanisms creating the differences we found. First, it was

apparent from our results that over time plant community structure converged among

treatments regardless of initial site preparation treatment (Figs. 2.5, 2.6). Additionally,

the experimental treatments became more similar to the reference sites each subsequent

year due to a reduction in the cover of1. multiflorum, a loss of early successional species

(including those which were planted), and increasing dominance of perennial grasses

(Figs. 2.5, 2.6, Table 2.3). However, as we hypothesized, the community structure in the
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treatments remained distinctly different than the reference sites. Other studies have

found that restored wetlands retain different community structure than reference wetlands

even after 40 years (Kellogg 2002, Seabloom and van der Valk 2003).

To enhance native biodiversity, wetland managers often want to maintain early

successional plant species in restored wetlands, but this will likely require periodic

disturbance, such as fire (MacDougall and Turkington 2007). Thus, our research

demonstrates that an understanding of successional dynamics is essential for effectively

directing restored wetlands to a desired plant community condition.

Second, as a result of these successional dynamics, there was a decrease in overall

and native plant species diversity over time in all experimental treatments (Fig. 2.2).

Experimental treatment plots also never attained the overall or native plant diversity of

the reference sites, despite the relatively high cover of exotic plant species in the

reference sites. Rather richness and diversity continued to decline in the experimental

treatments over time. Our results suggest that this is due to the trade-off seen between

the cover of native dominants, particularly native bunchgrasses, and diversity (Fig. 2.4

and Supplemental Fig. 2.1). In a Canadian prairie, diversity also decreased over time

following restoration, with particular vulnerability of native forb species (McLachlan and

Knipsel 2005). Results from our study and others suggest that future research needs to

focus on establishing and maintaining native plant diversity in wetland restorations by

actively managing successional trajectories.
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Conclusions

We took an ecosystem approach using a replicated experimental design to

understand the effects of site preparation-including tilling, herbicide application,

solarization, and thermal weed control---on wetland restoration. Overall, we found that

the solarization and fall herbicide treatments were particularly effective initially at

reducing the exotic plant cover, but over time plant communities converged in all

experimental treatments. After three years, native perennial bunchgrasses became the

dominant species across experimental treatments and many early successional forb

species were lost. Additionally, no experimental treatment had similar plant community

structure to reference wetlands, and all treatments had lower overall and native species

diversity than reference sites. Future research needs to focus on how generalizable this

trade-off between dominant native species' cover and diversity is, and whether it can be

mitigated to achieve both high native species cover and diversity.

Contrary to our expectations, none of the common or emerging restoration

techniques that we tested had detrimental effects on soil ecosystem function, and the

experimental plots quickly moved toward reference wetland conditions. Nutrient levels,

mineralization, and respiration rates decreased in the experimental treatments from that of

the adjacent farm field. Site preparation may have larger effects on belowground

responses when restoring a site not previously cultivated, or with more extreme

preparation techniques such as topsoil removal to eliminate the exotic seed bank (Pfeifer­

Meister et aI., unpublished data).

Based on the convergence of all experimental treatments over time, one might

question whether any type of site preparation was necessary prior to seeding on an
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agricultural field that had experienced years of active weed suppression. However, the

substantial initial differences among the treatments, including functional group cover,

richness, and diversity, leaves open the potential that such differences could be

maintained or enhanced by careful management during the first years of rapid succession.

Such management is not simply an issue of controlling exotics, but also of restraining the

increasing dominance of native bunchgrasses. This might be achieved in two ways.

First, seed mixes could be manipulated to increase initial diversity, including forbs

commonly found in reference sites, which have demonstrated the ability to persist over

time, and reducing the levels of native bunchgrasses. Second, selective disturbances

could be used during the first years following establishment to guide these systems closer

to the richness and diversity of reference communities. Finding ways to mitigate the

apparent tradeoff between high native cover and high diversity through an understanding

of both site preparation and seeding protocols as part of successional management may

be a critical step toward establishing wetland prairie communities with the desired

characteristics.

Bridge to Chapter III

In this chapter, we examined the effectiveness of a variety of different site

preparation techniques in restoring native plant diversity and ecosystem functioning. We

found that over time plant communities converged and that belowground responses

quickly recovered to a more 'natural' state. We also observed a significant tradeoff

between native cover and diversity. In the following chapter, we explore this relationship

further and examine the effects of a more dramatic site preparation technique, topsoil
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removal, and solarization on plant communities and soil functioning. We were interested

in determining if the relationship between native cover and diversity was generalizable to

other wetland prairies. Additionally, we wanted to determine if a more dramatic site

preparation technique would also result in minimal belowground responses or if there

were larger effects on ecosystem functioning.
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CHAPTER III

RESTORING WETLAND PRAIRIES: TRADEOFFS AMONG NATIVE PLANT

COVER, DIVERSITY, AND ECOSYSTEM FUNCTIONING

A paper co-authored with Bart R. Johnson, Bitty A. Roy, Santiago Carreno,

Julie L. Stewart, and Scott D. Bridgham

Introduction

Restoring wetland prairies is a critical component of wetland conservation efforts.

Under Section 404 of the Clean Water Act, the destruction or degradation of wetlands

should be mitigated by creating or restoring wetlands elsewhere. Furthermore, the United

States federal policy of 'no-net-Ioss' has a goal of not only maintaining or increasing

wetland area, but also no loss of overall wetland function. Despite this goal, few studies

have compared the plant communities and soil systems of restored wetland prairies to

those of remnant prairies. Evaluations of wetland restoration success frequently take

only one or two criteria into account (e.g., high native plant cover), and many functions

are ignored (Mitsch and Wilson 1996, National Research Council 2001, Zedler 2003).



53
Moreover, a number of different site preparation techniques are used in wetland

restoration that often lead to very different outcomes in terms of plant community

structure and ecosystem function (Fitzpatrick 2004). Additionally, restored or created

wetlands may not have similar function or structure to those of 'natural' wetlands

(National Research Council 2001, Turner et al. 2001). The net result of these concerns is

while the conterminous U.S. experienced a small net increase in wetland area from 1998­

2004 (Dahl 2006), the nation may still be experiencing a net loss of wetland function. In

this study, we examined above- and belowground responses of restored (1-5 years old)

and high quality remnant wetland prairies to understand the effects of mitigation practices

on wetland function and structure.

Over the last century, approximately 50% of wetlands have been lost in the

conterminous United States (Dahl 2006), with the predominant mechanism being

conversion to agriculture (Frayer et al. 1983). Similarly, wetland prairies of Oregon's

Willamette Valley have been listed as a critically endangered ecosystem (Noss et al.

1995), with greater than 97% loss since 1850 of this once widespread ecosystem (Hulse

et al. 2002). From 1980-1990, 70% of wetland losses in the Willamette Valley were

attributed to agricultural activity (Bernet et al. 1999), predominately for commercial

grass-seed production. Currently, grass-seed fields comprise much of the restorable

wetland area within the Willamette Valley.

Our objective was to assess the effectiveness of two restoration techniques,

topsoil-removal and solarization, for restoring native plant biodiversity and ecosystem

function to agricultural fields that had retained wetland hydrology. These techniques
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were widely used in the southern Willamette Valley for wetland prairie restorations

beginning in the 1990s. However, the outcomes have never been quantitatively analyzed.

Topsoil-removal has been employed as a means to eliminate existing vegetation

and deplete the upper seed bank (which is typically dominated by exotic species), reduce

nutrient levels in heavily fertilized fields, and bring deeply buried viable native species to

the soil surface (Tallowin and Smith 2001, Holzel and Otte 2003, Buisson et al. 2008).

However, topsoil-removal may also have deleterious effects on ecosystem function

because it can increase bulk density and decrease organic matter and available nutrients,

leading to lower cover and productivity of desirable plant species (Woodward 1996,

Patzelt et al. 2001, Tallowin and Smith 2001).

Solarization uses plastic for several months to trap the heat from solar radiation to

kill existing vegetation and the associated seed bank (Horowitz et al. 1983). This

technique works best on moist soils, which more effectively conduct heat (Fitzpatrick

2004). Solarization does not involve as intensive or long-lasting a physical disturbance to

the soil as does topsoil-removal, although the soil often is tilled prior to applying the

plastic. Studies implementing solarization have shown increased establishment of seeded

native forbs and grasses and a reduction in exotic species (Wilson et al. 2004, Moyes et

al. 2005, Pfeifer-Meister et al. submitted). Other studies have also shown short-lived

decreases in microbial community composition and biomass (Bendavid-Val et al. 1997,

Wang et al. 2006, Pfeifer-Meister et al. submitted).

In previous research on Willamette Valley wetland prairies, we found that initial

differences in plant community structure due to different restoration treatments quickly

diminished as plant community structure converged over time (Pfeifer-Meister et al.
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submitted). In particular, we observed a trade-off between native plant cover and

diversity-areas with high native cover had low diversity and vice versa. This

relationship appeared to be primarily driven by the dominant native bunchgrasses found

in this ecosystem that provided high native cover and competitively eliminated other

native and exotic plant species. At the same time, impacts on belowground functions

were relatively minor among the suite of techniques tested, which included solarization

but not topsoil-removal. We were interested in determining if these were consistent

phenomena in these restored wetland prairies.

In the current study we compared the plant communities and soil function of six

restorations (three topsoil-removal and three solarization sites) to those of three nearby,

high-quality remnant wetland prairies that served as reference sites. These latter sites

were never drained, plowed or otherwise converted to agriculture, and have retained

comparatively high levels ofhistorically associated native plant species. They have,

however, received varying levels ofbiodiversity management including prescribed

burning, and removal of invasive trees and shrubs. These reference prairies served as a

baseline for comparing the relative success of the two restoration techniques. We

hypothesized that (1) the removal of topsoil would have deleterious effects on ecosystem

function and soil properties, leading to lower productivity than reference wetland prairies,

(2) solarization would result in high cover of native species and have minimal effects on

belowground processes, and (3) the restored sites, regardless of treatment, would have

lower species richness and diversity than the reference prairies.
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Methods

Site Selection and Experimental Design

We selected three replicate sites for each of the restoration treatments, topsoil-

removal or solarization, and compared these to three of the highest quality wetland

prairies available (i.e., reference sites) (Table 3.1). All sites are part of the West Eugene

Wetland (WEW) mitigation bank, Oregon, USA. We were constrained by site

availability, which meant that the restorations were implemented at different times

(between 1-5 yrs. prior to sampling). For the topsoil-removal treatment, the different

sites were restored in 1999, 2001, and 2003, and for the solarization treatment, sites were

Table 3.1. Site Selection. Three sites each were selected for topsoil removal,
solarization, and reference wetland prairies.
Note: NA= Not Applicable because reference sites were never cultivated.

Treatment Site Prior to Year Owned and
Restoration Restored Managed

1
Topsoil North Lotium

1999
City of Eugene

Removal Greenhill mult?florum field andBLM

2
Topsoil Turtle Unmanaged

2001
City of Eugene

Removal Swale pasture andBLM

3
Topsoil North Lotium

2003
City of Eugene

Removal Greenhill mult?florum field andBLM

4 Solarization
North Lotium

1999
City of Eugene

Greenhill mult?florum field andBLM

5 Solarization
North Lolium

2001
City of Eugene

Greenhill mult?florum field andBLM

6 Solarization
Coyote Lolium

2004 City of Eugene
Prairie mult?florum field

7 Reference
Willow

NA NA
The Nature

Creek Conservancy

8 Reference
North

NA NA
City of Eugene

Greenhill andBLM

9 Reference
Oxbow

NA NA
City of Eugene

West andBLM
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restored in 1999,2001, and 2003, and for the solarization treatment, sites were restored in

1999, 2001, and 2004. The 2004 solarization site, Coyote Prairie, was part of an

experiment we used in a previous study (Pfeifer-Meister et al. submitted). Despite its

recent implementation, it was included because there were only two other solarization

sites available for sampling.

Prior to restoration, all sites were either in commercial grass-seed production with

Lolium multiflorum Lam. or were abandoned pastures. The topsoil-removal treatment

was applied using a large excavator, and approximately lO-cm of topsoil was removed

from each site. For the solarization treatment, the sites were tilled and then covered with

sheets of clear plastic (I5-m width, 30-m long) for a minimum of three months, with the

edges of the plastic buried in trenches to minimize water evaporation. After site

preparation, the six restorations were seeded with a similar mix of native graminoids and

forbs. All sites, including the three reference sites, received varying degrees of selective

weeding, mowing, and burning that are typical for the management of wetland prairies in

this region. The restored sites were never drained, and all sites have hydric soils and

similar hydrology.

The climate is Mediterranean with hot, dry summers and mild, wet winters. Mean

annual precipitation and temperature are 125 cm and 12°C, respectively (l~ational

Climatic Data Center 2005). Because precipitation primarily falls from October to May,

these wetland prairies dry out through the summer months, and the water table is more

than one meter below the soil surface from July-September. During winter months, the

water table is often perched on these shrink-swell clays, with approximately 5-10 cm of
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standing water. The primary growing season begins in March, although some species

germinate with the fall rains, with almost complete plant senescence by mid-July.

At each ofthe nine sites, 15 I_m2 subplots were randomly located within a 225 m2

portion ofthe site to measure plant cover, species richness, diversity, and aboveground

productivity. Five subplots at each site were also selected to measure soil variables as

described below.

Plant Sampling

In July 2005, we determined percent cover ofplant species in each I_m2 subplot

with the point-intercept method (Elzinga et al. 1998). We used I-m by I-m frames with

25 equally spaced pins that were dropped vertically, and each plant touch was recorded

by species. Because multiple hits were possible for each pin, greater than 100% cover

often occurred. Any species not hit by a pin was also recorded as present in the plot to

enable calculations of species richness and diversity. Species nomenclature followed the

USDA plant database (http://plants.usda.gov), with the exception ofSchedonorus

arundinaceus (Schreber) Dumortier (syn. Festuca arundinacea or Lolium

arundinaceum), which followed the Flora ofNorth America (Flora ofNorth America

Editorial Committee 1993+).

We estimated aboveground net primary productivity (NPP) in July 2005 at peak

standing biomass by clipping three 1O-cm by 1O-cm quadrats within each 1-m2 subplot

and sorting the biomass into graminoids, forbs, woody (small shrubs and tree seedlings),

and thatch material. The plant material was dried at 60°C for 48 hours and weighed. The

three 100-cm2 quadrats were averaged for each subplot.
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Soil Sampling

On 23 April 2005, we measured in situ ecosystem COz respiration, CH4

production, and NzO production in five 1_mz subplots per site. In each plot, we placed

PVC chambers (1 O.2-cm diameter, 35-cm tall) 5 cm in the ground to create good soil

contact and sealed the tops with rubber caps fitted with stainless steel compression bands.

We collected 20-cm3 gas samples from the headspace every 30 minutes for two hours

after capping. Gas samples were stored in pre-vacuumed serum bottles sealed with

rubber septa. After one hour, soil temperature was taken at a 5-cm depth adjacent to each

chamber. Gas samples were analyzed on a SRI model 8610C gas chromatograph

(Torrance, CA, USA) for NzO using an ECD detector and for COz and CH4 using a FID

detector with a methanizer.

After gas collection, we removed the chambers and collected soil cores from

within the footprint of each chamber using a tulip bulber (5.7-cm diameter, 8.5-cm

depth). Soil cores were brought back to the laboratory and stored in a dark incubator at

the average soil temperature for all sites (13.8°C). The next day, roots were removed

from soil cores by hand and dried at 60°C for 48 hours to estimate belowground biomass.

Bulk density was determined by weighing the entire core and correcting for soil moisture

by drying a sub-sample at 60°C for 48 hours. We measured pH using a 1: 1 soil-deionized

water slurry. Two days after soil collection, we extracted sub-samples of soil from each

plot for P04
3- using 0.5 M NaHC03 (Kuo 1996) and NH/ and NOz- + N03- using 2 M

KC1 (Maynard and Ka1ra 1993). The soil extracts were filtered through acid-washed

filter paper and frozen until analysis. We used an Astoria II autoanalyzer (Astoria Pacific

International, Clackamas, OR, USA) to measure available P043- using the ascorbic acid
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method (Murphy and Riley 1962), N02-+ N03- using the cadmium reduction method

(Wood et al. 1967), and NH4+ using the phenate method (Solorzano 1969).

Microbial biomass C, N, and P were determined for each soil core using the

chloroform-fumigation method (Voroney and Winter 1993, Horwath and Paul 1994).

Two days after collection, a soil subsample from each plot was extracted with 0.5 M

K2S04 to determine initial total carbon and nitrogen. We used the NaHC03 extracts to

determine initial phosphorus. Soil subsamples were then placed in 50-mL centrifuge

tubes, fumigated with chloroform to lyse microbial cells, capped, and stored in an

incubator at 13.8°C. After three days, soils from the centrifuge tubes were extracted

again. All extracts were frozen until analysis. We used the persulfate digestion method

(Wetzel and Likens 2000) and measured the C02 produced on a LiCor 7000 infrared gas

analyzer (Lincoln, NE, USA) to determine total carbon. Total nitrogen was determined

by digesting the K2S04 extracts using the potassium persulfate method (Ameel et al.

1993) and measuring N02- + N03- on the autoanalyzer as previously described. We

measured P04
3- in the NaHC03 extracts using the ascorbic acid method (Murphy and

Riley 1962). Microbial biomass was calculated as the difference between the final and

initial extracts for C, Nand P, with no extraction efficiency correction factor.

We measured total soil carbon and nitrogen on two sub-samples of dried (60°C

for 48 hr), ground soil from each plot using a Costech Analytical Technologies 4010

elemental combustion analyzer (Valencia, CA, USA). To determine soil texture, we

sieved dry soils to less than 2-mm diameter. Percent clay was calculated using the

hydrometer method (Gee and Bauder 1986), percent sand was determined by weighing

the material retained on a 53-~m sieve, and percent silt was calculated as the difference.
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To determine arbuscular mycorrhizal fungal colonization of grass roots, we used

the fungal-specific stain, trypan blue, and measured percent colonization using the point-

intercept method. On 16 May 2005, we collected the plants and associated roots of three

native (Agrostis exarata Trin., Danthonia californica Bol., and Deschampsia cespitosa

(L.) P. Beauv.) and three exotic grasses (Anthoxanthum odoratum L., Holcus lanatus L.,

and Schedonorus arundinaceus (Schreber) Dumort.). At each site, ten replicates of each

grass species were randomly collected when possible, but not all grasses occurred at all

sites. Deschampsia cespitosa and Holcus lanatus did occur at all sites, and overall

sample sizes for native (n=195) and exotic (n=158) grasses were similar. Roots were

collected to a depth of approximately 15 cm using a tulip bulber. The roots were washed

clean and fixed in 50% ethanol until staining. Prior to staining, the roots were cleared in

10% KOH overnight at room temperature and bleached in alkaline H20 2 for 30 minutes.

To improve adherence of the stain, the roots were then acidified in 1% Hel. The roots

were stained overnight in acidic glycerol containing 0.05% trypan blue and then de-

stained in acidic glycerol (Koske and Gemma 1989, Bauer et al. 2003). For each plant,

arbuscular mycorrhizal infection rate was determined using the point-intercept method

(Giovannetti and Mosse 1980). The roots were cut into l-cm segments, dispersed evenly

over a square grid, and examined under a dissecting microscope (10 - lOOx). The

presence or absence of infection (including arbuscules, vesicles, and/or hyphae) was

determined at each point where the root segments intersected a gridline. A total of 100

grid intersections were scored for each root system.
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Statistical Ana~yses

We used nested one-way ANOVAs to detennine the effect of restoration

treatment on plant and soil response variables, with the exception ofmycorrhizal fungal

colonization. The l_m2 subplots were nested within sites, so that sites were the replicate

unit. In the ANOVA model, sites were treated as a random effect and treatment was a

fixed effect. We used Tukey's pairwise comparisons to explore significant treatment

effects. To correct for violations ofnonnality, square root transformations were used for

exotic cover, exotic richness, total NPP, grass NPP, forb NPP, thatch NPP, belowground

biomass, NH/ availability, P043
- availability, N03- availability, and ecosystem

respiration. A natural log transformation was used for native cover, and Simpson's

diversity was squared. For mycorrhizal fungal colonization, mean percent colonization

was calculated by site for the two functional groups, native grasses (3 species) and exotic

grasses (3 species), and one-way ANOVAs were conducted with treatment as the fixed

main effect. Individual ANOVAs were not conducted for each species because every

species did not occur at every site. Linear least squares regression was used to examine

the relationships ofnative cover and Deschampsia cespitosa cover to Simpson's index of

diversity. ANOVAs and regressions were run using SPSS vs. 11.0.

To explore differences in plant community structure among treatments, we used

nonmetric multidimensional scaling (NMS), which, unlike other ordination techniques,

has no assumption oflinear relationships among variables (McCune and Grace 2002).

Community structure was described by creating a matrix ofthe cover of each species in

each plot. Species that were present, but not hit by a pin, were assigned a cover of 0.5%.

To test for statistical significance of this ordination, we used a Monte Carlo test (1000
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randomized runs). We also used the non-parametric technique multi-response

permutation procedure (MRPP) to test for community differences among restoration

treatments and to obtain an estimate of the effect size, A (McCune and Grace 2002). For

both the NMS and MRPP analyses, we used relative Sorensen distance. Only significant

indicator species are reported with the associated NMS axes loadings (significance

determined using a Monte Carlo test on 1000 randomized runs).

In addition to understanding how plant community structure differed among

treatments, we were also interested in how community structure was related to soil

response variables. For this, we used the direct gradient ordination technique, canonical

correspondence analysis (CCA). Unlike NMS, CCA only accounts for the variation in

community structure that is related to the environmental matrix (McCune and Grace

2002) and has the same assumptions as multiple regression. To avoid multicollinearity,

soil variables that were highly autocorrelated (r > 0.6) were not included in the

environmental matrix; autocorrelated variables included percent clay and percent sand (r

= 0.7), total C and total N (r = 0.9), and microbial biomass C, N, and P (r > 0.6). Eleven

variables were included in the matrix: bulk density, pH, percent moisture, NH/, N03-,

and pol- availability, ecosystem respiration, microbial biomass P, total soil C, percent

clay, and total percent mycorrhizal colonization. For the plant matrix, species that only

occurred in a single plot were eliminated, resulting in a total of 53 species used. To test

for a significant relationship between the plant and environmental matrices, we used a

Monte Carlo test with 1000 randomized runs. We report linear combinations of the

environmental variables (LC scores) for axis loadings. NMS, MRPP, and CCA were all

run using PC-ORD vs. 4.34.
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Results

Plant Community Responses

Restorations and reference sites differed from one another for species richness,

diversity, cover, and productivity (Table 3.2, Figs. 3.1, 3.2). Overall, fewer species were

found in the restored sites than in the reference prairies (p<O.OO 1). Reference prairies,

topsoil-removal sites, and solarization sites averaged 57, 47, and 30 species, respectively,

when totaled across the 15 I-m2 subplots (hereafter called 'per site'). Solarization sites

also had fewer native species (mean = 16 per site) than topsoil-removal and reference

prairies (mean = 29 per site, p<O.OOI). Plant cover was marginally lower in the topsoil­

removal treatment (p <0.10) than the reference and solarization sites, and native plant

cover was marginally higher in the solarization sites than in the topsoil-removal and

reference sites (p <0.10). Exotic cover was fourfold higher in the reference sites than the

restored sites. Species richness per m2 was higher in the reference sites than in the

restored sites (only marginally lower in the topsoil-removal treatment). Simpson's

diversity per m2 was marginally higher in the reference sites than the solarization

treatment. Reference sites also had double the exotic species richness per m2 of the

restored sites and marginally higher exotic Simpson's diversity than the solarization

treatment (p <0.10). There was no statistical difference in native richness or native

diversity among the restored and reference sites.

Aboveground net primary productivity was lower in the topsoil-removal treatment

than the reference sites (Fig. 3.2). Additionally, productivity varied significantly among

functional groups. The reference and solarization sites had more than twice the

graminoid biomass of the topsoil-removal sites (p<O.OOl), and the solarization treatment
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Table 3.2. Nested ANOVA results for the effect of restoration treatment on plant and
soil response variables (df2,6). P-values in bold are significant at an alpha<0.05.
Note: NA = Not Applicable because rates ofmethane and nitrous oxide production never
sign?ficantly differed.from zero.

Plant Response Variables
Total Cover
Native Cover
Exotic Cover
Species Richness
Native Species Richness
Exotic Species Richness
Simpson's Diversity
Native Simpson's Diversity
Exotic Simpson's Diversity
Total Aboveground NPP
Grass NPP
Forb NPP
Aboveground Thatch

Soil Response Variables
Bulk Density
pH
Clay
Sand
Silt
Soil Moisture
Belowground Biomass
Total Soil Carbon
Total Soil Nitrogen
Ammonium Availability
Nitrate Availability
Phosphate Availability
Ecosystem C02 Respiration
Methane Flux
Nitrous Oxide Flux
Microbial Biomass Carbon
Microbial Biomass Nitrogen
Microbial Biomass Phosphorus
Mycorrhizal Colonization of Native Grasses
Mycorrhizal Colonization of Exotic Grasses

F
3.77
4.16

23.61
9.65
0.73
10.91
4.61
2.54
4.36
6.10
8.63
4.88

23.04

F
3.38
7.28
0.18
0.23
0.07
3.30
1.44

15.19
9.11
0.50
2.48

78.34
5.54
NA
NA

27.52
24.81
13.39
6.59
2.99

p
0.087
0.074
0.001
0.013
0.521
0.010
0.061
0.159
0.068
0.036
0.017
0.055
0.001

p
0.100
0.025
0.843
0.798
0.936
0.108
0.309
0.004
0.015
0.628
0.164

<0.001
0.043
NA
NA

<0.001
<0.001
0.006
0.031
0.141
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Figure 3.1. Mean percent cover (A), species richness (B), and Simpson's diversity (C)
for restoration treatments by plant group (e.g., all, native, or exotic). Error bars represent
one standard error and lower case letter differences indicate significant (p<O.05, *p<0.10)
effects of treatment within a plant group.
Note: High values ofSimpson 's index ofdiversity indicate high levels ofdiversity.
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had substantially less forb biomass than the reference and topsoil-removal treatments

(p<O.OOl). Woody species were found only at the reference sites. Finally, the

solarization treatment (mean = 348 g/m2
) had more than twice as much thatch biomass as

the reference (mean = 166 g/m2
) and topsoil-removal (mean = 145 g/m2

) sites (p<0.005,

results not shown).
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Figure 3.2. Mean aboveground net primary productivity (NPP) in restoration treatments.
NPP is further partitioned into graminoids, forbs, and woody biomass. Error bars
represent one standard error of total aboveground NPP, and lower case letter differences
indicate significant effects (p<0.05) among treatments.

When all treatment types are considered together, there was a significant tradeoff

between high native cover and high Simpson's diversity, i.e., plots with high native plant

cover tended to have lower overall diversity (r2
= 0.39,p <0.001, Fig. 3.3). This negative

trend also was observed within each treatment, although the slope of reference prairies

was not as steep (data not shown). This tradeoff appeared to be primarily driven by the

dominant native perennial bunchgrass, Deschampsia cespitosa (Fig. 3.3b). In general,

the solarization sites had higher cover of D. cespitosa and lower overall diversity, and the
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reference sites had the highest diversity and lowest D. cespitosa cover. When regressing

D. cespitosa percent cover with Simpson's diversity, we were able to explain 20% more

of the variation (r2 = 0.59,p <0.001) than when using total native cover.

The restored sites also had substantially different plant community structure than

the reference sites (A = 0.16,p < 0.0001, Fig. 3.4). The nonmetric multidimensional

scaling (NMS) ordination extracted two axes from the plant data set that explained 65%

of the variation in plant community structure. Axis 1 explained 40% of this variation and

primarily represented a life history gradient (Supplemental Table 3.1). Plots loading

negatively on this axis (e.g., reference wetland prairie plots) had a greater abundance of

perennial species, and plots loading positively on this axis (e.g., solarization and topsoil-

removal plots) had a greater abundance of mmual species. Axis 2 explained 25% of the

variation and did not separate treatments clearly, but instead, the youngest restored site

(solarization at Coyote Prairie) was significantly different from all other sites. This site

was dominated by native species, with the exception of the exotic annual grass, Lolium

multiflorum.

Belowground Responses

Overall, both restoration treatments differed significantly from the reference

prairies in belowground processes; however, the topsoil-removal treatment generally had

the most dramatic effects on soil properties when compared to the reference prairies

(Table 3.2, Figs. 3.5,3.6). In all treatments, the headspace concentrations of the

greenhouse gases nitrous oxide and methane remained at atmospheric concentrations over

the course of the two-hour field measurements (i.e., flux equaled zero).
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Figure 3.4. Nonmetric multidimensional scaling (NMS) of plant community structure in
restoration treatments using relative Sorenson distance. Axis 1 explained 40% and axis 2
explained 25% of the variation in plant community structure (A=0.16, P<O.OOOl).
Although the analysis was performed on plots, the plot mean and standard error for each
site are shown for graphic representation.

Ecosystem respiration was significantly higher in the solarization sites than the

topsoil-removal and reference prairies (Fig. 3.5a). Phosphate availability was also

highest in the solarization sites, and the reference prairies had the lowest available

phosphorus (Fig. 3.5b). The topsoil-removal treatment had approximately half the total

carbon and total nitrogen of the solarization and reference prairies (Fig. 3.5c, d).

Microbial biomass carbon, nitrogen, and phosphorus were substantially lower in the

topsoil-removal sites, with reference prairies having the most microbial biomass
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(Fig. 3.5e-g). The solarization treatment had a slightly lower pH than the topsoil-removal

and reference prairies (Fig, 3.5h). In addition, bulk density was marginally higher in the

topsoil-removal sites (mean =1.46 g/cm3
) than in the reference prairies (mean= 1.21

g/cm3
, p =0.09), and soil moisture was marginally higher in the reference prairies (mean=

32%) than in topsoil-removal sites (mean = 24%,p =0.09).

Arbuscular mycorrhizal fungal colonization differed among treatments but only

for the native grasses (Fig. 3.6). In the native grasses, the topsoil-removal treatment had

approximately 15% less colonization than the reference prairies and solarization sites.

Native and exotic grasses had approximately the same amount of colonization by

mycorrhizal fungi (mean = 40%).
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Figure 3.6. Mean mycorrhizal fungal percent colonization in native and exotic grasses in
the restoration treatments. Error bars represent one standard error and lower case letter
differences indicate significant (p<0.05) treatment effects within a grass type.
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Environmental Controls ofPlant Community Structure

Canonical correspondence analysis (CCA) revealed a significant relationship

between plant community structure and edaphic factors (p <0.010, Fig. 3.7). Axis 1

explained 12% of the variation in plant community structure, and axis 2 explained 7%,

whereas species-environment correlations were 0.94 and 0.87 for axes 1 and 2,

respectively. As in the NMS, axis 1 was primarily a perennial-annual gradient with the

lowest negative loadings dominated by perennial species and the highest positive
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'V Reference

B"IkDe~
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Axis 1

Figure 3.7. Canonical Correspondence Analysis of fifty-three plant species using eleven
environmental variables (pH, bulk density, percent moisture, ammonium, phosphate,
nitrate, respiration, mycorrhizal fungal % colonization, microbial biomass P, total soil C,
and % clay). Axis one and axis two explained 12% and 7% of the variation in plant
community structure, respectively. Only vectors with a r2 > 0.25 are shown. Although the
analysis was performed on plots, the plot mean and standard error for each site are shown
for graphic representation.
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loadings dominated by annual species, particularly native annuals (see Supplemental

Table 3.2). Soil variables loading most heavily on axis I included (in order of absolute

magnitude of loading): phosphate availability, pH, microbial biomass, and to a lesser

extent, percent clay. Axis 2 did not have a clear gradient of plant functional groups. Soil

variables loading most heavily on axis 2 included (in order): total carbon, bulk density,

percent clay, percent moisture, and mycorrhizal fungal percent colonization. Reference

prairie plots tended to group in the lower left quadrant of community space, and restored

plots tended to group in the upper middle of community space, with the exception of the

young solarization plots (Coyote prairie) which fell out in the lower right quadrant.

Reference prairie plots were distinguished by a high abundance of perennial species (as

in the NMS) and were associated with higher microbial biomass and pH (i.e., more

basic). Reference prairie plots also tended to have higher total carbon, moisture

availability, and mycorrhizal colonization than the restored plots, with the exception of

Coyote Prairie which also loaded negatively on axis 2. The topsoil-removal plots loaded

slightly more negatively on axis I than the solarization plots and were associated with

higher bulk density and percent clay and lower total carbon, % moisture, and mycorrhizal

colonization. The solarization plots were associated with the highest phosphate

availability.

Discussion

Despite the large variation in site history and management regimes within a

treatment type, we observed substantial differences in plant and soil properties among

treatments. The restored sites differed from the reference prairies both in plant
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community structure and ecosystem function; however, the two site preparation

treatments, topsoil-removal and solarization, varied in different ways. In general, the

solarization sites had high cover of native graminoids and lower overall species richness

and diversity. Solarization sites also had the highest available phosphate and ecosystem

respiration. Although the topsoil-removal sites had similar diversity as the reference

prairies, they were much less productive and had low plant cover, likely because of the

substantial differences in belowground processes discussed below. In the following

paragraphs, we address each of our original hypotheses, highlight important mechanisms

controlling plant community structure, and conclude with implications for restoration.

Our first hypothesis, that the removal of topsoil would have deleterious effects on

ecosystem function and soil properties and thus be less productive than reference prairies,

was strongly supported. The microbial community was significantly reduced in the

topsoil-removal sites, with lower microbial biomass and mycorrhizal colonization of

native grasses (Figs. 3.5, 3.6). These sites had half the total carbon and nitrogen of

reference prairies (Fig. 3.5). Similarly, in a European wet meadow, organic matter was

drastically reduced after topsoil-removal (Bolzel and Otte 2003). The topsoil-removal

sites also had higher bulk density and lower soil moisture than reference prairies.

Woodward (1996) attributed lower soil moisture following topsoil-removal to a decrease

in soil porosity from compaction and thus greater evaporation. In our previous research

in the West Eugene Wetlands, we found only minimal effects of belowground responses

to site preparation, but none of these techniques (e.g., herbicide application) involved as

intensive physical disturbance to the soil structure (Pfeifer-Meister et al. submitted).
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Likely as a result of these dramatic differences in edaphic conditions, the topsoil-

removal sites had half the aboveground productivity of the reference prairies (Fig. 3.2),

particularly of graminoid species. Total plant cover was also substantially lower in the

topsoil-removal sites (Fig. 3.1). Other studies have found similar results. In a United

Kingdom wetland prairie, productivity was significantly reduced after topsoil-removal

(Tallowin and Smith 2001), and Patzelt et al. (2001) found plant cover continually

decreased with greater depths of topsoil-removal in wet fen meadows. Unlike cover,

species diversity was not lower in topsoil-removal sites, but instead was similar to

reference prairies on a 1_m2 scale. On a site scale, however, fewer species were observed

in the topsoil-removal sites than reference prairies, although no difference was found in

native richness.

Our second hypothesis, that solarization would result in high cover of native

species and have minimal effects on belowground processes, was somewhat supported by

our findings. The solarization sites did have the highest mean native plant cover and

significantly less exotic cover than the reference prairies (Fig. 3.1). Total cover and

productivity did not differ between the solarization sites and reference prairies (Fig. 3.2).

Despite surpassing reference prairies in native cover, solarization sites were far less

speciose with approximately half the species found in reference prairies (Fig. 3.1). These

sites were also dominated by graminoid species, particularly native bunchgrasses (Fig.

3.2). Similar results were observed in a previous study of wetland prairie restoration in

the West Eugene Wetlands (Pfeifer-Meister et al. submitted, both studies included the

2004 solarization plots) and in a California annual grassland (Moyes et al. 2005). Moyes

et al. found that solarization significantly reduced cover of an exotic annual grass and
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increased survival of two native perennial bunchgrasses, but forb seedling density was

significantly reduced. The decrease in forb productivity that we observed (Fig. 3.2)

appeared to be the result of native perennial bunchgrasses outcompeting forb species.

These grasses contributed to the twofold increase in thatch found that, together with the

high levels of bunchgrass cover, may have created an environment that reduced

subsequent forb recruitment. Reduced recruitment would have particularly strong effects

on the abundance of annual species.

As hypothesized, many soil characteristics did not differ between solarization and

reference prairies, but we did detect a few differences. Solarization sites had higher

ecosystem respiration and phosphate availability, a slightly more acidic pH, and lower

microbial biomass carbon and nitrogen (Fig. 3.5). Other studies implementing

solarization have found a decrease in the microbial community, with lower nematode

abundance (Wang et al. 2006) and arbuscular mycorrhizal infection (Bendavid-Val et al.

1997), but these effects were generally short-lived (weeks to months). We examined

older sites (1-5 yrs post restoration), so it was surprising that a decrease in microbial

biomass was still detectable. This decrease was not as severe as the decrease found in the

topsoil-removal sites, and no decrease in mycorrhizal colonization was detected in the

solarization sites. The prior land use (e.g., Lolium multiflorum fields) of the solarization

sites could explain the higher phosphate availability as these sites were likely fertilized

regularly prior to restoration.

We found modest support for our third hypothesis, that restored sites, regardless

of treatment, would have lower species richness and diversity than the reference prairies.

Both restoration treatments (particularly solarization) had lower species richness (both on



78
a m2 scale and totaled across the 15 subplots), but only the solarization sites had lower

Simpson's diversity (Fig. 3.1). We found no differences in native species richness and

diversity between the topsoil-removal and reference sites, but the solarization treatment

had fewer native species when totaled across the 15 subplots. Exotic species richness

was lower in both restored treatments than in the reference prairies. Many other studies

have found that restored sites have significantly lower diversity than reference sites (e.g.,

Seabloom and van der Valk 2003, McLachlan and Knipsel2005, Pfeifer-Meister et al.

submitted).

One important mechanism for the lower diversity observed in the restored sites

may be the dominance attained by native perennial bunchgrasses. We observed a

significant tradeoff between cover of Deschampsia cespitosa, a common perennial

bunchgrass, and diversity (r2 =0.59). The solarization sites were dominated by this grass

species and had the lowest overall diversity, whereas the reference prairies had the lowest

cover of D. cespitosa and the highest diversity. We observed a similar tradeoff in

previous research of Willamette Valley prairies (Pfeifer-Meister et al. submitted),

suggesting this is a general trend within these wetland prairies.

Further research is needed to understand why restored sites are particularly

vulnerable to native perennial bunchgrass dominance and reference sites are not.

Potential mechanisms include (i) seed limitation within remnants as a consequence of

historical losses of bunchgrasses, or (ii) the more variable microtopography of remnant

prairies. In California, it has been hypothesized that grazing by cattle may have led to the

decrease in native perennials, but experimental studies, have given conflicting results for

the impact of grazing on native bunchgrasses (Daphne A. Hatch 1999, Kimball and
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Schiffman 2003, Seabloom et al. 2003b). In California grasslands, seed limitation has

also been recognized as a primary obstacle to reestablishing native grasses and forbs

(Hamilton et al. 1999, Seabloom et al. 2003a). However, it is important to note that

California grasslands have been invaded predominately by annual grasses, whereas the

primary invaders of Pacific Northwest prairies are perennial grasses. Microtopographic

heterogeneity has also been identified as a mechanism increasing diversity and richness

in wetland communities (Vivian-Smith 1997). The reference prairies in this experiment

had much greater spatial variability with hummocks and deep channels, whereas the

restored sites tended to be flat surfaces with little microtopographic variation. Consistent

with this explanation, the reference prairies also exhibited greater site-level variability in

plant community structure than did the restored sites. Future experiments could test these

two hypotheses by introducing topographic heterogeneity into restorations and by

manipulating seed mixes to include varying levels of native bunchgrasses.

In addition to the many univariate differences in treatments, the ordinations

revealed large differences in plant community structure and environmental variables

between the restored and reference sites (Fig. 3.4, 3.7). Interestingly, the restored

treatments did not substantially differ from one another in plant community structure,

with the exception of the young solarization, though these sites differed from one another

in total cover and productivity. Instead, a similar set of species were found in all of the

restoration sites. We observed a similar convergence of plant communities in ten

different restoration treatments after three years (Pfeifer-Meister et al. submitted).

Moreover, a different set of edaphic factors were more strongly associated with plant

communities in the restored sites (e.g., high phosphate availability) than in the remnant
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prairies (e.g., high microbial biomass, soil carbon; Fig. 3.7). In general, the restored sites

had a higher abundance of annual species, whereas reference sites were dominated by

perennial graminoids, forbs, and woody species (many of which were exotic, see

Supplemental Table 1). This may be reflective of the restorations being relatively young

and that many early-successional species, particularly annuals, are still found in these

sites. Nevertheless, we previously observed that three years was ample time for many

early-successional species to be lost (Pfeifer-Meister et al. submitted).

The higher proportion of exotic species found in the reference prairies (Fig. 3.2)

could be a result of several mechanisms. It may be explained partially by the differences

in site-management. Restored sites may have experienced more selective weeding of

invasive species, as this is a typical practice within the Willamette Valley. This is likely

not the only mechanism though, as we observed in an experimental study with no post-

restoration management significantly lower exotic cover and diversity in restored plots

than in remnant prairies (Pfeifer-Meister et al. submitted). The lower proportion of

exotics could also be a consequence of the young age of the restorations. Over time the

restorations could accumulate more exotics as they disperse into the sites from elsewhere.

It is interesting to note, that although the reference prairies had a large abundance of

exotic species, native species were not excluded and were able to persist at relatively high

abundance. Understanding what factors allow for this persistence could have important

implications for wetland restoration.
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Conclusions

We found large differences between restored sites and reference prairies in both

plant community structure and ecosystem functioning despite the relatively small sample

size. Moreover, we observed important tradeoffs between the two site preparation

treatments despite different post-restoration management regimes in each site. The

removal of topsoil significantly altered ecosystem functioning, with substantially lower

aboveground productivity, microbial biomass, mycorrhizal infection of native grasses,

and total soil carbon and nitrogen than either the reference prairies or solarization sites.

However, these sites were more similar to reference prairies in terms of diversity and

species richness than solarization sites. The solarization treatment, on the other hand, had

minimal effects on belowground responses and surpassed the reference prairies in terms

of native plant cover, particularly of native perennial bunchgrasses, but these sites were

substantially less diverse and speciose. In no case, did restored wetlands, even up to 5

years after establishment, resemble high-quality reference wetlands in terms of plant

community structure or ecosystem function, suggesting that mitigation for loss of natural

wetlands may result in progressive loss of wetland function.

Our study highlights the importance of considering multiple criteria when

determining the 'success' of mitigation projects. If only one criterion (e.g., high cover of

native species) is examined, restorations could be deemed 'successful' despite having

dramatically different ecosystem functioning than high-quality remnant prairies. Such a

simplistic metric of success not only glosses over the impacts of restoration treatments on

key ecosystem functions, but also ignores important potential tradeoffs should

establishing high cover of native bunchgrasses suppress overall species diversity, as we
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observed. Further research is needed to better understand the mechanisms causing the

tradeoff between diversity and native bunchgrass cover, and why restored sites are

particularly susceptible to native bunchgrass dominance. Establishing wetland prairie

restorations that can sustain both high native cover and high species diversity over time

with relatively low amounts of maintenance is a key challenge that remains to be solved.

Bridge to Chapter IV

In this chapter, we examined how restoration techniques affected plant

community structure and ecosystem functioning by comparing previously restored sites

to three remnant prairies. We found that even after five years restored prairies differed

from remnant prairies in terms of plant structure and ecosystem functioning. We also

found that various edaphic factors (e.g., moisture availability and phosphate availability)

were strongly associated with plant communities, suggesting these factors may be

important in controlling plant species distributions. Furthermore, within the remnant

prairies, we observed large variation in plant communities (i.e., a patchy distribution of

plant species), and we hypothesized that this may be due to microtopographic variation

within these sites. In an upland prairie, Mt. Pisgah, we observed similar environmental

heterogeneity and patchy distributions of plants. In particular, native species appeared to

be restricted to low 'quality' habitats, and exotic species appeared to be found in high

'quality' habitats. For these reasons, we were interested in understanding if

environmental heterogeneity was important in determining the distribution of native and
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exotic species across the prairie. We also wanted to determine the underlying controls of

carbon and nutrient cycling across this heterogeneous site. In the following chapters, we

explore how nutrient and moisture availability influence competitive hierarchies between

native and exotic grasses, and we determine the controls over nutrient cycling and

availability.
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CHAPTER IV

SEASONAL AND SPATIAL CONTROLS OVER NUTRIENT CYCLING IN A

PACIFIC NORTHWEST PRAIRIE

A paper published in Ecosystems and co-authored with Scott D. Bridgham.

Pfeifer-Meister, L. E. and S. D. Bridgham. 2007. Ecosystems 10(8): 1250-1260.

Introduction

Numerous studies have shown the importance of temperature, moisture, and

edaphic factors such as pH, soil texture, and organic matter in controlling carbon,

nitrogen, and phosphorus cycling, but results conflict regarding the relative importance of

these factors seasonally and spatially in different prairie ecosystems (e.g., Schime1 and

Parton 1986, Pastor et al. 1987, Franzluebbers et al. 2002, Wan and Luo 2003, Booth et

al. 2005). Most of these studies have been conducted in grasslands with a mid­

continental climate. Far fewer studies have investigated grasslands with a Mediterranean

climate, and, to our knowledge, no study has examined perennial-dominated prairies with

a Mediterranean climate, such as occur in the Pacific Northwest, USA. These different

types of prairies may not respond similarly to future climatic forcing. Therefore
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knowledge of the full spectrum of responses of prairie habitats to variable moisture and

temperature will require a better understanding of grasslands with a Mediterranean

climate, particularly those dominated by perennials.

Within the U.S., prairies with a Mediterranean climate occur only in California

and the Pacific Northwest. These West Coast prairies are quite different from those in

mid-continental areas of the U.S. in terms of climate, nutrient inputs, and species

composition. In general, Midwest prairies have deeper soils, are dominated by warm

season (C4) grasses, and most of the precipitation falls in the spring and summer months

(Porazinska et al. 2003, Fitzpatrick 2004). In contrast, West Coast prairies have cool

season (C3) grasses, a rainy season that begins in the fall and ends in the spring, and often

shallow soils. As a result of the climatic differences, the primary growing season of West

Coast prairies is during the winter and spring months in contrast to the summer growing

season in the Midwest (Xu and Baldocchi 2004). Inorganic nitrogen (N) deposition from

nitrate and ammonium is also much higher in Midwest prairies (2-7 kg N/ha) than West

Coast prairies (0-2 kg N/ha) (National Atmospheric Deposition Program 2005). Among

West Coast prairies, the climate of Oregon upland prairies is wetter and cooler than

California prairies (National Climatic Data Center 2005). Furthermore, although all West

Coast prairies were historically dominated by perennial bunchgrasses, invasion by exotic

annual grasses in California has resulted in predominantly annual grasslands (Buisson et

al. 2006), whereas western Oregon prairies continue to be dominated by perennial

grasses.

Over the past century, the Pacific Northwest has seen an increase in temperature

of 0.5 to 1.5°C and a 10% increase in precipitation (Parson 2001). In the next fifty years,
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climate change models predict an increase in mean annual temperature of 3°C in this

region, with most of the warming expected to occur in winter months. Predicted changes

in precipitation vary more among models, but most agree that precipitation will increase

in the winter, and summers will experience little change or a slight decrease in the Pacific

Northwest (Parson 2001). These changes in climate will likely have complex effects,

both direct and indirect, on nutrient cycling and will vary among ecosystems and spatially

within ecosystems.

Therefore, our objective was to understand the degree to which seasonal patterns

of carbon, nitrogen, and phosphorous cycling depend on temperature and soil moisture

availability, and how these seasonal controls vary due to micro-heterogeneity in edaphic

conditions, within an upland prairie in Oregon, USA. We collected soils seasonally

across an upland prairie hillslope and measured microbial respiration, net nitrogen

mineralization, net nitrification, and phosphorus availability under field conditions and

under varied temperature and soil moisture conditions in the laboratory. The treatments

were designed to tease apart the effects of soil moisture and temperature as seasonal

controls over nutrient cycling.

Methods

Study Site

Field sampling was conducted in a remnant upland prairie at Mt. Pisgah, located

within the 930-ha Howard Buford Recreation Area, approximately 11 km southeast of

Eugene, Oregon. The summit ofMt. Pisgah is at 467-m elevation, while the study site is

located at the base of the south facing slope at 190-m elevation. The slope and aspect of
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the site are 7% and 154°, respectively. The climate is Mediterranean with a mean annual

temperature of 12°C, and a mean annual precipitation of 117 em, falling primarily

between October and May (National Climatic Data Center 2005). Plots were located

randomly across a 6-ha hillslope dominated by grasses and forbs with occasional Quercus

garryana (white oak). Areas with Q. garryana were excluded to restrict sampling to

prairie. Dominant species include exotic grasses Bromus japonicus and Schedonorus

arundinaceus, the native grass Danthonia californica, and native forbs Lomatium

nudicaule, and Wyethia angustifolia; however, more than 550 plant species have been

identified within this recreational area (Friends of Buford Park 2000). Across the

hillslope, many of the native species appeared to be restricted to areas characterized by

shallow, rocky, or heavy clay soils, whereas exotics appeared to be abundant in more

mesic areas. The soil is classified as Philomath series, clayey, smectitic, mesic, shallow,

vertic haploxerolls and the average soil depth is 43 em, but ranges between 7 and 100 em.

For other edaphic site characteristics, see Table 4.1.

Experimental Design

We conducted a I-year study to determine seasonal controls over carbon and

nutrient cycling in this upland prairie. Sixteen 9 by 5-m plots were randomly established.

Within each of these plots, four 1 by l-m subplots were randomly chosen to seasonally

measure (August 28,2003; January 25,2004, and May 6,2004) microbial respiration, net

nitrogen mineralization, net nitrification, and phosphorous availability. In the fall of

2002, half of the plots were burned as part of an earlier experiment (Johnson and Roy,



Table 4.1. Seasonal means (± standard error) of site characteristics at Mt. Pisgah (Lane County, Oregon). Lower case letter
differences indicate significant effects (p<0.05) of site characteristics among seasons. pH, % clay, % sand, % silt, total % carbon, and
total % nitrogen were measured once in August 2003.

Gravimetric % Field Temp. Initial NH4+ Initial N03- pH % Clay % Sand % Silt Total % Total %
% Moisture Capacity (0C) (~gN/ (~gN/ Carbon Nitrogen

g soil) g soil)

August 9.2 ±OAc l2.I±OAc 19 9.1±0.3a 0.7±0.lb 6.5±0.02 56.5±0.5 16.7±0.3 26.7±0.8 3A±0.05 0.27±0.004
2003
January 50.8±0.7a 66.9±0.7a 5 2.3±0.2b 2A±0.2a
2004

May 21.9±0.5b 28.9±0.5b 13 1.8±0.2b 0.8±0.lb
2004

00
00
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unpublished data), but in no case did the bum create significant differences in the

response variables measured in this paper (p range: 0.11-0.44, n=64).

On each sampling date, we collected soils from the 64 I_m2 subplots, brought

them back to the laboratory, and separated them into three treatments: 1) field

temperature and field moisture, 2) field temperature and 60% field capacity moisture, and

3) 19°C and field moisture. The treatments were designed to sort out the relative

importance of soil moisture and temperature as seasonal controls over microbial

respiration, net nitrogen mineralization, net nitrification, and phosphorus availability.

Field temperature was considered to be the average monthly temperature in which soils

were collected from the sixteen plots, and field moisture was the gravimetric moisture

content of soils when collected. Field capacity was determined on soil from each subplot

in the summer of 2003 prior to implementation of the experiment by saturating soils with

deionized water twice, covering, allowing them to drain for 2 hours, and drying at 105°C

for 48 hours. Gravimetric field moisture, field capacity, and temperature on each

sampling date are given in Table 1. As field temperature in August was 19°C, treatments

1 and 3 were the same.

Field Sampling and Incubation Set-up

On each sampling date, two cores were taken per I_m2 subplot to a depth of 15

cm with a soil auger (5-cm width). These cores were homogenized into one sealed

plastic bag and brought back to the laboratory. Once large roots and small rocks were

removed from the soil cores by hand, the soils were weighed into wide-mouth Mason jars

and incubated for 2 weeks in a dark incubator at the appropriate temperature. The lids of
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the Mason jars were drilled with 1.25-cm diameter holes, and glass wool was stuffed into

these holes to allow air exchange while minimizing moisture loss. In the summer and

spring, soils were wetted to achieve the 60% field capacity in treatment 2, but in winter

the soils were air-dried to achieve 60% field capacity. While waiting for soils to dry

(under winter conditions), all soils were kept at field temperature. In all cases, the

incubations began no more than 5 days after soils were originally collected. To maintain

appropriate moisture levels throughout the duration of the experiment, deionized water

was added every 2 days to the Mason jars. The evaporation of water never exceeded

more than 1% of total soil moisture.

Soil Analyses

On the first and last day (day 14) of the lab incubations, separate subsamples of

soil were removed and extracted for N02- + N03- and NH/ using 2 M KCI (Maynard and

Kalra 1993). The KCI extracts were filtered through Whatman No.5 acid-washed filter

paper and frozen until analysis. Net nitrification is the difference in N02- + N03- over the

two week incubation, whereas net nitrogen mineralization is the difference over the two

weeks in N02- + N03- + NH4+. On the last day of the incubation, soils were extracted

with 0.5 M NaHC03 to determine phosphorus availability (Kuo 1996). Similarly, these

extracts were filtered through acid-washed Whatman No. 42 filter paper and frozen until

analysis. NH/, N02- + N03-, and pol- were measured with an Astoria II autoanalyzer

(Astoria Pacific International, Clackamas, OR, USA) using the phenate (Solorzano 1969),

cadmium reduction (Wood et al. 1967), and ascorbic acid methods (Murphy and Riley

1962), respectively.
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To determine microbial respiration, the Mason jars were closed with septa for 24

hours on days 1, 7, and 14 of the incubation. A 10-cc gas sample was taken from the

headspace initially and 24 hours later; the initial headspace sample was replaced with 10-

CC ofN2 gas. Gas samples were immediately run on aLi-COR 6400 infrared gas

analyzer set-up to measure discrete injections of CO2 • Headspace CO2 concentrations

were corrected for dissolution into soil water based upon soil moisture content and soil

pH (Stumm and Morgan 1981). The difference in CO2-C over the course of 24 hours was

considered microbial respiration. Over the course of the incubation, respiration rates

decreased. However, to simplify the many complex interactions between time and

treatments, cumulative f.tg C/ g soil/day for the entire 2-week incubation was calculated

for final statistical analyses.

Soil texture, pH, total carbon, and total nitrogen were determined once on soils

collected in each of the SUbplots on August 28, 2003. pH was determined immediately

after collection using a 1: 1 soil-deionized water slurry. For soil texture analysis, dried

soils (105°C for 48 hours) were sieved to less than 2-mm (10 mesh) diameter. To

calculate percent clay, we used the hydrometer method (Gee and Bauder 1986). Percent

sand was calculated by weight using a 53-f.tm sieve (270 mesh). Percent silt was

calculated by difference. We determined total carbon and nitrogen on dried, ground soil

using a Costech Analytical Technologies 4010 elemental combustion analyzer (Valencia,

CA, USA).
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Statistical Analyses

To determine the controls over microbial respiration, net nitrogen mineralization,

net nitrification, and phosphorus availability, a repeated-measures ANOVA was run for

each response variable using SPSS 11.0 for Windows. The between-subject factors

included treatment and plot, and the within-subject factor was season. To meet the

normality assumption of ANOVA, microbial respiration and phosphorus availability were

square-root transformed for analysis and back-transformed for presentation. All other

residuals were normally distributed and the assumption of sphericity was not violated.

To deconvolve the many significant interactions with plot and season, a multiple

regression approach was used on the field-condition data set (treatment 1). This allowed

us to explore how seasonal and edaphic factors affected nutrient cycling across the

hillslope. Akaike Information Criterion (AIC) was employed to select the best models.

AIC is derived from Kullback-Leibler information and maximum likelihood theories, and

does not use traditional hypothesis testing (Anderson et al. 2000, Burnham and Anderson

2002). Instead, the most probable model has the lowest AIC score. Based on this model,

one can calculate the differences in AIC scores (~ AIC) to determine the likelihood of

each model being the best correlative relationship, allowing comparison between multiple

models simultaneously, as opposed to traditional stepwise regression where only a single

model is presented, even if it is only marginally better than other candidate models. The

corrected AIC score (AICc) accounts for any bias from the large number of parameters

relative to sample size. Additionally, Akaike's weights (co) can be used to standardize the

AIC scores between 0 and 1, and determine the probability of any given model being the

best model (e.g., a co of 0.7 indicates that 70% of the time that particular model would be
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selected). Following convention, we used a criterion of a co 2: 0.1 to determine the most

probable models in our data set (Burnham and Anderson 2002). AIC values were

calculated using SAS 9.1 (SAS Institute). All AICc, /). AICc, and co values were then

calculated using equations from Burnham and Anderson (2002) in a Microsoft Excel

spreadsheet. To avoid multicollinearity, predictors that were highly autocorrelated (r

>0.7) were not included in the models; autocorrelated variables included % clay, % sand,

and % silt (r >0.85), total C and total N (r = 0.91), and % moisture and temperature (r =-

0.93). Parameters included in all models were % moisture, total C, pH, and % clay. In

addition to these parameters, inorganic nitrogen and phosphorus were included for

microbial respiration, inorganic phosphorus was included for net nitrogen mineralization

and net nitrification, and inorganic nitrogen was included for phosphorus availability.

Results

Season significantly affected all variables measured (Table 4.2). The

experimental treatments had a direct effect on microbial respiration, nitrification, and

phosphorous availability, but not nitrogen mineralization. However in all cases,

treatment effects depended upon season (Table 4.2, Fig. 4.1). The effect of season on all

response variables depended on plot, and was thus site specific (Table 4.2). The initial

inorganic nitrogen also differed among seasons (Table 4.1). In the summer, ammonium

was the dominant form of inorganic nitrogen, and nitrate levels were low. In the winter,

nitrate and ammonium were available in approximately equal concentrations, and in the

spring both ammonium and nitrate concentrations were low, but ammonium was the

dominant form.
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Table 4.2. P-values from repeated-measures ANOVAs for the effect of season,
treatment, and plot on microbial respiration, net nitrogen mineralization, net nitrification,
and phosphorus availability. Values in bold are significant at an alpha <0.05.

Microbial Net Nitrogen Net Phosphorus
Respiration Mineralization Nitrification availability

(Jlg Clg (Jlg N/g (Jlg N/g (Jlg Pig soil)
soil/day) soil/day) soil/day)

Between
Treatment <0.001 0.842 <0.001 <0.001
Plot <0.001 <0.001 <0.001 <0.001
Treatment*Plot 0.004 <0.001 <0.001 0.310

Within
Season <0.001 <0.001 <0.001 <0.001
Season*Treatment <0.001 <0.001 <0.001 <0.001
Season*Plot <0.001 <0.001 <0.001 0.002
Season*Treatment*Plot <0.001 0.004 <0.001 0.002

Microbial Respiration

Under field conditions (treatment 1), microbial respiration was lower during the

summer than during the winter or spring (Fig. 4.1). In the summer, increasing moisture

content to 60% field capacity increased microbial respiration. In the winter, highest

respiration rates were achieved through increasing the temperature from 5 to 19°C. The

soils were at 67% field capacity in the winter, and drying the soils to 60% field capacity

decreased microbial respiration. In the spring, increasing moisture from 29% to 60%

field capacity or increasing temperature to 19°C led to an equivalent increase in

respiration.

To disentangle the significant interaction between season and plot (Table 4.2),

AIC was employed. Using our criterion, there were two probable models, which

explained between 75-76% of the variation (Table 4.3). The most likely model included

% moisture, % clay, total carbon, and inorganic nitrogen and phosphorus. The alternative
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Figure 4.1. Significant interactions between season and treatments for microbial
respiration, net nitrogen (N) mineralization, net nitrification, and phosphorus availability.
Error bars represent 95% confidence intervals. Treatments 1 and 3 were the same in the
summer, as field temperature was 19°C. Negative numbers for net nitrogen
mineralization and net nitrification indicate a net immobilization of nitrogen and positive
numbers indicate a net mineralization of nitrogen.
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model also included pH. Percent moisture explained the largest proportion of the total

variance, with an average partial R2 of 65% (Fig. 4.2). Total carbon, inorganic nitrogen,

% clay, inorganic phosphorus, and pH only explained a small amount of the variance,

with average partial R2,s of 4,2.5,2, 1, and 0.5%, respectively.

Table 4.3. Candidate models describing patterns of microbial respiration, net nitrogen
mineralization, net nitrification, and phosphorus availability where K is the number of
parameters, !J. AICc is the change in the Akaike's corrected Information Criterion, and (t)

is the Akaike's weight (see methods for statistical description). A criterion of (t) 2: 0.1
was used to determine candidate models. Positive and negative signs denote the direction
of individual correlations.

Model
Microbial Respiration (,.,g C/g soil/day)
Moisture +Total C +Clay -Inorganic N -Inorganic P
Moisture +Total C +Clay -Inorganic N -Inorganic P +pH
Net Nitrogen Mineralization (J.tg N/g soil/day)
Moisture -Total C
Moisture -Total C -Clay
Moisture -Total C -Clay -pH
Moisture -Total C -pH
Net Nitrification (l1g N/g soil/day)
Moisture +Clay -Inorganic P
Moisture +Clay
Moisture +Clay -Inorganic P +Total C
Phosphorus availability (,.,g PIg soil)
-Moisture +Total C +pH +Inorganic N
-Moisture +pH +Inorganic N +Clay
-Moisture +pH +Inorganic N
-Moisture +Inorganic N +Clay
-Moisture +Total C +pH +Inorganic N +Clay

K L1 AICc co R2

5 0 0.54 0.75
6 0.58 0.41 0.76

2 0 0.23 0.18
3 1.18 0.13 0.19
4 1.20 0.13 0.19
3 1.62 0.10 0.18

3 0 0.27 0.29
2 0.03 0.26 0.29
4 1.95 0.10 0.29

4 0 0.27 0.35
4 0.41 0.22 0.34
3 1.10 0.16 0.33
3 1.30 0.14 0.33
5 1.34 0.14 0.35

Net Nitrogen Mineralization

Similar to microbial respiration, under field conditions net nitrogen mineralization

was lowest during the summer (with net immobilization of nitrogen), with no detectable

difference in the winter and spring (Fig. 4.1). In the summer and spring, the moisture and
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temperature treatments had no effect. However, in the winter, drying the soils to 60%

field capacity increased net nitrogen mineralization.

The results from the AlC led to four probable models (Table 4.3, Fig. 4.2). Soil

moisture (avg. partial R2= 16.5%) and total carbon (avg. partial R2= 2%) were always

important predictors of net nitrogen mineralization. Some models also included % clay

and pH, but they explained < 1% of additional variance. However, no model had high

explanatory power, with the best model explaining 19% of the variance (Table 4.3).

0.8,----------------------,

= Moisture= TotalC
Ft1A pH
=rID Clay
_ Inorganic N
_ Inorganic P

0.6

0.2

P availability
o.0 .l..._--'--~'-----.L.....l.L...l.l_.li.___l._---L...l.L...aL_.l..._...L....l.L.....l.L...l.l_.li.___l._----1

Respiration Net N Mineral. Net Nitrific.

Figure 4.2. Candidate models describing patterns of microbial respiration, net nitrogen
(N) mineralization, net nitrification, and phosphorus availability under field temperature
and moisture conditions. The total bar height represents the total R2 for each response
variable, which are further partitioned into the partial R2 for the individual predictors.
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Net Nitr(fication

Under field conditions, net nitrification followed the same trends as both

microbial respiration and nitrogen mineralization with the lowest nitrification rates in the

summer (Fig. 4.1). In contrast to net nitrogen mineralization, increasing moisture content

in the summer caused a 30-fold increase in net nitrification. Additionally, drying the

soils in the winter increased net nitrification, suggesting that nitrification is limited by

both too little and too much water in different seasons. Increasing the temperature never

significantly affected nitrification rates, nor were there any treatment effects on

nitrification rates in the spring.

The three probable models for net nitrification all explained 29% ofthe variation

(Table 4.3, Fig. 4.2). The best model included % moisture and % clay. Alternative

models included inorganic phosphorus and total carbon. As was the case for microbial

respiration and net nitrogen mineralization, % moisture explained the largest portion of

the variance (avg. pmiial R2 = 21 %), with clay only explaining 7% ofthe variance, and

inorganic phosphorus and total carbon explaining an even smaller amount (avg. partial

R2<1 %).

Phosphorus Availability

Unlike the other response variables, phosphorus availability was higher in the

summer than in the winter or spring when incubated under field conditions. In the

summer, wetting the soils decreased phosphorus availability. In the winter, increasing

the temperature decreased phosphorus availability. In the spring, the moisture and

temperature treatments had no effect.
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From the AIC results, the five best models explained between 33 and 35% of the

variance (Table 4.3, Fig. 4.2). All models included % moisture (avg. partial R2
= 19.5%)

and inorganic nitrogen (avg. partial R2
= 10%). The most probable model also included

total carbon (avg. partial ~ = 1.5%) and pH (avg. partial R2
= 2.5%). Three of the

alternative models also included % clay (avg. partial R2
= 1%).

Discussion

To our knowledge, this is the first study to examine nutrient dynamics in a

perennial-dominated prairie with a Mediterranean climate. The availability of nutrients is

clearly important in structuring plant communities in this prairie as they have been shown

to affect the competitive hierarchies between native and exotic grass species (Pfeifer-

Meister et al. 2008). We found the expected seasonal variation in microbial respiration,

net nitrogen mineralization, net nitrification, and phosphorus availability, but the

underlying causes of this seasonal variation were complex. The relative importance of

the soil moisture and temperature treatments varied among response variables, plot, and

season. The degree to which abiotic factors explained the plot effect also differed among

response variables (R2 range: 0.18-0.76, Table 4.2). In all cases, soil moisture was the

best predictor (Fig. 4.2), but it was highly correlated with temperature (which we did not

use in the AICs), so soil moisture probably acted as an overall indicator of seasonal

environmental effects.
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Microbial Respiration

Overall, respiration rates under field conditions (~ 0.5 Ilmol C/m2Is) were lower

than prairies throughout the country (1.4-8 Ilmol C/m2Is) (Luo et al. 1996, Raich and

Tufekcioglu 2000, Franzluebbers et al. 2002, Wan and Luo 2003). Seasonally,

respiration rates were lower in the summer than winter or spring. This result is similar to

California prairies (Luo et al. 1996), but differs from Midwest prairies where respiration

rates are lowest in the winter months and highest in summer months (Raich and

Tufekcioglu 2000, Wan and Luo 2003). The most likely explanation is that the rainy

season occurs during the winter and spring on the West Coast as opposed to the summer

rainy season in the Midwest. Depending on season, soil moisture and/or temperature

limited respiration rates. Not surprisingly, in the summer moisture was limiting; a 25%

increase in soil moisture led to a 20-fold increase in respiration rates. In the winter, a

decrease in soil moisture led to a decrease in respiration suggesting that microbial activity

was not inhibited by excessive soil moisture, even at 67% water holding capacity, and an

increase in temperature led to the highest respiration rates in this study (24 Ilg C/g

soil/day). As winters are expected to get warmer and wetter in the Pacific Northwest

(Parson 2001), these (and similar Mediterranean grasslands) may end up becoming a net

source of atmospheric C02. In the spring, both a small increase in soil moisture and a

6°C increase in temperature led to an increase in respiration rates. A meta-analysis of

ecosystem warming experiments also showed that increased temperature significantly

increased soil respiration (Rustad et al. 2001). However, in a tallgrass prairie, Luo et al.

(2001) demonstrated that over time the soil respiration response to warming decreased as

the soil community acclimated.



101
To understand how seasonal controls and micro-heterogeneity in edaphic

conditions explained differences in respiration rates, we used a multiple regression

approach. However, we were limited in interpreting the seasonal controls as only soil

moisture could be included in the models due to the high correlation (r = -0.93) between

soil moisture and temperature. Overall, the most probable models explained a high

proportion of the variance (75-76%), with soil moisture explaining most of this (partial

R2 =65%). Other studies have observed this high correlation with soil moisture. For

example, in a tallgrass prairie in Oklahoma, soil moisture explained 59% of the variation

in soil CO2 efflux (Liu et al. 2002) and in a California grassland, belowground respiration

was positively correlated with moisture (R2=0.66) (Luo et al. 1996). In addition to soil

moisture and temperature, organic matter is also considered a major control and has been

shown to influence respiration rates (Bridgham and Richardson 1992, Raich and

Tufekcioglu 2000, Flanagan et al. 2002, Franzluebbers et al. 2002, Wan and Luo 2003).

In our study, total carbon was positively correlated with soil respiration, but, on average,

explained only 4% of the variation. Other edaphic factors, including soil texture,

inorganic nitrogen and phosphorus, and pH, explained even less of the variation in

respiration rates (0.5-2.5%).

Net Nitrogen Mineralization

In general, net nitrogen mineralization was low in this prairie (average: 0.0041

g/m2/day; range:-0.008-0.012 g/m2/day), perhaps due to the high clay content and low

organic matter of these soils. As with soil respiration, mineralization rates under field

conditions were lower in the summer than the spring and winter. This same pattern has
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been seen in other Mediterranean prairies (Taylor et al. 1982, Davidson et al. 1990,

Jamieson et al. 1998, 1999), but in Midwest grasslands the seasonal effect is often

reversed (Wedin and Tilman 1990). Surprisingly, increasing temperature never affected

net nitrogen mineralization. Many studies have seen a positive correlation with soil

temperature and mineralization rates (MacDonald et al. 1995, Updegraff et al. 1995,

Burke et al. 1997), and in a meta-analysis of soil warming experiments, an increase in

soil temperature led to a 46% average increase in net nitrogen mineralization (Rustad et

al. 2001). However, as warming experiments typically occur over a much longer time­

frame, this increase could be explained by the indirect effects of warming on other factors

(i.e. changes in soil moisture or litter quality and quantity). In our study, a decrease in

soil moisture in the winter led to a 3-fold increase in net nitrogen mineralization rates.

This is likely due to the decrease in microbial activity (seen in respiration rates) resulting

in a decrease in nitrogen immobilization.

Moisture and total carbon were always significant in explaining the seasonal

variation in net nitrogen mineralization rates across the hillslope, with pH and clay

sometimes explaining <1 % ofthe variation. However, no model explained more than

19% of the variation. Other studies with similar sets of variables have shown similarly

low correlations. For example, in a transect of grasslands from Colorado to Kansas,

temperature, site, and moisture explained 24% of the variation in net nitrogen

mineralization (Barrett et al. 2002). The predictability of nitrogen mineralization may be

improved by separating net nitrogen mineralization into its component parts of gross

mineralization and gross immobilization. However, soil moisture explained only 18% of

the variation in gross nitrogen mineralization rates in a California annual grassland
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(Hungate et al. 1997). Other studies have shown a higher correlation with net nitrogen

mineralization and climatic variables (r2 =0.69-0.91), but the soils were collected from

plant monocultures (Cassman and Munns 1980, Taylor et al. 1982). Indeed, Wedin and

Tilman (1990) demonstrated that by including plant species differences along with

environmental factors in their regression model, they could explain 88% of the variation

in net nitrogen mineralization.

Net Nitrification

Net nitrification followed the same seasonal trends as net nitrogen mineralization,

and nitrification rates were also never affected by an increase in temperature. This lack

of response to an increase in temperature has been demonstrated in soil warming

experiments (Peterjohn et al. 1994, Shaw and Harte 2001). Despite the fact that

mineralization rates did not respond to an increase in soil moisture during the summer,

there was a 30-fold increase in net nitrification, suggesting that the large initial pool of

ammonium was quickly nitrified in the presence of adequate soil moisture (Table 4.1).

The opposite effect was seen in the winter, where a decrease in moisture availability

increased net nitrification, indicating that excessive soil moisture in winter may inhibit

nitrification in these prairies. At low summer moisture levels, gross nitrification is likely

the limiting step, and at high moisture levels, either a decrease in nitrification or an

increase in denitrification due to anaerobic micro-sites could lead to the decrease in net

nitrification observed. However, as respiration rates did not decrease at the high moisture

availability, denitrification is the most probable explanation. Schimel and Parton (1986)

also demonstrated that nitrification is inhibited at higher water potentials more than
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ammonification. In the spring, when plants are most actively growing and competing for

nutrients, the treatments had no effect on nitrification rates which may reflect the low

overall nitrogen availability (Table 4.1).

Soil moisture and % clay content explained the most variation in net nitrification,

and both were positively correlated with nitrification rates. Potential nitrification is often

limited by moisture availability (Robertson 1982, Davidson et al. 1990), and a positive

correlation with soil moisture is common (e.g., Shaw and Harte 2001). Clay, with its

high water tension (Hillel1998), could also increase moisture availability to microbes

under dry conditions. The high cation exchange capacity of clays (Chapin et aL 2002)

could also explain the correlation found. Despite the positive relationships with moisture

and clay, 70% of the variance remained unexplained. As there is a large biotic gradient

across this hills10pe (unpublished data), species effects on litter quality and belowground

competition for nutrients could explain this missing variance (Wedin and Tilman 1990).

It may also be explained by the opposing environmental effects on gross nitrification

versus microbial immobilization and denitrification.

Phosphorus Availability

Due to the strong geochemical sorption ofphosphorus, net mineralization rates

are difficult to interpret (Bridgham et al. 1998, Kellogg et al. 2006). However, changes

in phosphorus availability over time are important for understanding how phosphorus

may limit productivity and structure plant communities. When incubated under field

conditions, phosphorus availability was higher in the summer than the winter or spring,

as opposed to microbial respiration, net nitrification, and net nitrogen mineralization.
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This same seasonal pattern has been reported in a California annual grassland (Hooper

and Vitousek 1998). In the summer, increasing moisture decreased phosphorus

availability, and in the winter, increasing temperature decreased phosphorus availability.

As microbial activity increased under these conditions (evidenced in respiration rates), it

follows that phosphate would be incorporated into microbial biomass and become

unavailable.

The results ofthe AIC analyses suggest that moisture availability and inorganic

nitrogen are major controls of phosphorus availability across this hillslope, and to a lesser

extent pH, total carbon, and clay content. In a study that manipulated moisture and

organic matter, Braschi et al. (2003) demonstrated that increases in moisture could

decrease phosphate availability and that increases in organic matter could increase

phosphate availability. Similarly, in our study phosphorus availability was negatively

correlated with moisture and positively correlated with total carbon. The positive

correlation between phosphorus availability and inorganic nitrogen may suggest that

microbial communities are co-limited by these nutrients. As the soils across this hillslope

range from slightly acidic to neutral (pH range: 5.5-6.8), it is not surprising that a positive

correlation was found between phosphorus availability and pH. The availability of

phosphorus decreases at low pH because of sorption onto the surface of clays and iron

and aluminum oxides (Chapin et al. 2002).

Conclusions

We have demonstrated complex seasonal controls over microbial respiration,

nitrogen cycling, and phosphorus availability in an upland Oregon prairie. The few
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related studies from California grasslands suggest similar sets of seasonal controls over

these processes in Mediterranean grasslands. In our study, the relative importance of

temperature and moisture varied among response variables, season, and sampling site.

Overall, our results suggest that in Pacific Northwest prairies microbial respiration is

limited by low temperatures in the winter and spring and by low soil moisture year-

round. Net nitrogen mineralization and net nitrification are never limited by soil

temperature, but both are limited by excessive soil moisture in winter, and net

nitrification is also limited by low soil moisture in the summer. Factors that enhance

microbial respiration tended to decrease soil phosphorus availability. It is likely that

these seasonal dynamics have strong effects on plant community structure and the

competitive dynamics of native and exotic plant species in these prairies (Pfeifer-Meister

et al. 2008).

Considering current climate models for the Pacific Northwest, we would expect

climate change to have the largest direct effects on carbon, nitrogen, and phosphorus

cycling in the winter as all response variables measured responded to a change in

moisture and/or temperature in this season. Under warmer, wetter winter conditions, we

would expect soil respiration to increase and plant-available nitrogen and phosphorus to

decrease. As plants are actively growing during the winter in the Pacific Northwest,

these changes will have large effects on community structure, which in tum could

feedback to nutrient cycling processes. To effectively restore and conserve the remaining

prairies of the Pacific Northwest, it is essential to understand how major ecosystem

processes will respond to changes in climatic factors and how they may interact with

other edaphic factors to structure plant communities.
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Bridge to Chapter V

In this chapter, we determined the seasonal and spatial controls over nutrient

cycling in an upland prairie, Mt. Pisgah. Carbon, nitrogen, and phosphorus cycling were

all limited by temperature and/or moisture in various seasons. Additionally, these rates

were associated with other edaphic factors that varied considerably across the site. We

hypothesized that this environmental heterogeneity was an important control over plant

community structure, particularly over the distribution of native and exotic species. More

specifically, we hypothesized that native species were being excluded from the

high-quality habitats (i.e., nutrient-rich, moderately moist areas) and forced to take refuge

in the nutrient-poor, wet areas. In Chapter V, we test this hypothesis by examining the

competitive dynamics of two native and two exotic grasses in the field and in the

greenhouse under varied nutrient and moisture conditions.
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CHAPTER V

ABIOTIC CONSTRAINTS ON THE COMPETITIVE ABILITY OF NATIVE AND

EXOTIC GRASSES IN A PACIFIC NORTHWEST PRAIRIE

A paper published in Oecologia and co-authored with Esther M. Cole, Bitty A. Roy

and Scott D. Bridgham.

Pfeifer-Meister, L., E. Cole, B. A. Roy, and S. Bridgham. 2008. Oecologia 155: 357-366.

Introduction

Invasion by exotic species is recognized as a leading threat to native biodiversity

and ecosystem functioning (Vitousek et al. 1997, Mack and D'Antonio 1998, Chapin et

al. 2000). In prairie ecosystems, invasive species have been identified as a primary

obstacle to successful restoration, and this has been attributed to their ability to

competitively exclude native species (Ewing 2002). In particular, theory suggests that

invasive species are competitively superior in high quality habitats (i.e., high nutrient and

mesic moisture conditions), forcing native species to take 'refuge' in low quality habitats

(Hoopes and Hall 2002, Lowe et al. 2003). However, empirical evidence to support this

theory has been equivocal. Understanding how competition between native and exotic

species interacts with abiotic factors to structure plant communities will be important for

the conservation of native prairies.
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Multiple studies have stressed the dependence of competition upon environmental

conditions such as water, light, and nutrient availability (e.g., Lowe et al. 2003, Suding et

al. 2004a, 2004b, Kluse and Allen Diaz 2005). However, results vary regarding how

abiotic factors affect the ability of exotic species to competitively exclude native species.

A variety of mechanisms can explain why the population sizes of native and exotic

grasses may be negatively correlated (Parker et al. 1993). In some cases, native species

are able to survive in stressful, low-nutrient environments, but are out-competed by

aggressive exotics under high resource conditions (Huenneke et al. 1990, Maron and

Connors 1996, Vinton and Burke 1997, Hamilton et al. 1999). For example, fertilization

treatments that promoted growth in Festuca idahoensis, a perennial grass native to

Pacific Northwest prairies, also facilitated success among aggressive exotic species,

thereby reducing the positive effects on F idahoensis (Ewing 2002). Similarly, some

native perennial forbs and grasses in northern California were out-competed and replaced

by exotic annual grasses in high nutrient environments, but were able to persist in low

quality habitats (Murphy and Ehrlich 1986). In contrast, other studies show no effect of

abiotic factors on competitive hierarchies between native and invasive plants. In northern

California, the reduction of available nitrogen did not decrease the competitive

suppression of native perennial bunchgrasses by exotic perennial and annual grasses over

the course of two years (Corbin and D'Antonio 2004). Furthermore, water availability

had no effect on the competitive outcome between a native and exotic grass in Canada

(Bakker and Wilson 2001).

In previous research we observed large differences in the relative abundance of

native and exotic plants in a remnant upland prairie in the Willamette Valley, Oregon
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(unpublished data). In a multiple regression analysis, soil moisture and inorganic

nitrogen availability explained 63% of the variation in the proportion of native to exotic

species biomass (p=O.003). Areas with a high proportion of native biomass were wet and

had low nitrogen availability, whereas a higher proportion ofexotics were found in drier,

nutrient-rich sites. We hypothesized native species were restricted to these low quality

(nutrient poor and wet) sites due to competitive exclusion by exotic species. Therefore,

the objective of our study was to test the competitive dynamics among four grass species

under varying nutrient and moisture conditions. We examined two native perennial

grasses, Danthania califarnica and Deschampsia cespitasa, and two common exotics,

Schedanarus arundinaceus and Lalium multiflarum. We hypothesized competitive

hierarchies would change depending on abiotic conditions. Specifically, we predicted

that the two invasive, exotic grasses would have greater competitive ability at high

nutrient, moderate moisture conditions resulting in the displacement of native species

from these environments. We performed a paired study of field and greenhouse

experiments to test our hypotheses. In the field competition experiment, we examined

the effects of aboveground competition, inferred from the removal of neighbors, on

established juvenile plants in four areas in a remnant upland prairie. However, within

this prairie, soil moisture, nutrient availability, and other environmental variables

covaried in complicated ways, so that it was difficult to determine how abiotic factors

affected competitive hierarchies in the field. Hence, we also performed a greenhouse

experiment in which we experimentally manipulated nutrients and moisture and

examined the response of each species in monoculture and interspecific competition

trials.
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Methods

Site Description

We conducted the field component of the study on Mt. Pisgah, a small mountain

located within Lane County's Howard Buford's Recreation Area, approximately 11 km

from Eugene, Oregon. Mt. Pisgah is vegetated primarily by oak savannah and upland

prairie interspersed with Douglas fir (Pseudotsuga menziesii) infill. Four 9-m by 5-m

blocks were randomly located at approximately 190-m elevation in an upland prairie

across a 6.1-ha area on a south-facing hill-slope at the base of the 467-m high Mt. Pisgah.

Across the site, soil attributes varied considerably. Soil depth ranged from 8-106 cm with

a mean of43 cm, % clay ranged from 42-68 with a mean of57%, total % carbon ranged

from 1.8-5.2 with a mean of3.4%, and pH ranged from 5.6-7.1 with a mean of6.5 (for

soil methods see Pfeifer-Meister and Bridgham 2007).

The Willamette Valley is characterized by a Mediterranean climate with wet

winters and mild, dry summers. Over the past 30 years, the mean annual daily maximum

and minimum temperatures were 17.2°C and 5.0°C, respectively, and mean annual

precipitation was 117 cm (National Climatic Data Center 2005).

Species Description

Danthonia californica Boland. is a tufted, native perennial bunchgrass (Pojar and

MacKinnon 1994). Culms grow 30 to 1OO-cm tall bearing 2 to 5 spikelets on average

(Hitchcock 1971). This species is commonly found from low to high elevations across a

continuum ofwet to dry prairie (Pojar and MacKinnon 1994), ranging from California to

British Columbia along the west coast ofNorth America (Hitchcock 1971).
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Deschampsia cespitosa 1. is a densely tufted, native perennial bunchgrass with 20

to 120-cm tall culms. This grass is found commonly from sea level to alpine elevations

spanning a wet to dry prairie continuum (Pojar and MacKinnon 1994), although it is

more common in wet environments. Within wetland habitats, D. cespitosa is found along

the west coast of North America, as well as the northeastern United States (Hitchcock

1971).

Lolium multiflorum Lam. is a winter annual that germinates in the fall and

generally flowers and produces seed the following spring (Pojar and MacKinnon 1994).

Introduced from Europe, this species is grown extensively for commercial seed

production, and its harvestable area covers over 47,000 ha of the Willamette Valley

(Young 2005). L. multiflorum has spread across low elevation habitats in the Willamette

Valley (Pojar and MacKinnon 1994), and its range extends along the west coast of North

America (Hitchcock 1971). L. multiflorum culms can grow to 100-cm tall and typically

have 10 to 20 spikelets per stalk (Hitchcock 1971). The earliest specimen at the Oregon

State University Herbarium that documented the occurrence of L. multiflorum in the

Willamette Valley was from 1884.

Schedonorus arundinaceus (Schreb.) Dumort., formerly Festuca arundinacea or

Lolium arundinaceum, is an exotic perennial introduced from Europe for agricultural

purposes (Pojar and MacKinnon 1994). The area occupied by cultivated fields of S.

arundinaceus has increased from 4,000 hectares in 1979 to over 57,000 hectares in 2003

(Young 2005). S. arundinaceus is abundant in low to mid-elevation habitats, frequently

colonizing fields, meadows, roadsides, or other disturbed areas (Pojar and MacKinnon
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1994), with a range that extends along the west and east coasts ofNorth America

(Hitchcock 1971). S. arundinaceus is a tufted grass with flat, wide leaves and culms 50

to 1OO-cm tall (Pojar and MacKinnon 1994). The earliest specimen at the Oregon State

University Herbarium that documented this Eurasian grass in the Willamette Valley was

from 1918.

Field Competition Experiment

Our initial design called for experimental manipulation of competition on 12

naturally occurring juveniles of each grass species per 9-m by 5-m block. However,

blocks were chosen randomly, and D. cespitosa, 1. multiflorum, and S. arundinaceus

juveniles were only found in two ofthe four blocks (n=24), and D. calffornica juveniles

were located in all blocks (n=48). Substitute grass species were not available that

occurred in all four blocks, and we decided to accept uneven occurrence ofspecies in

blocks rather than bias block selection.

A wire mesh ring,S cm in height and 23 cm in diameter, encircled each juvenile

target plant. Juvenile individuals were classified by small size (2-5 cm tall) and small

number (1-3) of emergent shoots. We established three levels of aboveground

competition by clipping all vegetation surrounding the target individual within the ring

for 100% competition reduction, clipping two diagonally oriented quarter sections for

50% competition reduction, and not clipping for 0% competition reduction. Clipping

commenced on March 13, 2004 at the beginning of the growing season and was

maintained every week until each species reached peak standing biomass. At the end of

the experiment, length, width, and vegetative height of each target plant was measured in
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situ to evaluate growth morphology. Length was the longest horizontal dimension ofthe

plant, while width was the horizontal distance perpendicular to the length. L.

multiflorum, the only non-perennial in the study, produces reproductive stalks

exclusively. Thus, in analyses ofbasal area:height ratio, we used the reproductive height

for L. multiflorum while using vegetative height for all other species. In addition to

measurements ofplant morphology, each target plant was also clipped at the base and

dried at 60°C for 48 h. We harvested D. caltfornica on May 31, S. arundinaceus and L.

multiflorum on June 9, and D. cespitosa on June 16, 2004, the date at which each species

reached peak standing biomass. We weighed the dry aboveground biomass of each plant

and separated out the seeds produced. Seeds were cleaned and counted by hand or by

using a Pfeuffer Contador seed counter (Kitzigen, Germany).

To evaluate significant effects of competition on aboveground biomass and basal

area:height ratio, we analyzed data from each species separately using a two-way

ANOVA with competition as a fixed main effect and block as a random main effect. As

seed count was highly correlated with aboveground biomass (r =0.92), only biomass data

is presented, but similar trends were observed for both variables. We log-transformed all

data to nonnalize the distribution ofresiduals and used Tukey's pairwise comparisons to

evaluate significant differences among competition levels within a species. All statistical

analyses were performed using SPSS 11.0 for Windows.

Greenhouse Competition Experiment

In the greenhouse, we examined the growth ofeach grass species in monoculture

and in all combinations ofpairwise competition. These competition treatments were
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crossed with three levels of soil moisture and two levels of soil nutrient availability that

were representative offield conditions. Each treatment contained four replicate pots. We

obtained seeds from local suppliers of native plants or from fields near the location of the

study site. Seeds obtained commercially represented genotypes from local prairies within

the southern Willamette Valley. The seeds were cold-treated at 5° C for 30 days and then

gernlinated at 20° C for 10 days in Petri dishes wetted with giberellic acid solution (1000

mg/L) to ensure greater germination success and similar germination dates (Atwater

1980; Roy et al. 1999). We used fine-grain sand for the soil substrate, and placed four

germinated seeds 5 em away from their nearest neighbor in a square formation. Seeds

were planted in circular pots 16.5 em ill diameter and 18-cm deep. Monoculture pots

included four plants of the same species. Interspecific competition pots contained two

plants of a given species on opposite comers of the competition square and two plants of

another species in the remaining comers.

Each competition treatment was crossed with two levels of nutrient availability

and three levels of moisture, representing a continuum from wet to dry prairie. In the

high moisture treatment, we placed pots in slightly larger containers and maintained the

water level at 2.5 em below the soil surface. Water was replaced bi-weekly. In the

medium moisture treatment, we watered pots to field capacity every other day. To allow

establishment of seedlings, we initially maintained plants in the low moisture treatment in

the same manner as plants in the medium moisture treatment. Eight weeks into the

experiment we reduced the frequency of water applications to twice a week in the low

moisture treatment pots. We established the water schedule by a visual examination of
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wilting in the plants. Our goal was to induce water stress without causing high mortality.

All water added was deionized.

We based the low nutrient treatment upon calculations of in situ nutrient uptake

into vegetation in the portion of the remnant prairie with the lowest nutrient availability

and lowest productivity, while the high nutrient treatment was ten times that

concentration. In the low nutrient treatment, we added 50 mg Nand 3 mg P per pot in

the form ofNH4N03 and Na2HP04, respectively. We added potassium, calcium,

magnesium, and trace nutrients in equal amounts to all treatments based on ratios dictated

by standard Hoagland's solution (Hoagland and Arnon 1938), so that plants were limited

only by nitrogen and phosphorus. Nutrients were added weekly in 100-mL aliquots of

solution with deionized water.

The greenhouse was unheated, but was cooled when the temperature rose above

33°C, thus the temperatures varied between 4.4 and 35 °C, conditions typical of the

growing season within the Willamette Valley (National Climatic Data Center 2005). The

light system simulated a 16-hour photoperiod. All pots were randomly assigned positions

in the greenhouse and were moved bi-weekly so that environmental variation and shading

by neighboring plants was randomized. The experiment spanned 90 days. At the end of

the experiment, plants were harvested by separating the above- and belowground biomass

for each species. The biomass was dried for 48 hours at 60°C and weighed. The few

plants that died prior to the end of the experiment were immediately removed and dried.

We examined all species in monoculture using a three-way ANOVA to evaluate

significant effects of species, nutrients, and moisture on total biomass using SPSS 11.0

for Windows. Within species, we used a three-way ANOVA and Tukey's pairwise
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comparisons to evaluate significant effects of competition, nutrients, and moisture on

total biomass and root: shoot ratio. To determine the importance of intra- and

interspecific competition on total biomass, relative competitive yield (RCY) was

calculated for each species combination as

RCY= Yi/Yi

where Yif is the mean biomass of individuals of species i grown with species j and Yi is

the mean biomass of individuals of species i grown in monoculture (Harper 1977; Wetzel

and van der Valk 1998). A RCY greater than one indicates that intraspecific competition

had a greater effect on total biomass than interspecific competition, and a value less than

one indicates that interspecific competition had a greater effect on total biomass than

intraspecific competition. To test whether individual species combinations were

significantly different than one, one-sample t-tests were performed. For all analyses, pots

were used as the replicate unit, and data were log-transformed to normalize the

distribution of the residuals.

Results

Field Experiment

Overall, differing degrees of aboveground vegetation removal affected the growth

patterns in three of the four species (Table 5.1, Fig. 5.1). Danthonia californica, a native,

did not produce more aboveground biomass in response to a reduction in neighbors, but

plants with fewer neighbors had a greater basal area:height ratio, i.e., they were wider and

shorter (Table 5.1, Fig. 5.1). Removing vegetation had no effect on aboveground

biomass or the basal area:height ratio of D. cespitosa, the other native species (Table 5.1,
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Fig. 5.1). However, D. cespitosa grew marginally taller (p=0.055) with more neighbors

(data not shown). Lolium mult?florum, an exotic annual, was the only species to show an

aboveground biomass response to vegetation removal, with the most aboveground

biomass in the 100% aboveground competition reduction treatment (Table 5.1, Fig. 5.1).

Similarly, the basal area:height ratio was greatest in the 100% competition reduction

treatment (Fig. 5.1). Schedonorus arundinaceus, an exotic perennial, had a greater basal

area:height ratio with 100% neighbor removal than in the 0% competition reduction

treatment (Table 5.1, Fig. 5.1).

Table 5.1. Results oftwo-way ANOVA for aboveground biomass and basal area:height
ratio of each species in the field experiment, p-values <0.05 are in bold.

D. californica D. cespitosa 1. mult?florum S. arundinaceus

F df p F df p F df p F df P

Aboveground Biomass

Competition 0.50 2 0.63 0.23 2 0.81 7.16 2 0.005 1.27 2 0.44

Block 15.3 3 0.003 3.46 1 0.20 2.46 1 0.13 4.52 1 0.17

Competition*Block 0.92 6 0.49 1.01 2 0.38 2.80 2 0.087 0.39 2 0.69

Basal Area:Height Ratio

Competition 21.8 2 0.002 2.19 2 0.14 14.2 2 0.002 18.8 2 0.050

Block 3.77 3 0.078 0.32 1 0.58 0.38 1 0.60 0.82 1 0.46

Competition*Block 0.98 6 0.45 2.09 2 0.15 1.08 2 0.36 0.16 2 0.85
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Figure 5.1. Basal area:height (a) and aboveground biomass (b) of Danthonia californica
(n=16), Deschampsia cespitosa (n=8), Lolium multiflorum (n=8), and Schedonorus
arundinaceus (n=8) for 0, 50, and 100% competition reduction in the field. Error bars
represent one standard error from the mean. Lower case letter differences indicate
significant effects (p< 0.05) of competition within a species.

Greenhouse Experiment

Plants in Monoculture

To evaluate species growth responses to the nutrient and moisture treatments in

the absence of the interspecific competition treatments, we analyzed results separately for

the monoculture pots. Nutrient availability, moisture availability, species, and all of the

interactions among these main effects significantly affected plant biomass (p<0.017).
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Despite the significant interactions, clear differences in the amount of biomass produced

by different species were evident (overall means = D. cali/ornica 0.0315 g ± 0.006, D.

cespitosa 0.287 g ±0.059, S. arundinaceus 2.629 g ±0.325, 1. mult(florum 3.688 g ±

0.059). In monoculture, native species produced less biomass than exotics (p<O.OOl),

and 1. multiflorum, the only annual, produced significantly more biomass than the three

perennial species (p<0.001). Treatment effects on the species are discussed subsequently

in terms of plants grown in combination with other species.

Interspecific Competition (Two-Species Polycultures)

The effect of nutrients on total biomass production in D. cali/ornica depended on

moisture level (Table 5.2, Fig. 5.2). D. cali/ornica was only able to exploit the increase

in nutrients in the high moisture treatment. The competition treatment alone or in

interaction with the nutrient or moisture treatments had no effect on D. cali/ornica (Table

5.2, Fig. 5.3). The ratio of roots to shoots depended upon moisture treatment; a greater

proportion of the biomass was allocated to roots in the low moisture treatment than in the

high moisture treatment (Table 5.2, Fig. 5.4).

Similarly, D. cespitosa responded positively to high nutrient concentrations only

in the high moisture treatment (Table 5.2, Fig. 5.2). D. cespitosa produced more biomass

in monoculture than when grown with the exotic annual, 1. multiflorum (p=0.027), but

the effect of the competition treatment never depended upon abiotic treatments (Table

5.2, Fig. 5.3). The root:shoot ratio of D. cespitosa decreased with higher nutrient

availability (Table 5.2, Fig. 5.4).
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Table 5.2. Results ofthree-way ANOVA for total biomass and rootshoot ratio of each
species in the greenhouse experiment, p-values<O.05 are in bold.

D. californica D. cespitosa L. multiflorum S. arundinaceus

F df P F df p F df P F df P

Total Biomass

Nutrients 2.34 1 0.13 12.2 1 0.001 191.2 1 <0.001 58.9 1 <0.001

Moisture 5.91 2 0.004 9.25 2 <0.001 0.53 2 0.59 3.29 2 0.043

Competitor Identity 0.46 3 0.71 3.28 3 0.026 5.77 3 <0.001 20.7 3 <0.001

Nutrients*Moisture 3.07 2 0.053 5.10 2 0.009 0.36 2 0.70 15.2 2 <0.001

Nutrients*Comp. 1.28 3 0.29 0.47 3 0.71 4.91 3 0.004 4.68 3 0.005

Moisture*Comp. 0.42 6 0.86 1.95 6 0.084 1.50 6 0.19 8.07 6 <0.001

Nutr.*Moist. *Comp. 0.52 6 0.74 0.33 6 0.92 0.59 6 0.74 0.91 6 0.49

RootShoot Ratio

Nutrients 0.56 1 0.46 7.57 1 0.008 5.40 1 0.023 79.1 1 <0.001

Moisture 3.42 2 0.038 0.28 2 0.76 2.30 2 0.11 1.57 2 0.22

Competitor Identity 0.82 3 0.49 1.80 3 0.16 1.18 3 0.32 2.14 3 0.10

Nutrients*Moisture 0.87 2 0.42 1.44 2 0.25 0.71 2 0.50 1.75 2 0.18

Nutrients*Comp. 0.50 3 0.67 1.40 3 0.25 0.35 3 0.79 1.19 3 0.32

Moisture* Compo 1.05 6 0.40 0.55 6 0.77 1.07 6 0.39 2.83 6 0.016

Nutr. *Moist. *Comp. 0.55 6 0.77 0.73 6 0.63 0.45 6 0.84 0.84 6 0.54

Although 1. multiflorum biomass was consistently greater in the high nutrient

treatment, the effect of the competition treatment differed between low and high nutrient

conditions (Table 5.2, Fig. 5.3). Under high nutrient conditions, 1. multiflorum was able

to produce more biomass when grown with S. arundinaceus than in monoculture.

However, under low nutrient treatments, 1. multiflorum produced more biomass when

grown with D. cali/ornica. 1. multiflorum allocated more biomass belowground in the

low nutrient treatment than in the high nutrient treatment (Table 5.2, Fig. 5.4).
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Figure 5.2. Interaction between nutrients and moisture in the greenhouse experiment for
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indicate significant (p< 0.05) treatment effects.
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effects (p<O.05).
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Total biomass ofS. arundinaceus within moisture treatments depended on

nutrient availability (Table 5.2, Fig. 5.2). Under high nutrient conditions, S.

arundinaceus had greater total biomass in the high moisture treatment than in the

medium moisture treatment. There were no differences in total biomass among moisture

levels in the low nutrient treatment. Additionally, the response of S. arundinaceus to the
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competition treatment depended on nutrient availability (Table 5.2, Fig. 5.3). Total

biomass did not differ between low and high nutrient levels when grown with 1.

multijlorum, suggesting that competition with 1. multijlorum prevented S. arundinaceus

from capitalizing on the increase in nutrient concentrations. Finally, the effect of the

competition treatment on total biomass of S. arundinaceus also depended on moisture

availability (Table 5.2). When grown with D. cespitosa, S. arundinaceus produced more

biomass in the low moisture treatment than in the medium moisture treatment. When

grown with 1. multijlorum, the least amount of biomass was produced in the low

moisture treatment. A greater proportion of biomass was allocated to roots in the low

nutrient treatment (Table 5.2, Fig. 5.4). Additionally, the effect ofthe competition

treatment on the root:shoot ratio depended upon moisture level; plants grown with 1.

multijlorum had a greater proportion of roots in the medium moisture treatment than in

the low moisture treatment (p=O.043).

Relative Competitive Yield

The relative competitive yield (RCY) for each species was calculated across all

nutrient and moisture treatments to determine the importance of intra- and interspecific

competition on total biomass (Fig. 5.5). For the two exotic species, 1. multijlorum and S.

arundinaceus, the RCY was greater than one, suggesting intraspecific competition had a

greater effect on total biomass than interspecific competition, with one exception: when

S. arundinaceus was grown with 1. multijlorum, the RCY was less than one (p<O.O 1),

suggesting interspecific competition was more important than intraspecific competition.

For the two native species, D. californica and D. cespitosa, the RCY was either less than

or not significantly different than one, suggesting intraspecific competition never exerted
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a greater influence on total biomass than interspecific competition. For D. californica,

the RCY was less than one when grown with D. cespitosa (p<O.05), and for D. cespitosa,

the RCY was less than one when grown with the two exotics, L. multfflorum and S.

arundinaceus (p<O.05).
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Figure 5.5. Total biomass relative competitive yield (± standard error) for Danthonia
californica (DACA), Deschampsia cespitosa (DECE), Lolium mult!florum (LOMU), and
Schedonorus arundinaceus (SCAR) in the greenhouse (n=24). Values less than one
indicate that interspecific competition is greater than intraspecific competition and values
greater than one indicate that intraspecific competition is greater than interspecific
competition. Each species combination was tested if significantly different than one (* =
p<O.05, ** = p<O.Ol, *** = p<O.OOl, t = p<0.10).

Discussion

The paired field and greenhouse studies strengthened our ability to understand

how competition interacted with abiotic environmental variables to determine species
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dominance in a remnant prairie. In the field experiment, we were able to determine if

competition, inferred from a removal of neighbors, is important within the natural

environment, but as many environmental variables covary and are not easily isolated in

the field, we moved to the greenhouse to tease apart how nutrients, moisture, and

competition interacted to determine species dominance. Previous research conducted in

2003 and 2004 (unpublished data) showed the relative distribution of native and exotic

species was correlated with moisture and nutrient availability, with a higher proportion of

native species biomass occurring in nutrient poor, wet sites. In the mesic areas, exotic

grasses appeared to form dense monocultures (Simpson's diversity vs. exotic grass

biomass; r =-0.69, p =0.003), which we hypothesized was due to the competitive

exclusion of native species from these environments. The exclusion of native species

could also be explained by their limited seed availability, rather than by their low

competitive ability (Seabloom et al. 2003a, 2003b). However, neighboring stands of each

species provided ample seed supply across the prairie, so seed limitation was unlikely

within our study area.

In our field experiment, we verified the four grass species were competing within

the natural environment. The amount of aboveground competition influenced plant

morphology; all four species grew to cover at least a marginally larger area and/or shorter

height when surrounding vegetation was removed. These changes in morphology will

likely translate into increased biomass and seed count during successive seasons due to

increased light capture ability (Schmitt and Dudley 1996). Similarly, Wilson and Shay

(1990) found that basal circumference increased in perennial grasses when neighbors

were removed in a Canadian mixed-grass prairie. L. multiflorum, the only non-perennial,
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was able to capitalize on the reduction in competition to produce more aboveground

biomass which was highly correlated (r =0.92) with seed production.

The greenhouse experiment supported our main hypothesis that competitive

hierarchies change with abiotic conditions, but only for the two exotic grasses. The

competitive success of1. multiflorum and S. arundinaceus depended upon nutrient

availability (Fig. 5.3), and the competitive success of S. arundinaceus further depended

upon moisture. However, the details of these interactions did not clearly support our

more specific hypothesis that aggressive exotic species have a greater competitive ability

at high nutrient, moderate moisture conditions. Under low nutrient conditions, 1.

multiflorum produced the most biomass when in competition with D. californica,

whereas in high nutrient treatments, 1. multiflorum produced the most biomass when in

competition with S. arundinaceus. 1. multiflorum is the stronger competitor of the two

exotics as it was able to prevent S. arundinaceus from capitalizing on high nutrient

availability (Fig. 5.3). This was also supported in the relative competitive yield

calculations, where intraspecific competition always had a greater effect on 1.

multiflorum than interspecific competition, and the only competitive interaction for S.

arundinaceus that had a greater influence on total biomass than intraspecific competition

was with 1. multiflorum. 1. multiflorum is an annual, and this may reflect annual grasses

being generally more competitive than perennial grasses under high nutrient conditions.

For example, Lowe et al. (2003) showed that as nitrogen availability increased, the

annual exotic grass Bromus tectorum dominated the native perennial grass Bouteloua

gracilis, and intraspecific competition was more significant than interspecific competition

for the exotic grass while the reverse was true for the native grass.
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Abiotic factors never affected the competitive outcome for the two native species,

D. cespitosa and D. californica in the greenhouse. The native D. cespitosa was least

competitive when in combination with 1. multijlorum, but this did not depend on

moisture or nutrient conditions. In general, the two native species attained a much

smaller size than the two invasive species, and their biomass production and allocation

appeared to be primarily controlled by abiotic factors and not competition (Figs. 5.2, 5.4).

Although this result is consistent with findings in other West Coast prairies (Bakker and

Wilson 2001, Corbin and D'Antonio 2004), some studies have observed an interaction

between abiotic factors and competition for native species. For example, in a California

montane meadow, the competitive ability of D. cespitosa decreased at very low soil

moisture (Kluse and Allen Diaz 2005). In a California grassland, the native perennial,

Sporobolus airoides, had lower survival at higher ammonium concentrations when in

competition with the exotic annual, Bromus diandrus (Hoopes and Hall 2002). However,

in this latter study, differences in timing of establishment could explain this effect.

Rather than planting germinated seedlings into their competition plots, seeds were

scattered and allowed to establish naturally. In our study site, the annual exotic grasses,

including 1. multijlorum, germinate much earlier than the perennial natives (personal

observation). As we did not consider timing of germination in our experiment, we are

not able to rule out the possibility that natives are excluded from the mesic habitats due to

differences in establishment dates.

Three of the grasses had the greatest growth response to high nutrients at the

highest moisture level (Fig. 5.2). The exception was 1. multijlorum, which consistently

produced more biomass under high nutrient conditions regardless of moisture
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availability. In addition, D. cespitosa, L. mult(/lorum, and S. arundinaceus allocated

more resources belowground in the low nutrient treatment, and D. cali/ornica had a

higher root:shoot ratio in the low moisture treatment than in the high moisture treatment

(Fig. 5.4). The competitiveness of S. arundinaceus depended on moisture, but in a

complicated manner that did not support our hypothesis.

The field experiment supported the importance of competition in situ, and the

greenhouse experiment supported our main hypothesis that competitive hierarchies

change depending on abiotic conditions, but only for the two exotic species. However,

our more specific hypothesis, that the aggressive exotic species, S. arundinaceus and L.

mult(florum, have a greater competitive ability at high nutrient, moderate moisture

conditions, was not consistent with the results from the greenhouse experiment.

Furthermore, we found no support that native species were preferentially excluded from

nutrient rich, moderately wet environments, but we can not rule out timing of

germination as an important factor in contributing to the exclusion of native species in the

field. The large average size ofL. mult(/lorum when grown in monoculture, its large

absolute and relative response to nutrient additions irrespective of moisture conditions,

and its greater overall competitiveness in the greenhouse pairs support a conclusion that

this invasive species is a very potent competitor with both native and exotic species.

However, the competitive ability of perennial species may increase over multiple

growing seasons. The factors contributing to plant community structure are complex, but

our experiment shows that even within a single growing season, competition, nutrients,

and moisture influence plant success and determine interactions between native and

exotic species.
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CHAPTER VI

CONCLUSIONS AND RESTORATION IMPLICATIONS

"The next century will, I believe, be the era of restoration in eco10gy."-E.O. Wilson

Restoration ecology is an emerging discipline and provides an ideal opportunity

to test basic ecological theories. Over the past twenty years, ecologists have begun

testing theories of succession, competition, disturbance, and invasion within a restoration

framework, but there is still considerable potential for integration. With this dissertation,

I attempt to advance this emerging field and build upon the collective knowledge base by

examining multiple controls over plant community structure and ecosystem functioning.

In particular, I examined the roles of succession, competition, and environmental

heterogeneity in structuring plant communities and controlling ecosystem function within

remnant and restored prairies ofthe Willamette Valley, Oregon.

Summary of Results

1. In restored wetland prairies, site preparation techniques resulted in different initial

successional trajectories ofp1ant communities, but over time, these communities

converged due to a loss of early-successional species and the increasing

dominance of native perennial bunchgrasses. The net result was a progressive



132
decrease in diversity each year. Site preparation techniques also had minimal

impacts on belowground function, with the exception of topsoil removal, which,

even after five years, resulted in significantly less microbial biomass, mycorrhizal

colonization, and net primary productivity than other treatments.

2. Restored wetland prairies never attained the overall species richness found in

high-quality remnant wet prairies. In the restored sites, native perennial

bunchgrasses dominated plant communities, which resulted in a tradeoff with

species diversity. Areas of high diversity tended to have low native cover,

particularly of native bunchgrasses, and vice versa. Finding ways to mitigate this

tradeoff between high native cover and high diversity through an understanding of

both site preparation and seeding protocols as part of successional management

may be a critical step toward establishing wetland prairie communities with the

desired characteristics.

3. Remnant prairies had higher exotic species cover, diversity, and productivity than

restored prairies, suggesting that current site preparation techniques are effective

in initially eliminating the exotic vegetation and seed bank. However, it is not

clear that restored sites will remain resistant to invasion over the long term

without active management.

4. Wetland prairies of the Willamette valley were not significant producers of the

greenhouse gasses, methane and nitrous oxide. In every season, rates of methane

and nitrous oxide production were zero. This is apparently due to a co-limitation

of nitrate and carbon in these systems (unpublished data).
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5. The competitive hierarchies for exotic grasses (commonly found in both upland

and wetland prairies) were dependent upon nutrient and/or moisture availability

within a single growing season. Although abiotic factors affected the growth and

reproduction ofnative grasses, the competitive outcomes were not influenced by

nutrient and moisture availability. Instead, in the first year ofgrowth, native

perennial grasses were poor competitors with exotic grasses regardless ofabiotic

conditions. However, the competitive ability ofnative perennials may increase

over multiple years, particularly with exotic annuals.

6. In an upland prairie, carbon, nitrogen, and phosphorus cycling were controlled by

temperature and/or moisture, and various edaphic factors (e.g., total carbon and

percent clay content). Microbial respiration, net nitrogen mineralization, net

nitrification, and phosphorus availability all responded to experimentally

manipulated temperature and moisture treatments, particularly in the winter. As

current climate change models predict wanner, wetter winters in the Pacific

Northwest, my results suggest that we would see an increase in soil respiration

and decrease in plant-available nitrogen and phosphorus during these months.

Implications for Restoration and Conservation

Understanding the complex interactions between biotic and abiotic factors in

controlling ecosystem function and plant community structure is essential for effective

restoration in general and conservation ofWillamette Valley prairies in particular. My

results suggest that succession, competition, and environmental heterogeneity all are

impoltant controls ofplant community structure and thus, should be considered when
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attempting to restore diverse wet and dry prairie ecosystems. In particular, it is important

to develop a successional framework for managing plant community change over time.

This begins with site preparation treatments to control exotic species and establish native

plant diversity. However, my results suggest that successful initial establishment of

native species may need to be followed by other types of management disturbances over

time, such as fire, to help maintain diversity by reducing the dominance of highly

competitive species.

When restoring a site, it also is important to consider the criteria for 'success' of

mitigation projects. If only one criterion is examined, restorations could be deemed

'successful' despite having dramatically different ecosystem functioning and diversity

than high-quality remnant prairies. For example, if mitigation success is based solely

upon high native plant cover, my results suggest that heavily seeding with native

perennial bunchgrasses would likely meet this criterion, but at a cost to diversity. If the

ultimate goal is a highly diverse native community, then allowing forbs and other

subdominant species to establish first, followed by a light seeding of native bunchgrasses

may be a more appropriate approach. Furthermore, once plants have been established,

periodic disturbances may be necessary to maintain the subdominant native species.

Establishing prairie restorations that can sustain both high cover and high species

diversity with relatively low amounts of maintenance is a challenge that remains to be

resolved.

One promising finding is that restored wetland prairies with intact hydrology

relatively rapidly attained a more 'natural' belowground state, resembling soil

functioning in the remnant prairies. For the soil variables measured, I observed minimal
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impacts on belowground functions after site preparation, with the exception of the more

intensive technique, topsoil-removal. These results suggest restoration practitioners can

focus on establishing diverse, productive plant communities and that 'soil functioning

will follow' as long as the site preparation does not involve a significant disruption to the

soil structure and the hydrology is intact. Further research is needed to determine what

impacts site preparation may have on specific members of the soil microbial community.

Once restored, land managers must also consider the competitive hierarchies

between native and exotic species, and how these hierarchies will be influenced by the

abiotic environment. My results suggest that exotic grasses are competitively superior to

native grasses in a single growing season; however, further research is needed to

determine if this is true over multiple growing seasons and for native versus exotic forbs

as well. Determining under what conditions native species may be competitively

superior will be important for maintaining native populations in remnant and restored

prairies. Finally, it is necessary to consider how a changing climate will affect plant

community structure and ecosystem function. I began to touch on this by determining

how changing moisture and temperature conditions affected nutrient cycling, but this area

warrants further research, including how a changing climate will affect plant species

distributions.

In conclusion, one measure of successful ecological research is the degree to

which the findings are employed to solve real-world environmental problems. The

research presented in this dissertation is already informing local restoration activities. As

one City of Eugene employee stated, "This work has transformed the way prairie



restoration is done in the Willamette Valley" (Trevor Taylor, Wetlands Program

Supervisor).
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APPENDIX A

CHAPTER II SUPPLEMENTAL TABLES AND FIGURES

Supplemental Table 2.1. Species axis loadings for NMS ordination of experimental
treatments, reference sites, and farm field (see Fig. 2.5). Only significant (p<O.05)
indicator species are reported. Native (N) and exotic (E) origin, life history (A: annual,
B: biennial, and P: perennial), and functional group (G: graminoid, F: forb, and W:
woody) are given for each species.

Species Axis 1 Axis 2 Species Life Functional
Loading Loading Origin History Group

Lolium multiflorum -1.07 -0.97 E A G
Juncus bufonius -0.74 -0.64 N A G
Epilobium densiflorum -0.48 -0.16 N A F
Cicendia quadrangularis -0.43 -0.32 N A F
Sonchus asper -0.37 -0.34 E A F
Lactuca serriola -0.36 -0.26 E AlB F
Carex densa -0.30 0.02 N P G
Madia elegans -0.13 0.21 N A F
Agrostis exarata -0.05 0.46 N P G
Hypochaeris radicata -0.03 -0.22 E P F
Madia glomerata 0.11 0.00 N A F
Prunella vulgaris 0.14 0.08 N P F
Deschampsia cespitosa 0.22 0.47 N P G
Rumex crispus 0.24 -0.30 E P F
Cynosurus cristatus 0.44 0.06 E P G
Eryngium petiolatum 0.55 -0.39 N P F
Symphyotrichum hallii 0.62 -0.20 N P F
Parentucellia viscosa 0.65 -0.15 E A F
Potentilla gracilis var.

0.69 -0.38 N P F
gracilis
Rubus armeniacus 0.71 -0.32 E P W
Centaurium erythraea 0.78 -0.25 E AlB F
Camassia quamash var.

0.94 -0.46 N P F
maxima
Hypericum perforatum 0.97 -0.76 E P .F
Centaurium muhlenbergii 0.98 -0.11 N AlB F
Bromus hordeaceus 0.99 -0.71 E A G
Danthonia californica 1.00 -0.32 N P G
Myosotis discolor 1.01 -0.88 E A .F
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Supplemental Table 2.1 (continued)

Species Axis 1 Axis 2 Species Life Functional
Loading Loading Origin History Group

Daucus carota 1.02 -0.77 E B F
Rhamnus purshiana 1.03 -0.84 N P F
Rumex acetosella 1.03 -0.08 E P F
Rosa multiflora 1.04 -0.82 E P W
Holcus lanatus 1.04 -0.42 E P G
Vicia hirsuta 1.05 -0.75 E A F
Vicia sativa 1.05 -0.75 E A F
Amelanchier alnifolia 1.05 -0.63 N P F
Triteleia hyacinthine 1.08 -0.60 N P F
Crataegus monogyna 1.08 -0.06 E P W
Anagallis arvensis 1.09 -0.58 E AlB F
Rubus laciniatus 1.09 -0.06 E P W
Eriophyllum lanatum 1.10 -0.37 N P F
Juncus acuminatus 1.10 0.22 N P G
Agrostis stolonifera 1.11 -0.61 E P G
Geranium molle 1.12 -0.68 E A/B/P F
Sisyrinchium idahoense 1.12 -0.28 N P F
Geranium columbinum 1.13 -0.88 E A F
Juncus nevadensis 1.13 -0.14 N P G
Vida tetrasperma 1.13 -0.52 E A F
Erigeron decumbens 1.14 -0.88 N P F
Schedonorus arundinaceus 1.14 -0.73 E P G
Allium amplectens 1.16 -0.24 N P F
Saxifraga oregano 1.16 -0.13 N P F
Plantago lanceolata 1.16 -0.52 E P F
Lotus unifoliolatus 1.16 -0.40 N A F
Leucanthemum vulgare 1.16 -0.69 E P F
Navarretia intertexta 1.18 0.04 N A F
Galium parisiense 1.18 -0.54 E A F
Luzula comosa 1.19 -1.12 N P G
Aira caryophyllea 1.20 -0.61 E A G
Leontodon taraxacoides 1.21 -0.55 E P F
Aster curtus 1.22 -1.03 N P F
Anthoxanthum odoratum 1.23 -0.63 E P G
Lotus formos issimus 1.23 -0.54 N P F
Zigadenus venenosus 1.23 -0.32 N P F
Mentha pulegium 1.24 -0.51 E P F
Sidalcea cusickii 1.24 -0.59 N P F
Rosa nutkana 1.24 -0.75 N P W
Achillea millefolium 1.24 -1.20 N P F
Dichanthelium acuminatum 1.24 -0.60 N P G
Linum bienne 1.25 -0.45 E AlB F
Fragaria virginiana 1.27 -0.35 N P F
Bromus arvensis 1.27 -0.35 E A G
Veronica scutellata 1.29 -0.44 N P F
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Supplemental Figure 2.1. Simpson's diversity vs. percent cover ofAgrostis exarata
and Deschampsia cespitosa in the experimental treatments and reference sites.
Regression lines are drawn for 2005 (dotted), 2006 (dashed), and 2007 (solid) and r2 and
p-values are reported.
Note: Farmfield is excludedfrom regression because plots have a Simpson's diversity of
zero.
High values ofSimpson 's index ofdiversity indicate high levels ofdiversity.
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Supplemental Figure 2.2. Net nitrogen (N) mineralization (A), net nitrification (B), and
soil respiration (C) in the fall 2005, winter 2006, spring 2006, and summer 2006 for
experimental treatments and farm field. Error bars represent one standard error from the
mean and lower case letter differences indicate significant (P<0.05, *p<0.10) effects of
treatment within a season.
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Supplemental Figure 2.3. Microbial biomass carbon and nitrogen in experimental
treatments and farm field. Error bars represent one standard error from the mean and
lower case letter (carbon) and number (nitrogen) differences indicate significant effects
(p<0.05, *p<0.10) among treatments. Note differences in magnitude ofy-axes.
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CHAPTER III SUPPLEMENTAL TABLES
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Supplemental Table 3.1. Species axes loadings for NMS ordination of restoration
treatments (see Fig. 3.5). Only significant indicator species (P <0.05) are reported.
Native (N) and exotic (E) origin, life history (A: annual, B: biennial, and P: perennial),
and functional group (G: graminoid, F: forb, and W: woody) are given for each species.
Axis loading values greater than 0.5 are in bold and values less than -0.5 are underlined
and in bold.

Species
Axis 1 Axis 2 Species Life Funct.

Loading Loading Origin History Group
Hypericum perforatum -1.19 0.17 E P F
Rosa nutkana -1.11 0.14 N P W
Anthoxanthum odoratum -1.11 -0.18 E P G
Fraxinus latifolia -1.10 0.65 N P W
Zigadenus venenosus -1.07 -0.28 N P F
Dichanthelium acuminatum ssp.

-1.03 -0.46 N P G
fasciculatum
Crataegus monogyna x suksdorfi -1.00 0.26 E P W
Sisyrinchium idahoense -1.00 -0.09 N P F
Mentha pulegium -0.88 -0.12 E P F
Leucanthemum vulgare -0.87 0.61 E P F
Daucus carota -0.79 0.65 E B F
Schedonorus arundinaceus -0.76 0.73 E P G
Danthonia californica -0.75 0.02 N P G
Symphyotrichum hallii -0.73 0.60 N P F
Galium parisiense -0.71 0.23 E A F
Potentilla gracilis var. gracilis -0.69 0.64 N P F
Vicia tetrasperma -0.62 0.40 E A F
Plantago lanceolata -0.61 0.27 E P F
Sonchus asper -0.61 0.23 E A F
Lotus formosissimus -0.60 -0.13 N P F
Briza minor -0.58 -0.04 E A G
Centaurium erythraea -0.54 0.24 E AlB F
Rubus armeniacus -0.50 0.34 E P W
Aira caryophyllea -0.47 0.43 E A G
Linum bienne -0.45 -0.11 E AlB F
Juncus nevadensis -0.45 0.31 N P G
Leontodon taraxacoides -0.36 0.29 E P F
Hypochaeris radicata -0.27 0.32 E P F
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Supplemental Table 3.1 (continued)

Species
Axis 1 Axis 2 Species Life Funct.

Loading Loading Origin History Group

Cirsium vulgare 0.07 0.95 E B F
Orthocarpus bracteosus 0.13 0.02 N A F
Microsteris gracilis 0.21 -0.31 N A F
Parentucellia viscosa 0.23 0.44 E A F
Juncus tenuis 0.23 -om N p G
Wyethia angustifolia 0.23 0.15 N P F
Holcus lanatus 0.24 0.24 E P G
Grindelia integrifolia 0.24 -0.28 N P F
Deschampsia cespitosa 0.33 -0.09 N P G
Poa compressa 0.36 -0.30 E P G
Hordeum brachyantherum 0.38 -0.46 N P G
Lolium multijlorum 0.40 -0.99 E A G
Agrostis exarata 0.41 -0.91 N P G
Epilobium densijlorum 0.42 -0.89 N A F
Poa annua 0.42 -0.95 E A G
Carex densa 0.43 -0.23 N P G
Madia glomerata 0.44 -0.93 N A F
Plagiobothrys jiguratus ssp. jiguratus 0.44 -0.86 N A F
Moenchia erecta 0.45 0.09 E A F
Madia elegans 0.48 -0.05 N A F
Downingia elegans 0.50 -0.33 N A F
Epilobium brachycarpum 0.50 0.18 N A F
Deschampsia danthonioides 0.54 -0.20 N A G
Lotus unifoliolatus 0.60 0.41 N A F
Gnaphalium palustre 0.61 -0.14 N A F
Centunculus minimus 0.66 -0.01 E A F
Agrostis stolonifera 0.71 0.02 E P G
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Supplemental Table 3.2. Species axes loadings for CCA ordination of restoration and
reference prairies (see Fig. 3.7). Native (N) and exotic (E) origin, life history (A: annual,
B: biennial, and P: perennial), and functional group (0: graminoid, F: forb, and W:
woody) are given for each species. Axis loading values greater than 1.0 are in bold and
values less than -1.0 are underlined and in bold.

Species

Rosa multiflora
Fraxinus latifolia
Plantago lanceolata
Leucanthemum vulgare
Potentilla gracilis var. gracilis
Daucus carota
Schedonorus arundinaceus
Eryngium petiolatum
Anthoxanthum odoratum
Dichanthelium acuminatum ssp. fasciculatum
Anagallis arvensis
Sisyrinchium idahoense var. idahoense
Vicia tetrasperma
Galium parisiense
Symphyotrichum hallii
Danthonia californica
Hypericum perforatum
Mentha pulegium
Centaurium erythraea
Lotus formosissimus
Crataegus suksdorjii
Hypochaeris radicata
Rubus armeniacus
Zigadensus venenosus var. venenosus
Aira carophyllea
Rosa nutkana var. nutkana
Briza minor
Juncus sp.
Leontodon taraxacoides
Eriophyllum lanatum
Madiasp.
Grindelia integrifolia
Prunella vulgaris var. lanceolata
Juncus tenuis
Holcus lanatus
Lotus unifoliolatus var. unifoliolatus
Cirsium vulgare
Parentucellia viscose
Madia elegans
Ranunculus sp.
Veronica scutellata
Microseris laciniata
Deschampsia cespitosa
Rumex salicifolius var. salicifolius
Agrostis stolliniferus
Epilobium brachycarpum
Vulpia bromoides
Agrostis exarata
Epilobium ciliatum

Axis 1
Loading

-2.29
-2.29
-1.97
-1.83
-1.81
-1.75
-1.66
-1.65
-1.51
-1.32
-1.25
-1.25
-1.24
-1.22
-1.21
-1.20
-1.18
-1.14
-1.07
-1.03
-0.94
-0.92
-0.86
-0.85
-0.83
-0.69
-0.68
-0.58
-0.56
-0.47
-0.44
-0.39
-0.31
-0.27
-0.17
-0.11
-0.07
-0.04
0.09
0.10
0.16
0.20
0.28
0.31
0.34
0.40
1.07
1.54
1.62

Axis 2
Loading

0.77
-3.66
-1.23
-0.38
-0.47
-0.14
-0.06
-0.58
-1.37
-1.96
-0.83
-0.78
-0.59
-1.08
-0.38
-1.39
-0.01
-0.66
0.30
0.01
-1.68
0.93
-0.66
-2.00
0.06
-0.42
-0.16
0.27
0.21
1.55
1.05
1.85
-0.02
1.64
0.31
0.61
0.06
0.20
0.84
1.71
1.42
0.99
0.82
1.97
1.94
0.40
-0.17
-1.18
-1.06

Species
Origin

E
N
E
E
N
E
E
N
E
N
E
N
E
E
N
N
E
E
E
N
N
E
E
N
E
N
E
N
E
N
N
N
N
N
E
N
E
E
N
N
N
N
N
N
E
N
E
N
N

Life
History

p
p
p
p

P
B
p
p
p

P
A
p

A
A
p
p
p

P
AlB

P
P
p
p

P
A
p

A
p
p

P
A
p
p
p

P
A
B
A
A
p
p
p
p
p

P
A
A
p

A

Funct.
Group

w
W
F
F
F
F
G
F
G
G
F
F
F
F
F
G
F
F
F
F
W
F
W
F
G
W
G
G
F
F
F
F
F
G
G
F
F
F
F
F
F
F
G
F
G
F
G
G
F



Supplemental Table 3.2 (continued)

Species

Epilobium densiflorum
Plagiobothrys jiguratus ssp. jiguratus
Lolium multiflorum
Madia glomerata

Axis 1
Loading

1.67
1.73
1.82
1.98

Axis 2
Loading

Species
Origin

N
N
E
N

Life
History

A
A
A
A

Funct.
Group

F
F
G
F
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