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1. INTRODUCTION

My research work originated in 2012 within the framework of  bachelor’s 
studies at the V. N. Karazin Kharkiv National University (Ukraine). I 
began researching the so-called “intangible nature use”, which describes 
the non-material component of  people-nature relationship. The 
intangible nature use encompasses a wide range of  intangible natural 
resources (i.e. those natural materials, bodies and processes, the use of  
which does not cause any extraction or transformation of  substance or 
energy, while profitable and valuable). These natural phenomena and 
their properties become intangible assets, being recognised and used by 
economic actors as elements of  natural capital and sources of  economic 
rent or left behind the quantitative assessment as positive externalities 
(Bourassa 1992; Dronova 2019). 

We are witnessing now a paradigm shift in environmental science and 
related disciplines towards rethinking the complexity of  people-nature 
relationships, including non-material interactions (Díaz et al. 2018; 
Dronova 2019). A major direction of  this shift has gained increasing 
attention over past decades because of  the concept of  (cultural) ecosystem 
services (Daily 1997; Millennium Ecosystem Assessment 2005). In parallel, 
the concept of  environmental resources was introduced to capture also the 
cultural values related to nature (Mather and Chapman 1995). Since 
that time, the concept of  environmental resources was frequently being 
used in combination with natural resources, adding essential matters of  
cultural and regulating ecosystem services to the common discourse of  
natural resources (Saastamoinen 2016). However, both semantic and 
practical issues continued to exist: all the mentioned approaches suffer 
from a lack of  generalisation. More recently, a new concept of  nature’s 
contributions to people (NCP) was introduced (Díaz et al. 2015). Classification 
of  NCP includes already non-material contributions, moving towards 
more universal and adequate conceptualisation (Pires et al. 2020). At the 
same time, cultural ecosystem services also become discussed as those 
which have “no material benefits” (Small et al. 2017) or informational 
(De Groot et al. 2002; Bukvareva et al. 2019). Bukvareva et al. define 
informational ecosystem services simply as “all kinds of  information 
that is contained in natural ecosystems and can be used by people” 
(2019) and this logic appears to be the most fruitful for the approach, 
used in this thesis (while still limited with biological notion of  ecosystem 
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and also service itself). We argue that the concept of  service is applicable 
to the fact of  non-material people-nature interaction (landscape 
watching, doing sports outdoors, recreational activities, etc) but not to 
the particulars of  environment as provider of  the services. This opinion 
is enshrined in the well-known cascade model of  ecosystem services  
(Potschin and Haines-Young 2011; Small et al. 2017), but authors 
writing on the topic of  the visual landscape quality (main environmental 
characteristics, responsible for the arousal of  aesthetic and recreational 
values) rarely put it in the context of  resources. One of  a few examples 
of  such resource-driven approach is a psychophysical methodology of  
visual resources inventory, which is quite widespread in the USA (BLM 
1986). 

This thesis aims to examine the visual environment using quantitative 
geographic tools to increase awareness on the visual environment as 
a provider of  cultural ecosystem services and, more generally, NCP. 
For this purpose, the concept of  intangible (non-material) natural 
resources will be used. It emerged within the local Ukrainian school of  
environmental geography (Prof. Bagrov and Prof. Bokov (V.I. Vernadsky 
Taurida National University), Prof. I. Chervanyov (V.  N.  Karazin 
Kharkiv National University)). Noteworthy is that the considered 
problematics is elaborated primarily using economic discourse, since 
much of  environmental economics is concerned with a scarcity of  
natural resources, and intangible natural resources, being non-material 
and, therefore almost inexhaustible (given that factors of  their formation 
are persistent), provide a source of  hypothetically endless economic gain. 
Based on previous assumptions, we suggest the following definition of  
intangible natural resources: conditions of  outdoor environment (with 
a significant part of  natural or semi-natural origin, possibly managed or 
designed but not purely artificial) that positively influence people’s quality 
of  life, well-being and health and enable cultural ecosystem services and 
NCP use; it also is applicable to the management of  associated natural 
resource rents.

The objective organisation of  visual environment—physical  (abiotic), 
ecological (biotised), and cultural (anthropised)—is a typical subject of  
mapping and monitoring by means of  remote sensing, complementing the 
field research. The objective environment acts as a source of  three types 
of  information [Weizsäcker (1974) as described by Naveh and Lieberman 
(1984)]: syntactic (arrangement of  signs, pattern), semantic (meaning, 



12

symbolic), and pragmatic (related to active use by receiver), affecting 
the behaviour of  receivers. People act as receivers of  information, 
interpreting it as landscape conditions (intangible natural resources) for 
various outdoor activities (cultural ecosystem services or non-material 
NCP), assessable by means of  social media analysis and various kinds 
of  crowdsourcing. Semantic information supports the intrinsic values, 
while syntactic and pragmatic information are responsible for relational 
ones, important for sustainable decision-making for purposes of  nature 
conservation, landscape design and management. Figure 1 presents the 
logical chain of  research: how natural conditions (expressed visually 
as physiognomic attributes) become conceptualised as natural capital 
(by means of  intangible natural resources). It is easily seen that remote 
sensing and GIS can be used for quantifi cation of  intangible natural 
resources, but such quantifi cation should be validated with people-
generated subjective data, such as coming from social media.

Fig. 1. “Logical chain” of  the research; intangible natural resources are covered here 
by the concept of  natural capital. Inspired by the ecosystem services delivery chain 
(Haines-Young and Potschin 2010), but with a focus on natural organisation and 
theory of  information. 

We will discuss further the selected visual intangible natural resources 
for landscapes within the study areas in Estonia and Portugal, namely, 
the extent of  landscape coherence and colour harmony of  land cover in 
relation to outdoor photographing preferences. Chapter 2 presents the 
literature review, substituting the relevance and methods, used further. 
Chapter 3 describes aims, research questions and hypotheses, while 
the following chapters follow common Methods-Results-Discussion 
scheme, and Chapter 7 fi nalises the thesis with conclusions. Methods, 
results and discussion are the compilation of  the methods, results, and 
discussion from the manuscripts that were published (paper I covers 
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the theoretical topic of  remote sensing applicability for landscape 
pattern mapping; papers II and III propose the colour harmony and 
landscape coherence indices respectively; and paper IV examines the 
proposed indices in Estonia). However, the introduction, literature 
review and conclusions are completely original providing a wide context 
for interpretation of  the published or submitted results.
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2. REVIEW OF THE LITERATURE

2.1. Economic relevance: justification of  intangible natural 
resources

The basic anthropocentric idea behind the economic value of  landscape 
has been extensively implemented in form of  CES studies; this common 
purely economic perspective on CES even becomes the reason for their 
criticism (Chan et al. 2012; Díaz et al. 2018; Pires et al. 2020). In contrast, 
the economic value of  particular landscape features and attributes 
was directly synthesised, with minor references to the ecosystem 
services concept, just in a few major undertakings (Price 2013; Price 
2017), supporting the integration of  landscape ecology and landscape 
economics (Tagliafierro et al. 2013; Tagliafierro et al. 2016). This thesis 
does not apply any monetary evaluations of  landscape; however, it 
can facilitate the task of  such integration, considering the landscape 
attributes as intangible natural resources. The problem is that a high 
level of  uncertainty associated with subjective landscape attributes may 
prevent them from substantial economic analysis (van der Heide and 
Heijman 2013). Standard metrics of  visual landscape quality may help to 
internalise landscape into the body of  economics; for example, a GIS-
based landscape appreciation model in the Netherlands is reported to be 
useful for economic analysis (Sitjsma et al. 2013).

The notion of  intangible natural resources benefits from the thesis of  
Peruvian economist Hernando de Soto from his well-known book, 
“The Mystery of  Capital: Why Capitalism Triumphs in the West and 
Fails Everywhere Else,” highlighting the importance of  property rights 
and recognition of  all kinds of  economic activities for economic 
development (De Soto 2000). He argues that the prosperity of  countries 
depends on the ability of  economic actors to internalise natural resources 
into legal economic domain, turning them into natural assets and capital 
rather than on just presence of  such resources (hence, resource curse). 
Indeed, despite the fact that from ancient times natural resources were 
typically discussed as a basement for wealth of  countries, the second 
half  of  the 20th  century saw the beginning of  the economic value of  
natural resources complementing other ascending problematic concepts: 
externalities (1920; 1958), tragedy of  commons (1833; 1968), Dutch 
disease (1977), and resource curse (1993). Even though there is still no 
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single formula for economic success, economists began preferring other 
factors, such as the institutional capacity and services sector, human 
capital, and a “green economy” share in the whole economy of  states. 
In other words, democratisation and growth of  economic transparency 
leads to the increasing wealth of  countries, and vice versa, hidden or 
unrecognised economic activities tend to retard the economic progress; 
in this way, availability of  natural resources is closely linked to the quality 
of  adopted management practices (Durnev and Guriev 2007; Guriev 
and Sonin 2008).

Because of  the reasons mentioned above and also as a result of  the 
Green Revolution (or Third Agricultural Revolution in the 1960s), 
and the boom of  green innovations that we are witnessing today the 
economies of  the most developed countries are becoming less dependent 
on traditional non-renewable natural resources, such as oil products 
or soil fertility (Fücks 2013). The main aim of  the ongoing green 
revolution and numerous start-ups is to prove that the trend towards 
the environmental sustainability does not inhibit economic growth. In 
contrast, economic sustainability can be supported by environmental 
initiatives. Thereby, a process of  the economic internalisation is going 
on, from the wider utilisation of  available renewable resources (such 
as sunlight or wind) to commoditisation of  intangible properties of  
nature, supporting travel and tourism industry, which created about 
10% of  the global GDP in 2017 (UNWTO 2017). The ultimate goal of  
such efforts is to operationalise those economically profitable natural 
bodies and phenomena that may support economic growth without losing 
environmental quality on Earth. Despite the fact that such commoditisation 
may not seem ethically correct, we argue that turning an environmental 
quality (ecosystem or landscape quality, first of  all) into an economic 
asset is a rational way to sustain it (Turner et al. 2019). Therefore, our 
“mission” in economic domain is to contribute to the articulation and 
operationalisation of  those intangible conditions of  nature, which have 
actual or potential benefits for human well-being and quality of  life, 
by means of  more accurate objective assessment with novel methods 
(remote sensing and social media). 

We argue that environmental science and nature protection will benefit 
from deeper incorporation of  economic concepts, discussing favourable 
environmental conditions as non-material natural resources within the 
inter- and cross-disciplinary studies. Given the fact that sustainability 
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is usually discussed as based on three equally important pillars—
environmental, economic and social—this logic complements some 
attempts to recognise landscape ability to provide services (including 
cultural) within landscape sustainability approach (Musacchio 2013; 
Wu 2013). To sum up the economic relevance, we argue that the 
quality of  environmental management affects economic growth and 
vice versa; therefore, because of  the absence of  the CES market and 
underestimation of  ecosystem/landscape conditions responsible for 
human well-being, outdoor recreation, leisure activities, and nature-based 
tourism, those ecosystem/landscape conditions should be assessed as 
valuable intangible natural resources that are a source of  economic gain 
and basis for cultural ecosystem services (non-material people-nature 
interactions). Remote sensing and GIS can advance non-monetary 
(and further integrated to monetary) assessment of  these conditions in 
combination with ground-based social media data and public surveys.

2.2. Environmental relevance: Can non-material values be 
connected to objective natural patterns and processes?

Several years ago, the conceptual possibility of  linking non-material 
values to the objective structures of  environment within the ecosystem 
services framework was debated by Daniel at al. (2012) and Kirchhoff  
(2012). One of  the key arguments by Kirchhoff, who was against such 
linking, was “the sense of  a poem results from a meaningful arrangement 
of  words and not from a pattern of  ink on the paper” (Kirchhoff  
2012). This distinction continues the sound discussions on the topic of  
quantitative landscape evaluation, dating back to 1960s and choosing 
between a more ”holistic” and subjective assessment of  environment on 
the one hand and a component-based objective approach (Lothian 1999; 
Price 2013) on the other. Still these two opposite directions of  landscape 
research co-exist, mutually complementing each other. The European 
Landscape Convention (2000) attempts to combine them in the broad 
definition of  landscape: “Landscape means an area, as perceived by 
people, whose character is the result of  the action and interaction 
of  natural and/or human factors”. However, the vast majority of  
landscape-related studies still utilise either objective (often GIS-based) 
models of  landscape deconstruction, such as “patch-corridor-matrix” 
(Forman 1995), with various spatial and functional pattern models 
(Bell 2012; Antrop and Van Eetvelde 2017a), or subjective deliberative 
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and participatory methods, such as in-depth interviews, sociological 
surveying, focus group workshops, polls and debates (Waterton 2019). 

Following to some extent Marc Antrop and Veerle Van Eetvelde (2017b), 
we argue that the notion of  landscape should play rather integrating 
role, bridging opposite intellectual traditions. According to Granö (1997; 
Antrop 2013), a pivotal status of  visual perception of  distant environment 
compared to multisensory perception of  its closer parts, differs 
landscape from so-called “proximity”. Therefore, landscape researchers 
deal with patterns of  distant visual environment. Quantification of  the 
landscape pattern for purposes of  its visual and functional understanding 
traditionally occurs by means of  information theory (Nowosad and 
Stepinski 2019). Information, as Figure 1 illustrates, can be interpreted 
within three main categories (Naveh and Lieberman 1984): syntactic 
information (measured with classic formulas by Hartley and Shannon 
as function from some set of  distinct elements), semantic information 
(meaning, subject of  the dispute between Daniel and Kirchhoff  in 2012), 
and pragmatic information (inducing receiver’s actions). Semiotically 
interpreting landscape as a text (Lindström et al. 2019), landscape was 
frequently examined with syntactic information-based landscape metrics 
and indices (Uuemaa et al. 2013; Antrop and Van Eetvelde 2017c). 
Semantic and pragmatic information affecting intrinsic and operational 
nature-related values (Pascual et al. 2017) was neglected instead. We 
argue that completely information-based definition of  landscape as a 
visual abiotic, biotised and anthropised environment, transmitting the 
syntactic, semantic, and pragmatic information to the human observer 
as a receiver, encompasses all the complexity of  objective and subjective 
approaches to landscape conceptualisation. Those information concepts 
also resonate with theories of  landscape preferences; the most widely 
adopted theory is currently so-called “information processing theory” 
by Rachel and Stephen Kaplan from the University of  Michigan (Kaplan 
and Wendt 1972; Kaplan and Kaplan 1989; Kaymaz 2012). This theory 
focuses on organisation of  visual environment as a driver for arousal 
of  landscape appreciation; diversity, complexity and heterogeneity of  
landscapes (assessable by means of  objective landscape metrics) are 
in a core of  modern landscape assessment studies (Dronova 2017; 
Albert et al. 2019; Dronova 2019). Earlier, Berlyne’s and Wohlwill’s 
approaches to environmental aesthetics, the famous prospect-refuge 
theory, Gibson’s theory of  affordances, and even Gestalt principles, 
mentioned in this context as well (Kaymaz 2012; Bell 2012), are focused 
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either on visual organisation of  symbols, pragmatic information, or 
syntactic information—of   course, indirectly, but all these theories can 
be described in terms of  information processing.

From a geographic perspective, mapping of  environmental conditions is 
a source of  information about the visual environment, being connected 
in this way to the landscape problematics, intangible natural resources 
and cultural ecosystem services. Landscape attributes are becoming more 
assessible and monitorable with tracking status and trend of  the land, 
water, soil, air and other processes, such as urbanisation or desertification, 
spatially and over time. The leading role in understanding and monitoring 
of  environment belongs to the remote sensing of  various spatiotemporal 
resolution. Globally available sources of  data on environmental quality 
are pivotal for achievement of  sustainable development goals (Espey 
2019), thereby our primary task is to contribute to the conversion of  the 
raw environmental data (such as satellite imagery or social media data) to 
the valuable information about visual quality of  environment (Karasov 
et al. 2018; Karasov et al. 2020b). Remote sensing is a worldwide available 
data acquisition method, supporting sustainable development (Guo 
2020). Passive crowdsourcing is a methodologically advanced method of  
collecting the information about environment and individual landscape 
experience, both in contexts of  nature conservation (Ghermandi and 
Sinclair 2019; Toivonen et al. 2019) and  urban planning (Ilieva and 
McPhearson 2018).

Supervised and unsupervised classifications are applied to create 
categorised maps of  land use and land cover (LU/LC), which are the 
most commonly used for ecosystem services mapping compared to 
other remote sensing tools (Karasov et al. 2019; Tavares et al. 2019). It is 
interesting that those applications of  remote sensing are highly dependent 
on perceptual and cognitive phenomena: LU/LC classifications reflect 
language-based distinctions between areas, while satellite imagery 
bands include also the visible spectrum (so-called “natural colours”), 
corresponding to the human perception of  colours. In this way remote 
sensing can facilitate the monitoring of  environmental conditions with 
the monitoring of  visual quality of  environment. Reliable objective 
quantitative indicators, based on remote sensing data and confirmed 
with in situ Earth observations, may create the basis for economic 
estimations of  endowments of  intangible natural resources. To sum 
up, the visual configuration (organisation) of  environment, assessable 
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and monitorable by means of  remote sensing techniques, exposes visual 
stimuli to the observer, creating specific landscape experience and, 
arising as a result, non-material values. 

2.3. Social relevance: how individual landscape experience turns 
into knowledge

Philippe Saint-Marc, a modern French philosopher, is among the first 
authors who recognised the importance of  the nature as a public good, 
or commons (Saint-Marc 1971). He suggested the dichotomy of  “to 
have” and “to be”: to have some things or material goods, and to be 
healthy, happy, and satisfied. This fundamental distinction also highlights 
the importance of  the topic of  intangible natural resources as publicly 
available characteristics of  environment, boosting its habitability for 
people and responsible for people’s well-being and health. Especially, 
the problems of  intangible environmental quality are recognised within 
the tourism and recreation (Sonter et al. 2016; Schirpke et al. 2019) and 
urban quality studies (Martínez Pastur et al. 2016; Chen and Xu 2016), 
since the vast majority of  the world population lives in urbanised areas. 

Article 5 of  the European Landscape Convention obliges parties “to 
establish procedures for the participation of  the general public, local and 
regional authorities, and other parties with an interest in the definition 
and implementation of  the landscape policies”, highlighting the 
importance of  bottom-up approach and public engagement in decision-
making. Indeed, environmental awareness and everyday environmentally 
friendly habits are gradually becoming increasingly popular. Alongside 
global environmental threats, such as climate change, bottom-up 
activities and local conflicts of  interest on environmental basis are much 
more understandable and engaging for local communities (Suškevičs 
et al. 2019; Storie and Külvik 2019). Therefore, reliable estimations 
of  visual quality of  environment give an additional tool for resolving 
local conflicts through evidence-based decision-making, more informed 
publics, business and government. Another aspect, remote sensing 
and location-based social media (LBSM), can be used jointly in order 
to complement each other as top view and ground-based data; there 
are many of  successful examples of  citizen science and remote sensing 
interdisciplinary research (Fritz et al. 2017; Calcagni et al. 2019). In this 
way, local evidences on visual environmental quality can be explored 
globally, creating “a big picture” for large-scale analysis.
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In the digital era, the social component of  environmental research 
increasingly involves location-based social media (for ease, this umbrella 
term will be used to encompass all mobile applications, social networks 
and photo hostings for geolocated photographs). This approach 
seemed especially fruitful several years ago, when Flickr, Instagram and 
Panoramio could be jointly used to examine people’s spatial behaviour 
and landscape values (Van Zanten et al. 2016). Unfortunately, when 
Facebook acquired Instagram in 2015 (and Camridge Analytica scandal 
in 2016) and Google stopped support of  Panoramio in 2017, these 
major services were no longer available as open sources of  geolocated 
photographs. Instead, Russian-based service VK.com is becoming more 
popular for such purposes (personal observation at the ESP 10 World 
conference in Hannover, Germany, 2019), and Flickr continues to be 
widely used.

Passively crowdsourced geotagged imagery from social media is highly 
applicable for urban studies due to the high population concentration 
(Ilieva and McPhearson 2018), but, of  course, it also reflects the everyday 
interactions of  people with their outdoor environment, tourism, leisure 
and recreation activities, aesthetical preferences and scenic values 
(Seresinhe et al. 2018). A passively crowdsourced digital footprint has 
been used for: 

(i)	 the assessment of  touristic place visitation rates (Wood et al. 2013; 
Sonter et al. 2016; Levin et al. 2017), 

(ii)	 mapping landscape values across spatial scales (Thiagarajah et al. 
2015; Van Zanten et al. 2016; Oteros-Rozas et al. 2018),

(iii)	mapping landscape aesthetic flow (Tenerelli et al. 2017; Langemeyer 
et al. 2018; Tieskens et al. 2018; Bubalo et al. 2019), 

(iv)	flow, demand and supply of  cultural ecosystem services (Fuchs et 
al. 2009; Casalegno et al. 2013; Tenerelli et al. 2016; Gliozzo et al. 
2016; Figueroa-Alfaro and Tang 2017; Yoshimura and Hiura 2017; 
Richards and Tunçer 2018; Lee et al. 2019), and

(v)	 analysing landscape perception (Dunkel 2015; Hao et al. 2016). 
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Content analysis of  the geolocated photograph for purposes of  its 
further linking to landscape composition or mapping cultural ecosystem 
services is one of  the most time- and labour-consuming processing issues, 
previously often solved manually (Richards and Friess 2015; Tieskens et 
al. 2018). However, advances in machine learning (image recognition 
models, based on neural networks), significantly simplify the content 
analysis (Richards and Tunçer 2018; Lee et al. 2019). More efficient 
computer vision methods, automatizing content analysis of  images, 
allow the extraction of  to-date knowledge about subjective parts of  
people-nature interactions, complementing traditional forms of  offline 
people engagements (surveys, workshops, interviews, etc). Obviously, 
use of  VGI is not free from difficulties, because researchers in most 
cases cannot analyse personal information about a landscape observer or 
recreant, such as age, gender, or cultural and education background, etc. 
Instead, VGI may overcome traditional issues of  offline surveys, such as 
intrusiveness, reproducibility, representativeness because of  the usually 
small number of  participants, continual temporal and spatial coverage. 
Moreover, as it will be shown further, VGI can be integrated to the 
remote sensing studies as a proxy of  people-environment interactions, 
allowing for mapping of  comparatively large areas, up to the size of  
a country as in our case, or even up to continent (Van Zanten et al. 
2016). To sum up, GIS- and remote sensing-enabled tools represent a 
positivistic approach to the explanation of  landscape values, and the 
social media approach is substituting a phenomenological, or subjective 
approach to landscape valuation. The only problem is to establish the 
mutual points of  interests between these opposite intellectual traditions; 
we argue that the solution lies in attributes of  landscape character.

2.4. Visual landscape quality assessment

Landscape character attributes serve as an interface between map-based 
and visual environmental characteristics for purposes of  visual landscape 
quality assessment (Fry et al. 2009; Martín et al. 2016; Swetnam et al. 
2017). Daniel and Vining (1983) classified the variety of  approaches to 
the landscape quality assessment into the five main models, ranging from 
purely objectivistic to absolutely subjectivistic (Tveit et al. 2018). The 
ecological model does not imply any subjective landscape experience, 
excluding people from analysis or considering them just as a part of  
landscape (Angelstam et al. 2013). Within this approach, the most basic 
landscape attributes, such as a degree of  landscape naturalness or even 
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wilderness (Daniel and Vining 1983) and heterogeneity (Balling and Falk 
1982; Dronova 2017), are examined. The formal aesthetics model is 
based on visual primitives of  environment: points, lines, shapes, density 
and variety, colours, textures and volumes. It is therefore not surprising 
that this model appears to be the most commonly used by landscape 
architects or in formal visual resources examination adopted in the 
United States (BLM 1986; U.S. Forest Service 1995; Bell 2004; O’Connor 
2010; Bell 2012). The psychophysical model takes the best from both 
paradigms and integrates geographical knowledge on the environment 
with its subjective valuation (Arriaza et al. 2004; de la Fuente de Val et al. 
2006; Ode et al. 2008; Ozkan 2014; Vukomanovic et al. 2018; Tieskens et 
al. 2018; Oteros-Rozas et al. 2018). In this study we use formal aesthetics 
principles (papers II and IV), as well as psychophysical approach (papers 
III and IV).

Landscape coherence is quite a mainstream term, which is predominantly 
used within two contexts: ecological and psychological. Ecological 
landscape coherence itself  is of  a little interest within the framework of  
our psychophysical research (Karasov et al. 2020a), because it is based 
on extent of  ecological connectivity (in sense of  species’ migration) 
or, vice versa, landscape division and fragmentation. However, this 
particular approach has resulted in many GIS-based applications with 
spatial autocorrelation (Mander et al. 2010) or connectedness and 
fragmentation indices (Jaeger 2000; Saura and Pascual-Hortal 2007; 
Nowak and Grunewald 2018). In contrast, there had been no attempts to 
apply GIS-based approach to mapping subjective landscape coherence 
until recently, except for borrowing traditional GIS-based metrics from 
ecological studies (Ode et al. 2008; Martín et al. 2016).

Thus, mapping of  subjective landscape coherence seems a challenging 
and novel task. Difficulties in its quantitative assessment emerge because 
of  the large number of  definitions and connotations. Many authors 
connect landscape coherence to quite a philosophical and, therefore, 
rarely used concept of  landscape harmony (U.S. Forest Service 1995; 
Tveit et al. 2006; Sowiſska-ſwierkosz 2016). Here we limit ourselves 
with the notion of  landscape coherence only, but harmony should 
be mentioned here to understand the overall unity of  the thesis. So, 
according to Kaplan and Kaplan (1989), who made this concept 
mainstream, coherence differs complex landscapes from messy ones. 
References to organisation and order are the most frequent among the 
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classic and contemporary attempts to describe landscape coherence 
(U.S. Forest Service 1995; Rosley et al. 2013; Pazhouhanfar and Mustafa 
Kamal 2014; Kuper 2017). 

Objective landscape coherence is referred to the vertical, horizontal or 
temporal relationships among landscape components (van Mansvelt 
1997; Kuiper 1998). Antrop and Van Eetvelde tend to comprehend both 
objective and subjective approaches to the landscape coherence within 
the holistic paradigm (2017a), “Coherence expresses the strength of  the 
relations between landscape elements and components… Coherence 
stimulates legibility of  the landscape”. Moreover, “Order expresses the 
degree of  certainty that is experienced in a landscape, as opposed to 
the uncertainty associated with disorder or chaos. It is often expressed 
and measured by the information entropy. The order relates to many 
other indicators such as heterogeneity, complexity, coherence, harmony, 
predictability, legibility and disturbance” and “We perceive and experience 
this coherence as order” (Antrop and Van Eetvelde 2017a). Another 
definition describes landscape coherence as “… an ordered structure 
that we can understand and where the comprehension of  the whole is 
more significant than the individual parts” (Bell 2012). Noteworthy is 
the connection between the coherence and information theory, as well 
as with system properties, or emergence (comparison of  the whole and 
its individual parts). 

Landscape coherence, measured in a subjective way, was reported as 
having an uneven positive association with landscape preferences, ranging 
from rather weak (Sevenant and Antrop 2009; van der Jagt et al. 2014; 
Kuper 2017), to medium and strong (Kaplan and Kaplan 1989; Herzog 
and Bosley 1992; Stamps 2004; Herzog and Kropscott 2004; Herzog 
and Bryce 2007). Therefore, the topic of  landscape coherence seems to 
be understudied, and the overall feasibility of  GIS-based approach is not 
obvious, while studies generally support validity of  the preference matrix 
by Kaplans. Both the conceptual diversity and weak GIS- and remote 
sensing-based elaboration of  its mapping with subjective principles in 
mind make it highly relevant for further research. To avoid any semantic 
misconceptions, we consider landscape coherence as a key component 
of  the landscape harmony, along with colour harmony.

Colour harmony of  landscape is another big topic that conceptually 
complements the notion of  coherence, because of  the conceptual 
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unity of  the concepts of  coherence and harmony (U.S. Forest Service 
1995; Tveit et al. 2006; Sowiſska-ſwierkosz 2016), and  also because 
all the elements of  environment can be physically described with 
colours, which are inherent spectral properties of  real world. In this 
way, harmony of  colours is to a significant extent a component of  the 
overall landscape harmony, responsible for the visual landscape quality 
(Sullivan and Meyer 2016). At the same time, authors tend to examine 
just colour diversity or discuss specific natural colours in the context of  
visual landscape quality and preferences instead of  proceeding to their 
harmony (de la Fuente de Val et al. 2006; Acar and Sakıcı 2008; Lengen 
2015; Swetnam et al. 2017; Dronova 2017; Kuper 2018). No studies 
assessing and mapping the extent of  colour harmony of  landscape over 
the large areas using remote sensing data were found. We argue that 
landscape studies will benefit from wider implications of  the theory of  
colour harmony, well-developed in art, design and, more importantly, 
experimental psychology.

Colour harmony depends on “how strongly an observer experiences the 
colours in the combination as going or belonging together, regardless 
of  whether the observer likes the combination or not” (Schloss and 
Palmer 2011). Chamaret (2016) distinguishes three categories of  colour 
harmony models: 

•	 geometrical (based on classical assumptions regarding the mutual 
locations of  the colours under consideration on the colour wheel), 
for example, Itten’s (1973) well-known theory  (Westland et al. 2012), 

•	 more recent numerical models, making colour harmony quantifiable 
with remote sensing (Caivano 1998; Ou and Luo 2006; Schloss and 
Palmer 2011; Nemcsics 2012), and,

•	 a conceptual contingent model suggested by Zena O’Connor (2010). 

The numerical models differ in terms of  the detected aesthetical 
regularities (not least because of  the evolution of  the concept of  colour 
harmony and preferences-caused bias), but recently some universal 
principles for colour harmony were agreed upon among the several 
the most cited researchers in the field (Ou et al. 2018). Borrowing 
psychological regularities from the literature, we can attempt to adapt 
them for landscape evaluation applications with remote sensing as a 
formal aesthetics study.
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3. STUDY OBJECTIVES AND HYPOTHESES

This study was guided by two general objectives and hypotheses:

1.	 To retrieve landscape harmony information from GIS data and 
satellite imagery (hypothesis: satellite imagery is applicable for 
mapping of  the valuable landscape attributes, including colour 
harmony of  land cover and landscape coherence), and

2.	 To extract evidence of  CES use from location-based social media 
(hypothesis: the combination of  automated image processing 
and topic modelling facilitates CES use mapping with passively 
crowdsourced geolocated photographs).

Particular matters of  the research process are described as follows, using 
the set or research questions (RQ) and sub-question (SQ). The first 
challenge was to investigate with literature which attributes of  visual 
landscape are explorable and assessable by means of  remote sensing 
techniques. The aim was to identify the perceptual and cognitive attributes 
of  visual landscape and explain the remote sensing applicability for tasks 
of  their mapping. The first research question was established:

RQ1: How can visual landscape studies benefit from usually 
biophysically oriented remote sensing (Paper I)? We intuitively 
extracted from literature the perceptual and cognitive landscape 
attributes (our distinction) and explored the papers, in which they are 
somehow mapped or measured with remote sensing.

Based on the results of  literature review, two cognitive landscape 
attributes of  high research interest were revealed: colour harmony of  
land cover and landscape coherence. The second key challenge was to 
explore the spatial variation (pattern) of  extent of  colour harmony of  
land cover within the Vooremaa Landscape Protection Area in Estonia. 
The aim was to develop a new interdisciplinary method of  colour 
harmony mapping for land cover with remotely sensed products. Hence, 
the second research question is formulated as follows:
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RQ2: How can colour harmony of  land cover as an essential 
component of  aesthetic and cultural landscape values be quantified 
(Paper II)? To answer the second research question, we formulated a 
bunch of  the following related sub-questions:

SQ2.1. How consistent are the maps of  the extent of  colour harmony 
produced within the different frameworks? This sub-question addresses 
the variety of  colour harmony estimation approaches and which methods 
are appropriate to be applied for satellite imagery. Should we use the 
colour wheel or empirical psychological results from the literature? What 
kind of  colour space instead of  RGB is suitable?

SQ2.2. How does the mean colour harmony index vary for different 
land cover classes? Here we explore which land cover classes are the 
most responsible for higher colour harmony of  land cover. Does colour 
harmony extent decrease with increasing cultural modification of  land 
cover classes?

SQ2.3. Which geographic attributes explain the distribution of  
colour harmony values? The third sub-question aims to identify the 
environmental variables, explaining the spatial pattern of  colour 
harmony. Does it change with increasing distance from the main roads, 
or temperature of  land cover, or modelled wetness? Understanding 
of  relationships between these variables and colour harmony makes it 
manageable.

SQ2.4. How does remotely assessed colour harmony extent correspond 
to actual scenery alongside the roads? The most challenging sub-question 
links estimations of  colour harmony from top view perspective with 
ground-based photographs, taken along the transect (road). How do 
actual roadscape photographs reflect modelled colour harmony extent?

The third main challenge for landscape pattern examination was to 
convert the psychological notion of  landscape coherence, reported to be 
predominantly positively correlated to landscape values and preferences, 
to the GIS-based indicator. The aim was to understand the landscape 
coherence with theory of  information, namely utilize Hartley entropy 
to estimate the relationship between the terrain and land cover as one 
holistic entity (system). The geographic extent of  the study was the 
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Peneda-Gerês National Park in Portugal. The third research question is 
the following:

RQ3: How can the landscape coherence be quantified objectively, 
but at the same time based on the subjective landscape coherence 
notion (Paper III)? Respectively, another set of  sub-questions was 
established:

SQ3.1. How does the GIS-based model represent the objective landscape 
organisation, utilising the landscape coherence concept? Landscape 
coherence has many implications in GIS using ecological connotations. 
How can the psychological notions of  landscape coherence and GIS-
based methods, based on concepts of  organisation and emergence be 
linked?

SQ3.2. How does the landscape coherence indicator relate to the 
uneven spatial pattern of  photographs taking frequency evidenced from 
the location-based social media? As an indicator of  landscape values 
and preferences, landscape coherence extent should be hypothetically 
reflected in the photographing preferences. Do people prefer to take 
photographs of  the places of  more coherent landscape?

SQ3.3. How is the suggested indicator applicable to landscape 
management and planning? We assumed that, as landscape is a subject 
of  management (Council of  Europe 2000), landscape coherence 
pattern among the parametric landscape classes based on TPI landform 
classification and CORINE land cover will become a suitable for 
management, being linked to particular known spatial units. Which 
landscape classes are less and more coherent?

The last, but not least, challenge was to proceed from landscape pattern-
based studies to deeper understanding of  the content of  geolocated 
photographs. The geographic coverage was the entire territory of  
Estonia (excluding built-up areas to filter indoor photographs) and data 
sources were publicly available VK.com and Flickr outdoor photographs. 
The aim was to identify various groups of  CES demand in the sample 
of  photographs, map the spatial concentrations of  particular CES, and 
relate CES use to the landscape coherence and colour harmony, mapped 
based on previous findings. Hence, the research question is the following:
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RQ4. How may the photo-series and textual analysis be used to 
reveal CES use within Estonia (Paper IV)?

SQ4.1. What are the main groups of  CES, evidenced from social media 
in Estonia? Since the complete variety of  cultural ecosystem services is 
hardly detectable with location-based social media (LBSM), and there 
is a significant volume of  non-relevant content, we classified all the 
relevant photographs to one of  three main categories.

SQ4.2. What is the association between the landscape coherence and 
colour harmony of  land cover, and CES? Do people in Estonia take 
photographs with consideration for landscape coherence or colour 
harmony during their outdoor activities? This knowledge would 
contribute into a deeper understanding of  landscape aesthetics, values 
and preferences.

The basic assumptions, used when working on the thesis materials, were: 

•	 Psychological notions of  colour harmony and landscape coherence 
can be quantitatively assessed with objective indicators;  

•	 The pixel of  GIS-based model or remote sensing imagery (scene or 
mosaics) is an elementary unit of  top perspective landscape research;  

•	 A geolocated photograph in open access, uploaded to the social 
media, is an elementary unit of  ground-based landscape research; 
and

•	 Remote sensing- and ground-based landscape research are combined 
by means of  viewshed analysis, outlining the visibility area for each 
geolocated photograph. 
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4. MATERIALS AND METHODS

Our research aimed at comprehending the approaches to landscape 
evaluation, such as formal aesthetics and the psychophysical model, with 
quantitative geographical tools: remote sensing and GIS (geomatics), 
integrating with in situ photographs from location-based social media 
as pictorial landscape and CES representations. In particular, we used 
spectral and textural remote sensing analysis, supervised classification 
of  land cover, overlay and neighbourhood GIS analysis, statistical 
exploratory analysis and modelling to find correlations between the 
variables and identify mechanisms of  relationships in some cases.

4.1. Remote sensing feasibility for visual landscape 
deconstruction (Paper I)

As suggested in our paper I, Figure 2 (made with Tableau Public 10.5 
software; Seattle, Washington, USA) provides evidence of  the growing 
interest in visual landscape examination with remote sensing techniques. 
Developing this figure, we aimed to find in Scopus and Web of  Science 
the papers using cognitive concepts such as “harmony”, “diversity”, 
“similarity”, as well as features of  visual landscapes (points, lines, surfaces, 
colours, and textures) within the remote sensing framework to examine 
the current state in this interdisciplinary field. Figure 2 illustrates that 
naturalness and diversity are the most commonly occurring concepts 
among the recent remote sensing studies and naturalness primarily 
relates to land cover classifications and transitions between relatively 
natural and artificial land cover classes. The interesting finding from this 
literature review suggests that visual landscape evaluation topic occurs 
in remote studies rather indirectly (as a side product of  other tasks) and 
dedicated mainly to the ecological model of  landscape quality. Rarely, 
remote sensing papers also utilize the harmony concept to describe the 
dynamic balance between the natural and artificial land cover, as well as 
nature-friendly land use (Cao et al. 2013; Fujiki et al. 2018), or proceed 
to the formal aesthetics (Karasov et al. 2018) and psychophysical models 
(Ayad 2005; Ozkan 2014; Vukomanovic et al. 2018; Karasov et al. 2020a).
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Fig. 2. Growing number of  articles in per-reviewed journals as of  the beginning of  
2019 (indexed by the Web of  Science Core Collection indices and Scopus per year) 
operationalising some spatial landscape attributes with remote sensing (Paper I). The 
key queries reflecting landscape attributes were searched in conjunction with the remote 
sensing terms (“remote sensing”, “satellite”, “earth observation”, “UAV”, “drone”) as 
well as with the landscape queries (physiognom*, scenic, landscap*). Asterisk (*) means 
the word ending, intentionally neglected to facilitate the search. Notably, diversity- and 
naturalness-related topics (ecological model of  landscape visual quality) have become 
the most popular and well-studied recently. 

The methodological basement for application of  remote sensing 
models is clear from Figure 3, representing DEM, DSM and aerial 
orthophoto for the example area in Estonia and borrowed from Paper 
I. Active remote sensing is used to detect the surface of  bare ground 
(land relief) and also canopy and built-up areas surface, while passive 
remote sensing is responsible for multi- and hyperspectral caption of  
colours and textures. Remote sensing-based models are applicable for 
both ecological (naturalness and diversity), formal aesthetics (points, 
lines, colours, textures, shapes, to some extent volumes), psychophysical 
(spectral and textural indices, other indicators in conjunction with 
subjective evaluations from psychological or phenomenological studies) 
approaches to visual landscape quality evaluation. For simplicity, we 
have drawn the distinction between the perceptual landscape attributes, 
directly detectable with remote sensing (geometrical primitives: points, 
lines, areas, colours) and cognitive landscape attributes, requiring 
mathematical equations or mind operations to be mapped (naturalness 
and diversity, harmony and fragmentation, similarity and contrast, 
temporal variability).
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Fig. 3. Remotely sensed data for an area in Eastern Estonia (panel a – LiDAR-based 
digital elevation model, panel b – LiDAR-based normalised digital surface model, 
panel c – multispectral orthophotograph captured 13.04.2018, natural colours band 
combination), which are commonly used to deconstruct the physiognomic landscape 
(Paper I). There are easily recognisable linear patterns, as well as various textures typical 
for different land cover classes (water bodies, crop fields, forest), orthophotograph 
reflects the perceivable colours of land cover, DEM and DSM represent surfaces 
of perceived environment. Pixels assigned with spectral or elevation values are in 
relationships of similarity and contrast, diversity, colours and land cover classes may be 
in harmony (Data credit: Estonian Land Board, Maa-amet).

4.2. Mapping colour harmony of  land cover with remote sensing 
in relation to environmental characteristics (Paper II)

For purposes of  colour harmony mapping, we have decided to use HSV 
transformation, remarkably often used in remote sensing for the wide 
range of  operations (Marcelino et al. 2009; Baykan and Yilmaz 2010; 
Pekel et al. 2011; Pekel et al. 2014; d’Andrimont and Defourny 2018). 
Chroma and lightness in the further text correspond to Saturation 
and Value dimensions in HSV colour space. It should be noted that 
various colour spaces are used in colour harmony research; they differ 
mathematically but are very similar conceptually (hue as a marker of  
colour itself, saturation as amount of  grey [colour purity], and lightness 
as amount of  white). Correspondingly, our methodology with HSV 
colour space is the approximation of  existing experience rather than 
exact replication of  regularities. 

4.2.1. Study area

The study area is described in Paper II; we chose one in Eastern 
Estonia. This hilly area is a specimen of  a postglacial landscape, full 
of  elongated moraine lakes (the biggest one is Saadjärv lake), wetlands, 
forests, agricultural, rural and urban areas, including Tartu, which is 
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the second largest city in Estonia. We chose this territory of  complex 
landscape pattern, composed of  diverse land cover types and landforms, 
because we intended to explore the spatial variability of  colour harmony 
as aesthetic landscape category. In addition, there are several protected 
areas, such as the Vooremaa Landscape Protection Area and the Alam-
Pedja Nature Reserve (partially). This fact allowed us to check whether 
the colour harmony within the protected areas is higher than outside 
(in other words, whether the considered protected areas have higher 
aesthetic value in general).

4.2.2. Research data

Particulars of  the data gathering and pre-processing are described in 
Paper II. In brief, we used a cloud-free part of  the Landsat-8 image as 
of  17 June 2017 (Figure 4) of  its original spatial resolution. As auxiliary 
GIS data, the EU-DEM 1.1. digital elevation model (DEM) and the 
CORINE 2012 land cover model (downloaded via the Copernicus 
Land Monitoring Service) and the LiDAR-based digital surface model 
(DSM, Estonian Land Board) were used. We also extracted a sample of  

Fig. 4. Pre-processed Landsat 8 OLI scene (dated 17-06-2017, RGB composite), 
further converted to HSV colour space to measure the extent of  colour harmony 
(Paper II).
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five landscape pictures (taken 23 June 2017) from the freely available 
crowdsourced imagery, provided by Mapillary service (each 150th within 
the Vooremaa Landscape Protection Area) to explore the variability 
of  visual landscape in relation to the colour harmony estimates. Both 
satellite and ground-based images were chosen due to their temporal 
proximity and summertime period of  the high vegetation vigour, as well 
as relatively good atmospheric conditions.

4.2.3. Colour harmony estimation

As indicated in Paper II, Caivano (after Janello) argues (1998), that colour 
harmony implicates constancy (or similarity, homogeneity) of  Hue or 
Saturation or Lightness scores of  the colours under the comparisons. 
Ou and Luo (2006) generalise several principles of  two-colour harmony, 
including “(a) Equal-hue and equal-chroma; (b) High lightness; (c) 
Unequal lightness values”. These findings are confirmed more recently 
(Szabó et al. 2010). Schloss and Palmer, in contrast, suggest hue 
similarity, low saturation and low lightness contrast as colour harmony 
factors (Schloss and Palmer 2011). Finally, Nemcsics argues that “the 
most highly ordered colours, according to their saturation and lightness, 
have the highest harmonious content” (2012). Noticeable that concepts 
of  similarity, difference and orderliness can be covered for pixel pairs 
(two-colour combinations) with second-order Haralick’s textural metrics 
(Haralick et al. 1973; Hall-Beyer 2017a) – see Table 1 for equations.

Table 1. GLCM-based Haralick’s texture metrics and their equations (Paper II).

Pixel-based 
GLCM texture 
metrics

Equation

Homogeneity 
(GLCMH)

Contrast  
(GLCMC)

Second moment 
(GLCMSM)

P(i,j) – the probability of  co-occurrence of  pixel values i and j. Ng – the 
number of  distinct grey levels in the quantised image (64 in our case).

∑∑ 1
1 + (𝑖𝑖 − 𝑗𝑗)2 𝑃𝑃(𝑖𝑖, 𝑗𝑗)

𝑁𝑁𝑔𝑔

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

∑∑𝑃𝑃(𝑖𝑖, 𝑗𝑗)(𝑖𝑖 − 𝑗𝑗)2
𝑁𝑁𝑔𝑔

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

∑∑{𝑃𝑃(𝑖𝑖, 𝑗𝑗)}2
𝑁𝑁𝑔𝑔

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1
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Thereby, we converted pre-processed Landsat 8 scene (Figure 4) to HSV 
space and applied indices from Table 1 to the resulting Hue, Saturation, 
or Value space according to the colour harmony principles from the 
literature above. Then the indices of  colour harmony were summarised 
to create the joint Summarised Colour Harmony Index (CHI). The 
overall GIS-based procedure is illustrated in Figure 5.

Fig. 5. General GIS-procedure for summarised Colour Harmony Index computation 
(Paper II). Rectangles correspond to the GIS operations, and rectangles with rounded 
corners correspond to the raster grids (maps). See the abbreviations explanation in 
Table 1.

Also, according to the details of  the research framework, available in 
paper II, a LiDAR-based DSM (spatial resolution of   8 m, provided by the 
Estonian Land Board) of  the Vooremaa Landscape Protection Area and 
surroundings  was used in Viewshed analysis using the respective QGIS 
plug-in, performed for five samples of  the Mapillary viewpoints with 
the observer height of  1.0 m and a 90° maximum horizontal view angle 
in order to map the area visible from each Mapillary viewpoint. Next, 
the mean CHI for each viewshed was calculated and visually compared 
to the content of  the Mapillary photographs. In addition, average colour 
harmony after each author for CHI mapping was compared between the 
CORINE land cover classes.

4.2.4. Explaining the extent of  colour harmony 

To understand the factors, underlying spatial changes in CHI, we modelled 
Box-Cox transformed (to meet the assumptions of  the regression model) 
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CHI as a variable, dependable on the distance cost from roads (Terrain 
Ruggedness Index as a cost surface, code name Costd_roads), values 
of  the SAGA Wetness Index (SAGA TWI), the brightness temperature 
(BT) and albedo index (Albedo). Explanatory variables were chosen, 
using Random Forest algorithm. The Generalised Additive Model–
GAM (Wood 2017), implemented in the mgcv R package (Wood 2011; 
R Core Team 2019), was used to model the relationships between the 
CHI and explanatory geographic attributes. Compared to the common 
regression models, GAM is reported to have some advantages, including 
ease in detection of  non-linear effects and automated spline variation, 
avoiding overfitted models with penalties.

4.3. Landscape coherence as factor of  photographing preferences 
(Paper III)

We understand landscape coherence as the extent to which the properties 
of  digital landscape model (for example, diversity) exceed the properties 
of  its components (Lammeren 2011). Since land relief  and land cover 
are two essential components of  landscape pattern (Antrop 2000), 
we assembled two digital landscape models (DLM), parametrically 
composed of  landforms and land cover models: i) DLM of  fine spatial 
resolution, based on elementary landforms (Minár and Evans 2008) 
and custom land cover classification based on SPOT and RapidEye 
satellite imagery; and ii) DLM of  coarse spatial resolution, based on 
TPI (Topographic Position Index) landforms and CORINE land cover. 
Patches and classes of  the DLM of  coarse spatial resolution along with 
floating circle and hexagonal grid were used as the neighbourhood to 
calculate the landscape coherence index.

4.3.1. Study area

We chose the National Park Peneda-Gerês in northern Portugal as a 
study area (this part of  the research was carried out in Portugal within 
the individual doctoral project). Peneda-Gerês is the only national park 
in Portugal; therefore, this territory is highly valuable in recreational 
and nature protection contexts. There is a rich landscape structure and 
configuration (Figure 6) due to the complex topographic conditions, 
climate specifics (strong Atlantic influence) and uneven distribution of  
the settlements along with agricultural fields in the mountain valleys. 
In particular, there are explicit vertical relationships between the spatial 
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distribution of  landforms and land cover within the park, which make 
it a highly suitable study area for assessment of  landscape coherence 
(Paper III).

Fig. 6. Coarse-resolution digital landscape model of  the study area: the physiognomic 
classification of  Peneda-Gerês National Park (Paper III).

4.3.2. Research data

In paper III we used a digital elevation model of  10 m spatial resolution, 
created with Topo to Raster ArcGIS tool from the isohypses of  
topographic map; we designed elementary landforms as unique parametric 
combinations of  the slope steepness, solar exposition, and general 
curvature (Table 2). We intended to use the landform classification, 
which is, on the one hand, ecologically meaningful and, on the other 
hand, applicable for visual landscape research. Therefore, we used the 
slope steepness classification for the mountainous regions, suggested by 
Zhuchkova and Rakovskaya (2004; Svidzinska 2014). This classification 
is intuitive and to a large extent oriented on the visual perception of  
steepness. Solar exposition (aspect in GIS-terms) was taken into account 
with Whittaker’s ecological row due to its ability to bridge the heat supply 
and moisture conditions, influencing vegetation growth, depending on 
the slope orientation (Whittaker 1975). In addition, general curvature 
was used as geomorphometric variable, drawing the distinction between 
the concave and convex relief  and regulating flows of  erosion and 
accumulation of  materials. Overall, combination of  the mentioned 
geomorphometric parameters allows to generate a very detailed model 
of  discrete landforms, applicable for the landscape coherence mapping.
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Table 2. The categories of  the main geomorphometric parameters for elementary 
landforms mapping (Paper III).

Slope steepness

Author/criteria Classes

Zhuchkova and 
Rakovskaya 
(2004): 
increase in 
slope steepness

Gentle 
slopes: 
4-10°

Rolling 
slopes: 
10-20°

Moderately 
steep 
slopes: 20-
30°

Steep 
slopes: 
30-45°

Very 
steep 
slopes: 
45-60°

Extremely 
steep 
slopes: 
>60°

Solar exposition

Whittaker 
(1975): increase 
in dryness

Northeast 
to North

Northwest to East West to 
Southeast

South to 
Southwest

General (standard) curvature

Curvature: 
directions of 
erosion and 
deposition

Concave: <0 Convex: >0

Further, the author pre-processed (radiometrically calibrated and 
atmospherically corrected using ENVI 5.2) the high-resolution SPOT 
and RapidEye imagery for spring 2011, available at the Department of  
Geography of  the University of  Minho  and combined them to the 
cloudless mosaics (Paper III). Applying GIS techniques, the author 
performed the supervised land cover classification, following the classes 
of  land cover adopted in CORINE 2012 land cover model. In total, we 
mapped 11 land cover classes (Figure 7).

Also, we collected geolocated photographs from Flickr and Panoramio 
(currently unsupported) within the territory of  the national park for the 
entire period of  the activity of  these services until 2015, using manual 
requests to Flickr and SAS.Planet software for Panoramio. Geolocated 
photographs were manually checked for non-relevant content; we 
deleted the photographs of  explicit non-relevant content (i.e. taken 
indoors). Geographic coordinates of  the geolocated photographs were 
further used for viewshed analysis, based on the digital surface model 
ALOS PRISM: DSM of  spatial resolution 30 m and vertical error up to 
5 m (EORC & JAXA 2017).
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Fig. 7. Fine-resolution land cover model of  the study area, composing with elementary 
landforms a digital landscape model for landscape coherence estimation and mapping 
(Paper III)

4.3.3. Landscape coherence mapping

The author applied the syntactic information notion to calculate 
landscape coherence (Naveh and Lieberman 1984). Shannon entropy, 
or Shannon-Weaver diversity index, is among the most frequently used 
landscape indices based on the information theory (Uuemaa et al. 2013; 
Nowosad and Stepinski 2019).

H is Shannon entropy value, pi is the probability of  the observation (land 
facet/class i) appearing among other observations (landscape, composed 
of  various land facets, classes).

Hartley’s formula (Eq. 2) is a simple particular case of  Shannon’s formula 
(Eq. 1) for sets with equiprobable elements. We applied this formula 
to the raster datasets of  landforms and land cover, as well as to their 
parametric combination (digital landscape model). 

𝐻𝐻 = ∑ 𝑝𝑝𝑖𝑖
𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏𝑝𝑝𝑖𝑖 (1)

𝐼𝐼 = 𝑙𝑙𝑙𝑙𝑙𝑙2𝑊𝑊 = 𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙2𝑚𝑚 (2)

𝐼𝐼(𝐸𝐸𝑀𝑀𝑀𝑀) = 𝐼𝐼(𝐸𝐸𝑁𝑁) +  𝐼𝐼(𝐸𝐸𝑀𝑀) (3)

 

𝜑𝜑 =
𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 (4)

φ
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I is the amount of  information; W is a possible number of  different land 
patches/facets/classes; m is all number of  land patches/facets/classes; 
n is the number of  land patches/facets/classes in the one part of  a set. 

According postulates for the sets EN, EM, EMN, consisting of  equiprobable 
N, M, MN elements:

I(EMN) is the amount of  information, I(EN) is the amount of  information 
in the set EN, I(EM) is the amount of  information in the set EM. It means 
that, “The sum of  the pieces of  information of  two independent sets 
EN and EM is equal to the information of  the union set EMN (all sets 
consist of  elements occurring with equal probability)” (Arndt 2001).  
Therefore, we excluded the assumption of  equiprobability for our 
datasets and assumed that Hartley’s information for the digital landscape 
model will exceed the summarised Hartley’s information amounts 
for landforms and land cover as system components in case they are 
NOT independent, and landscape demonstrates holistic properties. 
Consequently, there is a theoretical ground for landscape coherence 
assessment based on the emergent theory of  information (Hartley’s 
emergence coefficient), suggested by Lutsenko (2002). We propose 
the landscape coherence index (LCI), reflecting this additional system 
properties of  landscape composite, differing it from the sum of  its parts 
(Figure 8, Eq. 4).

Fig. 8. General GIS-procedure for deriving the landscape coherence index for digital 
landscape model (Paper III). Raster grids are shown in the rounded rectangles, GIS-
operations – in the rectangles

𝐼𝐼 = 𝑙𝑙𝑙𝑙𝑙𝑙2𝑊𝑊 = 𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙2𝑚𝑚 (2)

𝐼𝐼(𝐸𝐸𝑀𝑀𝑀𝑀) = 𝐼𝐼(𝐸𝐸𝑁𝑁) +  𝐼𝐼(𝐸𝐸𝑀𝑀) (3)

 

𝜑𝜑 =
𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 (4)

φ
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𝐼𝐼 = 𝑙𝑙𝑙𝑙𝑙𝑙2𝑊𝑊 = 𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙2𝑚𝑚 (2)

𝐼𝐼(𝐸𝐸𝑀𝑀𝑀𝑀) = 𝐼𝐼(𝐸𝐸𝑁𝑁) +  𝐼𝐼(𝐸𝐸𝑀𝑀) (3)

 

𝜑𝜑 =
𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 (4)

φ

LCI can be calculated as follows:

	 φ is the landscape coherence index, Ilandscape is the amount of  
information in the digital landscape model, Irelief is the amount of  
information in the elementary landforms, Iland cover is the amount of  
information in the land cover model.

To explore the spatial variation of  landscape coherence, LCI was 
calculated within the following neighbourhoods: 

•	 floating circle of  990 m, 

•	 hexagonal grid of  1000 m, 

•	 patches of  coarse -resolution DLM (Figure 6), 

•	 classes of  coarse-resolution DLM.

Coarse-resolution DLM was used to find the relationships between 
the estimated LCI and photographing frequency based on Flickr and 
Panoramio geolocations. Coarse-resolution DLM classes have been 
ranged according to LCI values to make this index applicable for 
landscape management.

4.3.4. Landscape coherence in relation to photographing 
frequency

In Paper III, the particulars of  analysis are described, and here we 
focus mainly on its purpose. Cumulative viewshed analysis is one of  the 
techniques commonly used to quantify the photographing preferences 
and CES use (Kopperoinen et al. 2017; Lu et al. 2019) as number of  DSM 
pixels, falling inside the viewsheds of  geolocated photographs. Author 
applied the Viewshed Analysis QGIS plug-in with default settings for 
geolocations of  Flickr and Panoramio photographs based on ALOS 
PRISM DSM (EORC & JAXA 2007). Non-photographed areas were 
excluded from analysis, and only the extent of  photographic frequency 
was examined as a dependable variable. To meet the assumption of  the 
regression, describing relationship between the cumulative photographic 
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frequency and LCI as explanatory variable; photographic frequency 
within the study polygons was Box-Cox transformed.

4.4. Mapping cultural ecosystem services, represented in social 
media (Paper IV)

Content analysis of  the location-based social media data has become a 
common approach to CES mapping, especially if  authors are interested 
in CES assessment over the relatively large areas (Van Zanten et al. 
2016; Calcagni et al. 2019). CES, among other ES, are a prerequisite for 
arousal of  diverse values of  nature (Potschin and Haines-Young 2011; 
Martín-López et al. 2016). Therefore, we aimed to contribute into more 
efficient methodology for content analysis of  pictorial social media data, 
combining automated image recognition (image tagging) with natural 
language processing (topic modelling to classify tags). The other task 
was to find out, whether colour harmony of  land cover and landscape 
coherence, as suggested in our previous publications (papers II-III) may 
influence photographic preferences.

4.4.1. Study area

To increase the research and managerial values of  our research, we 
decided to use the entire territory of  Estonia as a study area. Mapping 
and Assessment of  Ecosystems and their Services (MAES) encompasses 
various international and country-wide projects throughout the European 
Union, such as OpenNESS and ESMERALDA (Burkhard et al. 2018; 
BISE 2020). Our results will contribute (of  course, being continued and 
using reproducible tools) to the aims of  the Estonian MAES-related 
project L180249PKKK (Töövõtuleping nr 4-5/18/40) “Ökosüsteemide 
ja nende teenuste baastasemete hindamine ja kaardistamine, sh metoodika 
väljatöötamine Keskkonnaagentuurile (19.12.2018−31.07.2020)”, 
principal investigator Siiri Külm, Estonian University of  Life Sciences 
(the topic can be roughly translated as “Assessment and mapping of  
basic levels of  ecosystems and their services, including development of  
methodology for the Environmental Agency”). Also, it was interesting 
to test the colour harmony and landscape coherence mappings over the 
entire country area, complementing our previous research. 

Since, according to DataReportal, 98% of  Estonians are Internet users 
to some extent, and 57% are active users of  social media (Kemp and 
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Kepios Team 2019), cultural ecosystem services, provided by Estonian 
landscapes are to a significant extent represented in social media, 
determining the study area choice. This high level of  Internet penetration, 
taken with a well-developed touristic policy and infrastructure, as 
well as the quite huge share of  the Russian-speaking minority in the 
total population (VK.com is based in Russia), render Estonia a good 
study area for social media and CES-related studies. What is more, the 
diverse environmental conditions and numerous protected areas in 
Estonia enable opportunities for analysis from geographic and nature 
conservation perspectives.

4.4.2. Research data

For Paper IV we used Flickr (one the most widely used providers of  
geolocated photographs in the location-based social media studies) and 
VK.com (the largest Europe-based social network, predominantly used 
by Russian-speaking minority and tourists in Estonia). We downloaded 
the photographs’ metadata with manual requests to the Flickr and 
VK.com APIs, including user and photograph ID, longitude and latitude, 
and the time the photograph was taken and uploaded to the Flickr or 
VK.com, web-links. Those photographs, located inside the buildings 
according to the OSM data (OpenStreetMap contributors 2019), have 
been eliminated; only 21,242 geographically outdoor photographs were 
further processed and combined into a single Flickr-VK dataset. We did 
not aim to explore the differences between the CES use by Flickr and 
VK.com separately, focusing on geographic regularities of  landscapes, 
enabling CES use rather than respective social factors.

4.4.3. Mapping of  CES use

Paper IV is dedicated to the conjunctive use of  automated image 
recognition, applied to the geolocated photographs, and natural 
language processing (topic modelling). We used API requests to Clarifai 
services (Clarifai Inc., New York), namely to its General model. Each 
photograph was labelled with tags, describing its content with more than 
90% accuracy. Then the procedure of  topic modelling, namely Latent 
Dirichlet Allocation, LDA (Blei et al. 2003) was applied to the tags to 
cluster them into the pre-defined number of  categories with Orange 
data mining toolbox (Demšar et al. 2013). Tags were classified based on 
probabilistic approach: how likely they co-occur among the photographs. 
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Those photographs, sharing the same tags, were assumed to share 
the same “topic”, or specific combination of  tags. Photographs of  
irrelevant tags were excluded from analysis, and the rest of  photographs 
(9,983 photographs out of  21,242) were further automatically classified 
according to CICES. We devised an a priori working hypothesis about the 
small number of  relevant CES (about 3 to 5), according to the CICES 
classes (Haines-Young and Potschin 2018). The very first three LDA 
topics already represented the relevant CES croups: landscape watching, 
outdoor recreation, and wildlife watching.

In addition, we manually post-processed CES-related photographs 
with common visual content analysis to verify the performance and 
accuracy of  the initiated approach. We transferred to the outdoor 
recreation category those photographs that were automatically selected 
for landscape watching if  they contained minor presence of  people or 
their equipment; since presence of  pets was automatically interpreted as 
wildlife (the general machine learning model provided by Clarifai does 
not account specifically for this distinction), we also manually moved 
these photographs to the category for outdoor recreation. Photographs 
with a minor presence of  wild animals classified as related to landscape 
watching were also manually transferred to the wildlife watching category. 
Landscape watching is the widest category of  CES, represented in social 
media in Estonia, active outdoor recreation is the second widest, and 
wildlife watching is the least represented CES group.

4.4.4. Mapping of  colour harmony and landscape coherence in 
relation to CES use

The last paper IV also describes how previously suggested landscape 
organisation indices, namely landscape coherence and colour harmony 
can be used to explain the distribution of  CES groups within the 
territory of  Estonia. 

We calculated the landscape coherence index within a circular 
neighbourhood of  seven pixels, using equation 4 for LU/LC data, and 
TPI-based landforms for DEM, provided by Estonian Land Board 
(2020). For purposes of  colour harmony mapping we composed 
the cloudless satellite imagery mosaics with Landsat-8 OLI data 
(summertime, 2018). The bands of  visible spectrum, namely red (B4), 
green (B3), blue (B2) were converted from RGB colour space to HSV, 
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discussed above. Unlike in Paper II, completely dedicated to colour 
harmony mappings after different authors, this time we decided to use 
only the most general principles of  colour harmony, namely Hue and 
Saturation similarity (for pixel pairs), recently also listed among the 
universal principles of  colour harmony (Ou et al. 2018). We used the 
grey level co-occurrence matrix (GLCM) Homogeneity index (Haralick 
et al. 1973) to measure the similarity of  image pixel pairs (Hall-Beyer 
2017a). Thereby, we simplified our previous colour harmony mapping, 
choosing only two indicators.

To quantify whether people prefer locations of  higher landscape 
coherence or colour harmony extent compared to the random choice in 
addition to the CES-related geolocations, we created the same number 
of  randomly generated geolocations, serving as “pseudo-absence” 
data. 6,154 random geolocations were generated within the territory of  
Estonia (spatially excluding the OpenStreetMap-based building vector 
data) for comparison with landscape watching geolocated photographs; 
in the same way 2,345 randomly generated geolocations were used 
for comparison with the outdoor recreation photographs, and 1,484 
random geolocations were used for comparison with wildlife watching 
photographs.

Then we calculated median values of  LCI and colour harmony indices 
for the viewsheds of  actual CES geolocations and random ones. For 
the viewshed analysis we used the PixScape software (Sahraoui et al. 
2018) and the European Digital Elevation Model (EU-DEM), version 
1.1 (Copernicus Land Monitoring Service 2016). We compared medians 
using the boxplot visualisation and the Wilcoxon’s rank-sum test with 
continuity correction (see Appendix of  Paper IV) implemented in the 
Exploratory software (Exploratory Inc., 2020). Based on the satellite 
mosaics, we calculated the median normalized difference vegetation 
index (NDVI) for each viewshed and then compared values of  colour 
harmony and landscape coherence for rather vegetated (NDVI >0.1) 
and non-vegetated (NDVI <0.1) viewsheds.
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The study areas and periods, as well as data used are summarised in 
Table 3. 

Table 3. Summary of  the materials, used in the thesis papers

Paper Study area Study 
period

Remote sensing and 
GIS data 

Geolocated 
photographs

Paper 
II

Part of 
Eastern 
Estonia

June 2017 Landsat-8 image as of 
17 June 2017

5 Mapillary 
photographs

Paper 
III

Peneda-Gerês 
National Park 

(Portugal)

Until 2015 
(inclusive)

SPOT and RapidEye 
mosaics for spring 

2011, DEM, 
Estonian Land Board 

DSM interpolated 
from topographic 
vector data, ALOS 

DSM

≈9,000 Panoramio 
and ≈9,000 Flickr 

photographs

Paper 
IV

Territory of 
Estonia and 
some buffer

2015-2018 Landsat-8 cloudless 
summertime mosaics 

(2018), EU-DEM 
1.1, Estonian Land 

Board DEM

9,983 photographs 
(combined Flickr 

and VK.com)
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5. RESULTS

5.1. Deconstructing landscape pattern: applications of  remote 
sensing to physiognomic landscape mapping (Paper I)

The results from the paper I suggest that the question of  remote sensing 
application to the landscape mapping and evaluation is highly dependent 
on the landscape notions and models of  landscape evaluation and is 
discussed in the literature review. An ecological notion of  landscape 
evaluation typical for the understanding of  landscape as a natural 
territorial complex or ecological system is fruitful for remote sensing 
applications. Indeed, quantification and monitoring of  vegetation or 
water quality, species habitat or urban sprawl are among the most common 
remote sensing tasks. However, treating the landscape as a product of  
perceptual-cognitive processes (and proceeding from the ecological 
model of  landscape evaluation to formal aesthetics and psychological 
ones) results in accounting of  the previously neglected landscape 
attributes. In this way, while common applications of  remote sensing 
work with the biophysical indicators of  environmental quality (Figure 
9, indicators A), there is a need to promote also the complementary 
remote sensing-based indicators of  the physiognomic quality (Figure 9, 
indicators B).

It is important to understand that visual landscape observation and 
evaluation involve a significant phenomenological component (Pellitero 
2011; Wylie 2018). However, in its current form it is usually trivialised 
to the purely subjective landscape experience (Tveit et al. 2018), moving 
from the initial phenomenological approach, elaborated by Edmund 
Husserl. According to Husserl’s theory, the physical world affects sensory 
system of  the observer and, in this way, appears as a mental phenomenon 
(representation) in the human mind (Zahavi 2003). Modern authors 
usually refer to the second part of  this so-called phenomenological 
reduction, when people attempt to extract the “mindscape” of  the 
visual environment. In turn, we suggest focusing on another aspect 
of  Husserlian phenomenology: focusing on appearance of  physical 
environment in addition to its cognition. For example, we see vegetation 
greenness. The supporter of  naturalistic reduction (in Husserlian terms) 
may think about it just as about indicator of  the vegetation vigour 
and health, quality of  plants. On the contrary, a phenomenologist will 
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think about vegetation greenness per se, removing the physical reality 
behind of  greenness “out of  the equation”. This distinction is based on 
the common difference between the humanities and so-called “hard” 
science. We argue, that Husserlian phenomenology is fruitful for visual 
landscape mapping with remote sensing in case the researcher focuses 
primarily on visual landscape variables, such as geometric primitives, 
colours, textures, shapes and volumes, and only after that — on their 
biophysical nature. Therefore, remote sensing can be used by both 
psychological and biophysical studies (Figures 9-10).

Fig. 9. Conceptual scheme of  remote sensing applications to the perceived environment 
(Paper I). The physical environment, which is perceived visually, constitutes the 
respective physiognomic landscape (serving as a factor for the formation of  different 
perceptual and cognitive phenomena). Remote sensing-based models are designed to 
deal with the physical environment mainly through its physiognomy from a top view 
perspective, and in this way, are used to examine the attributes of  the physiognomic 
landscape, with the respective indicators. Environmental indicators describe the quality 
of  the environment, while physiognomic landscape indicators refer to the quality of  
the visual environment.



48

In Figure 10 we attempted to illustrate the idea of  remote sensing 
feasibility for purposes of  visual landscape quality assessment. Remote 
sensing provides a unique opportunity to reduce the complexity of  
landscape patterns, textures and colours to just pixel relationships of  
multispectral satellite imagery (of  course, other types of  remote sensing 
data are also applicable). Pixel relationships capture landscape diversity 
and homogeneity, contrast and similarity, orderliness and entropy. Since 
many of  those concepts are also discussed in the psychological and 
formal aesthetics studies on visual landscapes (see section 2), remote 
sensing comprehends the various problematics in this field and may be 
applied for an objective examination of  both visual landscape situation 
and drivers of  changes in landscape values.

Fig. 10. Parallels between the predicates used in remote sensing, psychology and 
landscape science (Paper  I). Entropy as mathematical function describes landscape 
diversity; spatiotemporal and spectral resolution of  imagery corresponds to detailing (or 
generalisation) of  landscape image; remote sensing-based calculations of  homogeneity 
indicate simplicity of  landscape; spectral bands of  visible spectrum correspond to 
human vision of  colours; spatial relationships between the pixels responsible for 
harmony and organisation mapping; classification of  imagery is based on similarity 
inside the classes of  land cover; time series of  imagery describe feeling of  time; 
viewshed analysis is based on landscape proximity concept; textural and geometrical 
metrics are based on human ability to extract patterns from visual images.
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A literature review on the particular examples of  remote sensing 
applications to the mapping or evaluation of  the perceptual and cognitive 
landscape attributes is provided in publication I.

5.2. Mapping the extent of  land cover colour harmony based on 
satellite Earth observation data (Paper II)

The purpose of  the first experimental of  the paper II was to test the 
applicability of  remote sensing data, processed with Haralick’s textural 
metrics, to the mapping of  land cover colour harmony. To present the 
remote sensing feasibility for this task, Figure 11 illustrates the results 
of  summarised Colour Harmony Index (CHI) mapping, whereas Figure 
12 compares maps of  colour harmony according to the principles 
and authors, mentioned in paragraph 4.2.3. Summarised CHI can be 
considered as the complex integrated indicator for colour harmony of  
land cover, resulting from overlay analysis of  colour harmony indices 
after different authors.

Fig. 11. Summarised Colour Harmony Index (CHI), generalising all the colour harmony 
maps (Paper II). Protected areas include land cover of  high colour harmony, whereas 
urban (Tartu city) and rural areas have low colour harmony. See Mapillary scenes on 
Figure 16, labelled in the North-Western direction.
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5.2.1. How consistent are the maps of  the extent of  colour 
harmony produced within the different frameworks?

Our findings suggest the agreement between the colour harmony 
mappings after different authors; despite some difference in transition 
zones, the maximum and minimum colour harmony zones are highly 
consistent (Paper II). Maps 12a and 12d, designed after Nemcsics (2012) 
and Caivano (1998) represent the least sensitive indicators for colour 
harmony. To smooth all the possible drawbacks, resulting in the final 
pattern, all the four maps have been summarised to the Colour Harmony 
Index map (Figure 11), generalising colour harmony pattern. It should 
be noticed that Haralick’s textural indices, used for colour harmony 
mappings meet the assumptions of  numerical colour harmony models, 
which usually refer to the two-colour combinations.

Fig. 12. Maps of  colour harmony extent, created with different principles (according 
to the authors, mentioned in the legend): lighter areas correspond to higher land cover 
colour harmony, and darker areas correspond to lower colour harmony (Paper II). All 
the maps are different, though consistent. Protected areas include land cover of  the 
highest colour harmony. Colour harmony estimates are presented without rounding.
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5.2.2. How does the mean colour harmony index vary for 
different land cover classes?

The variation of  mean colour harmony estimates among the CORINE 
2012 land cover classes is illustrated in Figure 13 (made with Tableau 
Public 10.5 software; Seattle, Washington, USA). It is easy to see that the 
extent of  cultural modification results in decrease in colour harmony. 
For instance, water bodies, various forest classes and wetlands have the 
highest colour harmony values. Such land covers, as arable land, pastures 
and other agricultural areas indicate lower colour harmony. Completely 
urban territories are the least colouristically harmonious; however, there 
are some minor exceptions. For example, areas associated with water 
courses have lower colour harmony than airports (likely due to the 
spatial resolution of  the land cover model and satellite imagery).

Fig. 13. Stacked mean colour harmony after each author for each CORINE land cover 
class, arranging land cover classes according to their inherent colour harmony (Paper 
II). The decrease in colour harmony extent is associated with man-made structures and 
culturally modified land cover.

5.2.3. Which geographic attributes explain the distribution of  
colour harmony values?

This stage of  analysis aimed to examine the relationships between the 
Box-Cox transformed summarised CHI of  land cover and selected 
geographic attributes, representing variables of  man-made infrastructure, 
topography and surface energy balance using the GAM. Table 4 shows 
the results of  CHI modelling according to changes of  distance cost 
from roads (Costd_roads), values of  the SAGA Wetness Index (SAGA 
TWI), the brightness temperature (BT) and albedo index (Albedo).
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Table 4 (Paper II). Results of  the GAM applied to summarised Colour Harmony 
Index (CHI)

Box-Cox transformed CHI
Estimate Std. Error t value Pr(>|t|)

Intercept -0.624442 0.006861 -91.01 <0.01
Approximate significance of  smooth terms:

edf Ref.df F p-value    
Costd_roads 8.854  8.990 60.02 <0.01
SAGA TWI 1.000 1.001 494.55 <0.01
BT 8.397 8.895  82.27 <0.01
Albedo 7.961 8.576 183.12 <0.01
R-sq.(adj) =   0.54 Deviance explained = 54.3%
GCV = 0.23648. Scale est. = 0.23519 n = 4996

The GCV score is the minimised generalised cross-validation (GCV) score of  the 
GAM fitted. F stands for the degrees of  freedom matrix.

The main identified drivers of  spatial colour harmony variation: albedo 
(reflective ability of  landscape), brightness temperature (indicator of  
land surface temperature, affected by atmospheric conditions), SAGA 
Wetness Index (indicator of  topographic wetness), and cost distance 
from roads (as roads are more densely distributed in cities and towns, 
which is the indicator of  cultural modification and urbanisation of  land 
cover along with transport accessibility) are represented in Figures 14 and 
15. It appears, that albedo negatively relates to the CHI, while brightness 
temperature relates to the CHU unevenly; the respective relationship is 
rather U-shaped. CHI linearly increases, following the SAGA Wetness 
Index growth, and rather logarithmically positively responds to the 
increasing of  the cost distance. Altogether these indicators explain up 
to 54% of  CHI variation; therefore, some factors behind CHI remain 
unclear. However, we conclude that increasing wetness, cost distance 
from the roads (meaning more untouched nature), decreasing albedo 
(being the lowest for water bodies) and unevenly warm and cold areas 
(such as wetlands and water bodies) positively affect colour harmony of  
land cover.
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Fig. 14. Box-Cox transformed Colour Harmony Index, plotted against the albedo, 
brightness temperature, SAGA Wetness Index and cost distance from roads, explaining 
the spatial distribution of  land cover colour harmony (Paper II).

Fig. 15. Splines for the cost distance from roads, the SAGA Wetness Index, brightness 
temperature and albedo with 95% confidence intervals (Paper II). Only the topographic 
SAGA Wetness Index has a linear relation to the summarised Colour Harmony Index.
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5.2.4. How does remotely assessed colour harmony extent 
correspond to actual scenery alongside the roads?

We found no obvious differences between the Mapillary scenes 16a-d, 
whereas scene 16e provides the presence of  crop fields and settlements 
(Figure 16). As a logical consequence from Figures 14 and 15, signs of  
settlements and crop fields explain low mean CHI for the scene 16e. 
However, the lowest colour harmony score for the scene 16a is unclear 
and might be related to the landscape features outside the view. Moreover, 
Mappillary geolocated photographs are focused on the roadscape only; 
therefore, the opportunity to link the ground-based photographs with 
remotely sensed data is limited within this approach. We will return to 
this topic in paper IV.

Fig. 16. Mapillary scenes (crowdsourced street-level photographs), compared to 
the mean Colour Harmony Index for verifying the respective viewsheds (Paper II). 
Labelling the scenes in a North-Western direction (locations of  the viewpoints see in 
Figures 11 and 12).

Together, our results in land cover colour harmony mapping suggest 
that the numerical models of  colour harmony estimation developed in 
psychological studies are transferable to the environmental science with 
GIS and remote sensing techniques and provide meaningful information 
about the state of  visual landscape quality. Regimes of  moisture and heat 
supply, cultural modification and accessibility play the most important 
role in colour harmony support and, therefore, are responsible for 
management of  colour harmony of  land cover.
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5.3. Landscape coherence revisited: GIS-based mapping 
in relation to scenic values and preferences estimated with 

geolocated social media data (Paper III)

We obtained the maps for landscape coherence index, using four 
principles for the neighbourhood (Figure 17): floating circle of  33 pixels 
(990 m wide), hexagonal grid (each cell is 1000 m wide), patches, and 
classes of  coarse-resolution DLM (Figure 6). However, only LCI for 
patches and classes of  coarse-resolution DLM were used for comparison 
with social media data (Figure 17).

5.3.1. How does the GIS-based model represent the objective 
landscape organisation, utilising the landscape coherence 

concept?

Landscape coherence mapping was done within the four different 
spatial frameworks: Figure 17 illustrates the landscape coherence index 
mappings using floating circle, hexagonal grid, landscape patches 
(facets), and classes (panels a, b, c, and d respectively). Figures 17a and 
17b are presented for explorative purposes only; we assumed that nearly 
1,000-m mapping zones are able to detect phenomena on landscape 
scale. Maps 17b and 17c were used in further analysis in comparison to 
the CES indicator.
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Fig. 17. Spatial pattern of  landscape coherence index within the national park Peneda-
Gerês: a) mapped within a kernel (moving circle) of  33 pixels in diameter (approximately 
corresponds to 990 m); b) mapped within a regular hexagonal grid (each cell is 1,000 
metres wide); c) mapped within the physiognomic patches, parametrically composed 
of  TPI landforms and CORINE land cover (i.e. on the chorological level); d) mapped 
within the physiognomic classes, parametrically composed of  TPI landforms and 
CORINE land cover (i.e. on the typological level) (Paper III). Chorological and 
typological models (panels c and d) have been used in a further analysis to be linked to 
the spatial distribution of  geolocated photographs.

5.3.2. How does the landscape coherence indicator relate to 
the uneven spatial pattern of  photographs taking frequency 

evidenced from the location-based social media?

The most interesting finding from this stage of  research is that there 
is a weak but positive relationship (Figure 18) between the LCI and 
cumulative photographing frequency when these variables are calculated 
within the landscape patches (chorological level). Calculation within 
the entire classes of  landscape patches (typological level) enhances the 
strength of  this relationship. Spearman’s correlation on the chorological 
level varies from 0.41 for Flickr data to 0.47 to Panoramio data; on 
typological level, the same indicator varies from 0.86 to 0.87. As for 
the R-squared metric, indicating the predictive power of  the regression 
line, it varies from 0.2 to 0.25 and from 0.58 to 0.62 respectively. Both 
Panoramio and Flickr data show similar behaviour in relation to LCI, 
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but Panoramio’s response to LCI changes is more explicit. All these 
results are statistically significant at the p-value < 0.05 level for both 
plots. Since there is a strong concordance between the land cover types 
(typological level) and LCI extent, this fact provides some opportunities 
for landscape management, which will be discussed further.

Fig. 18. Relationships between the Flickr- and Panoramio-based cumulative viewsheds 
and landscape coherence for the Peneda-Gerês National Park area (Paper III). Plots 
show Box-Cox-transformed response data (cumulative viewsheds) with corresponding 
regression line and 95% confidence intervals; r refers to Spearman’s correlation. 
Panels show the relationships: a) between the Flickr- and Panoramio-based cumulative 
viewsheds and landscape coherence on the physiognomic patch (chorological) level; 
and b) between the Flickr- and Panoramio-based cumulative viewsheds and landscape 
coherence on the physiognomic class (typological) level.

5.3.3. How is the suggested indicator applicable to landscape 
management and planning?

Continuing the topic of  uneven attractiveness of  landscape classes 
for taking photographs, we ranged them according to the landscape 
coherence extent (Figure 19). All the DLM classes, containing water 
bodies as a land cover, have been combined to the same class of  water 
bodies, regardless of  landform. It was noticeable that the gentle slopes 
of  various land cover usually have lower LCI, while valley bottoms and 
ridges and  steep slopes show much higher coherence with land cover. 
Land cover of  DLM classes with higher landscape coherence includes 
agricultural areas, forests and transitional types of  vegetation. It is likely 
that the traditional agriculture, preserved in the Peneda-Gerês, does not 
reduce the visual landscape quality in part of  its coherence.
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Thus, landscape coherence is increasing with agricultural modification 
and is dependent on the density of  geographic processes (the most 
explicitly expressed in the mountain valleys and steep slopes of  diverse 
land cover). Instead, homogeneous areas, such as bare rocks, to a lesser 
extent are subject of  geographical evolution and, therefore, less coherent. 
In this way, managing land cover and, to some extent, landforms, land 
managers and planners may expect the respective increase or decrease 
of  landscape coherence, measuring it with the suggested index. 

Fig. 19. Physiognomic classes (mapped on the Figure 6) ranged concerning the degree 
of  landscape coherence (Paper III). The decrease in landscape coherence mostly 
corresponds to the urban fabric, bare rocks and irrigated land, as well as gentle slopes.

5.4. How crowdsourced data and landscape organisation metrics 
can facilitate the mapping of  cultural ecosystem services: an 

Estonian case study (Paper IV)

The following topics, corresponding to the CES groups according 
to CICES 5.1 (Haines-Young and Potschin-Young 2018), have been 
distinguished:

1) Landscape watching: This consists of  the following tags: nature, 
outdoors, landscape, tree, nobody, wood, sky, travel, water, and summer 
(6,154 photographs; 17 manually transferred from topic 3). 
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2) Active outdoor recreation: This consists of  the following tags: people, 
recreation, adult, fun, man, leisure, outdoors, one, sport, and action 
(2,346 photographs: 770 manually transferred from topic 1, and 114 
from topic 3).

3) Wildlife watching: This consists of  the following tags: nature, 
outdoors, nobody, flora, leaf, wild, wildlife, season, animal, growth 
(1,485 photographs; 124 manually transferred from topic 1, and two 
from topic 2).

Photographs of  landscape watching represent scenes without presence 
of  people or their equipment for outdoor activities. Photographs of  
active outdoor recreation (further just outdoor recreation) contain 
signs of  people’s activities or the people themselves. Wildlife watching-
related photographs focus on plants, animals and mushrooms (macro 
scale of  landscape-related photographs, level of  organisms or some 
communities).

5.4.1. What are the main groups of  CES, evidenced from social 
media in Estonia?

The map of  CES-related geolocations from social media: photographs, 
representing i) passive landscape watching, ii) active outdoor recreation; 
and iii) wildlife watching, is presented in the Figure 20. There are clear 
linear patterns alongside the roads and coastlines; photographs of  CES 
use are concentrated in the national parks (such as Sooma, Vilsandi and 
Lahemaa), recreational areas near Otepää and suburban areas of  the 
main cities (Tallinn, Tartu, Narva, etc.). Moreover, about 59% of  all the 
photographs were taken within the protected areas, confirming their high 
relational landscape values. Also, 6,148 out of  6,153 landscape-watching 
photographs, 2,311 out of  2,345 outdoor recreation photographs, and 
1,483 out of  1,484 wildlife-watching photographs have been taken no 
farther than 500 m from the roads and trails of  all types, indicating the 
pivotal importance of  transport accessibility for landscape experience 
and CES use.
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Fig. 20. Geotagged photographs representing actual use of  three groups of  CES 
in Estonia (2016-2018): landscape watching (passive recreation), outdoor recreation 
activities, and wildlife watching (Paper IV). The web map, designed in Carto, is available 
via the following link:
https://oleksandrkarasov.carto.com/builder/1e69e28a-9705-45a9-8276-
471a330da2ff/embed.

As for the land cover infl uence (CLC 2018), Figure 21 provides the 
evidence that photographs were mainly taken in coniferous and mixed 
forests, agricultural areas and transitional woodland-shrub. Landscape 
watching is more represented also within the water bodies and courses, 
sea, peat bogs and marshes, as well as within the natural grasslands. 
Outdoor recreation is more concentrated within the complex cultivation 
patterns and green urban areas. Wildlife watching is well represented in 
broad-leaved forest and pastures.
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Fig. 21. CES use in Estonia encompasses predominantly natural and semi-natural land 
cover (CLC 2018, Paper IV). Land cover classes are ranked in order of  decreasing 
number of  landscape-watching photographs.

5.4.2. What is the association between the landscape coherence 
and colour harmony of  land cover, and CES?

 The comparison of  the medians (Figure 22) shows that people 
take landscape watching- and recreation-related photographs with 
consideration for colour harmony of  landscape (hue and saturation 
similarity). Medians of  the respective indices are signifi cantly higher (see 
the Wilcoxon test results in Appendix of  Paper IV) for viewsheds of  
actual geolocated photographs than for pseudo-absence geolocations. 
LCI, in contrast, is better associated with wildlife watching photographs. 
Notably, that the respective associations in case of  LCI are valid for 
rather vegetated areas (NDVI >0.1), while colour harmony indices 
describe rather non-vegetated areas (NDVI <0.1), such as water bodies 
(Appendix, Figure A1).

These results are also supported by the Wilcoxon non-parametric test, 
applied with no regard for the median NDVI values for each viewshed. 
The median values of  colour harmony indicators tend to be higher for 
CES-related viewsheds in case of  the landscape watching and outdoor 
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Fig. 22. Comparison of  medians of  landscape coherence and harmony-based visual 
quality indices for each group of  CESs within viewshed areas for actual geotagged 
photographs (“real”) and randomly simulated locations (“random”): (a) landscape 
watching; (b) outdoor recreation; and (c) wildlife watching. Boxplots are designed 
separately for median normalized difference vegetation (NDVI) index values for each 
viewshed being higher 0.1 and lower 0.1 to present the index performance for rather 
vegetated and non-vegetated area (mainly water bodies and streams). Colour harmony 
indices are higher for actual CES viewsheds in the case of  non-vegetated areas, while 
landscape coherence index is higher for photographs of  vegetated areas. The GLCM 
homogeneity index for the saturation of  pixel pairs does not indicate wildlife watching 
in any case (Paper IV).
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recreation. The density distribution of  the median viewshed values of  
colour harmony indicators contains the part that exceeds the density 
distribution of  the median values for randomly generated viewsheds 
(Figure 23ab). This difference in the density distribution is less expressive 
for landscape coherence index, which also shows some increase for 
all groups of  CES compared to values within the random viewsheds 
(Figure 23c).

Fig. 23. Density plots representing the results of  the Wilcoxon rank sum test with 
continuity correction, applied to the medians of  landscape coherence and harmony-
based visual quality indices for each group of  CESs within viewshed areas for actual 
geotagged photographs (“real”) and randomly simulated locations (“random”): (a) 
landscape watching; (b) outdoor recreation; (c) wildlife watching. Significance levels: 
*** p-value less than 0.001; ** p-value less than 0.01; ns—not significant. Alternative 
hypothesis: two-sided. Confidence level: 0.95 (Paper IV). See the complementary test 
data in Appendix of  Paper IV.
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This behaviour of  the suggested indices corresponds to the land cover 
types. The landscape coherence increases for the culturally modifi ed 
land cover, such as urban green areas and fabric, agricultural areas, and at 
the same time, colour harmony increases for more natural water bodies, 
forest and peat bogs (Figure 24). Colour harmony is not associated 
with wildlife watching. As a result, colour harmony indicators, being 
associated with a specifi c land cover, can be considered as its important 
attribute, infl uencing decisions to take landscape- and recreation-related 
photographs. Landscape coherence index also may be considered as 
such an important attribute, but to a lesser extent and predominantly for 
wildlife watching occurrence. 

Fig. 24. CORINE 2018 land cover classes ranged in order of  decrease in GLCM 
Homogeneity for Hue component of  HSV colour space, indicating transition from 
water-related and natural land cover to urban-related areas. Landscape coherence 
generally increases in this direction (Paper IV).
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6. DISCUSSION

In total, our results are meaningful in different regards. First of  all, 
they extend the conceptual (Paper I) and experimental opportunities 
of  remote sensing applications within the formal aesthetics (Paper II) 
and psychophysical (Paper III) approaches to landscape visual quality 
evaluation, which is important in context of  evidence-based landscape 
planning and management, and CES assessment (Paper IV). Also, our 
results increase remote sensing applicability for purposes of  nature 
conservation, namely for monitoring of  the aesthetic properties of  
the environment and delineation of  the protected areas, based on 
such properties and cultural ecosystem services provision. What is 
more important, the evolution of  our research has resulted in deeper 
integration of  geomatics with problematics of  landscape experience, 
evidenced from location-based social media data. Policy targets 
concerning environmental quality and ecosystem services are deeply 
connected with the sustainable development goals (Wood et al. 2018), 
so our results are highly relevant to achieving these goals, while limited 
spatially and temporally. Analytical reduction of  the extremely complex 
harmony-related environmental attributes to just a few GIS-based 
indicators is a nearly impossible task. In addition, people’s decisions to 
take photographs are highly uncertain and unpredictable. However, our 
results contribute to the objective and evidence-based understanding 
of  people-nature relationships, reducing the respective uncertainty 
for more informed decision-making. Discussion of  particulars of  the 
papers, included in the thesis, is provided as follows.

6.1. Remote sensing provides tools for operationalisation of  
intangible nature values (Paper I)

The main message of  paper I was to explain, that the Earth observations 
from space and the ground do not conceptually differ, despite the 
different perspectives on landscape: top-view and oblique respectively. 
However, linkages to environmental psychology are rather absent in 
remote sensing studies of  landscape, except for a few papers (Ayad 
2005; Ozkan 2014; Vukomanovic et al. 2018), and vice versa, remote 
sensing is not widely implemented in environmental psychology. In 
our paper we articulate this problem and legitimate multidisciplinary 
studies, based on both regularities of  landscape perception and remote 
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sensing derivatives. Wider implementation of  remotely sensed data in 
physiognomic landscape research would complement the ground-based 
assessment of  visual landscape quality and enhance the inter-, multi- and 
cross-disciplinarity of  the landscape studies. Human visual perception 
is always evaluative; therefore, visual landscape quality is an essential 
component of  favourable habitability conditions, contributing to the 
overall well-being of  billions of  people and, respectively, to CES use. 
We argue that there is time to complement the landscape monitoring 
based on traditional components of  landscape as a geosystem of  air, 
water, geological substrate, soil, biota and human structures, with the 
monitoring of  physiognomic landscape as appearance of  environment. 

Remote sensing applications for mapping landscape conditions, enabling 
CES use and arousal of  relational intangible nature values (Small et al. 
2017; Pascual et al. 2017; Bachi et al. 2020) are rather understudied. 
Thereby, our research contributes to bridging the opposite research 
traditions, so-called “hard” and “soft” landscape science (Miklós et 
al. 2019). Notably, remote sensing is highly relevant also to ecological 
habitat modelling and, in this way, can be applied also for modelling of  
locations, likely rich of  CES use (Richards and Friess 2015; Yoshimura 
and Hiura 2017). Moreover, results obtained with a top perspective 
should be examined and verified with ground-based Earth observations 
within the frameworks, adopted in citizen science and data crowdsourcing 
(Fritz et al. 2017). For these purposes, street-level crowdsourced 
imagery, provided by Mapillary, as well as location-based social media 
data, provided by Flickr, VK.com, Strava, and Twitter can be used. This 
imagery is passively crowdsourced via the official APIs of  these services 
and, in this way, provide much less intrusive and richer source of  data 
on landscape perception and use, than traditional active crowdsourcing 
and surveys (even online-based ones). Moreover, nature protection 
initiatives will benefit from the reliable mappings of  CES potential and 
visual landscape quality with remote sensing, complementing mentioned 
active engagements of  people (Dramstad et al. 2006; Rose et al. 2015; 
Sullivan and Meyer 2016; Janečková Molnárová et al. 2017). 

Moreover, assessment and monitoring of  the visual landscape quality 
from space and ground over time would support environmental policies 
of  various spatial scale. For instance, the global indicator framework 
for the Sustainable Development Goals and targets of  the 2030 
Agenda for Sustainable Development suggests integrating “ecosystem 
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and biodiversity values into national and local planning, development 
processes, poverty reduction strategies and accounts” (UN General 
Assembly 2018). This logic continues ideas, enshrined in the European 
Landscape Convention, which oblige parties, including Estonia and 
Ukraine, “to assess the landscapes thus identified, taking into account 
the particular values assigned to them by the interested parties and the 
population concerned” (Council of  Europe 2000). Therefore, despite 
the local legislation differences, many countries take responsibility 
for the preservation and possible enhancement of  visual quality of  
environment (using, for example, target-based policy). Visual landscape 
quality is an intrinsic basement for GDP of  countries with developed 
tourism and leisure industry, therefore, it should be operationalised and 
institutionalised within the natural capital assessments as a prerequisite 
for landscape, economic and social sustainability.

6.2. Problematics of  colour harmony in landscape research 
(Paper II)

Colour harmony is among the landscape aesthetics principles, recognised 
in practises of  visual resources assessment (BLM 1986), nature protection 
(Sullivan and Meyer 2016), landscape aesthetics and scenery management 
(U.S. Forest Service 1995), classics of  landscape research (Granö et al. 
1997; Bell 2012; Antrop and Van Eetvelde 2017a); landscape design and 
architecture (Bell 2004; O’Connor 2010) landscape ecology (Tveit et al. 
2006; Sowiſska-ſwierkosz 2016). No works that mapped colour harmony 
with satellite imagery or orthophotographs from a top perspective were 
found. However, our results complement the first attempts to calculate 
scenic colour (dis)harmony for the landscape photographs (Sowiſska-
ſwierkosz 2016) and previous attempts to examine the landscape colour 
diversity and composition (Arriaza et al. 2004; Lindemann-Matthies et 
al. 2010; Polat and Akay 2015; Zhang et al. 2017; Kuper 2018).

6.2.1. Data quality and processing

Here we note the drawbacks and limitations of  the initiated colour 
harmony mapping approach. First of  all, spatial and temporal resolution 
of  satellite imagery, atmospheric conditions, quality of  multispectral 
sensors, carried by satellites, affect the resulting estimations. For 
example, our mapping in Paper II was based on Landsat-8 OLI data of  
30 m original spatial resolution for the one selected date, while future 
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mappings may include multitemporal mapping of  colour harmony for 
satellite imagery of  higher spatial resolution (Sentinel 2 predominantly, 
other imagery based on availability, orthophotographs). Further, the 
scale of  analysis depends also on the choice of  floating circle (moving 
window, kernel) for pixel pairs examination: it should be optimal for 
scale of  landscape features, balancing the capturing of  minor details 
and large patches. Thirdly, Haralick’s textural features are reported 
as often multicollinear (Hall-Beyer 2017b), and choice of  the correct 
index for the most accurate estimation of  pixel pairs in colour harmony 
context is a highly subjective, requiring further research. Noticeable, 
that Haralick’s GLCM textural features were applied to derive the colour 
textures in emotional context (Machajdik and Hanbury 2010). Our 
research complements existing knowledge, presenting land cover colour 
harmony as a potential predictor for visual landscape quality mapping.

6.3. Issues of  landscape coherence mapping (Paper III)

Landscape coherence is one of  the most diverse and complicated 
concepts, used in our research; even colour harmony, which is also 
provoking discussion, is much more agreed upon among the researchers. 
In contrast, landscape coherence research in environmental psychology 
(Kaplan and Kaplan 1989; Hansson et al. 2012; Kuper 2018) is very 
different from the landscape coherence in landscape ecology studies 
(Kuiper 1998; Mander et al. 2010) and mainly refers to the structural 
landscape connectedness (Jongman et al. 2004). Some studies, combining 
both subjective and objective landscape evaluation approaches, simply 
borrow objective ecological notion of  landscape coherence and apply 
it in subjective landscape evaluation (Martín et al. 2016). The backward 
process, implementing intuitive psychological concepts into the objective 
mappings is in its theoretical stage of  development (Tveit et al. 2006; Ode 
et al. 2010; Bell 2012). Thereby, our approach for landscape coherence 
mapping based on intuitive basement of  landscape systematicity, and 
emergence, first of  all, contributes to the objectivization of  subjective 
landscape coherence concept.

Moreover, objectivization of  subjective landscape coherence serves 
to the purposes of  linking objective factors of  landscape appreciation 
to the metrics of  landscape values and preferences (Langemeyer et 
al. 2018). Our results, revealing concordance between the extent of  
landscape organisation, legibility, and systematicity and cumulative 
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photographing frequency for Flickr and Panoramio data, serve as a proxy 
for legitimation the GIS-based practises in such a highly subjective field, 
as landscape valuation. In addition, we confirm the link between the 
landscape heterogeneity and coherence: areas of  higher diversity are also 
more coherent (van der Jagt et al. 2014; Martín et al. 2016; Kuper 2017).  
Notably, agricultural areas within the NP Peneda-Gerês obtained high 
scores of  landscape coherence—we interpret this fact as supporting the 
idea that low intensive agriculture contributes to the landscape diversity 
(Mander et al. 1999).

Of  course, landscape coherence as a fundamental aesthetic category 
should not be trivialised to any GIS mapping: “Beauty is in the eye of  
the beholder”. Therefore, our suggested approach just indicates one 
aspect of  visual landscape organisation, in addition to harmony, which 
is discussed as a concept, very similar to the notion of  coherence (U.S. 
Forest Service 1995; Tveit et al. 2006). Further work in this direction 
of  mapping the landscapes with metrics, uncovering their organisation 
and legibility for observer, can benefit from wider usage of  information 
theory (Nowosad and Stepinski 2019).

6.3.1. Data quality and processing

In a similar way to landscape colour harmony mapping, estimation of  
the landscape coherence has inherent biases, related to the adequacy 
of  initial landform and land cover models and neighbourhood choice. 
Substantiation of  the optimal floating window size is shown in the 
discussion of  Paper III. Here, we note that landscape metrics generally 
are very sensitive to data quality, and extremum values may significantly 
bias the results. For example, in our case, the floating circle approach 
resulted in unexpectedly linear pattern of  landscape coherence values 
and Hartley information estimates, therefore we used strictly defined 
DLM patches and classes to reveal the relationship with photographic 
frequency as indicator of  landscape values and avoid the problem of  
over-differentiated patterns. Also, quality of  the viewshed analysis was 
influenced by the coarse resolution of  DSM. The cumulative viewsheds 
also served as an indirect indicator of  transport accessibility (Lu et al. 
2019).
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6.4. Assessment of  CES with LBSM (Paper IV)

Our last study (paper IV) contributes to the quite wide niche of  CES-
related studies, linking spatial distribution of  CES to the metrics of  
landscape organisation, assessible, among others, with remote sensing 
(Oteros-Rozas et al. 2018; Calcagni et al. 2019). Transport accessibility 
and naturalness are the most influential factors behind the spatial 
distribution of  CES, which is in line with previous research (Van Zanten 
et al. 2016; Van Berkel et al. 2018). What is important is that photographs, 
representing different groups of  CES in Estonia, tend to overlap spatially, 
creating basis for assessment of  landscape multifunctionality (Mander et 
al. 2007). Landscape multifunctionality is important for emergence of  
intangible nature-related values and, therefore, our results can support 
the informed and evidence-based trade-off  land use analysis in case of  
comparison with other ecosystem services and land use trajectories over 
time. Currently we have indicated the hotspots of  CES, revealing cultural 
importance of  landscape (Cao et al. 2013; Ghermandi and Sinclair 2019), 
and our results can be further extended for the cities (urban research and 
planning) and over time (to capture the seasonality and other temporal 
effects on CES use).

Nature protection is another important aspect that benefits from 
mapping the CES use in Estonia. Since the majority of  photographs in 
this way or another was taken within the protected areas, our results allow 
to monitor the efficiency and efficacy of  the nature protection policy, 
namely recreational use of  the protected ecosystems and landscapes 
which contribute to the nature-based tourism (Kim et al. 2019). Thereby, 
the location-based social media data is a valuable source of  information 
for nature conservation and tourism activities (Yoshimura and Hiura 
2017; Tenkanen et al. 2017; Hausmann et al. 2018; Toivonen et al. 2019).

The landscape coherence index (LCI), suggested in Paper III, was 
additionally tested in relation to CES in Estonia. Within the framework 
of  this study we found that increase in LCI estimates follows the increase 
of  cultural modification of  land cover; this is contrary to the colour 
harmony indices, increasing with higher naturalness of  land cover (Figure 
24). This fact is logical, because culturally modified landscapes should be 
more legible and ordered than natural landscapes. Estonian agricultural 
areas and cities for the most parts do not decrease landscape diversity, 
supporting high extent of  the visual landscape quality. However, LCI 
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does not indicate well neither landscape watching, nor outdoor recreation 
and cannot be considered as a stand-alone strong predictor of  landscape 
values and preferences. However, as some photographed places have 
higher LCI, there is still some positive influence of  anthropogenic 
modification signs (parks, suburban areas, agricultural landscapes, etc) 
on these CES, complementing naturalness value (Martínez Pastur et 
al. 2016). Our results suggest that people take wildlife watching-related 
photographs in places with higher LCI, meaning that they prefer to 
contact with biota in rather understandable zones near settlements—in 
agreement with previous reports (Mancini et al. 2018). 

Colour harmony indices are more important indicators of  visual 
landscape values (passive watching and outdoor recreation), because 
more natural land covers have higher colour harmony extent. Therefore, 
because of  this strong association between the colour harmony extent 
and type of  land cover, it is hard to distinguish the effect of  colour 
harmony from the effect of  land cover itself, as land cover usually 
has also powerful intrinsic values. What is more, people may choose 
landscapes to be photographed unconsciously, therefore our results 
should be treated with caution. They rather contribute to the general 
understanding of  visual environment, than directly explain landscape 
preferences.

6.4.1. LBSM as a source of  bias

LBSM data are provided by a limited sample of  population, who are 
active users of  Flickr and VK.com. Also, some users can produce many 
photographs, while other are just rarely active. To overcome this bias, 
we did not apply cumulative viewshed analysis as in Paper III (in this 
paper analysis was done for the national park only, therefore motivations 
of  photographs’ taking was much less diverse, than in case of  entire 
Estonia with many outdoor events and activities). 

Moreover, it is likely that elderly people and children are not well-
represented users of  LBSM. This drawback is being gradually smoothed 
by regular ageing of  the overall population on the Earth: Flickr and 
VK.com were launched in 2004 and 2006, respectively, and have become 
popular among diverse people. Internet penetration in Estonia is also 
permanently growing (Statistics Estonia 2019). In the coming years 
(given the constant API access), LBSM will become even more useful 
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for CES use assessment. Of  course, the LBSM data provide very limited 
information about the individual’s age, gender, cultural background, 
education and nationality. On the other hand, that may be an advantage, 
because the volume of  the involved personal data is minor. What is more 
important, contrary to offline surveys, LBSM data is provided by much 
larger sample of  people and the way of  data collection is not intrusive. 
LBSM data do not suffer from the recollection (given the constantly 
open API access) and mind biases, which reduce the reliability and 
replicability of  the traditional bottom-up people engagement practises 
(Dunkel 2015; Ilieva and McPhearson 2018; Ghermandi and Sinclair 
2019).
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7. CONCLUSIONS AND FURTHER WORK

Overall, the results from the published and submitted papers suggest that 
the visual quality of  landscape can be assessed from the top perspective 
with remote sensing and GIS techniques by means of  specifically 
developed indicators. We have developed measures for aesthetical 
attractiveness of  landscapes, enhancing their recreational values. As this 
research was not experimental, we did not manipulate the landscape 
coherence or colour harmony of  landscape; however, the proposed 
measures and partially explored (semi)natural regimes of  environmental 
organisation can be applied for safeguarding and enhancing the visual 
quality of  most European landscapes within the target-based landscape 
planning and management. 

Some of  the landscape conditions, enabling opportunities for landscape 
beauty appreciation and various outdoor activities, were assessed by 
means of  joint use of  remotely sensed and location-based social media 
data. In this way, our research promotes the more integrated use of  
globally available space- and ground-based Earth observations, as well 
as uncovering rather hidden potential of  remote sensing in this field. We 
argue that by measuring and mapping visual landscape attributes, as well 
as detecting landscape use (as represented in social media,) we contribute 
to the assessment of  intangible natural resources and, therefore, to the 
more accurate assessment of  natural capital of  the countries. Adequate 
decision-making in nature protection and landscape planning, based on 
more informed accounting for potential conflicts, synergies and trade-
offs, and enhanced with the suggested methodologies, will be able 
to support also economic and, as a result, social and environmental 
sustainability through avoidance, mitigation and offsetting of  nature 
use regimes that lead to land degradation or disturbance. Conjunctively 
used remote sensing and GIS techniques provide visualisations for the 
state of  visual landscape quality and may facilitate communication with 
stakeholders: planners, administration, NGOs, citizens, business.

In particular, our results indicate that:

a.	 Colour harmony of  land cover and landscape coherence are 
important aesthetic landscape attributes, assessable and mappable 
by means of  remote sensing; and
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b.	 Methodological combination of  automated image recognition and 
topic modelling facilitated CES use mapping based on LBSM data. 

Despite the methodological diversity of  approaches to the quantification 
of  colour harmony and land cover and landscape coherence, it was 
possible to identify the major regularities from literature that appear 
consistent enough. Colour harmony of  land cover is linked to land cover 
classes, decreasing with their cultural modification. In contrast, landscape 
coherence which is confirmed as a positive but rather weak indicator 
of  landscape preferences (as represented in selected social media) 
increases, following cultural modification. The landscape coherence 
index is especially high for low intensity agricultural areas in the study 
area in Portugal, and urbanised areas in Estonia. GIS-based mapping of  
landscape coherence should be further improved with more robust and 
powerful mathematical functions from information theory behind.

The following aspects covered with the thesis materials can be considered 
as scientific contributions:

•	 landscape harmony is discussed as accountable intangible 
natural resource—in particular, we attempted to substantiate the 
methodology for objective inventory of  the selected visual resources;

•	 recognition of  landscape as a provider of  cultural ecosystem services 
was promoted;

•	 information theory was shown to be useful for landscape harmony 
mapping in addition to diversity;

•	 linkages between the theory of  information, environmental 
psychology, formal aesthetics, social media, GIS and remote sensing 
were demonstrated; and

•	 methodology for complementary CES use mapping with social 
media data was suggested.

Our research reports predominantly correlations between the measurable 
properties of  visual landscape (colour harmony and coherence) and 
some people-generated digital footprint in a similar way to many other 
psychophysical studies. Instead, directions for further work should 
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be focused more on the causal mechanisms of  landscape use and 
appreciation. Using modelling techniques, it will be possible, first of  all, 
to comprehend these causal relationships more deeply and create maps 
of  the potentially available intangible natural resources and CES supply. 
For such purposes, automated image recognition for LBSM content 
used in combination with natural language is confirmed as a promising 
alternative to the traditional offline CES assessments and manual content 
analysis.

Finally, the presented results are just preliminary for the full 
implementation of  regular RS- and LBSM-based mapping of  visual 
landscape quality and cultural ecosystem services use over the regions, 
countries and continents on the permanent basis. Further work 
will continue the issue of  their integration, using comparative and 
exploratory analysis of  photograph-based quantitative indices of  visual 
landscape quality, and the respective map-based indices. What is more, 
content-analysis of  location-based social media data may be further 
complemented with more accurate web-based individual reports of  
users on the visual landscape and recreation quality. 
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APPENDIX

Fig. A1. Colour harmony (panels a and b) and landscape coherence (panel c) patterns 
within Estonia
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KOKKUVÕTE

MAASTIKUMEETRIKA JA ÖKOSÜSTEEMI 
KULTUURITEENUSED – RESSURSIPÕHINE INTEGREERIV 

LÄHENEMINE MAASTIKUHARMOONIA KAARDISTAMISELE

Sissejuhatus 

Kultuuriliste ökosüsteemiteenuste kontseptsiooniga arvestatakse 
erinevates inimese ja looduse mittemateriaalselt vastastikust toimet 
käsitlevates teadusvaldkondades, eriti majandus- ja keskkonnateadustes, 
järjest enam. Üks peamisi kultuuriliste ökosüsteemiteenuste kasutamist 
ja maastikukogemust mõjutavaid keskkonnafaktoreid on maastiku 
visuaalne kvaliteet. Probleem seisneb selles, et nii kultuurilised 
ökosüsteemiteenused kui ka maastiku visuaalne kvaliteet on nende 
mittemateriaalse iseloomu tõttu raskesti kvantifitseeritavad ja 
kaardistatavad. Maastiku kogemine on infoprotsess, mis ei põhjusta 
materiaalseid või energeetilisi üleminekuid, kuid loob majanduslikke 
stiimuleid looduskaitses. Seetõttu pakume välja, et maastiku visuaalse 
kvaliteedi määra võiks tõlgendada mittemateriaalse loodusvarana, mida 
tuleks sarnaselt teiste keskkonnaressurssidega kasutada mõistlikult. 
Suurem osa maastikku ja kultuurilisi ökosüsteemiteenuseid seostavaid 
uuringuid jätavad tähelepanuta kaugseire ja geograafiliste infosüsteemide 
(GIS) võimalused, kasutades vaid GIS-põhist maastiku mitmekesisuse 
või maastikuelementide kauguse ja spektraalsete taimkatteindeksite 
analüüse. Uuringud kasutavad ka rohkelt passiivsete kohtseotud fotode 
põhist kultuuriliste ökosüsteemiteenuste kaardistamist, kuid tehes seda 
ilma ajamahuka visuaalse sisuanalüüsi või külastus- või pildistusmäära 
arvestuseta. Käesolev uuring seadis eesmärgiks arendada edasi kultuuriliste 
ökosüsteemiteenuste kaardistamist, täiendades sotsiaalmeedia andmete 
temaatilise modelleerimise protseduuri ning maastiku visuaalse kvaliteedi 
kahe aspekti – maakatte värviharmoonia ja maastikukooskõla – GIS-põhiste 
indeksitega kaardistamist. Värviharmooniana võib määratleda kahe või 
enama värvi omavahel hästi sobivat kombinatsiooni, sõltumata sellest, 
kas vaatlejale kombinatsioon meeldib või mitte. Maastikukooskõla 
(ka: -koherentsuse) mõiste hõlmab keskkonnapsühholoogias maastiku 
harmoonia ja süsteemsuse määra. 
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Väitekirja eesmärk oli testida geograafilisel infosüsteemil põhinevate 
maakatte värviharmoonia ja maastikukooskõla indikaatorite suutlikkust 
tuvastada ökosüsteemi kultuuriteenuseid ja maastiku visuaalset kvaliteeti. 

Uurimistöö ülesanded

Väitekirja eesmärgi saavutamiseks seati järgmised uurimisülesanded.

1. Sünteesida seniseid kaugseire rakenduste uuringutulemusi, mis käsitlevad 
valitud maastikutunnuste kaardistamist. Esimeses uurimisartiklis oli 
meie eesmärgiks vastata küsimusele – mida saaks maastiku visuaalsete 
aspektide uuringutel kasutada tavapäraselt biofüüsikalistele omadustele 
keskendunud kaugseirest?  

2. Hinnata satelliitkujutiste abil maakatte värviharmoonia väärtusi. Teises 
uurimisartiklis oli eesmärgiks selgitada, kuidas kvantifitseerida maakatte 
värviharmooniat kui maastiku esteetilise väärtuse koostiosa, kasutades 
Landsat-8 andmete pilvitut fragmenti Eestist. 

3. Hinnata subjektiivsetel eeldustel, kuid maastiku GIS digimudelil 
põhineva maastikukooskõla määra. Kolmandas uurimisartiklis testisime 
selliselt hinnatud maastikukooskõla määra maastikufotodega (Flickr ja 
Panoramio) Peneda-Gerês rahvuspargis (Portugal).

4. Testida sotsiaalmeediapõhise kultuuriliste ökosüsteemiteenuste 
kaardistamisega maastikukooskõla ja värviharmoonia indekseid 
Eestis. Neljandas uurimisartiklis kombineerisime automatiseeritud 
pildituvastust teemamodelleerimisega, et esile tuua kolm kultuuriliste 
ökosüsteemiteenuste tüüpi üle kogu Eesti territooriumi. 

Materjal ja metoodika

Töö teoreetilise interdistsiplinaarse lähtekomponendina kaardistati ja 
analüüsiti kaugseire kontekstis teaduskirjanduses esindatud kognitiivseid 
kontseptsioone, nagu harmoonia, mitmekesisus ja sarnasus ning maastike 
visuaalseid tunnuseid, nagu punktid, jooned, pinnad, värvid ja tekstuurid. 

Seejärel selgitati välja, et psühholoogias arendatud numbrilised 
värviharmoonia mudelid toetuvad kahe värvi kombinatsioonide toonide, 
küllastuse ja heleduse väärtuste sarnasusele, kontrastile ja reeglipärasusele. 
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Sellele teadmisele tuginedes kasutati Landsat-8 andmete pilvitut 
osa (suvi 2017, Lõuna-Eesti), et arvutada katsealal värviharmoonia 
määrad tooni-küllastuse-väärtuse (HSV-värvimudel) värvimudeli ja 
Haralicki teksturaalmeetrika abil, mis kirjeldab pikslipaaride seoseid. 
Värviharmoonia ruumilise muutlikkuse selgitamiseks ja reaalse maastiku 
visuaalse aspektiga sidumiseks kasutati valitud geograafilisi muutujaid 
ning Mapillary fotosid. 

Maastikukooskõla (-koherents) määratleti Peneda-Gerês rahvuspargi 
(Portugal) katsealal komponentide suhtena: a) Hartley valemiga 
arvutatud infohulga digitaalsel maastikumudelil (sisaldades maakatte ja 
elementaarsed reljeefimudelid) ning b) erinevate digitaalse maastikumudeli 
komponentide jaoks arvutatud summeeritud Hartley infohulkade vahel. 
Pakutud indeksit kontrolliti kultuuriliste ökosüsteemiteenuste kasutust 
iseloomustava kumulatiivse pildistussagedusega, põhinedes Panoramio 
ja Flickr kohtseotud fotodel ja vaatevälja analüüsil. 

Neljas uuringueesmärk oli seotud Eesti sotsiaalmeedias esindatud 
põhiliste kultuuriliste ökosüsteemiteenuste kasutusklasside eristamisega. 
Flickr ja VK.com kohtseotud fotode maastikuvaadete põhjal kaardistati 
ökosüsteemide kultuuriteenuseid (katsealaks kogu Eesti territoorium) 
Clarifai automaatse pildituvastusega ja tekstitöötlustehnoloogiaga. 
Eelnevates uuringuetappides selgitatud maastikukooskõla ja 
värviharmoonia indikaatoreid testiti ökosüsteemide kultuuriteenuste 
suhtes, kasutades vaatevälja sisu analüüsi; ökosüsteemiteenuseid 
kujutavate kohtseotud fotode ja juhuslikult genereeritud geograafiliste 
asukohtade jaoks kasutati Wilcoxon-i mitteparameetrilist testi. 

Tulemuste kokkuvõte ja järeldused

Tavapäraselt biofüüsikalistele omadustele keskendunud kaugseire 
pakub võimalust taandada maastiku mustrite, tekstuuride ja värvide 
komplekssust satelliitpildi pikslite vahelistele seostele, hõlmates sel 
moel maakatte mitmekesisuse ja ühtlikkuse, kontrastsuse ja sarnasuse, 
korrastatuse ja entroopia. Kuna neid mõisteid on käsitletud ka 
psühholoogia ja formaalse esteetika valdkonna teadusuuringutes, siis 
saab kaugseiret kasutada nii maastike visuaalsete aspektide objektiivsel 
hindamisel kui ka maastiku väärtuste muutuste algpõhjuste selgitamisel 
(artikkel I).
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Eri autorite värviharmoonia printsiipidest lähtuvalt loodud maakatte 
satelliitkujutiste värviharmoonia kaarte analüüsiti eraldi ning seejärel 
kombineeriti lähtpunkte ühildava nn värviharmoonia indeksi kaardina. 
Sellistel kaartidel saab jälgida värviharmoonia ruumilist jaotumist. Näiteks 
antropogeensed maastikumõjutused vähendavad värviharmooniat, 
looduslikud veekogud, erinevad metsakooslused ja märgalad omavad 
suurimat värviharmoonia väärtust. Valitud geograafilised muutujad 
selgitavad kuni 54% värviharmoonia varieeruvusest (artikkel II), andes 
võimaluse mõista värviharmoonia varieeruvuse mehhanisme maastikus.

GIS-põhise maastiku digimudelil põhineva maastikukooskõla 
uuringu kõige tähelepanuväärsem tulemus on mõõdukas positiivne 
seos maastikukooskõla indeksi ja kumulatiivse pildistamissageduse 
vahel juhul, kui need muutujad on arvutatud maastikulaikude piires. 
Maastikuklasside sisene kalkulatsioon tugevdab selle seose tugevust, nt 
Spearmani korrelatsioon muutub 0.41-st laikude puhul 0.87-ni klasside 
puhul (artikkel III). 

VK.com ja Flickr kohtseotud Eesti loodusfotode põhjal testiti 
ökosüsteemi kultuuriteenuse kolme näidet: passiivne maastikuvaatlus, 
aktiivne välipuhkus ja eluslooduse vaatlus. Inimesed võtavad 
maastikuvaatluse ja rekreatsiooniga seotud fotodel arvesse maastiku 
värviharmooniat. Erinevalt värviharmooniast seondub maastikukooskõla 
eeskätt eluslooduse vaatluse fotodega. Samas ei seondu värviharmoonia 
eluslooduse vaatlustega (artikkel IV).

Edasised uurimisvajadused

Värviharmoonia ja maastikukooskõla seondusid tihedalt maakatte 
klassidega – värviharmoonia suureneb maakatte looduslikkusega, kuid 
kõrgem maastikukooskõla on seotud maakatte kultuuriliste muutustega. 
Sellest tulenevalt oleksid vajalikud edasised uuringuid, et eristada 
maastikukooskõla ja värviharmoonia mõju pildistamiseelistustele 
maakatte kui sellise tekitatud mõjutustest. Praeguste uuringute alusel 
saame näidata mõnd korrelatsiooni ja uurimusliku statistika tulemusi. 
Edaspidi oleks vaja uurida pakutud indeksite ajalist muutumist, et 
selgitada põhjuslikke seoseid maastiku visuaalse ülesehituse ja pildistamise 
(maastiku)eelistuste vahel, aga ka seostada neid üksikasjalikumalt 
ökosüsteemiteenuste kaskaadi erinevate elementidega. 
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Abstract In 1939, Carl Troll pointed out that ‘‘air

photo interpretation is to a large extent landscape

ecology’’. From that time forward, remote sensing has

been applied across different disciplines to compre-

hend the holistic and dynamic spatial layout of the

visual Earth environment. However, its applicability

in the domain of landscape character assessment,

landscape design and planning is still questionable.

The purpose of this paper was to synthesise some

historical and current applications of remote sensing

for the decomposition of the continual visual land-

scape from a bird’s eye perspective and to explore the

potential for bridging geographic processes with

visual perception and an appreciation of the landscape

pattern. From the point of view of landscape ecology,

the organisation of the landscape pattern [namely, the

size, shape (form), number, density and diversity, the

complexity of landscape elements, and colours and

textures of the land cover] is crucial for the cognition

of both the visual landscape experience and the

geographic processes. There are numerous pieces of

evidence from the literature that remote sensing data

are widely implemented in the modelling of physiog-

nomic landscape. The synthesis of the literature

concludes with perspective directions of remote

sensing applications, such as mapping the status of

the ecosystem (landscape) services provision, the

delineation of the boundaries of the protected areas

based on the quality of the visual environment, and the

assessment of the sustainability of the land use

practices, regarding their impact on landscape aes-

thetics extent.

Keywords Visual landscape � Landscape character �
Landscape attributes � Landscape indicators � Earth
observations � Remote sensing

Introduction

One of the most challenging tasks in contemporary

environmental management and planning, as well as

holistic natural resource management, is the opera-

tionalisation of intangible values of nature. This
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presents problems of implementation in holistic nat-

ural resource management and their implementation

into the decision-making process. These values often

formalised in the form of cultural ecosystem services

(CES) assessment (Daniel et al. 2012; Fish et al. 2016;

Hirons et al. 2016; Dickinson and Hobbs 2017) or a

non-tangible natural (environmental) resources

assessment (Saastamoinen 2016). The aesthetic

beauty of nature, including the visual (physiognomic)

landscapes, is a common class of all the CES

classifications, being one of the most frequently

studied among the ecosystem services (Czúcz et al.

2018). It is recognised that the pattern of the visual

landscape, with its symbiotic relationship with the

landscape processes, influences the landscape values

and preferences of people, framing their activities

within the Earth’s environment; the landscape concept

serves as a socio-ecological medium, making ecosys-

tems socially meaningful and manageable (Morrison

et al. 2018). From the beginning of the systematic

observations of Earth from space, including USA

aerial photography surveys shortly after the First

World War (Lee 1922), the 1921 Halifax air survey

mission in Canada (Werle 2016) and satellite imagery

since the 1970s (Antrop 2000), remote sensing (RS)

has significantly contributed to the in-depth under-

standing of the geographic processes underlying the

Earth’s appearance (Miklós et al. 2019). They have

also contributed to knowledge of its composition,

structure and dynamics (Gulinck et al. 2000; Ode et al.

2008), as well as the modelling of the visual landscape

per se (Ervin 2001; van Lammeren 2011). The terms

‘‘visual landscape’’ and ‘‘physiognomic landscape’’

are used interchangeably (Nijhuis et al. 2011). The

difference is that the concept of the physiognomic

landscape seems to be more suitable for mapping

purposes, assuming a bird’s-eye perspective, while the

visual landscape naturally requires the horizontal or

oblique perspective (Antrop and Van Eetvelde 2017a),

thus, we give preference to the ‘‘physiognomic

landscape’’ term. Following on from the ideas of

Granö (Granö et al. 1997), Booth et al. (2017) propose

a distinction between view-based vista aesthetics and

landscape aesthetics, where the environment is expe-

rienced in close proximity. Obviously, this distinction

also highlights the difference of landscape perspec-

tives (Antrop and Van Eetvelde 2017a), which utilise,

on the one hand, the in situ views and require a

viewshed analysis for GIS-based applications,

whereas some other landscape aesthetics studies are

based on merely geographic methods from top-view

perspective, such as remote sensing and, in this

connection, are less observer-dependent.

However, despite the crucial role that remote

sensing plays in recent physiognomic landscape

research, its role has not yet been extensively

discussed beyond the geomatics in general. Further-

more, the potential of Earth observation in the

mapping and assessment of the landscape visual

quality remains underestimated and understudied.

The quantification of landscape physiognomy is

problematic, due to the wide examination of the

aesthetic, axiological, cultural, psychological and

social aspects of the perceived environment (hence,

encountering some of the problems with the replica-

bility and reliability in psychology and social sciences

(Baker 2015), thus the respective quality of landscape

assessment research, involving a strong observer

component, remains questionable).

Noticeably, there is strong evidence in the growing

body of literature (Fig. 1), of a potential bridge

between remote sensing with the aesthetics of land-

scape (Crawford 1994; Antrop 2000; Yokoya et al.

2014; Fry et al. 2009; Dronova 2017). However, most

authors use remote sensing simply as a source of data

for mapping and the operationalisation of the envi-

ronmental indicators. For example, for the purpose of

physical landscape monitoring (Kienast et al. 2015) or

as a source of data for land cover classifications and

further landscape heterogeneity estimations with

common landscape metrics (Plexida et al. 2014).

Few empirical studies have suggested new RS-derived

indicators, specifically for the purpose of mapping the

extent of landscape beauty. For example, some of

those studies focus on the spatial organisation of the

perceived environment or link such indicators to the

landscape values and preferences (Ayad 2005; Ozkan

2014; Karasov et al. 2018). We argue that traditional

landscape-related surveys will complement the objec-

tive remotely sensed data, increasing the replicability

and reliability of landscape science. Of course, remote

sensing methods impose some constraints, as will be

discussed further, but the advantages of unmanned

aerial vehicles (UAV) imagery and satellite-based

Earth observations, strengthened by volunteered geo-

graphic information (VGI) and surveys, can hardly be

overestimated. Visual perception and remote sensing

have a deep intrinsic connection, based on the
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detection of environmental attributes in the visible

spectrum (Pettorelli et al. 2018). This connection

results in numerous attempts to apply remote sensing

techniques to examining the Earth’s environment as

perceived by people, while just a few of those are

articulated as a visual landscape study.

Figure 1 (made with Tableau Public 10.5 software,

Seattle, Washington, USA) provides evidence of the

growing interest in visual landscape examination with

remote sensing techniques. The figure was developed

to examine the current state in this interdisciplinary

field. We aimed to find the papers using cognitive

concepts such as ‘‘harmony’’, ‘‘diversity’’, ‘‘similar-

ity’’, as well as the features of visual landscapes

(points, lines, surfaces, colours, and textures) within

the remote sensing framework. Figure 1 suggests

naturalness and diversity are the most commonly

occurring concepts among the recent remote sensing

studies. Naturalness primarily relates to land cover

classifications and transitions between relatively nat-

ural and artificial land cover classes. Remote sensing

papers also utilize the harmony concept to describe the

dynamic balance between the natural and artificial

land cover, as well as nature-friendly land use (Cao

et al. 2013; Fujiki et al. 2018).

However, bridging geographical and aesthetic

knowledge with the help of remote sensing, still has

several significant uncertainties and a lack of trans-

disciplinary studies. This bridging is needed for a

deeper understanding of the functioning regime, in

terms of the landscape operationalisation and man-

agement of the perceived environment as well as the

assessment of cultural ecosystem services related to

the visual landscape, It seems that this problem exists,

because whilst common applications of remote sens-

ing work with the indicators of the quality of the

physical environment (Fig. 2, applications A), there is

a need to promote the development of remote sensing-

based indicators of the quality of the physiognomic

landscape (Fig. 2, applications B).

To address this need, this paper aimed to examine

the applications of remote sensing technologies to the

analysis of the visual (physiognomic) landscape. Also,

the respective benefits and constraints within the

Fig. 1 Growing numbers of articles in peer-reviewed journals

(indexed by the Web of Science Core Collection indices and

Scopus per year) operationalising scenic landscape-related

attributes with the application of remote sensing. The plot is

based on the key queries reflecting landscape attributes searched

in conjunction with the remote sensing terms (‘‘remote

sensing’’, ‘‘satellite’’, ‘‘earth observation’’, ‘‘UAV’’, ‘‘drone’’)

as well as with the landscape queries (physiognom*, scenic,

landscap*). The cumulative number of studies indicates the

evolutionary potential of remote sensing to landscape physiog-

nomy examination. Noticeably, diversity- and naturalness-

related topics have recently become increasingly popular.

Time-related search queries were excluded from analysis due

to a large number of remote sensing articles dealing with time

series data
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frameworks of the assessment and mapping of the

landscape beauty are discussed, especially regarding

the operationalisation of the landscape values and

preferences. Provided with a wide variety of land-

scape- and remote sensing-related literature, as well

as, more recently, some transdisciplinary studies, we

selected a list of 131 original research papers 15

literature review studies, and 25 books, book chap-

ters and reports. We selected them based on a partial or

full focus on the assessment and mapping of the visual

landscape, utilising, directly or indirectly, the remo-

tely sensed data. For example, landscape studies using

the CORINE land cover database for Europe, derived

from satellite-based Earth observations were included

in this review because they are indirectly based on land

cover classifications. The number of studies related to

physiognomic landscape mapping with remote sens-

ing in some way, is vast and therefore our list of

references is far from comprehensive. At the same

time, we ignored papers dealing with thermal remote

sensing for landscape studies for example, if they did

not involve visual problematics. We started searching

with a combination of keywords, such as ‘‘remote

sensing’’ or ‘‘Earth observation’’ together with ‘‘aes-

thetics of landscape’’, ‘‘landscape aesthetics’’, ‘‘visual

landscape’’, ‘‘physiognomic landscape’’, and ‘‘land-

scape beauty’’ within the research databases Thomson

Reuters Web of Science and Scopus, as well as search

Fig. 2 Conceptual scheme of remote sensing applications to

the perceived environment. The physical environment, which is

perceived visually, constitutes the respective physiognomic

landscape (serving as a factor for the formation of different

perceptual and cognitive phenomena). Remote sensing-based

models are designed to deal with the physical environment

mainly through its physiognomy from a bird’s eye perspective,

and in this way, are used to examine the attributes of the

physiognomic landscape, with the respective indicators. Envi-

ronmental indicators describe the quality of the environment,

while physiognomic landscape indicators refer to the quality of

the visual environment
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engines, such as Google Scholar and Semantic

Scholar.

Specifically, we established our research questions

as follows:

1. How are the cognitive and perceptual landscape

concepts reflected in remote sensing studies?

2. How do the subjective ‘‘landscape-oriented’’

principles complement the objective remote sens-

ing-based indicators for the quality of physiog-

nomic landscapes?

3. What are the related challenges of further remote

sensing applications to the mapping and assess-

ment of the physiognomic landscape?

The spectrum of landscape interpretations

and scales

It is rare to find a recent landscape-related paper that

does not mention the definition of landscape proposed

in the European Landscape Convention as follows:

‘‘an area, as perceived by people, whose character is

the result of the action and interaction of natural and/or

human factors’’ (Council of Europe 2000). This

meaning of landscape is close to the geometric concept

of area, whilst also continuing the geographic tradition

(dating back to A. von Humboldt), which considers the

landscape as having some sort of an intangible

‘‘character’’ or organisation of the objective landscape

components. In this way, still allowing for different

human and artistic interpretations, it serves as a core

for related directions of landscape science, including

landscape policy, landscape quality objectives identi-

fication, landscape protection, landscape manage-

ment, and landscape planning. Obviously, landscape

within these disciplines (such in the landscape man-

agement) is referred to as a material phenomenon,

namely, the Earth environment, with the associated

subjective psychological and social aspects (Simensen

et al. 2018). These aspects are hard to quantify and

even in the case of quantification assessments are

rarely reproducible. Being perceived, the environment

could be also referred to as a mental phenomenon, and

this dichotomy of reality and its mental representation

as a scientific subject are difficult to resolve. Our

perceptions are not equal to the objects of the

environment themselves.

This issue was elaborated by one of the most

influential philosophers of the XIX and XX cen-

turies—Edmund Husserl. Husserl formulated a repre-

sentative theory of perception: physical object affects

observer’s sensory apparatus, and in this way, the

mental representation of the physical object appears in

observer’s consciousness (Zahavi 2003, p. 17). To

focus on the mental phenomena, Husserl suggested

suspending the impact of reality on one’s research; this

process is roughly called ‘‘phenomenological reduc-

tion’’ in contrast to naturalistic reduction (meaning the

traditional objective intentionality of ‘‘hard science’’

directed on the physical reality). It is important to

understand, that remote sensing, as an integral part of

‘‘hard science’’—alongside the naturalistic reduction

of the environment, is able to serve the phenomeno-

logical reduction by mapping the environment as it

appears to an observer with no regard to its biophysical

conditions. In the context of landscape science this

approach would result in mapping the character of

geometric primitives of the environment (points, lines,

surfaces), environmental colours, extent of environ-

mental harmony, complexity, naturalness, contrast,

etc. (Fig. 2) since remote sensing concepts often meet

mental psychological and landscape concepts at some

point (Fig. 3).

Figure 3 illustrates the idea of the operationalisa-

tion of the selected psychological concepts of the

visual landscape quality by means of remote sensing.

For instance, complex patterns and textures of the

perceived environment captured with multispectral

satellite imagery could be examined by reducing them

to the relationships between the pixels:

• similarity or contrast of spectral values,

• their orderliness or entropy,

• correlation or homogeneity within the particular

neighbourhood to generalise and detect the com-

plexity and organisation of the visual environment

(Fig. 4).

According to the most well-known theory of landscape

preferences by Kaplan and Kaplan (1989), diversity

and coherence (organisation) of the visual landscape

are the strongest predictors of landscape preferences.

Remote sensing provides a comprehensive set of

indicators for objective assessment of these and other

drivers of landscape values.
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Contemporary landscape science seems to centre

around the aforementioned psychological and remote

sensing concepts. However, despite the fact that the

vast majority of papers use the standard definition

from the European Landscape Convention, there is

still no final scientific consensus about the use of the

concept of landscape. This is because of the inherent

dichotomous nature of landscapes. Irrespective of the

area concept, landscape explicitly or implicitly means

a phenomenon, emerging from both objective and

subjective (perceptual and cognitive) processes

(Fig. 3). The problem is exacerbated by the fact that

the landscape discourse is avoided in ‘‘remote sens-

ing’’-focused papers due to the uncertainty of the

concept, authors limit themselves to more definite and

objective land units, such as land cover, inland water,

terrestrial and marine environments. Landscape, here,

seems to be unnecessary—indeed, no matter how the

Earth surface is observed from some distance, it will

be called or conceptualised, as the Earth’s surface. In

this connection, the question raised is the following:

What kind of remote sensing studies of the environ-

ment deal with the landscape? In other words, what are

the criteria for treating some scientific works as

dealing with or contributing to landscape problems?

Historically, the introduction of the landscape

concept into scientific (first of all, geographic) vocab-

ulary is attributed to Alexander von Humboldt (Antrop

2013), who used the German word Landschaft,

inspired by Dutch landscape paintings (Kwa 2005).

Etymologically, the roots of the word ‘‘landscape’’ are

Fig. 3 Parallels between the predicates used in remote sensing,

psychology and landscape science: (1) entropy as mathematical

function describes landscape diversity; (2) spatiotemporal and

spectral resolution of imagery corresponds to the details (or

generalisation) of a landscape image; (3) remote sensing-based

calculations of homogeneity indicate simplicity of landscapes;

(4) spectral bands of the visible spectrum correspond to the

human vision of colours; (5) spatial relationships between the

pixels are responsible for harmony and organization mapping;

(6) classification of imagery is based on similarity inside the

classes of land cover; (7) time series of imagery describe feeling

of time; (8) viewshed analysis is based on the landscape

proximity concept; (9) textural and geometrical metrics are

based on the human ability to extract patterns from visual

images

Fig. 4 Remotely sensed data for the area of Eastern Estonia

(a LiDAR-based digital elevation model, b LiDAR-based

normalised digital surface model, c multispectral orthopho-

tograph captured 13.04.2018, natural colours band combination)

which are commonly used to deconstruct the physiognomic

landscape. There are easily recognisable linear patterns, as well

as various textures typical for different land cover classes (water

bodies, crop fields, forest), orthophotograph reflects the

perceivable colours of land cover, DEM and DSM model

surface of perceived environment. Pixels assigned to spectral or

elevation values are in relationships of similarity and contrast,

diversity (data credit: Estonian Land Board, Maa-amet)
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found in German languages, with an emphasis on the

piece of territory and administrative connotations,

while its older analogues, in other languages (for

example, in ancient Hebrew, French or Spanish), have

more scenic connotations. However, starting in the

XIX century, the concept of the landscape was firmly

fixed in a variety of disciplines in science, humanities

and the arts. There are several attempts to categorise

all the approaches that categorise and operationalise

the landscape. For example, Angelstam et al. (2013)

distinguished the biophysical, anthropogenic, intangi-

ble as well as coupled social-ecological interpretations

of landscape. A biophysical approach to landscape

mapping includes physiographic landscape mapping

or ecoregion mapping (Bailey 1983; Olson and

Dinerstein 1998), which are mainly focused on the

categorization of soil, vegetation, climate and biodi-

versity variables. Therefore, such landscape mapping

approach easily utilises remote sensing data, while is

not focusing on the physiognomic landscape features

and landscape perception principles. Similarly, other

authors distinguish between landscape approaches by

describing them as an image, a natural complex, a

natural-socio-economic complex, a structure of land

cover or a holistic entity (Miklós et al. 2019). From

this list, landscape, as a structure of land cover, seems

to be the most convenient for the remote sensing

application. Indeed, this approach, originating in the

American school of landscape ecology (Forman 1995)

is the most fruitful, in terms of filling the gap between

tangible and intangible components of landscape

structure. This is in contrast to ‘‘hard’’ geographic or

the objective landscape characterisation (Mücher et al.

2010; Miklós et al. 2019) and ‘‘soft’’ humanitarian

approaches, such as holistic landscape character

assessment as defined by Miklós et al. (2019).

Emphasising the organisation of the environment as

sensed from space or airborne crafts, is the best way to

meet the most important assumptions of the landscape

definition in the European Landscape Convention,

namely, the human visual perception, the character of

the Earth environment within a defined area and

factors, leading to this character.

Antrop and Van Eetvelde (2017b) synthesised all

the diversity of the landscape deconstruction princi-

ples into 5 main models, including ‘‘Element, Com-

ponent, Structure’’, ‘‘Point, Line, Polygon, Surface’’,

‘‘Patch, Corridor, Matrix, Mosaic’’, ‘‘Mass, Screen,

Space’’, and ‘‘Landmark, District, Path, Node, Edge’’.

For our purposes, we limited ourselves to an amended

model, namely, the ‘‘Point, Line, Polygon, Surface’’

model (with the addition of colour and textures but the

removal of polygons, since they can be represented

with lines). We also indirectly used ‘‘Patch, Corridor,

Matrix, Mosaic’’, reduced to a mosaic of patches, to

discuss the landscape heterogeneity, by utilising the

land use/land cover classification widely.

The deconstruction of landscape patterns necessi-

tates spatial comparisons, classification and assess-

ment of the visual quality of different landscapes.

Hence, landscape values and preferences gain the

raising scientific interest (often within the cultural

ecosystem services framework). Therefore, the fol-

lowing common aspects of the landscape are defined,

and whatever is considered landscape is treated as an

objective entity (system, complex) or a subjective

phenomenon of the mind (mind image):

1. Spatial and organised;

2. Meaningful and valuable for its observers;

3. Originating in the perceived environment, assess-

able using remote sensing.

Attempts to quantify the landscape attributes have

resulted in the creation of a variety of landscape

metrics (landscape indices) appropriate for a GIS-

analysis of landscapes. However, the remote sensing

part in these studies is extremely limited. Usually,

landscape scientists work on the fully processed land

cover classifications (such as CORINE land cover

models) and the digital elevation models (DEMs), and

they rarely process the raw or slightly pre-processed

satellite imagery, orthophotos and LiDAR (light

detection and ranging) data. Additionally, remote

sensing experts are not interested in the aesthetic

problems of Earth observation but prefer examining

more concrete phenomena, such as crop monitoring,

urban sprawl or pollution mapping. Remote sensing

imagery, in this regard, serves as a substitute for the

traditional land-based surveys. Landscape indicators

make the landscape pattern assessable, often using

remotely sensed data thus the following chapter will

be dedicated to the remote sensing applications used in

the typical examinations of the physiognomic land-

scape attributes. These attributes are selected and

generalised from the landscape character assessment

studies (Ode et al. 2008; Fry et al. 2009), landscape

aesthetics manuals (U.S. Forest Service 1995), the
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theory of landscape preferences (Kaplan and Kaplan

1989), the landscape design theory (Bell 2004) and

governmental guidelines (BLM 1986; Tudor 2014).

They provide a comprehensive set of attributes of

physiognomic landscapes, assessable with remote

sensing-based indicators (‘‘Appendix’’, see also elec-

tronic supplementary material).

Figure 4 presents the logic on how the remote

sensing data can be utilised for physiognomic land-

scape deconstruction. Imagery pixels serve as the

elementary unit of physiognomic research and can be

treated as points (especially true for LiDAR data) and,

taken altogether, as surfaces (DEM and DSM). During

the visual examination of these images, one can easily

capture the linear elements of the landscape (roads,

lake shoreline). One can also distinguish between the

land cover classes (categorise image mentally) as well

as recognise the textural differences within the image

(among the different vegetation patches). Overall a

pixel mosaic and land cover variety create a feeling of

diversity, as well as to some extent, harmony (or

incongruity). Some pixels are similar, while others are

to an extent, contrasting (lakes and surroundings, for

example). Thereby, the proposed image serves as a

case for quick visual deconstruction of the visual

landscape using remotely sensed data.

Indicators of the perceptual attributes

of the physiognomic landscape

Indicators of points

The concept of a point in physiognomic landscape

studies varies significantly. For example, according to

Bell (2004), different visual elements are regarded as

points, including isolated standing buildings or trees,

sources of lights, such as stars, and the focal point of

lines of convergence. Continuing with this logic, all

the objects of the environment, mapped as points in

geospatial data collections, such as OpenStreetMap

(OSM Community, n.d.) or the Countryside Survey in

UK (Wood et al. 2018) are narrowed down to

dimensionless points in the observed landscape (de-

pending on scale). These points include features such

as ponds, water features, buildings and landmarks with

different functional purposes, We argue that this logic

is based on saliency as a perceptual quality of the

objects, to be distinguished among others in the visual

scene due to their eye-catching character and the

specifics of the pattern of human eye movements.

Saliency mapping provides an objective method

towards the real modelling of landscape perception

using, for example, a correlation analysis. A high

correlation of photo pixels means a low saliency

potential (Dupont et al. 2017). In this regard, land-

scape points are treated simply as the objects, in

contrast to the rest of the visual environment. Conse-

quently, remote sensing-based mapping of point

objects in the physiognomic landscape should be

based in spatial autocorrelation or pixel-based texture

metrics, such as the Grey-Level Co-Occurrence

Matrix texture metrics (Haralick et al. 1973; Hall-

Beyer 2017). This approach is already utilised for the

detection of stand-alone palm trees, with high-resolu-

tion satellite imagery (Idbraim et al. 2016). However,

no studies were found connecting in situ eye-tracking

analysis with remote sensing-based textural mapping,

thus, this lack of results frames the respective potential

for further research. At the same time, cutting-edge

remote sensing techniques were recently used to

examine single trees as landscape features with high-

resolution data from UAVs (Dandois et al. 2017), this

is potentially useful for the assessment of landscape

aesthetics. The density and spatial configuration

indices (such as entropy) of point landscape data are

the most obvious GIS-applicable indicators of land-

scape character, following the remote sensing-based

detection of single landscape elements.

Indicators of lines

Various elements of the visual landscape are modelled

as lines, including the edges of landscape patches and

different networks (water streams, roads and pedes-

trian trails, streets, ridges and valleys). In these cases,

we ignore their width depending on their scale and

purpose. Usually, the overall length of the lines, their

density and topological regularities (based on graph

theory, such as connectedness), and their line shape

characteristics, such as the fractal dimension, are

treated as meaningful for visual landscape quality.

Remote sensing is widely used for the detection of

linear features of the landscape, including geological

fractures (Yang et al. 2011). Remote-based digital

elevation models, processed from digital surface

models (DSMs), such as the Japan Aerospace Explo-

ration Agency (JAXA) Advanced Land Observing
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Satellite (ALOS) 30-m Digital Surface Model (T.

Tadono et al. 2014), are used for mapping water

drainage networks. This has further implications for

the GIS-based analysis of scenic landscape quality (de

Almeida Rodrigues et al. 2018), as the positive impact

of water landscape elements on the landscape values

and preferences is well recognised (Ode et al. 2008;

Swetnam et al. 2017). The shape of linear landscape

elements is another important aesthetic variable (U.S.

Forest Service 1995; Bell 2012) as is the geometric

properties of landscape lines. For instance, the fractal

dimension of lake coastlines (Sudakov et al. 2017), the

fractal dimension of polygonal patches (Olsen et al.

1993) and the indices of urban morphology (Li and

Yeh 2004) are also successfully derived frommapping

products, based on satellite imagery. Texture features

are reported to be successful for predicting the height,

circumference, stand density of trees in a forest and

other structural parameters (Kayitakire et al. 2006;

Ozdemir and Karnieli 2011) responsible for the

formation of a forest silhouette in the landscape.

Some shape indicators for building classification in

LiDAR remote sensing data have also been developed

(Lu et al. 2014). Thereby, remote sensing techniques,

used in conjunction with the GIS-analysis, perform

well regarding the detection and monitoring of the

linear features of physiognomic landscape. They are

also useful for obtaining an accurate assessment of

their aesthetic properties through indicators, such as

the fractal dimension (Bell 2012) or other metrics.

Indicators of surfaces

Continuous geographic phenomena, such as land

surface, topography, vegetation canopy and urban

structures contribute to the physiognomic landscape.

Remote sensing-based operationalisation of such

phenomena results in two major types of digital

models, namely DSMs and DEMs. DSMs and DEMs

are commonly produced from:

• Synthetic-Aperture Radar (SAR) imagery, such as

Shuttle Radar Topography Mission (SRTM) data

(Farr et al. 2007),

• satellite-based stereo mapping data from sensor,

such as ALOS PRISM (Tadono et al. 2017),

• Airborne Laser Scanning (ALS) data obtained with

LiDAR technology for areas up to the national

level—for example, in Estonia (Estonian Land

Board 2018) or Finland (National Land Survey of

Finland 2018),

• UAV imagery with custom photogrammetry pro-

cessing (Long et al. 2016).

Different spectral, spatial and temporal resolutions, as

well as coverage of remotely sensed data, determine

the different applications for the surface detection and

characterisation. For instance, recent advances allow

automated surface material mapping with hyperspec-

tral remote sensing data and DSM, obtained with

stereo imagery (Heiden et al. 2012). As shown above,

the fractal dimension is frequently used to characterise

the shape of the linear landscape elements. The same

operation as the surface form indicator is also possible

for raster models, such as satellite imagery (Lam

1990) or topographic models, such as DEMs (Polidori

et al. 1991; Xu et al. 1993). This is yet an uncovered

potential for landscape aesthetics assessments, based

on the assessment of the visual quality of the DEMs

and DSMs. There is also a growing interest in the

fractal dimension mapping from SAR data. This

mapping is directly linked to the properties of the

physiognomic landscape under consideration, such as

the landscape topography and the complexity of the

landscape elements (Di Martino et al. 2017). The final

products of the DEM classification (landforms) are

used in map-based landscape aesthetic assessments as

a source of data for landform contrast estimations

(Booth et al. 2017). The smoothness and waviness of

topographies and the terrain roughness estimated from

satellite-derived DEMs are also strong predictors of

the aesthetic values of landscape (de Almeida

Rodrigues et al. 2018).

ALS data has a growing potential for the modelling

and discretisation of the perceived environment as a

continuous surface. LiDAR technology provides a

source of data for digital surface model (DSM) and

digital elevation model (DEM) production, as well as a

reliable classification of products. Thus, it is a

comprehensive toolkit for physiognomic landscape

deconstruction as both points and surfaces, especially

in combination with hyper- and multispectral remote

sensing data (Yokoya et al. 2014). To comprehend the

landscape pattern with LiDAR data, numerous

LiDAR-based metrics for 3D landscape models have

been created (Chen et al. 2014; Lu et al. 2014; Cheng

et al. 2017). With multitemporal LiDAR data, the

evolution of the physiognomic landscape can be traced
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(Mitasova et al. 2011). On the other hand, visibility

analysis is a more prominent trend in LiDAR-based

studies, since it allows for the identification of the

optimal viewpoints within the landscape. It also

provides a map of the visual exposure of objects in

order to estimate the visual impact of the landscape

elements (Domingo-Santos et al. 2011) and performs a

viewshed analysis for point data, such as houses

(Vukomanovic et al. 2018). Indicators of the cultural

ecosystem services provision (Burkhard and Maes

2017) can be obtained from location-based social

media content in the form of points (geotags of

photographs, uploaded to the social media such as

Flickr or VK.com). ALS-based DEMs and DSMs are

also very common in archaeological studies (Frys-

kowska et al. 2017; Witharana et al. 2018), allowing

for the detection of historical remains and the uncov-

ering of the historical value of the physiognomic

landscape (Ode et al. 2008). The role that ALS data

plays in the visualisation and assessment of aesthetic

properties of vegetation canopy can hardly be over-

estimated: one of the first attempts in this direction was

made recently by Vauhkonen and Ruotsalainen

(2017).

Indicators of texture

The evaluation of texture, as an innate property of the

physiognomic landscape (usually varying between

fine and coarse or rough), is very common in landscape

character assessments and scenic resource assess-

ments; hence, it is important for landscape design

purposes (U.S. Forest Service 1995; Bell 2004).

Texture characteristics depend on the size of the

landscape elements, the distance between them and

are scale-dependent. Texture mapping in remote

sensing applications began in the early seventies with

the first theoretical paper in this direction by Haralick

et al. (1973). Easily computable texture metrics, based

on the Grey-Level Co-Occurrence Matrix (GLCM),

have become very popular, with the rapid accumula-

tion of the remotely sensed data at increasingly better

spatial resolution. Despite the slightly different nature

compared to the understanding of texture in landscape

research (where the texture is usually articulated as

fine or coarse), these metrics substantiated a solid

ground for the mapping of land cover texture as the

characteristic of the relationships between the pixel

pairs (similarity, contrast, diversity, orderliness of

pixel values). These principles of texture interpretation

provide a bridge between the quantitative and subjec-

tive interpretations of the relationships between the

elements of the physiognomic landscape and are

modelled in the raster model. The potential of Haral-

ick’s texture metrics applied to the mapping of the

characteristics of the physiognomic landscape is just

gradually being uncovered, and thus, only a few studies

were found. These studies are dedicated to the

examination of the visual landscape quality and

textural features of the land cover extracted from the

remotely sensed data, therefore this topic definitely

deserves a detailed description. It should bementioned,

though, there are other approaches to texture analysis

suggested, including Tamura’s textures (Tamura et al.

1978), wavelet texture analysis (Picuno et al. 2011) or

variogram (Berberoğlu et al. 2010). However, in the

landscape-related domain of remote sensing science,

Haralick’s GLCM-based textures seem to be dominat-

ing, while landscape texture is indicated with land-

scape metrics (Sahraoui et al. 2016).

In a pioneering work within this direction, Ozkan

(2014) attempted to find the correlation between the

texture metrics for the IKONOS satellite imagery

(result of the Principal component analysis PC1 band

as having the highest variation) and the results of the

visual quality assessment of the landscape within the

woodlands of Istanbul in Turkey (alongside the

Bosporus strait). The article hypothesised that:

1. First-order pixel-based Grey-Level Co-Occur-

rence Matrix (GLCM) texture index, namely,

Standard deviation of grey levels (SDGL);

2. Second-order pixel-based GLCM texture metrics,

namely, correlation (GLCMC), entropy

(GLCME) and homogeneity (GLCMH);

3. Object-based measures of texture: mean of sub-

objects/std. dev. (MSOSD), the average mean the

difference to neighbours of sub-objects (AMSO),

the area of sub-objects/mean (ASOM) and the area

of sub-objects/std. dev.

(ASOSD) were related to the visual quality of the

landscapes under consideration as represented by the

quantitative scores allocated to the in situ photographs

by the participants in the survey. Ozkan reported

strong and positive Pearson correlation with the scores

of the visual landscape quality for the pixel-based

SDGL (r = 0.82, P\ 0.01), as well as for the object-
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based MSOSD and AMSO (r = 0.61 and r = 0.67

respectively, P\ 0.01). A moderate positive Pearson

correlation was also observed for the pixel-based

GLCMC metric (r = 0.56, P\ 0.01), and ASOM and

ASOSD showed a moderate negative correlation

(r = - 0.57, r = - 0.52 respectively, P\ 0.01). The

GLCMH correlation was poor (r = 0.36), and

GLCME showed almost no correlation to the land-

scape quality (r = 0.05, P\ 0.05).

The textural metrics for continuous raster data also

corresponded to the estimation of the landscape

metrics for classified data. For example, GLCM-based

Entropy, derived from the red and infrared bands of

ASTER satellite imagery (window size between

900 9 900 and 1200 9 1200 m) was reported as

most highly correlated to the different landscape

metrics within the forested areas (Ozdemir et al.

2012). Therefore, the textural metrics seem to be very

important for the landscape analysis, since commonly

being pixel-based, they do not require image classi-

fication before their computation, while image classi-

fication biases the results in landscape studies (Shao

and Wu 2008). Avoiding this bias constitutes the

advantage of landscape texture mapping with remote

sensing techniques compared to landscape examina-

tion with common landscape metrics.

Indicators of colours

Colours are the attributes of the perceived environment,

and their importance to people was recognised at the

beginning of the 20th century (Granö et al. 1997). The

first maps of landscape colours were designed at that

time as well. Later, colour discourse, to some extent,

shifted from the domain of environmental science and

geography to landscape design (Bell 2004) and archi-

tecture (O’Connor 2010), despite the fact that colours

were still articulated as important landscape attributes

(Bell 2012; Ode et al. 2008; U.S. Forest Service 1995),

and colour diversity recognised as positively related to

landscape values and preferences (Zhao et al. 2013).

However, even in this case, rare empirical studies,

involving the examination of landscape colours are 1)

often observer-dependent (Bishop 1997) and 2) based

on a ground viewing perspective (Sowi�ska-�wierkosz
2016). Colour diversity and contrast are the most

common landscape attributes in studies, involving such

components (BLM 1986; Arriaza et al. 2004; de la

Fuente de Val et al. 2006; Lengen 2015), while colour

harmony only becomes a problem at the landscape scale

(Sullivan and Meyer 2016).

Remote sensing studies often use colours mapping

for non-aesthetic purposes, for example to examine the

water dissolved organic and inorganic matter (Bukata

et al. 2018) or vegetation greenness (usually not only

with a green band of multispectral imagery but with

various vegetation indices, utilising the invisible near-

infrared bands, such as NDVI). NDVI is used as a

standalone predictor of the aesthetic value of the

landscape (Vukomanovic and Orr 2014; Vuko-

manovic et al. 2018), however there has been no

confirmation that it affects the objective aesthetic

variables, such as the colour harmony of the land cover

(Karasov et al. 2018). Almost no papers on the spectral

properties of the landscape (namely: land cover) from

the remote sensing perspective in the context of the

physiognomic landscape quality were found. This is

despite the fact that the spectral properties of the

landscape are analysed for scanned images (Clay and

Marsh 1997), The exceptions are the recent work on

the remote sensing-based mapping of the colour

harmony of land cover (Karasov et al. 2018) and the

spectral analysis of the plasticulture impact on the

landscape quality (Picuno et al. 2011). Remote

sensing-based analysis of the spectral properties of

land cover in the visible spectrum (colouristic analy-

sis) is a huge gap in our existing knowledge that needs

to be filled, especially owing to the rapid development

of less atmosphere-dependent remote sensing methods

(such as UAV-derived imagery). Increasing the spatial

and temporal resolutions of satellite imagery supports

this direction of landscape research because the

colours of the perceived environment are very depen-

dent on the phenological and seasonal effects. The

accurate detection and monitoring of the colouristic

properties of the land cover with remote sensing data,

in the context of their emotional and aesthetical

meaning for observers, is a relevant task for contem-

porary and future Earth observation applications.

Indicators of the cognitive attributes

of the physiognomic landscape

Indicators of heterogeneity and diversity

Landscape heterogeneity, in all the interpretations, is

likely the most well-studied concept in landscape
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science, according to a recent review on this topic

(Dronova 2017). Originating from a classical geo-

graphic genetic approach, landscape heterogeneity is

connected with the variety, diversity, complexity and

richness of the physiognomic landscape (Fry et al.

2009; Ode et al. 2008), and thus, here, we used all of

these concepts interchangeably. These landscape

attributes are commonly recognised as positive factors

of landscape values and preferences (BLM 1986;

Kaplan and Kaplan 1989). The respective relationship,

however, seems to be non-linear but rather an inverted

U-shaped (Kaymaz 2012). In turn this means the

diversity in highly visually attractive landscape needs

to be present in moderation (Bell 2012; de la Fuente de

Val et al. 2006; U.S. Forest Service 1995). Indeed,

existing studies, indicating landscape diversity mostly

with Shannon entropy (known also as Shannon–

Wiener diversity index as landscape index) and other

diversity indices (fractal dimension for linear ele-

ments, shape indices, Renyi’s, Simpson’s, Pielou’s

diversity indices, etc. (McGarigal and Marks 1995;

Rocchini et al. 2013)) report a wide range of corre-

lation strength between the map- and view-based

landscape diversity and landscape preferences. The

correlations vary from relatively positive (Hunziker

and Kienast 1999; Franco et al. 2003; de la Fuente de

Val et al. 2006; Dramstad et al. 2006) to completely

negative (Ode and Miller 2011), and thus, the asso-

ciation of the perceived diversity with the values and

preferences of the landscape is not simple. In line with

the theoretical findings, the authors of these empirical

studies usually note, that diversity should somehow be

limited, making the landscape legible for observers

(hence, concepts of landscape coherence, harmony

and legibility are raising) and decreasing the mismatch

between the landscape elements, composing diverse

elements into some coherent pattern (Ode et al. 2010).

Therefore, the main message of the vast majority of

papers dealing with landscape heterogeneity in the

visual context is that diverse, visually rich landscapes

should not be messy to be aesthetically attractive.

Quite a large number of heterogeneity indices for

remote sensing data are designed to detect not only

pure diversity but also, to some extent, their organi-

sation into some system, while organised diversity

directly refers to the information concept. In this

connection, these indices are frequently referred to

information and are discussed with regard to the

physiognomic landscape and scenic values (Uuemaa

et al. 2013). There are numerous aspects of landscape

diversity (Mander et al. 1999; Dronova 2017), leading

to the development of various applications of math-

ematical advances to landscape attributes of every

kind.

A ‘‘family’’ of heterogeneity metrics can be applied

to all the elements of the physiognomic landscape

detectable with remote sensing, including:

• point landscape data (Fjellstad et al. 2001; Cheng

et al. 2017),

• vegetation communities and plants (Nagendra

et al. 2013),

• colours (Karasov et al. 2018),

• textures (Sahraoui et al. 2016),

• topography and landforms (Vukomanovic and Orr

2014; Booth et al. 2017; de Almeida Rodrigues

et al. 2018),

• soil cover (Uuemaa et al. 2008),

• land use and land cover patches (Cadenasso et al.

2007),

• the shape of the linear elements and polygons (Li

and Yeh 2004; Martı́n et al. 2016; Booth et al.

2017),

• the temporal change of the landscape pattern

(Pham et al. 2011).

Unsurprisingly, these remote sensing studies have

significantly contributed to this topic. For instance,

Ayad (2005) deployed remotely sensed data in land

use/land cover diversity mapping and linked it with the

landscape visual quality. Amodified fractal dimension

index is suggested to measure the landscape diversity

for a Landsat TM image (Olsen et al. 1993). Vegeta-

tion diversity is a frequent subject of remote sensing

studies, and successful examples of spectral and

textural measures of the biological and structural

diversity of urban forests were presented recently

(Ozkan et al. 2016, 2017). Vegetation and land

cover/land use changes are also frequently examined

through the lens of the landscapemetrics change (Velli

et al. 2018). Cloud points (LiDAR scanning output)

are even more promising for landscape diversity

estimation. For example, a mobile laser scanning

(MLS) LiDAR data for urban street landscapes was

utilised for calculating the suggested landscape diver-

sity index (function of number and area of landscape

classes and average height of the points in the class).

This was reported as moderately, but still positively
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correlated with the general urban habitability score, as

surveyed with respondents (Cheng et al. 2017).

The excessive landscape heterogeneity and the

respective visual diversity lead to, as shown above, the

decreasing visual landscape quality, which is

described as landscape cluttering (Nijhuis et al.

2011). Remote sensing-based land use/land cover data

is used in GIS-analyses of landscape configurations in

order to evaluate the extent of landscape cluttering

(Wagtendonk and Vermaat 2014) and its impact on the

scenery. It is noteworthy that remote sensing-based

indicators of landscape heterogeneity are so successful

for landscape characterisation that they are even able

to explain up to 59% of the variability of one poverty

index for urban areas (Duque et al. 2015), eliminating

the distinction between physical and social phenom-

ena. The potential of RS-based landscape heterogene-

ity studies in the visual context lies in the application

of diversity indices to a wider number of landscape

elements, such as points, textures, pixels, as elemen-

tary units of the satellite imagery, orthophotographs,

and UAV-derived and LiDAR data of very high spatial

resolution as a landscape model. Furthermore, there is

a need for a deeper understanding of the innate nature

of the diversity indices for harmony and coherence,

cluttering estimations and mappings, since a simple

correlation of diversity to scenic preferences does not

meet the psychological regularities of the landscape

valuation to the full extent.

Indicators of harmony and incongruity

Landscape harmony refers primarily to the pleasant

arrangement of the landscape attributes (U.S. Forest

Service 1995). As discussed above, to a large extent, it

depends on diversity or complexity estimations (Man-

der et al. 1999; Ode et al. 2010; Ode and Miller 2011;

Wagtendonk and Vermaat 2014), which are widely

recognised as a landscape attribute and are positively

associated with scenic preferences (Kaplan and

Kaplan 1989; U.S. Forest Service 1995; Ode et al.

2008; Martı́n et al. 2016; Sowi�ska-�wierkosz 2016).

Landscape harmony is also closely related to land-

scape coherence as an added value to the landscape as

a system (Bell 2012) and is connected with the

ecological concepts of biological connectivity or

physical connectedness (Mander et al. 2010; Ode

et al. 2010; Martı́n et al. 2016).

The foremost application of remote sensing is the

detection of land cover and land surfaces, and this

detection is associated with landscape harmony to

different extents. For example, the detection of

aesthetically polluting plastic covers for plant culti-

vation (Picuno et al. 2011) or the pixel-based differ-

entiation of land cover according to the extent of its

colour harmony (Karasov et al. 2018). Remote sens-

ing-based land cover and land use (LULC) data is a

valuable source of landscape coherence mapping in

both ecological (patch connectedness) and visual

(unity of the scene) contexts (Ode et al. 2010; Martı́n

et al. 2016). Numerous other landscape indices, such

as the contagion index (McGarigal and Marks 1995;

Sahraoui et al. 2016), PLADJ (Uuemaa et al. 2008;

Pham et al. 2011) and many others (Gong et al. 2013),

were designed to assess the objective landscape

fragmentation, including the visual context. Increas-

ing the spatial resolution of remotely sensed data, for

example, by wider use of unmanned aerial systems

(UAS) instead of satellite imagery, frames the per-

spectives of this direction. There are already success-

ful examples of visual disorder detection for urban

areas with such kind of data (Grubesic et al. 2018).

GLCM-based and other texture metrics are a huge

uncovered potential as a landscape harmony indicator,

since they are very promising for the explanation of

the visual landscape quality (Ozkan 2014) and the

mapping of pixel relationships, meeting harmony

assumptions (Karasov et al. 2018).

Indicators of cultural modification and naturalness

Natural landscapes are more visually attractive, than

man-modified or artificial ones (Kaplan and Wendt

1972; Zube 1974; Balling and Falk 1982; Coeterier

1996; Ode et al. 2008) and are perceived as more

visually coherent (Hansson et al. 2012). Ode et al.

(2008) suggested that the percentage of natural

vegetation and water is an indicator of the naturalness

of the landscape. A simpler approach is the estimation

of the area of patches, corresponding to the natural

(Martı́n et al. 2016) or artificial land cover and land use

(Ayad 2005). Similarly, the cost distance from the

roads (Terrain Ruggedness Index as a cost surface) is

used as the index of naturalness or, vice versa, the

cultural modification (Karasov et al. 2018).

Remote sensing data is easily used to detect the

extent of urbanization and vegetation loss, indicating
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the cultural modification of the landscape (Sawaya

et al. 2003; Wilson et al. 2003; Rêgo et al. 2018).

Classifications and utilising spectral properties of the

landscape surfaces are common in the recognition of

natural vegetation (Jahel et al. 2018) and the moni-

toring of land use change intensities (Estoque and

Murayama 2015). Urban sprawl is the typical subject

of remote sensing studies, examining the substitution

of natural or semi-natural environmental surfaces by

artificial ones (Chiang et al. 2014). Backward pro-

cesses, such as the regreening of the industrially

modified landscapes and land reclamation, are also

assessable using remote sensing (Boerchers et al.

2016; Townsend et al. 2009). The potential of remote

sensing applications in the detection and monitoring of

the range of environmental conditions, corresponding

to natural, semi-natural or completely artificial land-

scape elements, therefore, lies in their more accurate

accounting. At the moment, the extent of naturalness is

often determined by LULC classified data with the

respective delimitations or it is focused on phenomena

(vegetation loss, urban sprawl) rather than on the

physiognomic attributes themselves. In this way,

remote sensing applications for such purposes are

currently rather hypothetical but are, of course,

promising.

Indicators of similarity and contrast

Similarity and contrast are landscape attributes that are

crucially important for both landscape perception and

remote sensing, because they determine the mental

discretisation and GIS-based classification and region-

alisation of the continuous environment into the

discrete classes of objects, thus generalising reality.

These concepts are directly connected to landscape

aesthetics, sometimes in a strange manner. For exam-

ple, both contrasting and similar colour combinations

are treated as aesthetically attractive (BLM 1986; U.S.

Forest Service 1995; Arriaza et al. 2004; de la Fuente

de Val et al. 2006; Karasov et al. 2018), depending on

the specific colour features. Similarities and contrasts

affect the distinguishability of the objects from their

background, being extremely important in this vein for

landscape perception and appreciation (Dupont et al.

2017). Remote sensing-based applications to land-

scape similarity/dissimilarity mapping utilise land-

scape indices (Niesterowicz and Stepinski 2016),

GLCM-based textural metrics (Karasov et al. 2018;

Ozkan 2014), and topographic variables, such as the

relative relief contrast (Booth et al. 2017). There is a

lack of knowledge regarding the RS-based mapping of

landscape similarities and contrasts in a visual context,

and thus, there is a need for further investigation in this

field.

Indicators of ephemera (temporal dynamics)

Last, but not least, the temporal dynamics of the

landscape seem to be themost popular topic throughout

all the landscape studies, utilising a remote sensing

approach, since it is based on change detection

methods. Seasonal and weather-driven changes, as

well as successional and other long-term changes (Fry

et al. 2009;Bastin et al. 2012), are easily assessablewith

remote sensing data. Temporal data adds reliability to

the landscape quality assessment due to the dynamic

nature of the landscape (Antrop 2000). Historically,

Crawford (1994) was among the first to undertake the

application of remote sensing to visualise the landscape

quality ranking, using complex remote sensing-based

indicators for physiognomic landscape classification.

He used the Landsat MSS product and radar data in

order to perform themaximum likelihood classification

of the land cover and established some visual quality

criteria; these included landforms (slope steepness as

indicator), structures (indicated by texture of MSS

Band 5 band), tree cover (band ratio vegetation index

(RVI) as indicator), water bodies extent (extracted from

land cover classification), activity (as determined by the

predominant land use), outlook (the number of the

potential viewpoints within each landscape unit),

diversity (number of identified land cover classes per

landscape unit), and contrast (average texture for all

MSS bands). As a result, the maps of the Landscape

Visual Quality ranking were designed for two different

years, adding a temporal perspective to the study.

Similarly, any remote sensing-based study can be

enrichedwith amultitemporal analysis of the status and

the trends in the quality of the physiognomic

landscapes.

There are many approaches to analyse landscape

elements as temporal phenomena using remote sens-

ing with vegetation indices (Ferreira et al. 2003; Hill

et al. 2011), spectral signatures (Arroyo-Mora et al.

2018), image classification (Kadmon and Harari-

Kremer 1999; Sesnie et al. 2008) and multitemporal

LiDAR processing (Eitel et al. 2016; Putman et al.
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2018), etc. We confirm the results of Uuemaa et al.

(2013), suggesting that the changes in the land

use/land cover remain the most widely exploited

application of remote sensing to landscape study,

despite the fact that remote sensing applies to the

change detection of all the physiognomic landscape

elements (Kennedy et al. 2009). Due to the lack of

freely available satellite free imagery combining very

high spatial and temporal resolution, UAVs and

airborne sensors as well as (in the case of significant

technical evolution) the satellite sensors with a very

high spatiotemporal resolution seem to be the most

promising in this regard. An accurate accounting of

the gain and loss of the visual quality of the landscape

helps to analyse the extent of the sustainability of land

use practices and all kinds of environmental manage-

ment. Therefore, adjustment of the management goals

and methods correspondingly and instantly mitigates

the negative impact of human activity on landscape

and preserves it in the desired function for the coming

generations.

Discussion

The results are meaningful in different regards. We

attempted to demonstrate that the remote sensing and

Earth observation themselves are based on the human

cognitive specifics, being developed by people and for

people. However, despite this psychological basis, the

respective psychological problematics (landscape per-

ception and landscape appreciation) are not widely

implemented into the remote sensing studies. The vast

majority of the reviewed studies used remote sensing to

solve the particular scientific tasks, described above,

while just a few authors directly mentioned the visually

perceived environment as the subject of their papers

(Ayad 2005; Karasov et al. 2018; Ozkan 2014;

Vukomanovic et al. 2018). We articulate this problem

and claim that one of the promising directions for

further remote sensing development is a wider use in

remotely sensed data in physiognomic landscape

research. This will complement the in situ surveys of

visual landscape quality and increase the overall quality

of research in the interdisciplinary environmental

science domain. Visual landscape quality is extremely

important to sustain thewell-beingof billions of people;

nevertheless, its assessment by means of remote

sensing remains highly understudied. At the same time,

soil, water, vegetation, and air quality are among the

most well-studied applications for monitoring with

remotely sensed data (Miklós et al. 2019).

Therefore, we emphasize the necessity of the

remote sensing-based monitoring of the main param-

eters of visual landscape quality utilising remote

sensing approach. Of course, indicators of soil, water,

vegetation, and air quality are much clearer and more

justified. At first glance, the extent of landscape

aesthetics may look intangible and hard to estimate (by

the way, it is). However, borrowing from the regular-

ities of human perception for various visual stimuli

from psychological literature, such as in case with

mapping the degree of colour harmony of land cover

(Karasov et al. 2018), wemay achieve a highly reliable

(of course depending on the spatiotemporal resolution

of remotely sensed data) time- and cost-effective

monitoring of the visual quality of the environment on

a permanent basis. The same is true also for other

psychological attributes, such as visual diversity,

complexity, coherence, legibility, naturalness, season-

ality, etc., which are assessable by means of remote

sensing. Numerous authors, as shown above, even

though they did not know it, provided an empirical

basis for accounting these psychological attributes

from space as applied to the physical objects of the

environment. By means of remote sensing, one may

see that so-called ‘‘hard science’’, of studying the state

of the environment in the case of remote sensing,

combined with several perceptual attributes can be

reoriented towards the focus on these perceptual

attributes (or phenomena) themselves. In other words,

above and beyond the role of remote sensing in

biophysical indicators mapping, remote sensing

should be reflective and attempt to investigate visible

landscape characteristics among with traditional ‘‘hid-

den’’ variables, such as vegetation indices.

Consequently, cutting edge remote sensing tech-

niques for environmental applications allows the

transition from mapping the traditional environmental

problematics (land cover mapping, vegetation moni-

toring, assessment of habitat and ecosystems, biodi-

versity mapping, etc.) towards the mapping of

intangible values of nature (mapping the visual quality

of land cover, vegetation appearance mapping, assess-

ment of cultural ecosystem services provision, map-

ping the degree of landscape attractiveness, etc.).

Similarly, in habitat modelling, remote sensing data

could be applied to modelling the multifunctionality of
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the landscape (applicability for various purposes

related, among others, to leisure and recreation),

especially taking into account achievements of the

citizen science and crowdsourcing methods. Google

Street View and alternative services such asMapillary,

or location-based social media, for example, VK.com

and Flickr, provide a great source of ground-based

data of the visual environment, available to verify and

enrich the results, obtained from a top view perspec-

tive. Nature protection and the extent of land use

sustainability would benefit from including reliable

maps of visual environmental conditions to the

decision-making process, instead of, or complement-

ing, the traditional surveys of visual landscape quality

in situ (Dramstad et al. 2006; Janečková Molnárová

et al. 2017; Sullivan and Meyer 2016).

And last, but not least—regular monitoring of the

visual landscape quality from space is in line with

existing global and regional environmental policies.

For example, the global indicator framework for the

Sustainable Development Goals and targets of the

2030 Agenda for Sustainable Development suggests to

‘‘integrate ecosystem and biodiversity values into

national and local planning, development processes,

poverty reduction strategies and accounts’’ (UN Gen-

eral Assembly 2018). More precisely the same logic is

inherent in the European Landscape Convention

proposing ‘‘to assess the landscapes thus identified,

taking into account the particular values assigned to

them by the interested parties and the population

concerned’’ (Council of Europe 2000). Each country

has its own national legislation and policy implica-

tions, but the idea is shared among them: to preserve

and even enhance the quality of the environment.

Therefore, contributions from remote sensing to the

examination of the visual landscape are important in

the context of implementing the global and local

targets in environmental policy. Visual landscape

quality is essential for nature-based recreation and

tourism, contributing to the national natural capital and

GDP accounting, therefore remote sensing techniques

in visual landscape quality assessment are among the

prerequisites for sustainable economic growth.

Closing remarks

In summary, all the history of active and passive

satellites, airborne and UAV remote sensing provides

solid evidence in favour of the applicability of Earth

observation data for the purpose of physiognomic

landscape mapping and assessment. There is already a

sufficient number of remote sensing techniques for

each attribute of the physiognomic landscape,

described in the respective literature. The increasing

spatial, temporal and spectral resolution of the satellite

imagery makes regular monitoring and change detec-

tions for all the attributes of the physiognomic

landscape potentially possible. At the same time, this

opportunity has not yet been fully put into practice.

The mappings of the physiognomic landscape with

remote sensing remains limited and is still rather

uncertain. Reporting mainly the correlations and

tending to avoid the exploration of the causal

relationships; this avoidance is not surprising, consid-

ering the rapid growth of the quality of remotely

sensed data and the corresponding time for its

adaptation for the common needs of landscape

science. However, the increasing number of remote

sensing techniques potentially or actually used for

physiognomic landscape mapping is encouraging.

Perhaps, we will see a regional and global mapping

of physiognomic landscape and its quality solely with

remotely sensed data in the near future. What is more,

the implementation of physiognomic landscape qual-

ity assessment derived from remote sensing data could

be easily applied to the delineation of protected areas

and used for the other nature protection purposes,

providing the evidence-based knowledge for decision-

makers. However, currently, we must note a lack of

the comprehensive use of remote sensing data for the

mapping of the landscape aesthetics extent per se and

in the context of cultural ecosystem services provision.

It is foreseeable that the problem of the indirect use

and rare mention of remote sensing in landscape

studies will gradually be solved in the coming years.

Land use and land cover classifications, DEMs and

DSMs, while considered simple GIS-datasets, make

remote sensing more visible for the academic com-

munity in landscape science. Most likely, we still have

to face the issue of the multiple meanings of the term

‘‘landscape’’, where remote sensing experts have

tended to avoid its use or use in an objective sense,

with minimal regard to its aesthetic properties and

mainly focused on environmental variables. More

research is required on this terminology bias and

extraction of the knowledge from the remote sensing-

based mapping of the attributes of the physiognomic
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landscape from the existing literature, as well as the

implementation of the new remote-sensing-based

indicators of these attributes into the practice of

remote sensing research. Notwithstanding the above,

remote sensing is a unique example of the synergy of

both the objective and subjective connotations of the

landscape concept. These connotations are inherently

built into the human visual perception of the Earth’s

environment but are also for all kinds of evidence-

based environmental monitoring. This fact removes

the contradictions contained in the European Land-

scape Convention, and thus, remote sensing plays a

crucial role in the implementation of its goals.

Alongside that, there are some challenges to

overcome with remote sensing to make it completely

appropriate for the purpose of physiognomic land-

scape mapping. First, all the remote sensing-based

physiognomic landscape mapping products should be

validated with in situ scenery data, linking the top

perspective with a ground or person perspective—for

example, crowdsourced photographs or street-level

imagery. That is particularly true for colouristic and

textural landscape attributes, which can be mapped

with remote sensing since the validation of the LULC

classifications is quite an easy task. Furthermore, the

freely available satellite imagery of the best spatial

(10 m in the visible spectrum) and temporal resolu-

tion (5 days at the equator) is provided by Sentinel-2,

and such imagery is still not the best by far compared

to the commercial solutions. All the reliable and

practically applicable physiognomic landscape map-

ping and quality assessments should be based on

imagery with centimetric spatial resolution and daily

temporal resolution, coherent to the human scale of

landscape perception. For example, the Estonian Land

Board recently made their database of orthopho-

tographs publicly available for the entire territory of

Estonia. Acts of this nature are extremely important

for the future of remote sensing in this country.

Hopefully, with international efforts, accessibility to

the sources of freely available remotely sensed data of

very high spatial resolution will only increase.

Another challenge is linking the indicators of the

physiognomic landscape not only to the visual land-

scape values and preferences, as it is usually done, but

to purely objective environmental variables, thus

uncovering the hidden regimes of the natural self-

organisation and human organisation of the landscape.

Societies and economies of the countries will benefit

from a better knowledge about the naturally and

anthropogenically induced processes and phenomena

in a visual context in order to preserve and spread the

functioning regimes of the highly valuable landscapes

over all the Earth’s territories, therefore supporting

nature protection and sustainable land use practices.
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Appendix

See Table 1.

Table 1 Approaches for quantifying the perceptual and cognitive attributes of physiognomic landscapes

Qualitative

landscape

attributes

Quantitative physiognomic

indicators

Method or technology for

quantification

Sources/references

Points Viewpoints and iconic places Density of viewpoints Ode et al. (2008)

Other point landscape elements of

all the scales

LiDAR-based point-clouds, LiDAR

metrics

Mitasova et al. (2011) and Nijhuis

et al. (2011)

Lines (shapes) Fractal dimension Area-perimeter relationships of

patches

Siu-Ngan Lam (1990), Schirpke

et al. (2013) and Sudakov et al.

(2017)

Line density Summarised line lengths and total

landscape area ratio

McGarigal et al. (2002) and de

Almeida Rodrigues et al. (2018)
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Table 1 continued

Qualitative

landscape

attributes

Quantitative physiognomic

indicators

Method or technology for

quantification

Sources/references

Shape complexity Shape sinuosity (a function of patch

perimeter and area)

Booth et al. (2017)

Surfaces (forms) Fractal dimension The fractal dimension of contours,

characterising the surface or of

variograms, either of the whole

surface or some of its profiles

Siu-Ngan Lam (1990) and Mesev

et al. (1995)

Pixel-by-pixel fractal dimension

mapping, using a sliding window

Di Martino et al. (2017)

Terrain roughness Terrain Ruggedness Index, the

standard deviation of altitude,

slope variability

Bishop and Hulse (1994), Riley

et al. (1999), Germino et al.

(2001), Vukomanovic and Orr

(2014), de Almeida Rodrigues

et al. (2018) and Vukomanovic

et al. (2018)

Water-body size Area of water inside an area unit Booth et al. (2017)

Visible surface Viewshed density or viewshed area

inside the area unit or other

visibility analyses

Ode et al. (2008), Schirpke et al.

(2013), Vukomanovic and Orr

(2014), Burkhard and Maes

(2017), de Almeida Rodrigues

et al. (2018) and Vukomanovic

et al. (2018)

3D landscape metrics Based on the structure of the digital

surface model and digital

elevation model, LiDAR data

Chen et al. (2014) and Chen and Xu

(2016)

Textures Pixel-based texture metrics (first-

order or second-order metrics) as

patterns of the local spatial

variation of the pixel values

Kernel-based estimations Haralick et al. (1973), Warner

(2011) and Hall-Beyer (2017)

Object-based texture metrics Based on the pixel grouping Ozkan (2014)

Vegetative interspersion Total number of pixels along the

perimeters of the vegetation

patches

Booth et al. (2017)

Colours Colour diversity Number of colours, their contrast Arriaza et al. (2004), de la Fuente

de Val et al. (2006) and Swetnam

et al. (2017)

Colour harmony Second-order pixel-based textural

metrics applied to HSV or HSL

band composite (obtained from

RGB composite), with further

GIS-processing

Karasov et al. (2018)

Greenness Spectral indices calculation, such as

NDVI (normalized difference

vegetation index)

Bremer et al. (2011), Vukomanovic

and Orr (2014) and Vukomanovic

et al. (2018)

Heterogeneity,

complexity,

diversity

Patch density Number of patches per unit of area McGarigal and Marks (1995),

Antrop and Van Eetvelde (2000),

McGarigal et al. (2002), de la

Fuente de Val et al. (2006) and

Booth et al. (2017)
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Table 1 continued

Qualitative

landscape

attributes

Quantitative physiognomic

indicators

Method or technology for

quantification

Sources/references

Patch size standard deviation Root-mean-square deviation in

patch size

Patch-level diversity and evenness

indices

Shannon entropy

Pixel-based texture metrics Kernel-based estimation of entropy

and other multicollinear metrics,

often using Grey Level Co-

occurrence Matrix

Haralick et al. (1973), Anys et al.

(1998), Warner (2011) and Hall-

Beyer (2017)

Fractal dimension See above (here regarding the

geometric complexity of patches)

de la Fuente de Val et al. (2006) and

Plexida et al. (2014)

Spatial autocorrelation Getis statistic for satellite imagery

products and local Moran’s I

measure the pattern of land cover

Fan and Myint (2014)

Terrain diversity Terrain Ruggedness Index (TRI),

VAR index of topographic

heterogeneity

McGarigal and Marks (1995), de la

Fuente de Val et al. (2006) and

Vukomanovic and Orr (2014)

Heterogeneity index The proportion of the pairs of pixels

of the grid, corresponding to the

different land cover classes

Fjellstad et al. (2001) and Dramstad

et al. (2006)

Cultural

modification

and naturalness

The proportion of landscape class

of high naturalness (including

water) or cultural modification

Class area and landscape area ratio Arriaza et al. (2004), Palmer (2004),

Ayad (2005) and Swetnam et al.

(2017)

Line sinuosity See above Booth et al. (2017)

Fractal dimension See above Antrop and Van Eetvelde (2000),

Taylor (2002) and Hagerhall et al.

(2004)

Fragmentation extent Getis statistic as an indicator of

fragmentation

Fan and Myint (2014)

Harmony,

coherence,

incongruity,

disturbance,

fragmentation

Landscape coherence (of

geographic attributes)

Spatial autocorrelation (Moran’s I)

of soils and land use intensity

Mander et al. (2010)

Fragmentation extent See above Fan and Myint (2014)

Fractal dimension See above Lam et al. (2018)

Contagion index Function from a number of patch

classes, the proportion of

landscape occupied by each class

and the number of adjacencies

between the pairs of pixels of the

different classes

McGarigal et al. (2002) and

Sahraoui et al. (2016)

Interspersion and juxtaposition

index

Function from the patch adjacencies

in the landscape

McGarigal and Marks (1995) and

Sahraoui et al. (2016)

Cohesion index Estimation of the physical

connectedness of the patches

McGarigal et al. (2002) and Plexida

et al. (2014)

Connectivity indicator CCI The distance-based function of the

connectedness

Mancebo Quintana et al. (2010) and

Martı́n et al. (2016)

123

GeoJournal



124

References

Ahas, R., Aasa, A., Silm, S., & Roosaare, J. (2005). Seasonal

indicators and seasons of estonian landscapes. Landscape

Research, 30(2), 173–191. https://doi.org/10.1080/

01426390500044333.

Angelstam, P., Grodzynskyi, M., Andersson, K., Axelsson, R.,

Elbakidze, M., Khoroshev, A., et al. (2013). Measurement,

collaborative learning and research for sustainable use of

ecosystem services: Landscape concepts and Europe as

laboratory. Ambio, 42(2), 129–145. https://doi.org/10.

1007/s13280-012-0368-0.

Antrop, M. (2013). A brief history of landscape research. In P.

Howard, I. Thompson, & E. Waterton (Eds.), The Routle-

dge companion to landscape studies (pp. 12–22). Routle-

dge. https://www.natur.cuni.cz/geografie/socialni-geogra

fie-a-regionalni-rozvoj/studium/doktorske-studium/kolokv

ium/kolokvium-2013-2014-materialy/2013-antrop-2013.

pdf. Accessed 23 July 2019.

Antrop, M., & Marc, (2000). Geography and landscape science.

Belgeo. https://doi.org/10.4000/belgeo.13975.

Antrop, M., & Van Eetvelde, V. (2000). Holistic aspects of

suburban landscapes: Visual image interpretation and

landscape metrics. Landscape and Urban Planning,

50(1–3), 43–58. https://doi.org/10.1016/S0169-

2046(00)00079-7.

Antrop, M., & Van Eetvelde, V. (2017a). Approaches in land-

scape research (pp. 61–80). New York: Springer. https://

doi.org/10.1007/978-94-024-1183-6_4.

Antrop, M., & Van Eetvelde, V. (2017b). Analysing landscape

patterns (pp. 177–208). Dordrecht: Springer. https://doi.

org/10.1007/978-94-024-1183-6_8.

Anys, H., Bannari, A., He, D. C., & Morin, D. (1998). Zonal

mapping of urban areas using MEIS-II airborne digital

images. International Journal of Remote Sensing, 19(5),

883–894.
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Abstract The concept of colour harmony, being

rarely used in geography, landscape and environmen-

tal studies, has been significantly developed in

psychology, art and computer science within the

different approaches: colour wheel geometry and,

more recently, numerical models applied to colour

combinations. Using the main numerical principles of

colour harmony, borrowed from the psychological

literature, this study aims to investigate the ways of

mapping the extent of the colour harmony of land

cover, based on satellite Earth observations and

explain the spatial distribution of colour harmony

scores. The naturalness of environment, as well as heat

and moisture balance, are confirmed to be the main

drivers of the colour harmony of land cover. Crowd-

sourced photographs, collected from Mapillary ser-

vice, were used to link satellite and ground-based

estimations of the colour harmony of land cover as

‘‘proof of concept’’. They have a limited applicability

for ground-based assessment of scenic colour har-

mony. Therefore, remote sensing data provide a

significant support for nature conservation and sus-

tainable management, being used for mapping of the

colour harmony of land cover as an indicator of the

visual quality of the perceived environment.

Keywords Colour harmony � Land cover �
Landscape aesthetics � GLCM � Landsat

Introduction

Land cover is often discussed in geography as a

component of the landscape pattern (Antrop 2000);

therefore, the spatiotemporal organisation of intrinsic

land cover properties is a notable field of geographical

research. A holistic approach to geographic phenom-

ena assumes that the landscape as a whole is more

complex than the sum of its composing parts. Conse-

quently, examination of the relationships between land

cover colours and their correspondence to environ-

mental conditions is a task that is still within of the

scope of geography and environmental science.

Colour harmony is a widely known umbrella term

that emerged in colour science and art to reflect all of

the subjective human judgements regarding the com-

patibility of colours and their relationships, and land

cover currently is commonly studied using remote
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sensing data. We understand colour harmony as pair

colour harmony after Schloss and Palmer (2011,

p. 551): ‘‘how strongly an observer experiences the

colours in the combination as going or belonging

together, regardless of whether the observer likes the

combination or not’’. Chamaret (2016) distinguishes

three categories of colour harmony models: geomet-

rical (based on classical assumptions regarding the

mutual locations of the colours under consideration on

the colour wheel; for example, Itten (1973) has

developed one of the best-known theories in this

direction), more recent numerical models (making

colour harmony quantifiable) and a conceptual con-

tingent model suggested by O’Connor (2010). Clearly,

numerical models of colour harmony are the most

applicable for purposes of mapping because of their

quantitative character. Therefore, the term ‘‘colour

harmony’’ will be used further in the context of

psychological numerical models with no regard to

classical colour wheel models. In this way, we borrow

several empirical principles of colour harmony from

psychology, architecture and colour science and apply

them to multispectral satellite images, converted into

HSV (Hue-Saturation-Value) colour space, based on

human perceptual specifics commonly used in remote

sensing applications and applicable for colour har-

mony estimates.

An objective of this study was to investigate the

ways in which the colour harmony principles from the

following literature review could be transferred from

different disciplines to land cover-focused remote

sensing and GIS to reveal the regularities applicable

for more adequate and efficient nature protection and

land conservation. It is important to know, how the

geographical organisation of the environment affects

the extent of the land cover colour harmony perceived

visually. The degree of land cover colour harmony

could be considered a valuable aesthetic cultural

ecosystem service, as well as an indicator of ecosys-

tem disturbance, requiring mapping of the status and

trend.

Within this framework, we address four research

questions with Earth observation data from space,

examining the spatial distribution and main drivers of

the land cover colour harmony, and we link the results

to street-level geotagged photographs as Volunteered

Geographic Information (VGI), representing the

actual landscape views for land-based observers:

1. How consistent are the maps of the extent of

colour harmony produced within the different

frameworks?

2. How does the mean colour harmony index vary

for different land cover classes?

3. Which geographic attributes explain the distribu-

tion of colour harmony values?

4. How does remotely assessed colour harmony

extent correspond to actual scenery alongside the

roads?

Colours and colour harmony as attributes

of the visual environment

The Landsat-7 ETM? Handbook defines colour as a

‘‘property of an object, which is dependent on the

wavelength of the light, it reflects or, in the case of a

luminescent body, the wavelength of the light it emits.

If in either case, this light is of a single wavelength, the

colour seen is a pure spectral colour, but, if the light of

two or more wavelengths is emitted, the colour will be

mixed’’ (Williams 2009, p. 168). Colours were

recognised as a subject of geographic studies and the

first maps of colours of the perceived environment

were already prepared in the second half of the XX

century (Semenov-Tyan-Shansky 1928; Granö 1929,

1997). In subsequent years, colour studies in geogra-

phy have mostly shifted to other areas: landscape

ecology (Antrop and Van Eetvelde 2017) and land-

scape photography (Lenclos 2004), colour schemes in

cartography, map design and visualisations (Brewer

1994, 2004; Peterson 2009; Bláha and Štěrba 2014);

colour image segmentation (Xin et al. 2006), and map

perception (Dong et al. 2016). Development of colour

theory in geography is currently limited. There are

only a small number of attempts to calculate the colour

harmony of the visual environment in geography-

related disciplines, not in geography itself (and even

then the colour harmony is often articulated, but not

calculated and mapped). A methodology for mapping

land cover colour harmony, based on remotely sensed

data, will contribute to filling this gap in geography, as

well as in the landscape management and nature

protection contexts.

The colour harmony of land cover, serving as the

subject of this paper, is an important feature of the

visual environment (Sullivan and Meyer 2016).

Colour harmony as a landscape attribute is discussed
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in landscape aesthetics (BLM 1986; Blocker et al.

1995), landscape architecture (O’Connor 2006; Orze-

chowska-Szajda 2015; Tarajko-Kowalska 2016; Zen-

naro 2017), landscape ecology (Sowi�ska-�wierkosz
2016), landscape design (Guochao et al. 2014; Dhang

and Mudi 2015) and forestry (Zhang et al. 2017),

whereas no merely geographic empirical studies on

colour harmony were found.

Indeed, there is a growing body of literature that

recognises colours, their combinations and features as

factors of landscape values and preferences in geog-

raphy-related disciplines (Amir and Sobol 1990; Bell

2004; Acar and Sakıcı 2008; Junge et al. 2015; Polat

and Akay 2015; Dronova 2017), as important vari-

ables of environmental visual assessment (BLM 1986;

Arriaza et al. 2004; Uzun and Muuml 2011), and in

landscape character assessment (Tveit et al. 2006). It is

now well-established from a variety of studies that the

amount and diversity of colours within the scenery

positively affect visual values and preferences, and

emotional response (Hands and Brown 2002; de la

Fuente de Val et al. 2006; Lengen 2015; Jie et al. 2016;

Sowi�ska-�wierkosz 2016; Polat and Akay 2015;

Swetnam et al. 2017). Several authors argue that

general human colour preferences depend on the

colours of the liked and disliked objects of the visual

environment. For example, bluish colours are pre-

ferred, being associated with clean water and sky

(Palmer and Schloss 2010). Harmony indicators are

commonly used to protect areas. The harmony of

colours is used in the USA to assess the scenic value of

protected areas (BLM 1986; Blocker et al. 1995) and,

in terms of Visual Resource Inventory (VRI), ‘‘pleas-

ing colour relationships’’ among others substantiate

the respective visual harmony of the environment

(Sullivan and Meyer 2016, p. 173). The first attempts

to quantify the colour harmony of the perceived

environment are made in landscape architecture

(O’Connor 2006), landscape ecology (Sowi�ska-
�wierkosz 2016) and computer science (Shen et al.

2016). However, such studies deal with photographs

or in situ views only and do not allow monitoring and

mapping of colour harmony for relatively large areas,

including protected ones. Whereas the planning of

recreational and nature-based tourism activities, as

well as nature conservation and sustainable manage-

ment practices, require an understanding of the natural

and anthropogenic regimes constituting a visual

environment of high quality and beauty in order to

preserve its most convenient state. Recent studies on

colour harmony within colour science, computer

science, and the psychology of perception and art

provide highly homogeneous principles of colour

harmony extent, applicable for use in GIS and remote

sensing software to map the degree of land cover

colour harmony on the landscape scale.

Several brief overviews of the history of colour

harmony models and applications, including a geo-

metrical approach with the colour wheel and a

numerical approach, could be found in several works

(Burchett 2002; Westland et al. 2007; Palmer et al.

2013; Chamaret 2016). Bearing in mind that the

following numerical models of colour harmony have

been developed for two-colour combinations, we can

apply them separately for pairs of pixels in the satellite

image. We neglect the different interpretations of the

term ‘‘colour harmony’’ itself in the following papers

(for example, some authors do not distinguish between

the principles of colour harmony and preferences),

assuming that the results of all the authors reflect some

aspects of colour harmony. It should also be noted that

colour harmony does not necessarily correspond to

colour preferences while influencing them positively

(Schloss and Palmer 2011). Caivano (after Janello)

argues (1998, p. 392), that colour harmony implicates

constancy (or similarity, homogeneity) of Hue or

Saturation or Lightness scores of the colours under the

comparisons. Ou and Luo (2006, p. 201) point out

several principles of two-colour harmony, including

‘‘(a) Equal-hue and equal-chroma; (b) High lightness;

(c) Unequal lightness values’’. These findings are

confirmed more recently by Szabo et al. (2010, p. 46).

Schloss and Palmer, in contrast, found that hue

similarity, low saturation and low lightness contrast

are responsible for higher colour harmony ratings

(Schloss and Palmer 2011, p. 561). Finally, Nemcsics

argues that ‘‘the most highly ordered colours, accord-

ing to their saturation and lightness, have the highest

harmonious content’’ (Nemcsics 2012, p. 255).

Remote sensing studies widely apply HSV trans-

formation of satellite imagery for colour-related

purposes. Despite the existence of several colour

systems, HSV is one of the simplest, often being used

for common remote sensing tasks, such as shadow

detection (Arévalo et al. 2008), water surface detec-

tion (Pekel et al. 2014) and monitoring (d’Andrimont

and Defourny 2018), image fusion and landslide

detection (Marcelino et al. 2009), mineral
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identification (Baykan and Yılmaz 2010), vegetation

monitoring (Pekel et al. 2011) and many other

applications. Such a wide range of remote sensing

techniques, presuming transformation of the Red–

Green–Blue (RGB) band combination of satellite

images to the HSV colour space, is not surprising,

since the RGB band combination is the standard

‘‘natural colour’’ combination, representing the land

surface very close to the specifics of human visual

perception. There are also other band combinations of

satellite imagery, such as well-known ‘‘false colour’’

combinations. However, these combinations include

bands, capturing the reflected solar radiation with

other wavelengths, for instance, the near-infrared band

(NIR) instead of the Red band in case of the false

colour composite. The part of the spectrum, perceived

visually, in most cases varies approximately within

400–700 lm and the spectral sensitivity of human

eyes is supported by three types of cones, sensitive to

three main colours: the same red, green and blue. The

RGB composite of Landsat 8 OLI image satellite

bands corresponds to visible light wavelengths

(0452–0673 lm), being applicable for studies aiming

to examine the visually perceived Earth environment.

Data and methods

Study area

In this study, we attempt to examine the colour

harmony of land cover within a study area in Eastern

Estonia. There are several protected areas, such as the

Vooremaa protected landscape and the Alam-Pedja

nature reserve (partially). The selection of the study

area was conditioned by two considerations: (1)

testing the suggested methodology on heterogeneous

land cover (from urban structures to forests, agricul-

tural land and wetlands as land cover types, used as a

subject of different disciplines) and (2) examining the

colour harmony rates within protected and non-

protected areas to reveal the potential of further nature

conservation. The Vooremaa protected area is one of

the study landscapes of the HERCULES project

(Kolen et al. 2015). Therefore, this study contributes

to its objectives, providing a targeted case study on the

colour harmony as a landscape value of typical

Estonian land cover.

The physiognomy of Eastern Estonia is to a

considerable extent a product of glacial activity.

Being relatively flat orographically, there are moraine

hills and lakes within the Vooremaa protected land-

scape, with a local landscape pattern of forested

depressions and cultivated drumlines (Fig. 1). The

Alam-Pedja nature reserve covers a complex of 5 bogs

with rivers and their floodplains (e.g., Emajõgi,

Põltsamaa and Pedja) and forests between them.

These protected areas provide a habitat for endangered

species as well as precious cultural ecosystem services

for local communities and visitors from Tartu city,

including hiking, swimming, wildlife watching, camp-

ing, and studying due to a variety of wetlands, rivers,

forests, flora, fauna, and a traditional rural landscape.

Land cover within non-protected areas includes

different types of natural and managed forest and

grasslands. Tartu city is the second-largest city in

Estonia, providing a specimen of the unique Estonian

urban landscape.

Data sources and processing

A cloud-free part of the Landsat-8 scene dated 17-06-

2017 (Fig. 2) was used with original spatial resolution

(30 m). The satellite image was radiometrically and

atmospherically corrected (FLAASH technique) using

ENVI 5.3.1 (Exelis Visual Information Solutions,

Boulder, Colorado, USA). The red, green and blue

bands of the image were transformed into HSV colour

space with an ENVI tool. Hue corresponds to the

colour itself, for instance, red, green, or blue. Satura-

tion (or Chroma, depending on colour space) refers to

the amount of grey, and Value (or Lightness, Bright-

ness, depending on colour space) is usually associated

with the amount of white in the colour. The CORINE

2012 land cover data (Fig. 3) and the EU-DEM 1.1

digital elevation model were obtained through the

Copernicus Land Monitoring Service. A sample of 5

viewpoints (each 150th within the Vooremaa pro-

tected area), downloaded with the API of Mapillary

service (sequence key: k2OrMPJk8gCYvM-

goVwSxfg, user mhohmann) dated 23-06-2017 was

used to demonstrate the link between remote-sensing-

based and in situ data. The choice of the data was

determined by the atmospheric conditions (cloud-free

imagery), the absence of snow cover and relatively

high values of seasonal vegetation growth

(summertime).
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Haralick’s texture metrics for the Grey-Level-Co-

Occurrence Matrix (GLCM) were used, namely,

Homogeneity (GLCMH), Contrast (GLCMC) and

Second Moment (GLCMSM), implemented in ENVI

5.3.1, (Table 1, Fig. 4), and the equations are in

Table 1, based on the papers by Haralick and Shan-

mugam (1973) and Hall-Beyer (2017a). We chose the

moving window of 13 pixels following a medium

sized moving window, suggested by Hall-Beyer

(2017b) to keep the balance between detailing and

generalisation of the final grids. The GLCM Homo-

geneity texture metric was used to indicate the

similarity between pixel pairs in the Hue, Saturation

and Value dimensions. The resulting three grids were

processed with the Fuzzy Overlay tool in ESRI

ArcMap 10.5 (function ‘‘Or’’) in order to obtain the

map of the colour harmony index after Caivano

(1998). The resulting GLCM Homogeneity grids for

Hue and Saturation, the GLCM Contrast for Value

grid and the resulting grid of the Focal statistics

(function ‘‘Sum’’) tool were used after a Fuzzy

Membership transformation in the same Fuzzy Over-

lay analysis to produce the index map of colour

harmony after Ou and Luo (2006) and Szabo et al.

(2010). Next, we used the GLCM Homogeneity for

Hue, the Mean and Focal statistics values for Satura-

tion and the GLCM Contrast metric for the Value grid

to obtain with the Fuzzy Overlay tool a map of the land

cover colour harmony according to the principles by

Schloss and Palmer (2011). Finally, the map of land

cover colour harmony after Nemcsics (2012) was

computed with Fuzzy Overlay analysis of the GLCM

Second Moment grids for the Saturation and Value

bands of the image. However, in order to simplify the

further analysis, the four resulting grids of colour

harmony distribution were summed with the Map

algebra tool in ESRI ArcMap 10.5 into one sum-

marised Colour Harmony Index (CHI).

Using the Zonal statistics tool in ESRI ArcMap

10.5, the mean values of CHI for each CORINE 2012

Fig. 1 Study area with some physiographic elements (geographic position related to Europe is marked with red on the inserted map).

Protected areas are mainly associated with streams and water bodies and their surroundings. (Color figure online)
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land cover class were obtained and all the present land

cover classes were ranged in order to distinguish the

extent of mean colour harmony associated with each

class. We would like to emphasise that colour

harmony computation and mapping are based on

known studies. We did not carry out any subjective

experimental observations or judgements on colour

harmony in our modelling. We borrowed all of the

principles from the literature.

Several variables were calculated as potentially

explanatory for regression analysis, including the

SAGA Wetness Index (SAGA TWI), the Terrain

Ruggedness Index (TRI) as a standalone variable, the

Greenness, Brightness and Wetness Tasseled Cap

transformation grids, the brightness temperature grid,

grids of distance cost from roads and buildings

(OpenStreetMap spatial data for roads and buildings,

TRI as a cost surface), the non-normalised albedo

index after Smith (2010), and the DEM grid as a

standalone variable. As a result of applying the

randomForest R package with mean squared error as

an indicator, as well as after excluding multicollinear

variables with a variance inflation factor (VIF)

method, the following explanatory variables were

chosen: the cost distance from roads (corresponds to

Costd_roads) as a degree of transport accessibility, the

Fig. 2 Pre-processed Landsat 8 OLI scene (RGB composite), further converted to HSV colour space to measure colour harmony

Table 1 GLCM-based Haralick’s texture metrics and their

equations

Pixel-based GLCM texture metrics Equation

Homogeneity (GLCMH) PNg

i¼1

PNg

j¼1

1

1þði�jÞ2 P i; jð Þ

Contrast (GLCMC) PNg

i¼1

PNg

j¼1

P i; jð Þ i� jð Þ2

Second moment (GLCMSM) PNg

i¼1

PNg

j¼1

fP i; jð Þg2

P(i,j) the probability of co-occurrence of pixel values i and j,

Ng the number of distinct grey levels in the quantized image

(64 in our case)
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SAGA TWI index as a realistic degree of the impact of

topographical conditions on hydrological processes,

and the at-satellite brightness temperature and albedo

as indicators of the land cover heat budget. All the

grids for the selected explanatory variables were

generalised in SAGA GIS (Conrad et al. 2015) with a

Simple Filter (based on the mean neighbourhood

value, the size of the moving window is 13 pixels) to

match the spatial resolution of the summarised Colour

Harmony Index grid. Next, a 5000 random point

shapefile covering the study area was created, and the

values of all the explanatory grids and the dependent

summarised CHI were assigned to these sample

points. The CHI was Box–Cox transformed to meet

the regression model assumptions of the dependent

variable normal distribution. The Generalised Addi-

tive Model—GAM (Wood 2017), implemented in the

mgcv R package (Wood 2011; Team 2017), was used

to model the relationships between the CHI and

explanatory geographic attributes. The GAM was

applied to the Box–Cox transformed CHI with the

following settings: penalised cubic regression splines

for a Gaussian family of distributions, and the cross-

validation method was used to detect the optimal

degrees of freedom. The GAM model has several

advantages compared to common linear models:

flexibility, efficacy in the detection of non-linear

effects and automated smoothing of the splines.

A LiDAR-based digital surface model (DSM,

spatial resolution—8 m) of the Vooremaa protected

area and its surroundings was used in Viewshed

analysis via the plug-in for QGIS, performed for

samples of the Mapillary viewpoints with the observer

height of 1.0 m and a 90� maximum horizontal view

angle in order to map the area visible from each

Mapillary viewpoint. The Estonian Land Board col-

lected LiDAR elevation data of excellent quality for

this area in 2010 and 2014 with a Leica ALS50-II

scanner at 2400 m altitude. Next, the mean CHI for

each viewshed was calculated.

Fig. 3 CORINE land cover of the study area: protected areas include mainly wetlands, various forests and water bodies
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Results

How consistent are the maps of the extent of colour

harmony, produced within the different

frameworks?

The purpose of the first stage of the work was to test

the applicability of remote sensing data, processed

with Haralick’s textural metrics, to the mapping of

land cover colour harmony. Figure 5 compares maps

of colour harmony according to the principles and

authors, mentioned above, whereas Fig. 6 illustrates

the results of summarised Colour Harmony Index

mapping. Obviously, since the principles of colour

harmony vary, the resulting maps of colour harmony

extent also significantly differ: for example, the maps

‘‘a’’ after Nemcsics (2012) and ‘‘d’’ after Caivano

(1998) are the least sensitive to colour harmony

changes. Nevertheless, the four resulting maps are in

accordance and, despite the different transition zones,

give a similar overview of the maximum and mini-

mum spatial colour harmony distribution. Thereby,

the map of the summarised Colour Harmony Index

aims to combine all the intermediate maps of colour

harmony distribution. Notice that Haralick’s textural

metrics for pairs of pixels meet the assumptions of the

numerical colour harmony models under considera-

tion, focusing on the two-colour combinations.

How does the mean colour harmony index vary

for different land cover classes?

Figure 7 (made with Tableau Public 10.5 software,

Seattle, Washington, USA) presents the mean CHI

score for each CORINE 2012 land cover class. Water

bodies, different forest types and wetlands obtained

the highest colour harmony scores. Culturally modi-

fied vegetation, such as arable land, plantations and

pastures, has moderate colour harmony scores and

industrial and urban areas are the least harmonious.

Unexpectedly, areas, associated with water courses are

among the least harmonious land cover classes, while

airports are among the medium ones. Therefore, there

is a clear trend, demonstrating the negative relation-

ship between the extent of land cover cultural

modification and its colour harmony degree.

Which geographic attributes explain

the distribution of colour harmony?

This stage of analysis aimed to examine the relation-

ships between the Box–Cox transformed summarised

CHI of land cover and selected geographic attributes,

representing variables of man-made infrastructure,

topography and surface energy balance using the

GAM. Table 2 shows the results of CHI modelling

according to changes of distance cost from roads

Fig. 4 General GIS-procedure for summarised Colour Harmony Index computation. Rectangles correspond to the GIS operations, and

rectangles with rounded corners correspond to the raster grids (maps)
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(Costd_roads), values of the SAGA Wetness Index

(SAGA TWI), the brightness temperature (BT) and

albedo index (Albedo).

Figures 8 and 9 illustrate the response of CHI to

changes of albedo, brightness temperature, SAGA

Wetness Index and distance cost from roads. Albedo

has a clearly defined negative relationship with the

CHI, whereas the relationship between brightness

temperature and CHI is U-shaped, demonstrating a

non-linear character. The least brightness temperature

values (approx. 21–23 �C) are typical for crop fields,

and the maximum values are for settlements and bogs.

The SAGA Wetness Index shows that increasing

topographic wetness linearly and positively influences

the respective colour harmony. Increasing remoteness

from the roads and the respective decreasing human

disturbance also positively affect the colour harmony

level. Altogether, the mentioned factors explain up to

54% of the CHI variability, but some factors still

remain unclear. Nevertheless, colour harmony as a

textural characteristic of the land cover Hue, Satura-

tion and Value dimensions could be modelled, based

on the spectral features of land cover, topography and

cultural modification with transport infrastructure.

How does the remotely assessed colour harmony

extent correspond to actual scenery alongside

roads?

No significant differences were found between the

Mapillary scenes ‘‘a’’, ‘‘b’’, ‘‘c’’ and ‘‘d’’, whereas

scene E provides the presence of crop fields and

settlements (Fig. 10). Therefore, the highest mean

colour harmony score of picture B is unexpected. The

lowest mean colour harmony scores belong to scenes

A and E. For the foregoing reasons, the in situ

Fig. 5 Maps of colour harmony extent, created with different

principles (according to the authors, mentioned in the legend):

lighter areas correspond to higher land cover colour harmony,

and darker areas correspond to lower colour harmony. All the

maps are different, though consistent. Protected areas include

land cover of the highest colour harmony
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collected data from Mapillary service has limited

applicability as Earth observation data for colour

harmony calculation and remote sensing verification

purposes. Instead, more ‘‘landscape-oriented’’, than

‘‘road-oriented’’ photographs should be used.

Overall, these results indicate that the main prin-

ciples of colour harmony from the numerical psycho-

logical models could be transferred to GIS-analysis

and mapping, based on remote sensing data, for

quantitative studies within environmental aesthetics

and GIS-based landscape character assessment. Fur-

thermore, there is a regular relationship between the

colour harmony ratings and environmental geographic

attributes revealing the objective drivers of colour

harmony: regimes of moisturisation and heat supply

and cultural modification.

Fig. 6 Summarised Colour

Harmony Index,

generalising all the colour

harmony maps. Protected

areas include land cover of

high colour harmony,

whereas urban (Tartu city)

and rural areas have low

colour harmony. See

Mapillary scenes on Fig. 10,

labelled in the North-

Western direction

Fig. 7 Stacked mean colour harmony after each author for each

CORINE land cover class, arranging land cover classes

according to their inherent colour harmony. The decrease of

colour harmony is associated with man-made structures and

culturally modified land cover
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Discussion

The results are significant in at least two major

respects. Mapping of land cover colour harmony and

its spatial distribution, constituting the main objective

of the study, complements previous research concern-

ing the assessment of environmental scenic resources

(BLM 1986), landscape aesthetics and management

(Blocker et al. 1995), fundamental landscape research

(Bell 2012; Antrop and Van Eetvelde 2017;) and

landscape design (Bell 2004), as well as numerous

applied studies, including colour as an attribute of

landscape character (Tveit et al. 2006). What is more,

mapping land cover colour harmony reveals additional

possibilities for using Earth observations from space

and VGI (such as crowdsourced photographs) for

assessment of the visual quality of the environment.

Identification of the main geographic attributes influ-

encing land cover colour harmony could be applicable

for preservation and implementation of environmental

functioning regimes supporting the valuable state of

the visual environment.

How consistent are the maps of the extent of colour

harmony produced within the different

frameworks?

The approach of mapping colour harmony from space

has some obvious limitations. First, the spatial reso-

lution of the satellite imagery affects the respective

results of colour harmony mapping. In our case, we

performed landscape scale GIS-analysis common for

Landsat imagery applications, but further implemen-

tation of such methods could include orthophoto and

Sentinel 2 imagery with better spatial and temporal

resolution to capture more detailed colour harmony,

comparable with in situ views. Moreover, the scale

and quality of GIS-analysis is also subject to the

choice of Haralick GLCM textural metrics and the size

of the moving window. Haralick’s metrics are often

multicollinear (Hall-Beyer 2017a) and, therefore,

provide similar results. Of course, atmospheric con-

ditions, the quality of atmospheric correction, and the

Fig. 8 Box–Cox transformed Colour Harmony Index, plotted against the albedo, brightness temperature, SAGA Wetness Index and

cost distance from roads, explaining the spatial distribution of land cover colour harmony

Table 2 Results of the GAM applied to summarised Colour

Harmony Indices

Estimate SE t value Pr ([ |t|)

Box–Cox transformed CHI

Intercept - 0.624442 0.006861 - 91.01 \ 0.01

edf Ref.df F p value

Approximate significance of smooth terms

Costd_roads 8.854 8.990 60.02 \ 0.01

SAGA TWI 1.000 1.001 494.55 \ 0.01

BT 8.397 8.895 82.27 \ 0.01

Albedo 7.961 8.576 183.12 \ 0.01

R-sq.(adj) = 0.54; deviance explained = 54.3%; GCV = 0.23648;

scale est. = 0.23519; n = 4996
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specifics of satellite sensors impose constraints on the

applicability of the proposed approach. However, all

the mentioned limitations are typical for any remote

sensing studies, so the proposed approach does not

contain any unique bias. To the best of our knowledge,

there are no similar studies, but the application of

GLCM metrics to derive colour textures has already

been undertaken (Benčo and Hudec 2007), as well as

in emotional contexts (Machajdik and Hanbury 2010).

Our research complements those studies, quantifying

Fig. 9 Splines for the cost

distance from roads, the

SAGA Wetness Index,

brightness temperature and

albedo with 95% confidence

intervals. Only the

topographic SAGA Wetness

Index has a linear relation to

the summarised Colour

Harmony Index

Fig. 10 Mapillary scenes (crowdsourced street-level photographs), compared to the mean Colour Harmony Index for verifying the

respective viewsheds. Labelling the scenes in a North-Western direction (locations of the viewpoints see in Figs. 5 and 6)
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the amount and diversity of colours as predictors of the

perceived environmental visual quality, and present-

ing land cover colour harmony as a potential predictor

for such studies.

How does the mean colour harmony index vary

for different land cover classes?

Sowi�ska-�wierkosz, presenting her new ecological

indicator, the Form and Colour Disharmony Index

(FCDHI), already associated the disharmonious col-

ours of land cover objects with rural, urban and man-

made structures (Sowi�ska-�wierkosz 2016). We also

suggest that the extent of land cover cultural modifi-

cation negatively influences its colour harmony and,

consequently, the overall landscape harmony (Amir

and Sobol 1990). Several unexpected findings, such as

low colour harmony ratings for water courses and a

higher rating for airports, could be explained by the

minor inadequacy of land cover classification and the

scale of the colour harmony mapping. No correlation

was found between the colour harmony and vegetation

indices (such as Tasseled Cap Greenness or NDVI,

LAI), so the bioproductivity and health of the vege-

tation could not be associated with colour harmony as

an aesthetic value, supporting some previous findings

(Casalegno et al. 2013). At the same time, forests show

very high colour harmony, as in the paper by Zhang

et al. (2017).

Which geographic attributes explain

the distribution of colour harmony values?

Heat and moisture supply, as well as transport

accessibility within the study area, explain approxi-

mately 54% of the colour harmony changes. Unfor-

tunately, the only thing we can do with the cubic

splines from the GAM model is to plot them, so there

is no equation for the relationships between the

explanatory variables and colour harmony. The rela-

tion between the brightness temperature and colour

harmony ratings is non-linear: cold water bodies and

warmer bogs have the highest colour harmony scores,

whereas moderately warm crop fields have lower

colour harmony. Albedo, being the highest for

concrete man-made structures and the lowest for

water bodies, negatively relates to colour harmony. In

accordance with the present results, previous studies

have demonstrated that naturalness is one of the

important landscape attributes positively affecting

visual values and preferences (Ode et al. 2009).

How does remotely assessed colour harmony

correspond to the actual scenery alongside roads?

Whereas crowdsourced photographs such as VGI are

widely used for land cover studies (Antoniou et al.

2016; Laso Bayas et al. 2016; See et al. 2017), the

landscape-scale colour harmony mapping shows a

weak association with the actual colour harmony of

detailed photographs. Assessment of photograph

colour harmony is a separate scientific task

(Nishiyama et al. 2011; Chamaret et al. 2014), so we

attempted to visually compare sampled Mapillary

photographs with the mean colour harmony ratings of

the respective viewsheds. In a further perspective, the

set of photographs from phenocams could be used to

accurately calibrate the colour harmony calculations,

based on remote sensing data. In this connection,

colour harmony mapping from drones could also be a

better option than satellite imagery. Obviously, the top

view provides additional limitations on applicability

to the common landscape view, but it fulfils the

requirements of mapping and management purposes.

Conclusions

In this investigation, the aim was to examine calcu-

lation and mapping of land cover colour harmony

based on remote sensing data and Haralick’s GLCM

textural metrics for purposes of GIS-based assessment

of the perceived environment visual quality. This

study found that generally, remote sensing data are

applicable for colour harmony mapping and, further-

more, for multitemporal monitoring and analysis of

changes in colour harmony degree. It was confirmed

that Haralick’s textural metrics provide an adequate

toolkit to measure the spatial relationships between

satellite imagery pixel pairs, meeting the assumptions

of the numerical colour harmony models under

consideration and focusing on two-colour combina-

tions. We also assumed that land cover is a substantial

part of the visual environment. Land cover’s colour

harmony, perceived on the ground, affects emotional

response, influencing the subjective feeling of land-

scape character value. However, the link between top-

view maps of colour harmony and actual on-ground
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scenery remains weak, framing the perspectives for

further studies.

This study has shown that mapping land cover

colour harmony as a geographical task could be

performed with the synergy of remote sensing and GIS

techniques, including the calculation of GLCM met-

rics, overlay and focal statistical analysis. The second

major finding was that the CORINE land cover classes

are colouristically harmonious to a different extent

(increase of land cover cultural modification decreases

its colour harmony). Further, the generalised additive

model (GAM) revealed that the main drivers of land

cover colour harmony are the following: distance cost

from the roadways, heat budget indicators (albedo and

brightness temperature) and topographical SAGA

wetness index. Furthermore, the relationship between

ground-based photographs and colour harmony maps

is established as ‘‘proof of concept.’’

The evidence from this study suggests that nature

conservation and sustainable management initiatives

have one additional GIS-based indicator for monitor-

ing of the visual quality of the perceived environment,

colour harmony. Combining the achievements of

psychology, aesthetics and art with remote sensing

tools and techniques, we obtain a powerful colour

harmony mapping tool over time. This methodology

has potential not only in the detection of aesthetically

attractive places but also provides an opportunity for

accurate accounting of the gain and loss of land cover

colour harmony resulting from various socio-eco-

nomic activities and natural dynamics. The long-term

perspective of this direction of study is implementa-

tion of colour harmony indicators in decision-making

tools and practices, based on Earth observations from

space on continental and global scales. Mapping land

cover colour harmony for larger areas, detection of

colour harmony changes occurring over the last years,

and colour harmony forecasting, are the foreseeable

continuations within the initiated approach.

From the applied perspective, practitioners of

landscape management and nature conservation could

benefit from the further multitemporal land cover

colour harmony as an aesthetical measure and attribute

of landscape character to preserve the valuable visual

environment. Protected areas are rarely delineated

based on ecosystem services (Rose et al. 2015);

therefore, land cover colour harmony, considered a

cultural ecosystem service, could complement exist-

ing principles for the spread of protected areas. As

seen above, lands with a land cover of high colour

harmony are more typical for protected areas (e.g.,

wetlands, forests, and water bodies) than for other

territory. To conclude, remotely sensed information

used for colour harmony mapping could play a

substantial role in the assessment of the effectiveness

of nature protection and conservation, as well as for

successful avoidance, mitigation and offsetting of

nature use regimes that lead to land degradation or

disturbance.

Acknowledgements This research was supported by

European Social Fund’s Dora Plus Programme.

Compliance with ethical standards

Conflict of interest The authors declare that they have no

conflict of interest.

References
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Junge, X., Schüpbach, B., Walter, T., Schmid, B., & Linde-

mann-Matthies, P. (2015). Aesthetic quality of agricultural

landscape elements in different seasonal stages in

Switzerland. Landscape and Urban Planning, 133, 67–77.

https://doi.org/10.1016/j.landurbplan.2014.09.010.

Kolen, J., Crumley, C., Burgers, G. J., Von Hackwitz, K.,

Howard, P., Karro, K., et al. (2015). HERCULES: Study-

ing long-term changes in Europe’s landscapes. Analecta

Praehistorica Leidensia, 45(15), 209–219.

Laso Bayas, J. C., See, L., Fritz, S., Sturn, T., Perger, C., Dür-

auer, M., et al. (2016). Crowdsourcing in-situ data on land

cover and land use using gamification and mobile tech-

nology. Remote Sensing, 8(11), 905.

Lenclos, J.-P. (2004). The geography of color. New York:W.W.

Norton & Co.

Lengen, C. (2015). The effects of colours, shapes and bound-

aries of landscapes on perception, emotion and mentalising

processes promoting health and well-being. Health and

Place, 35, 166–177. https://doi.org/10.1016/j.healthplace.

2015.05.016.

Machajdik, J., & Hanbury, A. (2010). Affective image classi-

fication using features inspired by psychology and art

theory. In Proceedings of the 18th ACM international

conference on multimedia (pp. 83–92). ACM.

Marcelino, E. V., Formaggio, A. R., & Maeda, E. E. (2009).

Landslide inventory using image fusion techniques in

Brazil. International Journal of Applied Earth Observation

and Geoinformation, 11(3), 181–191.

Nemcsics, A. (2012). The complex theory of colour harmony.

Obuda University e-Bulletin, 3(1), 249–257.

Nishiyama, M., Okabe, T., Sato, I., & Sato, Y. (2011). Aesthetic

quality classification of photographs based on color har-

mony. In 2011 IEEE conference on computer vision and

pattern recognition (CVPR) (pp. 33–40). IEEE.

O’Connor, Z. (2006). Bridging tahe gap: Façade colour, aes-
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A B S T R A C T

Previous research in environmental psychology and landscape science has demonstrated that the complexity
(based on diversity) of the visual landscape positively influences landscape values and public preferences
through a relationship with landscape coherence. In this study, we suggest one possible GIS-based indicator of
landscape coherence calculated for a digital landscape model (DLM). It measures the degree to which the visual
landscape as a whole exceeds the set of its overlapping components (landforms and land cover) regarding di-
versity. We verified the performance of the index within the National Park Peneda-Gerês (Northern Portugal) as
a study area with cumulative viewsheds based on Flickr and Panoramio geolocated content. The results de-
monstrate a scale-dependent, positive relationship between the proposed index of landscape coherence for the
categorical models and the landscape values. The findings of this study can be applied to landscape planning and
management, providing an easy-to-use GIS-based indicator of landscape character assessment.

1. Introduction

Landscape coherence has been increasingly recognised as an object
of environmental research at least since the 1920 s. For instance, Granö
(1929; English translation, 1997) identified coherence (in English edi-
tion) as one of the key features of geographic phenomena: “When we
examine the combinations of phenomena found in the perceived en-
vironment and the variations and changes in these, it is possible to
detect regular dependence and coherence relationships existing within
a given region” (Granö et al., 1997, p. 12). Granö compared landscape
to the visible distant environment, so his citation above is a good
starting point (historically and logically) for discussing the phenom-
enon of landscape coherence. Since then, authors have usually referred
to the landscape coherence concept in two distinct contexts: a visual
context of subjective, cognitive landscape coherence, most known
within the information processing theory of landscape preferences by
Rachel and Stephen Kaplan (Kaplan and Wendt, 1972; Kaplan and
Kaplan, 1989), and an ecological context of objective vertical landscape
coherence as the regularity of vertical, horizontal or temporal land-
scape structure (van Mansvelt, 1997). Such distinctions have their

origin in the dualistic nature of landscape, recognised in the European
Landscape Convention and in considerable landscape-related papers:
landscape is an umbrella term covering (depending on the authors) a
wide spectrum of concepts within the so-called “hard” (focused on the
physical environment, monitoring- and mapping-friendly) and “soft”
(focused on landscape perception and appreciation) approaches (Miklós
et al., 2019). A considerable amount of literature was published on this
topic within the mentioned frameworks, particularly regarding the
development of quantitative indicators of landscape coherence, which
are far better developed for ecological coherence studies (Ode et al.,
2008). Obviously, opposing approaches require different methods and
ecological and psychological studies of landscape coherence did not
overlap until recently when several conceptual articles laid the
groundwork for interdisciplinary landscape coherence studies (Fry
et al., 2009; Dronova, 2017).

Despite the differences, supporters of both psychological and eco-
logical approaches in landscape science base their logic on the concepts
of diversity and complexity (Tveit et al., 2006; Mander et al., 2010;
Uuemaa et al., 2008, 2013; Dronova, 2017), as well as on the attempt to
estimate the extent of landscape coherence depending on their
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approach with subjective or objective methods. Since the paper reports
the empirical results, near-full theoretical framework on the topics of
landscape diversity, variety, coherence, complexity, heterogeneity and
related issues may be found in other works (Christensen, 1997;
Gustafson, 1998; Bell, 2012; Antrop and Van Eetvelde, 2017; Dronova,
2017; Kuper, 2017). Moreover, the theoretical concepts for the re-
spective quantitative GIS-based indicators are discussed Baker and Cai
(1992), McGarigal and Marks (1995), Plexida et al. (2014), and
Adamczyk and Tiede (2017). However, we outline these concepts re-
garding the GIS-analysis applied in the current study.

The similarity between the terms “landscape diversity” and “land-
scape complexity” may be confusing since both terms emerge in visual
and ecological contexts to describe landscape heterogeneity, even
though they do not represent it directly (Dronova, 2017). There is no
consensus in use of these terms; in environmental psychology and other
visual studies; they are often synonymous with some kind or another
variation in landscape structure (Ulrich, 1986; Herzog, 1989; Kaplan
and Kaplan, 1989; Herzog and Barnes, 1999; Tveit et al., 2006; Kaymaz,
2012; Martín et al., 2016). However, complexity is often referred to the
landscape patch-level attributes such as forms and shapes (Xu et al.,
1993; Antrop and Van Eetvelde, 2000; Plexida et al., 2014; Lam et al.,
2018) or, alternatively, to the number of diverse landscape elements or
their spatial organisation into the whole (Antrop and Van Eetvelde,
2017), creating a kind of superstructure over the basis of diversity. We
are employing the most adopted opinion that landscape diversity and
complexity are synonyms; however, we define landscape diversity as a
simple number of landscape units/elements of interest (in topography,
vegetation, land cover etc.) within some view or mapping neighbour-
hood, while landscape complexity is a logarithmic function from such a
number (such as the Shannon-Weaver Diversity Index and related in-
dices of information entropy). At the same time, we disregarded this
distinction drawn above since it is not widely recognised and could be
confusing and we will use terms diversity and complexity inter-
changeably in the remaining text.

Theoretically, there are good reasons to interpret the phenomenon
of cognitive landscape coherence as resulting from the emergence of
diverse and complex visual landscape, making it understandable, le-
gible, systematic, ordered and holistic, rather than chaotic. In other
words, coherence differs the landscape as a whole (similarly to Gestalt
in psychology) from a set of disconnected features of Earth surface.
According to Bell (2012), landscape coherence is “… an ordered
structure that we can understand and where the comprehension of the
whole is more significant than the individual parts” (Bell, 2012, p. 104).
From an applied perspective, concepts of coherence and harmony of
landscape are very closely related: “Coherence describes the ability of
the landscape to be seen as intelligible, rather than chaotic; harmony is
related to unity, it exhibits a pleasant arrangement of landscape attri-
butes” (U.S. Forest Service, 1995, p. 1-15). Sevenant and Antrop (2009)
also refer to coherence as “unity” of the scene, while earlier findings
tend to distinguish unity as a holistic cognitive property of the land-
scape and coherence – as a property of its separate attributes (Coeterier,
1996). Another definition emphasises the holistic nature of coherence:
“the organisation of the elements in the scenes” (Pazhouhanfar and
Kamal, 2014, p. 150) and coherence is directly equated to organisation
(Kuper, 2017). Landscape coherence is sometimes treated as a dimen-
sion of landscape legibility (Guiducci and Burke, 2016), whereas often
it is defined as a separate variable along with landscape legibility
(Kaplan and Kaplan, 1989; Herzog and Leverich, 2003). Authors usually
connect cognitive landscape coherence to concepts of “harmony”,
“balance and proportion”, “uniformity”, and “unity” (Tveit et al., 2006;
Bell, 2012). Visual harmony is a core concept, used for the identifica-
tion of scenic landscape values (Sowiſska-ſwierkosz, 2016; Sullivan and
Meyer, 2016; Kuper, 2017; Karasov et al., 2018) and landscape co-
herence is often reported to be positively associated with high scenic
landscape values (Herzog, 1989; Kaplan and Kaplan, 1989; Stamps,
2004; Dramstad et al., 2006; Martín et al., 2016; Kuper, 2017), which

compete with landscape complexity in explaining people’s scenic pre-
ferences.

Landscape coherence is an integral attribute of landscape character
according to the vast majority of the authors and methodologies
(Kaplan and Kaplan, 1989; U.S. Forest Service, 1995; Tveit et al., 2006;
Mander et al., 2010; Bell, 2012; Hansson et al., 2012; Kaymaz, 2012;
Antrop and Van Eetvelde, 2017). Despite the varying correlations in the
different roles, it plays a pivotal role in landscape character assessment
because it is the feature that essentially distinguishes the beautiful
landscape as we imagine it from the notional “waste dump” of the same
or even higher diversity and complexity. Even though solid evidence
that landscape diversity (complexity) positively correlates with visual
preferences (Uuemaa et al., 2013) and multifunctionality (Voigt et al.,
2014) exists, the respective relationship appears to be an inverted U-
shape, such as in the case of landscape clutter, meaning that excessive
diversity decreases the visual quality of landscape (Falk and Balling,
2010). A shortened definition of landscape clutter by Veeneklaas et al
(2006), cited by Wagtendonk et al. (2014), also clearly connects the
concepts of variety and coherence: “Landscape clutter is an intrusive
increase in the level of variety in a landscape, combined with a lack of
coherence. People experience variety as pleasant as long as it is limited
to diversity within an appropriate pattern…. The process of cluttering
leads to an overall disorderly impression, where various land use types
exist side by side without clear coherence or where many intrusive
elements can be seen” (Wagtendonk et al., 2014, p. 86). Again, “variety
in the landscape creates added interest when present in moderation”
(U.S. Forest Service, 1995, p. 1–15); “landscapes with high diversity
could have low perceived legibility if their components cannot be un-
derstood in a coherent form” (de la Fuente de Val et al., 2006, p. 403).
Stamps (2004) assumed the link between landscape complexity and
coherence but did not suggest an objective measure of coherence in this
context. Hence, it follows as a logical consequence that coherence is
understood as an attribute of landscape character, adding more logic
and pattern to the diverse set of mentally distinct landscape elements,
turning them aesthetically attractive due to their organisation (no
matter, resulting from the self-organising natural evolution of Earth or
management). In this way, intangible landscape coherence should be
considered as a precious cultural ecosystem (landscape) service, whose
extent is a subject of gain and loss depending on the sustainability of
land use practices. It also deserves a monetary expression due to the
association with natural beauty, which is widely recognised as a cul-
tural ecosystem service (Haines-Young and Potschin, 2011; Czúcz et al.,
2018).

Without the operationalization of the scenic landscape values
(meaning without their quantitative assessment and internalisation into
the decision-making process and natural capital accounting), it will be
impossible to achieve even near-sustainable ecosystem/landscape
management. Landscape coherence as one of the key drivers of land-
scape preferences is linked in this way not only with travel and tourism
industry, creating 10,4% of the global GDP in 2017 (D’Emery et al.,
2018), but also with everyday life of the billions of people creating the
appropriate habitability conditions and providing the cultural eco-
system services in green areas. Therefore, creating efficient ways to
reliably assess and map the landscape coherence extent is of direct
practical value for land managers, government authorities, as well as
the responsible business. What is more, nature protection will benefit
from consideration of the flow of the provided cultural ecosystem ser-
vices for delineation of the protected areas and monitoring its status
and trend over time. Mapping is a geographical toolkit, providing the
possibility to see “a big picture” is one of the cost- and time-effective
ways of quick and precise landscape character assessment for large
areas with indicators. For mapping purpose, we suggest defining
landscape coherence as follows: the extent of organisation and sys-
tematicity, inherent in the decomposed pattern of physiognomic land-
scape within a particular view or mapping neighbourhood. At the
moment no cognitive landscape coherence-driven GIS-based methods of
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landscape coherence mapping have been identified, while the suggested
indicators will be discussed further.

Currently, the conceptual diversity of landscape coherence studies
determines the respective variety of proposed GIS-based indicators for
its assessment. As we mentioned before, the main issue in applying the
landscape coherence concept to GIS-analysis lies in its dualistic nature.
On the one hand, it describes objective landscape fragmentation, eco-
logical connectivity, and physical connectedness within the physical
landscape; on the other hand, landscape coherence is a cognitive phe-
nomenon emerging as a result of visual landscape observation.

Studies based on the objective approach of landscape coherence
assessment used different GIS-based methods. First of all, Adriaensen
et al. (2003) applied least-cost modeling to the landscape matrix as an
indicator of functional ecological connectivity, as discussed by
Jongman et al. (2004) within the physical landscape (Gurrutxaga et al.,
2010). This method allows for mapping the degree to which physical
patches are horizontally interconnected (this idea corresponds to the
idea of landscape coherence as a factor, composing landscape elements
into a whole); however, this method does not involve any subjective
scenic connotations of landscape coherence. Secondly, spatial auto-
correlation (Moran's I) was used as an indicator of soil similarity and
land use patterns (Mander et al., 2010). This indicator works well to
map the extent of vertical landscape coherence, but again with no re-
gard to the principles of cognitive landscape coherence adopted in the
literature. Thirdly, the GIS-applicable landscape division indices and
landscape connectivity indices (Jaeger, 2000; Saura and Pascual-Hortal,
2007; Mancebo Quintana et al., 2010; Nowak and Grunewald, 2018)
are usually used to evaluate the horizontal landscape coherence extent.
This method is one of the most widely used, but it is based on a purely
ecological concept of landscape fragmentation, so it does not allow to
quantify how the fragmented patches within landscape are organised.
Fourthly, De la Fuente de Val et al. (2006) connected landscape co-
herence to landscape homogeneity, which could be quantified with
several GIS-based metrics, for example, based on a grey-level co-oc-
currence matrix homogeneity index (Haralick et al., 1973). Although
understandable, this idea is completely opposed to the concept of
landscape diversity and complexity – obviously similar patches are
more likely to present something visually coherent and harmonious.
Nevertheless, this approach is questionable because it does not com-
plement landscape complexity but rather presents the exact opposite of
the complexity indicator. It is easy to see that, used in combination,
homogeneity and diversity indices contradict each other. Finally, there
are other landscape metrics measuring landscape fragmentation avail-
able (McGarigal et al., 2002), as well as autocorrelation indices, im-
plemented in GIS-software, such as ArcGIS (Ode et al., 2008). These are
designed following the same logic for horizontal landscape coherence
estimation with initial ecological meaning and hardly applicable for the
purposes of the subjective landscape coherence mapping.

While we are still on the subject of complexity and its relation to
landscape coherence, Shannon’s entropy should be mentioned.
Shannon’s entropy (also called Shannon-Weaver Diversity index) is the
most widely used index to indicate the diversity and complexity of the
landscape (McGarigal and Marks, 1995; Antrop and Van Eetvelde,
2000, 2017; McGarigal et al., 2002; Frank et al., 2013; Plexida et al.,
2014; Niesterowicz and Stepinski, 2016; Adamczyk and Tiede, 2017;
Kuper, 2017). As we argued above, landscape diversity and complexity
and landscape coherence have a deep inner connection: Shannon en-
tropy indicates the diversity of landscape, while landscape coherence
organizes diversity. What is more, organisation is at the core of in-
formation theory, as Weaver was thinking about organized complexity:
“problems which involve dealing simultaneously with a sizable number
of factors, which are interrelated into an organic whole” (Weaver,
1961). Thereby, there seems to be a research gap in underestimation of
Shannon’s entropy applicability for the objective landscape coherence
estimation with cognitive landscape coherence. Shannon’s entropy for
equiprobable observations turns into its particular case, Hartley

entropy, which, as will be shown further, has a feature of additivity
and, thereby, allows comparison of amounts of information within the
whole and its parts: complexity of the whole due to its system prop-
erties should be higher than the summarised complexities of its com-
ponents. This principle meets the assumptions of subjective landscape
coherence and could be utilized for objective vertical landscape co-
herence mapping.

At the moment, cognitive landscape coherence studies, with its
origins in environmental psychology and landscape architecture, in-
volve mainly subjective fields or photo-based judgements (Kaplan and
Kaplan, 1989; Hansson et al., 2012; der Jagt et al., 2014; Kuper, 2017).
Other authors attempt to link subjective landscape visual quality and
spatial pattern, described with the objective GIS-based methods men-
tioned above. Many theoretical works exist in this regard (Kuiper, 1998;
Hendriks et al., 2000; Fry et al., 2009; Ode et al., 2010) while fewer use
objective mappings of landscape coherence in relation to the visual
quality of the environment (Martín et al., 2016, 2018). These papers
just borrow indicators of objective landscape coherence and apply them
for finding the relationship with landscape preferences. However, they
do not attempt to design the indicator specifically suitable for sub-
jective landscape coherence estimation with objective methods. There
are numerous studies utilising remote sensing and GIS-based indicators
to explain the scenic beauty extent, cultural ecosystem services provi-
sion pattern, etc. (Crawford, 1994; Ayad, 2005; Fry et al., 2009;
Uuemaa et al., 2013; Ozkan, 2014; Yokoya et al. 2014; Vukomanovic
and Orr, 2014; Booth et al., 2017; Dronova, 2017; Vukomanovic et al.,
2018); however, none of them is dedicated specifically to landscape
coherence from the perspective of landscape organisation. Overall,
these studies highlight the need for a GIS-based indicator of landscape
coherence, using an objective fragmentation approach, but con-
ceptually originated within the cognitive landscape coherence. Conse-
quently, there is a lack of evidence on the performance of GIS-indicators
of landscape coherence in the visual context, although there is vast
body of literature on GIS-based indicators of other drivers of landscape
values and preferences.

Regardless of the variety in approaches and applications, the land-
scape coherence concept seems homogeneous enough to be calculated,
based on landscape metrics of diversity and complexity. Our definition
of landscape coherence, formulated above, focuses on the organisation
of some diversity of landscape, measurable with functions of informa-
tion entropy. In this way, our approach resolves the existing contra-
dictions between the described subjective and objective landscape co-
herence definitions and applications; emerging in the theory of the
cognitive landscape coherence. It could be easily implemented in ver-
tical landscape coherence mapping, as will be illustrated below.
Therefore, based on the literature review and links between landscape
diversity and coherence proposed by Ode et al. (2010), we argue that
there is a need to develop an objectively measurable GIS-based in-
dicator of visual (cognitive) landscape coherence for landscape patches
and classes. Informational indices of landscape variety (in particular,
indices of distributional complexity, such as the Shannon diversity
index [SDI] or, as we suggest in this paper, Hartley’s entropy) provide
the basis for this indicator. The basic assumptions are the following:

• the complexity of landscape as a whole exceeds the cumulative
complexity of its components;

• such additive complexity reveals the emergent system properties of
landscape (landscape pattern);

• landscape with recognisable pattern is interpreted as legible, co-
herent and, correspondingly, more aesthetically valuable and pre-
ferable.

Such an approach does not require any observers and field surveys
to estimate the extent of landscape coherence; even though the per-
formance of the proposed objective landscape coherence mapping could
be verified with methods indicating landscape attractiveness;
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examination of such performance will serve as a core of this paper.
This study presents and discusses a conceptual framework of GIS-

based assessment and mapping landscape coherence as organised
physiognomic complexity to meet the assumptions of subjective land-
scape coherence with novel objective methods. We used Hartley’s en-
tropy (a particular case of Shannon’s diversity index for equiprobable
data) as a measure of diversity and understand the organisation extent
as a ratio between the diversity of the physiognomic landscape as a
whole and summarised diversity of its components. We designed cal-
culations and mapping within areas, reflecting the scale-dependent
holistic landscape properties (Antrop and Eetvelde, 2017). The re-
sulting map of landscape coherence extent was examined in visual
context using cumulative viewshed analysis for the user-generated
content of location-based social media Flickr and Panoramio. The
content of location-based social media often serves as a proxy for
landscape aesthetic values and cultural ecosystem services provision
(Luque et al., 2017; Langemeyer et al., 2018), complemented with
transport and visual accessibility of landscape (van Zanten et al., 2016).

Since the existing mapping methodologies for landscape coherence
are designed to focus predominantly on the landscape structure with no
regard to the objective metrics of landscape attractiveness (such as
frequency of photographs within a particular area), there is the need to
examine the objective structure of the perceived environment, con-
sidering the spatial patterns of its pictorial representations in digital
media. To address this need, the following research questions were
formulated to reveal the regularities of landscape coherence within the
study area:

A. How does the GIS-based model represent the objective landscape
organisation utilising the landscape coherence concept?

B. How does the landscape coherence indicator relate to the uneven
spatial pattern of photographs taking frequency evidenced from the
location-based social media?

C. How is the suggested indicator applicable to landscape management
and planning?

2. Material and methods

2.1. Study area

We chose the National Park Peneda-Gerês as a study area. It is lo-
cated in the northwestern part of Portugal (Fig. 1). It covers an area of
702,9 km2, including the mountains of Peneda, Soajo, Amarela, Gerês,
the Plateau of Mourela, and the Plateau of Castro Laboreiro. It was
established by the Law №187/71 of May 8, and it is the only nationally
protected area with a status of a national park; it is acknowledged by
the International Union for Conservation of Nature (IUCN) (Bento-
Gonçalves et al., 2011).

Geologically, the park is mainly composed of different granitic
rocks, creating mountainous systems with peaks of up to 1559 m sur-
rounded by narrow valleys. The formation of granitic rocks occurred
approximately 300 million years ago and suffered intense fracturing in
the final stage of the Hercynian and Alpine orogenies (about 29 million
years ago). The younger granitic rocks preserve a more vigorous relief
and are typical of the highest mountains of the park, where remnants of
layers of sedimentary glacial, fluvial and torrential rocks occur,
whereas the older ones, mainly of metamorphic type, dating back to the
Silurian and Devonian periods (for instance, Castro Laboreiro land),
present lower altitudes and smoother morphologies. According to cli-
matic changes in the Quaternary period, glaciers rounded several main
valleys. The fractures in the rocks have made river valleys deep and
straight, and rivers are water-rich enough to be used for electric power
generation. The climate of the park belongs to a Mediterranean type,
but with strong Atlantic influence, expressed in high precipitation va-
lues (Vieira et al., 2011).

The surface and subsurface water flows and gravitational forces are

responsible for transferring and rearranging sediments and soils –
mainly Cambisols and Rankers (Vieira et al., 2011). This process makes
the bottom of the valleys fertile, while generally in the park, soil fer-
tility is irregular (Vieira et al., 2011). Urban systems are developing in
the valleys as well as national transportation infrastructures. Portu-
guese shepherds, at least for the past 400 years, lead the cattle along
river valleys to the high-lying pastures, where they graze livestock for
three months every year (Bento-Gonçalves et al., 2012). Thus, the
complex system of valleys and mountain ridges determines (in con-
nection with climatic factors) all the biotic and social organisation of
the Peneda-Gerês National Park and supports a diversity of micro-en-
vironmental conditions (Soares et al., 2005).

In summary, we chose the National Park Peneda-Gerês as a study
area because of its

• Status as the only national park in Portugal with high nature pro-
tection and recreational value;

• Developed tourist infrastructure, numerous points of interest and
landmarks and a transboundary location that attracts tourists and
transit visitors who take photographs, which also serve as research
date; and

• Complex landscapes that are due to well-expressed topographic,
climatic, biotic diversity, and uneven cultural modification that re-
sult in a diversity of relief and land cover.

All of this make the park a spectacular study area for purposes of
landscape coherence assessment.

2.2. Data

We assumed that the physiognomy of the study area can be re-
presented in the form of 2,5D digital landscape model (DLM) as a
combination of a classified 3D digital elevation model (DEM) and a 2D
digital land cover model (Lammeren, 2011). The holistic nature of the
landscape, according to Antrop (2017), is revealed through the map-
ping landscape properties on different geographical scales, since holon
is a whole and, at the same time, a part of another holon of a more
general level of organisation. Therefore, we suggest mapping the
landscape coherence for DLM with a spatial resolution of 10 m, within
various zones:

• floating circle of 990 m;

• cells of hexagonal grid of 1000 m;

• patches and classes of DLM of mesoscale (Fig. 2), composed of 4 TPI
(Topographic Position Index classification) landforms (Jenness,
2006) and CORINE land cover 2012 classes (Copernicus Land
Monitoring Service).

Hexagonal grid is discussed as the most efficient way of visual
landscape analysis from the computational point of view (Adamczyk
and Tiede, 2017), whereas distances exceeding 1200–1400 m are in-
appropriate for the analysis of physiognomic landscape, since human
eye unable to distinguish objects in such a distance (Nijhuis et al.,
2011). The spatial resolution of the CORINE land cover 2012 is 100 m,
and in combination with TPI landform classification this land cover was
used to design the digital landscape model of coarse spatial resolution
(Fig. 2) to use its patches and patch classes as mapping units for
landscape coherence, estimated with the digital landscape model of fine
spatial resolution (10 m).

We designed DEM based only on digitised hypsometric contours,
each with 10 m, with no regard to the point hypsometric values at local
elevations or depressions, using Topo to Raster tool in ArcMap 10.3.1.
Then, DEM was discretised into elementary landforms, used further as a
basis for patches of DLM. Elementary landforms were discussed by
Minár and Evans (2008) as “landform elements with a constant value of
altitude, or of two or more readily interpretable morphometric
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variables, bounded by lines of discontinuity” (Minár and Evans, 2008,
p. 244). In this study, we used slope steepness, solar aspect, and general
curvature as the main geomorphometric variables for elementary
landform classification (Table 1). These variables were chosen ac-
cording to their geographical meaning, linking abiotic landscape

processes with landscape physiognomy (pattern). For example, the
slope steepness determines the intensity of lateral water flows (runoff),
erosion and accumulation intensity, soil depth, insolation, and char-
acteristics of vegetation. Sun aspect of slopes describes runoff directions
and the local distribution of heat and moisture (Clymo and Whittaker,

Fig. 1. Topography and geographical location of the study area in the Iberian Peninsula (mapped with red).

Fig. 2. Physiognomic classification within the area of Peneda-Gerês NP as a parametric model (composite) of TPI landforms and CORINE land cover, reflecting a
visual landscape pattern. Its patches and classes are used further as polygons for landscape coherence calculation alongside the floating kernel and regular hexagonal
grid.
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1970). General curvature, considering both the profile and horizontal
curvatures, equally characterises the spatial distribution of runoff, as
well as the regularities of erosion and deposition of sediments. Func-
tional characteristics of the listed processes of landscape configuration
provide a bridge to its visual interpretation.

In total, we distinguished 66 elementary forms of relief as unique
parametric combinations of the slope steepness, solar aspect, and cur-
vature (Table 1). The classes of the slopes were defined according to the
slope classification for the mountainous territories by Zhuchkova and
Rakovskaya (2004; cited in Svidzinska, 2014). The ecological row by
Whittaker links heat and moisture supply with the solar exposition of
the slopes (Clymo and Whittaker, 1970). The general curvature was
used to distinguish between the concave and convex regions. Therefore,
while slope steepness is responsible for the intensity of erosion, solar
exposition determines the directions of erosion and microclimatic
conditions of vegetation growth. The general curvature is an integral
indicator of regularities of redistribution of the materials on the Earth
surface. In combination, these geomorphometric variables indicate
abiotic natural regularities of visual landscape appearance.

We created the digital land cover raster grid to map features of
biotic and cultural modification of the landscape. This land cover model
was designed based on the supervised classification of mosaics of sa-
tellite imagery SPOT and RapidEye (spring of 2011). These images were
collected due to their high spatial resolution, allowing for the detection
of the maximum heterogeneity of land cover. The imagery was pre-
processed: radiometrically calibrated and atmospherically corrected.
Supervised classification was performed using standard respective GIS
tools (according to the spectral characteristics of the imagery in dif-
ferent band combinations, such as false colours, natural colours) and
land cover classes were distinguished similarly to the existing CORINE
land cover classification for 2012. In total, we mapped 11 land cover
classes (Fig. 3).

Overlay combination of the digital model of elementary landforms
(classified DEM of 10 m spatial resolution) and our digital land cover
model has resulted in a digital landscape model of fine spatial resolu-
tion (10 m) with 661 classes.

2.3. Calculation

Numerous techniques have been developed to assess the diversity of
landscape. For example, there are many landscape metrics (or indices),
implemented into software such as FRAGSTATS (McGarigal et al.,
2002) or plug-ins for traditional GIS (Adamczyk and Tiede, 2017). Since
in landscape ecology, landscape is often structured within the so-called
patch-corridor-matrix model (Forman, 1995), quantitative methods for
measuring size, shape, density, and variety of landscape elements have
become very popular – in particular, as these features relate to visual
attractiveness of landscape. Patches and other elements of the land-
scape are distinct, so the methods from the information analysis are
commonly applied. Indeed, in the case of distinct objects under

consideration, the question, “What landscape patches do we see from
that point?” implicates uncertainty, associated with the necessity to
choose between landscape classes and patches, and such uncertainty is
assessable with informational entropy (for example, as Shannon en-
tropy). The answer to this question removes the respective un-
certainties, caused by the entropy of landscape patches, so the recipient
obtains some amount of information. This measure of information does
not relate to the meaning of landscape for the recipient of information
(observer): it is only a syntactic information, or “the objective struc-
tures of the arrangement of signs” (Naveh and Lieberman, 1990, p. 33).

For purposes of information content calculation, the formulas of
information entropy, suggested by Hartley and Shannon, are commonly
used. Shannon’s entropy (Shannon-Weaver Diversity Index) is the most
popular metric of diversity and complexity in ecology and landscape
ecology (Frank et al., 2013; Uuemaa et al., 2013; Plexida et al., 2014;
Niesterowicz and Stepinski, 2016; Adamczyk and Tiede, 2017; Kuper,
2017).

∑=H p log p
i

i b i
(1)

H is the Shannon entropy value, pi is the probability of the ob-
servation (land patch/facet/class i) appearing among other observa-
tions (landscape, composed of various land patches, facets, classes).

Hartley’s formula is a simple particular case of Shannon’s formula
(Eq. (1)) for sets with equiprobable elements, and it proclaims that the
amount of information (I), which is needed to determine a particular
element of text/landscape is the binary (or other) logarithm of the total
number of elements (N):

= =I log W nlog m2 2 (2)

I stands for the amount of information, W is a possible number of
different land patches/facets/classes; m refers to all land patches/fa-
cets/classes; n is the number of land patches/facets/classes in the one
part of a set (in our case - in one floating circle with a diameter of 33
pixels). The size of the floating circle was chosen to detect the hetero-
geneity of the physiognomic landscape of the park while do not exceed
the 1000 m, as it is close to the human ability to distinguish objects
within the viewscape (Nijhuis et al., 2011). Applying the formula (Eq.
(2)) to the raster models of elementary landforms and land cover, two
rasters were obtained, showing the amount of information in elemen-
tary forms of relief and land cover classes.

Arndt (2004) in his book “Information Measures…” postulates for
the sets EN, EM, EMN, consisting of equiprobable N, M, MN elements:

= +I E I E I E( ) ( ) ( )MN N M (3)

I(EMN) stands for the amount of information, I(EN) is the amount of
information in the set EN, I(EM) is the amount of information in the set
EM. It means that “The sum of the pieces of information of two in-
dependent sets EN and EM is equal to the information of the union set
EMN (all sets consist of elements occurring with equal probability)”
(Arndt, 2004, p. 51). In this way, a major advantage of Hartley’s

Table 1
The categories of the main geomorphometric parameters.

Author/criteria Classes

Slope steepness

Zhuchkova and Rakovskaya (2004): the increase
in slope steepness

Gentle slopes:
4–10°

Rolling slopes:
10–20°

Moderately steep slopes:
20–30°

Steep slopes:
30–45°

Very steep slopes:
45–60°

Extremely steep slopes:
> 60°

Solar exposition

Clymo and Whittaker (1970): the increase in dryness Northeast to North Northwest to East West to Southeast South to Southwest

General (standard) curvature

Curvature: directions of erosion and deposition Concave: < 0 Convex: > 0
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formula is a feature of additivity: the amount of information from in-
dependent sources will be equal to the algebraic sum of the amounts of
information, provided by each source (Eq. (3)). This provides an op-
portunity to measure the extent of mutual dependency of the sources of
information and their organisation as something holistic. We excluded
the assumption of the equal probability of appearance of landscape
units for our purposes.

Thereby, if the complexity of the digital landscape model, indicated
by Hartley entropy, exceeds the algebraic sum of the complexities of
elementary landforms and land cover (indicated by Hartley entropy as
well), the respective ratio indicates the holistic effect of emergence
(landscape coherence). Following this logic and emergent theory of
information (Hartley’s emergence coefficient), suggested by Lutsenko
(2002), we designed our indicator of physiognomic landscape co-
herence, indicating a connection between the complexities of relief and
land cover systems, creating additional complexity of the visual land-
scape, when taken within some more general zones, such as kernel or
polygons (Fig. 4).

In formula (Eq. (2)), the amount of information is calculated as a
double logarithm from a possible number of spatial units – elements of
relief and land cover classification. According to the emergent theory of
information (Lutsenko, 2002), the amount of information in the com-
posite, combining relief and land cover classes (DLM) will be more than
the algebraic sum of the amounts of information in relief and land cover
classes separately and greater than unity:

=
+

φ
I

I I
landscape

relief land cover (4)

where φ is the landscape coherence, Ilandscape stands for the amount of
information in the digital landscape model (composite of land cover
and elementary landforms raster grids), Irelief is the amount of in-
formation in the elementary landforms raster grid, Iland cover is the
amount of information in the land cover raster grid. In this way, Eq. (4)
serves as the indicator of the landscape coherence – extent, in which the
amount of information in the whole landscape exceeds the amount of
information in its components, revealing the degree of systematicity
and organisation in the landscape according to our definition of land-
scape coherence in the Introduction. Landscape coherence could be
literally equalized to the extent of the emergence of landscape as a
system; the theory of information is used to reduce its complexity. From
a subjective point of view, this ratio (Eq. (4)) indicates the holistic
system-forming properties of the landscape, increasing its readability
for the observer. In other words, if the observer can reduce all the
complexity of visual landscape to only several regularities, this land-
scape is likely coherent.

2.4. Cumulative viewshed analysis, based on Flickr and Panoramio
photographs

Viewsheds are proven to be representative as indicators of

Fig. 3. Land cover model of the study area, composing with elementary landforms a digital landscape model for landscape coherence estimation and mapping.

Fig. 4. General GIS-procedure for deriving the landscape coherence index for digital landscape model. Raster grids are shown in the rounded rectangles, GIS-
operations – in the rectangles.
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landscape values, based on landscape aesthetics (Nijhuis et al., 2011)
and respective cultural ecosystem (landscape) services (Luque et al.,
2017). Visitation rate, aesthetical values of landscapes and cultural
ecosystem services provision have been widely examined with vo-
lunteered geographic information (VGI), including user-generated
content of social media Flickr and Panoramio (Casalegno et al., 2013;
García-Palomares et al., 2015; Sessions et al., 2016; van Zanten et al.,
2016; Figueroa-Alfaro and Tang, 2017; Langemeyer et al., 2018; Martín
et al., 2018; Oteros-Rozas et al., 2018). A cumulative viewshed is a sum
of binary viewsheds, representing visible and non-visible areas from
some set of geographic locations. In this way, the cumulative viewsheds
are commonly used to examine overlapping visual fields in a landscape
(Guiducci and Burke, 2016). Being obtained from the data, collected
from location-based social media Flickr and Panoramio (currently un-
supported), cumulative viewsheds represent the most frequently pho-
tographed pixels in DSM. Flickr was chosen due to its open API, pro-
viding free access to publicly available geolocated photographs,
uploaded by millions of users globally, whereas Panoramio was a more
place-oriented service, also frequently used in GIS-analysis. Geo-
graphical coordinates and metadata of photographs, taken within the
study area were collected using Flickr API; Panoramio geolocated data
were collected before its closure using SAS.Planet software. Then the
cumulative viewshed analysis was done for collected Flickr and Pa-
noramio geographical coordinates as observation points using View-
shed Analysis plug-in for QGIS, with observer height of 1,6 m and
search radius of 10 000 m (Fig. 5). A digital surface model ALOS DSM of
spatial resolution 30 m and vertical error up to 5 m (Jain et al., 2018)
was used. The obtained model of the cumulative viewsheds represents
the frequency of photographing each pixel in DSM. Places, which were
not photographed, were mapped as No Data pixels and were not used in
the further statistical analysis.

The values of cumulative viewsheds for each pixel in DSM were
summarised within the polygons of landscape coherence mapping
(Fig. 5, panels a, b) and the obtained data were normalised using Box-

Cox transformation to meet the assumptions of the regression line,
describing the summarised cumulative viewsheds as a response on
landscape coherence score within each polygon. Plotting and statistical
analysis were conducted using R (Team, 2017) within Exploratory
software (Exploratory, Inc.).

3. Results

A. How does the GIS-based model represent the objective landscape
organisation utilising the landscape coherence concept?
Fig. 6 presents the maps, resulting from utilising the formula (Eq.
(4)), designed in ArcMap 10.3.1. Depending on the used GIS tech-
nique (kernel, hexagonal grid, landscape patches and classes), four
GIS-based visualisations have been created. We assumed that the
nearly 1000 m wide zones (kernel and hexagonal cells) for land-
scape coherence mapping successfully detect the specifics of land-
scape units with 10 m resolution.

B. How does the landscape coherence indicator relate to the uneven
spatial pattern of photographs taking frequency evidenced from the
location-based social media?
Further plotting for scores of cumulative viewsheds, based on Flickr
and Panoramio geolocated content, compared to the scores of the
landscape coherence within the landscape patches and classes (i.e.
on a chorological and typological levels) revealed a positive re-
lationship (Fig. 7, panels a, b). Scores of cumulative viewsheds as
indicators of landscape values were Box-Cox transformed to meet
the assumptions of the regression line (normal distribution of the
dependable variable). These results are significant at the p-
value < 0.05 level for all the plots. Landscape coherence estimated
for the physiognomic patches explains up to a quarter of the var-
iation in photo taking (Fig. 7, panel a), while generalisation to the
level of physiognomic classes (Fig. 7, panel b) increases the ex-
planatory power of landscape coherence to about 60% for Flickr and
Panoramio geolocated content respectively.

Fig. 5. The spatial pattern of Flickr-based (a) and Panoramio-based (b) cumulative viewsheds, based on ALOS Global Digital Surface Model (DSM) “ALOS World 3D
− 30 m”. Both maps are highly consistent, representing the frequency of taking photographs of each pixel in DSM as an indicator of landscape accessibility and
preferences of photographers (visitors).
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C. How is the suggested indicator applicable to landscape management
and planning?
Specific landscape classes, being the subject of management are
coherent to a various extent. Fig. 8 provides the results of ranging
the physiognomic classes according to their landscape coherence

content. Our results suggest, that valley bottoms and ridges, steep
slopes of diverse land cover and and moderate agricultural mod-
ification indicate the highest level of landscape coherence. Gentle
slopes are mainly related to the lowest landscape coherence. Classes
containing mostly agricultural areas, forests, transitional types of

Fig. 6. Spatial pattern of landscape coherence index: a) mapped within a kernel (floating circle) of 33 pixels in diameter (approximately corresponds to 990 m); b)
mapped within a regular hexagonal grid (each cell is 1000 m wide); c) mapped within the physiognomic patches, parametrically composed of TPI landforms and
CORINE land cover (i.e. on the chorological level); d) mapped within the physiognomic classes, parametrically composed of TPI landforms and CORINE land cover
(i.e. on the typological level). Chorological and typological models (panels c and d) have been used in a further analysis to be linked to the spatial distribution of
geolocated photographs.

Fig. 7. Relationships between the Flickr- and Panoramio-based cumulative viewsheds and landscape coherence for the Peneda-Gerês National Park area. Plots show
Box-Cox-transformed response data (cumulative viewsheds) with corresponding regression line and 95% confidence intervals; r refers to Spearman’s correlation.
Panels show the relationships: a) between the Flickr- and Panoramio-based cumulative viewsheds and landscape coherence on the physiognomic patch (chorological)
level; b) between the Flickr- and Panoramio-based cumulative viewsheds and landscape coherence on the physiognomic class (typological) level.
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vegetation, and water bodies reveal high landscape coherence,
while urban fabric and bare rocks demonstrate low landscape co-
herence. Water bodies as covering large-scale orographic depres-
sions of several landforms are grouped into one physiognomic class,
representing a relatively high landscape coherence.

4. Discussion

4.1. Interpretation of results and relation to other studies

As mentioned above in the literature review, the vast majority of the
cognitive (visual) studies tend to avoid GIS-based assessments of
landscape coherence, focusing rather on psychological methods (Kaplan
and Kaplan, 1989; Hansson et al., 2012) or borrowing on ecologically-
based GIS-indicators of landscape fragmentation (Mander et al., 2010;
Martín et al., 2016). In contrary, the backward process (implementation
of landscape aesthetic theory into GIS-analysis) is only on its theoretical
stage of development (Ode et al., 2008; Fry et al., 2009). Since land-
scape coherence is an emergent, holistic feature of the landscape as a
whole, Hartley’s entropy was chosen (due to its feature of additivity) as
an indicator of landscape complexity, revealing the emergence of
landscape as a system. The proposed GIS-based indicator complements
a “vertical coherence” concept (Hendriks et al., 2000), based on su-
pervised faceting (categorisation) of landscape model, referring to the
structural landscape connectedness concept rather than to the ecolo-
gical connectivity (Jongman et al., 2004). Overall, these results indicate
that landscape coherence, calculated and mapped in the proposed way,
can serve as a predictor of photo-taking frequency, indicating landscape
values and preferences (Langemeyer et al., 2018). Viewshed analysis,
utilising Flickr and Panoramio volunteered geographic information,
shows the increment of the score of photo-taking frequency following
the increase in the scores of landscape coherence within the landscape
patches and classes. These results suggest that there seems to be an

association between the extent of holism, systematicity and organisa-
tion of visual landscape and the degree of its visual attractiveness in
case we assume that visual environment influences people’s decisions to
take photographs.

The current study found that GIS-based landscape coherence index
can have a positive association with landscape values and preferences
evidenced from user-generated content of location-based social media,
confirming previous reports on this topic (Sevenant and Antrop, 2009;
Hansson et al., 2012). However, utilising the proposed GIS-driven ap-
proach within the landscape classes (i.e. on a typological level) in-
creased the explanatory power of landscape coherence index as related
to photo taking frequency, indicated with viewsheds analysis compared
to the mapping landscape coherence within the landscape patches. The
positive impact of increased generalisation of the spatial patterns under
consideration indicates the scale-dependent nature of the holistic or-
ganisation of the physiognomic landscape: some landscape attributes of
landscape facets become more expressive when seen in the landscape
facets of higher hierarchical levels (Antrop and Van Eetvelde, 2017).
We tested the adequacy of the suggested GIS-based indicator, com-
paring it to the digital footprint stored in location-based social media,
rather than explained scenic values and preferences within the study
area. Therefore, further studies are required to link sociologically rig-
orous subjective judgements on landscape preferences and values to the
suggested model.

Our findings are predominantly theory-driven, rather than locally
oriented; therefore, they are still not unimplemented in the practices of
landscape management within the study area. However, they are sig-
nificant in two respects: this case study shows that map-based results
help to recognise those landscape classes and patches that contribute to
the increase in the overall scenic resources of the park. What is more,
the sustainability of the land use practices could be verified with this
map-based method, as agricultural areas within the study area are co-
herent to a various extent. Similar case studies, utilising mapping the

Fig. 8. Physiognomic classes (mapped on the Fig. 2) ranged concerning the degree of landscape coherence. The decrease in landscape coherence predominantly
corresponds to the urban fabric, bare rocks and irrigated land, as well as gentle slopes.
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extent of landscape coherence (Uuemaa et al., 2008; Mander et al.,
2010; Martín et al., 2016, 2018) did not examine their methods in the
context of scenic preferences, their methodology is rather ecological
while our model utilises psychological premises for GIS-analysis.

The results of this research contribute to filling the gap between
GIS-based landscape metrics of diversity (complexity) and objective
landscape coherence estimations, capturing the landscape pattern sys-
tematicity and legibility for the observer as a function of physiognomic
diversity. The results themselves are not surprising, but they support a
suggested GIS-based indicator of landscape coherence, making it op-
erational and applicable to landscape character assessment. In contrast
to other findings (de la Fuente de Val et al., 2006; Martín et al., 2016,
2018), the viewsheds with the highest score are those with the highest
degree of landscape heterogeneity, so the homogeneity of landscapes is
unconfirmed as a factor of preferences (as related to landscape co-
herence in visual, not functional aspect). Conversely, our results suggest
the link between the landscape heterogeneity and respective coherence:
within the study area more diverse areas have higher landscape co-
herence estimations, confirming previous reports (der Jagt et al., 2014;
Martín et al., 2016; Kuper, 2017). Consequently, the applicability of
suggested index to areas, homogeneous in orographic or land cover
relations (for instance, in Estonia, the Netherlands, or desert countries
in Africa) is still high, while requiring much more detailed GIS data of
very fine spatial resolution. Moreover, we neglected soil diversity in
this study, although it is an inherent part of landscape pattern (Antrop
and Marc, 2000). Unexpectedly, agricultural areas, located in steep
slopes and valley bottoms, obtained the highest landscape coherence
scores. We explain this by traditional land use and low level of agri-
cultural intensification, typical for Peneda-Gerês NP, as well as active
geochemical migration and deposition of sediments and soils on such
landforms. Low intensity agriculture, though, is discussed as con-
tributing to the landscape diversity (Mander et al., 1999).

In addition, there is one conceptual question that has been raised:
since landscape is often referred to as a purely cognitive construct,
capturing the organisation of environment, perceived visually, and this
research was focused on physiognomy of the Earth (mosaics of land-
forms and land cover), the obtained index of landscape coherence
should be more correctly named as index of physiognomic coherence.
However, given some etymological and historical aspects of the notion
of landscape (Antrop, 2000), the European Landscape Convention
(Council of Europe, 2000) and some fundamental studies (Bell, 2012),
do not distinguish landscapes as purely mental patterns or purely
physical entities. Moreover, some studies within moderate, holistic
approach recognise both the perceptual and cognitive specifics of
physical landscape observation (Antrop and Van Eetvelde, 2017). In
this way, following this mainstream consensus in landscape ecology
regarding landscapes as physical phenomena, perceived visually, we
tend to keep the name of the suggested indicator as the index of
landscape coherence. It does not mean, though, that coherence as an
aesthetical category can be trivialised to simple GIS-based operation.
Landscape coherence is emerging as a cognitive feature of a person,
observing the visual environment; it is a subjective feeling. Therefore,
many more studies should be done to examine different holistic effects
of landscape as a whole compared to the sum of its components. For
example, landscape metrics of diversity include Shannon information
entropy, which does not have a feature of additivity, proper to Hartley
entropy, so the ratio, presented and discussed in this paper, is not the
case for Shannon-based estimations. Shannon information entropy may
capture not only the variety of landscape classes or patches, but also
indicate the evenness of their distribution as a factor of landscape
legibility.

Furthermore, papers, extracting landscape values from location-
based social media, such as Flickr, Panoramio (recently closed) or
Instagram (with a recently closed API for external developers), suggest
accessibility as one of the main factors, determining the spatial pattern
of landscape photographing (van Zanten et al., 2016). The

infrastructural accessibility is beyond the scope of this study, even
though some of its effects could be interpreted regarding multi-
functionality and diversity of landscape. For example, “brown” infra-
structure, such as roads and ways (often with roadside disperse settle-
ments) adds to the visual landscape diversity, increasing variety of
possible people’s activities (such as travelling, eating at cafes, shopping,
visiting relatives) and modifying organisation of natural landscape. In
this way, the suggested indicator indirectly considers the presence of
human-made infrastructure and settlements as a factor, affecting in-
dividual decisions to take photographs or visit particular places.
Nevertheless, since in the National Park Peneda-Gerês roads are de-
signed predominantly following the valley bottoms and, in this way,
physical conditions within the park determined the roads distribution
and the respective vistas, roads provide a significant bias for spatial
analysis of photographs in this area.

4.2. Data quality and processing

Adequacy of the estimation of diversity metrics is influenced by the
size of a floating circle (other names are sliding or moving window or
kernel), since diversity is calculated within the neighbourhood of each
pixel in the image. In this way, the choice of the floating window is a
choice of the scale of the resulting map. On the one hand, the floating
window of a larger size reflects the properties of spatial homogeneity of
larger landscape patches, while the impact of the separate pixels on the
resulting image decreases, as well as the spatial resolution of the pat-
tern. However, the small floating window may not provide a sufficient
amount of statistical information for the adequate characterisation of
the land cover objects (Kolodnikova and Protasov, 2004). Too-large
floating windows can skew the results because of the impact of the
edges of the land cover patches and the initial image itself. Authors
have demonstrated that floating window of approximately 20 × 20
pixels is the best applicable to the textural processing of the land cover
elements, such as crop fields, pastures, and forested areas (Potapov,
2003). Based on the cited papers, the floating window size in this study
was designed as 33-pixel-wide circle, close to 1 km in diameter.
Nevertheless, there is a wide variety of potential options for more ac-
curate processing of landscape models, depending on local landscape
character, for example using various diameters of the moving windows
to capture multiscale landscape heterogeneity.

What is more, landscape metrics are discussed to be very sensitive to
the data quality, and extreme values (outliers) may occur due to the
specifics of computational algorithms. In our study, the use of a floating
circle approach caused an indication of surprisingly linear patterns of
Hartley entropy scores. Also, the quality of the classification of land
cover and relief along with relatively low quality of ALOS digital sur-
face model and geospatial accuracy of Flickr content, used for viewshed
analysis, may bias this research. To address the problem of over dif-
ferentiated patterns of coherence and cumulative viewsheds, as well as
to reduce the effects of the data quality, mapping landscape coherence
was conducted within more generalised physiognomic patches and
classes. Depending on the parametric principles of physiognomic clas-
sification (TPI landform classification and CORINE land cover in our
study) and extent of generalisation, different patterns may appear, so
the respective choices affect the results. Also, our results of measure-
ments of Hartley entropy are based on the landscape and land cover
categories, as well as on the classes of elementary landforms, not on the
patches or spatial facets themselves. It is important to bear in mind the
possible bias also in the field survey responses since the obtained scores
of scenic values are affected by subjective impressions, personal back-
ground, gender, age and motivation of the respondents, which were not
taken into consideration.

5. Conclusions

The purpose of the study was to substantiate a new GIS-based
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indicator of landscape coherence as an informational concept and test
its usability and effectiveness with a comparison to the spatial pattern
of the most frequently photographed areas (represented as cumulative
viewsheds). Our results indicate that interpretation of landscape co-
herence as a degree of systematicity and organisation of visible en-
vironment can be successfully implemented in the GIS analysis based on
psychological concepts of landscape appreciation. Thereby, our results
contribute to the existing knowledge on how the GIS-based indicators
could be used in the landscape aesthetics domain. The second major
finding was that the spatial pattern of the most photographed areas of
the National Park Peneda-Gerês has a statistically significant positive
relationship with the spatial pattern of landscape coherence index. The
extent of landscape coherence estimated with the suggested GIS-driven
approach (with digital landscape model of the physiognomic situation
within the study area) could be considered as positively influencing the
decision to take photographs within the particular physiognomic
landscape patches and classes. Urbanised areas and bare rocks, gentle
slopes have the lowest landscape coherence content.

The most important limitations of the study are the classification
and scale decisions. Accuracy and generalisation of the digital land-
scape model used in this research, affect the resulting maps. In addition,
validation of the research was limited due to the various content of the
user-uploaded photographs from the location-based social media and
ignoring the photographic data from outside the study area.
Notwithstanding these limitations, the study suggests that proposed
GIS-based indicator of landscape coherence, computed and mapped in
the described way, could be further linked to behavioural data and
perception-based indicators to inform decisions in land use planning,
landscape management and nature protection.

Landscape management and planning would benefit from a wider
implementation of the interdisciplinary GIS-based and environmental
psychology-inspired methods, combining the advantages of both.
Environmental psychology, widely utilising the concept of landscape
coherence, recently provided us with a relevant theoretical and statis-
tical base on how people perceive and appreciate the harmony of
landscape. GIS- and remote-sensing techniques provide experts with a
cost- and time-effective toolkit of estimation and mapping the extent of
landscape coherence for different scales, from local to global. Our re-
sults, while preliminary, suggest that our indicator of landscape co-
herence along with other map-based indicators of landscape harmony
(Karasov et al., 2018) could be a successful predictor of the people’s
preferences in the visual environment, promoting adequate decision-
making in landscape protection, conservation and recreation planning,
landscape design. Such indicators can complement relatively con-
troversial and effort-consuming psychological surveys, as well as pos-
sibly vague expert opinions.

Further studies need to be conducted to validate the proposed index
of landscape coherence within different study areas, various environ-
mental settings and physiognomy, with multitemporal GIS and remote
sensing data. Content-wise, image recognition techniques or manual
tagging and classification should be used to extract only meaningful
user-generated content from the location-based social media. Moreover,
since the proposed method is based on general principles of the in-
formation theory, its application can be extended to all spatial models,
where the holistic effects (for example, system emergence) are ex-
plored. As Hartley information entropy is only a particular case of
Shannon information entropy for equiprobable units of study, there is a
definite need to examine the mathematical opportunities for im-
plementation of Shannon information entropy for the computation of
landscape coherence index. The study will further continue with an
examination of the main factors of spatial organisation of landscape
coherence extent. The findings of this study have some important im-
plications for future practice – for example, in the design of aestheti-
cally attractive visual landscapes of high visual capacity and resilience,
as well as for purposes of landscape management, protection and nature
conservation.
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Abstract: Social media continues to grow, permanently capturing our digital footprint in the form
of texts, photographs, and videos, thereby reflecting our daily lives. Therefore, recent studies are
increasingly recognising passively crowdsourced geotagged photographs retrieved from location-based
social media as suitable data for quantitative mapping and assessment of cultural ecosystem service
(CES) flow. In this study, we attempt to improve CES mapping from geotagged photographs by
combining natural language processing, i.e., topic modelling and automated machine learning
classification. Our study focuses on three main groups of CESs that are abundant in outdoor social
media data: landscape watching, active outdoor recreation, and wildlife watching. Moreover,
by means of a comparative viewshed analysis, we compare the geographic information system- and
remote sensing-based landscape organisation metrics related to landscape coherence and colour
harmony. We observed the spatial distribution of CESs in Estonia and confirmed that colour
harmony indices are more strongly associated with landscape watching and outdoor recreation, while
landscape coherence is more associated with wildlife watching. Both CES use and values of landscape
organisation indices are land cover-specific. The suggested methodology can significantly improve
the state-of-the-art with regard to CES mapping from geotagged photographs, and it is therefore
particularly relevant for monitoring landscape sustainability.

Keywords: cultural ecosystem services; automated image recognition; natural language processing;
topic modelling; landscape coherence; colour harmony

1. Introduction

Almost 50 years ago, in the 1970s, Philippe Saint-Marc interpreted the outdoor environment
as a social service supporting a good quality of life and public well-being [1]. Ever since then, this
logic has been elaborated upon with the concept of cultural ecosystem services (CESs) [2,3] and a
geographic perspective connecting the ecosystem (landscape) structure and functions with benefits and
values [4]. Accordingly, the capacity of landscapes to provide CESs among other ecosystem services
is now considered a prerequisite for landscape sustainability in connecting the Earth’s patterns and
processes to individual values and preferences [5–7].

However, CESs have proven difficult to quantify, and consequently they are difficult to manage.
Therefore, many authors have discussed CESs in the context of metrics, including economic assessment
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and quantitative mapping [8–12]. Currently, having a proper understanding, quantitative assessment,
and an incorporation of CES into decision-making processes is considered crucial for achieving
sustainable development goals and other policy targets [13–16]. The most advanced approach to the
classification of the CES is being developed in the Common International Classification of Ecosystem
Services (CICES) [17]. Our work examines, in the Estonian context, the following classes of CESs
according to the CICES:

a) characteristics of living systems that enable aesthetic experiences (experiencing landscape beauty,
passive recreation);

b) characteristics of living systems that enable activities promoting health, recuperation, or enjoyment
through active or immersive interactions (active outdoor recreation); and

c) characteristics of living systems that enable activities promoting health, recuperation, or enjoyment
through passive or observational interactions (e.g., watching organisms: plants, animals and
mushrooms).

The vast majority of CES assessments are based on surveys, interviews, participatory mapping,
workshops, and other kinds of offline engagements with pre-selected individuals, such as local
communities, key stakeholders, or experts [8,18–20]. However, the last two decades have seen a
growing trend towards crowdsourcing applications in this field. In particular, the use of publicly
available location-based social media (LBSM) data—mainly geotagged photographs—stored in online
photo repositories (Flickr and Panoramio), applications (Instagram and Strava), and social networks
(VK.com and Twitter) has proliferated [21]. Passively crowdsourced digital footprint has been
used for (a) the assessment of touristic place visitation rates [22], (b) mapping landscape values
across spatial scales [23,24], (c) mapping landscape aesthetic flow [25], (d) analysing spatial CES
distributions [12,26], etc.

However, the amount of geotagged data in the online repositories of varying and often non-relevant
content poses an issue for content selection and classification. The most common approaches of
content analysis include manual selection [25–27] or photo-user-days mapping within the InVEST
ecosystem service models [22,28,29]. Therefore, image recognition services and machine learning
models have been gaining attention more recently. For instance, machine learning algorithms provided
by Clarifai (Clarifai Inc., New York, NY, USA) and Google Cloud Vision were recently reported to
be very promising for CES recognition and mapping [30,31], and natural language processing was
applied to categorise social media users in relation to outdoor recreation [32].

In our study, the objectives are to (a) identify and map CES use in Estonia by using a combination
of automated content image recognition and topic modelling on photos from selected social media
platforms, and (b) quantify the association between two types of landscape attributes reflecting
subjective landscape organisation, i.e., the landscape coherence and colour harmony of land cover, and
CES flow. Landscape coherence is a landscape attribute, which, according to existing reports, rather
positively influences landscape preferences by generalising order and organisation of recognisable
elements of landscape pattern [33]. It can be mapped with a geographic information system (GIS)-based
indicator in relation to photographing preferences [34]. Colour harmony is also discussed as an
important aesthetic variable of visual landscape [35] and is recently mapped with satellite imagery
and textural metrics [36], but it has received much less attention in literature compared to landscape
coherence. Suggested objective indicators of landscape coherence and colour harmony of land cover
remain understudied in the context of CES use and require testing across various environmental
settings and scales.

The paper is developed around a simple framework of CES use classification and its linkage to
landscape attributes, assessable with remote sensing- and GIS-based indicators. Section 2 justifies the
study area choice and introduces the methods used to extract knowledge on CES use and landscape
attributes from geolocated photographs and GIS data, respectively. Section 3 presents the results of
CES use mapping in relation to the GIS- and remote sensing-based indicators, as well as land cover
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types. Section 4 discusses the results in the wider context of added research value compared to existing
research papers. Section 5 concludes with the main findings and directions of further work.

2. Materials and Methods

2.1. Study Area

According to DataReportal, 98% of Estonians are Internet users to some extent, and 57% are active
users of social media [37]. This high level of Internet penetration, combined with a well-developed
touristic policy and infrastructure, as well as the significant share of the Russian-speaking community in
the total population (VK.com is based in Russia) render Estonia a good study area for social media and
CES-related studies. Moreover, the diverse environmental conditions and numerous protected areas in
Estonia enhance opportunities for analyses from geographic and nature conservation perspectives.

2.2. Mapping of Cultural Ecosystem Service (CES) Represented in Social Media in Estonia

To test the applicability of topic modelling for CES identification and classification, we used
geotagged photo-series analysis [38], retrieving metadata by means of application programming
interface (API) calls (including geographic coordinates, user and photo ID, date of taking, web-links to
photographs) for publicly available images uploaded to Flickr.com and VK.com services from 2015 to
2018. Flickr and VK.com continue to provide access to their non-private geolocated content, while
Panoramio discontinued its service and Instagram has not shared its data with third parties since 2015.
We additionally used the GIS-data for buildings in Estonia [39] to remove the metadata for indoor
photographs. In total, metadata for 21,242 geographically outdoor photographs were retrieved and
combined into a single dataset. We then applied content image recognition to these photographs with
automated Python API requests to Clarifai’s service (Clarifai Inc., New York, NY, USA). We used the
general model with a cut-off greater than 90% for the probability that the tag is correct.

We then tested topic modelling (Latent Dirichlet Allocation (LDA) algorithm) implemented in the
Orange data mining software [40] to classify the tags into a number of topics and deleted the irrelevant
ones (assuming that photographs sharing the same tags represent the same “topic”). As a result, the
pre-processed dataset consisted of 9983 photographs. After some initial testing, we decided on three
topics for the LDA analysis. The LDA algorithm was useful in two aspects: (a) identification of the
non-relevant photographs (for example, we removed the photographs, sharing topics of tags related to
driving and cars, indoor design, architecture, fashion and beauty, military service) and (b) identification
of the relevant topics in the rest of the photographs’ tags.

As the LDA algorithm calculates the probability score, indicating the likelihood of the set of tags
for each photograph belonging to each topic, we assumed that the assigned photographs belong to the
topic with the highest probability score. Owing to the potential overlap with this fuzzy distinction
between the topics of each photograph, we decided to post-process the results manually by interpreting
the context of each photograph in addition to its content. For instance, photographs of pets were
transferred from the topic of wildlife watching to outdoor recreation, and photographs with a minor
presence of people or their recreation-related equipment were moved from landscape watching to
outdoor recreation. We devised an a priori hypothesis about the small number of relevant CESs,
according to the CICES classes (3–5), and the very first test of LDA algorithm resulted in three relevant
CES-related topics. In case we applied LDA with a higher number of intended topics, some minor
subclasses of recreation appeared, but these minor classes of recreational CES are beyond the scope of
this study. We identified the following topics corresponding to the groups of CESs:

a. Landscape watching. This consists of the following tags: nature, outdoors, landscape, tree,
nobody, wood, sky, travel, water, and summer (6154 photographs; 17 manually transferred from
topic 3).
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b. Active outdoor recreation. This consists of the following tags: people, recreation, adult, fun,
man, leisure, outdoors, one, sport, and action (2345 photographs; 770 manually transferred from
topic 1, and 114 from topic 3).

c. Wildlife watching. This consists of the following tags: nature, outdoors, no one, flora, leaf, wild,
wildlife, season, animal, growth (1484 photographs; 124 manually transferred from topic 1, and
2 from topic 2).

We mapped CES use from the photo locations to examine whether people (subconsciously)
consider some selected aesthetic landscape attributes that represent landscape organisation [34,36],
and these attributes can be derived from remote sensing data [41].

2.3. Impact of Landscape Organisation on CES Use

The colour harmony of land cover is a landscape attribute often neglected in landscape studies [41]
but is potentially responsible for visual landscape quality [35] and is assessable using remotely sensed
data. We used Landsat 8 OLI cloudless summertime mosaics for the territory of Estonia with a 5 km
buffer zone pre-processed with the Google Earth Engine. The red (B4), green (B3), and blue (B2) bands,
corresponding to the natural colours band combination, were converted into the hue-saturation-value
(HSV) colour space to quantify colour harmony. We assumed that the hue and chroma (saturation in
HSV space) similarity, which is listed among the universal principles of colour harmony [42], can be
quantified for the hue and saturation raster datasets. Such assessment can be done using the grey level
co-occurrence matrix (GLCM) homogeneity index (GLCMH, Equation (1)) [43], which measures the
similarity of image pixel pairs [44] (Figure 1a,b):

GLCMH =

Ng∑

i=1

Ng∑

j=1

1

1 + (i− j)2 P(i, j) (1)

where P(i,j) is the probability of co-occurrence of pixels i and j, and Ng is the number of distinct grey
levels in the quantised image (64 in this study).
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Figure 1. Spatial distribution of the values of the landscape organisation indices: (a) grey level
co-occurrence matrix (GLCM) homogeneity for hue-saturation-value (HSV) hue component (colour
harmony index); (b) GLCM homogeneity for the HSV saturation component (colour harmony index);
(c) landscape coherence index. Higher values of colour harmony indices indicate water bodies (sea and
lakes). Higher values of landscape coherence index indicate urban areas and, particularly, complex
landscapes of Southern Eastern and Northern Estonia.
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It should be mentioned that colour harmony depends on “how strongly an observer experiences
the colours in the combination as going or belonging together, regardless of whether the observer likes
the combination or not”, (p. 551, [45]). Therefore, it is rather a component of the formal landscape
aesthetics and, in theory, does not necessarily reflect landscape preferences.

We interpret landscape coherence as a degree of order inherent to the landscape pattern that
is composed of diverse and distinct landscape elements and features [46]. Landscape coherence
is one of the classic subjective landscape attributes responsible for the emergence of landscape
values [33]. Increasing the landscape coherence extent generally leads to a moderate increase in
landscape preferences [34]. Therefore, we assess the vertical landscape coherence using the landscape
coherence index (LCI, Figure 1c, Equation (2)) proposed by Karasov et al. [34], which is based on the
concepts of the emergent theory of information, as presented by Lutsenko [47]. We calculate the LCI
within a circular neighbourhood of seven pixels for the CORINE land cover model and the Topographic
Position Index (TPI) landform classification, obtained with the respective SAGA GIS module [48].

LCI =
Ilandscape

Iland cover + Iland f orms
(2)

where LCI is the landscape coherence index; Iland cover and Ilandforms are the Hartley functions for the
land cover/land use (LU/LC) model and the TPI-based landform classification based on the digital
elevation model [43], respectively; and Ilandscape is the Hartley function for the parametric composite
(digital landscape model) of the LU/LC model and TPI-based landforms.

The landscape coherence index benefits from the feature of additivity of the Hartley function
(Equation (3)), which is a particular case of Shannon’s information entropy (Shannon diversity index):

I = nilog2m (3)

where m is the total number of observations (landscape or land cover classes, types of landforms), and
n is the number of observations in neighbourhood i.

The logic of landscape coherence calculation is based on the following assumption: for independent
landforms and land cover, the algebraic sum of the amount of information, according to the Hartley
function for landforms and land cover, will be equal for the amount of information for their parametric
composite or digital landscape model. If the landforms and land cover models, which compose the
digital landscape model, interact and are not independent, the summarised Hartley functions for
these datasets will give a smaller value than the value of the Hartley function for the pixels of a
digital landscape model. The ratio between Hartley functions for the digital landscape model and its
components highlights the extent of systematic features of landscape and can be related to landscape
preferences. Hypothetically, the increase in landscape coherence contributes to the visual landscape
quality and therefore to CES use.

We then performed a viewshed analysis, identifying the visible surface from the set of observation
points, namely the geolocations of the selected photographs from each group of CESs (see Section 2.2)
and for the same number of randomly selected locations, which serve as pseudo-absence data (Figure 2).
We used the PixScape software [49] on the European Digital Elevation Model (EU-DEM), version 1.1 [50]
with the maximum visible distance and observer height set to 5 km and 1.6 m, respectively. The median
LCI, hue homogeneity, and saturation homogeneity were calculated for each viewshed and compared
between the actual (presence) and random (pseudo-absence) geolocations using Wilcoxon’s rank-sum
test with continuity correction (see Appendix A for details), implemented in the Exploratory software
(Exploratory Inc. (Delaware US) Sacramento, CA, USA).
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Figure 2. Research workflow of the cultural ecosystem services (CES) mapping in relation to the
calculated landscape organisation indices.

3. Results

3.1. Mapping of CES Represented in Social Media in Estonia

Figure 3 presents the results of the CES mapping obtained with the application of topic modelling
(geographical coordinates of the photographs from the combined Flickr and VK.com dataset, classified
into three categories of CES groups). The clear linear patterns of the photographs highlight the main
flows of people alongside the main roads and coastlines of Estonia. The exploratory buffer analysis for
OpenStreetMap road data indicates that transport accessibility is extremely important for CES use.
To be precise, 6148 out of 6153 landscape-watching photographs, 2311 out of 2345 outdoor recreation
photographs, and 1483 out of 1484 wildlife-watching photographs have been taken no farther than
500 m from the roads and trails of all types. Although indoor photographs have been removed from the
analysis (see Section 2.2), many photographs were taken in the main cities (Tallinn, Tartu, Narva, etc.),
especially in their suburban zones. Additionally, the protected areas are conspicuous as approximately
59% of the total number of selected photographs were taken within these regions. A full list of the
protected areas is presented in the Table S1 (Supplementary Materials).

An exploratory analysis of land cover (CORINE land cover 2018, Figure 4) shows that most of
the photographs were taken in coniferous forests, agricultural areas, mixed forests, and transitional
woodland-shrub areas. All the CES groups under consideration are well represented in these land
cover classes. On the contrary, water bodies and courses, sea, peat bogs, inland marshes, and natural
grasslands are frequented more for landscape watching than for the other groups of CES. Outdoor
recreation is present in complex cultivation patterns and green urban areas. Wildlife watching
frequently occurs in broad-leaved forests and pastures. In this way, more “natural” land cover classes
are much better represented in the study datasets of passively crowdsourced photographs. However,
land, which is principally occupied by agriculture, is among the leaders in enabling CES use.
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Figure 4. CES use in Estonia encompasses (with a few exceptions) predominantly natural and semi-
natural land cover (CORINE land cover 2018). Land cover classes are ranked in order of decreasing 
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3.2. Impact of Landscape Organisation on CES Use

As is clear from Figure 5, we see that the median hue and saturation similarity values are 
remarkably higher for the actual rather non-vegetated (median value of the normalized difference 
vegetation index (NDVI) lower than 0.1) viewsheds corresponding to landscape watching and 
outdoor recreation than for the pseudo-absence viewsheds. The indicators used exhibit similar 
behaviours for the landscape watching and outdoor recreation viewsheds, whilst colour harmony 
does not seem to influence wildlife watching.

Figure 4. CES use in Estonia encompasses (with a few exceptions) predominantly natural and
semi-natural land cover (CORINE land cover 2018). Land cover classes are ranked in order of
decreasing number of landscape watching photographs.
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3.2. Impact of Landscape Organisation on CES Use

As is clear from Figure 5, we see that the median hue and saturation similarity values are
remarkably higher for the actual rather non-vegetated (median value of the normalized difference
vegetation index (NDVI) lower than 0.1) viewsheds corresponding to landscape watching and outdoor
recreation than for the pseudo-absence viewsheds. The indicators used exhibit similar behaviours for
the landscape watching and outdoor recreation viewsheds, whilst colour harmony does not seem to
influence wildlife watching.
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Figure 5. Comparison of medians of landscape coherence and harmony-based visual quality indices
for each group of CESs within viewshed areas for actual geotagged photographs (“real”) and randomly
simulated locations (“random”): (a) landscape watching; (b) outdoor recreation; (c) wildlife watching.
Boxplots are designed separately for median normalized difference vegetation (NDVI) index values for
each viewshed being higher 0.1 and lower 0.1 to present the index performance for rather vegetated
and non-vegetated area (mainly water bodies and streams). Colour harmony indices are higher for
actual CES viewsheds in the case of non-vegetated areas, while landscape coherence index is higher for
photographs of vegetated areas. The GLCM homogeneity index for the saturation of pixel pairs does
not indicate wildlife watching in any case.
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According to the Wilcoxon rank sum test with continuity correction, all the distribution differences
except for colour harmony indices for wildlife watching are statistically highly significant, suggesting
that most CES-related photographs were taken with consideration for land cover of higher colour
harmony and landscape coherence (Figure 6). It is highly likely that colour harmony values affect
landscape watching and outdoor recreation, while landscape coherence seems to have a clear
positive influence on wildlife watching and a weaker positive influence on landscape watching
and outdoor recreation.
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Figure 6. Density plots representing the results of the Wilcoxon rank sum test with continuity correction,
applied to the medians of landscape coherence and harmony-based visual quality indices for each group
of CESs within viewshed areas for actual geotagged photographs (“real”) and randomly simulated
locations (“random”): (a) landscape watching; (b) outdoor recreation; (c) wildlife watching. Significance
levels: *** p-value less than 0.001; ** p-value less than 0.01; ns—not significant. Alternative hypothesis:
two-sided. Confidence level: 0.95.

A visual exploration of land cover with regard to LCI and colour harmony indices reveals a
complementary character of the considered landscape organisation indices (Figure 7). Landscape
coherence is the highest for culturally modified land covers—urban fabric, urban green areas, and
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agricultural areas—and lower for natural areas, the minimum being observed for peat bogs and water
bodies. Colour harmony, in contrast, is the highest for water forest and peat bogs. Therefore, colour
harmony and landscape coherence extents are highly dependable on the land cover type: higher
cultural modification of landscape results in the increasing orderliness and complexity, while colour
harmony increases for homogeneous and predominantly natural (while often managed) land cover.
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4. Discussion

4.1. Mapping of CES Represented in Social Media in Estonia

Our results contribute to addressing the challenge of CES mapping by studying the relationships
among the three categories of outdoor geotagged photographs and remote sensing-based landscape
characteristics [24]. The distribution pattern of the CES-related photographs is in line with previous
findings [23] as we confirm transport accessibility and naturalness to be the main factors influencing the
probability of taking outdoor photographs [51]. Photographs from different CES groups often overlap
spatially, indicating landscape multifunctionality. Landscape multifunctionality is important for the
overall distribution of landscape values; hence, our approach can contribute to evidence-based trade-off
analyses and the detection of hotspots of cultural landscape functions through CES patterns [52,53].
There is also a synergy between our nationwide CES mappings and the ESMERALDA project [54].
Our cross-disciplinary approach, integrating bio-physical and socio-cultural methods, allows for CES
mapping and assessment across various spatial and temporal scales and is applicable to both urban
and non-urban environments.

Much of the CES use seems concentrated within nature protection areas, revealing the efficiency
and efficacy of the nature conservation policy in Estonia as well as the potential for further expansion
of protected areas, which can contribute to an increase in nature-based tourism [55]. Thereby, we
confirm the LBSM data as a valuable source of data for nature conservation as well as for CES
mapping [21,56,57].
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Our results continue the methodological approach that has been initiated in previous research [30–32].
The LDA topic modelling algorithm significantly facilitated the process of LBSM data assigned with
the content-related tags as a result of automated image recognition with Clarifai. Therefore, we confirm
that the LDA method of topic modelling is highly relevant and valuable for a rapid assessment
of cultural ecosystem services use over large areas [31]. When all the photographs representing
non-relevant topics have been removed, we applied the LDA algorithm to the relevant tags only, and
some testing showed that three topics of tags sufficiently represent their diversity and meet our needs.
The automated character of topic modelling often results in a meaningless classification, so the exact
number of relevant topics (3) was found by trial and error (while a priori we assumed that there are
just a few major CES categories). Further analysis would result in accounting for minor CES categories,
such as picnicking, cycling, or playing tennis outdoors, but such detailed classification was beyond the
scope of our study.

Obviously, the proposed methodological combination is not a complete substitute for traditional
visual content analysis; instead, it should be used as an initial procedure for CES use assessment
and followed with a quick visual verification. For example, we transferred to the outdoor recreation
category those photographs that were automatically selected for landscape watching if they contained
minor presence of people or their equipment; since presence of pets was automatically interpreted as
wildlife (the general machine learning model provided by Clarifai does not account specifically for
this distinction), we also manually moved these photographs to the category for outdoor recreation.
Photographs with minor presence of wild animals classified as related to landscape watching were
also manually transferred to the wildlife watching category.

4.2. Impact of Landscape Organisation on CES Use

In line with previous studies, landscape coherence was found to have a positive but rather weak
association with CES use in our countrywide study [34]. Vertical landscape coherence increases
for places of significant cultural modification (more legible urban and agricultural areas). Thereby,
we confirm LCI performance as indicative of the orderliness of the landscape pattern, but unexpectedly
it has a rather small impact on CES use. Wildlife watching occurs in places with higher LCI. This is
potentially because people are more likely to take photographs of animals, plants, and mushrooms
near their homes (such as green urban areas) in some understandable settings rather than in a more
natural environment. Other authors have additionally explored the hotspots of wildlife watching
near cities [29]. As some photographed areas have higher LCI, compared with the values for random
locations, signs of anthropic modification (parks, suburban areas, agricultural fields, and other elements
of cultural landscape) can be additionally important for CES use, complementing pure naturalness [58].

Colour harmony indicators (HSV hue and saturation similarities, indicated with GLCM
homogeneity) showed a larger difference between the photographed viewsheds and random
background viewsheds, suggesting that people tend to take photographs with a preference for
land covers of greater colour harmony. However, as there is an association between land cover classes
(CORINE land cover 2018) and colour harmony, the bias may be caused by the effect of the land cover
itself; for instance, sea, water bodies, forests, and peat bogs additionally have powerful intrinsic and
other values. Therefore, our results should be treated with caution, and colour harmony mappings
should contribute to the general understanding of landscape rather than perform as the standalone
indicators of landscape preferences.

4.3. Other Sources of Bias

It is most likely that elderly persons and children are the least represented age strata in LBSM.
However, Flickr and VK.com were launched in 2004 and 2006, respectively, and have become very
popular among diverse user groups, while general Internet penetration in Estonia is growing also [59].
We can expect that in the coming years, LBSM social media will become more orientated towards elderly
people owing to the regular ageing of active Internet-users. Unfortunately, the LBSM data—unlike



180

Land 2020, 9, 158 12 of 17

surveys—provide little or no information on the individuals’ sex and gender, age, education level,
family status, ethnic origin, etc. Nevertheless, the LBSM data are free from some survey-specific issues,
such as recollection and mind biases, which occur owing to intrusive surveying [52,60]. Therefore,
in our opinion, social media data provide added value to CES studies.

5. Conclusions

Our results are based on photographs uploaded to the social media sites, Flickr and VK.com,
which can be used to represent the actual use of some CESs (landscape watching, outdoor recreation,
and wildlife watching), and are linked to spatial landscape indices in Estonia. Their spatial analysis
enables a better understanding of the geographic organisation of the environment and its potential for
providing CES and supporting nature appreciation in an urbanised society [61]. Evidence from our
study suggests that social media users prefer taking photographs of landscapes and outdoor activities
in areas with greater colour harmony, whilst landscape coherence is linked strongly only to wildlife
watching and, to a lesser extent, other CESs.

Topic modelling significantly reduced the time needed for the content analysis of the photographs,
and our CES mapping depends on the quality of this automated image content analysis. Therefore,
future research could be targeted towards comparing different machine learning algorithms and
including the temporal component. The suggested methodological combination of machine learning
and natural language processing algorithms advances the existing common methods of CES assessment
based on passively crowdsourced photographs, and it is sufficiently robust to be applied across the
regional, continental, and global scales. In turn, the test of GIS-based landscape organisation metrics in
relation to CES use shows that they can also facilitate the prospects of rapid and reliable landscape
visual quality assessment up to the global scale, which does not depend on local subjective landscape
evaluations and complements regional landscape character assessment. Drawbacks of the approach
are related to the representativeness of the social media data as a source of knowledge about CES
use and also to limitations of the GIS and remote sensing applicability for physio-gnomic landscape
research. Notwithstanding, we have demonstrated that the combined usage of LBSM data, automated
image recognition, natural language processing, satellite imagery, and GIS data is highly relevant for
evidence-based ecosystem management and nature protection.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-445X/9/5/158/s1,
Table S1—Number of CES-related photographs per protected area.
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Results of the applied statistical analysis (Wilcoxon rank sum test with continuity correction) for
median values of landscape organisation metrics within the viewsheds based on CES-related and
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randomly generated geolocations. The landscape coherence index was rescaled (0; 1) to meet the scale
of colour harmony estimations in Results.

Table A1. Summary statistics.

Indicator U Statistic p Value Difference Conf High Conf Low

Landscape watching
GLCM homogeneity hue 14,795,531.5 9.88 × 10−98 −0.061 −0.055 −0.068

GLCM homogeneity saturation 14,594,742.5 2.91 × 10−107 0.017 −0.015 −0.018
Landscape coherence index 16,273,215.5 2.01 × 10−41 −0.033 −0.029 −0.039

Outdoor recreation
GLCM homogeneity hue 2,356,245 2.21 × 10−17 −0.032 −0.024 −0.040

GLCM homogeneity saturation 2,293,880 8.59 × 10−23 −0.011 −0.008 −0.013
Landscape coherence index 2,280,950.5 5.18 × 10−24 −0.035 −0.029 −0.042

Wildlife watching
GLCM homogeneity hue 1,140,081 0.095 0.007 0.015 −0.001

GLCM homogeneity saturation 1,168,362 0.004 0.004 0.006 0.001
Landscape coherence index 898,071.5 3.34 × 10−18 −0.037 −0.029 −0.046

Table A2. Detailed statistics.

Indicator Type
Number

of
Rows

Mean Confidence
Low

Confidence
High

Standard
Error of
Mean

Standard
Deviation Minimum Maximum

Landscape watching
GLCM

homogeneity hue random 6153 0.20 0.20 0.20 0.00 0.12 0.01 1.00

GLCM
homogeneity hue real 6153 0.31 0.30 0.31 0.00 0.23 0.00 0.93

GLCM
homogeneity

saturation
random 6153 0.13 0.13 0.13 0.00 0.08 0.01 1.00

GLCM
homogeneity

saturation
real 6153 0.24 0.24 0.24 0.00 0.21 0.00 0.93

Landscape
coherence index random 6153 0.42 0.41 0.42 0.00 0.16 0.00 0.87

Landscape
coherence index real 6153 0.47 0.47 0.48 0.00 0.14 0.00 1.00

Outdoor recreation
GLCM

homogeneity hue random 2345 0.21 0.21 0.21 0.00 0.13 0.00 1,00

GLCM
homogeneity hue real 2345 0.31 0.30 0.32 0.01 0.25 0.00 0.96

GLCM
homogeneity

saturation
random 2345 0.09 0.09 0.10 0.00 0.09 0.00 1.00

GLCM
homogeneity

saturation
real 2345 0.20 0.19 0.20 0.00 0.22 0.01 0.90

Landscape
coherence index random 2345 0.44 0.43 0.44 0.00 0.15 0.00 0.87

Landscape
coherence index real 2345 0.49 0.49 0.49 0.00 0.12 0.00 1.00

Wildlife watching
GLCM

homogeneity hue random 1484 0.20 0.20 0.21 0.00 0.14 0.00 1.00

GLCM
homogeneity hue real 1484 0.23 0.22 0.24 0.00 0.19 0.01 0.96

GLCM
homogeneity

saturation
random 1484 0.13 0.12 0.13 0.00 0.11 0.01 0.94

GLCM
homogeneity

saturation
real 1484 0.16 0.15 0.16 0.00 0.17 0.00 1.00

Landscape
coherence index random 1484 0.44 0.43 0.45 0.00 0.16 0.00 0.80

Landscape
coherence index real 1484 0.48 0.48 0.49 0.00 0.15 0.00 1.00
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Starič, A.; et al. Orange: Data mining toolbox in python. J. Mach. Learn. Res. 2013, 14, 2349–2353.

41. Karasov, O.; Külvik, M.; Burdun, I. Deconstructing landscape pattern: Applications of remote sensing to
physiognomic landscape mapping. GeoJournal 2019, 1–27. [CrossRef]

42. Ou, L.-C.; Yuan, Y.; Sato, T.; Lee, W.-Y.; Szabó, F.; Sueeprasan, S.; Huertas, R. Universal models of colour
emotion and colour harmony. Color Res. Appl. 2018, 43, 736–748. [CrossRef]

43. Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst.
Man. Cybern. 1973, 6, 610–621. [CrossRef]

44. Hall-Beyer, M. GLCM Texture: A Tutorial v. 3.0. Available online: https://doi.org/10.13140/rg.2.2.12424.21767
(accessed on 17 May 2020).

45. Schloss, K.B.; Palmer, S.E. Aesthetic response to color combinations: Preference, harmony, and similarity.
Atten. Percept. Psychophys. 2011, 73, 551–571. [CrossRef]

46. Antrop, M.; Van Eetvelde, V. Basic Concepts of a Complex Spatial System. In Landscape Perspectives:
The Holistic Nature of Landscape; Springer: Dordrecht, The Netherlands, 2017; pp. 81–101.

47. Lutsenko, E.V. Conceptual principles of the system (emergent) information theory and its application for the
cognitive modelling of the active objects (entities). In Proceedings of the IEEE International Conference on
Artificial Intelligence Systems, ICAIS, Divnomorskoe, Russia, 5–10 September 2002; Institute of Electrical
and Electronics Engineers Inc.: Piscataway, NJ, USA, 2002; pp. 268–269.

48. Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J.
System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007.
[CrossRef]

49. Sahraoui, Y.; Vuidel, G.; Joly, D.; Foltête, J.C. Integrated GIS software for computing landscape visibility
metrics. Trans. GIS 2018, 22, 1310–1323. [CrossRef]



185

Land 2020, 9, 158 17 of 17

50. Copernicus Land Monitoring Service EU-DEM v1.1—Copernicus Land Monitoring Service. Available
online: https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1?tab=metadata (accessed on
13 September 2018).

51. Van Berkel, D.B.; Tabrizian, P.; Dorning, M.A.; Smart, L.; Newcomb, D.; Mehaffey, M.; Neale, A.;
Meentemeyer, R.K. Quantifying the visual-sensory landscape qualities that contribute to cultural ecosystem
services using social media and LiDAR. Ecosyst. Serv. 2018, 31, 326–335. [CrossRef]

52. Ghermandi, A.; Sinclair, M. Passive crowdsourcing of social media in environmental research: A systematic
map. Glob. Environ. Chang. 2019, 55, 36–47. [CrossRef]

53. Cao, Y.; Wu, Y.; Zhang, Y.; Tian, J. Landscape pattern and sustainability of a 1300-year-old agricultural
landscape in subtropical mountain areas, Southwestern China. Int. J. Sustain. Dev. World Ecol. 2013, 20,
349–357. [CrossRef]

54. Burkhard, B.; Maes, J.; Potschin-Young, M.B.; Santos-Martín, F.; Geneletti, D.; Stoev, P.; Kopperoinen, L.;
Adamescu, C.M.; Adem Esmail, B.; Arany, I.; et al. Mapping and assessing ecosystem services in the
EU—Lessons learned from the ESMERALDA approach of integration. One Ecosyst. 2018, 3, e29153.
[CrossRef]

55. Kim, Y.; Kim, C.K.; Lee, D.K.; Lee, H.W.; Andrada, R.I.T. Quantifying nature-based tourism in protected
areas in developing countries by using social big data. Tour. Manag. 2019, 72, 249–256. [CrossRef]

56. Tenkanen, H.; Di Minin, E.; Heikinheimo, V.; Hausmann, A.; Herbst, M.; Kajala, L.; Toivonen, T. Instagram,
Flickr, or Twitter: Assessing the usability of social media data for visitor monitoring in protected areas.
Sci. Rep. 2017, 7, 17615. [CrossRef] [PubMed]

57. Yoshimura, N.; Hiura, T. Demand and supply of cultural ecosystem services: Use of geotagged photos to
map the aesthetic value of landscapes in Hokkaido. Ecosyst. Serv. 2017, 24, 68–78. [CrossRef]

58. Martínez Pastur, G.; Peri, P.L.; Lencinas, M.V.; García-Llorente, M.; Martín-López, B. Spatial patterns of
cultural ecosystem services provision in Southern Patagonia. Landsc. Ecol. 2016, 31, 383–399. [CrossRef]

59. Statistics Estonia. The Majority of Enterprises use Information and Communication Technology (ICT)
security measures—Statistics Estonia. Available online: https://www.stat.ee/news-release-2019-111 (accessed
on 7 February 2020).

60. Dunkel, A. Visualizing the perceived environment using crowdsourced photo geodata. Landsc. Urban Plan.
2015, 142, 173–186. [CrossRef]

61. Hermes, J.; Van Berkel, D.; Burkhard, B.; Plieninger, T.; Fagerholm, N.; von Haaren, C.; Albert, C. Assessment
and valuation of recreational ecosystem services of landscapes. Ecosyst. Serv. 2018, 31, 289–295. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).



186

ELULOOKIRJELDUS

Nimi Oleksandr Karasov
Sünniaeg: 29.11.1992
E-mail oleksandr.karasov@student.emu.ee
Teaduskraad: Magistrikraad (MSc), 2015. Сучасні аспекти 

нематеріального природокористування: 
ідентифікація та оцінка ресурсів, планування 
та прогнозування (Modern aspects of  intangible 
nature use: identification and assessment of  
resources, planning and forecasting), Harkivskii 
natsionalnõi universitet imeni V. N. Karazina (V. 
N. Karazin Kharkiv National University), Ukraina. 
Juhendaja: Igor Chervanyov

Haridus:

2016-2020    PhD õpe, Põllumajandus- ja keskkonnainstituut, 
Eesti Maaülikool

2015-2016 Külalisdoktorant Minho Ülikoolis, Geograafia 
osakond (Portugal), 10-kuuline uurimisgrant

2014-2015 MSc (geograafia), Harkivskii natsionalnõi universitet 
imeni V. N. Karazina (V. N. Karazin Kharkiv 
National University), Ukraina

2010-2014 BSc (geograafia), Harkivskii natsionalnõi universitet 
imeni V. N. Karazina (V. N. Karazin Kharkiv 
National University), Ukraina

Osalemine projektides:

L180249PKKK (Töövõtuleping nr 4-5/18/40) “Ökosüsteemide ja 
nende teenuste baastasemete hindamine ja kaardistamine, sh metoodika 
väljatöötamine Keskkonnaagentuurile (19.12.2018−31.07.2020)”, 
Siiri Külm, Eesti Maaülikool, Põllumajandus- ja keskkonnainstituut, 
Keskkonnakaitse ja maastikukorralduse õppetool.



187

CURRICULUM VITAE

Name Oleksandr Karasov
Date of birth 29.11.1992
E-mail oleksandr.karasov@student.emu.ee
Academic degree Master’s Degree, 2015, (sup) Ihor Chervanyov, 

Сучасні аспекти нематеріального 
природокористування: ідентифікація та 
оцінка ресурсів, планування та прогнозування 
(Modern aspects of  intangible nature use: 
identification and assessment of  resources, 
planning and forecasting), V. N. Karazin Kharkiv 
National University.

Education

2016-2020    PhD studies at the Institute of  Agricultural and 
Environmental Sciences, Estonian University of  
Life Sciences, Estonia

2015-2016 Individual doctoral project at the Department of  
Geography, University of  Minho, Portugal

2014-2015 Master studies in Geography at the Department 
of  Physical Geography and Cartography, 
V. N. Karazin Kharkiv National Universities, 
Ukraine

2010-2014 Bachelor studies in Geography at the Department 
of  Physical Geography and Cartography, 
V. N. Karazin Kharkiv National Universities, 
Ukraine

Projects in progress

L180249PKKK (Töövõtuleping nr 4-5/18/40) “Ökosüsteemide ja 
nende teenuste baastasemete hindamine ja kaardistamine, sh metoodika 
väljatöötamine Keskkonnaagentuurile (19.12.2018−31.07.2020)”, Siiri 
Külm, Estonian University of  Life Sciences, Institute of  Agricultural 
and Environmental Sciences, Chair of  Environmental Protection and 
Landscape Management.



LA
N

D
SC

A
PE M

ET
R

IC
S A

N
D

 C
U

LT
U

R
A

L EC
O

SYST
EM

 SER
V

IC
ES: A

N
 IN

T
EG

R
AT

IV
E R

ESO
U

R
C

E-D
R

IV
EN

 
M

A
P

PIN
G

 A
P

P
R

O
AC

H
 FO

R
 LA

N
D

SC
A

PE H
A

R
M

O
N

Y
O

LEK
SA

N
D

R
 K

A
R

A
SO

V

VIIS VIIMAST KAITSMIST

LINDA-LIISA VEROMANN-JÜRGENSON
MESOPHYLL CONDUCTANCE IN GYMNOSPERMS
PALJASSEEMNETAIMEDE MESOFÜLLI JUHTIVUS

Dotsent Tiina Tosens, professor Ülo Niinemets
17. juuni 2020

MIGUEL VILLOSLADA PECIÑA
A TIERED FRAMEWORK FOR MAPPING AND ASSESSING ECOSYSTEM SERVICES 

FROM SEMI-NATURAL GRASSLANDS: EXPERT-BASED ASSESSMENTS, PROXY 
INDICATORS AND UAV SURVEYS

POOL-LOODUSLIKE KOOSLUSTE ÖKOSÜSTEMITEENUSTE KAARDISTAMINE 
JA HINDAMINE ERINEVATEL TASANDITEL: EKSPERTHINNANGUD, KAUDSED 

INDIKAATORID JA DROONIUURINGUD
Professor Kalev Sepp, professor Robert Gerald Henry Bunce, teadur Raymond Ward

17. juuni 2020

JOANNA TAMAR STORIE
WHEN PEACE AND QUIET IS NOT ENOUGH: EXAMINING THE CHALLENGES 

COMMUNITIES FACE IN ESTONIAN AND LATVIAN RURAL LANDSCAPES
KUI RAHU JA VAIKUS POLE KÜLLALT – UURIMUS KOGUKONDADE 

VÄLJAKUTSETEST EESTI JA LÄTI RURAALMAASTIKES
Professor Mart Külvik, professor Simon Bell

19. juuni 2020

LISANDRA MARINA DA ROCHA MENESES
SECOND-GENERATION BIOETHANOL PRODUCTION: STRATEGIES FOR 
SIDESTREAMS VALORISATION IN A SUSTAINABLE CIRCULAR ECONOMY

TEISE PÕLVKONNA BIOETANOOLI TOOTMINE: KÕRVALVOOGUDE 
VALORISEERIMINE JÄTKUSUUTLIKU RINGMAJANDUSE KONTSEPTSIOONIS

Professor Timo Kikas, dotsent Kaja Orupõld
24. august 2020

LAGLE HEINMAA
FACTORS AFFECTING APPLE JUICE QUALITY AND MYCOTOXIN PATULIN 

FORMATION
ÕUNAMAHLA KVALITEETI JA MÜKOTOKSIINI PATULIINI TEKET MÕJUTAVAD 

TEGURID
Dotsent Ulvi Moor, professor Eivind Vangdal

31. august 2020

ISSN 2382-7076
ISBN 978-9949-698-35-6 (trükis)
ISBN 978-9949-698-36-3 (pdf )




