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Abstract. This study documents the design and performance of a system to apply different 

magnitudes of air velocity to Japanese quail, to evaluate the combined effects of velocity, 
temperature and humidity on bird behaviour, performance and welfare. The system was 

developed to simulate observed field conditions ocurring in regions with high winds where quail 

are raised in curtain-sided housing. System performance consisted of characterizing air velocity 

distribution in cages downstream of the air velocity which was directed at the front of the cages. 

The system consisted of two fans attached to a 25 cm PVC tube, one at each end, with the outlet 

airflow directed through a continuous slot over the cage front at the feeder. The design and 

performance of this experimental system was evaluated, with six such systems were built and 

utilized in research trials. To assess system performance, air velocity was measured at 275 points 

per cage uniformly arranged along the three dimensions (length, width and height) in eight cages 

with zero, 1, 2 or 3 m s-1 nominal velocity setpoints. Spatial distribution of velocity was analysed 

by mapping and from descriptive statistics, with attention to the zone closest to the feeder where 

birds must go to eat. There was no significant difference (P > 0.05) found in mean paired 
difference of air speed data measured for pairs of front portion cages with similar velocities. A 

significant positive correlation was found (P < 0.001) between the measured air velocity at paired 

points in the cages subjected to the same velocity treatment. A comparison of measured mean air 

velocity to the nominal setpoint values used for experiments indicated that careful attention to 

outlet adjustment is important, especially at higher nominal velocity setpoint as 3 (± 0.10) m s-1 

which was difficult to achieve with the system. An example of the use of the deployment of the 

variable velocity system in controlled environment chambers with Japanese quail is provided. 
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INTRODUCTION 

 

The thermal environment comprises a complex of factors that interact and combine 
to influence the effective ambient temperature, i.e., perceived by people, poultry and 
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livestock (Curtis, 1983; ASHRAE, 2017; ASHRAE, 2019). Air temperature, relative 

humidity, air velocity, pollutant concentration and solar radiation are the main variables 

that characterize the microclimate and influence the behaviour welfare of livestock and 
poultry. According to Dhari et al. (2019), as these variables can interfere in the birds' 

comfort, the productive performance can also be strongly affected. The bird's welfare 

and performance can be severely impaired when climatic conditions and air quality are 
not within appropriate ranges (Rojano et al., 2018). Therefore, for a better understanding 

of climatic variables combination, various indices have been developed to quantify their 

impacts, e.g. effective temperature, THI and wind chill index. 

Despite all the technological progress of the Brazilian poultry sector, the thermal 
environment in which birds are housed remains one of the main factors affecting 

production performance (Vilela, 2016; Freitas et al., 2017) since the buildings are largely 

open. Thus the type of management and climatic characteristics of each region are 
important for animal facilities project planning due to environmental needs of the species 

(Santos et al., 2012), including wind direction and velocity, so that the air velocity may 

be controlled according to need. The magnitude of air velocity levels inside a building 

favours convective heat transfer between birds and air (Baêta & Souza, 2010). Within 
certain limits, air velocity and fresh air exchange control the temperature and relative 

humidity, and are critical for mitigating the negative effects caused by heat stress in birds 

(Abreu et al., 2011; Bianchi et al., 2015; Oloyo & Ojerinde, 2019). In addition to 
convection, air velocity is fundamental to evaporative cooling (Oloyo & Ojerinde, 2019). 

Blakely et al. (2007) state that the thermal variations of environment are strongly 

influenced by air velocity, significantly affecting bird performance. High air velocity 
decreases the effective temperature; thus, in cold environments the presence of air 

currents can be harmful. However, in warm environments, elevated air velocity can 

alleviate heat stress and is the basis for modern tunnel ventilation, as reported by Ruzal 

et al. (2011), that stated that high velocity (3 m s-1) positively affects hens egg production 
in hot environments. According to Dhari et al. (2019), air temperature and velocity are 

the main factors affecting the physiology and performance of broilers. Vigoderis et al. 

(2010) evaluated the influence of minimum ventilation on thermal comfort, air quality 
and broiler performance during winter, using a system consisting of three fans with a 

flow of 300 m3 min-1, positioned close to the ceiling, in parallel to the floor and blowing 

air into the shed. In these conditions, they concluded the minimum ventilation system 
significantly reduced the temperature inside the broiler house, reflecting on losses at feed 

conversion, slaughter weight, and animals’ productive efficiency. 

The annual growth in Brazilian poultry flock had an increase of 2.9% in 2018, 

highlighting in hens eggs production, with about 4.4 billion dozen produced (IBGE, 
2019). Egg production from Japanese quail (Coturnix conturnix japonica) is rapidly 

expanding in Brazil, with annual growth in the number of quails in excess of 3.9% 

between 2017 and 2018, (IBGE, 2019), with about 297.3 million dozen eggs produced. 
Therefore, in order to remain competitive, it is extremely important to pay attention to 

ventilation conditions in Brazilian poultry houses, so as not to harm the birds comfort. 

Recently, Brazilian producers have expressed concerns regarding the influence of high 

air velocity in cooler temperatures on the feeding behaviour and egg production in open 
poultry houses. Hence, one of the most interest regions for analysis of air velocity 

influence on bird’s welfare and performance is the area closest to the feeder. The 

importance of studying airflow intensity and distribution in this zone is due to its 
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influence on the animals' ingestive behaviour, which is an aspect closely related to their 

performance. In view of the importance of air velocity influence on bird welfare and 

performance, and considering the practical difficulties often encountered in 
implementing this type of experiment under field conditions, it was determined to be 

helpful to develop an air velocity control prototype for use in poultry experiments in 

controlled environments. Other systems have been developed, such as the system 
developed by Yanagi et al. (2002), for the measurement and control of temperature, 

relative humidity and air velocity to evaluate heat stress in birds. 

However, a system that provides high air velocity in a controlled fashion over the 

entire face of a birdcage, especially in the feeder zone, similar to exterior rows of cages 
in open-sided housing, is not readily available. No similar device could be found in the 

literature, prompting the design and fabrication. The objectives of this study were to: (1) 

evaluate the performance of the system to provide nominal air velocity setpoints, (2) to 
evaluate the uniformity of air velocity at common lines and heights where birds approach 

the feeder, and (3) to evaluate the repeatability of system performance between 

prototypes. 

 

MATERIALS AND METHODS 

 

Velocity Control System 
The velocity control system was fabricated from a simple length of 25cm diameter 

PVC tubing, with axial fans (Micro Motor Elgin 1⁄25 MM – 20B, 60 Hz, 11.93 W) 

mounted on each end (Figs 1–3), each capable of producing 950 m3 h-1. A 10×100 cm 
(w×l) long opening was cut along one side of each PVC tube for air to discharge (Fig. 3) 

toward the cage. Aluminium angles, 2×2×110 cm were fastened to the edges of the 

opening. This facilitated establishment of an air jet to smooth outflow of air toward the 

cage. A simple solid-state rheostat was used to adjust the fan motor speeds, hence 
volumetric flow rate and resultant discharge velocity from the tube. A total of six 

prototypes were fabricated for use in a series of research trials designed to evaluate the 

effect of velocity, temperature and humidity on Japanese quail behaviour. A typical setup 
in one of the climate chambers used is illustrated in Fig. 1. 

Four climate chambers were used, one for each nominal velocity level: 0, 1, 2, and 

3 m s-1. Individual dimensions are 3.2 m wide × 2.44 m deep × 2.38 m high, and each 
climate chamber includes equipment for heating, cooling and humidification as 

highlighted in Fig. 1. The test facilities are located in the Ambiagro group (Research 

Center of Environment and Agroindustry Systems Engineering) at the Department of 

Agricultural Engineering at the Federal University of Viçosa (Minas Gerais, Brazil). 
 

Experimental Design 

The velocity control system was designed to provide different mean velocities over 

the feeding zone of cages, simulating situations of strong winds occurrence that affect 
the batteries of cages located at the ends of opened aviaries, so that velocity effects on 

bird behaviour could be investigated. Four nominal velocity levels (setpoints) were 

evaluated: 0 m s-1; 1 m s-1; 2 m s-1 and 3 m s-1 representing still air, low, medium and 
high air velocities in the feeder area. This system provided an outflow of air from the 

tube over the feeder and into the cage. For each nominal velocity level, two cages were 

used as replicates. Fan speeds were adjusted using the average velocity readings from 



1071 

three points along the length of the tube opening, as depicted in Fig. 2, to obtain the 

desired nominal velocity setpoint values. 
 

 
 

Figure 1. Inside view of the climatic chambers, where 1 – air conditioning; 2 – air humidifier; 

3 – electronic temperature and relative humidity controller (MT-531R plus); 4 and 5 – ventilation 

tubes; 6 – air heater; 7 and 8 – cages; 9 and 10 – feeders; 11 and 12 – water tanks. 

 

 
 

 
 

Figure 2. Airflow behaviour within the PVC tubes and location of points used for fan velocity 

adjustment. 

 

A three-dimensional abstraction of the cage system was created, with the origin 

located at the right rear side of each cage (Fig. 3) with coordinates (x, y, z) referring to 
lateral, depth and height, respectively. A grid was established, consisting of 275 

points/cage within this grid, spaced equidistantly (Fig. 3). Resolution for locating these 

points was estimated to be ± 10 mm.  
The data collected within the entire cage were useful in order to characterize the 

distribution of air velocity. However, the main focus was on the velocity in the feeder 

zone, as is highlighted in Fig. 3. This zone comprises the points located in Lines 3, 4 and 
5, measured at 7 points located at the most central portion of the cage (Fig. 3, A). Two 
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heights, denoted Z0 and Z1, were established for the Line measurements. Z0 is located at 

the feeder top surface, and Z1 is approximately at the height of the birds when at the feeder. 
 

Top View 

 
 

Side View 
 

 
 

Figure 3. Schematic of cage and ventilation control system, with sampling points (275 per cage), 
Lines (3, 4 and 5) located at different distances from the feeder zone, and heights (Z0, Z1) of primary 

interest for assessing actual velocities experienced by birds at the feeder. A) Top view. Note the grid 

includes points located at the exterior of each side of the cage. Line 5 was at the feeder, Line 4 was 

spaced 40 mm further into the cage, and Line 3 was spaced 115 mm from Line 4. B) Side view, 

illustrating the location for heights Z0 and Z1 that are used to quantify system performance. 

 

1,400 mm 

1,045.85 mm 
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Air velocity was measured using a hot wire anemometer (Testo 425, TESTO INC., 

Germany) with a 7.5 mm probe diameter, measurement range of 0–20 m s-1, display 

resolution of 0.01 m s-1, and 2-s sampling frequency. Velocity measurements at each 
point were the mean of 30 individual samples taken over a 1-min period to average out 

fluctuations from turbulence. Care was taken to ensure that the probe tip was oriented 

perpendicular to the predominant velocity direction, and a single person recorded all 
measurements to control uncertainty between cages. Air temperature in the climatic 

chambers during these measurements was 24 °C, considered a comfort average 

temperature for Japanese quail. 
 

Data Analysis 

To evaluate the velocity control system performance and utility for research use, 

the collected air velocity data were analysed in two different ways. 

1) Comparisons between replicate cages subjected to the same velocity set point 
were made using a paired t-test on the mean velocity difference, and a correlations 

analysis of the collected velocity readings. 

2) Spatial distribution of air velocity in the feeder zone was mapped and plotted for 
assessment of uniformity between replicate cages and between set point velocities. 

The velocity difference between identical points in each replicate cage was 

calculated and subjected to a paired t-test to assess if measurements from two replicate 

cages were different, with the null hypothesis that mean velocity difference was zero. A 
confidence level of 5% was used. To further assess similarity (or difference) between 

replicate cages, velocity measurements between cages were subjected to correlation 

analysis. The Pearson correlation coefficient for velocity measurements between cages 
was calculated and subjected to a test of significance. 

Velocity distribution for each cage was evaluated from boxplots, and maps of 

spatial distribution were generated using the software SIGMAPLOT® v.12.0. Velocity 
distribution was analysed at two horizontal plans referring to the area close to the feeder, 

at high 55 and 142 mm above the floor. These surfaces were named Z0 and Z1, 

respectively. The velocity distribution maps were generated for each of these plans at 

each cage, in the zone near the feeder as depicted in Fig. 3. 
 

RESULTS AND DISCUSSION 
 
The two nearest lines to the feeder (Lines 4 and 5 at Z1 height), in combination, 

best represent the condition in which the birds were exposed due to the fact that they 

correspond to the zone effectively occupied by the birds during the feeding. Thus, it is 

possible to observe in Table 1 the actual air velocity to which the animals were submitted 
when approaching the feeder. The importance of studying the intensity and distribution 

of airflow near the feeder is associated with its influence on the animals' ingestive 

behaviour. Thus, Ruzal et al. (2001), studying the air velocity effect on the broilers 
performance subjected to heat stress (35 °C), concluded that birds exposed to higher air 

velocities (2.5 and 3 m s-1) obtained better results for weight gain, feed intake and feed 

conversion when compared to birds subjected to 0.5 m s-1 air velocity. Santos et al. 
(2018) studied effect of different air velocities on behaviour of Japanese quails and 

concluded that in heat stress the birds showed a higher frequency of feeding behaviour 

when subjected to high air velocities. In this same sense, Sevegnani et al. (2005), 
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working with broilers of the AgRoss strain in the final creation stage, submitted to 

different heat stress conditions, found that in general, the hotter the environment, the less 

time spent by birds in the feeder. Barbosa Filho et al. (2007), evaluating the influence of 
heat stress in laying hens of the Hy-Line Brown line housed in a cage system, observed 

a reduction of approximately 50% in the frequency of the eating behavioural pattern. On 

the other hand, when higher air velocities are used in heat stress situations, it is observed 
that the thermal environment does not significantly influence the animals’ ingestive 

behaviour, since high air velocity ranges favour the body heat exchange through the 

convection process (Baêta & Souza, 2010). 

As shown in Table 1, for the low 
and medium velocities, the actual 

mean air velocity achieved in the 

feeder zone corresponded with the 
nominal velocity for the experiment. 

For the highest velocity, the average 

actual air velocity reached in the feeder 

area was 2.3 m s-1, showing that the 
desired set point of air velocity was not 

effective. However, Vilela (2016) and 

Santos et al. (2017) showed that the 
developed system can be used for such  

 
Table 1. Relationship between air velocity set 

point and mean observed data (± standard 

deviation) for the combination of values 

obtained in lines 4 and 5 

Air velocity  

set point  

(m s-1) 

Mean observed in lines  

4 and 5 (in combination) 

(m s-1) 

1. (Low) 1.1 ± 0.09  

2. (Medium) 2.0 ± 0.22 

3. (High) 2.3 ± 0.10 
 

research because provided with the correct adjustments and considering air velocity 

levels of up to approximately 2.5 m s-1, the mean air velocity was suitable for controlled 
environments. However, for experimental velocities greater than 2 m s-1, an alternative 

for setting the nominal setpoint or an alternative design would be required, since the used 

system configuration provided air velocities approximately 23% lower than that desired 

when the setpoint (experimental velocity) was 3 m s-1. Which may end up influencing 
the behavioural and performance evaluations of poultry, associated with the air velocity 

applied on them. Vilela et al. (2019) developed a computational fluid dynamics (CFD) 

model to evaluate the performance of air velocity control prototypes designed for animal 
and, through this tool, they affirm that it is possible to carry out simulations for 

improvement of air velocity control system for ranges above 2 m s-1, optimizing 

structural designs to aim animal thermal comfort. 
Boxplots of the velocity distribution of all 275-measurement points for each cage 

by velocity combination are presented in Fig. 4. They demonstrate very consistent 

velocity distributions between replicate cages at the same set point velocity. Also 

noteworthy is a positive bias with a long tail at higher velocities, indicative of turbulent 
conditions. There is a relatively small increase in median velocities with increasing set 

point values, although upper quartile (Q3) thresholds increased with set point increase. 

The velocity distributions at each set point in Fig. 4 further indicate that the replicate 
cages behaved similarly. 

Maps of velocity distribution in the cages further illustrate the velocity distribution 

within a single cage. For brevity, only a one example of the velocity maps for the two 

cages subjected to 3 m s-1 velocity set point are provided in Figs 5–6. Clearly delineated 
in these graphs is the distribution of higher velocities towards the cage front, and over 

the feeder area in the lower levels (Z1 and Z2), with relatively calm conditions toward 

the cage backs and at higher levels (Z2 and Z3). The linear distribution across the cage 
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front is somewhat variable, with lower velocities towards the cage edges and a relatively 

broad section along the front with highest velocities. 
 

 
 

Figure 4. Boxplot of air velocity measurements at 275 locations in two replicate cages in still air 

and 3 controlled velocities. C1 and C2) Control (cages 1 and 2, still air), 0 m s-1; C3 and C4) 

Cages 3 and 4, set point 1 m s-1; C5 and C6) Cages 5 and 6, set point 2 m s-1; C7 and C8) Cages 

7 and 8, set point 3 m s-1. 

 

The highest air velocity values were concentrated in the front part of the cages, 

corresponding to the feeder zone (close to the prototype air outlet), as desired. The 
tendency was for a decrease in the intensity downstream from this region. Since the cages 

were relatively open to air circulation, part of the flow was dispersed through lateral and 

upper openings. As the air velocity influences directly the animal feeding behaviour, it 

was necessary to highlight the characteristics of the air flow and intensity in the region 
closest to the feeder, located at the air outlet of the tube. The spatial distribution of air 

velocity maps in this region are shown in Figs 5–6, for setpoint of 3 m s-1, which 

represents a ‘worst-case’ scenario for the design. 
The velocity distribution in both cases tended to be more uniform at bird head level 

(Z1), whereas, at the lower level, it was seen to diminish more rapidly with depth into 

the cage. There was a tendency to have a reduced speed on the sides of the cage. This 
was a consequence of the system design, with two opposing axial fans creating a 

substantial amount of turbulence within the tube and pushing a larger percentage of air 

out the centre 80–90% of the opening. The tendency of velocities to diminish rapidly 

with depth into the cage was also noted by Rocha et al. (2010), in which they verified 
high velocities along cage fronts in curtain sided buildings exposed to strong wind. Once 

more, the configuration of the air flow distribution and intensity can be explained by the 

system design, as it consists of a fan at each tube end, and thus, there is a tendency for 
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more intense air flow in the central outlet region. In addition, the tube length can be a 

potential factor for uniformity of air flow distribution. 
 

 

 

 

 
 

Figure 5. Velocity distribution map for the front feeding zone at the two bottom levels in Cage 7 

with velocity set point 3 m s-1; A) lowest level, Z0; B) bird head level, Z1. 

 

 

 

 

 
 

Figure 6. Velocity distribution map for the front feeding zone at the two bottom levels in Cage 8 

with velocity set point 3 m s-1; A) lowest level, Z0; B) bird head level, Z1. 

 

An assessment of the relative similarity between replicate cages at four different 
velocity controller settings is provided in Table 2, in which mean differences, standard 

deviations and probability of significant difference in mean values are tabulated. Mean 

velocities between the two replicate cages were similar (P values ranging from 0.053 to 

0.820). The magnitude of mean differences ranged from 0.0 to 0.09 m s-1 with standard 
deviations ranging from 0.02 to 0.39 m s-1. Thus, it is concluded that the replicate cages 

provided suitably similar velocity distributions for each velocity set point tested. 

However, the mean velocity for the medium and high air velocity setpoint did not 
achieve the desired values of 2 and 3 m s-1, instead averaging 1.1 and 1.6 m s-1, 

respectively. 
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Table 2. Mean (± standard deviation) of velocity measurements in replicate cages, mean  and 

standard deviation  of velocity differences between replicate prototypes, and results of a 

paired t-test for significant difference from zero. Values are for the feeding zone 

Nominal  

Air Velocity Setpoint 

Mean Velocity (m s-1) 
  tcalc P 

Prototype 1* Prototype 2* 

still air (off) 0.05 ± 0.01 0.05 ± 0.01 -0.00 0.02 -0.58 0.56n.s 

low 0.95 ± 0.69 0.93 ± 0.71 0.02 0.32 0.52 0.60n.s 
medium 1.14 ± 0.89 1.04 ± 0.75 0.09 0.39 1.97 0.05n.s 

high 1.62 ± 1.19 1.61± 1.12 0.01 0.23 0.23 0.82n.s 

* – Prototypes 1 and 2 are replicate systems; ns – not significantly different at 5% confidence;  – mean of 

paired differences;  – standard deviation of paired difference. 

 

Strong positive correlations were found in velocity at similar points in these 

replicate cages, as illustrated in Table 3. The overall correlation results for all points in 
the replicate cages (n = 275), by velocity setpoint, demonstrate excellent correlation with 

the Pearson correlation coefficients exceeding 0.9 for all three velocity set points. 

Similarly, restricting the analysis to the feeding zone produced similarly high correlation 

coefficients (0.9 to 0.98). Consequently, it was concluded that replicate cages are 
adequately similar for experimental purposes, if adjusted carefully at the outset. 

 
Table 3. Mean and standard deviation of difference in velocity measurements between replicate 

prototypes, Pearson’s correlation coefficient, and significance of correlation test 

Nominal  

Air Velocity Setpoint 

(m s-1) 

Mean  

Difference 

(m s-1) 

Standard  

Deviation 

(m s-1) 

Correlation 

Coefficient,  

r 

P 

Results for all sample points (n = 275) 

low 0.01 0.24 0.893 < 0.001 

medium 0.05 0.28 0.905 < 0.001 

high 0.02 0.19 0.976 < 0.001 

Results for all feeding zone sample points (n = 66) 
low 0.02 0.32 0.899 < 0.001 

medium 0.10 0.39 0.900 < 0.001 

high 0.01 0.23 0.982 < 0.001 

 

For purposes of analysing bird behaviour in the feeding zone, it is more practical 

to restrict the system assessment to the velocity distribution near the feeder. The feeding 
zone, as depicted previously with Lines in Fig. 3, represents velocity measured at 66 

points for the front 3 rows of measurement points and the lower two levels (Z0 and Z1). 

For the nominal velocities of 0, 1, 2 and 3 m s-1 established for each treatment, 
measured mean values by cage (Table 2) were within measurement error except for the 

3 m s-1 value which were about 1.6 m s-1. The higher air velocity was difficult to achieve 

since airflow became unstable due to turbulence generated by the design. Replicate cages 

performed very similarly (Table 2) with mean differences of 0.01 to 0.10 m s-1. 
However, the system showed to be capable of providing a reasonable range from still air 

to 1.6 m s-1. 

A further examination of the behaviour of air velocity distribution between 
replicate prototypes is of interest. Since the feeding zone is one of the most important 

for birds’ behavioural study and the points closest to the side walls did not receive the 
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same flow intensity found in the centre, a velocity analysis was performed from the three 

parallel lines closest to the cage centre (Lines 3, 4 and 5), including the seven points 

distributed within this area. The average air velocity of each Line and their respective 
range are listed in Table 4. 

 
Table 4. Mean (± standard deviation), minimum, and maximum values of air velocity for Lines 

5 (closest to air outlet), 4 and 3 (approximately where birds are located to eat) for two cages 

(Fig. 3, A). Measurements were made at two different heights Z0 (at feeder level) and Z1 

(approximately bird height) as shown in Fig. 3, B. Reported velocities are from those observed 
in each Line for two replicate cages, for three nominal air velocity setpoints representing low, 

medium and high air velocity at the feeder. Note that velocities for the combination of Z1 and 

Lines 4 and 5 are most representative of a feeding bird’s location 

Nominal  

Air Velocity  

Setpoint 
(m s-1) 

Matching  

cages 
Lines Z0 

Velocity  

range  

(min-max)  
(m s-1) 

Z1 

Velocity  

range 

(min-max)  
(m s-1) 

Low (1 m s-1) Prototype 1 3 1.02 ± 0.4 0.25–1.44 1.24 ± 0.4 0.20–1.55 

4 1.47 ± 0.3 0.92–1.97 1.17 ± 0.5 0.45–1.80 

5 1.99 ± 0.3 1.25–2.30 1.23 ± 0.6 0.4–1.95 

Prototype 2 3 1.07 ± 0.4 0.31–1.57 1.12 ± 0.5 0.24–1.76 

4 1.73 ± 0.3 1.16–2.00 1.06 ± 0.5 0.41–2.01 

5 1.96 ± 0.3 1.37–2.51 1.04 ± 0.6 0.31–2.13 

Medium (2 m s-1) Prototype 1 3 0.96 ± 0.4 0.53–1.61 2.00 ± 0.7 0.51–2.66 

4 0.93 ± 0.3 0.43–1.52 2.18 ± 1.0 0.44–3.53 

 5 0.91 ± 0.5 0.35–1.76 2.18 ± 0.9 0.47–3.17 

Prototype 2 3 1.09 ± 0.5 0.62–1.93 1.63 ± 0.5 0.65–2.13 

4 1.17 ± 0.4 0.59–1.98 1.71 ± 0.7 0.66–2.57 

 5 1.05 ± 0.5 0.52–1.88 1.91 ± 0.8 0.61–2.86 

High (3 m s-1) Prototype 1 3 1.56 ± 0.3 0.93–1.80 2.10 ± 0.7 0.62–3.03 
4 1.71 ± 0.4 1.22–2.38 2.38 ± 0.8 0.86–3.50 

5 3.62 ± 0.7 2.13–4.42 2.31 ± 1.0 0.82–4.05 

Prototype 2 3 1.66 ± 0.3 1.14–2.04 2.02 ± 0.5 0.95–2.78 

4 1.81 ± 0.5 1.15–2.50 2.33 ± 0.7 1.20–3.63 

5 3.51 ± 0.7 2.09–4.37 2.14 ± 0.8 1.01–3.65 

 

As observed in Tables 3and 4, the means for the nominal 3 m s-1 setpoint were 

substantially lower. This was true regardless of the Line and height (Z0 or Z1) evaluated, 
except Line 5. This can be attributed to the greater heterogeneity of data induced by 

turbulence as noted previously. It is found that, in this velocity, there are very low values, 

generally smaller than 1 m s-1, and the highest values are very close to 3 m s-1, which 
means averages always below the expected nominal velocity for treatment. Such 

unevenness can also be explained by the effect of turbulence. For the nominal velocities 

of 1 and 2 m s-1, the same does not occur in the Z1 height, since there was a higher 
frequency of valuesclose to and/or above the nominal expectation. This made the average 

air velocity found in these treatments consistent with the expected. 

Examples of research for which these systems were deployed are given in Vilela 

(2016), and Santos et al. (2017, 2018). To demonstrate the system’s utility, Fig. 7 
illustrates the results of a two-velocity test to determine production performance 

response to air velocity and thermal environment. The two velocities were low and high 
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(0 and 2.3 m s-1) and there were three thermal environments: thermal comfort (TC), dry 

heat stress (DHS), and humid heat stress (HHS). The following production performance 

parameters were evaluated: feed intake, water consumption, body weight variation, egg 
mass and feed conversion. 

 

 

 

 
 

 

 

 
 

 
 

 

Figure 7. Birds' productive performance (mean ±standard deviation) during the experimental 
period, under thermal comfort (TC), dry heat stress (DHS) and humid heat stress (HHS) 

environmental conditions, combined with low and high air velocities. A – Feed consumption  

(g bird-1 day-1); B – Water consumption (mL bird-1 day-1); C – Egg mass (g bird-1); Feed 

conversion (gfeed geggs
-1). 

 

There was no significant statistical influence of the different environment thermal 

conditions, of the different air velocity levels and of the interaction of these two factors 
(P > 0.05) on feed intake, egg mass and feed conversion. This result may be related to 

the imposition of discontinuous stress, where the birds returned to the thermoneutrality 

conditions at night, which may have favoured the stress recovery process. On the other 
hand, it was found that these different thermal environments significantly influenced 

water consumption (P = 0.003), representing an increase of 29% and 48% in the birds' 

consumption exposed to DHS and HHS, respectively. 
 

CONCLUSIONS 

 

The system provided mean air velocity that was greatest in the zone where birds 
are housed (Z0 and Z1), as designed. 
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Replicate cages, using different air velocity control systems, demonstrated similar 

velocity magnitude and distribution. This was further confirmed with analysis of paired 

differences in velocity between replicates and with a correlation analysis. 
Measured air velocity variation within a cage was substantial, because of the open 

nature of the cages; however, desired velocity at the feeder zone was achieved, except 

for the mean air velocity measured in the feeder zone for the 3 m s-1, where velocity 
nominal set point was 2.3 (± 0.10) m s-1. 

Comparing the mean value of the measured and predetermined air velocity for each 

treatment, there is a need for greater attention for adjusting the air outlets at higher 

velocities (e.g. at or above 3 m s-1).  
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