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Abstract. The objective of our experiment was to study the effect of mineral fertilizers, rich 

mainly in the K, Mg and S content, and compare their effect on grain yield and protein content 

of winter wheat and winter barley with fertilizer treatments without these elements. The analyzed 

fertilizer treatments were 1) Control, 2) mineral nitrogen treatment (N), 3) mineral nitrogen with 

phosphorus (NP), 4) NP with potassium, magnesium, and sulphur (NP+KMgS), and 5) NP with 

magnesium, sulphur and minor part of manganese (4%) and zinc (1%) (NP+MgSMnZn). The 

experiment was established in Lukavec experimental station (the Czech Republic) in 2013 and 

lasted until 2017. The crop rotation consisted of four arable crops: winter wheat, winter barley, 

rapeseed, and potatoes, but only winter wheat and winter barley are analyzed in this paper (grain 

yields and crude protein content). 

In comparison with the Control, the application of mineral fertilizers significantly increased grain 

yield and protein content of both kinds of cereal. Comparing mineral fertilizers, no significant 

differences were recorded between N, NP, NP+KMgS and NP+MgSMnZn treatments, showing 

that nitrogen was the most limiting factor affecting yield and protein content, and initial 

concentrations of K and Mg were suitable and capable to cover cereal’s demands. However, 
application of fertilizers has increased the K and Mg soil content and thus prevents the soil from 

the element’s deficiency, which does not has to be recognized in the early stages by visual 

observation of arable plants. The effect of the year was also significant as two out of four seasons 

were characterized by high temperatures and drought.  

 

Key words: crude protein content, grain yield, Hordeum vulgare L., magnesium, mineral 

fertilizers, potassium, sulphur, Triticum aestivum L. 

 

INTRODUCTION 

 

Nitrogen is the key nutrient significantly influencing the affectivity of water 

utilization by plants as well as accumulation and shoot-root partitioning of photo-

assimilates. Therefore, the nitrogen supply must be considered as a prime factor of crop 

production (Gonzalez˗Dugo et al., 2010). However, it is well recognized that productivity 

of nitrogen fertilizers is related not only to its doses or chemical form but also to adequate 

relationships between nitrogen and other nutrients (Fageria, 2001). Phosphorus, 

potassium, and magnesium are, together with sulphur and calcium, the most important 
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and principal plant macronutrients, directly influencing nitrogen uptake and utilization, 

and in this way the agriculture production. 

The potassium is the most concentrated ion in the plant water tissue. The role of 

potassium is connected with physiological processes affecting the growth, development, 

and protein metabolism of arable plants, although it’s not an integral part of any cellular 
organelle or structural part of the plant. According to Pettigrew (2008) the potassium is 

in plant involved in photosynthesis, assimilate transportation, enzyme activation and 

water management. Together with zinc, potassium plays a vital role in salt stress 

tolerance. It significantly minimize the NaCl˗induced oxidative stress, enhance the 
photosynthetic pigment, counteract the adverse effect of salinity, enhance activity of 

antioxidant enzymes and increase root, shoot and spike length in wheat cultivars (Jan et 

al., 2017), while its deficiency significantly reduces the plant stature (Ebelhar & Varsa, 

2000) and the number or the size of the leaves (Jordan˗Meille & Pellerin, 2004). This 
reduction is then connected with decreased production of photosynthetic assimilates. 

The average consumption of potassium fertilizers has decreased significantly in the 

Czech Republic since the Velvet revolution in 1989, which is connected with the 

transition from socialism to capitalism, and is now approximately 13 kg ha˗1 of arable 

land. The current average concentration of the potassium in the arable land of the Czech 

Republic is 253 mg kg˗1 (2012–2017), 7.5% of arable land needs intensive fertilization 

and 28% of the land needs moderate fertilization (Smatanová & Sušil, 2018). 
Magnesium is an essential element connected with activation of cellular enzymes, 

especially enzymes activating phosphorylation. Magnesium also plays a significant role 

in the signal transduction in the plant (Yu et al., 2011). The most crucial function of 

magnesium is in the formation of chlorophyll and thus plays an important role in the 

absorption of light energy required for photosynthesis. Acute magnesium deficiency can 

be recognized as chlorosis. Magnesium participating as the central atom of chlorophyll 

represents approximately one-fifth of all its plant content and is strongly bound to the 

chlorophyll. Thus, the chlorosis is a final demonstration of acute deficiency and low 

yields can be expected (Gransee & Führs, 2013). Deficiency of magnesium can occur 
because of low Mg contents in the source rocks forming the soil, because of losses from 

the soil by mobilization and leaching and because of inadequate agricultural practices 

(Gransee & Führs, 2013). The average concentration of magnesium in the Czech 
Republic is 194 mg kg˗1 and the ratio of arable land with very low concentration is 15%, 

while high and very high concentrations were recorded on 17% of arable land 

(Smatanová & Sušil, 2018). 
The sulphur is another essential element important for plant growth and structure 

elements. It is the main component of cysteine, methionine and several co˗enzymes. The 
total sulphur uptake by winter wheat is usually 15–25 kg ha-1 under non˗deficient 
situations (Zhao et al., 1999). Conventional fertilizer treatment with sulphur can increase 

the nitrogen content in the wheat organs and kernels, prolamin and total protein content 

in the kernels. On the other hand, the same treatment can also decrease the 1,000 grain 

kernels weight (Yang et al., 2007). Sulphur fertilization is also important for barley, as 

it positively modifies the hordein composition, increase malt extract and decrease malt 

hardness (Prystupa et al., 2018). The official statistical database of the Czech Republic 

does not analyze the consumption of fertilizers containing magnesium and sulphur. The 

deficiency of sulphur for arable crops was not considered as a problem during the second 

half of the 20th century as the energy industry supplied more than a sufficient amount of 
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sulphur to the atmosphere and environment. The problem with sulphur as a limiting 

factor for crop production has been recognised when mechanisms of the cleaner 

production started to be implemented to the power plants in Europe. Another shortage 

of sulphur to the environment is connected with the replacement of ammonium sulphate 

with mineral fertilizers not containing sulphur. According to Ceccoti & Messick (1994) 

the share of ammonium sulphate dropped from 7.2% in 1973 to 3% in 1991. A significant 

decrease in the plant available sulphur was recorded in the last twenty years in the Czech 

Republic. The mean concentration of the sulphur in arable soil is approximately 

15 mg kg˗1 (51.1% of the arable land), which is evaluated as a low content. A suitable 

concentration of sulphur can be found only on 8.8% of the arable land (Smatanová & 
Sušil, 2018). 

Concerning the roles of potassium, magnesium and sulphur in plants and the 

concentrations of these elements in the soil, we decided to analyze the effect of the 

application of fertilizers containing potassium, magnesium and sulphur to the most 

important cereals in the Czech Republic, wheat and barley, and analyze how these 

fertilizers affect their grain yield and protein content. 

 

MATERIALS AND METHODS 

 

Site description 

The field trial was established in Lukavec experimental station (49°33.83347', E 
14°59.38932', 625 m a.s.l.). The mean annual precipitation was 600 mm and the mean 

annual temperature was 7.0 °C in the spring of 2013, when the experiment was 
established. The type and kind of soil are sandy˗loamy Cambisol. Basic chemical 

parameters of the soil at the beginning of the experiment show Table 1. The weather 

conditions (temperature and precipitation) of each season are presented in Fig. 1. 

 
Table 1. Soil chemical properties in 2013. Soil reaction pH was measured in CaCl2 solution and 

concentrations of plant available P, K, Ca, and Mg in soil samples were extracted by Mehlich III 

reagent and determined by ICP-OES 

Soil depth pH 
P 

(mg kg-1) 
K Mg Ca 

0–15 cm      

Mean value 5.7 132 123 146 1,662 

Assessment slightly acid high suitable suitable suitable 

15–30 cm      

Mean value 5.8 148 131 147 1,751 

Assessment slightly acid high suitable suitable suitable 

 

Experimental design 

The experiment consists of four fields, the area of one field is 1,568 m2. Seven 

fertilizer treatments were evaluated in the experiment, but only five treatments are 

evaluated in this paper. The size of the experimental plot of one fertilizer treatment was 

56 m2 (7 x 8 m), including buffer strips to prevent the edge effect. The harvesting area 

for the purpose of the experiment was 24 m2 (4 x 6 m) in the plot’s central area. The crop  
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rotation consisted of potato (var. Ditta), winter wheat (var. Mulan), rapeseed 

(var. Sharpa) and winter barley (var. Nero). The experiment was established in 2013 and 

each crop was grown for four consecutive seasons. The fertilizer treatments (with four 

replications on each field) were: 1) unfertilized Control, 2) mineral nitrogen – N, 

3) mineral nitrogen with phosphorus – NP, 4) mineral NP with the addition of 

magnesium and sulphur (NP+KornKali) – NP+KMgS, and 5) mineral NP in 

combination with magnesium, sulphur and micronutrients (NP+Kieserite and EPSO 

Combitop) – NP+MgSMnZn. 

The mineral nitrogen was applied as ammonium nitrate, phosphorus as 

diammonium phosphate, potassium as KornKali (40% K2O, 6% MgO, 4% Na2O and 

12.5% SO3). The Kieserite consists of 27% MgO and 55% of SO3. The EPSO Combitop 

consists of 13% MgO, 34% SO3, 4% of Mn and 1% of Zn. 

The dose of nitrogen was 150 kg ha˗1 for winter wheat and 100 kg ha˗1 for winter 

barley. Phosphorus was applied at a dose of 50 kg ha˗1 (P2O5) and potassium at a dose of 

80 kg ha˗1 (K2O). Magnesium was applied at a dose of 12 kg ha˗1 in the NP+KMgS 

treatment and 26 kg ha˗1 in the NP+MgSMnZn treatment. The foliar application of EPSO 

Combitop (NP+MgSMnZn treatment) was done in three dressings (3 x 15 kg ha˗1) at the 

BBCH stages 15, 30 and 49. The cereal’s straw was removed from the field after the 
harvest. The doses of applied mineral fertilizers and scheme of fertilizer application 

dressings are shown in Table 2 and 3. 

 
Table 2. Doses of mineral nutrients (kg ha-1) applied to the winter wheat and winter barley in the 

analyzed fertilizer treatments 

Fertilizer 

treatment 

N  

(kg ha-1) 

P2O5  

(kg ha-1) 

K2O  

(kg ha-1) 

MgO  

(kg ha-1) 

SO3 

(kg ha-1) 

Mn 

(kg ha-1) 

Zn 

(kg ha-1) 

Control 0 0 0 0 0 0 0 

N 150 (100*) 0 0 0 0 0 0 

NP 150 (100*) 50 0 0 0 0 0 

NP+KMgS 150 (100*) 50 80 12 25 0 0 

NP +MgSMnZn 150 (100*) 50 0 20 + 5.9 41 + 15.3 1.8 0.45 

* – winter barley. 

 

Table 3. Scheme of dressings of mineral fertilizers applied to the winter wheat and winter barley 

Nutrients Basal 1st dressing 2nd dressing 3rd dressing 

N  

(ammonium 

nitrate) 

15 kg N  

from DAP 

The beginning  

of tillering  

(BBCH 21)˗50%* 

The phase of  

stem elongation  

(BBCH 30)˗30%* 

The phase of ear 

emergence  

(BBCH 51)˗20%* 

P2O5 (DAP) Before sowing    

K2O (KornKali) Before sowing    

MgO (Kieserite)  Together with  

the first N app. 

  

MgO 

(EPSO Combitop 

3 x 15 kg ha-1) 

 Autumn 

(BBCH 15) 

The phase of stem 

elongation  

(BBCH 30) 

The phase of early 

ear emergence 

(BBCH 49) 

* – ratio of the applied nitrogen. 
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Analytical methods 

The soil’s value of pH was determined in the CaCl2 solution, soil’s available 
nutrients were determined according to the Mehlich III method, followed by ICP-OES 

analysis. Winter wheat and barley crude protein content was analyzed according to the 

Kjeldahl method (ČSN EN ISO 20483). 
 

Data analysis 

All statistical analyses were performed using STATISTICA 13.3 software 

(www.StatSoft.com). The effect of treatment, year and treatment*year was analyzed by 

one˗way and factorial ANOVA. After obtaining significant ANOVA (MANOVA) 
results, the Tukey HSD post hoc test was applied to determine significant differences 

among individual treatments and years. 

 

RESULTS AND DISSCUSSION 

 

Soil analysis 

The value of pH and the concentration of P, K, Ca and Mg (mg kg˗1) in the soil at 

the end of the experiment (2017) show Table 4. The table shows two pH values and 

elements concentrations as the soil analyses were performed on each field following the 

harvest of winter wheat (WW) and winter barley (WB). The concentration of P decreased 

at the end of the experiment in all treatments. Concentrations of K and Mg slightly 

increased during the time, which could be a partial contribution of mineral fertilizers 

containing these elements. The concentration of Ca fluctuated over the fertilizer 

treatments. Unfortunately, the results of the concentration of S in the soil at the end of 

the experiment are not available. 

 
Table 4. Soil chemical properties in 2017 (0–15 cm) after completing the field experiment 

Fertilizer  

treatment 

pH 
P K Mg Ca 

(mg kg-1) 

WW* WB** WW WB WW WB WW WB WW WB 

Control 6.5 5.9 131 96 182 198 1,958 1,685 180 177 

N 6.4 6.0 108 92 141 161 1,896 1,616 165 165 

NP 6.1 6.0 129 111 188 175 1,726 1,577 151 165 

NP+KMgS  6.0 5.8 106 119 213 191 1,642 1,373 151 147 

NP+MgSMnZn 5.7 5.8 95 121 198 253 1,339 1,562 147 163 

* – winter wheat; ** – winter barley. 

 

Grain yield 

The winter wheat GIY was significantly affected by fertilizer treatment (p < 0.001), 

conditions of the year (p < 0.001) and by treatment*year interaction (p < 0.001). 

According to MANOVA results, the fertilizer treatment was the major factor influencing 

GIY by 67%. Weather conditions of each year influenced GIY by 30% and 

treatment*year interaction by 3%. The lowest GIY were recorded in the Control 

(3.59 t ha˗1), while the highest in the NP (7.31 t ha˗1). Comparing the years, the lowest 

GIY were recorded in 2016 (5.82 t ha˗1), while the highest in 2017 (7.48 t ha˗1) (Table 5). 
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Table 5. Winter wheat grain yield (t ha-1) as affected by fertilizer treatments and years (2014–2017) 

Means with the standard errors of the mean (SEM) followed by the same letter (A vertically, a horizontally) 

were not significantly different at 0.05 probability level. 

 

The winter barley GIY was significantly affected by fertilizer treatment (p < 0.001), 

conditions of the year (p < 0.001) and by treatment*year interaction (p < 0.01). Winter 

barley GIY was mainly affected by weather conditions (56%), followed by fertilizer 

treatment (42%) and slightly by treatment*year interaction (2%). The lowest winter 

barley GIY was recorded in the Control (2.35 t ha˗1), while the highest in the NP+KMgS 

treatment (5.27 t ha˗1). Comparing the years, the lowest GIY were recorded in 2015 

(3.69 t ha˗1), while the highest in 2017 (5.66 t ha˗1) (Table 6). 

 
Table 6. Winter barley grain yield (t ha-1) as affected by fertilizer treatments and years (2014–2017) 

Means with the standard errors of the mean (SEM) followed by the same letter (A vertically, a horizontally) 

were not significantly different at 0.05 probability level. 

 

Crude protein content 

The winter wheat CPC was significantly affected by fertilizer treatment (p < 0.001), 

conditions of the year (p < 0.001) and slightly by treatment*year interaction (p < 0.05). 

Unlike the GIY, the CPC was mainly affected by conditions of the year (72%), then by 

fertilizer treatment (27%) and finally by treatment*year interaction (1%). The lowest 

CPC was recorded in the Control (7.97%), the highest in NP treatment (11.68%). 

Comparing the years, the lowest CPC was recorded in 2014 (9.45%), while the highest 

in 2015 (12.66%) (Table 7). 
 

Fertilizer 

treatments 

GIY  

(t ha-1) 

Mean 

treatments 

2014 2015 2016 2017 2014–2017 

Control 2.87 ± 0.13Aa 4.81 ± 0.11Ab 3.16 ± 0.31Aa 3.54 ± 0.16Aa 3.59 ± 0.21A 

N 7.59 ± 0.21Ba 7.15 ± 0.28Ba 5.89 ± 0.16Bb 7.79 ± 0.23Ba 7.10 ± 0.22B 

NP 7.95 ± 0.27Bb 6.90 ± 0.12Ba 6.16 ± 0.17Ba 8.21 ± 0.15Bb 7.31 ± 0.23B 

NP+KMgS 7.54 ± 0.14Bbc 6.64 ± 0.16Bab 6.26 ± 0.34Ba 8.03 ± 0.36Bc 7.12 ± 0.22B 

NP+MgSMnZn 7.61 ± 0.10Bb 6.82 ± 0.07Ba 6.36 ± 0.18Ba 8.24 ± 0.28Bb 7.26 ± 0.20B 

Mean years 7.03 ± 0.33c 6.59 ± 0.16b 5.82 ± 0.23a 7.48 ± 0.32d  

Fertilizer 

treatment 

GIY  

(t ha-1) 

Mean 

treatments 

2014 2015 2016 2017 2014–2017 

Control 2.10 ± 0.16Aa 2.10 ± 0.07Aa 2.68 ± 0.10Ab 2.53 ± 0.09Aab 2.35 ± 0.08A 

N 4.05 ± 0.06Ba 3.83 ± 0.56Ba 5.50 ± 0.18Bb 5.80 ± 0.16Bb 4.79 ± 0.26B 

NP 4.43 ± 0.10BCab 3.55 ± 0.33Ba 5.50 ± 0.35Bbc 5.83 ± 0.30Bc 4.83 ± 0.27B 

NP+KMgS 4.88 ± 0.17Cab 4.25 ± 0.32Ba 5.83 ± 0.31Bbc 6.13 ± 0.13Bc 5.27 ± 0.22B 

NP+MgSMnZn 4.48 ± 0.14BCa 3.75 ± 0.10Ba 5.88 ± 0.19Bb 6.20 ± 0.28Bb 5.08 ± 0.27B 

Mean years 4.16 ± 0.18a 3.69 ± 0.17a 5.18 ± 0.22b 5.66 ± 0.26b  
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Table 7. Winter wheat crude protein content (%) as affected by fertilizer treatments and years 

(2014–2017) 

Means with the standard errors of the mean (SEM) followed by the same letter (A vertically, a horizontally) 

were not significantly different at 0.05 probability level. 

 

The winter barley CPC was significantly affected by fertilizer treatment (p < 0.001) 

and weather conditions (p < 0.001). The effect of treatment*year interaction was not 

statistically significant (p = 0.06). The major factor influencing winter barley CPC was 

the year (75%), followed by fertilizer treatment (23%). The lowest CPC was recorded in 

the Control (8.64%), while the highest in the N treatment (10.17%). Comparing the 

years, the lowest CPC was recorded in 2016 (9.10%), while the highest in 2017 (10.76%) 

(Table 8). 

 
Table 8. Winter barley crude protein content (%) as affected by fertilizer treatments and years 

(2014–2017) 

Means with the standard errors of the mean (SEM) followed by the same letter (A vertically, a horizontally) 

were not significantly different at 0.05 probability level. 

 

Weather conditions 

The basic characteristic of weather conditions are shown in Fig. 1, a, b, c, d. 

Generally, the 2014/2015 and 2015/2016 seasons can be characterised as standard or 

normal seasons typical for the experimental site. In other words, no extreme conditions 

have occurred and grain yields and CPC were appropriate to the production area, also 

showing general unsuitability of the area for growing wheat selected for production of 

leavened bakery products, even with the application of mineral fertilizers at ordinary 

doses. On the other hand, the 2014/2015 and 2016/2017 seasons were a little bit unusual 

(Fig. 2, a). The 2014/2015 winter started as very warm, with average precipitation. The 

field was covered by snow only during the January and spring started quite early (at the 

beginning of March). The whole growing season is characterised by very low 

precipitation with no rainfalls from June till August and also by very high temperatures 

Fertilizer 

treatment 

CPC  

(%) 

Mean 

treatments 

2014 2015 2016 2017 2014–2017 

Control 7.38 ± 0.23Aa 8.54 ± 0.15Aa 7.48 ± 0.30Aa 8.47 ± 0.44Aa 7.97 ± 0.19A 

N 10.42 ± 1.04Bab 13.30 ± 0.34Bc 9.92 ± 0.17Ba 12.95 ± 0.55Bbc 11.65 ± 0.48B 

NP 10.40 ± 0.58Ba 13.24 ± 0.42Bb 9.88 ± 0.35Ba 13.22 ± 0.09Bb 11.68 ± 0.44B 

NP+KMgS 9.44 ± 0.31ABa 13.50 ± 0.43Bb 10.51 ± 0.31Ba 12.22 ± 0.21Bb 11.42 ± 0.43B 

NP+MgSMnZn 9.59 ± 0.22ABa 13.19 ± 0.36Bb 9.44 ± 0.35Ba 12.39 ± 0.51Bb 11.15 ± 0.46B 

Mean years 9.45 ± 0.24a 12.66 ± 0.34c 9.63 ± 0.20a 12.07 ± 0.32b  

Fertilizer 

treatment 

CPC  

(%) 

Mean 

treatments 

2014 2015 2016 2017 2014–2017 

Control 9.04 ± 0.25Aa 8.28 ± 0.18Aa 8.21 ± 0.28Aa 9.03 ± 0.29Aa 8.64 ± 0.15A 

N 10.11 ± 0.13Ba 9.57 ± 0.17Ba 9.71 ± 0.15Ba 11.30 ± 0.16Bb 10.17 ± 0.19B 

NP 9.77 ± 0.31ABa 9.40 ± 0.18Ba 9.58 ± 0.19Ba 11.14 ± 0.20Bb 9.97 ± 0.20B 

NP+KMgS 9.51 ± 0.24ABa 9.52 ± 0.31Ba 8.93 ± 0.20ABa 10.58 ± 0.23Bb 9.64 ± 0.19B 

NP+MgSMnZn 10.26 ± 0.14Bbc 9.72 ± 0.27Bab 9.20 ± 0.13Ba 10.99 ± 0.24Bc 10.08 ± 0.19B 

Mean years 9.82 ± 0.11b 9.41 ± 0.12ab 9.10 ± 0.11a 10.76 ± 0.16c  
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(36 tropical days altogether). This lack of precipitation significantly and positively 

affected the winter wheat CPC with average content 12.66%. Interestingly, the GIY of 

winter wheat was not negatively affected, showing good accessibility of nitrogen during 

the grain filling period. The protein content is mostly affected by external factors 

(Johnson et al., 1985) and is inversely proportional to precipitation during the growing 

season (López˗Bellido et al., 1998). According to Rharrabti et al. (2003) and Hlisnikovský 

et al. (2015) the dry seasons provide wheat grains with high protein content. On the other 

hand, a low CPC shall be expected during the seasons with abundant precipitation 

(Flagela et al., 2010; Gürsoy et al., 2010). The 2016/2017 season was characterised by 
dry autumn (September, October and November 2016) and winter wheat and barley have 

a problem to emerge. The start of 2017 was extremely cold with temperatures below -

10 °C during the nights, but with snow cover during the whole month. The spring was 
very cold and with an abundance of precipitation, while summer was very hot and dry, 

affecting the CPC similarly to the season 2014/2015. As extreme conditions will occur 

often in the near future in Europe (Grillakis, 2019) the application of mineral fertilizers 

will be more important factor in securing soil’s fertility and sustainable production. 

 

  

  
  

 

 

 

 
 

Figure 1. The average temperature (°C) and precipitation (mm) on the experimental site in a) 
2014, b) 2015, c) 2016, and d) 2017 seasons. 

 

b)   2015 a)   2014 

c)   2016 d)   2017 
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Fertilizer treatments  

According to the results, fertilizer treatment significantly influenced all analyzed 

parameters in both kinds of cereals, but the main message of this paper is that application 

of mineral fertilizers containing K, Mg and S (KornKali – NP+KMgS treatment and 

Kieserit together with EPSO Combitop – NP+MgSMnZn treatment) provided over the 

whole time of the experiment GIY and CPC comparable with fertilizer treatments 

without these elements (N and NP treatments) (Tables 5, 6, 7, 8 and Fig. 2, b). 

 

  
 

Figure 2. The effect of the a) years and b) fertilizer treatments on grain yield (t ha-1) and CPC (%). 

 

Nitrogen is the most important element for cereals, directly affecting chlorophyll 

content in leaves (Blandino et al., 2009) and key processes connected with solar˗energy 
capture, moderating transformation and distribution of assimilates, thus influencing 

grain yields (Hejcman & Kunzová, 2010; Kunzová & Hejcman, 2010; Morell et al., 
2011; Hejcman et al., 2012; Chen et al., 2018; Maresma et al., 2019) and protein content 
(Gooding et al., 2007; Hlisnikovský et al., 2015). It seems that nitrogen was the major 

contributor to the statistical differences recorded between the Control treatment and the 

rest of the analyzed fertilizer treatments in our experiment. According to Liebig’s law of 
the minimum the growth and production of plants is not primarily dictated by total 

amount of the available nutrients, but by the important nutrient which is available in the 

smallest concentration. As the soil’s concentrations of all important nutrients at the 
experimental site were evaluated as suitable (Table 1), the response of winter wheat and 

winter barley on fertilizers with K, Mg and S was neutral (without any positive effect in 

comparison with N and NP treatments). 

Application of K increased the soil’s concentration of this element (Table 4), which 

could be taken as a beneficial contribution of KornKali fertilizer. In comparison with the 

Control the grain yield and CPC were also significantly higher and winter barley grain 

yields were highest in the treatment with K. Though, no significant differences were 

recorded in comparison with N and NP treatments. This shows that both kinds of cereal 

were mainly limited by nitrogen availability and initial concentrations of K in the soil 

were sufficient for the production of high grain yields. Similar results were published by 

Hejcman & Kunzová (2010). 

a) b)  
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According to Grzebisz (2013) the positive reaction of cereals to magnesium 

fertilizers depends on many factors, such the initial concentration of the nutrient in the 

soil and the growth stage of cereals at the time of application. According to Matłosz 
(1992) the positive reaction of winter rye on the addition of magnesium was recorded 

only on soils with a low concentration of magnesium. Concerning the stage of growth, 

the best response of cereals on magnesium fertilization was connected with the 

application at the stage of heading (BBCH 51). The low level of Mg in the soil can have 

several reasons, as mentioned earlier. The non˗visible deficiency is characterized by the 
decreased root system, directly influencing the performance of the plant and its yield and 

quality. The visible deficiency is expressed by chlorosis, particularly on older leaves, 

which has been not recorded on the experimental site. The chlorosis was not even 

recorded in the long˗term fertilizer experiment established in 1955, located in the very 

same area (Hejcman & Kunzová 2010), where the concentration of Mg in the soil was 
98 mg kg˗1 (low) in the Control treatment after fifty years. And this is crucial for 

understanding the results we obtained. It can be supported that the positive reaction of 

cereals on Mg fertilization can be expected on soils with a low level of Mg (exchangeable 

or in the fixed pool). On the other hand, soils with sufficient concentration of Mg, 

whether it is based on the soil’s origin rocks, or on the agronomical measures and 
practices, provide an adequate supply of this element and its added application don’t 
have to directly affect, or improve, grain yield and grain quality. The regular application 

of Mg fertilizers maintains, or even increases, its soil concentration (Table 4) and thus 

prevent and protect the arable soil from the long˗term depletion, which doesn’t have to 
be recognized in the early stages. This was proved by the two˗year pot experiment of 
Lošák et al. (2018), where the concentration of Mg and S linearly increased with the 

application rate of fertilizers. Our results are not as explicit as conditions in the field are 

more complex and non˗space˗limited in comparison with bounded pots, but the pattern 

can be recognized. 

Application of sulphur was also not connected with any positive reaction from 

winter wheat and barley. Same results were published by Reneau Jr. et al. (1986), who 

suggested that atmospheric accretions of sulphur from nearby industry supplied a 

sufficient amount of sulphur during the season. Recently, however, industrial emissions 

have been significantly reduced and the crop yield depends more on the content of plant 

available form of sulphur in the soil then deposition from the atmosphere (Scherer, 

2009). Salvagiotti & Miralles (2008) and Salvagiotti et al. (2009) documented that 

sulphur fertilization can positively influence nitrogen use efficiency with increasing 

doses of applied nitrogen, showing synergism between these two elements. That means 

that the effect of sulphur is without effect at low nitrogen rates and reveals the synergism 

with increasing nitrogen rates. That synergism was previously recorded by Reneau Jr. 

(1986). As we applied only one dose of nitrogen we cannot confirm such synergism. On 

the other hand, we also cannot confirm the positive effect of the addition of sulphur on 

grain yield and grain quality even when sulphur was applied together with high doses of 

nitrogen. This was kind of expected as cereals are crops not so dependent on sulphur in 

comparison with other arable crops, such as rapeseed or garlic. Probably the soil 

contained a sufficient amount of sulphur to nutrient requirements of both kinds of cereal. 

In our study, we also applied manganese and zinc, together with magnesium and 

sulphur. Both elements are essential micronutrients involved in a wide variety of 

physiological processes (Barker & Eaton, 2015; Eaton, 2015). Foliar application of 
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manganese can increase grain yield and protein content in winter wheat grain (Barlog & 

Grzebisz, 2008). However, the effect of its application depended on experimental sites, 

course of weather during growth seasons, growth stage, variety and soil pH. In general, 

manganese deficiency occurs on soils with pH above 6–6.5. In our study, the soil pH 

was below this value. Therefore. the plants were probably well supplied with this 

element. Peck et al. (2008) reported that foliar zinc application can also increase protein 

content and improve the protein composition in the wheat grain. The positive yield-

forming effect of zinc, however, is manifested particularly under conditions of alkaline 

soils (Cakmak, 2008). 

 

CONCLUSIONS 

 

According to our results nitrogen was the limiting factor in the experiment and 

additional application of mineral fertilizers, containing K, Mg, S, and microelements, 

was not connected with a direct effect on grain yield and crude protein content of winter 

wheat and winter barley, as the initial content in the soil was suitable. However, 

application of these elements beneficially affected their soil’s concentration (not 
analyzed in the case of S in our experiment, but proved by another papers), which is 

important as 26.3%, 7.5%, 15% and 50% of the arable land in the Czech Republic need 

intensive fertilization with P, K, Mg, and S, respectively. The regular application of these 

fertilizers can prevent the one˗way deprivation of the soil, which doesn’t have to be 
recognizable in the early stages. 
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