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Tarbijad on järjest enam huvitatud, et toit, mida endale valmistatakse või mida poest 

valmiskujul ostetakse, oleks mikrobioloogiliselt ja keemiliselt ohutu ning ei sisaldaks 

erinevaid sünteetilisi toidu lisaaineid. Seetõttu on paljud toiduainetööstused otsimas 

looduslikke alternatiive, seni toidus kasutatud sünteetilistele toidu lisaainetele, mis aitaks 

pikendada toiduainete säilimisaegu. Uurimistöö eesmärgiks oli valitud taimsete lisandite 

mikroorganismide kasvu pidurdava toime välja selgitamine toores ja kuumtöödeldud 

hakklihas. Uuringutes kasutatavad taimed olid in-vitro eelkatsetes näidanud mikroobide 

kasvu pärssivat toimet ning nendeks olid rabarber (Rheum rhaponticum L.), must sõstar 

(Ribes nigrum L.), söödav kuslapuu (Lonicera caerulea L. var. edulis), aroonia (Aronia 

melanocarpa) ning tomat (Solanum lycopersicum). Laboratoorsete katsete tulemustest 

selgus, et kõige enam pärssisid mkroorganismide kasvu rabarberi varred ning keedusool 

kombinatsioonis nitritiga. Kahe erineva taime kombinatsioonidest oli  toores hakklihas 

parima antimikroobse toimega 1% rabarberi varred kombinatsioonis 1% tomatiga. 

Kuumtöödeldud hakklihas avaldasid mikroobide kasvu pärssivat toimet ka mõned teised 

taimsed pulbrid. Lõppkokkuvõttes osutasid kestvuskatsetel kõige paremat mikroobide 

kasvu pärssivat toimet tomat, rabarberi varred, gallushape, rutiin ning keedusool 

kombinatsioonis nitritiga. 

Märksõnad: taimsed pulbrid, mõned taimsed polüfenoolid, seahakkliha, mikroobide 

üldarv, kestvuskatsed 
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In present study the aim was to study microbial growth inhibiting effect of selected plant 

powders by counting microorganism’s general numbers in raw and cooked minced pork 

at the end of defined shelf-life. Plants used in study were siberian rhubarb (Rheum 

rhaponticum), black currant (Ribes nigrum), blue honeysuckle (Lonicera caerulea var 

edulis), black chokeberry (Aronia melanocarpa) and tomato (Solanum lycopersicum). 

The most efficient microbial growth inhibiting effect compare to control were found for 

rhubarb petioles and the combination of sodium chloride with sodium nitrite. Among the 

combinations of two different plant additives, the most efficient combination of the 

additives in raw minced pork were 1% rhubarb petioles in combination with 1% tomato. 

Compared to the other findings, the number of microorganisms in raw minced pork with 

1% rhubarb petioles combined with 1% tomato increased most slowly for 6 day of 

storage. The inhibitory effect in cooked minced pork was also observed on the several 

other plant additives.  

The most efficient antimicrobials both in raw and cooked minced pork were tomato, 

rhubarb petioles, gallic acid, rutin and sodium chloride + sodium nitrite. 

Keywords: plant powders, some plant polyphenols, minced pork, total numbers, 

durability studies 
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INTRODUCTION 

 

Microorganisms are always associated with harvested plants and slaughtered animals 

(Negi 2012). Plants have an almost limitless ability to synthesize aromatic substances, 

most of which are phenols or their oxygen-substituted derivatives. The use of plant 

extracts with known antimicrobial properties can be of great significance in food 

preservation. The value of plants is in some chemical substances that produce a definite 

action on the microbiological, chemical and sensory quality of foods (Cowan 1999). Plant 

extracts have shown a considerable range of applications in the food industry e.g. food 

natural antimicrobials can cause delay in microbial growth or kill the bacteria. Substances 

with antimicrobial properties can be robustly divided as natural and synthetic. Some 

synthetic food additives, benzoic acid, are also naturally found in some berries e.g. in 

cranberries (Negi 2012). 

 

The use of natural antimicrobials such as organic acids, essential oils, plant extracts, and 

bacteriocins could be a good alternative to ensure food safety. Spoilage by bacteria in 

meat causes off-odor, off-flavor, discoloration, gas production, slime production, and 

reduced pH, leading to significant economic losses (Papuc et al. 2017). 

 

The antimicrobial activities of plant extracts may reside in a variety of different 

components, and several extracts owing to their phytochemical constituents have been 

shown to have antimicrobial activity. Plant extracts also have shown antifungal activity 

against a wide range of fungi. Also, antimutagenic activities and inhibition of lipid 

oxidation in foods have been reported (Negi 2012). 

 

Berries are a great source of bioactive compounds such as polyphenols (i.e., phenolic 

acids, flavonols, anthocyanins, tannins) and ascorbic acid. They may act as antimicrobials 

and antioxidants. Plant extracts are incorporated in meats as water-soluble and water 

insoluble extracts and powders. Type of delivery agents include juices, hulls, essential 

oils, decoctions, hydrolysates, and grinded residues.  They are able to affect the self-life, 

quality, various sensorial and health related aspects of enriched meat products. Some 

antimicrobials and antioxidants are well known for their antioxidant potential and are 
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available commercially in crude or active ingredient form, such as rosemary and grape 

seed extract (Lorenzo et al. 2017).  

The concentration of antibacterial and antioxidant compounds in plant materials varies 

considerably and hence their dosage application in diets and meat products varies from 

plant to plant. Taking into account many beneficial properties, and their juices/extracts 

are rich with polyphenols are reported to contain health benefit compounds, hence 

suitable for the use in the meat and meat products (Lorenzo et al. 2017). 

 

Numerous studies have been done in-vitro to evaluate the antimicrobial activity of plant 

extracts, very few studies are available for food products. 
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1. REVIEW OF THE LITERATURE 

 

1.1 Antimicrobial activity of plants and their metabolites 

 

There are present chemical compounds called phytochemicals in plants. These 

compounds are secondary metabolites meaning that they do not affect growth of the plant, 

but impact for example the colour of plants (Ahmad et al. 2015). These compounds have 

been developed by plants to defend their organisms from the effects of free radicals, 

viruses, bacteria and fungi, but also against herbivores and insects. Phytochemicals can 

be classified into several major groups based on their chemical structure: including 

polyphenols, flavonoids, tannins, alkaloids, terpenoids, isothiocyanates, lectins, 

polypeptides or their oxygen substituted derivatives (Barbieri et al. 2017, Cowan 1999).  

Some groups of phytochemicals, like terpenoids give plants their odors, others (quinones 

and tannins) are responsible for plant pigments. Another compound groups are 

responsible for plant flavour, for example the terpenoid capsaicin from chili peppers. 

Latter are used as spices or medical herbs (Cowan 1999). There have been isolated at 

least 12,000 phytochemicals in the world. 

 

Plant secondary metabolites, most of which are phenols or their oxygen-substituted 

derivatives possess various benefits including antimicrobial properties against pathogenic 

and spoilage microbes. Major groups of compounds that are responsible for antimicrobial 

activity from plants include phenolics, phenolic acids, quinones, saponins, flavonoids, 

tannins, coumarins, terpenoids, and alkaloids. Variations in the structure and chemical 

composition of these compounds result in differences in their antimicrobial action 

(Gyawali, Ibrahim 2014). 

 

During food processing, often large amount of by-products is generated including fruit 

pomace, seeds, peels, pulps, and husks. These are promising sources of valuable food 

component and have several functionalities including antimicrobial activity (Guil-

Guerrero et al. 2016). 
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The effectiveness of antimicrobial compound depends on pH of the food, type and 

number of contaminating microorganisms, and type and concentration of antimicrobial. 

Storage temperature may also influence the effectiveness of antimicrobial because the 

diffusion of compounds is related to the temperature. Phytochemicals present in many 

foodstuffs are often lost by thermal processing such as sterilization, pasteurization, and 

dehydration.  The use of combinations of natural antimicrobials is usually more 

effective than adding just one antimicrobial, because some microorganisms are not 

inhibited or killed by the commonly used doses of single natural antimicrobials (Negi 

2012). 

 

 

1.2 The mechanisms behind of antibacterial effect on plants 

 

In plant and in their by-products antibacterial effects are mostly caused by secondary 

metabolites like tannins, terpenoids, alkaloids, and phenolics. They have a great number 

of subclasses of active compounds, so that the list of compounds to check in is almost 

inexhaustible (Guil-Guerrero et al. 2016). The exact target for natural antimicrobials are 

often not known or not well defined, as it is difficult to identify a specific action site 

where many interacting reactions take place simultaneously (Negi 2012). To arrest the 

spread of pathogens, plants possess an innate immunity that involves different layers of 

defence responses. Some of these defences are preformed and others are activated after 

recognition of pathogen elicitors and include reinforcement of the cell wall, biosynthesis 

of lytic enzymes and production of secondary metabolites and pathogenesis related 

proteins (González-Lamothe et al. 2009). 

 

Most of the bacterial plant pathogens are Gram negative and most of the biologically 

active purified plant products show low activity against such organisms. Gram positive 

bacteria are often nevertheless susceptible to plant products and this suggests that the 

fundamental morphological differences in the cell wall and membrane organization of 

Gram negative and Gram positive organisms modulate their susceptibility to purified 

phytoanticipins and phytoalexins (González-Lamothe et al. 2009). 
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The outer membrane of Gram-negative bacteria acts as a permeability barrier and is 

responsible for the intrinsic resistance of these micro-organisms to antimicrobial 

compounds. The effect is mainly due to the presence and features of lipopolysaccharide 

molecules in the outer leaflet of the membrane, resulting in many Gram-negative bacteria 

in an inherent resistance to hydrophobic antibiotics. Besides lipopolysaccharide 

molecules various multidrug efflux pumps also contribute to the resistance of the cells 

(Puupponen-Pimiä et al. 2005). 

 

Alkaloids: With great structural diversity, alkaloids have no single classification. Among 

plant foods, such compounds occur mainly in Solanaceae and Fabaceae, and in larger or 

smaller amounts in their by-products. The action mechanism of highly unsaturated planar 

quaternary alkaloids is attributed to their ability to intercalate with DNA (Guil-Guerrero 

et al. 2016). 

 

Essential oils: these include volatile compounds of terpenoid or non-terpenoid origin, all 

being hydrocarbons and oxygenated derivatives. They act like other phenolics, for 

example, disturbing the cytoplasmic membrane, disrupting the proton motive force, 

electron flow, active transport, and coagulation of cell contents (Guil-Guerrero et al. 

2016). 

 

Glycosides:  are molecules in which a sugar is bound to another functional group via a 

glycosidic bond, and they are classified according to the chemical nature of the aglycone. 

Many plants store chemicals in the form of inactive glycosides, which can be activated by 

enzyme hydrolysis. Products from glucosinolate hydrolysis have been evaluated as 

antimicrobial agents in Gram-positive and Gran-negative bacteria (Guil-Guerrero et al. 

2016). 

 

Phenolics: are molecules having one or more unsaturated rings with one or more 

hydroxyl groups, constituting a ubiquitous group of secondary metabolites that occur 

profusely in species of the plant kingdom with wide pharmacological activities. Phenolic 

acids occur in most plant foods, mainly in seeds, fruit peels, and leaves. Polyphenols are 

not involved in the normal growth and development of plants but do have important roles 

in plant defence mechanisms against viruses, bacteria, fungi, and herbivores. Polyphenols 
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can be subdivided into 3 main classes, flavonoids, stilbenoids, and phenolic acids. 

Flavonoids are the most prevalent of these (Papuc et al. 2017).  Low-molecular-weight 

phenolic acids exert antimicrobial effects by the diffusion of the undissociated acid across 

the membrane, leading to the acidification of the cytoplasm and, in some cases, cell death. 

For example, tannins mechanisms of action are the inhibition of extracellular microbial 

enzymes, and deprivate the substrate needed for microbial growth, and inhibition of 

oxidative phosphorylation, which affects microbial metabolism (Guil-Guerrero et al. 

2016). Another example is the antimicrobial effect of tea polyphenols by damaging 

bacterial cell membranes, including having increased outer and inner membrane 

permeability and disrupted cell membranes. Many studies have reported that polyphenols 

can exhibit antibacterial activity via anti-biofilm agents (Papuc et al. 2017).  

 

Saponins: These are structurally diverse compounds derived from steroids or triterpenoid 

glycosides, which occur in many plant foods and plant-food by-products. Their activity 

has been linked to their membrane-permeabilizing properties, being immunostimulant 

and affecting growth, feed intake, and reproduction in animals (Guil-Guerrero et al. 

2016). 

 

The effectiveness of antimicrobial compound depends on pH of the food, type and 

number of contaminating microorganisms, and type and concentration of antimicrobial. 

Storage temperature may also influence the effectiveness of antimicrobial as the diffusion 

of compounds is related to the temperature. Phytochemicals present in many foodstuffs 

are lost by heat processing such as sterilization, pasteurization, and dehydration. The use 

of combinations of antimicrobials is usually more effective than adding just one 

antimicrobial, because some microorganisms are not inhibited or killed by the commonly 

used doses of antimicrobials (Negi 2012). 
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1.3 Bioavailability  

 

Bioavailability is defined as the fraction of an ingested nutrient that is available to the 

body through absorption for utilization in normal physiogical functions and for metabolic 

processes (Shi, Le Maguer 2000). It is very important concept when assessing beneficial 

effect of polyphenols (Pineda-Vadillo et al. 2016). Factors that has effect to 

bioavailability are plants grow environment and weather, food processing, like thermal 

treatment and storage time and food matrix. The polyphenols and their metabolites can 

bind to proteins. It has been reported the existence of intermolecular bonds between 

serum albumin and quercetin metabolites (D’Archivio et al. 2010). 

 

The composition and structure of food have an impact on the bioavailability of lycopene 

(Shi, Le Maguer 2000). Cooking or fine grinding of foods can increase the bioavailibility 

of lycopene by disrupting or softening plant cell wall. Several studies have found out that 

lycopene bioavailability is higher from the product than fresh tomatoes. Lycopene 

bioavailability in paste and processed tomato juice was significantly higher than from 

unprocessed fresh tomatoes (Shi, Le Maguer 2000). 

 

The proportion of polyphenols released from the food matrix and solubilized into the 

digestive fluids (bioaccessibility) is a key step that has to be accomplished in all cases 

since only bioaccessible polyphenols can be further absorbed and remain bioavailable 

(Pineda-Vadillo et al. 2016). Structure and composition of the food matrix in which 

polyphenols are included are factors that can either enhance or prevent the release and 

stability of these compounds during digestion and hence, their effectiveness. The effect of 

the co-digestion of polyphenols with different food components, matrices or diets has 

been proven to affect their digestibility, bioaccessibility or antioxidant activity (Pineda-

Vadillo et al. 2016). Various types of dietary fiber can reduce the bioavailability of 

carotenoids in foods. Absorption of lycopene seemed to be more efficient at lower 

dosages, and lycopene ingested with β-carotene was absorbed more than when ingested 

alone (Shi, Le Maguer 2000). Pineda-Vadillo et al. (2016) showed that the inclusion of 

the grape extracts into the different egg and dairy food matrices greatly impacted the 

release and solubility of anthocyanins and proanthocyanidins during digestion, especially 

in the solid food matrices and during the oral and gastric phases of digestion.   
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1.4 Overview of different studies on antibacterial effect of plant 

additives 

 

Mostly, the antibacterial effect of plant additives is measured by using in-vitro methods 

like agar-diffusion methods, broth microdilution method as a fast screening method for 

MIC determination and the macrodilution method at selected MIC values to confirm 

bacterial inactivation (Klančnik et al. 2010). However, the plant additives (extracts, 

powders etc.) may have not the same kind of antimicrobial effect in vitro and in products, 

because the concentrations on foods are usually not very high, additives may be bonded 

into the food matrix, and because of other possible reasons. 

 

The most frequently used way is to study antibacterial effect of plant additives in foods to 

compare the shelf-life of enriched foods and non-enriched foods. This is similar to 

classical durability study which usually include both microbiological and chemical food 

analyses. One possible way is to perform Challenge-testing with targeted micro-

organisms e.g. Listeria monocytogenes growth in enriched and non-enriched RTE-foods. 

In classical food products durability study the general numbers of microorganisms are 

measured, because these are reflecting microbiological food quality. Also, are quite non-

expensive, therefore preferred by food enterprises. 

 

Challenge tests aim to provide information on the behaviour of L. monocytogenes which 

have been artificially inoculated into a food, under given storage conditions. They may 

take into account the variability of the batches, of the food samples and of strains. The 

level of contamination, the heterogeneity of the contamination and the physiological state 

of the bacteria are difficult to mimic in a challenge test study; the contamination method 

cannot always enable to fully imitate the natural contamination (EURL 2014). 

 

Durability studies allow an assessment of the shelf-life of the food regarding 

L. monocytogenes in a naturally contaminated food during its storage according to 

reasonably foreseeable conditions. Durability studies may be considered more realistic 

than a challenge test, as the contamination is naturally occurring. But the implementation 
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of durability studies is limited in case of low prevalence and low level of contamination 

(EURL 2014).    

 

Aerobic colony count is useful test for various categories of ready-to-eat food. It counts 

organisms which grow under aerobic conditions at mesophilic temperatures on a 

particular growth medium. This provide useful information to assess a food’s quality or 

its remaining shelf-life (Food Safety Authority of Ireland 2016), but cannot used to assess 

the safety of food. An unsatisfactory result for the test does not mean that the batch of 

food is unsafe, but the result represents unsatisfactory levels of microbial contamination. 

It does not differentiate aerobic microorganisms or indicate the presence of pathogens. 

The aerobic colony count result should be assessed against the limits presented for the 

category into which the food best fits, based on the type of product, the processing it has 

received and the potential for microbiological growth during storage (Food Safety 

Authority of Ireland 2016).  

 

1.4.1. Overview of different in-vitro studies 

 

Phenolic berry extracts have been found to inhibit the growth of Salmonella, Escherichia, 

Staphylococcus, Helicobacter, Bacillus, Clostridium and Campylobacter species but not 

Lactobacillus and Listeria species. Salmonella, Staphylococcus, Helicobacter and 

Bacillus strains were the most sensitive bacteria for the berry extracts. The phenolic 

extract of cloudberry possessed the strongest antimicrobial activity, followed by raspberry 

and strawberry. The weakest antimicrobial effects were measured with chokeberry, 

rowanberry, crowberry and buckthorn berry. Cranberry extract was effective against 

Bacillus cereus and Clostridium perfringen (Puupponen-Pimiä et al. 2005).  

 

A lot of interested has put into cranberry. Wu et al. (2008) tested American cranberry 

(Vaccinium macrocarpon) concentrate effect against some common foodborne pathogens. 

In the study, cranberry concentrate showed antibacterial effects on both Gram-positive 

(L. monocytogenes and S. aureus) and Gram-negative (E. coli O157:H7 and 

S. Typhimurium) bacteria. Gram-positive bacteria were less sensitive to the cranberry 

concentrate than the Gram-negative bacteria when nutrients were abundant in a suitable 

growth environment, BHI broth. 
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In another study Côté et al. (2011) investigated the antimicrobial effect of cranberry juice 

and of three cranberry extracts: water-soluble, apolar phenolic compounds, and 

anthocyanins was investigated against seven bacterial strains.  Each cranberry sample 

was analyzed to determine the minimum inhibitory concentration (MIC) and the maximal 

tolerated concentration (MTC) at neutral pH. The results, reported in mg phenol/mL, 

indicated that all the bacterial strains, both Gram-positive and Gram-negative, were 

selectively inhibited by the cranberry phenolic compounds. The extract rich in water-

soluble phenolic compounds caused the most important growth inhibitions. The ERV 

bacteria (Enterococcus faecium resistant to vancomycin), and to a lesser degree, 

P. aeruginosa, S. aureus and E. coli ATCC 25922, were the most sensitive to the 

antimicrobial activity of water soluble extract. The growth of P. aeruginosa and E. coli 

ATCC was also affected by the presence of the anthocyanin-rich cranberry extract of 

anthocyanins, even the observed antibacterial effect was not as important as with water 

soluble extract. In general, L. monocytogenes, E. coli O157:H7 and S. Typhimurium were 

the most resistant to the antibacterial activity of the cranberry extracts.  

 

Lu et al. (2011) tested rhubarb crude extract effect against Aeromonas hydrophila, which 

is important pathogenic bacteria in fish. It showed excellent antibacterial activity against 

A. hydrophila and was positively related anthraquinone content. Minimum inhibitory 

concentration of five rhubarb anthraquinone against A. hydrophila ranged 50-200 μg/ml. 

Study showed that anthraquinone emodin inhibit cellular function by binding DNA after 

penetrating the cell membrane, so the cell will die. 

 

Smolarz et al. (2013) examined roots and petioles from Rheum rhaponticum for 

antimycobacterial activity. Extract from the roots of R. rhaponticum were found to have 

activities both against M. Tuberculosis H37Ra and M. bovis. The antimicrobial effect was 

shown by minimum inhibitory concentration and minimal bactericidal concentration tests. 

Values of minimum inhibitory concentration and, minimal bactericidal concentration 

were generally the same or similar for both species of the mycobacteria. The 

anthraquinones were found to have a significant antibacterial activity. 
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Alaadin et al. (2007) examined ethanol, aqueous, and organic extracts from the root of 

Rheum ribes Linn (Polygonaceae). The Minimum Inhibitory concentration values of the 

biologically active extracts, aloe emodin, and emodin, were 500, 125, 250, and 63 mg = 

mL against Staphylococcus aureus. The extracts and compounds did not inhibit 

Pseudomonas aeruginosa and Escherichia coli at the highest concentration tested, 4000 

and 250 mg/mL. 

 

Rigano et al. (2012) investigated antibacterial activity of a synthetic peptide derived from 

the tomato defensin family. Defensins are small, basic, highly stable proteins with 

antifungal and antibacterial properties. They synthesized chemically its g-motif (peptide) 

and tested its antimicrobial activity. They demonstrate in the study that the synthetic 

peptide exhibits potential antibacterial activity against Gram-positive bacteria, such as 

Staphylococcus aureus A170, Staphylococcus epidermidis, and Listeria monocytogenes, 

and Gram-negative bacteria, including Salmonella enterica serovar Paratyphi, 

Escherichia coli, and Helicobacter pylori. 

 

1.4.2 Antimicrobial effect studies in products (in vivo) 

 

Sanchez-Escalante et al. (2003) did study by lycopene-rich tomato pulp and extract of 

tomato rich in lycopene effect to beef patties. The patties were stored 20 days at 

temperature of +2 °C in the dark. Control samples and those with lycopene-rich tomato 

pulp showed no significant differences in inhibition; counts were above 7 log10(CFUg1) at 

day 12 of storage. Beef patties with extract of tomato rich in lycopene showed a 

significant inhibition of psychrotrophic bacteria growth; in fact, they did not reach a 

count of 7 log10(CFU/g) even at the end of the storage period. The shelf-life of treated 

beef patties ranged between 8 and 12 days. Inhibition was not as effective as treatment 

with Cayenne hot pepper and red sweet pepper. 

 

Palmeri et al. (2018) studied prickly pear fruit extract and self-life of sliced beef. In their 

study in vivo application of extract effectively reduced microbial growth during 

refrigerated storage; total mesophilic count was maintained below the limit established by 

Commission Regulation (EC), 5 × 10 log CFU/g of beef up to 8 days, in comparison to 
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control sample that reached the mentioned limit after 4 days. Moreover, extract addition 

preserved beef color and texture over the considered storage period, supporting the 

potential prospect to utilize the extract to improve overall quality and to prolong domestic 

shelf-life of sliced beef. 

 

In Delgado-Adámez et al. (2016) study the effectiveness of the olive leaf extract in sliced 

pork loin found in vitro was not confirmed in the in vivo assays, even assays confirmed 

the antioxidant and antibacterial activity of fresh and freeze-dried olive leaf extract in 

vitro. Only, at day 1, the levels of mesophilic and E. coli counts were lower in olive leaf 

extract than in control. The application of the extracts into the packaging did not show 

antioxidant and antimicrobial effects on meat even applying high dose of the lyophilized 

extract. Delgado-Adámez et al. (2016) suggest that this could be because of the fact that 

extracts are not properly incorporated to the meat when the active compounds are in the 

plastic package. 

 

Mhalla et al. (2017) studied Rumex tingitanus leave extracts for meat preservation and in 

vivo against L. monocytogenes in minced beef meat during storage. The R. tingitanus 

ethyl acetate fraction showed a bactericidal effect in a dose dependent manner against the 

foodborne pathogens L. monocytogenes. Thus, it was applied as a natural preservative in 

inoculated minced beef meat stored at 4 °C for 30 days. This fraction was found to be 

effective in controlling L. monocytogenes and inhibit the microbial growth during 

refrigerated storage.   

 

In Hsouna et al. (2011) study the inhibitory effect of Ceratonia siliqua pods essential oil 

was evaluated in vivo against a foodborne pathogens Listeria monocytogenes, 

experimentally inoculated in minced beef meat (2×10 CFU/g of meat) amended with 

different concentrations of the Ceratonia siliqua pods essential oil and stored at 7 °C for 

10 days. The antibacterial activity of Ceratonia siliqua pods essential oil in minced beef 

meat was clearly evident and its presence led to a strong inhibitory effect against the 

pathogens at 7 °C.  

 

Gniewosz and Stobnicka (2018) studied extracts from American cranberry pomace 

(Vaccinium macrocarpon). They prepared three forms: water, ethanol, and a 
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water/ethanol and observed antimicrobial activity in relation to 18 strains of bacteria, and 

three strains of fungi. Extracts contained organic acids, flavonols, terpenes (ursolic acid), 

and stilbenes (resveratrol). The inhibition of pathogens growth (Escherichia coli, 

Salmonella ser. Enteritidis, Listeria monocytogenes, and Staphylococcus aureus) was 

determined in minced pork containing 2.5% cranberry pomace in water. The results 

showed a significant (p < 0.05) growth inhibition for all pathogens in the minced pork 

meat with cranberry extract, compared to the control sample (Gniewosz, Stobnicka 2018).  

 

Dhanze et al. (2013) studied effect of extract of sea buckthorn leaves to chicken legs. 

They observed on sensory and microbiological quality of chicken legs at days 0, 1, 3, 5 

and 7. No significant difference (p < 0.05) was observed for sensory attributes in the 

control and treated groups; however, scores were higher for the treated groups compared 

with the control group. All three concentrations of aqueous extract of sea buckthorn 

leaves lowered the (p < 0.05) standard plate count, psychrophilic count, coliform count 

and yeast and mold count significantly on chicken leg as compared with the control. 

 

1.5 Description of plants used in present study 

1.5.1 Siberian rhubarb (Rheum rhaponticum) 

 

Rhubarb refers to any of several species of the genus Rheum L. in the family 

Polygonaceae. The genus Rheum L., consisting of about 60 herbaceous perennial plants 

growing from short and thick rhizomes, is distributed in the temperate and sub-tropical 

regions. Most common subspecies are garden rhubarb Rheum rhabarbarum L. and 

chinese rhubarb Rheum palmatum (ITIS 1999). The roots and rhizomes of R. officinale 

Baill, R. palmatum L. and R. tanguticum have been used for medicinal purposes in China 

for over 2000 years, and are still used for the treatment of constipation, inflammation and 

cancer (Takeoka 2013). The R. rhaponticum root is very potential as natural antioxidant, 

antimicrobial or functional additive in foods due to its high content of polyphenols. A 

special extract of the roots of R. rhaponticum has been used as a medication to treat 

menopausal symptoms.  
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The safety studies of the extract of the R. rhaponticum root in the concentrations of 100, 

300, and 1000 mg of ERr 731/kg body weight (bw)/day in the long term toxicity studies 

in the beagle dogs of the both sexes have been performed (Raudsepp 2013). Studies in the 

eighteen species of the genus Rheum L. led to the isolation of two hundred constituents 

including anthraquinone, anthrone, stilbene, flavonoids, acylglucoside, and pyrone 

(Zheng et al. 2013). 

 
1.5.2 Black currant (Ribes nigrum) 

 

A wide range of nutritional compounds like carbohydrates, minerals, vitamins, and 

organic acids and especially polyphenols, make black currants (Ribes nigrum L. family 

Grossulariaceae) one of the most investigated species in the berry kingdom. The use of 

black currant has spread from food and beverages (colors and flavors), to functional food 

and beyond, through additives in the form of antioxidants in meat as well as meat 

products preservers. Recent trends have moved toward the testing and potential use of 

black currants buds and leaves as a rich source of natural antioxidants (Miladinovic et al. 

2014). 

 

Compounds contained in fruits and leaves of blackcurrant are known as agents acting 

preventively and therapeutically on the organism due its high polyphenol content. 

Polyphenols are bioactive secondary plant metabolites widely present in commonly 

consumed foods of plant origin. They are powerful antioxidants in vitro and they are 

considered to carry many potential beneficial health effects (Mattila et al. 2016).  

Anthocyanins, in particular derivatives of cyanidin and delphinidin, are the main 

polyphenols in fruit extract. Leaves of blackcurrant, which contain quercetin derivatives, 

have a range of activities, including antimicrobial, anti-inflammatory, antiviral, antitoxic, 

antiseptic, and antioxidant effects (Bonarska-Kujawa et al. 2014). 

 

The black, blue and red colouration of the fruits (berries) can be attributed to high 

contents of anthocyanins, making especially blackcurrants good sources of these 

compounds. The other phenolic components in currants include flavonols, 

proanthocyanidins and phenolic acids. In Mattila et al. (2016) study of currant varieties 

the anthocyanin profile of black currant consisted of four major anthocyanins, namely 
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dephinidin-3-glucoside, delphinidin-3-rutinoside, cyanidin-3-glucoside. The total 

anthocyanin content was on average 467 ± 114 mg/100 g FW flavonol contents in 

32 blackcurrant genotypes studied. The total contents varied from 9.6 to 21.6 mg/100 FW 

(43.6 to 89.9 mg/100 g DW). 

 
1.5.3 Blue honeysuckle (Lonicera caerulea var edulis) 

 

Lonicera caerulea L., also called blue honeysuckle, is a traditional crop belonging to the 

Caprifoliaceae family. This long-lived and deciduous shrub is one of the 180 species of 

the genus Lonicera and is native to the Northern Hemisphere. The berries contain high 

levels of vitamin C, anthocyanins, phenolic acids and flavanols (Caprioli 2016). 

Honeysuckle is commonly used as folk medicine, but are less known as edible fruits 

because of their bitterness and astringency. Polyphenolic compounds, especially 

anthocyanins, are the prominent functional components in L. caerulea berries. The 

anthocyanins in L. caerulea berries include glucoside and rutinoside of cyanidin peonidin, 

and delphinidin, along with 3,5-dihexoside of cyanidin and peonidin that have not been 

found in some other berries such as blueberry. This may be one reason why L. caerulea 

berries have a higher antioxidant capacity than blueberries (Wang at al. 2016). 

 

1.5.4 Black chokeberry (Aronia melanocarpa)   

 

Aronia with the common name chokeberry, originates from the eastern parts of North 

America. The genus Aronia, Rosaceae family includes two species of shrubs. Native to 

eastern North America and Eastern Canada: Aronia melanocarpa known as black 

chokeberry and Aronia arbutifolia, also known as red chokeberry (Wangensteen et al. 

2014). Around 1900 it was transferred to Europe and in the 1960s the plant was 

stablished as a cultivar in the former Soviet Union.   

 

Aronia berries are distinctive with a high content of polyphenols and possess one of the 

highest antioxidant activities among plant species. Chokeberries are a rich source of 

anthocyanins, proanthocyanidins, and hydroxycinnamic acids. The total amount of 

anthocyanins in fresh berries varies in the range 357 to 1790 mg/100 g fresh weight. 
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Compared to other berries the aronia anthocyanin profile is very simple consisting almost 

exclusively of cyanidin glycosides, namely cyanidin-3-arabinoside, cyanidin-3-

galactoside, cyanidin- 3-glucoside, and cyanidin-3-xyloside (Denev et al. 2012). 

 

1.5.5 Tomato (Solanum lycopersicum) 

 

Tomato was originally in genus Lycopersicon (Asamizu, Ezura 2009), but nowdays 

belongs to genus Solanum, the nightshade family, which includes eggplant (Solanum 

melongena) and potato (Solanum tuberosum) as well as 1400 other species. Botanically 

tomato is a fruit and it is rich in lycopene red colour owing to pigments that are 

synthesize during fruit ripening (Perveen at al. 2015). Tomatoes are not only mainly 

consumed as a raw staple food due to their desirable nutritional properties but they are 

also being increasingly used in many popular tomato products. More than 80% of 

tomatoes grown are consumed in the form of processed products such as juice, soup, 

concentrate, dry-concentrate, sauce, salsa, puree, dry-tomato, ketchup, or paste (Viuda-

Martos 2013). 

 

Tomato and tomato product contains number of carotenoids such as phytoene, 

phytofluene, α-carotene, β-carotene, gammacarotene, and neurosporene. Carotenoids like 

lycopene are important pigments found in plants, photosynthetic bacteria, fungi, and 

algae. They are responsible for the bright colours of fruits and vegetables and protection 

of photosynthetic organisms from excessive light damage (Perveen at al. 2015). 

 

Most important pigment in tomato is lycopene. It is the red colored pigment abundantly 

found in red fruits and vegetables particularly in tomatoes and tomato products. Lycopene 

is ranked as the most potent among the following antioxidants: lycopene > α-tocopherol > 

α-carotene > β-cryptoxanthin > β-carotene > lutein. Lycopene is a lipid soluble 

antioxidant member of the carotenoid family of phytochemicals. It is synthesized by 

many plants and microorganisms to absorb light during photosynthesis and to protect 

them against photosensitization (Viuda-Martos 2013). 
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2. AIMS OF THE STUDY  

 

The aim of the study was to investigate microbial growth inhibition (antimicrobial effect) 

of some plant powders such as rhubarb, tomato, black currant, blue honeysuckle and 

black chokeberry in raw and cooked minced pork.  

Also sodium chloride, sodium nitrite, rutin and gallic acid were studied for their 

microbial growth inhibition effect in raw and cooked minced pork. 
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3. MATERIALS AND METHODS 

 

3.1 The plant material 

 

The plant materials were selected in accordance with previous in-vitro study results for 

which the plant material of rhubarb varieties was obtained from the collection of Pure 

Horticultural Research Centre, Latvia. All studied plants were grown in the plantation of 

Polli Horticultural Research Centre, Estonia. The samples were collected in 2015. Berries 

of chokeberry (selected among three seedlings, according to the content of anthocyanins); 

blue honeysuckle i.e. haskap berry cultivar (cv.) ′Tomitška′ (selected among five cv.-s, 

according to the content of anthocyanins) and berries of black currant cv. ′Ben Alder′ 

(selected among 37 cv.-s according to the content of anthocyanins); leaves of black 

currant cv. ′Pamyati Vavilova′ and petioles of garden rhubarbs were freeze-dried with 

VirTis AdVantage 2.0 EL freeze dryer (SP Industries, Warminster, USA) and kept at the 

temperature -40°C until powdering. Two dark-rooted rhubarbs (cv. ′Victoria′ and seedling 

no 303) and one light-rooted (cv. ′Ogres′) were previously selected among 16 different 

cultivars or seedlings, according to their content of anthraquinones – the darker the roots, 

the higher the content of various hydroxyanthraquinones and their glycosides: aloe 

emodin, emodin and chrysophanol (Püssa et al. 2009). The roots of garden rhubarb 

varieties and seedling were washed, diced and dried at 50 °C in a drying oven (Binder 

FED 101, Binder GmbH, Tuttlingen, Germany) and kept at room temperature. 

 

3.2 Sample preparation for meat studies 

 

Pork minced meat (max 30% fat) was purchased from local supermarket and was packed 

in modified atmosphere. Different mixtures (Table 1) with plant powders (Photo) and 

other components were made in two batches, raw and cooked. Plant materials used in 

mixtures were lyophilized except for rhubarb roots and tomato, which were dried 

thermally. Minced meat without any added components added was used as a blank 

sample. Positive control was prepared with sodium nitrite and sodium chloride. 
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Additionally, rutin and gallic acid were used as representatives of flavonoids and fenolic 

acids. 

 

The components were added to minced meat and mixed with hand mixer during three 

minutes for uniform distribution. Samples for cooking were formed like meatloaves, 

wrapped into baking paper and aluminium foil and cooked at 225 ºC for 20 minutes, then 

cooled down and thoroughly homogenized. All samples were divided into screw cap jars 

for storage in a refrigerator at 4 ± 1 ºC. Analyses were performed at days 0, 2, 4, 6 and 8 

(microbiological analyses of raw samples only up to the 6th day). Microbiological 

analyses were performed simultaneously in duplicate. 

 

Table 1. Raw and cooked minced meat mixtures with additives 

No Samples 

1 Minced pork without additives as “Control” 

2 Minced pork with 1% sodium chloride (Fluka) 

3 Minced pork with 1% sodium chloride and 150 mg/kg sodium nitrite (Sigma-

Aldrich) 

4 Minced pork with 1% rhubarb root + 1% black currant berries 

5 Minced pork with 1% rhubarb root + 1% black currant leaves 

6 Minced pork with 1% rhubarb root + 1% chokeberry berries 

7 Minced pork with 1% black currant leaves + 1% blue honeysuckle berries 

8 Minced pork with 1% rhubarb petioles + 1% tomato 

9 Minced pork with 2% blue honeysuckle berries 

10 Minced pork with 2% rhubarb petioles 

11 Minced pork with 2% tomato 

12 Minced pork with 48 mg/600 g rutin (Sigma) 

13 Minced pork with 48 mg/600 g gallic acid (Sigma) 
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Photo: Plant materials and sets selected as additives minced meat (photo by Piret 

Raudsepp) 

 

 

 

3.3 Microbiological analyses 

 

In present study the antimicrobial effect of plant powders was estimated by counting 

microorganism’s general numbers in enriched and non-enriched raw and cooked minced 

pork. For raw minced pork and cooked minced pork products the lengths of the 

experiment period were six and eight days, respectively. 

 

 

 

No 2 - salt 

 

No 3 - rhubarb root + black currant berries 

 

 

 

No 4 - rhubarb root + black currant leaves 

 

 

No 5 - rhubarb root + chokeberry berries 

 

 

No 6 - black currant leaves + blue 

honeysuckle 

 

 

 

No 7 - rhubarb petioles + tomato 

 

 

No 8 - haskap berries (blue honeysuckle) 
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3.3.1 Yeasts and moulds count and aerobic plate count 

 

For the preparation of the initial suspensions and further decimal dilutions the EVS-EN 

ISO 6887-1:2017 was used. For the enumeration of yeasts and moulds the EVS-ISO 

standard 21527-1:2009 was followed. For colony count at 30 °C the surface plating 

technique was used following the instructions of the ISO 4833-2:2013 standard. Shortly, 

10 gram of minced meat was weighted into the stomacher bag, and diluted with 90 ml of 

sterile buffered peptone water ISO (LAB204, Lab M, Lancashire, UK) to get initial ten-

fold dilution. Samples were blended using Stomacher™ 400 Circulator (Seward, UK) 

within one minute at 230 rpm. For the enumeration of microorganisms at 30 °C (the 

aerobic plate count) the Plate Count Agar (LAB010, Lab M, Lancashire, UK) was used. 

For enumeration of yeast and moulds the DRBC Agar ISO (LAB217, Lab M, Lancashire, 

UK) was used. For both enumerations surface plating technique was used transferring 

100 µl (0.1 ml) of initial dilution and further decimal dilutions onto the surface of the 

agar plate. By using spreading spatula, the inoculum was spread evenly over the agar 

surface. Before incubation at appropriate temperatures the plates were kept 15 minutes at 

room temperature. PCA plates were incubated at 30 °C for 72 hours, and DRBC agar 

plates were incubated at 25 °C for 5 days. After incubation the colonies were counted to 

get total counts per gram of product in accordance with instructions given in ISO 

standard 7218:2018+A1:2013 General requirements and guidance for microbiological 

examinations.  All enumeration analyses were performed in duplicate series.  Results 

were expressed as log10 numbers of colony forming units/gram (cfu g-1). 

 

3.4 Statistical analyses 

 

The statistical significance of treatment and storage time effects on studied variables were 

tested with two-way analysis of variance followed by Dunnett’ post-hoc test comparing 

other treatments with meat as control. P values less than 0.05 are representing the 

treatments with statistically significant difference from meat on an average level of 

microbial counts over storage times (p<0.05, Dunnett’ post-hoc test). 
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4.  RESULTS 

 

Raw minced pork, aerobic plate count 

In raw minced pork samples, the number of microorganisms increased from 3.46 at 0 day 

to 4.57 log cfu g-1 at 6 days and 3.54 at 0 day to 5.20 log cfu g-1 at 6 days (Figure 1A). It 

was found that the most efficient antibacterials in raw minced pork were rhubarb petioles 

and the combination of sodium chloride with sodium nitrite. Among the combinations of 

two different plant additives, the most efficient combination of the additives in raw 

minced pork were 1% rhubarb petioles in combination with 1% tomato (Figure 1B). 

Compared to the other results in accordance with Figure 1B, the number of 

microorganisms in raw minced pork with 1% rhubarb petioles combined with 1% tomato 

increased most slowly on average from 4.22 at 0 day to 4.81 log cfu g-1 for 4 days 

followed by a rapid increase in numbers from 4.81 to 7.62 cfu g-1 for 6 day of storage. 

While comparing the parts A and B of Figure 1 it can be seen, that the most efficient 

antibacterials were rhubarb petioles and the combination of rhubarb petioles and tomato. 

Also, rutin and gallic acid as single additives were found to be efficient antibacterials. 

 

In present study, the largest increase in number of microorganisms on average from 3.40 

to 7.43 log units cfu g-1 for 6 day of storage was observed in raw minced pork containing 

1% black currant leaves in combination with 1% blue honeysuckle berries followed by 

1% rhubarb root + 1% black currant leaves (3.70 to 7.60 log cfu g-1) and 1% rhubarb 

petioles + 1% tomato (4.22 to 7.62 log cfu g-1) during the storage period. 
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Figure 1:  Dynamics of aerobic plate counts during storage period (days) of raw minced 

pork without any additives ("Control") and with different plant additives. Series A:  

with one additive. Series B: mixture of two plant additives. 
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Cooked minced pork, aerobic plate count 

Compare to the day 0 the number of microorganisms decreased in average from 3.32 to 

2.54 log cfu g-1 and 2.70 to 1.88 log cfu g-1 in cooked minced pork with 1% rhubarb root 

combined with 1% black currant berries (Figure 2B) and with 2% tomato, respectively 

(Figure 2A). The inhibitory effect of additives on the number of microorganisms in 

cooked minced pork was also observed for the several other plant additives, used in 

present trial, depending on the storage days of tested samples. Compared to the initial 

levels (0 days), in the presence of 2% tomato, 1% sodium chloride with sodium nitrite, 

1% rhubarb root with 1% black currant berries and 2% rhubarb petioles in cooked minced 

pork, the average decrease in cfu-s of the number of microorganisms varied from 0.65 to 

0.82 log units (on average from 2.84 log cfu g-1 to 2.08 log cfu g-1) at the end of storage 

trial (day 8). Some decrease on microbial numbers after 2 days of storage was observed 

for minced pork enriched with 2% of tomato as a single additive. Same effect was 

observed in combination of two plant additives for 1% rhubarb roots + 1% black currant 

berries and for 1% rhubarb petioles + 1% of tomato. 

 

The largest increase in microbial numbers from 3.24 (day 0) to 7.93 log cfu g-1 (day 8) 

was observed in cooked minced pork containing 1% rhubarb root + 1% black currant 

leaves followed by 1% sodium chloride (3.11 to 7.03 log cfu g-1) and 1% black currant 

leaves + 1% blue honeysuckle berries (2.74 to 6.49 log cfu g-1). 
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Figure 2: Dynamics of aerobic plate counts during storage period (days) of cooked 

minced pork without any additive ("Control") and with different plant additives. Series A:  

with one additive. Series B: mixture of two plant additives. 

 

Yeasts and moulds in raw minced meat samples 

In Figure 3AB it can be seen that the initial numbers of yeasts and moulds for all raw 

minced pork samples without and with additives was between 2.30 and 3.70 log cfu g-1 at 

0 day. It can be named as initial contamination level.  

 

These numbers increased in most tested samples steadily reaching 3.00 to 5.62 log cfu g-1 

for 6 days of storage. However, compared to the initial contamination levels at 0 days, 

small decrease of the cfu-s of yeasts and molds in raw minced pork was observed for 

samples with 2% tomato (from 2.60 to 2.0 log cfu g-1) up to second storage day; 1% 

sodium chloride + sodium nitrite (from 2.30 to 2.0 log cfu g-1) up to the fourth storage 

day, also for minced pork samples with gallic acid (from 2.48 to 2.0 log cfu g-1) up to the 

fourth storage day. 
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Figure 3. Dynamics of yeasts and molds counts during storage period (days) of raw 

minced pork without any additive ("Control") and with different plant additives.  

Series A:  with one additive. Series B: mixture of two plant additives. 

 

Yeasts and moulds in cooked minced meat samples 

Generally, the counts of yeasts and moulds in cooked minced pork (with and without 

additives samples) remained under detection limit (Table 2). Table 2 shows that in cooked 

minced pork samples enriched with rhubarb petioles, tomato and rutin the initial 

contamination in decreasing during study period. Generally, the yeasts and mould 

numbers stayed under detection limit (the threshold of 100 CFU/g). 
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Table 2. Yeasts and molds counts* of cooked minced pork with different additives 

 Analysed food matrix Day 0 Day 2 Day 4 Day 6 Day 8 

Control 0 0 0 0 0 

Minced pork + 1% sodium 

chloride 

100 100 100 100 100 

Minced pork + 1% rhubarb root + 

1% black currant berries 

0 0 0 0 0 

Minced pork + 1% rhubarb root + 

1% black currant leaves 

0 0 0 0 0 

Minced pork + 1% rhubarb root + 

1% chokeberry berries 

100 0 0 0 0 

Minced pork + 1% black currant 

leaves + 1% honeysuckle berries 

0 0 0 0 0 

Minced pork + 1% rhubarb 

petioles + 1% tomato 

100 0 0 0 0 

Minced pork +2% honeysuckle 

berries 

0 0 0 0 0 

Minced pork + sodium chloride + 

sodium nitrite 

200 100 100 100 100 

Minced pork + 2% rhubarb 

petioles 

100 100 0 0 0 

Minced pork + 2% tomato 100 100 0 0 0 

Minced pork + rutin 100 100 0 0 0 

Minced pork + gallic acid 0 0 0 0 0 

*Note: in table results are presented in CFU numbers per gram (not in log units) 

 

Statistical analyses 

The Tables 3 and 4 shows the differences of average total microbial counts as well as the 

differences of yeasts and mould counts between control (meat) and treatments (meat with 

powders), respectively. Compared to raw minced pork as control, four treatments such as 

raw minced pork with 1% sodium chloride + sodium nitrite (p=0.000), 2% rhubarb 

petioles (p=0.000), gallic acid (p=0.007) and rutin (p=0.000) were significantly more 

effective against microbial growth during storage period.  

 

In the present study, the use of 1% rhubarb root + 1% black currant berries (p=0.000), 1% 

rhubarb root + 1% black currant leaves (p=0.001), 1% rhubarb root + 1% chokeberry 

berries (p=0.499), 1% rhubarb petioles + 1% tomato (p=0.000), 2% blue honeysuckle 

berries (p=0.015), 1% sodium chloride + sodium nitrite (p=0.000), 2% rhubarb petioles, 

2% tomato, gallic acid (p=0.000) and rutin (p=0.000) in treatments were found to give a 

strong microbial growth inhibition effect compared to meat sample without additives 

(control). 
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Table 3. The differences of average total microbial counts between control (meat) and 

treatments (meat with powders) 
 

 

 

Samples 

Raw minced meat samples Cooked minced meat 

samples 

Average 

microbial 

counts  

(log cfu/g) 

p-value 

(comparing 

with meat) 

Average 

microbial 

counts  

(log cfu/g) 

p-value 

(comparing 

with meat) 

Control 5.46 1.000 4.15 1.000 

Minced pork + 1% sodium chloride  5.66 0.989 5.14 0.115 

Minced pork + 1% rhubarb root + 1% 

black currant berries 5.90 0.454 2.32 

 

0.000* 

Minced pork + 1% rhubarb root + 1% 

black currant leaves 5.76 0.856 5.73 

 

0.001* 

Minced pork + 1% rhubarb root + 1% 

chokeberry berries 5.92 0.400 3.47 

 

0.499* 

Minced pork + 1% rhubarb petioles + 

1% tomato 5.07 0.586 2.18 

 

0.000* 

Minced pork + 2% blue honeysuckle 

berries 5.94 0.368 2.86 

 

0.015* 

Minced pork + 1% sodium chloride + 

sodium nitrite 4.05 0.000* 2.36 

 

0.000* 

Minced pork + 2% rhubarb petioles 3.70 0.000* 2.27 0.000* 

Minced pork + 2% tomato 4.92 0.219 2.05 0.000* 

Minced pork + gallic acid 4.59 0.007* 2.16 0.000* 

Minced pork + rutin 4.35 0.000* 2.08 0.000* 

*Stars in table denote the treatments with statistically significant difference from meat (control) on an 

average level of microbial counts over storage times (p<0.05, Dunnett’ post-hoc test). 

 

Table 4 shows that the use of 1% rhubarb root + 1% chokeberry berries (p=0.000), 1% 

rhubarb petioles + 1% tomato (p=0.022), 2% blue honeysuckle berries (p=0.003), 1% 

sodium chloride + sodium nitrite (p=0.003), 2% tomato (p=0.004), rutin (p=0.030) and 

gallic acid (p=0.000) in treatments were found to give a strong total yeasts and mould 

counts growth inhibition effect compared to meat sample without additives (control). 

 



34 

 

 

 

Table 4. The differences of average total yeasts and mould counts between control (meat) 

and treatments (meat with powders) 
 

Samples 

Raw minced meat samples 

Average yeasts and 

mould counts  

(log cfu/g) 

p-value 

(comparing 

with meat) 

Control 3.49 1.000 

Minced pork + 1% sodium chloride  3.15 0.638 

Minced pork + 1% rhubarb root + 1% black currant berries 4.07 0.076 

Minced pork + 1% rhubarb root + 1% black currant leaves 3.64 0.997 

Minced pork + 1% rhubarb root + 1% chokeberry berries 4.14 0.037* 

Minced pork + 1% black currant leaves + 1% blue honeysuckle 

berries 3.75 0.860 

Minced pork + 1% rhubarb petioles + 1% tomato 4.18 0.022* 

Minced pork + 2% blue honeysuckle berries 4.33 0.003* 

Minced pork + 1% sodium chloride + sodium nitrite 2.66 0.003* 

Minced pork + 2% rhubarb petioles 3.19 0.767 

Minced pork + 2% tomato 2.67 0.004* 

Minced pork + rutin 2.82 0.030* 

Minced pork + gallic acid 2.38 0.000* 

*Stars in table denote the treatments with statistically significant difference from meat on an average level 

of yeast and mould counts over storage times (p<0.05, Dunnett’post-hoc test). 
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5. DISCUSSION 

 

The shelf-life of most of foods can be extended by using cold storage. Low temperatures 

slow down chemical changes in food as well as the growth of many moulds, yeasts and 

spoilage bacteria. In accordance with general responsibilities laid down in legislation as 

well as in self-control programs, the food enterprises are obliged to carry out a durability 

studies which determine the shelf-life of food. It can be done by analysing the growth of 

microorganisms in the manufactured food, under previously determined reasonable 

conditions of distribution, storage and use (FSAI 2017).  Self-life can also be extended 

by using new technologies, like activated films and non-thermal treatments, but these 

may cause loss of organoleptic properties (Negi 2012). 

In present study for microbial enumeration aerobic plate count at 30 °C and colony count 

technique for the enumeration of yeasts and moulds were used, because these are generic 

microbiological tests that counts organisms which grow under aerobic conditions at 

defined temperatures on a particular growth medium. The total counts of microorganisms 

provide useful information to assess a food’s quality or its remaining shelf-life (Roasto, 

Laikoja 2017), but does not differentiate aerobic microorganisms or indicate the presence 

of pathogens. Powdered plants are well suited for minced meat, because powders can be 

easily mixed uniformly into meat matrix. Plant powders have lower toxicity compared to 

synthetic ones. Also, plant powders can be collected from plant by-products which could 

be quite cheap raw material for food industry (Palmeri et al 2018). 

 

5.1 Aerobic Plate Count in raw minced pork 

 

Compared to the control and samples with other additives, the most efficient plant 

additives in inhibition of the growth of microorganisms in raw minced pork were rhubarb 

petioles, sodium chloride with sodium nitrite and tomato.  

Compare to the initial number of microorganisms in raw minced pork samples not 

significant decrease in microbial numbers was reported in second storage day for raw 

minced pork enriched with 2% rhubarb petioles and for raw minced pork with 1% sodium 

chloride + sodium nitrite. 
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Taking into account the entire 6 days long storage period, the number of microorganisms 

in raw minced pork samples was mostly affected by the presence of rhubarb petioles, 

sodium chloride with sodium nitrite and tomato. Comparing to the control sample 

significantly lower number of microorganisms at the end of storage trial was reported for 

raw minced pork samples enriched with 2% rhubarb petioles and for 1% sodium chloride 

and sodium nitrite. 

Among the combinations of two different plant additives, the most efficient combination 

of the additives in raw minced pork were 1% rhubarb petioles in combination with 1% 

tomato. 

The Commission Regulation (EC) No 2073/2005 establishes microbiological criteria for 

foodstuffs. The process hygiene criteria for raw minced meat are set for aerobic colony 

count with the limit of 5 x 106 cfu/g-1 as a maximum number of microorganisms in two of 

five units comprising the sample. For the rest of three units (subsamples) the limit for 

aerobic colony count is 5 x 105 cfu/g-1. Taking into account these limits it can be deduced 

that at the end of storage trial for the day 6 for most of the samples of the present study 

the official limits were exceeded except for minced meat samples with 2% rhubarb 

petioles, 1% sodium chloride and sodium nitrite and minced meat samples with rutin.  

 

5.2 Aerobic Plate Count in cooked minced pork 

 

In cooked minced pork the most efficient microbial growth inhibitors as single additives 

were rutin, gallic acid, rhubarb petioles, tomato and the combination of sodium chloride 

with sodium nitrite. Among combinations of two different plant additives, the most 

efficient antimicrobials were rhubarb petioles together with tomato, and rhubarb root in 

combination with black currant berries. 

The inhibitory effect of additives on the number of microorganisms in cooked minced 

pork was also observed on the several other plant additives depending on the storage days 

of tested samples. Compared to the initial levels (0 days), in the presence of 2% tomato, 

1% sodium chloride with sodium nitrite, 1% rhubarb root with 1% black currant berries 

and 2% rhubarb petioles in cooked minced pork, the average decrease in cfu-s of the 

number of microorganisms varied from 0.65 to 0.82 log units at the end of storage trial 

(day 8). Some decrease on microbial numbers after 2 days of storage was observed for 

minced pork enriched with 2% of tomato as a single additive. Same effect was observed 
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in combination of two plant additives for 1% rhubarb roots + 1% black currant berries 

and for 1% rhubarb petioles + 1% of tomato. 

Taking into account both study series with raw and cooked minced pork it is noteworthy 

that 1% rhubarb petioles in combination with 1% tomato was able to inhibit the microbial 

growth most efficiently. In raw pork samples it was seen up to 4 days of storage and in 

cooked pork samples until the end of storage trial. 

 

5.3 Yeast and moulds in raw minced pork 

 

The most efficient additives in raw minced pork samples were gallic acid, rutin and 

tomato as single additives as well as sodium chloride together with sodium nitrite. 

Interestingly, there was no considerable difference in antimicrobial activities against the 

growth of yeasts and moulds between combinations of two different plant additives. It 

can be explained with the findings of Gyawali and Ibrahim (2014) who reported that in 

food matrices active biocompounds can bind to the hydrophobic moieties of proteins and 

lipids which restrict the availability of the natural antimicrobials. According to the present 

study, the higher efficiency in microbial growth inhibition for 2% of individual plant 

additives compare to the combinations were 1% + 1% of different additives were used 

could be the consequence of too low separate concentrations (1%) of plant additives for 

inactivation of the growth of microorganisms in minced pork. High concentrations of 

separate plant additives in meat products cannot be always accepted in accordance with 

sensory properties of food. Both antimicrobial and sensory properties have to be taken 

into account while selecting plant additives for the use in food industry as natural 

antimicrobials and antioxidants. Latter requires the series of tests, both analytical and 

sensory, to be performed to find the combinations and concentrations of natural food 

additives acceptable for industrial usage. It was found by Tiwari et al. (2009) that in 

certain concentrations natural antimicrobials can inactivate microorganisms without 

impairing organoleptic properties of food. 

There are no official microbiological criteria for the number of yeasts and moulds in raw 

minced meat, but mostly the limit 5 x 103 cfu/g-1 at the end of shelf-life has been used by 

many Estonian meat industries. Taking into account this indicative limit it can be deduced 

that at the end of storage trial for the day 6 for most of the samples the limit was not 

exceeded.  
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Highest numbers of yeasts and moulds at day 6 were determined for the minced meat 

with 2% blue honeysuckle berries and for control (raw minced pork without any 

additives). Also, black current laves and berries were associated with high numbers of 

yeasts and moulds in present study. Lowest numbers of yeasts and moulds were 

determined for minced meat samples enriched with 2% tomato, gallic acid, rutin and 1% 

sodium chloride + sodium nitrite. 

In case of enrichment of raw meat products with plant additives (e.g. powders) the initial 

contamination of plant materials sometimes may lead to serious microbiological 

contamination. It may also cause food safety problems with pathogenic microorganisms 

including those able to produce thermostabile toxins. Therefore, the control measures 

which eliminate or significantly reduces the microbial contamination loads of plant 

additives should be applied including high hygiene standards while collecting and 

processing of plant additives for the use in food matrices.  

 

5.4 Yeast and moulds in cooked minced pork 

 

Very low numbers of yeasts and moulds in cooked minced pork samples with and without 

additives can be explained with efficient thermal processing, which destroys most of the 

yeasts and moulds in cooked meat. Australian risk assessment study found that the most 

effective means of reducing the risk of listeriosis from processed meats was to reduce 

initial contamination levels of microorganisms, and to use in-pack pasteurisation 

technology (Ross et al. 2009). In present study because of relatively short durability, the 

numbers of L. monocytogenes were not determined, but the findings of Ross et al. (2009) 

apply also for total numbers of microorganisms in various ready-to-eat food products. 

 

Finally, in present study the levels of microorganisms both in raw and cooked minced 

pork samples without and with additives did not reach the levels to cause radical spoilage 

changes such as slime production and unpleasant odour. 
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6. CONCLUSION 

 

According to the results of present study it can be concluded that most efficient microbial 

growth inhibiting plant powders both in raw and cooked minced pork were tomato and 

rhubarb petioles. Therefore, these plant powders may provide meat industry with a useful 

ingredients to achieve better taste and colour for meat products as well as protection 

against microbial spoilage during reasonable shelf-life. 
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SUMMARY 

 

The use of natural antimicrobials such as organic acids, essential oils, plant extracts, and 

bacteriocins could be a good alternative to ensure food safety. Berries are a good source 

of bioactive compounds such as polyphenols and ascorbic acid. Berries also contain other 

health benefit compounds and could be suitable for the use in the meat and meat products. 

Plants secondary metabolites, most of which are phenols or their oxygen-substituted 

derivatives, possess various benefits including antimicrobial properties against 

pathogenic and spoilage microbes 

In present study the aim was to study antimicrobial effect of plant powders by counting 

microorganism’s general numbers in enriched and non-enriched raw and cooked minced 

pork. For raw minced pork and cooked minced pork products the experiment period was 

six and eight days, respectively.   

Plants used in study were siberian rhubarb (Rheum rhaponticum), black currant (Ribes 

nigrum), blue honeysuckle (Lonicera caerulea var edulis), black chokeberry (Aronia 

melanocarpa), and tomato (Solanum lycopersicum). 

It was found that the number of microorganisms of samples in raw pork increased from 

3.46 at 0 day to 4.57 log cfu g-1 at 6 day and 3.54 at 0 day to 5.20 log cfu g-1 at 6 day.  

The most efficient antibacterials were rhubarb petioles and the combination of sodium 

chloride with sodium nitrite. 

Among the combinations of two different plant additives, the most efficient combination 

of the additives in raw minced pork were 1% rhubarb petioles in combination with 1% 

tomato. Compared to the other findings, the number of microorganisms in raw minced 

pork with 1% rhubarb petioles combined with 1% tomato increased most slowly on 

average from 4.22 at 0 day to 4.81 log cfu g-1 for 4 days followed by a rapid increase in 

numbers from 4.81 to 7.62 cfu g-1 for 6 day of storage. 

The inhibitory effect in cooked minced pork was also observed on the several other plant 

additives. Compared to the initial levels (0 days), in the presence of 2% tomato, 1% 

sodium chloride with sodium nitrite, 1% rhubarb root with 1% black currant berries and 

2% rhubarb petioles in cooked minced pork, the average decrease in cfu-s of the number 

of microorganisms varied from 0.65 to 0.82 log units. 
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Finally, we can summarise that the most efficient microbial growth inhibitors both in raw 

and cooked minced pork were tomato, rhubarb petioles, gallic acid, rutin and sodium 

chloride together with sodium nitrite. 
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