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Abstract. Currently, remote sensing or yield monitor equipment offer possibilities how to 
estimate productivity of the agriculture field. That is why the main aim of this study is to assess 
how the latest satellite images from vegetation season and final yield data from combine harvester 
can be used to predict yield and to assess site-specific zones productivity. The study is focused 
on the accuracy of these systems for the field productivity estimation. The 24.7 ha experimental 
field is located near to Vendoli village (the Czech Republic) and it is cultivated by conventional 
agricultural practices with emphasis on typical agricultural crops growing in the Czech Republic 
(winter wheat, spring barley and winter rape). The results showed that both methods of estimation 
can be used for yield prediction. Nevertheless, each of them need specific processing and has 
typical limitations.
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INTRODUCTION

Agricultural systems are modified ecosystems. Change in one component of a 
system makes changes in other systems, because of mutual interactions. For example 
change in humid or in weather to warm can lead to the development of a crop diseases 
and losing of crop yield potential. Adaptation to managing technological processes is 
very difficult. Systems are influenced by the weather condition and other inputs. 
Murthy (2012) described nine types of agricultural meteorology models, which are 
classified into different types or groups, i.e statistical, mechanistic, deterministic, 
stochastic, dynamic, static, simulation, descriptive and explanatory model. These models 
explain influence of weather on agricultural systems.

Remote sensing in agricultural application has been used more than three decades 
(Knipling, 1970; Tucker et al., 1981; Moran et al., 1994; Wardlow & Egbert, 2008) and 
one of the aim of remote sensing is to optimize crop yield in large plot and predict yield 
(Mulla, 2013). Generally mapping of yields and weather models are important for 
projecting impact of climate change on linked environmental outcomes (Rosenzweig et. 
Al., 2013). Currently many information about individual zones are accumulated and are 
used for the analysis of crop growth a yield patterns and also can be used for management 
zones (Mulla, 2013). In studies focused on monitoring of health crop with the help of 
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remote sensing are used especially spectral indices, mainly Normalized Difference 
Vegetation Index (NDVI, Rouse et al., 1974), the normalized ratio between RED and 
NIR bands. Most of spectral indices are based on leaf area index (LAI) or absorption 
photosynthetically radiation (Asrar et al., 1984; Baret & Guyot, 1991). More than 100 
spectral indices have been reviewed by Xue & Su (2017). They described spectral 
indices along with their representativeness, applicability and implementation in 
precision agriculture.

Weather data is usually used as an input to crop models. Thornton et al. (1997) 
described these models and their link to simulation of crop growth, development and 
impacts of climate change. Crop models and simulation are very often used in USA and 
also in Europe by farmers, public and private agencies and policy makers to a greater 
extent for decision making (Murthy, 2012). In addition, basic knowledges about inputs 
provide valuable informations applicable in yield prediction. There are also many studies 
showing the benefits of crop prediction and geostatistical analysis for agricultural 
management (Seelan et al., 2003).

It is clear that many inputs data play a key role in yield prediction and crop 
simulations. Nevertheless appropriate data collection can be limited for farmers in 
practical use. The main aim of this study is to use only the most common data from 
agronomical praxis as yield, mostly free satellite images and weather data (temperature 
and precipitation) and phenology expressed by BBCH scale for yield or NDVI frequency 
maps modelling for the yield prediction and crop structure estimation.

MATERIALS AND METHODS

Study area
The study area is an 24.7 ha experimental field located near to Vendolí village 

(N 49°43'48'', E 16°24'14''), The Czech Republic. The experimental field is undulated 
with elevation ranges from 543 m to 571 m a.s.l. and 6% slope. The soil can be classified 
as modal cambisols on limestone sandstones. Some parts of this plot are strongly eroded, 
especially those sloping. The average precipitation is 700 mm per year and the average 
temperatures ranges between 6 and 7 °C. Table 1 contents the temperature and 
precipitation data from monitored years (2014 to 2018). The experimental field is owned 
by Agricultural Company Vendolí used conventional arable soil technology (ploughing) 
on all their plots. Since 2014 the crop rotation has been as follows: winter wheat (2014), 
spring barley (2015), winter rape (2016), winter wheat (2017) and spring barley (2018).

Table 1. Weather conditions (precipitations and temperatures) at different phenological phases 
by BBCH scale for experimental field in 2014–2018

Precipitation (mm) Temperature (°C)
2014 2015 2016 2017 2018 2014 2015 2016 2017 2018

BBCH 0–19 37.0 30.4 69.0 32.8 21.1 8.8 5.5 12.1 3.6 15.2
BBCH 20–29 97.8 7.6 191.0 224.2 37.7 2.8 9.7 3.0 2.7 17.0
BBCH 30–59 127.2 35.8 44.2 75.9 24.8 9.6 13.0 6.7 16.1 19.8
After BBCH 60 201.8 132.6 177.5 173.8 53.8 17.1 18.6 15.9 19.6 19.4
Sum 463.8 206.4 481.7 506.7 137.4 - - - -
Mean 115.9 51.6 120.4 126.7 34.4 9.6 11.7 9.4 10.5 17.9
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Yield and remote sensing data
The yield was measured by a combine harvester New Holland CR9080 equipped 

with yield monitor and DGPS receiver with EGNOS correction. The accuracy of this 
system is ± 0.1-0.3 m in horizontal and ± 0.2–0.6 m in vertical direction. The yield data 
are saved every 1 second with coordinates to the external memory. Failure on external 
memory caused the data loses in 2017. The yield data were process by basic statistical 
method in order to eliminate the errors of yield measurement system. The yield data sets 
were then interpolated to kriging maps (see Fig. 1) using experimental variograms. 
Details about yield data processing are more described in Kumhálová et al., 2011. 
Relative yield values were calculated for each yield data set with the aim to standardize 
the yield data (the actual yield value to average yield value of the plot converted to 
percentages). The relative yield maps were then converted to rasters, resampled to equal 
spatial resolution (10 m according to Sentinel 2 spatial resolution) and recalculated to 
yield frequency maps (Maphanyane et al., 2018) with help of Cell Statistics tool in 
ArcGIS 10.4.1 SW (ESRI, Redlands, CA, USA). The maximum values of the input's 
yield data were used for yield frequency maps calculation. The yield frequency maps 
were derived from the all measured years and from cereals only (except winter rape 
yield) – see Fig. 2, (a, b).

Figure 1. Yield maps (in t ha-1) for the years 2014 with winter wheat (a); 2015 with spring barley 
(b); 2016 with winter rape (c); 2018 with spring barley (d).

The Landsat 8 satellite image for 2014 was downloaded from USGS 
(https://earthexplorer.usgs.gov/), Sentinel 2A images for 2016, 2017 and 2018 were 
downloaded from Copernicus Open Access Hub (https://scihub.copernicus.eu/) and 
SPOT 7 image for 2015 was purchased from ArcDATA Company 
(https://www.arcdata.cz/). The last satellite images from each vegetation season were 
selected, pre-processed to the level of BOA reflectance (Bottom of Atmosphere)  and 
resampled to 10 m spatial resolution except Landsat image in 2014 (see Table 2 and 
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Fig. 3) with the help of SW ENVI 5.5 (Excelis, Inv. Mc Lean, USA) or SNAP 6.0.4 
(ESA, http://step.esa.int/main/). Normalized Difference Vegetation Index was calculated 
from each image. NDVI frequency maps with the help of Cell Statistics tool were created 
in four variations, where maximum values of the input data were used. The NDVI 
frequency maps were derived on the base of – all NDVI images [1], NDVI images for 
cereals only (without 2016 – winter rape) [2], all NDVI images except 2014 (with 30 m 
spatial resolution/Landsat image) [3] and NDVI for cereals (except 2014 and 2016) [4] 
– see Fig. 2(c–f).

Figure 2. Yield and Normalised Difference Vegetation Index (NDVI) frequency maps: YFMall 
= yield frequency map derived from all yield maps (a); YFMcer = yield frequency map derived 
from cereals yield maps only (b); NDVIFMall = NDVI frequency map for all years (c); 
NDVIFMall10 = NDVI frequency map for all years without Landsat image/2014 (d); 
NDVIFMcer = NDVI frequency map derived for cereals only (e); NDVIFMcer10 = NDVI 
frequency map derived for cereals without Landsat image/2014 (f).

Table 2. Satellite images used in this study

Satellite Sensor
Spatial 
resolution

RED range 
(nm)

NIR range 
(nm)

Date

Landsat 8 OLI 30 m 636–673 851–879 7-July 2014
SPOT 7 NAOMI 6 m 625–695 760–890 4-July 2015
Sentinel 2A MSI 10 m* 650–680 785–900 5-June 2016

20-June 2017
17-June 2018

RED = reflectance in RED band; NIR = reflectance in near infrared band; OLI = Operational Land Imager;
NAOMI = New AstroSat Optical Modular Instrument; MSI = Multispectral Instrument; * 10 m for RED 
and NIR bands.
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Figure 3. Normalised difference Vegetation Index (NDVI) for the years 2014 with winter wheat 
(a); 2015 with spring barley (b); 2016 with winter rape (c); 2017 with winter wheat (e); 2018 with 
spring barley (f).

Coefficients of determination were calculated in Statistica 8.0 SW (StatSoft Inc., 
Tulsa, OK, USA) between each crop yield data, NDVI images, yield frequency maps 
and NDVI frequency maps (see Table 3 and 4).

RESULTS AND DISCUSSION

The coefficients of determination for selected parameters are shown in Table 3 
and 4. The coefficients of determination were calculated for a 5% significance level.

Table 3. Coefficients of determination between yield from selected years and Yield/NDVI 
frequency maps and NDVI (at 5% significance level)

Models Yield 18 Yield 16 Yield 15 Yield 14
YFMcer 0.56 0.15 0.59 0.45
YFMall 0.24 0.16 0.46 0.44
NDVIFMcer 0.12 0.01 0.22 0.14
NDVIFMcer10 0.24 0.03 0.24 0.13
NDVIFMall 0.10 0.31 0.07 0.07
NDVIFMall10 0.30 0.08 0.36 0.16
NDVI180617 0.52 0.10 0.36 0.16
NDVI170620 0.27 0.08 0.34 0.16
NDVI160605 0.05 0.13 0.05 0.03
NDVI150704 0.18 0.09 0.27 0.08
NDVI140707 0.06 0.05 0.26 0.19
NDVI = Normalised Difference Vegetation Index for selected terms; YFMcer = yield frequency map 
derived from cereals yield maps only; YFMall = yield frequency map derived from all yield maps; 
NDVIFMcer = NDVI frequency map derived for cereals only; NDVIFMcer10 = NDVI frequency map 
derived for cereals without Landsat image/2014; NDVIFMall = NDVI frequency map for all years; 
NDVIFMall10 = NDVI frequency map for all years without Landsat image/2014.
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Table 4. Coefficients of determination between NDVI from selected terms and Yield/NDVI 
frequency maps (at 5% significance level)

NDVI180617 NDVI170620 NDVI160605 NDVI150704 NDVI140707
YFMcer 0.38 0.24 0.04 0.17 0.14
YFMall 0.18 0.16 0.08 0.12 0.14
NDVIFMcer 0.20 0.31 0.006 0.12 0.35
NDVIFMcer10 0.18 0.38 0.008 0.07 0.14
NDVIFMall 0.06 0.03 0.14 0.06 0.05
NDVIFMall10 0.26 0.96 0.02 0.12 0.18
NDVI = Normalised Difference Vegetation Index for selected terms; YFMcer = yield frequency map 
derived from cereals yield maps only; YFMall = yield frequency map derived from all yield maps; 
NDVIFMcer = NDVI frequency map derived for cereals only; NDVIFMcer10 = NDVI frequency map 
derived for cereals without Landsat image/2014; NDVIFMall = NDVI frequency map for all years; 
NDVIFMall10 = NDVI frequency map for all years without Landsat image/2014.

Table 3 showed that winter rape yield prediction based on yield frequency maps 
had lower usability (r2 = 0.15 /0.16 for both cases) than the yield prediction maps for 
cereals yield estimations (r2 from 0.24 to 0.59). On the other hand the cereals yield 
prediction was more accurate for model which included the yield form cereals only 
(except winter rape, see Fig. 2, b). The yield frequency map for cereals explained from 
56% to 59% of actual yield variability for spring barley and 45% for winter wheat yield. 
No significant difference was found in yield prediction for winter wheat in 2014 between 
both yield models (see Fig. 2, a and b). On the contrary yield frequency map for cereals 
(see Fig. 2b) explained actual spring barley yield more significantly than the other model.

NDVI frequency map from all year except 2014 with Landsat image, resampled to 
10 m (see Fig. 2, d), seemed to be the best model for actual cereal yields explaining. 
Nevertheless the actual yields were explained from 30 to 36% for spring barley and 16% 
for winter wheat. Winter rape actual yield was best explained, but not too much 
significantly (31%), by the model derived from all NDVI from 2014 to 2018 (see 
Fig. 2, c).

Coefficients of determination between actual yields and actual NDVI map 
generally fits best for individual years. The exception was NDVI in 2018, where NDVI 
image fits best for both spring barley yield maps (in 2015 and 2018 – see Figs 1 and 3).

Table 4 showed coefficient of determination between NDVI from selected terms 
and Yield / NDVI models. The models generally better explain the cereal crop 
variability, crop health and structure in individual terms in years 2017 and 2018. It can 
be caused by weather conditions, when ore water supply was during crop tillering 
(BBCH 20–29) with higher temperature in comparison with previous years. The best 
model for crop condition estimation seems to be the NDVI frequency map in spatial 
resolution of 10 m according to Sentinel 2 image from all years except 2014 (see 
Fig. 2, d). This model explains winter wheat crop structure from 96%. The best model 
for crop yield estimation is then yield frequency map for cereals (see Fig. 2, b) that 
explain the yield variability from 44% in average for all selected years.

The yield is made up of many variables among which belong especially weather 
condition, soil type, pH, soil nutrients and topography (Kumhálová et al. 2011). In time 
of climate warming it is obvious that the crop growth and then resulting yield is mostly 
influenced by water supply as in our study in 2017 and 2018. Crops benefit better in 
places with better water and nutrients supply, especially in drier years. This statement is 
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in accordance with Schmidt & Persson (2003) or Kumhálová & Matějková (2017). The 
places with better productivity are good bounded by derived yield or NDVI frequency 
maps. Each of these models used in this study has its positive or negative sides that can 
influence their usability. The yield frequency maps depend on annual measurement of 
yield data. It can be a problem for farmers who do not have the appropriate equipment 
(active yield monitor on combine harvester). The problem may also occur during 
recording and storing yield data on combine harvester. This was case of our study in 
2017. In order to obtain as accurate data as possible, it is necessary to calibrate the yield 
monitor system and to properly process the yield data using advanced tools (Chung et 
al., 2002, Maldaner et al., 2016). Currently, many commercial or freely available 
softwares allow relatively simple data processing to resulting yield frequency map (Pink 
& Dobermann, 2005). The NDVI frequency maps depend on satellite images access. 
Currently satellite images from Copernicus Earth observation programme offers optical 
satellite images with high spatial (from 10 to 60 m) and radiometric (13 bands) resolution 
and very good revisit frequency (5-days on equator). Fiuzal et al. (2017) stated that the 
main limitation of using optical data is heavy cloud cover. This is in accordance with our 
study. The satellite images were selected according to criteria (1) last satellite image in 
vegetation season and (2) cloud-free image. For this reason, there is a relatively large 
data range in the images used for the purposes of this study (5 June 2016 and 7 July 
2014). To ensure these criteria, it was also necessary to use various satellite images 
(Landsat, Sentinel 2 and SPOT) regardless of their properties. The spectral and spatial 
differences can be one of the limitations in comparison and use data sets. This 
corresponds well with Scudiero et al. (2016) study, where the suitability of sensor 
measurements to geographical region and use purposes was assessed.

Many studies have been written to evaluate cereals using optical remote sensing. 
The first was publicated in the 1970s with the most widely used NDVI spectral index. 
As can be seen from the results of this study, the models used are more suitable to 
evaluate and predict the yield of cereals than winter rape. Our results are in good 
agreement with the findings of Domínguez et al. (2017). They found out that different 
winter rape canopy architecture and leaf structure cause different spectral properties then 
in the case of cereals. Winter rape crops have also other growth requirements than 
cereals.

CONCLUSIONS

The results showed that information about crop yield and crop condition derived 
from satellite images can be useful for frequency map modelling. Yield frequency map 
and NDVI frequency map can be helpful tool for agriculture plots management. These 
models have their limitations that can be crucial for agricultural praxis. Nevertheless, 
our study showed that the best model for crop yield estimation is yield frequency map 
for cereals explaining the yield variability from 44% in average for all selected years. 
The best model for crop condition estimation seems to be the NDVI frequency map in 
spatial resolution of 10 m according to Sentinel 2 image from all years. This model 
explain winter wheat crop structure from 96% and from 38% for all selected NDVI 
images. The models were more significant for cereals and in drier and warmer years.
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